WO2018055921A1 - Path creation system - Google Patents

Path creation system Download PDF

Info

Publication number
WO2018055921A1
WO2018055921A1 PCT/JP2017/027901 JP2017027901W WO2018055921A1 WO 2018055921 A1 WO2018055921 A1 WO 2018055921A1 JP 2017027901 W JP2017027901 W JP 2017027901W WO 2018055921 A1 WO2018055921 A1 WO 2018055921A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
route
tractor
travel
cooperative
Prior art date
Application number
PCT/JP2017/027901
Other languages
French (fr)
Japanese (ja)
Inventor
敏史 平松
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020187030055A priority Critical patent/KR102279839B1/en
Priority to CN201780045340.8A priority patent/CN109716253B/en
Priority to KR1020217022145A priority patent/KR102413467B1/en
Priority to CN202210241778.6A priority patent/CN114594775A/en
Publication of WO2018055921A1 publication Critical patent/WO2018055921A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet

Definitions

  • the present invention relates to a route generation system. Specifically, the present invention relates to a route generation system that generates a travel route of work vehicles when a plurality of work vehicles perform work in cooperation.
  • Patent Document 1 discloses a route generation device (travel route setting device) used in this type of route generation system.
  • the route generation device disclosed in Patent Document 1 includes a touch panel display device, and can communicate with the first work vehicle and / or the second work vehicle via a communication device.
  • the arrangement position of the second work vehicle with respect to the first work vehicle is set on the setting screen displayed on the route generation device after the field is specified, the travel routes of the first work vehicle and the second work vehicle are generated.
  • the arrangement position of the second work vehicle with respect to the first work vehicle is configured such that an arbitrary arrangement position can be selected from a plurality of possible combinations.
  • Patent Document 1 it is possible to generate a travel route that maintains the set position of the second work vehicle with respect to the set first work vehicle.
  • Patent Document 1 only the travel route that is constrained to the set position of the second work vehicle with respect to the set first work vehicle is generated, and therefore it is not necessarily possible to generate a travel route according to the user's intention. It was not limited.
  • the present invention has been made in view of the above circumstances, and its purpose is not necessarily restricted by the set positional relationship of a plurality of work vehicles, and a travel route is generated in a fluid manner according to the user's intention. It is an object of the present invention to provide a path generation system that can do this.
  • a route generation system having the following configuration. That is, the route generation system includes a cooperative work mode setting unit, a positional relationship setting unit, a cooperative traveling route generation unit, and a reception unit.
  • the cooperative work mode setting unit sets a cooperative work mode of the first work vehicle and the second work vehicle.
  • the positional relationship setting unit sets a positional relationship between the first work vehicle and the second work vehicle when the cooperative work mode is a cooperative work in the same work area.
  • the cooperative travel route generation unit includes a first travel route on which the first work vehicle travels and a second travel route on which the second work vehicle travels when the cooperative work mode is cooperative work in the same work area. A coordinated travel route is generated.
  • the reception unit receives whether or not priority is given to maintaining the positional relationship. When the priority of maintaining the positional relationship is received by the receiving unit, the cooperative traveling route that maintains the positional relationship is generated. When the priority for maintaining the positional relationship is not received by the reception unit, the cooperative travel route that does not maintain the positional relationship is generated.
  • the coordinated travel route can be generated in a fluid manner according to the user's intention without necessarily being restricted by the set positional relationship between the first work vehicle and the second work vehicle.
  • the first travel route and the second travel route each include a plurality of travel routes arranged in parallel.
  • the cooperative traveling route that does not maintain the positional relationship is generated by the cooperative traveling route generation unit, the cooperative work route is traveled by the first work vehicle next to an arbitrary traveling route of the first traveling route and the arbitrary traveling route.
  • the number of trains arranged between other trains is kept constant.
  • the first work vehicle travels after an arbitrary travel path on the first travel path and the arbitrary travel path.
  • the number of rows of travel routes arranged between other travel routes that is, the so-called skip number indicating how many rows the first work vehicle skips and travels on the next travel route is maintained at a constant number.
  • the turning method at the headland on one side of the field and the headland on the other side is fixed in a certain manner, the turning operation is facilitated.
  • the route generation system the cooperative work is performed in a different work area, the first work area is worked by the first work vehicle, and the second work area is worked by the second work vehicle.
  • a reference work setting unit for setting whether or not a reference work is required by the first work vehicle in the second work area.
  • the first travel route a travel path in which the reference work is performed by the first work vehicle in the second work area, and a plurality of travel paths in which work is performed by the first work vehicle in the first work area;
  • a travel route including is generated.
  • the second travel route a travel route including a plurality of travel routes in which work is performed by the second work vehicle in the second work area excluding the area in which the reference work is performed is generated.
  • the reference work is performed by the first work vehicle, and the work is performed on the plurality of travel paths by the second work vehicle with reference to the travel path on which the work is performed in the reference work. It can be carried out. Therefore, it is easy to orderly work on the work area.
  • a travel route including a plurality of travel routes on which work is performed by the first work vehicle in the first work area is generated as the first travel route.
  • a travel route including a plurality of travel routes on which work is performed by the second work vehicle in the second work area is generated.
  • the side view which shows the robot tractor and manned tractor which a cooperative driving
  • the side view which shows the whole structure of a robot tractor.
  • wireless communication terminal which can be operated by the user and can perform radio
  • the block diagram which shows the main electrical structures of a robot tractor and a radio
  • the solid arrow indicates the first travel route
  • the solid arrow indicates the first travel route
  • generation part when a division is set and the reference
  • the solid arrow indicates the first travel route
  • the dotted arrow indicates the second travel route.
  • the present invention relates to a route generation system that generates a travel route for running a work vehicle when a plurality of work vehicles are run in a predetermined farm field and all or part of the farm work in the farm field is executed.
  • a tractor will be described as an example of a work vehicle.
  • a padded work machine such as a rice transplanter, a combiner, a civil engineering / construction work device, a snowplow, a walking work A machine is also included.
  • autonomous traveling means that the configuration related to traveling provided by the tractor is controlled by a control unit (ECU) provided in the tractor, and the tractor travels along a predetermined route.
  • ECU control unit
  • control unit included in the tractor controls the configuration related to the work included in the tractor, and the tractor performs the work along a predetermined route.
  • manual running / manual work means that each component provided in the tractor is operated by the user to run / work.
  • a tractor that autonomously travels and works autonomously may be referred to as an “unmanned tractor” or a “robot tractor”, and a tractor that travels manually and is manually operated is referred to as a “manned tractor”.
  • an unmanned tractor or a “robot tractor”
  • a tractor that travels manually and is manually operated is referred to as a “manned tractor”.
  • manned tractor Sometimes.
  • Performing farm work in a single farm with unmanned tractors and manned tractors may be referred to as cooperative work of farm work, follow-up work, accompanying work, and the like.
  • the difference between an unmanned tractor and a manned tractor is the presence or absence of an operation by a user, and each configuration is basically common.
  • the user can board (ride) and operate (that is, it can be used as a manned tractor), or even if it is a manned tractor, the user gets off and autonomously travels. It can be operated autonomously (that is, it can be used as an unmanned tractor).
  • cooperative work of farm work in addition to “execution of farm work in a single farm field with unmanned vehicles and manned vehicles”, “farm work in different farm fields such as adjacent farm fields can be performed at the same time. "Execution” may be included.
  • FIG. 1 is a side view showing a robot tractor 1 and a manned tractor 1X that perform cooperative work by generating a cooperative travel route by a route generation system 99 according to an embodiment of the present invention.
  • FIG. 2 is a side view showing the overall configuration of the robot tractor 1.
  • FIG. 3 is a plan view of the robot tractor 1.
  • FIG. 4 is a diagram showing a wireless communication terminal 46 that is operated by a user and can wirelessly communicate with the robot tractor 1.
  • FIG. 5 is a block diagram showing main electrical configurations of the robot tractor 1 and the wireless communication terminal 46.
  • FIG. 6 is a block diagram illustrating a main electrical configuration provided in the work information setting unit 47 of the wireless communication terminal 46.
  • a route generation system 99 generates a cooperative traveling route that travels when the robot tractor 1 and the manned tractor 1X shown in FIG.
  • the cooperative travel route includes a first travel route for traveling the robot tractor (first work vehicle) 1 and a second travel route for traveling the manned tractor (second work vehicle) 1X.
  • Each component of the route generation system 99 of the present embodiment is mainly provided in the wireless communication terminal 46 that wirelessly communicates with the robot tractor 1.
  • tractor 1 a robot tractor (hereinafter sometimes simply referred to as “tractor”) 1 will be described mainly with reference to FIGS.
  • the traveling machine body 2 of the tractor 1 is supported at its front part by a pair of left and right front wheels 7 and 7 and at its rear part by a pair of left and right rear wheels 8 and 8.
  • a bonnet 9 is arranged at the front of the traveling machine body 2.
  • the bonnet 9 houses an engine 10 that is a driving source of the tractor 1, a fuel tank (not shown), and the like.
  • this engine 10 can be comprised, for example with a diesel engine, it is not restricted to this, For example, you may comprise with a gasoline engine. Further, an electric motor may be employed as a drive source in addition to or instead of the engine 10.
  • a cabin 11 for the user to board is arranged behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for a user to steer, a seat 13 on which a user can be seated, and various operation devices for performing various operations.
  • the work vehicle is not limited to the one with the cabin 11 and may be one without the cabin 11.
  • the monitor device 14 shown in FIG. 3 the throttle lever 15, the main transmission lever 27, the plurality of hydraulic operation levers 16, the PTO switch 17, the PTO transmission lever 18, the auxiliary transmission lever 19, and the work equipment lift switch 28 etc. can be mentioned as an example.
  • These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
  • the monitor device 14 is configured to display various information of the tractor 1.
  • the throttle lever 15 is an operating tool for setting the output rotational speed of the engine 10.
  • the main transmission lever 27 is an operating tool for changing the traveling speed of the tractor 1 in a stepless manner.
  • the hydraulic operation lever 16 is an operation tool for switching and operating a hydraulic external take-off valve (not shown).
  • the PTO switch 17 is an operating tool for switching the transmission / cut-off of power to a PTO shaft (power transmission shaft) (not shown) protruding from the rear end of the transmission 22. That is, when the PTO switch 17 is in the ON state, power is transmitted to the PTO shaft and the PTO shaft rotates to drive the work implement 3, while when the PTO switch 17 is in the OFF state, the power to the PTO shaft is cut off.
  • the PTO speed change lever 18 is used to change the power input to the work machine 3, and specifically, is an operating tool for changing speed of the rotational speed of the PTO shaft.
  • the auxiliary transmission lever 19 is an operating tool for switching the gear ratio of the traveling auxiliary transmission gear mechanism in the transmission 22.
  • the work implement raising / lowering switch 28 is an operating tool for raising and lowering the height of the work implement 3 attached to the traveling machine body 2 within a predetermined range.
  • a chassis 20 of the tractor 1 is provided at the lower part of the traveling machine body 2.
  • the chassis 20 includes a body frame 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
  • the fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member.
  • the transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24.
  • the front axle 23 is configured to transmit the power input from the transmission 22 to the front wheels 7.
  • the rear axle 24 is configured to transmit the power input from the transmission 22 to the rear wheel 8.
  • the tractor 1 includes a control unit 4 for controlling the operation of the traveling machine body 2 (forward, reverse, stop, turn, etc.) and the operation of the work machine 3 (elevation, drive, stop, etc.).
  • the control unit 4 includes a CPU, a ROM, a RAM, an I / O, etc. (not shown), and the CPU can read various programs from the ROM and execute them.
  • the controller 4 is electrically connected to a controller for controlling each component (for example, the engine 10 and the like) included in the tractor 1 and a wireless communication unit 40 that can wirelessly communicate with other wireless communication devices. ing.
  • the tractor 1 includes at least an unillustrated engine controller, vehicle speed controller, steering controller, and elevator controller. Each controller can control each component of the tractor 1 in accordance with an electrical signal from the control unit 4.
  • the engine controller controls the rotational speed of the engine 10 and the like.
  • the engine 10 is provided with a governor device 41 including an unillustrated actuator that changes the rotational speed of the engine 10.
  • the engine controller can control the rotational speed of the engine 10 by controlling the governor device 41.
  • the engine 10 is provided with a fuel injection device 52 that adjusts the injection timing / injection amount of fuel to be injected (supplied) into the combustion chamber of the engine 10.
  • the engine controller can stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the fuel injection device 52, for example.
  • the vehicle speed controller controls the vehicle speed of the tractor 1.
  • the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic continuously variable transmission.
  • the vehicle speed controller can change the gear ratio of the transmission 22 and change to the desired vehicle speed by changing the angle of the swash plate of the transmission 42 with an actuator (not shown).
  • the steering controller controls the turning angle of the steering handle 12.
  • a steering actuator 43 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 12.
  • the elevating controller controls the elevating of the work machine 3.
  • the tractor 1 includes an elevating actuator 44 composed of a hydraulic cylinder or the like in the vicinity of a three-point link mechanism that connects the work machine 3 to the traveling machine body 2.
  • the lift controller drives the lift actuator 44 based on the control signal input from the control unit 4 to appropriately lift and lower the work implement 3 so that the work implement 3 performs farm work at a desired height. It can be carried out.
  • the work machine 3 can be supported at a desired height such as a retreat height (a height at which farm work is not performed) and a work height (a height at which farm work is performed).
  • the plurality of controllers (not shown) control each part of the engine 10 and the like based on a signal input from the control part 4, so that the control part 4 substantially controls each part. I can grasp it.
  • the tractor 1 including the control unit 4 as described above controls various parts of the tractor 1 (the traveling machine body 2, the work implement 3, etc.) by the control unit 4 when the user gets into the cabin 11 and performs various operations.
  • the farm work can be performed while traveling in the field.
  • the tractor 1 of the present embodiment can be autonomously run and autonomously operated by a predetermined control signal output from the wireless communication terminal 46 without the user getting on the tractor 1.
  • the tractor 1 has various configurations for enabling autonomous traveling and autonomous work.
  • the tractor 1 has a configuration such as a positioning antenna 6 necessary for acquiring position information of itself (the traveling machine body 2) based on the positioning system.
  • the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field.
  • the tractor 1 of this embodiment includes a positioning antenna 6, a wireless communication antenna 48, a storage unit 55, and the like.
  • the tractor 1 is provided with an unillustrated inertial measurement unit (IMU) that can specify the posture (roll angle, pitch angle, yaw angle) of the traveling machine body 2.
  • IMU inertial measurement unit
  • the positioning antenna 6 receives a signal from a positioning satellite constituting a positioning system such as a satellite positioning system (GNSS). As shown in FIG. 2, the positioning antenna 6 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1.
  • the positioning signal received by the positioning antenna 6 is input to the position information calculation unit 49 shown in FIG.
  • the position information calculation unit 49 calculates the position information of the traveling machine body 2 (strictly speaking, the positioning antenna 6) of the tractor 1 as latitude / longitude information, for example.
  • the position information calculated by the position information calculation unit 49 is input to the control unit 4 and used for autonomous traveling.
  • a high-accuracy satellite positioning system using the GNSS-RTK method is used.
  • the present invention is not limited to this, and other positioning systems can be used as long as high-precision position coordinates can be obtained. May be.
  • DGPS relative positioning method
  • SBAS geostationary satellite type satellite navigation augmentation system
  • the wireless communication antenna 48 receives a signal from the wireless communication terminal 46 operated by the user or transmits a signal to the wireless communication terminal 46. As shown in FIG. 2, the radio communication antenna 48 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1. A signal from the wireless communication terminal 46 received by the wireless communication antenna 48 is subjected to signal processing by the wireless communication unit 40 shown in FIG. The signal transmitted from the control unit 4 to the wireless communication terminal 46 is subjected to signal processing by the wireless communication unit 40, then transmitted from the wireless communication antenna 48 and received by the wireless communication terminal 46.
  • the front camera 57 captures the front of the tractor 1.
  • the rear camera 56 photographs the rear of the tractor 1.
  • the moving image data captured by the front camera 57 and the rear camera 56 is signal-processed by the wireless communication unit 40 and then transmitted from the wireless communication antenna 48 to the wireless communication terminal 46.
  • the wireless communication terminal 46 can display a moving image based on the received moving image data on the display 37.
  • the vehicle speed sensor 53 detects the vehicle speed of the tractor 1 and is provided on the axle between the front wheels 7 and 7, for example.
  • the remaining fuel sensor 54 detects the remaining amount of fuel in a fuel tank (not shown) mounted in the bonnet 9 and is provided in the fuel tank.
  • the detection results obtained by the vehicle speed sensor 53 and the remaining fuel amount sensor 54 are signal-processed by the wireless communication unit 40 and then transmitted from the wireless communication antenna 48 to the wireless communication terminal 46.
  • the wireless communication terminal 46 can display the received detection result on the display 37.
  • the storage unit 55 alternates a linear or broken line-shaped traveling path (a work path for performing farm work) P1 and a turning arc-shaped connection path (turning circuit) P2 that are paths for autonomously traveling the tractor 1.
  • a memory that stores a travel route (path) P that is connected to, and a transition (travel locus) of the position of the tractor 1 (strictly speaking, the positioning antenna 6) that is traveling autonomously.
  • the storage unit 55 stores various information necessary for the tractor 1 to autonomously travel and work.
  • the wireless communication terminal 46 is configured as a tablet personal computer as shown in FIG.
  • a user who operates the manned tractor 1X gets on the manned tractor 1X with the wireless communication terminal 46, and, for example, sets the radio communication terminal 46 on an appropriate support unit in the manned tractor 1X for operation.
  • a user who is different from the operator who operates the manned tractor 1X operates the generation of the travel route with the wireless communication terminal 46 outside the tractors 1 and 1X.
  • the user can check by referring to information (for example, information from various sensors attached to the robot tractor 1) displayed on the display 37 of the wireless communication terminal 46.
  • the user operates the hardware key 38 disposed in the vicinity of the display 37 and the touch panel 39 disposed so as to cover the display 37 to control the tractor 1 with the control unit 4 of the tractor 1.
  • the control signal can be transmitted.
  • the control signal output from the wireless communication terminal 46 to the control unit 4 includes a signal related to the route of autonomous running / autonomous work, a start signal of autonomous running / autonomous work, a stop signal, an end signal, an emergency stop signal, and a temporary stop.
  • a signal, a restart signal after a temporary stop, and the like are conceivable, but not limited thereto.
  • the wireless communication terminal 46 is not limited to a tablet-type personal computer, but can be configured by, for example, a notebook-type personal computer.
  • the monitor device 14 mounted on the manned tractor 1X may be a wireless communication terminal.
  • the tractor 1 configured in this manner can perform farm work by the work implement 3 while traveling autonomously along a route on the farm field based on a user instruction using the wireless communication terminal 46.
  • the user alternates between a linear or broken line-shaped traveling path P1 and an arc-shaped connecting path P2 that connects the ends of the traveling path. It is possible to generate a travel route P as a series of routes connected to the. Then, by inputting (transferring) information on the travel route (path) P generated in this way to the control unit 4 and performing a predetermined operation, the control unit 4 controls the tractor 1 and the tractor 1 Can be farmed by the work implement 3 while traveling autonomously along the travel route P.
  • the tractor (second work vehicle) 1X performs manual travel and manual work. Specifically, for example, of two adjacent traveling paths P1, P1 ′, the robot tractor 1 travels on one traveling path P1 and the manned tractor 1X travels on the other traveling path P1 ′. A case where the work is performed in an area is conceivable.
  • the travel path P1 is a travel path included in the first travel path P
  • the travel path P1 ' is a travel path included in the second travel path P'.
  • the robot tractor 1 travels on the preceding side and the manned tractor 1X travels on the subsequent side so that a user on the manned tractor 1X can easily view the robot tractor 1 directly. It is common.
  • the manned tractor 1X travels diagonally right or left behind the robot tractor 1.
  • a user who has boarded the manned tractor 1X performs manual travel and manual work, monitors the robot tractor 1 on the preceding side, and operates the wireless communication terminal 46 as necessary to autonomously travel and autonomously operate the robot tractor 1. Give work instructions.
  • FIG. 6 is a block diagram illustrating a main electrical configuration provided in the work information setting unit 47 of the wireless communication terminal 46.
  • FIG. 7 is a diagram illustrating a display example of the input selection screen on the display 37 of the wireless communication terminal 46.
  • FIG. 8 is a diagram illustrating a display example of the work vehicle information input screen 70 on the display 37 of the wireless communication terminal 46.
  • FIG. 9 is a diagram illustrating a display example of the field information input screen 80 on the display 37 of the wireless communication terminal 46.
  • FIG. 10 is a diagram illustrating a display example of a work mode / position relationship setting screen 90 for setting a work mode and a positional relationship on the display 37 of the wireless communication terminal 46.
  • FIG. 11 is a diagram showing a display example of a priority setting window 91 for setting whether to give priority to maintaining the positional relationship on the display 37 of the wireless communication terminal 46.
  • FIG. 12 is a diagram illustrating a display example of a section / reference work setting screen 92 for setting a section and a reference work on the display 37 of the wireless communication terminal 46.
  • FIG. 13 is a diagram showing a display example of an overlap width setting screen 93 for setting the overlap width on the display 37 of the wireless communication terminal 46.
  • FIG. 14 is a diagram showing a display example of a skip number setting screen 94 for setting the skip number on the display 37 of the wireless communication terminal 46.
  • FIG. 15 is a diagram illustrating a display example of a non-work area width setting screen 96 for setting the headland width and the non-work area width on the display 37 of the wireless communication terminal 46.
  • FIG. 16 is a diagram illustrating a display example of the autonomous traveling monitoring screen 100 on the display 37 of the wireless communication terminal 46.
  • the wireless communication terminal 46 includes a display 37, a hardware key 38, and a touch panel 39, as main components, a display control unit 31, a field shape acquisition unit 33, A travel route generation unit (cooperative travel route generation unit) 35, a work vehicle information setting unit 36, a field information setting unit 45, a work information setting unit 47, a storage unit 32, and the like are provided.
  • the wireless communication terminal 46 is configured as a computer, and includes a CPU, a ROM, a RAM, and the like (not shown).
  • the wireless communication terminal 46 is preinstalled with a control application for controlling the tractor 1. And by cooperation of the hardware and software described above, the wireless communication terminal 46 is connected to the display control unit 31, the field shape acquisition unit 33, the travel route generation unit 35, the work vehicle information setting unit 36, the field information setting unit 45, the work.
  • the information setting unit 47 and the storage unit 32 can be operated.
  • the display control unit 31 creates display data to be displayed on the display 37, and performs control to switch the display screen appropriately.
  • the display control unit 31 can generate an input selection screen 60 as an initial screen (menu screen) shown in FIG. 7 and display it on the display 37.
  • the display control unit 31 when a predetermined operation is performed on the input selection screen 60, the display control unit 31 generates input screens 70, 80, and 90 (see FIGS. 8 to 10), which will be described later, and displays the display screen on the display 37. Can be switched to 70, 80, 90.
  • the field shape acquisition unit 33 shown in FIG. 5 acquires the shape of the field by, for example, rotating the tractor 1 once along the outer periphery of the field and recording the transition of the position of the positioning antenna 6 at that time. It is.
  • the field shape acquired by the field shape acquisition unit 33 is stored in the storage unit 32.
  • the method of acquiring the shape of the field is not limited to this. For example, instead of this, the position information of the corners of the field is recorded, and a line graph connecting the recorded points does not intersect with a so-called closed graph.
  • the identified polygon may be acquired as the shape of the field.
  • the travel route generation (cooperative travel route generation unit) 35 generates a first travel route P that is input (transferred) to the tractor 1 and a second travel route P ′ that is referred to by a user who drives the manned tractor 1X.
  • the travel route generator 35 automatically sets the first travel route P and the second travel route when work vehicle information, farm field information, and work information, which will be described later, are set without omission and when a predetermined operation is performed.
  • a cooperative traveling route including P ′ is generated (calculated).
  • the generated cooperative travel route is stored in the storage unit 32.
  • the work vehicle information setting unit 36 receives work vehicle information (information on the traveling machine body 2 and the work machine 3) input on a work vehicle information input screen 70 described later.
  • the work vehicle information set by the work vehicle information setting unit 36 is stored in the storage unit 32.
  • the farm field information setting unit 45 receives farm field information (information about farm fields) input on a farm field information input screen 80 described later.
  • the field information set by the field information setting unit 45 is stored in the storage unit 32.
  • the work information setting unit 47 receives work information (information related to the work mode etc.) input on the work mode / position relation setting screen 90 or the like. More specifically, as shown in FIG. 6, the work information setting unit 47 includes a work mode setting unit (cooperative work mode setting unit) 101, a positional relationship setting unit 102, a priority receiving unit 103, an overlap width setting unit 104, A skip number setting unit 105, a non-work area width setting unit 106, a section setting unit 107, and a reference work setting unit 108 are mainly provided. Each of these components will be described in detail later.
  • the work information set by the work information setting unit 47 is stored in the storage unit 32.
  • the storage unit 32 includes a non-volatile memory (for example, a flash ROM), and includes work vehicle information set by the work vehicle information setting unit 36, field information set by the field information setting unit 45, and The work information set by the work information setting unit 47 can be stored.
  • the storage unit 32 can store information on the registered field shape, information on the generated travel routes P and P ′, and the like.
  • the storage unit 32 stores information on the generated travel routes P and P ′ in association with work vehicle information, field information, and work information used for generating the travel routes P and P ′.
  • the display 37 of the wireless communication terminal 46 has an input selection screen created by the display control unit 31 as shown in FIG. 60 is displayed as an initial screen (menu screen).
  • the input selection screen 60 includes a work vehicle information input operation unit 61, a field information input operation unit 62, a work information input operation unit 63, a travel route generation / transfer operation unit 64, and a farm work start operation unit 65. Mainly displayed.
  • These operation units are all configured as virtual buttons (so-called icons) displayed on the display 37.
  • the work vehicle information input operation unit 61, the field information input operation unit 62, the work information input operation unit 63, the travel route generation / transfer operation Of the unit 64 and the farm work start operation unit 65 only the work vehicle information input operation unit 61 can be operated. That is, the field information input operation unit 62, the work information input operation unit 63, the travel route generation / transfer operation unit 64, and the farm work start operation unit 65 are initially disabled (for example, grayed out) and touched. Can not even operate.
  • the work vehicle information input operation unit 61 is a button operated when switching from the input selection screen 60 to the work vehicle information input screen 70.
  • a predetermined first selection screen (not shown) is displayed.
  • Tractor information set in the past is displayed in a selectable manner.
  • the first selection screen can be selected only when tractor information is newly set (registered) or past tractor information is changed (provided that tractor information set in the past exists). ) Appears to be selectable.
  • the display screen of the display 37 is switched to the work vehicle information input screen 70 shown in FIG.
  • the work vehicle information input screen 70 work vehicle information related to the traveling machine body 2 and the work machine 3 attached to the traveling machine body 2 can be input.
  • the work vehicle information input screen 70 includes, as work vehicle information, the model of the tractor 1, the mounting position of the positioning antenna 6 with respect to the traveling machine body 2, the lateral width of the tractor 1 and the work machine 3, and the three-point link mechanism.
  • Each column to be specified is arranged. Although only a part of the above-described fields are displayed on the work vehicle information input screen 70 shown in FIG. 8, the remaining fields can be displayed by performing an operation of scrolling the screen downward from the state of FIG. Can do.
  • a “vehicle setting confirmation” button (not shown) is displayed.
  • the user operates the “confirm vehicle setting” button an unillustrated setting confirmation screen is displayed, and the contents specified in each column are displayed for confirmation.
  • the user operates the “OK” button (not shown) on the setting confirmation screen the contents of the work vehicle information are stored in the storage unit 32, and the setting of the work vehicle information is completed.
  • a “edit / add field information” button and a “return to input selection screen” button are selectably displayed at the bottom of the display screen.
  • field information can be set in the same manner as when the field information input operation unit 62 is operated on the input selection screen 60.
  • the display screen is switched to the input selection screen 60.
  • the work vehicle information can be stored (that is, stored in the storage unit 32) for each of the plurality of work vehicles by repeating the operation of inputting and registering each item on the work vehicle information input screen 70.
  • the stored work vehicle information is used by selecting as tractor information set (registered) in the past on the first selection screen described above when the work vehicle information input operation unit 61 is operated on the input selection screen 60. Can do.
  • the field information input operation unit 62 of the input selection screen 60 can be operated.
  • the field information input operation unit 62 is a button operated when switching from the input selection screen 60 to the field information input screen 80.
  • a predetermined second selection screen (not shown) is displayed, and when the field information set (registered) in the past exists on the second selection screen, the past The field information set to is displayed in a selectable manner.
  • the farm field information input screen 80 it is possible to input information related to the travel area (field) in which the traveling machine body 2 travels. Specifically, on the farm field information input screen 80, a plane display unit 81 that displays the shape of the farm field as a graphic (graphically) is arranged. In the field information input screen 80, “record start” and “redo” buttons are arranged in the “position / shape of outer periphery of field” and “position / shape of obstacle” fields. In the field information input screen 80, “set” and “redo” buttons are arranged in the “work start position”, “work end position”, and “work direction” fields.
  • the wireless communication terminal 46 switches to the field shape recording mode.
  • this field shape recording mode for example, when the tractor 1 is rotated once around the outer periphery of the field, the position transition of the positioning antenna 6 at that time is recorded by the field shape acquisition unit 33, and the field shape acquisition unit At 33, the shape of the field is acquired (calculated). Thereby, the position, shape, and area of the field can be specified.
  • the position and shape of the outer periphery of the field thus calculated (designated) are graphically displayed on the plane display unit 81. Further, by operating the “redo” button, the position (designation) of the outer periphery of the field can be recorded again.
  • the wireless communication terminal 46 switches to the obstacle outer periphery shape recording mode.
  • this obstacle outer periphery shape recording mode for example, when the tractor 1 is rotated once along the outer periphery of the obstacle, the transition of the position of the positioning antenna 6 at that time is recorded by the obstacle shape acquisition unit (not shown). The shape of the obstacle is acquired (calculated). Thereby, the position, shape and area of the obstacle can be designated. The position and shape of the obstacle calculated (designated) in this way are graphically displayed on the plane display unit 81 together with the shape of the field. Further, by operating the “redo” button, the position (designation) of the outer periphery of the obstacle can be recorded again.
  • the “set” button of “work start position” When the “set” button of “work start position” is operated, the field and obstacle shapes acquired as described above are superimposed on the map data and displayed on the plane display unit 81 of the field information input screen 80. In this state, when the user selects an arbitrary point near the contour of the field, position information near the selected point can be set as a work start position.
  • the “work end position” can also be set in the same manner as the “work start position”.
  • the plane display unit 81 of the field information input screen 80 displays the field and obstacle shape, the work start position, and the work end position acquired as described above as map data. And is displayed superimposed. In this state, for example, when the user selects two arbitrary points on the contour of the field, the direction of the straight line connecting the two points can be set as the work direction.
  • a “Register” button is displayed.
  • the content designated by the user is confirmed on the flat display unit 81 or the like and the “register” button is operated, the content of the set field information is stored in the storage unit 32, and the setting of the field information is completed.
  • a “Edit / Add work” button and a “Return to input selection screen” button are displayed at the bottom of the display screen in a selectable manner.
  • work information can be set in the same manner as when the work information input operation unit 63 is operated on the input selection screen 60.
  • the display screen is switched to the input selection screen 60.
  • farm field information can be stored (that is, stored in the storage unit 32) for each of a plurality of farm fields.
  • the stored field information can be used by selecting the field information set (registered) in the past on the second selection screen described above when the field information input operation unit 62 is operated on the input selection screen 60. .
  • the work information input operation unit 63 of the input selection screen 60 can be operated.
  • the work information input operation unit 63 is in an inoperable state until the user finishes setting the work vehicle information and the field information. That is, the work information setting unit 47 inputs information (setting of work information) until the work vehicle information is set by the work vehicle information setting unit 36 and the field information is set by the field information setting unit 45. The configuration is not accepted.
  • This work information input operation unit 63 is a button operated when switching from the input selection screen 60 to the work mode / position relationship setting screen 90 shown in FIG.
  • the display screen is switched to the work mode / position relationship setting screen 90 shown in FIG.
  • the work mode of the tractor 1 (and the manned tractor 1X) can be set.
  • the positional relationship between the tractors can be set. Specifically, when the manned tractor 1X travels accompanying (coordinated) with the robot tractor 1 and the work mode in which the manned tractor 1X travels diagonally to the left of the robot tractor 1 is selected, The 1-accompanying work selection unit 111 is operated. In the case where the manned tractor 1X is caused to travel accompanying (coordinated) with the robot tractor 1 and the work mode in which the manned tractor 1X is caused to travel diagonally right behind the robot tractor 1 is selected, the second accompanying work selection unit 112 is operated.
  • the follow-up work selection unit 113 When selecting a work mode in which the manned tractor 1X travels behind the robot tractor 1 (the robot tractor 1 and the manned tractor 1X travel on the same traveling path) and performs the follow-up work, the follow-up work selection unit 113 operates. Is done. When the robot tractor 1 performs farm work alone, the single work selection unit 114 is operated. When the robot tractor 1 and the manned tractor 1X cooperate to perform farm work on the traveling paths in different work areas, the separate zone cooperative work selection unit 115 is selected.
  • the first accompanying task selection unit 111, the second accompanying task selection unit 112, the follow-up task selection unit 113, the single task selection unit 114, and the separate section cooperative task selection unit 115 are configured as virtual buttons, and display of the buttons
  • the position of the touch panel 39 corresponding to the area can be operated by the user touching with a finger or the like.
  • the selected button is displayed with emphasis, for example, surrounded by a red bold frame (see FIG. 11).
  • the “set” button at the bottom of the work mode / position relationship setting screen 90 with any of the selection units 111, 112,... 115 selected the work mode is set in the work mode setting unit 101.
  • the positional relationship is received by the positional relationship setting unit 102, the contents of the set work mode / position relationship are stored in the storage unit 32, and the setting of the work mode / position relationship is completed.
  • a priority setting window 91 for selecting whether or not to give priority to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X is displayed when generating a route (see FIG. 11).
  • the priority receiving unit 103 receives that the maintenance of the positional relationship of the vehicle is prioritized and is stored in the storage unit 32. Thereby, subsequent route generation is performed with priority given to maintaining the positional relationship of the vehicle.
  • the priority receiving unit 103 receives that the maintenance of the positional relationship of the vehicle is not prioritized and is stored in the storage unit 32. In this case, the subsequent route generation is performed without necessarily being restricted by the vehicle positional relationship set on the work mode / positional relationship setting screen 90.
  • the separate zone cooperative work selection unit 115 is selected on the work mode / position relationship setting screen 90, and the “set” button at the bottom of the work mode / position relationship setting screen 90 is operated to set the work mode / position relationship.
  • a section / reference work setting screen 92 for setting sections and setting necessity / unnecessity of reference work is displayed (see FIG. 12).
  • a partition line (vertical line) 116 for partitioning is displayed at the center of the rectangle virtually displaying the field (work area) (FIG. 12). 12).
  • the user can change the ratio of division (ratio of the first work area and the second work area) by tapping the division line 116 and moving it left and right.
  • virtual buttons “Yes” and “No” are displayed at the bottom of the section / reference work setting screen 92 together with a message “Do you need reference work?”.
  • the user places the dividing line 116 for the above-mentioned division at an appropriate position, and selects either the “Yes” or “No” button described above, and the “setting” at the bottom of the reference work setting screen 92 ”Button, the section setting unit 107 receives the position of the section, the reference work setting unit 108 determines whether the reference work is necessary, and the contents of the set section / reference work setting are stored in the storage unit 32. Completion of partition / standard work settings.
  • the overlap width setting screen 93 includes an overlapped setting unit 121 that is selected when the adjacent traveling roads overlap each other, and no overlap that is selected when the adjacent traveling roads are not overlapped (overlapped).
  • the setting unit 122 is configured as a virtual button, and can be operated by the user touching the position of the touch panel 39 corresponding to the display area of the button with a finger or the like.
  • this button is displayed with emphasis, for example, surrounded by a red bold frame, and the overlap width can be touch-inputted.
  • this button is displayed with emphasis, for example, by being surrounded by a red bold frame, and a touch space can be input for the width between adjacent travel paths.
  • the overlap setting unit 121 or the non-overlap setting unit 122 When the user selects either the overlap setting unit 121 or the non-overlap setting unit 122, inputs the value of the above width, and presses the “set” button at the bottom of the overlap width setting screen 93, the overlap This information is received by the width setting unit 104, the set contents are stored in the storage unit 32, and the setting of the overlap width is completed.
  • the skip number setting screen 94 includes an arbitrary travel path P1 on the travel path (first travel path) P on which the robot tractor 1 travels, and a travel path P1 on which the robot tractor 1 travels next to the arbitrary travel path P1.
  • a “don't skip” button 123 for selecting that the number of travel paths arranged between the two is zero is arranged as a virtual button. Further, on the right side of the “do not skip” button 123, the robot tractor 1 travels on an arbitrary travel path P1 of the travel path (first travel path) P on which the robot tractor 1 travels and next to the arbitrary travel path P1.
  • a “one-line skip” button 124 for selecting that the number of travel paths arranged between the travel path P1 and the travel path P1 is one is arranged as a virtual button. Further, on the right side of the “one-line skip” button 124, the robot tractor 1 next to an arbitrary travel path P1 of the travel path (first travel path) P on which the robot tractor 1 travels and the arbitrary travel path P1.
  • a “two-row skip” button 125 for selecting that the number of travel routes arranged between the travel route P1 and the travel route P1 is two rows is arranged as a virtual button. When the user selects any of these buttons 123, 124, and 125 by touching the button, the button is highlighted and displayed, for example, surrounded by a red thick line frame. In this state, when the user presses the “set” button at the bottom of the skip number setting screen 94, this information is received by the skip number setting unit 105, the set contents are stored in the storage unit 32, and the skip number is set. Is completed.
  • the display screen of the display 37 of the wireless communication terminal 46 is switched to the non-work area width setting screen 96 shown in FIG.
  • the width of the headland where the robot tractor 1 (and the manned tractor 1X) turns or turns, and the non-work area (side margin) arranged along the traveling direction of the robot tractor 1 are displayed.
  • the recommended width calculated based on the work width and overlap width preset by the user is displayed, but by performing a pull-down operation, For example, a value that is an integral multiple of the work width can be set as the headland width or the non-work area width.
  • the present invention is not limited to this, and the user can input a desired width as a headland width or a non-working area width by touch input.
  • the non-working area width setting unit 106 receives this information.
  • the set contents are stored in the storage unit 32, and the setting of the headland width and the non-working area width is completed.
  • the travel route generation / transfer operation unit 64 of the input selection screen 60 can be operated.
  • the travel route generation / transfer operation unit 64 is in an inoperable state until the user finishes setting the work vehicle information, the field information, and the work information. That is, path generation / transfer is possible only when the field information and work information are input without omission.
  • the travel route generation / transfer operation unit 64 When the user selects the travel route generation / transfer operation unit 64, the first travel route P of the robot tractor 1 (and the second travel route P ′ of the manned tractor 1X, if applicable) is automatically generated.
  • the travel route is stored in the storage unit 32.
  • a “path simulation” button is displayed on the display screen of the display 37 so as to be selectable. By selecting (operating) the “path simulation” button, an image representing the generated travel route with an arrow or a line is displayed. An animation display in which the tractor icon moves along the travel route may be performed.
  • a “transfer data” button and a “return to input selection screen” button are displayed on the display screen of the display 37 in a selectable manner.
  • transfer data an instruction for transferring the travel route information to the control unit 4 of the tractor 1 can be given.
  • return to input selection screen” button is selected, the display screen is switched to the input selection screen 60.
  • the information on the travel route generated on the wireless communication terminal 46 side can be transmitted to the control unit 4 of the tractor 1.
  • the control unit 4 stores the information on the travel route (first travel route P) received from the wireless communication terminal 46 in the storage unit 55 electrically connected to the control unit 4.
  • the control unit 4 can issue an instruction to start work by the traveling machine body 2 and the work machine 3, and can issue an instruction to start until the first traveling route P is generated and input to the storage unit 55.
  • the configuration is not possible.
  • the control unit 4 When the user operates the farm work start operation unit 65 on the input selection screen 60, the control unit 4 performs the travel and farm work of the tractor 1 so that the tractor 1 autonomously travels and works along the first travel route P input. Control. With the start of this autonomous traveling, the display screen of the display 37 is switched to the autonomous traveling monitoring screen 100 shown in FIG.
  • a front camera display unit 131 that displays moving image data captured by the front camera 57 is arranged.
  • a rear camera display unit 132 that displays moving image data captured by the rear camera 56 is disposed on the left side of the autonomous traveling monitoring screen 100 and below the front camera display unit 131.
  • a vehicle speed display unit 133 that displays the current vehicle speed of the tractor 1 is disposed at the upper part of the autonomous traveling monitoring screen 100.
  • the vehicle speed display unit 133 displays the current vehicle speed of the tractor 1 acquired based on the data transmitted from the vehicle speed sensor 53.
  • a required fuel amount display unit 134 is arranged at the bottom of the autonomous traveling monitoring screen 100.
  • the fuel requirement display section 134 the amount of fuel required from the start of farm work to the end is displayed.
  • the required amount of fuel can be calculated based on the length (distance) of the work path, the vehicle speed, the engine speed, and the like set by the user.
  • the wireless communication terminal 46 obtains the detection result from the fuel remaining amount sensor 54, calculates the amount of fuel that is deficient based on the detection result, and displays the fuel requirement amount display unit 134 together with the amount of required fuel. indicate.
  • a traveling state display unit 109 that displays image data including the traveling path P1 or the connecting path P2 during traveling of the tractor 1 is arranged.
  • the image data displayed on the running state display unit 109 displays the shape of the farm field and the shape of the work area superimposed on the map data, and the running of the tractor 1 thereon.
  • the locus can be indicated by hatching.
  • the traveling state display unit 109 of the present embodiment displays the first traveling route P of the robot tractor 1 and the second traveling route P ′ of the manned tractor 1X.
  • the user who steers the manned tractor 1X supports the autonomous communication monitoring screen displayed on the display 37 of the wireless communication terminal 46 by supporting the wireless communication terminal 46 on, for example, an appropriate support part of the traveling body 2 of the manned tractor 1X.
  • the manned tractor 1X can be caused to travel along the second travel route P ′ to perform farm work. Thereby, the cooperative work of the robot tractor 1 and the manned tractor 1X can be realized.
  • FIG. 17 the cooperative work for causing the manned tractor 1X to travel diagonally right behind the robot tractor 1 is selected, the priority is given to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X, and one column skip is performed.
  • An example of travel routes P and P ′ generated by the travel route generator 35 when selected is shown.
  • the number of skips varies from 2 columns ⁇ 0 columns ⁇ 2 columns ⁇ 0 columns.
  • the positional relationship in which the manned tractor 1 ⁇ / b> X is disposed diagonally to the right of the robot tractor 1 is maintained regardless of whether it is the forward route or the return route.
  • the user of the manned tractor 1X may perform the steering operation with the intention of always running the manned tractor 1X diagonally right behind the robot tractor 1. There is an advantage that it is easy to work with the position of the tractor 1 as a guide.
  • FIG. 18 the cooperative work in which the manned tractor 1X travels diagonally right behind the robot tractor 1 is selected, and it is selected that priority is not given to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X.
  • An example of travel routes P and P ′ generated by the travel route generator 35 when selected is shown.
  • the number of skips is constant in one row.
  • the positional relationship in which the manned tractor 1X is disposed diagonally to the right of the robot tractor 1 is maintained in the outward path when viewed from the start position.
  • the manned tractor 1X is disposed behind the robot tractor 1 diagonally to the left (the set position relationship is not maintained).
  • the user of the manned tractor 1X may turn in the same turning mode (same turning radius, etc.) in the headland on one side and the headland on the other side.
  • the operation becomes easy for a user who is unfamiliar with the operation.
  • FIG. 19 shows an example of travel routes P and P ′ generated by the travel route generator 35 when a section is set in the field and the reference work is set to “necessary”.
  • the second work area where the farm work is mainly performed by the manned tractor 1X is arranged adjacent to the boundary line (partition line) with the first work area. Only the traveling path P0 is autonomously traveled and autonomously performed by the robot tractor 1, and the traveling path P1 ′ of the other second work area is performed by the manned tractor 1X. On the other hand, in the first work area, all the traveling paths P1 are autonomously traveled and autonomously performed by the robot tractor 1.
  • the robot tractor 1 autonomously travels and works on the travel route P0 arranged adjacent to the boundary line with the first work area of the second work areas. Then, with this traveling road P0 as a reference (reference), it is possible to perform agricultural work on the traveling roads P1 ′, P1 ′,... By the manned tractor 1X in the second work area. Therefore, there is an advantage that it is easy to perform farming work in an orderly manner on the field.
  • FIG. 20 shows an example of travel routes P and P ′ generated by the travel route generator 35 when a section is set in the field and the reference work is set to “unnecessary”.
  • a first work area where the farm work is performed by the robot tractor 1 and a second work area where the farm work is performed by the manned tractor 1X are partitioned by a lane marking. Are arranged side by side.
  • the work area (field) can be divided into a plurality of parts and can be shared by the robot tractor 1 and the manned tractor 1X, so that the work can be efficiently performed as a whole. There is a merit that it can be done.
  • the route generation system 99 of the present embodiment includes the work mode setting unit (cooperative work mode setting unit) 101, the positional relationship setting unit 102, and the travel route generation unit (cooperative travel route generation unit) 35. And a priority reception unit (reception unit) 103.
  • the work mode setting unit 101 sets a cooperative work mode of the robot tractor (first work vehicle) 1 and the manned tractor (second work vehicle) 1X.
  • the positional relationship setting unit 102 sets the positional relationship between the robot tractor 1 and the manned tractor 1X when the cooperative work mode is cooperative work in the same work area.
  • the traveling route generation unit 35 includes a first traveling route P on which the robot tractor 1 travels and a second traveling route P ′ on which the manned tractor 1X travels when the cooperative work mode is cooperative work in the same work area. Generate a route.
  • the priority receiving unit 103 receives whether or not priority is given to maintaining the positional relationship. When priority is given to maintaining the positional relationship by the priority receiving unit 103, a cooperative traveling route (first traveling route P and second traveling route P ′) that maintains the positional relationship is generated (see FIG. 17). If priority for maintaining the positional relationship is not received by the priority receiving unit 103, a cooperative traveling route (first traveling route P and second traveling route P ′) that does not maintain the positional relationship is generated (see FIG. 18).
  • the coordinated travel route can be fluidly generated according to the user's intention without necessarily being restricted by the positional relationship between the robot tractor 1 and the manned tractor 1X set by the positional relationship setting unit 102.
  • the first travel route P and the second travel route P ′ each include a plurality of travel routes P1, P1 ′ arranged in parallel.
  • a cooperative travel route first travel route P and second travel route P ′
  • the arbitrary travel route P1 of the first travel route P and the arbitrary travel The number of rows of travel roads arranged between the road P1 and the other travel road P1 traveled by the robot tractor 1 is maintained at a constant number (see FIG. 18).
  • the robot tractor 1 travels after the arbitrary traveling path P1 of the robot tractor 1 and the arbitrary traveling path P1.
  • the number of rows of travel routes arranged between the travel route P1, that is, the so-called skip number indicating how many rows the robot tractor 1 skips and travels on the next travel route P1 is maintained at a constant number.
  • the turning method (turning radius or the like) between the headland on one side of the field and the headland on the other side is fixed in a fixed manner, so that the turning operation is facilitated.
  • the route generation system 99 of the present embodiment is a cooperative work in different work areas, and the first work area is worked by the robot tractor 1 and the second work area is worked by the manned tractor 1X.
  • a reference work setting unit 108 is provided for setting whether or not the reference work by the robot tractor 1 in the second work area is necessary.
  • As the first travel path P a travel path including a travel path P0 in which the reference work is performed by the robot tractor 1 in the second work area and a plurality of travel paths P1 in which the work is performed by the robot tractor 1 in the first work area. Is generated.
  • a travel route including a plurality of travel routes P ⁇ b> 1 ′ on which work is performed by the manned tractor 1 ⁇ / b> X in the second work area excluding the area where the reference work is performed is generated (see FIG. 19).
  • the robot tractor 1 performs the reference work (work along the travel path P0), and the manned tractor 1X uses the manned tractor 1X with reference to the travel path P0 on which the work is performed in the reference work.
  • the operation can be performed on the travel path P1 ′. Therefore, it is easy to orderly work on the work area.
  • the route generation system 99 of the present embodiment generates a travel route including a plurality of travel routes P1, P1,... On which work is performed by the robot tractor 1 in the first work area as the first travel route P. .
  • a travel route including a plurality of travel routes P1 ′, P1 ′,... In which work is performed by the manned tractor 1X in the second work area is generated.
  • the robot tractor 1 travels on the leading side and the manned tractor 1X runs on the trailing side.
  • the manned tractor 1X may be driven by the robot tractor 1 on the following side.
  • the robot tractor 1 when the traveling route generation unit 35 generates a cooperative traveling route that does not maintain the positional relationship, the robot tractor 1 is located next to the arbitrary traveling route P1 of the first traveling route P and the arbitrary traveling route P1. It is assumed that the number of rows of traveling roads arranged between the other traveling roads P1 traveled by the above is kept constant. However, when there are fractions in the number of travel paths P1, the number of skips may not be constant in some travel paths P1.
  • the first work area and the second work area are partitioned so as to have the same area.
  • the present invention is not limited to this, and the first work area may be wider than the second work area, or the first work area may be narrower than the second work area.
  • the reference work is performed on the traveling path on the second work area side adjacent to the lane marking.
  • region becomes easy to understand visually, and there exists a merit that the user who steers the manned tractor 1X will work easily.
  • the present invention is not necessarily limited to this, and the reference work may be performed on any of the travel paths in the second work area.
  • the display screen (input screen etc.) shown in each figure is only an example, and the display layout and the design of each icon (button) are not limited to those shown in the figure.
  • the work mode setting unit 101, the positional relationship setting unit 102, the travel route generating unit 35, the priority receiving unit 103, and the reference work setting unit 108 are provided in the wireless communication terminal 46. Whether the configuration is provided in the tractor 1 or the wireless communication terminal 46 is not limited to this. Further, other components may be included in either the tractor 1 or the wireless communication terminal 46.
  • a device having a function corresponding to the wireless communication terminal 46 may be provided on the traveling machine body 2 of the manned tractor 1X traveling along with the tractor 1 so as not to be removable. In this case, the wireless communication terminal 46 can be omitted.
  • the second work vehicle is a manned tractor 1X that the user steers.
  • the present invention is not limited to this, and the second work vehicle is also an unmanned tractor, like the first work vehicle, and autonomously transfers the second travel route P ′ generated by the travel route generation unit 35 to this tractor. It is good also as what makes it drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A work mode setting unit (101) sets a cooperative work mode for a robot tractor (1) and a manned tractor (1X). A positional relationship setting unit (102) sets a positional relationship between the robot tractor (1) and the manned tractor (1X) in cases where the cooperative work mode is cooperative work within the same work region. A travel path creation unit (35) creates a cooperative travel path including a first travel path (P) on which the robot tractor (1) travels and a second travel path (P') on which the manned tractor (1X) travels. A priority acceptance unit (103) accepts whether or not to prioritize the maintenance of the positional relationship. In cases where the priority acceptance unit (103) accepts the prioritization of the maintenance of the positional relationship, a cooperative travel path that maintains the positional relationship is created. In cases where the priority acceptance unit (103) does not accept the prioritization of the maintenance of the positional relationship, a cooperative travel path that does not maintain the positional relationship is created.

Description

経路生成システムRoute generation system
 本発明は、経路生成システムに関する。詳細には、複数の作業車両が協調して作業を行う場合において、これらの作業車両の走行経路を生成する経路生成システムに関する。 The present invention relates to a route generation system. Specifically, the present invention relates to a route generation system that generates a travel route of work vehicles when a plurality of work vehicles perform work in cooperation.
 従来から、複数の作業車両が協調して作業を行う場合において、これらの作業車両の走行経路を生成することが可能な経路生成システムが知られている。特許文献1は、この種の経路生成システムに用いられる経路生成装置(走行経路設定装置)を開示する。この特許文献1の経路生成装置は、タッチパネル式の表示装置により構成されて、第1作業車両及び/又は第2作業車両と通信装置を介して通信可能となっている。この経路生成装置に表示させた設定画面において、圃場を特定した後、第1作業車両に対する第2作業車両の配置位置を設定すると、第1作業車両及び第2作業車両の走行経路が生成される。ここで、第1作業車両に対する第2作業車両の配置位置は、複数の配置可能な組合せの中から任意の配置位置を選択できる構成となっている。 Conventionally, when a plurality of work vehicles perform work in cooperation, a route generation system capable of generating a travel route of these work vehicles is known. Patent Document 1 discloses a route generation device (travel route setting device) used in this type of route generation system. The route generation device disclosed in Patent Document 1 includes a touch panel display device, and can communicate with the first work vehicle and / or the second work vehicle via a communication device. When the arrangement position of the second work vehicle with respect to the first work vehicle is set on the setting screen displayed on the route generation device after the field is specified, the travel routes of the first work vehicle and the second work vehicle are generated. . Here, the arrangement position of the second work vehicle with respect to the first work vehicle is configured such that an arbitrary arrangement position can be selected from a plurality of possible combinations.
 特許文献1では、設定された第1作業車両に対する第2作業車両の配置位置を維持した走行経路が生成可能である、としている。 According to Patent Document 1, it is possible to generate a travel route that maintains the set position of the second work vehicle with respect to the set first work vehicle.
特開2016-93125号公報Japanese Unexamined Patent Publication No. 2016-93125
 しかし、上記特許文献1の構成では、設定された第1作業車両に対する第2作業車両の配置位置に拘束された走行経路しか生成されないので、必ずしもユーザの意向に沿った走行経路を生成できるとは限らなかった。 However, in the configuration of Patent Document 1 described above, only the travel route that is constrained to the set position of the second work vehicle with respect to the set first work vehicle is generated, and therefore it is not necessarily possible to generate a travel route according to the user's intention. It was not limited.
 本発明は以上の事情に鑑みてされたものであり、その目的は、必ずしも設定された複数台の作業車両の位置関係に拘束されずに、ユーザの意向に応じて流動的に走行経路を生成することが可能な経路生成システムを提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is not necessarily restricted by the set positional relationship of a plurality of work vehicles, and a travel route is generated in a fluid manner according to the user's intention. It is an object of the present invention to provide a path generation system that can do this.
課題を解決するための手段及び効果Means and effects for solving the problems
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.
 本発明の観点によれば、以下の構成の経路生成システムが提供される。即ち、この経路生成システムは、協調作業態様設定部と、位置関係設定部と、協調走行経路生成部と、受付部と、を備える。前記協調作業態様設定部は、第1作業車両及び第2作業車両の協調作業態様を設定する。前記位置関係設定部は、前記協調作業態様が同一の作業領域における協調作業である場合に前記第1作業車両と前記第2作業車両の位置関係を設定する。前記協調走行経路生成部は、前記協調作業態様が同一の作業領域における協調作業である場合に前記第1作業車両が走行する第1走行経路及び前記第2作業車両が走行する第2走行経路を含む協調走行経路を生成する。前記受付部は、前記位置関係の維持を優先するか否かを受け付ける。前記受付部により前記位置関係の維持の優先が受け付けられた場合、前記位置関係を維持する前記協調走行経路を生成する。前記受付部により前記位置関係の維持の優先が受け付けられなかった場合、前記位置関係を維持しない前記協調走行経路を生成する。 According to an aspect of the present invention, a route generation system having the following configuration is provided. That is, the route generation system includes a cooperative work mode setting unit, a positional relationship setting unit, a cooperative traveling route generation unit, and a reception unit. The cooperative work mode setting unit sets a cooperative work mode of the first work vehicle and the second work vehicle. The positional relationship setting unit sets a positional relationship between the first work vehicle and the second work vehicle when the cooperative work mode is a cooperative work in the same work area. The cooperative travel route generation unit includes a first travel route on which the first work vehicle travels and a second travel route on which the second work vehicle travels when the cooperative work mode is cooperative work in the same work area. A coordinated travel route is generated. The reception unit receives whether or not priority is given to maintaining the positional relationship. When the priority of maintaining the positional relationship is received by the receiving unit, the cooperative traveling route that maintains the positional relationship is generated. When the priority for maintaining the positional relationship is not received by the reception unit, the cooperative travel route that does not maintain the positional relationship is generated.
 これにより、必ずしも設定された第1作業車両と第2作業車両の位置関係に拘束されずに、ユーザの意向に応じて流動的に協調走行経路を生成することができる。 Thus, the coordinated travel route can be generated in a fluid manner according to the user's intention without necessarily being restricted by the set positional relationship between the first work vehicle and the second work vehicle.
 前記の経路生成システムにおいては、以下の構成とすることが好ましい。即ち、前記第1走行経路及び前記第2走行経路は、それぞれ、平行に並べられる複数の走行路を備える。前記協調走行経路生成部により前記位置関係を維持しない前記協調走行経路が生成される場合、前記第1走行経路の任意の走行路と当該任意の走行路の次に前記第1作業車両により走行される他の走行路との間に配置される走行路の列数は一定数に維持される。 In the above route generation system, the following configuration is preferable. That is, the first travel route and the second travel route each include a plurality of travel routes arranged in parallel. When the cooperative traveling route that does not maintain the positional relationship is generated by the cooperative traveling route generation unit, the cooperative work route is traveled by the first work vehicle next to an arbitrary traveling route of the first traveling route and the arbitrary traveling route. The number of trains arranged between other trains is kept constant.
 これにより、設定された第1作業車両と第2作業車両の位置関係の維持を優先しない場合、第1走行経路の任意の走行路と当該任意の走行路の次に第1作業車両により走行される他の走行路との間に配置される走行路の列数、即ち第1作業車両が何列飛ばして次の走行路を走行するかのいわゆるスキップ数が一定数に維持されることとなる。この場合、圃場の一側の枕地と他側の枕地での旋回方法が一定の態様に固定されるため、旋回操作が行い易くなる。 Thereby, when priority is not given to maintaining the set positional relationship between the first work vehicle and the second work vehicle, the first work vehicle travels after an arbitrary travel path on the first travel path and the arbitrary travel path. The number of rows of travel routes arranged between other travel routes, that is, the so-called skip number indicating how many rows the first work vehicle skips and travels on the next travel route is maintained at a constant number. . In this case, since the turning method at the headland on one side of the field and the headland on the other side is fixed in a certain manner, the turning operation is facilitated.
 前記の経路生成システムにおいては、以下の構成とすることが好ましい。即ち、この経路生成システムは、前記協調作業が異なる作業領域における協調作業であり、前記第1作業車両により第1作業領域が作業され、前記第2作業車両により第2作業領域が作業される場合に、前記第2作業領域における前記第1作業車両による基準作業の要否を設定する基準作業設定部を備える。第1走行経路として、前記第2作業領域において前記第1作業車両により前記基準作業が行われる走行路と、前記第1作業領域において前記第1作業車両により作業が行われる複数の走行路と、を含む走行経路を生成する。前記第2走行経路として、前記基準作業が行われる領域を除いた前記第2作業領域において前記第2作業車両により作業が行われる複数の走行路を含む走行経路を生成する。 In the above route generation system, the following configuration is preferable. That is, in the route generation system, the cooperative work is performed in a different work area, the first work area is worked by the first work vehicle, and the second work area is worked by the second work vehicle. And a reference work setting unit for setting whether or not a reference work is required by the first work vehicle in the second work area. As the first travel route, a travel path in which the reference work is performed by the first work vehicle in the second work area, and a plurality of travel paths in which work is performed by the first work vehicle in the first work area; A travel route including is generated. As the second travel route, a travel route including a plurality of travel routes in which work is performed by the second work vehicle in the second work area excluding the area in which the reference work is performed is generated.
 これにより、第2作業領域においては、第1作業車両により基準作業を行い、当該基準作業で作業が行われた走行路を参考にして、第2作業車両により複数の走行路に対して作業を行うことができる。よって、作業領域に対して整然と作業を施し易い。 Accordingly, in the second work area, the reference work is performed by the first work vehicle, and the work is performed on the plurality of travel paths by the second work vehicle with reference to the travel path on which the work is performed in the reference work. It can be carried out. Therefore, it is easy to orderly work on the work area.
 前記の経路生成システムにおいては、以下の構成とすることが好ましい。即ち、前記第1走行経路として、前記第1作業領域において前記第1作業車両により作業が行われる複数の走行路を含む走行経路を生成する。前記第2走行経路として、前記第2作業領域において前記第2作業車両により作業が行われる複数の走行路を含む走行経路を生成する。 In the above route generation system, the following configuration is preferable. That is, a travel route including a plurality of travel routes on which work is performed by the first work vehicle in the first work area is generated as the first travel route. As the second travel route, a travel route including a plurality of travel routes on which work is performed by the second work vehicle in the second work area is generated.
 これにより、異なる作業領域をそれぞれ第1作業車両と第2作業領域とで分担して作業を行うことができ、全体として効率よく作業を行うことができる。 Thus, different work areas can be shared by the first work vehicle and the second work area, and the work can be efficiently performed as a whole.
本発明の一実施形態に係る経路生成システムにより協調走行経路が生成されて協調作業を行うロボットトラクタ及び有人のトラクタを示す側面図。The side view which shows the robot tractor and manned tractor which a cooperative driving | running route is produced | generated by the route production | generation system which concerns on one Embodiment of this invention, and performs cooperative work. ロボットトラクタの全体的な構成を示す側面図。The side view which shows the whole structure of a robot tractor. ロボットトラクタの平面図。The top view of a robot tractor. ユーザにより操作され、ロボットトラクタと無線通信することが可能な無線通信端末を示す図。The figure which shows the radio | wireless communication terminal which can be operated by the user and can perform radio | wireless communication with a robot tractor. ロボットトラクタ及び無線通信端末の主要な電気的構成を示すブロック図。The block diagram which shows the main electrical structures of a robot tractor and a radio | wireless communication terminal. 無線通信端末の作業情報設定部が備える主要な電気的構成を示すブロック図。The block diagram which shows the main electrical structures with which the work information setting part of a radio | wireless communication terminal is provided. 無線通信端末のディスプレイにおける入力選択画面の表示例を示す図。The figure which shows the example of a display of the input selection screen in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける作業車両情報入力画面の表示例を示す図。The figure which shows the example of a display of the work vehicle information input screen in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける圃場情報入力画面の表示例を示す図。The figure which shows the example of a display of the agricultural field information input screen in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける作業態様の設定及び位置関係の設定をするための作業態様・位置関係設定画面の表示例を示す図。The figure which shows the example of a display of the operation | work aspect and positional relationship setting screen for setting the operation | work aspect in the display of a wireless communication terminal, and the setting of positional relationship. 無線通信端末のディスプレイにおける位置関係の維持を優先するか否かの設定をするための優先設定ウィンドウの表示例を示す図。The figure which shows the example of a display of the priority setting window for setting whether to give priority to the maintenance of the positional relationship in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける区画の設定及び基準作業の要否の設定をするための区画・基準作業設定画面の表示例を示す図。The figure which shows the example of a display of the division and reference | standard work setting screen for setting the setting of the division | segmentation in the display of a radio | wireless communication terminal, and the necessity of a reference | standard work. 無線通信端末のディスプレイにおけるオーバーラップ幅の設定をするためのオーバーラップ幅設定画面の表示例を示す図。The figure which shows the example of a display of the overlap width setting screen for setting the overlap width in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおけるスキップ数の設定をするためのスキップ数設定画面の表示例を示す図。The figure which shows the example of a display of the skip number setting screen for setting the skip number in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける枕地幅及び非作業領域の幅を設定するための非作業領域幅設定画面の表示例を示す図。The figure which shows the example of a display of the non-working area width | variety setting screen for setting the headland width and the width | variety of a non-working area | region in the display of a radio | wireless communication terminal. 無線通信端末のディスプレイにおける自律走行監視画面の表示例を示す図。The figure which shows the example of a display of the autonomous running monitoring screen in the display of a radio | wireless communication terminal. 随伴(協調)作業が選択され、車両間の位置関係の維持が優先され、1列スキップが選択された場合に、走行経路生成部により生成される走行経路の例を示す図。実線矢印は第1走行経路、点線矢印は第2走行経路を示す。The figure which shows the example of the driving | running route produced | generated by the driving | running route production | generation part, when the accompanying work (cooperation) is selected, maintenance of the positional relationship between vehicles is prioritized and 1 row skip is selected. The solid arrow indicates the first travel route, and the dotted arrow indicates the second travel route. 随伴(協調)作業が選択され、車両間の位置関係の維持は優先されず、1列スキップが選択された場合に、走行経路生成部により生成される走行経路の例を示す図。実線矢印は第1走行経路、点線矢印は第2走行経路を示す。The figure which shows the example of the driving | running route produced | generated by a driving | running route production | generation part, when the accompanying work (cooperation) is selected and maintenance of the positional relationship between vehicles is not prioritized and 1-line skip is selected. The solid arrow indicates the first travel route, and the dotted arrow indicates the second travel route. 区画が設定され、基準作業が「要」に設定された場合に、走行経路生成部により生成される走行経路の例を示す図。実線矢印は第1走行経路、点線矢印は第2走行経路を示す。The figure which shows the example of the driving | running route produced | generated by a driving | running route production | generation part, when a division is set and the reference | standard operation | work is set to "necessary". The solid arrow indicates the first travel route, and the dotted arrow indicates the second travel route. 区画が設定され、基準作業が「不要」に設定された場合に、走行経路生成部により生成される走行経路の例を示す図。実線矢印は第1走行経路、点線矢印は第2走行経路を示す。The figure which shows the example of the driving route produced | generated by the driving route production | generation part, when a division is set and the reference | standard work is set to "unnecessary". The solid arrow indicates the first travel route, and the dotted arrow indicates the second travel route.
 次に、図面を参照して本発明の実施の形態を説明する。以下では、図面の各図において同一の部材には同一の符号を付し、重複する説明を省略することがある。また、同一の符号に対応する部材等の名称が、簡略的に言い換えられたり、上位概念又は下位概念の名称で言い換えられたりすることがある。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following, the same members are denoted by the same reference symbols in the drawings, and redundant description may be omitted. In addition, names of members and the like corresponding to the same reference may be simply rephrased, or may be rephrased with a superordinate concept or a subordinate concept name.
 本発明は、予め定められた圃場内で複数台の作業車両を走行させて、圃場内における農作業の全部又は一部を実行させるときに、作業車両を走行させる走行経路を生成する経路生成システムに関する。本実施形態では、作業車両としてトラクタを例に説明するが、作業車両としては、トラクタの他、田植機、コンバイン、土木・建設作業装置、除雪車等、乗用型作業機に加え、歩行型作業機も含まれる。本明細書において自律走行とは、トラクタが備える制御部(ECU)によりトラクタが備える走行に関する構成が制御されて予め定められた経路に沿ってトラクタが走行することを意味し、自律作業とは、トラクタが備える制御部によりトラクタが備える作業に関する構成が制御されて、予め定められた経路に沿ってトラクタが作業を行うことを意味する。これに対して、手動走行・手動作業とは、トラクタが備える各構成がユーザにより操作され、走行・作業が行われることを意味する。 The present invention relates to a route generation system that generates a travel route for running a work vehicle when a plurality of work vehicles are run in a predetermined farm field and all or part of the farm work in the farm field is executed. . In this embodiment, a tractor will be described as an example of a work vehicle. However, as a work vehicle, in addition to a tractor, a padded work machine such as a rice transplanter, a combiner, a civil engineering / construction work device, a snowplow, a walking work A machine is also included. In this specification, autonomous traveling means that the configuration related to traveling provided by the tractor is controlled by a control unit (ECU) provided in the tractor, and the tractor travels along a predetermined route. This means that the control unit included in the tractor controls the configuration related to the work included in the tractor, and the tractor performs the work along a predetermined route. On the other hand, manual running / manual work means that each component provided in the tractor is operated by the user to run / work.
 以下の説明では、自律走行・自律作業されるトラクタを「無人(の)トラクタ」又は「ロボットトラクタ」と称することがあり、手動走行・手動作業されるトラクタを「有人(の)トラクタ」と称することがある。圃場内において農作業の一部が無人トラクタにより実行される場合、残りの農作業は有人トラクタにより実行される。単一の圃場における農作業を無人トラクタ及び有人トラクタで実行することを、農作業の協調作業、追従作業、随伴作業等と称することがある。本明細書において無人トラクタと有人トラクタの違いは、ユーザによる操作の有無であり、各構成は基本的に共通であるものとする。即ち、無人トラクタであってもユーザが搭乗(乗車)して操作することが可能であり(即ち、有人トラクタとして使用することができ)、あるいは有人トラクタであってもユーザが降車して自律走行・自律作業させることが可能である(即ち、無人トラクタとして使用することができる)。なお、農作業の協調作業としては、「単一の圃場における農作業を無人車両及び有人車両で実行すること」に加え、「隣接する圃場等の異なる圃場における農作業を同時期に無人車両及び有人車両が実行すること」が含まれていてもよい。 In the following description, a tractor that autonomously travels and works autonomously may be referred to as an “unmanned tractor” or a “robot tractor”, and a tractor that travels manually and is manually operated is referred to as a “manned tractor”. Sometimes. When a part of the farm work is performed by the unmanned tractor in the field, the remaining farm work is performed by the manned tractor. Performing farm work in a single farm with unmanned tractors and manned tractors may be referred to as cooperative work of farm work, follow-up work, accompanying work, and the like. In this specification, the difference between an unmanned tractor and a manned tractor is the presence or absence of an operation by a user, and each configuration is basically common. That is, even if it is an unmanned tractor, the user can board (ride) and operate (that is, it can be used as a manned tractor), or even if it is a manned tractor, the user gets off and autonomously travels. It can be operated autonomously (that is, it can be used as an unmanned tractor). In addition, as cooperative work of farm work, in addition to “execution of farm work in a single farm field with unmanned vehicles and manned vehicles”, “farm work in different farm fields such as adjacent farm fields can be performed at the same time. "Execution" may be included.
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る経路生成システム99により協調走行経路が生成されて協調作業を行うロボットトラクタ1及び有人のトラクタ1Xを示す側面図である。図2は、ロボットトラクタ1の全体的な構成を示す側面図である。図3は、ロボットトラクタ1の平面図である。図4は、ユーザにより操作され、ロボットトラクタ1と無線通信することが可能な無線通信端末46を示す図である。図5は、ロボットトラクタ1及び無線通信端末46の主要な電気的構成を示すブロック図である。図6は、無線通信端末46の作業情報設定部47が備える主要な電気的構成を示すブロック図である。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing a robot tractor 1 and a manned tractor 1X that perform cooperative work by generating a cooperative travel route by a route generation system 99 according to an embodiment of the present invention. FIG. 2 is a side view showing the overall configuration of the robot tractor 1. FIG. 3 is a plan view of the robot tractor 1. FIG. 4 is a diagram showing a wireless communication terminal 46 that is operated by a user and can wirelessly communicate with the robot tractor 1. FIG. 5 is a block diagram showing main electrical configurations of the robot tractor 1 and the wireless communication terminal 46. FIG. 6 is a block diagram illustrating a main electrical configuration provided in the work information setting unit 47 of the wireless communication terminal 46.
 本発明の実施の一形態に係る経路生成システム99は、図1に示すロボットトラクタ1と有人トラクタ1Xとを協調作業させるときに走行させる協調走行経路を生成するものである。ここで、協調走行経路は、ロボットトラクタ(第1作業車両)1を走行させる第1走行経路と、有人トラクタ(第2作業車両)1Xを走行させる第2走行経路と、を含むものである。本実施形態の経路生成システム99の各構成は、主としてロボットトラクタ1と無線通信する無線通信端末46に備えられる。 A route generation system 99 according to an embodiment of the present invention generates a cooperative traveling route that travels when the robot tractor 1 and the manned tractor 1X shown in FIG. Here, the cooperative travel route includes a first travel route for traveling the robot tractor (first work vehicle) 1 and a second travel route for traveling the manned tractor (second work vehicle) 1X. Each component of the route generation system 99 of the present embodiment is mainly provided in the wireless communication terminal 46 that wirelessly communicates with the robot tractor 1.
 初めに、ロボットトラクタ(以下、単に「トラクタ」と称する場合がある。)1について、主として図2及び図3を参照して説明する。 First, a robot tractor (hereinafter sometimes simply referred to as “tractor”) 1 will be described mainly with reference to FIGS.
 トラクタ1の構成について図2及び図3を参照して説明する。トラクタ1の走行機体2は、図1に示すように、その前部が左右1対の前輪7,7で支持され、その後部が左右1対の後輪8,8で支持されている。 The structure of the tractor 1 will be described with reference to FIGS. As shown in FIG. 1, the traveling machine body 2 of the tractor 1 is supported at its front part by a pair of left and right front wheels 7 and 7 and at its rear part by a pair of left and right rear wheels 8 and 8.
 走行機体2の前部にはボンネット9が配置されている。このボンネット9内にはトラクタ1の駆動源であるエンジン10や燃料タンク(不図示)等が収容されている。このエンジン10は、例えばディーゼルエンジンにより構成することができるが、これに限るものではなく、例えばガソリンエンジンにより構成してもよい。また、駆動源としてエンジン10に加えて、又は代えて電気モータを採用してもよい。 A bonnet 9 is arranged at the front of the traveling machine body 2. The bonnet 9 houses an engine 10 that is a driving source of the tractor 1, a fuel tank (not shown), and the like. Although this engine 10 can be comprised, for example with a diesel engine, it is not restricted to this, For example, you may comprise with a gasoline engine. Further, an electric motor may be employed as a drive source in addition to or instead of the engine 10.
 ボンネット9の後方には、ユーザが搭乗するためのキャビン11が配置されている。このキャビン11の内部には、ユーザが操向操作するためのステアリングハンドル12と、ユーザが着座可能な座席13と、各種の操作を行うための様々な操作装置と、が主として設けられている。ただし、作業車両は、キャビン11付きのものに限るものではなく、キャビン11を備えないものであってもよい。 A cabin 11 for the user to board is arranged behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for a user to steer, a seat 13 on which a user can be seated, and various operation devices for performing various operations. However, the work vehicle is not limited to the one with the cabin 11 and may be one without the cabin 11.
 上記の操作装置としては、図3に示すモニタ装置14、スロットルレバー15、主変速レバー27、複数の油圧操作レバー16、PTOスイッチ17、PTO変速レバー18、副変速レバー19、及び作業機昇降スイッチ28等を例として挙げることができる。これらの操作装置は、座席13の近傍、又はステアリングハンドル12の近傍に配置されている。 As the operation device, the monitor device 14 shown in FIG. 3, the throttle lever 15, the main transmission lever 27, the plurality of hydraulic operation levers 16, the PTO switch 17, the PTO transmission lever 18, the auxiliary transmission lever 19, and the work equipment lift switch 28 etc. can be mentioned as an example. These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
 モニタ装置14は、トラクタ1の様々な情報を表示可能に構成されている。スロットルレバー15は、エンジン10の出力回転数を設定するための操作具である。主変速レバー27は、トラクタ1の走行速度を無段階で変更するための操作具である。油圧操作レバー16は、図略の油圧外部取出バルブを切換操作するための操作具である。PTOスイッチ17は、トランスミッション22の後端から突出した図略のPTO軸(動力伝達軸)への動力の伝達/遮断を切換操作するための操作具である。即ち、PTOスイッチ17がON状態であるときPTO軸に動力が伝達されてPTO軸が回転し、作業機3が駆動される一方、PTOスイッチ17がOFF状態であるときPTO軸への動力が遮断されて、PTO軸が回転せず、作業機3が停止される。PTO変速レバー18は、作業機3に入力される動力の変更操作を行うものであり、具体的にはPTO軸の回転速度の変速操作を行うための操作具である。副変速レバー19は、トランスミッション22内の走行副変速ギア機構の変速比を切り換えるための操作具である。作業機昇降スイッチ28は、走行機体2に装着された作業機3の高さを所定範囲内で昇降操作するための操作具である。 The monitor device 14 is configured to display various information of the tractor 1. The throttle lever 15 is an operating tool for setting the output rotational speed of the engine 10. The main transmission lever 27 is an operating tool for changing the traveling speed of the tractor 1 in a stepless manner. The hydraulic operation lever 16 is an operation tool for switching and operating a hydraulic external take-off valve (not shown). The PTO switch 17 is an operating tool for switching the transmission / cut-off of power to a PTO shaft (power transmission shaft) (not shown) protruding from the rear end of the transmission 22. That is, when the PTO switch 17 is in the ON state, power is transmitted to the PTO shaft and the PTO shaft rotates to drive the work implement 3, while when the PTO switch 17 is in the OFF state, the power to the PTO shaft is cut off. Thus, the PTO shaft does not rotate and the work machine 3 is stopped. The PTO speed change lever 18 is used to change the power input to the work machine 3, and specifically, is an operating tool for changing speed of the rotational speed of the PTO shaft. The auxiliary transmission lever 19 is an operating tool for switching the gear ratio of the traveling auxiliary transmission gear mechanism in the transmission 22. The work implement raising / lowering switch 28 is an operating tool for raising and lowering the height of the work implement 3 attached to the traveling machine body 2 within a predetermined range.
 図2に示すように、走行機体2の下部には、トラクタ1のシャーシ20が設けられている。当該シャーシ20は、機体フレーム21、トランスミッション22、フロントアクスル23、及びリアアクスル24等から構成されている。 As shown in FIG. 2, a chassis 20 of the tractor 1 is provided at the lower part of the traveling machine body 2. The chassis 20 includes a body frame 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
 機体フレーム21は、トラクタ1の前部における支持部材であって、直接、又は防振部材等を介してエンジン10を支持している。トランスミッション22は、エンジン10からの動力を変化させてフロントアクスル23及びリアアクスル24に伝達する。フロントアクスル23は、トランスミッション22から入力された動力を前輪7に伝達するように構成されている。リアアクスル24は、トランスミッション22から入力された動力を後輪8に伝達するように構成されている。 The fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member. The transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24. The front axle 23 is configured to transmit the power input from the transmission 22 to the front wheels 7. The rear axle 24 is configured to transmit the power input from the transmission 22 to the rear wheel 8.
 図5に示すように、トラクタ1は、走行機体2の動作(前進、後進、停止及び旋回等)及び作業機3の動作(昇降、駆動及び停止等)を制御するための制御部4を備える。制御部4は、図示しないCPU,ROM、RAM、I/O等を備えて構成されており、CPUは、各種プログラム等をROMから読み出して実行することができる。制御部4には、トラクタ1が備える各構成(例えば、エンジン10等)を制御するためのコントローラ、及び、他の無線通信機器と無線通信可能な無線通信部40等がそれぞれ電気的に接続されている。 As shown in FIG. 5, the tractor 1 includes a control unit 4 for controlling the operation of the traveling machine body 2 (forward, reverse, stop, turn, etc.) and the operation of the work machine 3 (elevation, drive, stop, etc.). . The control unit 4 includes a CPU, a ROM, a RAM, an I / O, etc. (not shown), and the CPU can read various programs from the ROM and execute them. The controller 4 is electrically connected to a controller for controlling each component (for example, the engine 10 and the like) included in the tractor 1 and a wireless communication unit 40 that can wirelessly communicate with other wireless communication devices. ing.
 上記のコントローラとして、トラクタ1は少なくとも、図略のエンジンコントローラ、車速コントローラ、操向コントローラ及び昇降コントローラを備える。それぞれのコントローラは、制御部4からの電気信号に応じて、トラクタ1の各構成を制御することができる。 As the above controller, the tractor 1 includes at least an unillustrated engine controller, vehicle speed controller, steering controller, and elevator controller. Each controller can control each component of the tractor 1 in accordance with an electrical signal from the control unit 4.
 エンジンコントローラは、エンジン10の回転数等を制御するものである。具体的には、エンジン10には、当該エンジン10の回転数を変更させる図略のアクチュエータを備えたガバナ装置41が設けられている。エンジンコントローラは、ガバナ装置41を制御することで、エンジン10の回転数を制御することができる。また、エンジン10には、エンジン10の燃焼室内に噴射(供給)するための燃料の噴射時期・噴射量を調整する燃料噴射装置52が付設されている。エンジンコントローラは、燃料噴射装置52を制御することで、例えばエンジン10への燃料の供給を停止させ、エンジン10の駆動を停止させることができる。 The engine controller controls the rotational speed of the engine 10 and the like. Specifically, the engine 10 is provided with a governor device 41 including an unillustrated actuator that changes the rotational speed of the engine 10. The engine controller can control the rotational speed of the engine 10 by controlling the governor device 41. Further, the engine 10 is provided with a fuel injection device 52 that adjusts the injection timing / injection amount of fuel to be injected (supplied) into the combustion chamber of the engine 10. The engine controller can stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the fuel injection device 52, for example.
 車速コントローラは、トラクタ1の車速を制御するものである。具体的には、トランスミッション22には、例えば可動斜板式の油圧式無段変速装置である変速装置42が設けられている。車速コントローラは、変速装置42の斜板の角度を図略のアクチュエータによって変更することで、トランスミッション22の変速比を変更し、所望の車速を実現することができる。 The vehicle speed controller controls the vehicle speed of the tractor 1. Specifically, the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic continuously variable transmission. The vehicle speed controller can change the gear ratio of the transmission 22 and change to the desired vehicle speed by changing the angle of the swash plate of the transmission 42 with an actuator (not shown).
 操向コントローラは、ステアリングハンドル12の回動角度を制御するものである。具体的には、ステアリングハンドル12の回転軸(ステアリングシャフト)の中途部には、操向アクチュエータ43が設けられている。この構成で、予め定められた経路をトラクタ1が(無人トラクタとして)走行する場合、制御部4は、当該経路に沿ってトラクタ1が走行するようにステアリングハンドル12の適切な回動角度を計算し、得られた回動角度となるように操向コントローラに制御信号を出力する。操向コントローラは、制御部4から入力された制御信号に基づいて操向アクチュエータ43を駆動し、ステアリングハンドル12の回動角度を制御する。なお、操向コントローラはステアリングハンドル12の回動角度を調整するものではなくトラクタ1の前輪7の操舵角を調整するものであってもよく、この場合、旋回走行を行ったとしてもステアリングハンドル12は回転しない。 The steering controller controls the turning angle of the steering handle 12. Specifically, a steering actuator 43 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 12. With this configuration, when the tractor 1 travels (as an unmanned tractor) on a predetermined route, the control unit 4 calculates an appropriate rotation angle of the steering handle 12 so that the tractor 1 travels along the route. Then, a control signal is output to the steering controller so that the obtained rotation angle is obtained. The steering controller drives the steering actuator 43 based on the control signal input from the control unit 4 and controls the rotation angle of the steering handle 12. Note that the steering controller does not adjust the turning angle of the steering handle 12, but may adjust the steering angle of the front wheel 7 of the tractor 1. In this case, the steering handle 12 even if turning is performed. Does not rotate.
 昇降コントローラは、作業機3の昇降を制御するものである。具体的には、トラクタ1は、作業機3を走行機体2に連結している3点リンク機構の近傍に、油圧シリンダ等からなる昇降アクチュエータ44を備えている。この構成で、昇降コントローラは、制御部4から入力された制御信号に基づいて昇降アクチュエータ44を駆動して作業機3を適宜に昇降動作させることにより、所望の高さで作業機3により農作業を行うことができる。この制御により、作業機3を、退避高さ(農作業を行わない高さ)及び作業高さ(農作業を行う高さ)等の所望の高さで支持することができる。 The elevating controller controls the elevating of the work machine 3. Specifically, the tractor 1 includes an elevating actuator 44 composed of a hydraulic cylinder or the like in the vicinity of a three-point link mechanism that connects the work machine 3 to the traveling machine body 2. With this configuration, the lift controller drives the lift actuator 44 based on the control signal input from the control unit 4 to appropriately lift and lower the work implement 3 so that the work implement 3 performs farm work at a desired height. It can be carried out. By this control, the work machine 3 can be supported at a desired height such as a retreat height (a height at which farm work is not performed) and a work height (a height at which farm work is performed).
 なお、上述した図略の複数のコントローラは、制御部4から入力される信号に基づいてエンジン10等の各部を制御していることから、制御部4が実質的に各部を制御していると把握することができる。 Note that the plurality of controllers (not shown) control each part of the engine 10 and the like based on a signal input from the control part 4, so that the control part 4 substantially controls each part. I can grasp it.
 上述のような制御部4を備えるトラクタ1は、ユーザがキャビン11内に搭乗して各種操作をすることにより、当該制御部4によりトラクタ1の各部(走行機体2、作業機3等)を制御して、圃場内を走行しながら農作業を行うことができるように構成されている。加えて、本実施形態のトラクタ1は、ユーザがトラクタ1に搭乗しなくても、無線通信端末46により出力される所定の制御信号により自律走行及び自律作業させることが可能となっている。 The tractor 1 including the control unit 4 as described above controls various parts of the tractor 1 (the traveling machine body 2, the work implement 3, etc.) by the control unit 4 when the user gets into the cabin 11 and performs various operations. Thus, the farm work can be performed while traveling in the field. In addition, the tractor 1 of the present embodiment can be autonomously run and autonomously operated by a predetermined control signal output from the wireless communication terminal 46 without the user getting on the tractor 1.
 具体的には、図5等に示すように、トラクタ1は、自律走行・自律作業を可能とするための各種の構成を備えている。例えば、トラクタ1は、測位システムに基づいて自ら(走行機体2)の位置情報を取得するために必要な測位用アンテナ6等の構成を備えている。このような構成により、トラクタ1は、測位システムに基づいて自らの位置情報を取得して、圃場上を自律的に走行することが可能となっている。 Specifically, as shown in FIG. 5 and the like, the tractor 1 has various configurations for enabling autonomous traveling and autonomous work. For example, the tractor 1 has a configuration such as a positioning antenna 6 necessary for acquiring position information of itself (the traveling machine body 2) based on the positioning system. With such a configuration, the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field.
 次に、自律走行を可能とするためにトラクタ1が備える構成について、図5等を参照して詳細に説明する。具体的には、本実施形態のトラクタ1は、測位用アンテナ6、無線通信用アンテナ48、及び記憶部55等を備える。また、これらに加えて、トラクタ1には、走行機体2の姿勢(ロール角、ピッチ角、ヨー角)を特定することが可能な図略の慣性計測ユニット(IMU)が備えられている。 Next, the configuration of the tractor 1 for enabling autonomous traveling will be described in detail with reference to FIG. Specifically, the tractor 1 of this embodiment includes a positioning antenna 6, a wireless communication antenna 48, a storage unit 55, and the like. In addition to these, the tractor 1 is provided with an unillustrated inertial measurement unit (IMU) that can specify the posture (roll angle, pitch angle, yaw angle) of the traveling machine body 2.
 測位用アンテナ6は、例えば衛星測位システム(GNSS)等の測位システムを構成する測位衛星からの信号を受信するものである。図2に示すように、測位用アンテナ6は、トラクタ1のキャビン11が備えるルーフ5の上面に取り付けられている。測位用アンテナ6で受信された測位信号は、図5に示す位置情報算出部49に入力される。位置情報算出部49は、トラクタ1の走行機体2(厳密には測位用アンテナ6)の位置情報を、例えば緯度・経度情報として算出する。当該位置情報算出部49で算出された位置情報は、制御部4に入力されて、自律走行に利用される。 The positioning antenna 6 receives a signal from a positioning satellite constituting a positioning system such as a satellite positioning system (GNSS). As shown in FIG. 2, the positioning antenna 6 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1. The positioning signal received by the positioning antenna 6 is input to the position information calculation unit 49 shown in FIG. The position information calculation unit 49 calculates the position information of the traveling machine body 2 (strictly speaking, the positioning antenna 6) of the tractor 1 as latitude / longitude information, for example. The position information calculated by the position information calculation unit 49 is input to the control unit 4 and used for autonomous traveling.
 なお、本実施形態ではGNSS-RTK法を利用した高精度の衛星測位システムが用いられているが、これに限られるものではなく、高精度の位置座標が得られる限りにおいて他の測位システムを用いてもよい。例えば、相対測位方式(DGPS)、又は静止衛星型衛星航法補強システム(SBAS)を使用することが考えられる。 In this embodiment, a high-accuracy satellite positioning system using the GNSS-RTK method is used. However, the present invention is not limited to this, and other positioning systems can be used as long as high-precision position coordinates can be obtained. May be. For example, it is conceivable to use a relative positioning method (DGPS) or a geostationary satellite type satellite navigation augmentation system (SBAS).
 無線通信用アンテナ48は、ユーザが操作する無線通信端末46からの信号を受信したり、無線通信端末46への信号を送信したりするものである。図2に示すように、無線通信用アンテナ48は、トラクタ1のキャビン11が備えるルーフ5の上面に取り付けられている。無線通信用アンテナ48で受信した無線通信端末46からの信号は、図5に示す無線通信部40で信号処理され、制御部4に入力される。また、制御部4から無線通信端末46に送信する信号は、無線通信部40で信号処理された後、無線通信用アンテナ48から送信されて無線通信端末46で受信される。 The wireless communication antenna 48 receives a signal from the wireless communication terminal 46 operated by the user or transmits a signal to the wireless communication terminal 46. As shown in FIG. 2, the radio communication antenna 48 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1. A signal from the wireless communication terminal 46 received by the wireless communication antenna 48 is subjected to signal processing by the wireless communication unit 40 shown in FIG. The signal transmitted from the control unit 4 to the wireless communication terminal 46 is subjected to signal processing by the wireless communication unit 40, then transmitted from the wireless communication antenna 48 and received by the wireless communication terminal 46.
 前方カメラ57はトラクタ1の前方を撮影するものである。後方カメラ56はトラクタ1の後方を撮影するものである。前方カメラ57及び後方カメラ56で撮影された動画データは、無線通信部40で信号処理された後、無線通信用アンテナ48から無線通信端末46に送信される。無線通信端末46は、受信した動画データに基づく動画をディスプレイ37に表示することができる。 The front camera 57 captures the front of the tractor 1. The rear camera 56 photographs the rear of the tractor 1. The moving image data captured by the front camera 57 and the rear camera 56 is signal-processed by the wireless communication unit 40 and then transmitted from the wireless communication antenna 48 to the wireless communication terminal 46. The wireless communication terminal 46 can display a moving image based on the received moving image data on the display 37.
 車速センサ53は、トラクタ1の車速を検出するものであり、例えば前輪7,7の間の車軸に設けられる。燃料残量センサ54は、ボンネット9内に搭載される図略の燃料タンク内の燃料の残量を検出するものであり、当該燃料タンクに設けられる。車速センサ53及び燃料残量センサ54で得られた検出結果は、無線通信部40で信号処理された後、無線通信用アンテナ48から無線通信端末46に送信される。無線通信端末46は、受信した検出結果をディスプレイ37に表示することができる。 The vehicle speed sensor 53 detects the vehicle speed of the tractor 1 and is provided on the axle between the front wheels 7 and 7, for example. The remaining fuel sensor 54 detects the remaining amount of fuel in a fuel tank (not shown) mounted in the bonnet 9 and is provided in the fuel tank. The detection results obtained by the vehicle speed sensor 53 and the remaining fuel amount sensor 54 are signal-processed by the wireless communication unit 40 and then transmitted from the wireless communication antenna 48 to the wireless communication terminal 46. The wireless communication terminal 46 can display the received detection result on the display 37.
 記憶部55は、トラクタ1を自律走行させる経路である、直線状又は折れ線状の走行路(農作業を行う作業路)P1と、旋回用の円弧状の接続路(旋回路)P2と、を交互に繋いでなる走行経路(パス)Pを記憶したり、自律走行中のトラクタ1(厳密には、測位用アンテナ6)の位置の推移(走行軌跡)を記憶したりするメモリである。その他にも、記憶部55は、トラクタ1を自律走行・自律作業させるために必要な様々な情報を記憶している。 The storage unit 55 alternates a linear or broken line-shaped traveling path (a work path for performing farm work) P1 and a turning arc-shaped connection path (turning circuit) P2 that are paths for autonomously traveling the tractor 1. Is a memory that stores a travel route (path) P that is connected to, and a transition (travel locus) of the position of the tractor 1 (strictly speaking, the positioning antenna 6) that is traveling autonomously. In addition, the storage unit 55 stores various information necessary for the tractor 1 to autonomously travel and work.
 無線通信端末46は、図4に示すように、タブレット型のパーソナルコンピュータとして構成される。本実施形態では、有人のトラクタ1Xを操作するユーザが無線通信端末46を持って有人トラクタ1Xに搭乗し、例えば無線通信端末46を有人トラクタ1X内の適宜の支持部にセットして操作する。あるいは、有人のトラクタ1Xを操作するオペレータとは異なるユーザが、トラクタ1,1Xの外で無線通信端末46を持って走行経路生成の操作をする。ユーザは、無線通信端末46のディスプレイ37に表示された情報(例えば、ロボットトラクタ1に取り付けられた各種センサからの情報)を参照して確認することができる。また、ユーザは、ディスプレイ37の近傍に配置されたハードウェアキー38、及びディスプレイ37を覆うように配置されたタッチパネル39等を操作して、トラクタ1の制御部4に、トラクタ1を制御するための制御信号を送信することができる。ここで、無線通信端末46が制御部4に出力する制御信号としては、自律走行・自律作業の経路に関する信号や自律走行・自律作業の開始信号、停止信号、終了信号、緊急停止信号、一時停止信号及び一時停止後の再開信号等が考えられるが、これに限定されない。 The wireless communication terminal 46 is configured as a tablet personal computer as shown in FIG. In the present embodiment, a user who operates the manned tractor 1X gets on the manned tractor 1X with the wireless communication terminal 46, and, for example, sets the radio communication terminal 46 on an appropriate support unit in the manned tractor 1X for operation. Alternatively, a user who is different from the operator who operates the manned tractor 1X operates the generation of the travel route with the wireless communication terminal 46 outside the tractors 1 and 1X. The user can check by referring to information (for example, information from various sensors attached to the robot tractor 1) displayed on the display 37 of the wireless communication terminal 46. Further, the user operates the hardware key 38 disposed in the vicinity of the display 37 and the touch panel 39 disposed so as to cover the display 37 to control the tractor 1 with the control unit 4 of the tractor 1. The control signal can be transmitted. Here, the control signal output from the wireless communication terminal 46 to the control unit 4 includes a signal related to the route of autonomous running / autonomous work, a start signal of autonomous running / autonomous work, a stop signal, an end signal, an emergency stop signal, and a temporary stop. A signal, a restart signal after a temporary stop, and the like are conceivable, but not limited thereto.
 なお、無線通信端末46はタブレット型のパーソナルコンピュータに限るものではなく、これに代えて、例えばノート型のパーソナルコンピュータで構成することも可能である。あるいは、例えば有人側のトラクタ1Xに搭載されるモニタ装置14を無線通信端末とすることもできる。 Note that the wireless communication terminal 46 is not limited to a tablet-type personal computer, but can be configured by, for example, a notebook-type personal computer. Alternatively, for example, the monitor device 14 mounted on the manned tractor 1X may be a wireless communication terminal.
 このように構成されたトラクタ1は、無線通信端末46を用いるユーザの指示に基づいて、圃場上の経路に沿って自律的に走行しつつ、作業機3による農作業を行うことができる。 The tractor 1 configured in this manner can perform farm work by the work implement 3 while traveling autonomously along a route on the farm field based on a user instruction using the wireless communication terminal 46.
 具体的には、ユーザは、無線通信端末46を用いて各種設定を行うことにより、直線又は折れ線状の走行路P1と、当該走行路の端同士を繋ぐ円弧状の接続路P2と、を交互に繋いだ一連の経路としての走行経路Pを生成することが可能である。そして、このようにして生成した走行経路(パス)Pの情報を制御部4に入力(転送)して所定の操作をすることにより、当該制御部4によりトラクタ1を制御して、当該トラクタ1を走行経路Pに沿って自律的に走行させながら作業機3により農作業を行わせることが可能である。 Specifically, by performing various settings using the wireless communication terminal 46, the user alternates between a linear or broken line-shaped traveling path P1 and an arc-shaped connecting path P2 that connects the ends of the traveling path. It is possible to generate a travel route P as a series of routes connected to the. Then, by inputting (transferring) information on the travel route (path) P generated in this way to the control unit 4 and performing a predetermined operation, the control unit 4 controls the tractor 1 and the tractor 1 Can be farmed by the work implement 3 while traveling autonomously along the travel route P.
 図1に示すように、本実施形態では、第1走行経路Pに沿って自律走行・自律作業を行うロボットトラクタ(第1作業車両)と協調して、第2走行経路P’に沿って有人のトラクタ(第2作業車両)1Xが手動走行・手動作業を行う。具体的には、例えば、隣接する2つの走行路P1,P1’のうち、一方の走行路P1をロボットトラクタ1が、他方の走行路P1’を有人トラクタ1Xが、それぞれ走行しながら同一の作業領域内で作業を行う場合が考えられる。なお、走行路P1は第1走行経路Pに含まれる走行路であり、走行路P1’は第2走行経路P’に含まれる走行路である。 As shown in FIG. 1, in the present embodiment, in cooperation with a robot tractor (first work vehicle) that performs autonomous traveling / autonomous work along the first traveling route P, manned along the second traveling route P ′. The tractor (second work vehicle) 1X performs manual travel and manual work. Specifically, for example, of two adjacent traveling paths P1, P1 ′, the robot tractor 1 travels on one traveling path P1 and the manned tractor 1X travels on the other traveling path P1 ′. A case where the work is performed in an area is conceivable. The travel path P1 is a travel path included in the first travel path P, and the travel path P1 'is a travel path included in the second travel path P'.
 この協調作業にあたっては、有人トラクタ1Xに搭乗するユーザがロボットトラクタ1を直接視認し易いように、ロボットトラクタ1が先行側を走行し、有人トラクタ1Xが後続側を走行する態様が取られることが一般的である。言い換えれば、ロボットトラクタ1及び有人トラクタ1Xの2台による一般的な協調作業態様においては、ロボットトラクタ1の右斜め後ろ又は左斜め後ろを有人トラクタ1Xが走行する。有人トラクタ1Xに搭乗したユーザは手動走行・手動作業を行うとともに、先行側のロボットトラクタ1を監視し、必要に応じて無線通信端末46を操作して、ロボットトラクタ1に対して自律走行・自律作業に関する指示を行う。 In this collaborative work, the robot tractor 1 travels on the preceding side and the manned tractor 1X travels on the subsequent side so that a user on the manned tractor 1X can easily view the robot tractor 1 directly. It is common. In other words, in a general cooperative work mode using two robot tractors 1 and manned tractors 1X, the manned tractor 1X travels diagonally right or left behind the robot tractor 1. A user who has boarded the manned tractor 1X performs manual travel and manual work, monitors the robot tractor 1 on the preceding side, and operates the wireless communication terminal 46 as necessary to autonomously travel and autonomously operate the robot tractor 1. Give work instructions.
 以下では、図4から図16までを参照して、本発明の実施の一形態に係る経路生成システム99の主たる構成要素を備える無線通信端末46の構成について、より詳細に説明する。図6は、無線通信端末46の作業情報設定部47が備える主要な電気的構成を示すブロック図である。図7は、無線通信端末46のディスプレイ37における入力選択画面の表示例を示す図である。図8は、無線通信端末46のディスプレイ37における作業車両情報入力画面70の表示例を示す図である。図9は、無線通信端末46のディスプレイ37における圃場情報入力画面80の表示例を示す図である。図10は、無線通信端末46のディスプレイ37における作業態様の設定及び位置関係の設定をするための作業態様・位置関係設定画面90の表示例を示す図である。図11は、無線通信端末46のディスプレイ37における位置関係の維持を優先するか否かの設定をするための優先設定ウィンドウ91の表示例を示す図である。図12は、無線通信端末46のディスプレイ37における区画の設定及び基準作業の設定をするための区画・基準作業設定画面92の表示例を示す図である。図13は、無線通信端末46のディスプレイ37におけるオーバーラップ幅の設定をするためのオーバーラップ幅設定画面93の表示例を示す図である。図14は、無線通信端末46のディスプレイ37におけるスキップ数の設定をするためのスキップ数設定画面94の表示例を示す図である。図15は、無線通信端末46のディスプレイ37における枕地幅及び非作業領域の幅を設定するための非作業領域幅設定画面96の表示例を示す図である。図16は、無線通信端末46のディスプレイ37における自律走行監視画面100の表示例を示す図である。 Hereinafter, the configuration of the wireless communication terminal 46 including the main components of the route generation system 99 according to the embodiment of the present invention will be described in more detail with reference to FIGS. 4 to 16. FIG. 6 is a block diagram illustrating a main electrical configuration provided in the work information setting unit 47 of the wireless communication terminal 46. FIG. 7 is a diagram illustrating a display example of the input selection screen on the display 37 of the wireless communication terminal 46. FIG. 8 is a diagram illustrating a display example of the work vehicle information input screen 70 on the display 37 of the wireless communication terminal 46. FIG. 9 is a diagram illustrating a display example of the field information input screen 80 on the display 37 of the wireless communication terminal 46. FIG. 10 is a diagram illustrating a display example of a work mode / position relationship setting screen 90 for setting a work mode and a positional relationship on the display 37 of the wireless communication terminal 46. FIG. 11 is a diagram showing a display example of a priority setting window 91 for setting whether to give priority to maintaining the positional relationship on the display 37 of the wireless communication terminal 46. FIG. 12 is a diagram illustrating a display example of a section / reference work setting screen 92 for setting a section and a reference work on the display 37 of the wireless communication terminal 46. FIG. 13 is a diagram showing a display example of an overlap width setting screen 93 for setting the overlap width on the display 37 of the wireless communication terminal 46. FIG. 14 is a diagram showing a display example of a skip number setting screen 94 for setting the skip number on the display 37 of the wireless communication terminal 46. FIG. 15 is a diagram illustrating a display example of a non-work area width setting screen 96 for setting the headland width and the non-work area width on the display 37 of the wireless communication terminal 46. FIG. 16 is a diagram illustrating a display example of the autonomous traveling monitoring screen 100 on the display 37 of the wireless communication terminal 46.
 図4及び図5に示すように、本実施形態の無線通信端末46は、ディスプレイ37、ハードウェアキー38、及びタッチパネル39の他、主要な構成として、表示制御部31、圃場形状取得部33、走行経路生成部(協調走行経路生成部)35、作業車両情報設定部36、圃場情報設定部45、作業情報設定部47、及び記憶部32等を備えている。 As shown in FIGS. 4 and 5, the wireless communication terminal 46 according to the present embodiment includes a display 37, a hardware key 38, and a touch panel 39, as main components, a display control unit 31, a field shape acquisition unit 33, A travel route generation unit (cooperative travel route generation unit) 35, a work vehicle information setting unit 36, a field information setting unit 45, a work information setting unit 47, a storage unit 32, and the like are provided.
 具体的には、上述のとおり無線通信端末46はコンピュータとして構成されており、図示しないCPU、ROM、RAM等を備えている。また、この無線通信端末46には、トラクタ1を制御するための制御アプリケーションが予めインストールされている。そして、上記したハードウェア及びソフトウェアの協働により、無線通信端末46を、表示制御部31、圃場形状取得部33、走行経路生成部35、作業車両情報設定部36、圃場情報設定部45、作業情報設定部47、及び記憶部32等として動作させることができる。 Specifically, as described above, the wireless communication terminal 46 is configured as a computer, and includes a CPU, a ROM, a RAM, and the like (not shown). The wireless communication terminal 46 is preinstalled with a control application for controlling the tractor 1. And by cooperation of the hardware and software described above, the wireless communication terminal 46 is connected to the display control unit 31, the field shape acquisition unit 33, the travel route generation unit 35, the work vehicle information setting unit 36, the field information setting unit 45, the work. The information setting unit 47 and the storage unit 32 can be operated.
 表示制御部31は、ディスプレイ37に表示する表示用データを作成し、表示画面を適宜に切り換える制御を行うものである。表示制御部31は、図7に示す初期画面(メニュー画面)としての入力選択画面60を生成し、ディスプレイ37に表示することが可能である。また、表示制御部31は、入力選択画面60において所定の操作がされたとき、後述する各入力画面70,80,90(図8から図10までを参照)を生成し、ディスプレイ37の表示画面を70,80,90に切り換えることが可能である。 The display control unit 31 creates display data to be displayed on the display 37, and performs control to switch the display screen appropriately. The display control unit 31 can generate an input selection screen 60 as an initial screen (menu screen) shown in FIG. 7 and display it on the display 37. In addition, when a predetermined operation is performed on the input selection screen 60, the display control unit 31 generates input screens 70, 80, and 90 (see FIGS. 8 to 10), which will be described later, and displays the display screen on the display 37. Can be switched to 70, 80, 90.
 図5に示す圃場形状取得部33は、例えばトラクタ1を圃場の外周に沿って1回り周回させ、そのときの測位用アンテナ6の位置の推移を記録することで、圃場の形状を取得するものである。圃場形状取得部33で取得された圃場の形状は記憶部32に記憶される。ただし、圃場の形状を取得する方法はこれに限るものではなく、例えばこれに代えて、圃場の角部の位置情報を記録して、記録した点同士を結ぶ線分が交わらないいわゆる閉路グラフにより特定した多角形を、圃場の形状として取得することとしてもよい。 The field shape acquisition unit 33 shown in FIG. 5 acquires the shape of the field by, for example, rotating the tractor 1 once along the outer periphery of the field and recording the transition of the position of the positioning antenna 6 at that time. It is. The field shape acquired by the field shape acquisition unit 33 is stored in the storage unit 32. However, the method of acquiring the shape of the field is not limited to this. For example, instead of this, the position information of the corners of the field is recorded, and a line graph connecting the recorded points does not intersect with a so-called closed graph. The identified polygon may be acquired as the shape of the field.
 走行経路生成(協調走行経路生成部)35は、トラクタ1に入力(転送)する第1走行経路P及び有人トラクタ1Xを運転するユーザが参照する第2走行経路P’を生成するものである。走行経路生成部35は、後述する作業車両情報、圃場情報、及び作業情報が入力漏れなく設定されるとともに、所定の操作がされた場合に、自動的に第1走行経路P及び第2走行経路P’を含む協調走行経路を生成(算出)する。生成された協調走行経路は、記憶部32に記憶される。 The travel route generation (cooperative travel route generation unit) 35 generates a first travel route P that is input (transferred) to the tractor 1 and a second travel route P ′ that is referred to by a user who drives the manned tractor 1X. The travel route generator 35 automatically sets the first travel route P and the second travel route when work vehicle information, farm field information, and work information, which will be described later, are set without omission and when a predetermined operation is performed. A cooperative traveling route including P ′ is generated (calculated). The generated cooperative travel route is stored in the storage unit 32.
 作業車両情報設定部36は、後述する作業車両情報入力画面70に入力された作業車両情報(走行機体2及び作業機3に関する情報)を受け付けるものである。作業車両情報設定部36により設定された作業車両情報は記憶部32に記憶される。 The work vehicle information setting unit 36 receives work vehicle information (information on the traveling machine body 2 and the work machine 3) input on a work vehicle information input screen 70 described later. The work vehicle information set by the work vehicle information setting unit 36 is stored in the storage unit 32.
 圃場情報設定部45は、後述する圃場情報入力画面80に入力された圃場情報(圃場に関する情報)を受け付けるものである。圃場情報設定部45により設定された圃場情報は記憶部32に記憶される。 The farm field information setting unit 45 receives farm field information (information about farm fields) input on a farm field information input screen 80 described later. The field information set by the field information setting unit 45 is stored in the storage unit 32.
 作業情報設定部47は、作業態様・位置関係設定画面90等に入力された作業情報(作業態様等に関する情報)を受け付けるものである。より詳細には、作業情報設定部47は、図6に示すように、作業態様設定部(協調作業態様設定部)101、位置関係設定部102、優先受付部103、オーバーラップ幅設定部104、スキップ数設定部105、非作業領域幅設定部106、区画設定部107、及び基準作業設定部108を主として備える。これらの各構成については後に詳述する。作業情報設定部47により設定された作業情報は記憶部32に記憶される。 The work information setting unit 47 receives work information (information related to the work mode etc.) input on the work mode / position relation setting screen 90 or the like. More specifically, as shown in FIG. 6, the work information setting unit 47 includes a work mode setting unit (cooperative work mode setting unit) 101, a positional relationship setting unit 102, a priority receiving unit 103, an overlap width setting unit 104, A skip number setting unit 105, a non-work area width setting unit 106, a section setting unit 107, and a reference work setting unit 108 are mainly provided. Each of these components will be described in detail later. The work information set by the work information setting unit 47 is stored in the storage unit 32.
 記憶部32は、不揮発性のメモリ(例えば、フラッシュROM)を含んで構成されており、作業車両情報設定部36で設定された作業車両情報、圃場情報設定部45で設定された圃場情報、及び、作業情報設定部47で設定された作業情報を記憶することができる。また、記憶部32は、登録された圃場形状の情報、及び生成された走行経路P,P’の情報等を記憶することができる。記憶部32は、生成された走行経路P,P’の情報を、この走行経路P,P’の生成に用いた作業車両情報、圃場情報、及び作業情報と対応付けて記憶する。 The storage unit 32 includes a non-volatile memory (for example, a flash ROM), and includes work vehicle information set by the work vehicle information setting unit 36, field information set by the field information setting unit 45, and The work information set by the work information setting unit 47 can be stored. In addition, the storage unit 32 can store information on the registered field shape, information on the generated travel routes P and P ′, and the like. The storage unit 32 stores information on the generated travel routes P and P ′ in association with work vehicle information, field information, and work information used for generating the travel routes P and P ′.
 次に、作業車両情報、圃場情報、及び作業情報の設定を行い、走行経路P,P’を生成するときに、ユーザが無線通信端末46を用いて行う操作について、詳細に説明する。 Next, operations performed by the user using the wireless communication terminal 46 when setting the work vehicle information, the field information, and the work information and generating the travel routes P and P ′ will be described in detail.
 ユーザが作業車両情報、圃場情報、及び作業情報の設定を開始する前の段階では、無線通信端末46のディスプレイ37には、図7に示すように、表示制御部31により作成された入力選択画面60が初期画面(メニュー画面)として表示されている。入力選択画面60には、作業車両情報入力操作部61と、圃場情報入力操作部62と、作業情報入力操作部63と、走行経路生成・転送操作部64と、農作業開始操作部65と、が主として表示されている。 Before the user starts to set the work vehicle information, the field information, and the work information, the display 37 of the wireless communication terminal 46 has an input selection screen created by the display control unit 31 as shown in FIG. 60 is displayed as an initial screen (menu screen). The input selection screen 60 includes a work vehicle information input operation unit 61, a field information input operation unit 62, a work information input operation unit 63, a travel route generation / transfer operation unit 64, and a farm work start operation unit 65. Mainly displayed.
 これらの操作部は、何れもディスプレイ37に表示される仮想的なボタン(いわゆるアイコン)として構成される。ただし、作業車両情報、圃場情報、及び作業情報が何れも設定されていない段階では、作業車両情報入力操作部61、圃場情報入力操作部62、作業情報入力操作部63、走行経路生成・転送操作部64及び農作業開始操作部65のうち、操作が可能であるのは作業車両情報入力操作部61だけである。即ち、圃場情報入力操作部62、作業情報入力操作部63、走行経路生成・転送操作部64及び農作業開始操作部65は、当初は操作が無効化されており(例えば、グレーアウト表示)、触れても操作することができない。 These operation units are all configured as virtual buttons (so-called icons) displayed on the display 37. However, when none of the work vehicle information, the field information, and the work information is set, the work vehicle information input operation unit 61, the field information input operation unit 62, the work information input operation unit 63, the travel route generation / transfer operation Of the unit 64 and the farm work start operation unit 65, only the work vehicle information input operation unit 61 can be operated. That is, the field information input operation unit 62, the work information input operation unit 63, the travel route generation / transfer operation unit 64, and the farm work start operation unit 65 are initially disabled (for example, grayed out) and touched. Can not even operate.
 ユーザが作業車両情報、圃場情報、及び作業情報の設定を開始する場合には、初めに、入力選択画面60の作業車両情報入力操作部61を操作する。この作業車両情報入力操作部61は、入力選択画面60から作業車両情報入力画面70に切り換えるときに操作されるボタンである。 When the user starts setting the work vehicle information, the field information, and the work information, first, the work vehicle information input operation unit 61 on the input selection screen 60 is operated. The work vehicle information input operation unit 61 is a button operated when switching from the input selection screen 60 to the work vehicle information input screen 70.
 ユーザが作業車両情報入力操作部61を操作すると、所定の第1選択画面(不図示)が表示され、当該第1選択画面には、過去に設定(登録)したトラクタの情報が存在する場合、過去に設定したトラクタの情報が選択可能に表示される。 When the user operates the work vehicle information input operation unit 61, a predetermined first selection screen (not shown) is displayed. When the tractor information set (registered) in the past exists on the first selection screen, Tractor information set in the past is displayed in a selectable manner.
 また、第1選択画面には、トラクタの情報を新規に設定(登録)するか、過去に設定したトラクタの情報を変更するか(ただし、過去に設定したトラクタの情報が存在する場合しか選択できない)が選択可能に表示される。ユーザが新規登録を選択した場合、ディスプレイ37の表示画面が、図8に示す作業車両情報入力画面70に切り換えられる。 The first selection screen can be selected only when tractor information is newly set (registered) or past tractor information is changed (provided that tractor information set in the past exists). ) Appears to be selectable. When the user selects new registration, the display screen of the display 37 is switched to the work vehicle information input screen 70 shown in FIG.
 作業車両情報入力画面70では、走行機体2及び当該走行機体2に装着される作業機3に関する作業車両情報を入力することができる。具体的には、作業車両情報入力画面70には、作業車両情報としての、トラクタ1の機種、測位用アンテナ6の走行機体2に対する取付位置、トラクタ1及び作業機3の横幅、3点リンク機構の後端(ロアリンクの後端)から作業機3の後端までの距離、トラクタ1の中心線からの作業機3の中心線のオフセット量(距離)、往路での作業時の車速、復路での作業時の車速、枕地(旋回時)での車速、往路での作業時のエンジン回転数、復路での作業時のエンジン回転数、枕地(旋回時)でのエンジン回転数等を指定する欄がそれぞれ配置されている。なお、図8に示す作業車両情報入力画面70では上記した欄の一部しか表示されていないが、図8の状態から画面を下方へスクロールする操作を行うことで、残りの欄を表示させることができる。 In the work vehicle information input screen 70, work vehicle information related to the traveling machine body 2 and the work machine 3 attached to the traveling machine body 2 can be input. Specifically, the work vehicle information input screen 70 includes, as work vehicle information, the model of the tractor 1, the mounting position of the positioning antenna 6 with respect to the traveling machine body 2, the lateral width of the tractor 1 and the work machine 3, and the three-point link mechanism. The distance from the rear end (rear end of the lower link) to the rear end of the work machine 3, the offset amount (distance) of the center line of the work machine 3 from the center line of the tractor 1, the vehicle speed during the work in the forward path, the return path Vehicle speed at work in the headland, vehicle speed at headland (turning), engine speed at work in the forward path, engine speed at work in the return path, engine speed at headland (turning), etc. Each column to be specified is arranged. Although only a part of the above-described fields are displayed on the work vehicle information input screen 70 shown in FIG. 8, the remaining fields can be displayed by performing an operation of scrolling the screen downward from the state of FIG. Can do.
 作業車両情報入力画面70の全ての項目についての指定が完了した場合、図略の「車両設定確認」のボタンが表示される。ユーザが「車両設定確認」のボタンを操作すると、図略の設定確認画面が表示され、各欄で指定された内容が確認のために表示される。この設定確認画面でユーザが図略の「確定」ボタンを操作すると、作業車両情報の内容が記憶部32に記憶され、作業車両情報の設定が完了する。作業車両情報の設定(登録)が完了すると、表示画面の下部に「圃場情報を編集/追加する」のボタンと、「入力選択画面へ戻る」のボタンと、が選択可能に表示される。「圃場情報を編集/追加する」を選択すると、入力選択画面60において圃場情報入力操作部62が操作された場合と同様に、圃場情報の設定を行うことができる。「入力選択画面へ戻る」を選択すると、表示画面が入力選択画面60に切り換わる。 When the specification for all items on the work vehicle information input screen 70 is completed, a “vehicle setting confirmation” button (not shown) is displayed. When the user operates the “confirm vehicle setting” button, an unillustrated setting confirmation screen is displayed, and the contents specified in each column are displayed for confirmation. When the user operates the “OK” button (not shown) on the setting confirmation screen, the contents of the work vehicle information are stored in the storage unit 32, and the setting of the work vehicle information is completed. When the setting (registration) of the work vehicle information is completed, a “edit / add field information” button and a “return to input selection screen” button are selectably displayed at the bottom of the display screen. When “edit / add field information” is selected, field information can be set in the same manner as when the field information input operation unit 62 is operated on the input selection screen 60. When “return to input selection screen” is selected, the display screen is switched to the input selection screen 60.
 なお、作業車両情報入力画面70に各項目を入力して登録する操作を繰り返すことによって、複数の作業車両のそれぞれについて作業車両情報を保存(即ち、記憶部32に記憶)することができる。保存された作業車両情報は、入力選択画面60で作業車両情報入力操作部61を操作したときに、上述した第1選択画面において過去に設定(登録)したトラクタの情報として選択することで用いることができる。 It should be noted that the work vehicle information can be stored (that is, stored in the storage unit 32) for each of the plurality of work vehicles by repeating the operation of inputting and registering each item on the work vehicle information input screen 70. The stored work vehicle information is used by selecting as tractor information set (registered) in the past on the first selection screen described above when the work vehicle information input operation unit 61 is operated on the input selection screen 60. Can do.
 ユーザが作業車両情報を設定(登録)し終わって図7の入力選択画面60に戻ると、当該入力選択画面60の圃場情報入力操作部62が操作可能となる。この圃場情報入力操作部62は、入力選択画面60から圃場情報入力画面80に切り換えるときに操作されるボタンである。 When the user finishes setting (registering) the work vehicle information and returns to the input selection screen 60 in FIG. 7, the field information input operation unit 62 of the input selection screen 60 can be operated. The field information input operation unit 62 is a button operated when switching from the input selection screen 60 to the field information input screen 80.
 ユーザが圃場情報入力操作部62を操作すると、所定の第2選択画面(不図示)が表示され、当該第2選択画面には、過去に設定(登録)した圃場の情報が存在する場合、過去に設定した圃場の情報が選択可能に表示される。 When the user operates the field information input operation unit 62, a predetermined second selection screen (not shown) is displayed, and when the field information set (registered) in the past exists on the second selection screen, the past The field information set to is displayed in a selectable manner.
 また、第2選択画面には、圃場の情報を新規に設定(登録)するか、過去に設定した圃場の情報を変更するか(ただし、過去に設定した圃場の情報が存在する場合しか選択できない)が選択可能に表示される。ユーザが新規登録を選択した場合、ディスプレイ37の表示画面が、図9に示す圃場情報入力画面80に切り換えられる。 Also, on the second selection screen, whether to newly set (register) farm field information or change past farm field information (however, only when past farm field information exists) can be selected. ) Appears to be selectable. When the user selects new registration, the display screen of the display 37 is switched to the field information input screen 80 shown in FIG.
 圃場情報入力画面80では、走行機体2が走行する走行領域(圃場)に関する情報を入力することができる。具体的には、圃場情報入力画面80には、圃場の形状を図形で(グラフィカルに)示す平面表示部81が配置されている。また、圃場情報入力画面80において、「圃場の外周の位置・形状」、及び「障害物の位置・形状」の欄には、「記録開始」及び「やり直し」のボタンが配置されている。また、圃場情報入力画面80において、「作業開始位置」、「作業終了位置」、及び「作業方向」のそれぞれの欄には、「設定」及び「やり直し」のボタンが配置されている。 In the farm field information input screen 80, it is possible to input information related to the travel area (field) in which the traveling machine body 2 travels. Specifically, on the farm field information input screen 80, a plane display unit 81 that displays the shape of the farm field as a graphic (graphically) is arranged. In the field information input screen 80, “record start” and “redo” buttons are arranged in the “position / shape of outer periphery of field” and “position / shape of obstacle” fields. In the field information input screen 80, “set” and “redo” buttons are arranged in the “work start position”, “work end position”, and “work direction” fields.
 「圃場の外周の位置・形状」の「記録開始」ボタンを操作すると、無線通信端末46が圃場形状記録モードに切り換わる。この圃場形状記録モードにおいて、例えばトラクタ1を圃場の外周に沿って1回り周回させると、そのときの測位用アンテナ6の位置の推移が圃場形状取得部33で記録されて、当該圃場形状取得部33で圃場の形状が取得(算出)される。これにより、圃場の位置、形状及び面積を指定することができる。このようにして算出(指定)された圃場の外周の位置及び形状は、平面表示部81にグラフィカルに表示される。また、「やり直し」ボタンを操作することで、圃場の外周の位置の記録(指定)を再び行うことができる。 When the “recording start” button of “the position and shape of the outer periphery of the field” is operated, the wireless communication terminal 46 switches to the field shape recording mode. In this field shape recording mode, for example, when the tractor 1 is rotated once around the outer periphery of the field, the position transition of the positioning antenna 6 at that time is recorded by the field shape acquisition unit 33, and the field shape acquisition unit At 33, the shape of the field is acquired (calculated). Thereby, the position, shape, and area of the field can be specified. The position and shape of the outer periphery of the field thus calculated (designated) are graphically displayed on the plane display unit 81. Further, by operating the “redo” button, the position (designation) of the outer periphery of the field can be recorded again.
 同様に、「障害物の位置・形状」の「記録開始」ボタンを操作すると、無線通信端末46が障害物外周形状記録モードに切り換わる。この障害物外周形状記録モードにおいて、例えばトラクタ1を障害物の外周に沿って1回り周回させると、そのときの測位用アンテナ6の位置の推移が図略の障害物形状取得部で記録されて、障害物の形状が取得(算出)される。これにより、障害物の位置、形状及び面積を指定することができる。このようにして算出(指定)された障害物の位置及び形状は、圃場の形状とともに平面表示部81にグラフィカルに表示される。また、「やり直し」ボタンを操作することで、障害物の外周の位置の記録(指定)を再び行うことができる。 Similarly, when the “recording start” button of “obstacle position / shape” is operated, the wireless communication terminal 46 switches to the obstacle outer periphery shape recording mode. In this obstacle outer periphery shape recording mode, for example, when the tractor 1 is rotated once along the outer periphery of the obstacle, the transition of the position of the positioning antenna 6 at that time is recorded by the obstacle shape acquisition unit (not shown). The shape of the obstacle is acquired (calculated). Thereby, the position, shape and area of the obstacle can be designated. The position and shape of the obstacle calculated (designated) in this way are graphically displayed on the plane display unit 81 together with the shape of the field. Further, by operating the “redo” button, the position (designation) of the outer periphery of the obstacle can be recorded again.
 「作業開始位置」の「設定」ボタンを操作すると、圃場情報入力画面80の平面表示部81に、上記のようにして取得した圃場及び障害物の形状が地図データに重ね合わされて表示される。この状態で、ユーザが圃場の輪郭の近傍の任意の点を選択することで、選択した点の近傍の位置情報を作業開始位置として設定することができる。「作業終了位置」の設定についても、「作業開始位置」と同様の方法で行うことができる。 When the “set” button of “work start position” is operated, the field and obstacle shapes acquired as described above are superimposed on the map data and displayed on the plane display unit 81 of the field information input screen 80. In this state, when the user selects an arbitrary point near the contour of the field, position information near the selected point can be set as a work start position. The “work end position” can also be set in the same manner as the “work start position”.
 「作業方向」の「設定」ボタンを操作すると、圃場情報入力画面80の平面表示部81に、上記のようにして取得した圃場及び障害物の形状、作業開始位置、並びに作業終了位置が地図データと重ね合わされて表示される。この状態で、ユーザが、例えば圃場の輪郭上の任意の2点を選択することで、当該2点を結んだ直線の方向を作業方向として設定することができる。 When the “setting” button of “work direction” is operated, the plane display unit 81 of the field information input screen 80 displays the field and obstacle shape, the work start position, and the work end position acquired as described above as map data. And is displayed superimposed. In this state, for example, when the user selects two arbitrary points on the contour of the field, the direction of the straight line connecting the two points can be set as the work direction.
 圃場情報入力画面80の全ての項目についての設定が完了した場合、「登録」のボタンが表示される。ユーザが指定した内容を平面表示部81等により確認して当該「登録」ボタンを操作すると、設定された圃場情報の内容が記憶部32に記憶され、圃場情報の設定が完了する。圃場情報の設定(登録)が完了すると、表示画面の下部に、「作業を編集/追加する」のボタンと、「入力選択画面へ戻る」のボタンと、が選択可能に表示される。「作業を編集/追加する」を選択すると、入力選択画面60において作業情報入力操作部63が操作された場合と同様に、作業情報の設定を行うことができる。「入力選択画面へ戻る」を選択すると、表示画面が入力選択画面60に切り換わる。 When the settings for all items on the field information input screen 80 are completed, a “Register” button is displayed. When the content designated by the user is confirmed on the flat display unit 81 or the like and the “register” button is operated, the content of the set field information is stored in the storage unit 32, and the setting of the field information is completed. When the setting (registration) of the field information is completed, a “Edit / Add work” button and a “Return to input selection screen” button are displayed at the bottom of the display screen in a selectable manner. When “edit / add work” is selected, work information can be set in the same manner as when the work information input operation unit 63 is operated on the input selection screen 60. When “return to input selection screen” is selected, the display screen is switched to the input selection screen 60.
 なお、圃場情報入力画面80において各項目を登録する操作を繰り返すことにより、複数の圃場のそれぞれについて圃場情報を保存(即ち、記憶部32に記憶)することができる。保存された圃場情報は、入力選択画面60で圃場情報入力操作部62を操作したときに、上述した第2選択画面において過去に設定(登録)した圃場の情報として選択することで用いることができる。 In addition, by repeating the operation of registering each item on the farm field information input screen 80, farm field information can be stored (that is, stored in the storage unit 32) for each of a plurality of farm fields. The stored field information can be used by selecting the field information set (registered) in the past on the second selection screen described above when the field information input operation unit 62 is operated on the input selection screen 60. .
 ユーザが圃場情報を設定し終わって図7の入力選択画面60に戻ると、当該入力選択画面60の作業情報入力操作部63が操作可能となる。言い換えれば、ユーザが作業車両情報及び圃場情報を設定し終わるまでは、作業情報入力操作部63は操作不能の状態とされる。即ち、作業情報設定部47は、作業車両情報設定部36で作業車両情報が設定され、かつ、圃場情報設定部45で圃場情報が設定されるまでは、情報の入力(作業情報の設定)を受け付けない構成となっている。この作業情報入力操作部63は、入力選択画面60から図10に示す作業態様・位置関係設定画面90に切り換えるときに操作されるボタンである。 When the user finishes setting the field information and returns to the input selection screen 60 of FIG. 7, the work information input operation unit 63 of the input selection screen 60 can be operated. In other words, the work information input operation unit 63 is in an inoperable state until the user finishes setting the work vehicle information and the field information. That is, the work information setting unit 47 inputs information (setting of work information) until the work vehicle information is set by the work vehicle information setting unit 36 and the field information is set by the field information setting unit 45. The configuration is not accepted. This work information input operation unit 63 is a button operated when switching from the input selection screen 60 to the work mode / position relationship setting screen 90 shown in FIG.
 ユーザが作業情報入力操作部63を操作すると、表示画面が図10に示す作業態様・位置関係設定画面90に切り換わる。 When the user operates the work information input operation unit 63, the display screen is switched to the work mode / position relationship setting screen 90 shown in FIG.
 作業態様・位置関係設定画面90では、トラクタ1(及び有人トラクタ1X)の作業態様を設定することができる。また、複数台のトラクタで農作業を行う場合には、トラクタ同士の位置関係を設定することができる。具体的には、有人トラクタ1Xをロボットトラクタ1に随伴(協調)して走行させる場合であって、ロボットトラクタ1の左斜め後ろを有人トラクタ1Xに走行させる作業態様を選択する場合には、第1随伴作業選択部111が操作される。有人トラクタ1Xをロボットトラクタ1に随伴(協調)して走行させる場合であって、ロボットトラクタ1の右斜め後ろを有人トラクタ1Xに走行させる作業態様を選択する場合には、第2随伴作業選択部112が操作される。ロボットトラクタ1の後方を有人トラクタ1Xに走行させて(ロボットトラクタ1と有人トラクタ1Xに同じ走行路を走行させて)追従作業を行う作業態様を選択する場合には、追従作業選択部113が操作される。ロボットトラクタ1が単独で農作業を行う場合には、単独作業選択部114が操作される。ロボットトラクタ1と有人トラクタ1Xが協調してそれぞれ異なる作業領域の走行路を農作業する場合には、別区画協調作業選択部115が選択される。 In the work mode / position relationship setting screen 90, the work mode of the tractor 1 (and the manned tractor 1X) can be set. Moreover, when performing farm work with a plurality of tractors, the positional relationship between the tractors can be set. Specifically, when the manned tractor 1X travels accompanying (coordinated) with the robot tractor 1 and the work mode in which the manned tractor 1X travels diagonally to the left of the robot tractor 1 is selected, The 1-accompanying work selection unit 111 is operated. In the case where the manned tractor 1X is caused to travel accompanying (coordinated) with the robot tractor 1 and the work mode in which the manned tractor 1X is caused to travel diagonally right behind the robot tractor 1 is selected, the second accompanying work selection unit 112 is operated. When selecting a work mode in which the manned tractor 1X travels behind the robot tractor 1 (the robot tractor 1 and the manned tractor 1X travel on the same traveling path) and performs the follow-up work, the follow-up work selection unit 113 operates. Is done. When the robot tractor 1 performs farm work alone, the single work selection unit 114 is operated. When the robot tractor 1 and the manned tractor 1X cooperate to perform farm work on the traveling paths in different work areas, the separate zone cooperative work selection unit 115 is selected.
 第1随伴作業選択部111、第2随伴作業選択部112、追従作業選択部113、単独作業選択部114、及び別区画協調作業選択部115は、仮想的なボタンとして構成され、当該ボタンの表示領域に対応するタッチパネル39の位置をユーザが指等で触れることによって操作することができる。選択されたボタンは、例えば赤い太線の枠で囲まれて強調して表示される(図11を参照)。何れかの選択部111,112,・・・115が選択された状態でユーザが作業態様・位置関係設定画面90の下部の「設定」ボタンを操作すると、作業態様設定部101で作業態様が、位置関係設定部102で位置関係が、それぞれ受け付けられて、設定された作業態様・位置関係の内容が記憶部32に記憶され、作業態様・位置関係の設定が完了する。 The first accompanying task selection unit 111, the second accompanying task selection unit 112, the follow-up task selection unit 113, the single task selection unit 114, and the separate section cooperative task selection unit 115 are configured as virtual buttons, and display of the buttons The position of the touch panel 39 corresponding to the area can be operated by the user touching with a finger or the like. The selected button is displayed with emphasis, for example, surrounded by a red bold frame (see FIG. 11). When the user operates the “set” button at the bottom of the work mode / position relationship setting screen 90 with any of the selection units 111, 112,... 115 selected, the work mode is set in the work mode setting unit 101. The positional relationship is received by the positional relationship setting unit 102, the contents of the set work mode / position relationship are stored in the storage unit 32, and the setting of the work mode / position relationship is completed.
 第1随伴作業選択部111又は第2随伴作業選択部112の何れかが選択されて、作業態様・位置関係設定画面90の下部の「設定」ボタンが操作されて、作業態様・位置関係の設定が完了すると、経路生成に際してロボットトラクタ1と有人トラクタ1Xの間の位置関係の維持を優先するか否かを選択するための優先設定ウィンドウ91が表示される(図11を参照)。ユーザが優先設定ウィンドウ91の「Yes」の箇所に指等で触れることにより、車両の位置関係の維持を優先する旨が優先受付部103で受け付けられ、記憶部32に記憶される。これにより、車両の位置関係の維持を優先して以降の経路生成が行われる。一方、ユーザが優先設定ウィンドウ91の「No」の箇所に指等で触れることにより、車両の位置関係の維持を優先しない旨が優先受付部103で受け付けられ、記憶部32に記憶される。この場合、作業態様・位置関係設定画面90で設定された車両の位置関係に必ずしも拘束されることなく、以降の経路生成が行われる。 Either the first accompanying work selection unit 111 or the second accompanying work selection unit 112 is selected, and the “set” button at the bottom of the work mode / position relation setting screen 90 is operated to set the work mode / position relation. Is completed, a priority setting window 91 for selecting whether or not to give priority to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X is displayed when generating a route (see FIG. 11). When the user touches the “Yes” portion of the priority setting window 91 with a finger or the like, the priority receiving unit 103 receives that the maintenance of the positional relationship of the vehicle is prioritized and is stored in the storage unit 32. Thereby, subsequent route generation is performed with priority given to maintaining the positional relationship of the vehicle. On the other hand, when the user touches the “No” portion of the priority setting window 91 with a finger or the like, the priority receiving unit 103 receives that the maintenance of the positional relationship of the vehicle is not prioritized and is stored in the storage unit 32. In this case, the subsequent route generation is performed without necessarily being restricted by the vehicle positional relationship set on the work mode / positional relationship setting screen 90.
 一方、作業態様・位置関係設定画面90で別区画協調作業選択部115が選択されて、作業態様・位置関係設定画面90の下部の「設定」ボタンが操作されて、作業態様・位置関係の設定が完了すると、区画の設定、及び、基準作業の要否の設定を行うための区画・基準作業設定画面92が表示される(図12を参照)。図12に示した区画・基準作業設定画面92においては、圃場(作業領域)を仮想的に表示した長方形の中央部に、区分けのための区分け線(縦線)116が表示されている(図12を参照)。ユーザは、この区分け線116をタップして左右に移動させることにより、区分けの比率(第1作業領域及び第2作業領域の比率)を変更することができる。また、区画・基準作業設定画面92の下部には、「基準作業が必要ですか?」とのメッセージとともに、「Yes」、「No」の仮想的なボタンが表示されている。ユーザが「Yes」を選択すると、以降の経路生成において基準作業用の走行路が生成される。一方、ユーザが「No」を選択すると、以降の経路生成において基準作業用の走行路は生成されない。 On the other hand, the separate zone cooperative work selection unit 115 is selected on the work mode / position relationship setting screen 90, and the “set” button at the bottom of the work mode / position relationship setting screen 90 is operated to set the work mode / position relationship. When the process is completed, a section / reference work setting screen 92 for setting sections and setting necessity / unnecessity of reference work is displayed (see FIG. 12). In the section / reference work setting screen 92 shown in FIG. 12, a partition line (vertical line) 116 for partitioning is displayed at the center of the rectangle virtually displaying the field (work area) (FIG. 12). 12). The user can change the ratio of division (ratio of the first work area and the second work area) by tapping the division line 116 and moving it left and right. In addition, virtual buttons “Yes” and “No” are displayed at the bottom of the section / reference work setting screen 92 together with a message “Do you need reference work?”. When the user selects “Yes”, a travel route for reference work is generated in the subsequent route generation. On the other hand, when the user selects “No”, the travel route for the reference work is not generated in the subsequent route generation.
 ユーザが上述の区分けのための区分け線116を適宜の位置に配置して、上記の「Yes」、「No」の何れかのボタンを選択した状態で、基準作業設定画面92の下部の「設定」ボタンを操作すると、区画設定部107で区画の位置が、基準作業設定部108で基準作業の要否が受け付けられて、設定された区画・基準作業設定の内容が記憶部32に記憶され、区画・基準作業の設定が完了する。 The user places the dividing line 116 for the above-mentioned division at an appropriate position, and selects either the “Yes” or “No” button described above, and the “setting” at the bottom of the reference work setting screen 92 ”Button, the section setting unit 107 receives the position of the section, the reference work setting unit 108 determines whether the reference work is necessary, and the contents of the set section / reference work setting are stored in the storage unit 32. Completion of partition / standard work settings.
 上記の設定が完了した後には、無線通信端末46のディスプレイ37の表示画面は図13に示すオーバーラップ幅設定画面93に切り換わる。オーバーラップ幅設定画面93には、隣接する走行路をオーバーラップ(重複)させる場合に選択するオーバーラップ有設定部121と、隣接する走行路をオーバーラップ(重複)させない場合に選択するオーバーラップ無設定部122と、が仮想的なボタンとして構成され、当該ボタンの表示領域に相当するタッチパネル39の位置をユーザが指等で触れることによって操作することができる。オーバーラップ有設定部121を選択した場合、このボタンが例えば赤い太線の枠で囲われて強調して表示され、オーバーラップ幅をタッチ入力可能となる。一方、オーバーラップ無設定部122を選択した場合、このボタンが例えば赤い太線の枠で囲われて強調して表示され、隣接する走行路の間に空ける幅をタッチ入力可能となる。 After the above setting is completed, the display screen of the display 37 of the wireless communication terminal 46 is switched to the overlap width setting screen 93 shown in FIG. The overlap width setting screen 93 includes an overlapped setting unit 121 that is selected when the adjacent traveling roads overlap each other, and no overlap that is selected when the adjacent traveling roads are not overlapped (overlapped). The setting unit 122 is configured as a virtual button, and can be operated by the user touching the position of the touch panel 39 corresponding to the display area of the button with a finger or the like. When the overlap presence setting unit 121 is selected, this button is displayed with emphasis, for example, surrounded by a red bold frame, and the overlap width can be touch-inputted. On the other hand, when the non-overlap setting section 122 is selected, this button is displayed with emphasis, for example, by being surrounded by a red bold frame, and a touch space can be input for the width between adjacent travel paths.
 ユーザがオーバーラップ有設定部121又はオーバーラップ無設定部122の何れかを選択し、上記幅の値を入力して、オーバーラップ幅設定画面93の下部の「設定」ボタンを押すと、オーバーラップ幅設定部104でこの情報が受け付けられて、設定された内容が記憶部32に記憶され、オーバーラップ幅の設定が完了する。 When the user selects either the overlap setting unit 121 or the non-overlap setting unit 122, inputs the value of the above width, and presses the “set” button at the bottom of the overlap width setting screen 93, the overlap This information is received by the width setting unit 104, the set contents are stored in the storage unit 32, and the setting of the overlap width is completed.
 上記の設定が完了した後には、無線通信端末46のディスプレイ37の表示画面は図14に示すスキップ数設定画面94に切り換わる。スキップ数設定画面94には、ロボットトラクタ1が走行する走行経路(第1の走行経路)Pの任意の走行路P1と当該任意の走行路P1の次にロボットトラクタ1が走行する走行路P1との間に配置される走行路の数が0列である旨を選択する「スキップしない」ボタン123が仮想的なボタンとして配置される。また、「スキップしない」ボタン123の右横に、ロボットトラクタ1が走行する走行経路(第1の走行経路)Pの任意の走行路P1と当該任意の走行路P1の次にロボットトラクタ1により走行される走行路P1との間に配置される走行路の数が1列である旨を選択する「1列スキップ」ボタン124が仮想的なボタンとして配置される。更に、「1列スキップ」ボタン124の右横に、ロボットトラクタ1が走行する走行経路(第1の走行経路)Pの任意の走行路P1と当該任意の走行路P1の次にロボットトラクタ1により走行される走行路P1との間に配置される走行路の数が2列である旨を選択する「2列スキップ」ボタン125が仮想的なボタンとして配置される。ユーザが、これらのボタン123,124,125のうちの何れかに触れることにより選択すると、そのボタンが例えば赤い太線の枠で囲われて強調して表示される。この状態でユーザがスキップ数設定画面94の下部の「設定」ボタンを押すと、スキップ数設定部105でこの情報が受け付けられて、設定された内容が記憶部32に記憶され、スキップ数の設定が完了する。 After the above setting is completed, the display screen of the display 37 of the wireless communication terminal 46 is switched to the skip number setting screen 94 shown in FIG. The skip number setting screen 94 includes an arbitrary travel path P1 on the travel path (first travel path) P on which the robot tractor 1 travels, and a travel path P1 on which the robot tractor 1 travels next to the arbitrary travel path P1. A “don't skip” button 123 for selecting that the number of travel paths arranged between the two is zero is arranged as a virtual button. Further, on the right side of the “do not skip” button 123, the robot tractor 1 travels on an arbitrary travel path P1 of the travel path (first travel path) P on which the robot tractor 1 travels and next to the arbitrary travel path P1. A “one-line skip” button 124 for selecting that the number of travel paths arranged between the travel path P1 and the travel path P1 is one is arranged as a virtual button. Further, on the right side of the “one-line skip” button 124, the robot tractor 1 next to an arbitrary travel path P1 of the travel path (first travel path) P on which the robot tractor 1 travels and the arbitrary travel path P1. A “two-row skip” button 125 for selecting that the number of travel routes arranged between the travel route P1 and the travel route P1 is two rows is arranged as a virtual button. When the user selects any of these buttons 123, 124, and 125 by touching the button, the button is highlighted and displayed, for example, surrounded by a red thick line frame. In this state, when the user presses the “set” button at the bottom of the skip number setting screen 94, this information is received by the skip number setting unit 105, the set contents are stored in the storage unit 32, and the skip number is set. Is completed.
 上記の設定が完了した後には、無線通信端末46のディスプレイ37の表示画面は図15に示す非作業領域幅設定画面96に切り換わる。非作業領域幅設定画面96には、ロボットトラクタ1(及び有人トラクタ1X)が旋回即ち折返しを行う枕地の幅と、ロボットトラクタ1の進行方向に沿って配置される非作業領域(サイドマージン)の幅と、が模式的な画像で表示される。非作業領域幅設定画面96の上記画像には、当初、ユーザが予め設定した作業幅及びオーバーラップ幅等に基づいて算出された推奨の幅が表示されているが、プルダウン操作を行うことにより、例えば作業幅の整数倍の値を枕地幅又は非作業領域幅として設定できるようになっている。ただし、これに限るものではなく、ユーザがタッチ入力により所望の幅を枕地幅又は非作業領域幅として入力することも可能となっている。 After the above setting is completed, the display screen of the display 37 of the wireless communication terminal 46 is switched to the non-work area width setting screen 96 shown in FIG. On the non-work area width setting screen 96, the width of the headland where the robot tractor 1 (and the manned tractor 1X) turns or turns, and the non-work area (side margin) arranged along the traveling direction of the robot tractor 1 are displayed. Are displayed in a schematic image. In the above image of the non-work area width setting screen 96, the recommended width calculated based on the work width and overlap width preset by the user is displayed, but by performing a pull-down operation, For example, a value that is an integral multiple of the work width can be set as the headland width or the non-work area width. However, the present invention is not limited to this, and the user can input a desired width as a headland width or a non-working area width by touch input.
 ユーザが上記の枕地幅及び非作業領域幅を選択又は入力して、非作業領域幅設定画面96の下部の「設定」ボタンを押すと、非作業領域幅設定部106でこの情報が受け付けられて、設定された内容が記憶部32に記憶され、枕地幅及び非作業領域幅の設定が完了する。 When the user selects or inputs the headland width and the non-working area width and presses the “set” button at the bottom of the non-working area width setting screen 96, the non-working area width setting unit 106 receives this information. Thus, the set contents are stored in the storage unit 32, and the setting of the headland width and the non-working area width is completed.
 ユーザが作業情報を設定し終わって図7の入力選択画面に戻ると、入力選択画面60の走行経路生成・転送操作部64が操作可能となる。言い換えれば、ユーザが作業車両情報、圃場情報、及び作業情報を設定し終わるまでは、走行経路生成・転送操作部64は操作不能の状態とされる。即ち、圃場情報、及び作業情報が漏れなく入力された場合に限り、パス生成・転送が可能となる。 When the user finishes setting the work information and returns to the input selection screen of FIG. 7, the travel route generation / transfer operation unit 64 of the input selection screen 60 can be operated. In other words, the travel route generation / transfer operation unit 64 is in an inoperable state until the user finishes setting the work vehicle information, the field information, and the work information. That is, path generation / transfer is possible only when the field information and work information are input without omission.
 ユーザが走行経路生成・転送操作部64を選択した場合、自動的にロボットトラクタ1の第1走行経路P(及び、該当する場合には、有人トラクタ1Xの第2走行経路P’も)が生成され、この走行経路が記憶部32に記憶される。また、走行経路が生成されると、ディスプレイ37の表示画面に「パスシミュレーション」のボタンが選択可能に表示される。この「パスシミュレーション」のボタンを選択(操作)することにより、生成した走行経路を矢印や線等で表現した画像が表示される。なお、走行経路に沿ってトラクタのアイコンが移動するアニメーション表示が行われてもよい。 When the user selects the travel route generation / transfer operation unit 64, the first travel route P of the robot tractor 1 (and the second travel route P ′ of the manned tractor 1X, if applicable) is automatically generated. The travel route is stored in the storage unit 32. When the travel route is generated, a “path simulation” button is displayed on the display screen of the display 37 so as to be selectable. By selecting (operating) the “path simulation” button, an image representing the generated travel route with an arrow or a line is displayed. An animation display in which the tractor icon moves along the travel route may be performed.
 「パスシミュレーション」の表示が終わった後、ディスプレイ37の表示画面には、「データを転送する」のボタンと、「入力選択画面へ戻る」のボタンと、が選択可能に表示される。「データを転送する」を選択すると、走行経路の情報をトラクタ1の制御部4に転送するための指示を行うことができる。「入力選択画面へ戻る」のボタンを選択すると、表示画面が入力選択画面60に切り換わる。 After the “path simulation” is displayed, a “transfer data” button and a “return to input selection screen” button are displayed on the display screen of the display 37 in a selectable manner. When “transfer data” is selected, an instruction for transferring the travel route information to the control unit 4 of the tractor 1 can be given. When the “return to input selection screen” button is selected, the display screen is switched to the input selection screen 60.
 このように、本実施形態の経路生成システム99では、無線通信端末46側で生成した走行経路の情報をトラクタ1の制御部4に送信することができる。制御部4は、無線通信端末46から受信した走行経路(第1走行経路P)の情報を、当該制御部4に電気的に接続された記憶部55に記憶する。 As described above, in the route generation system 99 of the present embodiment, the information on the travel route generated on the wireless communication terminal 46 side can be transmitted to the control unit 4 of the tractor 1. The control unit 4 stores the information on the travel route (first travel route P) received from the wireless communication terminal 46 in the storage unit 55 electrically connected to the control unit 4.
 第1走行経路Pが記憶部55に記憶されて初めて、入力選択画面60の農作業開始操作部65が操作可能となる。制御部4は、走行機体2及び作業機3による作業の開始指示を行うことが可能である一方、第1走行経路Pが生成されて記憶部55に入力されるまでは開始指示を行うことができない構成となっている。 Only after the first travel route P is stored in the storage unit 55, the farm work start operation unit 65 of the input selection screen 60 can be operated. The control unit 4 can issue an instruction to start work by the traveling machine body 2 and the work machine 3, and can issue an instruction to start until the first traveling route P is generated and input to the storage unit 55. The configuration is not possible.
 ユーザが入力選択画面60で農作業開始操作部65を操作すると、トラクタ1が入力された第1走行経路Pに沿って自律走行・自律作業するように、制御部4がトラクタ1の走行及び農作業を制御する。この自律走行の開始に伴って、ディスプレイ37の表示画面が図16に示す自律走行監視画面100に切り換わる。 When the user operates the farm work start operation unit 65 on the input selection screen 60, the control unit 4 performs the travel and farm work of the tractor 1 so that the tractor 1 autonomously travels and works along the first travel route P input. Control. With the start of this autonomous traveling, the display screen of the display 37 is switched to the autonomous traveling monitoring screen 100 shown in FIG.
 自律走行監視画面100の左部には、前方カメラ57で撮影した動画データを表示する前方カメラ表示部131が配置されている。自律走行監視画面100の左部の、前方カメラ表示部131の下方には、後方カメラ56で撮影した動画データを表示する後方カメラ表示部132が配置されている。 On the left side of the autonomous traveling monitoring screen 100, a front camera display unit 131 that displays moving image data captured by the front camera 57 is arranged. A rear camera display unit 132 that displays moving image data captured by the rear camera 56 is disposed on the left side of the autonomous traveling monitoring screen 100 and below the front camera display unit 131.
 自律走行監視画面100の上部には、トラクタ1の現在の車速を表示する車速表示部133が配置されている。車速表示部133には、車速センサ53から送信されてきたデータに基づいて取得された、トラクタ1の現在の車速が表示される。 A vehicle speed display unit 133 that displays the current vehicle speed of the tractor 1 is disposed at the upper part of the autonomous traveling monitoring screen 100. The vehicle speed display unit 133 displays the current vehicle speed of the tractor 1 acquired based on the data transmitted from the vehicle speed sensor 53.
 自律走行監視画面100の下部には、燃料必要量表示部134が配置されている。当該燃料必要量表示部134では、農作業が開始されてから終了するまでに必要な燃料の量が表示される。なお、必要な燃料の量は、作業経路の長さ(距離)、及び、ユーザにより設定された車速やエンジン回転数等に基づいて算出することができる。また、無線通信端末46は、燃料残量センサ54からの検出結果を取得して、これに基づいて不足している燃料の量を算出し、必要な燃料の量とともに燃料必要量表示部134に表示する。 A required fuel amount display unit 134 is arranged at the bottom of the autonomous traveling monitoring screen 100. In the fuel requirement display section 134, the amount of fuel required from the start of farm work to the end is displayed. The required amount of fuel can be calculated based on the length (distance) of the work path, the vehicle speed, the engine speed, and the like set by the user. In addition, the wireless communication terminal 46 obtains the detection result from the fuel remaining amount sensor 54, calculates the amount of fuel that is deficient based on the detection result, and displays the fuel requirement amount display unit 134 together with the amount of required fuel. indicate.
 自律走行監視画面100の右部には、トラクタ1の走行中の走行路P1又は接続路P2を含む画像データを表示する走行状態表示部109が配置されている。走行状態表示部109に表示される画像データは、例えば図9に示すように、地図データに、圃場の形状と、作業領域の形状と、を重ね合わせて表示し、その上にトラクタ1の走行軌跡をハッチングで示したものとすることができる。本実施形態の走行状態表示部109には、ロボットトラクタ1の第1走行経路Pと、有人トラクタ1Xの第2走行経路P’と、が表示される。 On the right side of the autonomous traveling monitoring screen 100, a traveling state display unit 109 that displays image data including the traveling path P1 or the connecting path P2 during traveling of the tractor 1 is arranged. For example, as shown in FIG. 9, the image data displayed on the running state display unit 109 displays the shape of the farm field and the shape of the work area superimposed on the map data, and the running of the tractor 1 thereon. The locus can be indicated by hatching. The traveling state display unit 109 of the present embodiment displays the first traveling route P of the robot tractor 1 and the second traveling route P ′ of the manned tractor 1X.
 有人トラクタ1Xを操向操作するユーザは、無線通信端末46を例えば有人トラクタ1Xの走行機体2の適宜の支持部に支持させて、当該無線通信端末46のディスプレイ37に表示された自律走行監視画面100を参照しながら、有人トラクタ1Xを第2走行経路P’に沿って走行させ、農作業を行わせることができる。これにより、ロボットトラクタ1と有人トラクタ1Xとの協調作業を実現することができる。 The user who steers the manned tractor 1X supports the autonomous communication monitoring screen displayed on the display 37 of the wireless communication terminal 46 by supporting the wireless communication terminal 46 on, for example, an appropriate support part of the traveling body 2 of the manned tractor 1X. With reference to 100, the manned tractor 1X can be caused to travel along the second travel route P ′ to perform farm work. Thereby, the cooperative work of the robot tractor 1 and the manned tractor 1X can be realized.
 以下では、経路生成システム99により生成される協調走行経路について具体的に説明する。 Hereinafter, the cooperative traveling route generated by the route generating system 99 will be described in detail.
 図17は、ロボットトラクタ1の右斜め後ろを有人トラクタ1Xに走行させる協調作業が選択され、ロボットトラクタ1と有人トラクタ1Xの間の位置関係の維持を優先する旨が選択され、1列スキップが選択された場合に、走行経路生成部35により生成される走行経路P,P’の例を示している。この走行経路P,P’では、図17に示すように、スキップ数が2列→0列→2列→0列・・・と変動している。一方で、この走行経路P,P’では、図17に示すように、往路でも復路でも、ロボットトラクタ1の右斜め後ろに有人トラクタ1Xが配置される位置関係が維持されている。このような走行経路P,P’を採用した場合、有人トラクタ1Xのユーザは、当該有人トラクタ1Xを常にロボットトラクタ1の右斜め後ろを走行させることを意識して操向操作すればよく、ロボットトラクタ1の位置を目安に作業を行い易いというメリットがある。 In FIG. 17, the cooperative work for causing the manned tractor 1X to travel diagonally right behind the robot tractor 1 is selected, the priority is given to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X, and one column skip is performed. An example of travel routes P and P ′ generated by the travel route generator 35 when selected is shown. In the travel routes P and P ′, as shown in FIG. 17, the number of skips varies from 2 columns → 0 columns → 2 columns → 0 columns. On the other hand, in the travel routes P and P ′, as shown in FIG. 17, the positional relationship in which the manned tractor 1 </ b> X is disposed diagonally to the right of the robot tractor 1 is maintained regardless of whether it is the forward route or the return route. When such travel routes P and P ′ are adopted, the user of the manned tractor 1X may perform the steering operation with the intention of always running the manned tractor 1X diagonally right behind the robot tractor 1. There is an advantage that it is easy to work with the position of the tractor 1 as a guide.
 図18は、ロボットトラクタ1の右斜め後ろを有人トラクタ1Xに走行させる協調作業が選択され、ロボットトラクタ1と有人トラクタ1Xの間の位置関係の維持を優先しない旨が選択され、1列スキップが選択された場合に、走行経路生成部35により生成される走行経路P,P’の例を示している。この走行経路P,P’では、図18に示すように、スキップ数が1列で一定である。一方で、この走行経路P,P’では、図18に示すように、開始位置から見たときの往路ではロボットトラクタ1の右斜め後ろに有人トラクタ1Xが配置される位置関係が維持されているが、復路ではロボットトラクタ1の左斜め後ろに有人トラクタ1Xが配置される位置関係となっている(設定された位置関係が維持されていない)。このような走行経路P,P’を採用した場合、有人トラクタ1Xのユーザは、一側の枕地でも他側の枕地でも同じ旋回の態様(同じ旋回半径等)で旋回すればよく、旋回操作に不慣れなユーザにとって操作が行い易くなるというメリットがある。 In FIG. 18, the cooperative work in which the manned tractor 1X travels diagonally right behind the robot tractor 1 is selected, and it is selected that priority is not given to maintaining the positional relationship between the robot tractor 1 and the manned tractor 1X. An example of travel routes P and P ′ generated by the travel route generator 35 when selected is shown. In the travel routes P and P ′, as shown in FIG. 18, the number of skips is constant in one row. On the other hand, in the travel routes P and P ′, as shown in FIG. 18, the positional relationship in which the manned tractor 1X is disposed diagonally to the right of the robot tractor 1 is maintained in the outward path when viewed from the start position. However, in the return path, the manned tractor 1X is disposed behind the robot tractor 1 diagonally to the left (the set position relationship is not maintained). When such travel routes P and P ′ are adopted, the user of the manned tractor 1X may turn in the same turning mode (same turning radius, etc.) in the headland on one side and the headland on the other side. There is a merit that the operation becomes easy for a user who is unfamiliar with the operation.
 図19は、圃場に区画が設定されて、基準作業が「要」に設定された場合に、走行経路生成部35により生成される走行経路P,P’の例を示している。この走行経路P,P’では、図19に示すように、主として有人トラクタ1Xにより農作業が行われる第2作業領域のうちの、第1作業領域との境界線(区画線)に隣接して配置される走行路P0のみがロボットトラクタ1によって自律走行・自律作業が行われ、その他の第2作業領域の走行路P1’は有人トラクタ1Xによって作業が行われる。一方、第1作業領域においては、全ての走行路P1がロボットトラクタ1によって自律走行・自律作業が行われる。このような走行経路P,P’を採用した場合、第2作業領域のうちの第1作業領域との境界線に隣接して配置される走行路P0をロボットトラクタ1によって自律走行・自律作業させた後、この走行路P0を基準(参考)にして、第2作業領域において有人トラクタ1Xによって走行路P1’,P1’,・・・に対して農作業を施すことが可能である。よって、圃場に対して整然と農作業を施し易いというメリットがある。 FIG. 19 shows an example of travel routes P and P ′ generated by the travel route generator 35 when a section is set in the field and the reference work is set to “necessary”. In the travel routes P and P ′, as shown in FIG. 19, the second work area where the farm work is mainly performed by the manned tractor 1X is arranged adjacent to the boundary line (partition line) with the first work area. Only the traveling path P0 is autonomously traveled and autonomously performed by the robot tractor 1, and the traveling path P1 ′ of the other second work area is performed by the manned tractor 1X. On the other hand, in the first work area, all the traveling paths P1 are autonomously traveled and autonomously performed by the robot tractor 1. When such travel routes P and P ′ are adopted, the robot tractor 1 autonomously travels and works on the travel route P0 arranged adjacent to the boundary line with the first work area of the second work areas. Then, with this traveling road P0 as a reference (reference), it is possible to perform agricultural work on the traveling roads P1 ′, P1 ′,... By the manned tractor 1X in the second work area. Therefore, there is an advantage that it is easy to perform farming work in an orderly manner on the field.
 図20は、圃場に区画が設定されて、基準作業が「不要」に設定された場合に、走行経路生成部35により生成される走行経路P,P’の例を示している。この走行経路P,P’では、図20に示すように、ロボットトラクタ1により農作業が行われる第1作業領域と、有人トラクタ1Xにより農作業が行われる第2作業領域と、が区画線により区画されて並んで配置されている。このような走行経路P,P’を採用した場合、作業領域(圃場)を複数に区画してロボットトラクタ1と有人トラクタ1Xとで分担して作業を行うことができ、全体として効率よく作業を行うことができるというメリットがある。 FIG. 20 shows an example of travel routes P and P ′ generated by the travel route generator 35 when a section is set in the field and the reference work is set to “unnecessary”. In the travel routes P and P ′, as shown in FIG. 20, a first work area where the farm work is performed by the robot tractor 1 and a second work area where the farm work is performed by the manned tractor 1X are partitioned by a lane marking. Are arranged side by side. When such travel routes P and P ′ are adopted, the work area (field) can be divided into a plurality of parts and can be shared by the robot tractor 1 and the manned tractor 1X, so that the work can be efficiently performed as a whole. There is a merit that it can be done.
 以上に説明したように、本実施形態の経路生成システム99は、作業態様設定部(協調作業態様設定部)101と、位置関係設定部102と、走行経路生成部(協調走行経路生成部)35と、優先受付部(受付部)103と、を備える。作業態様設定部101は、ロボットトラクタ(第1作業車両)1及び有人トラクタ(第2作業車両)1Xの協調作業態様を設定する。位置関係設定部102は、協調作業態様が同一の作業領域における協調作業である場合にロボットトラクタ1と有人トラクタ1Xの位置関係を設定する。走行経路生成部35は、協調作業態様が同一の作業領域における協調作業である場合にロボットトラクタ1が走行する第1走行経路P及び有人トラクタ1Xが走行する第2走行経路P’を含む協調走行経路を生成する。優先受付部103は、位置関係の維持を優先するか否かを受け付ける。優先受付部103により位置関係の維持の優先が受け付けられた場合、位置関係を維持する協調走行経路(第1走行経路P及び第2走行経路P’)を生成する(図17を参照)。優先受付部103により位置関係の維持の優先が受け付けられなかった場合、位置関係を維持しない協調走行経路(第1走行経路P及び第2走行経路P’)を生成する(図18を参照)。 As described above, the route generation system 99 of the present embodiment includes the work mode setting unit (cooperative work mode setting unit) 101, the positional relationship setting unit 102, and the travel route generation unit (cooperative travel route generation unit) 35. And a priority reception unit (reception unit) 103. The work mode setting unit 101 sets a cooperative work mode of the robot tractor (first work vehicle) 1 and the manned tractor (second work vehicle) 1X. The positional relationship setting unit 102 sets the positional relationship between the robot tractor 1 and the manned tractor 1X when the cooperative work mode is cooperative work in the same work area. The traveling route generation unit 35 includes a first traveling route P on which the robot tractor 1 travels and a second traveling route P ′ on which the manned tractor 1X travels when the cooperative work mode is cooperative work in the same work area. Generate a route. The priority receiving unit 103 receives whether or not priority is given to maintaining the positional relationship. When priority is given to maintaining the positional relationship by the priority receiving unit 103, a cooperative traveling route (first traveling route P and second traveling route P ′) that maintains the positional relationship is generated (see FIG. 17). If priority for maintaining the positional relationship is not received by the priority receiving unit 103, a cooperative traveling route (first traveling route P and second traveling route P ′) that does not maintain the positional relationship is generated (see FIG. 18).
 これにより、必ずしも位置関係設定部102で設定されたロボットトラクタ1と有人トラクタ1Xの位置関係に拘束されずに、ユーザの意向に応じて流動的に協調走行経路を生成することができる。 Thus, the coordinated travel route can be fluidly generated according to the user's intention without necessarily being restricted by the positional relationship between the robot tractor 1 and the manned tractor 1X set by the positional relationship setting unit 102.
 また、本実施形態の経路生成システム99においては、第1走行経路P及び第2走行経路P’は、それぞれ、平行に並べられる複数の走行路P1,P1’を備える。走行経路生成部35により位置関係を維持しない協調走行経路(第1走行経路P及び第2走行経路P’)が生成される場合、第1走行経路Pの任意の走行路P1と当該任意の走行路P1の次に前記ロボットトラクタ1により走行される他の走行路P1との間に配置される走行路の列数は一定数に維持される(図18を参照)。 Further, in the route generation system 99 of the present embodiment, the first travel route P and the second travel route P ′ each include a plurality of travel routes P1, P1 ′ arranged in parallel. When a cooperative travel route (first travel route P and second travel route P ′) that does not maintain the positional relationship is generated by the travel route generation unit 35, the arbitrary travel route P1 of the first travel route P and the arbitrary travel The number of rows of travel roads arranged between the road P1 and the other travel road P1 traveled by the robot tractor 1 is maintained at a constant number (see FIG. 18).
 これにより、設定されたロボットトラクタ1と有人トラクタ1Xの位置関係の維持を優先しない場合、ロボットトラクタ1の任意の走行路P1と当該任意の走行路P1の次にロボットトラクタ1により走行される他の走行路P1との間に配置される走行路の列数、即ちロボットトラクタ1が何列飛ばして次の走行路P1を走行するかのいわゆるスキップ数が一定数に維持されることとなる。この場合、圃場の一側の枕地と他側の枕地での旋回方法(旋回半径等)が一定の態様に固定されるため、旋回操作が行い易くなる。 As a result, when priority is not given to maintaining the set positional relationship between the robot tractor 1 and the manned tractor 1X, the robot tractor 1 travels after the arbitrary traveling path P1 of the robot tractor 1 and the arbitrary traveling path P1. The number of rows of travel routes arranged between the travel route P1, that is, the so-called skip number indicating how many rows the robot tractor 1 skips and travels on the next travel route P1 is maintained at a constant number. In this case, the turning method (turning radius or the like) between the headland on one side of the field and the headland on the other side is fixed in a fixed manner, so that the turning operation is facilitated.
 また、本実施形態の経路生成システム99は、前記協調作業が異なる作業領域における協調作業であり、ロボットトラクタ1により第1作業領域が作業され、有人トラクタ1Xにより第2作業領域が作業される場合に、第2作業領域におけるロボットトラクタ1による基準作業の要否を設定する基準作業設定部108を備える。第1走行経路Pとして、第2作業領域においてロボットトラクタ1により基準作業が行われる走行路P0と、第1作業領域においてロボットトラクタ1により作業が行われる複数の走行路P1と、を含む走行経路を生成する。第2走行経路P’として、基準作業が行われる領域を除いた第2作業領域において有人トラクタ1Xにより作業が行われる複数の走行路P1’を含む走行経路を生成する(図19を参照)。 Further, the route generation system 99 of the present embodiment is a cooperative work in different work areas, and the first work area is worked by the robot tractor 1 and the second work area is worked by the manned tractor 1X. In addition, a reference work setting unit 108 is provided for setting whether or not the reference work by the robot tractor 1 in the second work area is necessary. As the first travel path P, a travel path including a travel path P0 in which the reference work is performed by the robot tractor 1 in the second work area and a plurality of travel paths P1 in which the work is performed by the robot tractor 1 in the first work area. Is generated. As the second travel route P ′, a travel route including a plurality of travel routes P <b> 1 ′ on which work is performed by the manned tractor 1 </ b> X in the second work area excluding the area where the reference work is performed is generated (see FIG. 19).
 これにより、第2作業領域においては、ロボットトラクタ1により基準作業(走行路P0に沿った作業)を行い、当該基準作業で作業が行われた走行路P0を参考にして、有人トラクタ1Xにより複数の走行路P1’に対して作業を行うことができる。よって、作業領域に対して整然と作業を施し易い。 As a result, in the second work area, the robot tractor 1 performs the reference work (work along the travel path P0), and the manned tractor 1X uses the manned tractor 1X with reference to the travel path P0 on which the work is performed in the reference work. The operation can be performed on the travel path P1 ′. Therefore, it is easy to orderly work on the work area.
 また、本実施形態の経路生成システム99は、第1走行経路Pとして、第1作業領域においてロボットトラクタ1により作業が行われる複数の走行路P1,P1,・・・を含む走行経路を生成する。第2走行経路P’として、第2作業領域において有人トラクタ1Xにより作業が行われる複数の走行路P1’,P1’,・・・を含む走行経路を生成する。 Further, the route generation system 99 of the present embodiment generates a travel route including a plurality of travel routes P1, P1,... On which work is performed by the robot tractor 1 in the first work area as the first travel route P. . As the second travel route P ′, a travel route including a plurality of travel routes P1 ′, P1 ′,... In which work is performed by the manned tractor 1X in the second work area is generated.
 これにより、異なる作業領域をそれぞれロボットトラクタ1と有人トラクタ1Xとで分担して作業を行うことができ、全体として効率よく作業を行うことができる。 Thereby, different work areas can be shared by the robot tractor 1 and the manned tractor 1X, and the work can be efficiently performed as a whole.
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although a preferred embodiment of the present invention has been described above, the above configuration can be modified as follows, for example.
 上記の実施形態におけるロボットトラクタ1と有人トラクタ1Xの協調作業では、先行側をロボットトラクタ1が、後続側を有人トラクタ1Xが走行するものとしたが、必ずしもこれに限るものではなく、例えば先行側を有人トラクタ1Xが、後続側をロボットトラクタ1が走行するものとしてもよい。 In the cooperative work of the robot tractor 1 and the manned tractor 1X in the above embodiment, the robot tractor 1 travels on the leading side and the manned tractor 1X runs on the trailing side. The manned tractor 1X may be driven by the robot tractor 1 on the following side.
 上記の実施形態では、走行経路生成部35により位置関係を維持しない協調走行経路が生成される場合、第1走行経路Pの任意の走行路P1と当該任意の走行路P1の次にロボットトラクタ1により走行される他の走行路P1との間に配置される走行路の列数は一定に維持されるものとした。しかしながら、走行路P1の数に端数がある場合等には、一部の走行路P1においてスキップ数が一定になっていなくてもよい。 In the above embodiment, when the traveling route generation unit 35 generates a cooperative traveling route that does not maintain the positional relationship, the robot tractor 1 is located next to the arbitrary traveling route P1 of the first traveling route P and the arbitrary traveling route P1. It is assumed that the number of rows of traveling roads arranged between the other traveling roads P1 traveled by the above is kept constant. However, when there are fractions in the number of travel paths P1, the number of skips may not be constant in some travel paths P1.
 上記の図20に示した例では、第1作業領域と第2作業領域とが同じ面積となるように区画されるものとした。しかしながら、これに限るものではなく、第1作業領域が第2作業領域よりも広くてもよく、あるいは第1作業領域が第2作業領域よりも狭くてもよい。図12に示す区分け線116を適宜移動させることにより、例えば、第1作業領域の走行路の列数と、第2作業領域の走行路の列数と、を適宜異ならせて、第1作業車両の作業終了位置が配置される枕地と、第2作業車両の作業終了位置が配置される枕地と、を同じ側の枕地にすることが可能である。 In the example shown in FIG. 20, the first work area and the second work area are partitioned so as to have the same area. However, the present invention is not limited to this, and the first work area may be wider than the second work area, or the first work area may be narrower than the second work area. By appropriately moving the dividing line 116 shown in FIG. 12, for example, the number of rows of travel paths in the first work area and the number of rows of travel paths in the second work area are appropriately changed, so that the first work vehicle The headland where the work end position is arranged and the headland where the work end position of the second work vehicle is arranged can be the same headland.
 上記の実施形態では、区画線と隣接する第2作業領域側の走行路に基準作業を施すものとした。このように構成した場合、第1作業領域と第2作業領域との境界が視覚的に分かり易くなり、有人トラクタ1Xを操向操作するユーザが作業を行い易くなるというメリットがある。しかしながら、必ずしもこれに限るものではなく、基準作業は、第2作業領域内の走行路の何れに対して行ってもよい。例えば、第2作業領域の区画線が配置される側とは反対側の端に位置する走行路に対して基準作業を行ってもよい。 In the above embodiment, the reference work is performed on the traveling path on the second work area side adjacent to the lane marking. When comprised in this way, the boundary of a 1st work area | region and a 2nd work area | region becomes easy to understand visually, and there exists a merit that the user who steers the manned tractor 1X will work easily. However, the present invention is not necessarily limited to this, and the reference work may be performed on any of the travel paths in the second work area. For example, you may perform a reference | standard work with respect to the running path located in the edge on the opposite side to the side by which the division line of a 2nd work area | region is arrange | positioned.
 各図に示した表示画面(入力画面等)は一例に過ぎず、表示のレイアウト及び各アイコン(ボタン)のデザイン等は図示したものに限るものではない。 The display screen (input screen etc.) shown in each figure is only an example, and the display layout and the design of each icon (button) are not limited to those shown in the figure.
 上記の実施形態では、作業態様設定部101、位置関係設定部102、走行経路生成部35、優先受付部103、及び基準作業設定部108は無線通信端末46に備えられるものとしたが、これらの構成がトラクタ1及び無線通信端末46の何れに備えられるかについてはこれに限るものではない。また、これ以外の構成部分についても、トラクタ1及び無線通信端末46の何れに備えられていてもよい。 In the above embodiment, the work mode setting unit 101, the positional relationship setting unit 102, the travel route generating unit 35, the priority receiving unit 103, and the reference work setting unit 108 are provided in the wireless communication terminal 46. Whether the configuration is provided in the tractor 1 or the wireless communication terminal 46 is not limited to this. Further, other components may be included in either the tractor 1 or the wireless communication terminal 46.
 無線通信端末46に相当する機能を有する装置が、トラクタ1に付随して走行する有人トラクタ1Xの走行機体2に取外し不能に備えられていてもよい。この場合、無線通信端末46を省略することができる。 A device having a function corresponding to the wireless communication terminal 46 may be provided on the traveling machine body 2 of the manned tractor 1X traveling along with the tractor 1 so as not to be removable. In this case, the wireless communication terminal 46 can be omitted.
 上記の実施形態では、第2作業車両は、ユーザが操向操作する有人のトラクタ1Xであるものとした。しかしながら、これに限るものではなく、第2作業車両も第1作業車両と同様に無人のトラクタとして、このトラクタに走行経路生成部35で生成した第2走行経路P’を転送して自律的に走行させるものとしてもよい。 In the above embodiment, the second work vehicle is a manned tractor 1X that the user steers. However, the present invention is not limited to this, and the second work vehicle is also an unmanned tractor, like the first work vehicle, and autonomously transfers the second travel route P ′ generated by the travel route generation unit 35 to this tractor. It is good also as what makes it drive | work.
 1 (ロボット)トラクタ(第1作業車両)
 1X 有人(の)トラクタ(第2作業車両)
 35 走行経路生成部(協調走行経路生成部)
 99 経路生成システム
 101 作業態様設定部(協調作業態様設定部)
 102 位置関係設定部
 103 優先受付部(受付部)
 108 基準作業設定部
1 (Robot) Tractor (first work vehicle)
1X Manned tractor (second work vehicle)
35 Travel route generation unit (cooperative travel route generation unit)
99 route generation system 101 work mode setting unit (cooperative work mode setting unit)
102 Positional relationship setting unit 103 Priority receiving unit (receiving unit)
108 Standard work setting section

Claims (4)

  1.  第1作業車両及び第2作業車両の協調作業態様を設定する協調作業態様設定部と、
     前記協調作業態様が同一の作業領域における協調作業である場合に前記第1作業車両と前記第2作業車両の位置関係を設定する位置関係設定部と、
     前記協調作業態様が同一の作業領域における協調作業である場合に前記第1作業車両が走行する第1走行経路及び前記第2作業車両が走行する第2走行経路を含む協調走行経路を生成する協調走行経路生成部と、
     前記位置関係の維持を優先するか否かを受け付ける受付部と、
    を備える経路生成システムであって、
     前記協調走行経路生成部は、
     前記受付部により前記位置関係の維持の優先が受け付けられた場合、前記位置関係を維持する前記協調走行経路を生成し、
     前記受付部により前記位置関係の維持の優先が受け付けられなかった場合、前記位置関係を維持しない前記協調走行経路を生成することを特徴とする経路生成システム。
    A collaborative work mode setting unit for setting a collaborative work mode of the first work vehicle and the second work vehicle;
    A positional relationship setting unit that sets a positional relationship between the first work vehicle and the second work vehicle when the cooperative work mode is a cooperative work in the same work area;
    Cooperation that generates a cooperative travel route including a first travel route on which the first work vehicle travels and a second travel route on which the second work vehicle travels when the cooperative work mode is a cooperative work in the same work area. A travel route generator,
    An accepting unit for accepting whether to give priority to maintaining the positional relationship;
    A route generation system comprising:
    The cooperative travel route generation unit
    When priority is given to maintaining the positional relationship by the reception unit, the cooperative travel route that maintains the positional relationship is generated,
    The route generating system, wherein when the priority for maintaining the positional relationship is not received by the receiving unit, the cooperative traveling route that does not maintain the positional relationship is generated.
  2.  請求項1に記載の経路生成システムであって、
     前記第1走行経路及び前記第2走行経路は、それぞれ、平行に並べられる複数の走行路を備え、
     前記協調走行経路生成部により前記位置関係を維持しない前記協調走行経路が生成される場合、前記第1走行経路の任意の走行路と当該任意の走行路の次に前記第1作業車両により走行される他の走行路との間に配置される走行路の列数は一定数に維持されることを特徴とする経路生成システム。
    The route generation system according to claim 1,
    Each of the first travel route and the second travel route includes a plurality of travel routes arranged in parallel,
    When the cooperative traveling route that does not maintain the positional relationship is generated by the cooperative traveling route generation unit, the cooperative work route is traveled by the first work vehicle next to an arbitrary traveling route of the first traveling route and the arbitrary traveling route. A route generation system characterized in that the number of rows of travel routes arranged between other travel routes is maintained at a constant number.
  3.  請求項2に記載の経路生成システムであって、
     前記協調作業が異なる作業領域における協調作業であり、前記第1作業車両により第1作業領域が作業され、前記第2作業車両により第2作業領域が作業される場合に、前記第2作業領域における前記第1作業車両による基準作業の要否を設定する基準作業設定部を備え、
     前記基準作業設定部により前記基準作業が要に設定された場合、前記協調走行経路生成部は、
     第1走行経路として、前記第2作業領域において前記第1作業車両により前記基準作業が行われる走行路と、前記第1作業領域において前記第1作業車両により作業が行われる複数の走行路と、を含む走行経路を生成し、
     前記第2走行経路として、前記基準作業が行われる領域を除いた前記第2作業領域において前記第2作業車両により作業が行われる複数の走行路を含む走行経路を生成することを特徴とする経路生成システム。
    The route generation system according to claim 2,
    The cooperative work is a cooperative work in different work areas, and when the first work area is worked by the first work vehicle and the second work area is worked by the second work vehicle, the second work area A reference work setting unit for setting whether or not the reference work by the first work vehicle is necessary;
    When the reference work is set to be essential by the reference work setting unit, the cooperative travel route generation unit is
    As the first travel route, a travel path in which the reference work is performed by the first work vehicle in the second work area, and a plurality of travel paths in which work is performed by the first work vehicle in the first work area; Generate a travel route that includes
    A route that generates a travel route including a plurality of travel routes on which work is performed by the second work vehicle in the second work region excluding the region on which the reference work is performed as the second travel route. Generation system.
  4.  請求項3に記載の経路生成システムであって、
     前記基準作業設定部により前記基準作業が不要に設定された場合、前記協調走行経路生成部は、
     前記第1走行経路として、前記第1作業領域において前記第1作業車両により作業が行われる複数の走行路を含む走行経路を生成し、
     前記第2走行経路として、前記第2作業領域において前記第2作業車両により作業が行われる複数の走行路を含む走行経路を生成することを特徴とする経路生成システム。
    The route generation system according to claim 3,
    When the reference work is set to be unnecessary by the reference work setting unit, the cooperative travel route generation unit,
    As the first travel route, a travel route including a plurality of travel routes in which work is performed by the first work vehicle in the first work area is generated,
    A route generation system that generates a travel route including a plurality of travel routes in which work is performed by the second work vehicle in the second work area as the second travel route.
PCT/JP2017/027901 2016-09-26 2017-08-01 Path creation system WO2018055921A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187030055A KR102279839B1 (en) 2016-09-26 2017-08-01 path generation system
CN201780045340.8A CN109716253B (en) 2016-09-26 2017-08-01 Path generation system
KR1020217022145A KR102413467B1 (en) 2016-09-26 2017-08-01 Path creation system
CN202210241778.6A CN114594775A (en) 2016-09-26 2017-08-01 Path generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187216 2016-09-26
JP2016187216A JP6832660B2 (en) 2016-09-26 2016-09-26 Route generation system

Publications (1)

Publication Number Publication Date
WO2018055921A1 true WO2018055921A1 (en) 2018-03-29

Family

ID=61690890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027901 WO2018055921A1 (en) 2016-09-26 2017-08-01 Path creation system

Country Status (4)

Country Link
JP (1) JP6832660B2 (en)
KR (2) KR102279839B1 (en)
CN (2) CN109716253B (en)
WO (1) WO2018055921A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068693A (en) * 2018-10-30 2020-05-07 ヤンマー株式会社 Display device and automatic travelling system
JP2020120586A (en) * 2019-01-29 2020-08-13 ヤンマーパワーテクノロジー株式会社 Coordination work system
WO2020206426A1 (en) 2019-04-05 2020-10-08 Equipmentshare.Com Inc. System and method for autonomous operation of a machine
WO2022176500A1 (en) * 2021-02-16 2022-08-25 ヤンマーホールディングス株式会社 Display method, display terminal, and display program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915594B2 (en) * 2018-06-29 2021-08-04 井関農機株式会社 Work vehicle
JP7265348B2 (en) * 2018-11-22 2023-04-26 井関農機株式会社 Agricultural work support system
JP7152337B2 (en) * 2019-03-25 2022-10-12 三菱マヒンドラ農機株式会社 combine
JP7466276B2 (en) * 2019-06-27 2024-04-12 株式会社クボタ Work vehicle coordination system
JP2021033841A (en) * 2019-08-28 2021-03-01 ヤンマーパワーテクノロジー株式会社 Traveling support system
WO2021166650A1 (en) * 2020-02-19 2021-08-26 ヤンマーパワーテクノロジー株式会社 Area registration method and area registration system
JP7473360B2 (en) 2020-02-27 2024-04-23 三菱マヒンドラ農機株式会社 Automatic control device
JP7365103B2 (en) 2020-12-24 2023-10-19 株式会社クボタ Farming support system, location information generation method, computer program and processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system
WO2016017367A1 (en) * 2014-07-30 2016-02-04 ヤンマー株式会社 Remote control apparatus
JP2016031649A (en) * 2014-07-29 2016-03-07 株式会社クボタ Working vehicle cooperation system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732024B2 (en) * 2001-05-07 2004-05-04 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for vehicle control, navigation and positioning
DE102006015204A1 (en) * 2006-03-30 2007-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Method for creating a route plan for agricultural machine systems
JP4811128B2 (en) * 2006-05-25 2011-11-09 トヨタ自動車株式会社 Autonomous mobile device
US8554243B2 (en) * 2007-12-04 2013-10-08 Blackberry Limited Mobile tracking
DE102009009818A1 (en) * 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Method for generating reference lanes for agricultural vehicles
US9096266B2 (en) * 2010-01-15 2015-08-04 Toyota Jidosha Kabushiki Kaisha Driver assisting system for optimizing curve traversal
CN102914967B (en) * 2012-09-21 2015-01-28 浙江工业大学 Autonomous navigation and man-machine coordination picking operating system of picking robot
CN103499973B (en) * 2013-09-30 2016-04-20 中国农业大学 A kind of master-slave machine work compound agricultural machinery intelligent guidance system
JP6267626B2 (en) 2014-11-13 2018-01-24 ヤンマー株式会社 Travel route setting device
JPWO2017056334A1 (en) * 2015-10-01 2018-07-19 株式会社Doog Follow-up movement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system
JP2016031649A (en) * 2014-07-29 2016-03-07 株式会社クボタ Working vehicle cooperation system
WO2016017367A1 (en) * 2014-07-30 2016-02-04 ヤンマー株式会社 Remote control apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068693A (en) * 2018-10-30 2020-05-07 ヤンマー株式会社 Display device and automatic travelling system
JP7223552B2 (en) 2018-10-30 2023-02-16 ヤンマーパワーテクノロジー株式会社 Display device and automatic driving system
JP2020120586A (en) * 2019-01-29 2020-08-13 ヤンマーパワーテクノロジー株式会社 Coordination work system
JP7045341B2 (en) 2019-01-29 2022-03-31 ヤンマーパワーテクノロジー株式会社 Collaborative work system
WO2020206426A1 (en) 2019-04-05 2020-10-08 Equipmentshare.Com Inc. System and method for autonomous operation of a machine
EP3948472A4 (en) * 2019-04-05 2022-12-07 Equipmentshare.com Inc. System and method for autonomous operation of a machine
US11662723B2 (en) 2019-04-05 2023-05-30 Equipmentshare.Com Inc System and method for autonomous operation of a machine
US11841703B2 (en) 2019-04-05 2023-12-12 Equipmentshare.Com Inc. System and method for autonomous operation of a machine
US11914365B2 (en) 2019-04-05 2024-02-27 Equipmentshare.Com Inc. System and method for autonomous operation of a machine
US11940789B2 (en) 2019-04-05 2024-03-26 Equipmentshare.Com Inc. System and method for autonomous operation of a machine
WO2022176500A1 (en) * 2021-02-16 2022-08-25 ヤンマーホールディングス株式会社 Display method, display terminal, and display program

Also Published As

Publication number Publication date
KR20210091367A (en) 2021-07-21
KR102413467B1 (en) 2022-06-24
KR102279839B1 (en) 2021-07-20
JP2018055179A (en) 2018-04-05
KR20180127417A (en) 2018-11-28
CN109716253B (en) 2022-04-01
CN109716253A (en) 2019-05-03
JP6832660B2 (en) 2021-02-24
CN114594775A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2018055921A1 (en) Path creation system
JP6692692B2 (en) Autonomous driving route generation system
JP6663366B2 (en) Route generation system, and autonomous traveling system that causes a work vehicle to travel along a route generated by the route generation system
JP6682354B2 (en) Autonomous driving route generation system
WO2017195510A1 (en) Autonomous travel route generating system
JP6440647B2 (en) Autonomous driving system
JP6564725B2 (en) Driving instruction device
JP6739228B2 (en) Autonomous driving route generation system
JP7049033B2 (en) Autonomous driving system
JP7155328B2 (en) work vehicle
WO2017169373A1 (en) Path generation device and work vehicle
JP6947872B2 (en) Autonomous driving system
WO2020235470A1 (en) Automatic travel system
JP6622131B2 (en) Route generator
JP2018055180A (en) Autonomous travel system
JP6708724B2 (en) Autonomous driving system
JP2017182374A (en) Service vehicle
JP2019204544A (en) Work vehicle route generation system
JP6739227B2 (en) Autonomous driving route generation system
JP6997889B2 (en) Route generation system
JP2020080175A (en) Autonomous travel system
JP2020119600A (en) Autonomous travel system
JP2021081822A (en) Autonomous traveling system
JP2022082624A (en) Autonomous travelling system
JP2020109693A (en) Autonomous travel route generation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187030055

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852702

Country of ref document: EP

Kind code of ref document: A1