WO2018055900A1 - スイッチング素子駆動回路 - Google Patents

スイッチング素子駆動回路 Download PDF

Info

Publication number
WO2018055900A1
WO2018055900A1 PCT/JP2017/027059 JP2017027059W WO2018055900A1 WO 2018055900 A1 WO2018055900 A1 WO 2018055900A1 JP 2017027059 W JP2017027059 W JP 2017027059W WO 2018055900 A1 WO2018055900 A1 WO 2018055900A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
potential
circuit
resistor
resistance value
Prior art date
Application number
PCT/JP2017/027059
Other languages
English (en)
French (fr)
Inventor
▲高▼倉裕司
中村恭士
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US16/310,167 priority Critical patent/US10483967B2/en
Priority to CN201780056934.9A priority patent/CN109792242B/zh
Priority to DE112017003600.3T priority patent/DE112017003600T5/de
Publication of WO2018055900A1 publication Critical patent/WO2018055900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

スイッチング制御信号を増幅してスイッチング素子に伝達する駆動回路への電力供給が滞った場合においても、適切にスイッチング素子をオフ状態に制御する。プッシュプルバッファ回路(21)の入力部(IN)と出力部(OUT)とを接続する補償抵抗(R2)と、入力部(IN)と駆動対象のスイッチング素子(3)の負極(VG)の側とを接続する入力側プルダウン抵抗(R3)と、を備え、補償抵抗(R2)の抵抗値と入力側プルダウン抵抗(R3)の抵抗値との和が、駆動対象のスイッチング素子(3)の制御端子(G)とスイッチング素子(3)のエミッタ端子又はソース端子(S)との間の抵抗(R1)の抵抗値よりも小さく、負極(VG)よりも負の第2電位(-V2)と下段側バッファ素子(21L)との間に接続された下段側電流制限抵抗(R21L)の抵抗値よりも大きい値に設定されている。

Description

スイッチング素子駆動回路
 本発明は、スイッチング制御信号を増幅してスイッチング素子を駆動するスイッチング素子駆動回路に関する。
 直流と交流との間で電力を変換するインバータのスイッチング素子を駆動するために、制御回路で生成されたスイッチング制御信号の電力を増幅するドライブ回路が備えられる場合がある。このようなドライブ回路として、特開2004-242475号公報に記載されたようなプッシュプル回路が利用される場合がある(図1の符号10a、[0030]等参照)。ところで、インバータが、出力の大きい電機機器を駆動するような場合には、直流側の電圧が200~400[V]程度の高圧の場合もある。このような高圧の直流電力は、いわゆる高圧直流電源から供給される。一方、スイッチング制御信号を生成する制御回路は、一般的に動作電圧が5V以下であり、多くの場合、高圧直流電源よりも遙かに低電圧の低圧直流電源から電力を供給される。ドライブ回路から出力される増幅後の信号の振幅はおおよそ10~20V程度であることが多く、ドライブ回路の動作電圧は低圧直流電源から生成されることが多い。
 ここで、低圧直流電源や、低圧直流電源からドライブ回路の動作電圧を生成する電源回路から適切な電圧が出力されないような事象が生じると、スイッチング素子を安定して制御できなくなる場合がある。インバータに高電圧が印加されている場合には、インバータの制御が不安定となると好ましくない。従って、少なくともインバータのスイッチング素子をオフ状態に固定することが望まれる。しかし、ドライブ回路の動作電圧が不充分であると、スイッチング素子をオフ状態とすることができていても、ノイズ等によってスイッチング素子がオン状態となる場合がある。その状態で、直流電源からの電力や駆動対象の機器からの誘導起電力がインバータに供給されていると、スイッチング素子に非常に大きな電流が流れることになり、好ましくない。
特開2004-242475号公報
 上記背景に鑑みて、スイッチング制御信号を増幅してスイッチング素子に伝達する駆動回路への電力供給が滞った場合においても、適切にスイッチング素子をオフ状態に制御することができる技術の提供が望まれる。
 上記に鑑みたスイッチング素子駆動回路は、1つの態様として、
 スイッチング制御信号の電力を増幅して駆動対象のスイッチング素子の制御端子へ伝達するプッシュプルバッファ回路を備え、前記駆動対象のスイッチング素子を駆動するスイッチング素子駆動回路であって、
 前記プッシュプルバッファ回路は、極性の異なるスイッチング素子がバッファ素子として、第1電位と前記第1電位よりも低電位の第2電位との間に直列接続され、前記第1電位の側の上段側バッファ素子と前記第2電位の側の下段側バッファ素子の制御端子同士の接続点を入力部とし、前記上段側バッファ素子と前記下段側バッファ素子の入出力端子同士の接続点を出力部とし、前記第1電位と前記上段側バッファ素子との間に上段側電流制限抵抗を有し、前記第2電位と前記下段側バッファ素子との間に下段側電流制限抵抗を有し、前記入力部に前記スイッチング制御信号が入力され、前記出力部が前記駆動対象のスイッチング素子の制御端子に接続され、
 さらに、
 前記入力部と前記出力部とを接続する補償抵抗と、
 前記入力部と前記駆動対象のスイッチング素子の負極側とを接続する入力側プルダウン抵抗と、を備え、
 前記補償抵抗の抵抗値と前記入力側プルダウン抵抗の抵抗値との和は、前記駆動対象のスイッチング素子の制御端子と当該スイッチング素子のエミッタ端子又はソース端子との間の抵抗値よりも小さく、前記下段側電流制限抵抗の抵抗値よりも大きい値に設定されている。
 駆動対象のスイッチング素子の入出力端子間(ドレイン-ソース間やコレクタ-エミッタ間)に電圧が印加されると、制御端子(ゲート端子やベース端子)の浮遊容量によって制御端子の駆動電圧(ゲート-ソース間電圧やゲート-エミッタ間電圧やベース-エミッタ間電圧)が急激に上昇する場合がある。本構成におけるスイッチング素子駆動回路は、制御端子と負極との間に補償抵抗と入力側プルダウン抵抗との直列回路を備えている。補償抵抗の抵抗値と入力側プルダウン抵抗の抵抗値との和は、制御端子と当該スイッチング素子のエミッタ端子又はソース端子との間の抵抗値よりも小さい。従って、寄生容量の電荷は、補償抵抗及び入力側プルダウン抵抗を通って駆動対象のスイッチング素子の負極へと放電される。このとき、補償抵抗を流れる電流によって、補償抵抗の両端に電位差が生じ、プッシュプルバッファ回路の下段側バッファ素子がオン状態に遷移する。下段側電流制限抵抗の抵抗値は、補償抵抗の抵抗値と入力側プルダウン抵抗の抵抗値との和よりも小さい。従って、下段側バッファ素子がオン状態に遷移すると、浮遊容量の電荷や駆動対象のスイッチング素子に流れる漏れ電流は、下段側バッファ素子及び下段側電流制限抵抗を流れる。これにより、駆動対象のスイッチング素子の制御端子に、当該スイッチング素子をオン状態に遷移させるような電圧が生じることが抑制される。このように、本構成によれば、スイッチング制御信号を増幅してスイッチング素子に伝達する駆動回路への電力供給が滞った場合においても、適切にスイッチング素子をオフ状態に制御することができる。
 スイッチング素子駆動回路のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
回転電機制御装置のシステム構成の一例を示す回路ブロック図 駆動回路の構成例を示す模式的回路図 駆動対象のスイッチング素子の挙動の一例を示すタイミングチャート 上段側駆動電圧生成回路の構成例を示す模式的回路ブロック図 下段側駆動電圧生成回路の構成例を示す模式的回路ブロック図 複数相の駆動装置の構成例を示すブロック図 駆動電圧生成回路の構成例を示す模式的回路ブロック図 駆動回路の比較例の構成を示す模式的回路図 比較例の駆動回路により駆動されるスイッチング素子の挙動の一例を示すタイミングチャート 比較例の駆動回路により駆動されるスイッチング素子の挙動の一例を示すタイミングチャート
 以下、回転電機を駆動制御する回転電機制御装置に適用される形態を例として、スイッチング素子駆動回路の実施形態を図面に基づいて説明する。図1の回路ブロック図は、回転電機制御装置1のシステム構成を模式的に示している。図1に示すように、回転電機制御装置1は、直流電力と複数相の交流電力との間で電力を変換するインバータ10を備えている。本実施形態では、交流の回転電機80及び高圧バッテリ11(高圧直流電源)に接続されて、複数相の交流と直流との間で電力を変換するインバータ10を例示する。インバータ10は、高圧バッテリ11にコンタクタ9を介して接続されると共に、交流の回転電機80に接続されて直流と複数相の交流(ここでは3相交流)との間で電力を変換する。インバータ10は、上段側スイッチング素子3Hと下段側スイッチング素子3Lとの直列回路により構成された交流1相分のアーム3Aを複数本(ここでは3本)備えている。それぞれのスイッチング素子3(上段側スイッチング素子3H、下段側スイッチング素子3L)は、スイッチング素子駆動回路(駆動回路2(DRV))による駆動対象のスイッチング素子に相当する。
 尚、本実施形態では、交流の電気機器として交流の回転電機80を例示しているが、コンプレッサやポンプなど、回転電機以外の電気機器であってもよい。また、本実施形態では、複数本のアーム3Aを有し、複数相の交流電力と直流電力との間で電力を変換するインバータ10を例示しているが、インバータ10は、アーム3Aを1本のみ有して単相の交流電力と直流電力との間で電力を変換するものであってもよい。
 回転電機80は、例えばハイブリッド自動車や電気自動車等の車両の駆動力源とすることができる。また、回転電機80は、電動機としても発電機としても機能することができる。回転電機80は、インバータ10を介して高圧バッテリ11から供給される電力を、車両の車輪を駆動する動力に変換する(力行)。或いは、回転電機80は、不図示の内燃機関や車輪から伝達される回転駆動力を電力に変換し、インバータ10を介して高圧バッテリ11を充電する(回生)。高圧バッテリ11は、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどにより構成されている。回転電機80が、車両の駆動力源の場合、高圧バッテリ11は、大電圧大容量の直流電源であり、定格の電源電圧は、例えば200~400[V]である。
 以下、インバータ10の直流側の正極電源ラインPと負極電源ラインNとの間の電圧を、直流リンク電圧Vdcと称する。インバータ10の直流側には、直流リンク電圧Vdcを平滑化する平滑コンデンサ(直流リンクコンデンサ4)が備えられている。直流リンクコンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。
 図1に示すように、高圧バッテリ11とインバータ10との間には、コンタクタ9が備えられている。具体的には、コンタクタ9は、直流リンクコンデンサ4と高圧バッテリ11との間に配置されている。コンタクタ9は、回転電機制御装置1の電気回路系統(直流リンクコンデンサ4、インバータ10)と、高圧バッテリ11との電気的な接続を切り離すことが可能である。即ち、インバータ10は、回転電機80に接続されていると共に、高圧バッテリ11との間にコンタクタ9を介して接続されている。コンタクタ9が接続状態(閉状態)において高圧バッテリ11とインバータ10(及び回転電機80)とが電気的に接続され、コンタクタ9が開放状態(開状態)において高圧バッテリ11とインバータ10(及び回転電機80)との電気的接続が遮断される。
 本実施形態において、このコンタクタ9は、車両内の上位の制御装置の1つである車両ECU(VHL-ECU:Vehicle Electronic Control Unit)90からの指令に基づいて開閉するメカニカルリレーであり、例えばシステムメインリレー(SMR : System Main Relay)と称される。コンタクタ9は、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際にリレーの接点が閉じて導通状態(接続状態)となり、IGキーがオフ状態(非有効状態)の際にリレーの接点が開いて非導通状態(開放状態)となる。
 上述したように、インバータ10は、直流リンク電圧Vdcを有する直流電力を複数相(nを自然数としてn相、ここでは3相)の交流電力に変換して回転電機80に供給すると共に、回転電機80が発電した交流電力を直流電力に変換して直流電源に供給する。インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC-MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC-SIT(SiC - Static Induction Transistor)、GaN-MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。図1及び図2に示すように、本実施形態では、スイッチング素子3としてMOSFET(好適には、SiC-MOSFET)が用いられる。
 図2に示すように、本実施形態では、スイッチング素子3は、nチャネル型のMOSFET3F、後述するフリーホイールダイオード3Dを有して構成されている。本実施形態では、MOSFET3Fのゲート端子Gとソース端子Sとの間に、ゲートバイアス抵抗R1(制御端子バイアス抵抗)が接続されている。ゲートバイアス抵抗R1は、無くても問題はなく、その場合には、スイッチング素子3(MOSFET3F)の制御端子(ゲート端子G)と当該スイッチング素子3(MOSFET3F)のソース端子Sとの間の抵抗値は無限大(開放)である。当然ながら、ゲートバイアス抵抗R1を有する場合には、スイッチング素子3(MOSFET3F)の制御端子(ゲート端子G)と当該スイッチング素子3(MOSFET3F)のソース端子Sとの間の抵抗値は、ゲートバイアス抵抗R1の抵抗値と等価である。図示は省略するが、駆動対象のスイッチング素子3がIGBTであり、ゲートバイアス抵抗R1を有する場合には、IGBTの制御端子(ゲート端子)と当該スイッチング素子3(IGBT)のエミッタ端子との間の抵抗値が、ゲートバイアス抵抗R1の抵抗値と等価となる。当然ながら、駆動対象のスイッチング素子3がIGBTであり、ゲートバイアス抵抗R1が無い場合には、IGBTの制御端子(ゲート端子)と当該スイッチング素子3(IGBT)のエミッタ端子との間の抵抗値は無限大(開放)である。
 インバータ10は、よく知られているように複数相のそれぞれに対応する数のアーム3Aを有するブリッジ回路により構成される。本実施形態では、回転電機80のU相、V相、W相に対応するステータコイル8のそれぞれに一組の直列回路(アーム3A)が対応したブリッジ回路が構成される。アーム3Aの中間点、つまり、正極電源ラインPの側のスイッチング素子3(上段側スイッチング素子3H)と負極電源ラインN側のスイッチング素子3(下段側スイッチング素子3L)との接続点は、回転電機80の3相のステータコイル8にそれぞれ接続される。尚、各スイッチング素子3には、負極(N)から正極(P)へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にフリーホイールダイオード3Dが備えられている(図2参照)。
 図1に示すように、インバータ10は、インバータ制御装置(CNTL)20により制御される。インバータ制御装置20は、マイクロコンピュータ等の論理プロセッサを中核部材として構築されている。例えば、インバータ制御装置20は、車両ECU90等の他の制御装置等から要求信号として提供される回転電機80の目標トルクに基づいて、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出され、インバータ制御装置20はその検出結果を取得する。また、回転電機80のロータの各時点での磁極位置は、例えばレゾルバなどの回転センサ13により検出され、インバータ制御装置20はその検出結果を取得する。インバータ制御装置20は、電流センサ12及び回転センサ13の検出結果を用いて、電流フィードバック制御を実行する。インバータ制御装置20は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータ等のハードウエアとソフトウエア(プログラム)との協働により実現される。電流フィードバック制御については、公知であるのでここでは詳細な説明は省略する。
 ところで、インバータ10を構成するそれぞれのスイッチング素子3の制御端子(例えばMOSFETのゲート端子G)は、駆動回路2(スイッチング素子駆動回路)を介してインバータ制御装置20に接続されており、それぞれ個別にスイッチング制御される。車両ECU90や、スイッチング制御信号SW(SWorg)を生成するインバータ制御装置20は、マイクロコンピュータなどを中核として、低圧系回路LVとして構成される。低圧系回路LVは、インバータ10などの回転電機80を駆動するための高圧系回路HVとは、動作電圧(回路の電源電圧)が大きく異なる。多くの場合、車両には、高圧バッテリ11の他に、高圧バッテリ11よりも低電圧(+B:例えば12~24[V])の電源である低圧バッテリ15(低圧直流電源)も搭載されている。車両ECU90やインバータ制御装置20の動作電圧は、例えば5[V]や3.3[V]であり、低圧バッテリ15の電力に基づいてこれらの電圧を生成する電圧レギュレータなどの電源回路(不図示)から電力を供給されて動作する。
 このため、回転電機制御装置1には、各スイッチング素子3に対するスイッチング制御信号SW(MOSFETの場合、ゲート駆動信号)の駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継する(即ち、スイッチング制御信号SWを増幅する)駆動回路2が備えられている。低圧系回路LVのインバータ制御装置20により生成されたスイッチング制御信号SWは、駆動回路2を介して高圧系回路HVの駆動信号DSとしてインバータ10に供給される。駆動回路2は、それぞれのスイッチング素子3に対応して備えられている。本実施形態では、インバータ10に、駆動対象となる6つのスイッチング素子3が備えられており、駆動回路2も6つ備えられている(例えば図7参照)。後述するように、本実施形態では、駆動回路2は、スイッチング制御信号SWの電力を増幅して駆動対象のスイッチング素子3の制御端子(ゲート端子G)へ伝達するプッシュプルバッファ回路21を備えて構成されている(図2参照)。
 ところで、低圧系回路LVと高圧系回路HVとは、多くの場合、互いに絶縁されている。本実施形態でも、図1に示すように、フォトカプラ6やトランスTなどの絶縁素子により、低圧系回路LVと高圧系回路HVとが絶縁されている。インバータ制御装置20により生成されるスイッチング制御信号SW(源信号)は、厳密には “SWorg”であるが、駆動回路2から見た場合には、フォトカプラ6の出力側の信号も源信号に相当する。従って、特に区別する必要が無い限り、フォトカプラ6の前後において信号を区別せず、フォトカプラ6の出力側の信号(SW)をスイッチング制御信号SW(源信号)として説明する。
 ところで、駆動回路2には、スイッチング素子3の制御に必要な出力を得るために負電源が必要なものがある。例えばスイッチング素子3がIGBTの場合には、そのような負電源が必要とされることは少ないが、スイッチング素子3がSiC-MOSFETの場合には、しばしばそのような負電源が必要とされる。
 スイッチング素子3は、スイッチング素子3の負極側の端子の電位(仮想グラウンドVGと称する)を基準として駆動信号DSの信号レベルが例えば15~20[V]の時に当該スイッチング素子3がオン状態に制御され、信号レベルが0[V]の時に当該スイッチング素子3がオフ状態に制御される。スイッチング素子3は、完全なオン状態(飽和領域での動作)とオフ状態との間の非飽和領域でも動作する。駆動信号DSの信号レベルが、15[V]よりも低いしきい値電圧Vth(図3等参照)を超えるとスイッチング素子3は、オフ状態から非飽和領域での動作を開始する。近年実用化が進んでいる素子の1つであるSiC-MOSFETは、IGBTに比べてこのしきい値電圧Vthが低い。例えば、IGBTのしきい値電圧は5~7[V]程度であり、SiC-MOSFETのしきい値電圧は1~3[V]程度である。
 このため、スイッチング素子3がSiC―MOSFETの場合には、スイッチング素子3の負極側の端子の電位(仮想グラウンドVG)を基準とした駆動信号DSの信号レベルが例えば15~20[V]の時には、当該スイッチング素子3が安定してオン状態に制御されるが、信号レベルが0[V]の時には、ノイズ等の影響によって当該スイッチング素子3が安定してオフ状態に制御されない場合がある。スイッチング素子3を適切にオフ状態に制御するためには、駆動信号DSの信号レベルを、スイッチング素子3の負極側の端子の電位(仮想グラウンドVG)よりも低い電位にすることが好ましい。例えば、スイッチング素子3の負極側の端子の電位(仮想グラウンドVG)を基準として“-5[V]”程度の信号レベルの駆動信号DSを与えることで、IGBTと同様のノイズマージンを確保することができる(1~3[V]+5[V]=6~8[V])。
 SiC―MOSFETは、IGBTに比べてスイッチング速度が速く、スイッチング損失も小さい。また、SiC-MOSFETは、小型化も可能であるから、IGBTに代えてインバータ10のスイッチング素子3として採用される例も増加している。このため、駆動回路2は、スイッチング素子3としてSiC-MOSFETを適用した場合でも適切にスイッチング素子3を駆動制御することができることが望ましい。
 本実施形態では、インバータ10を構成するスイッチング素子3として、このSiC-MOSFETを例示している。従って、駆動回路2は、仮想グラウンドVGに対して信号レベルが負の駆動信号DSを出力するように構成されており、駆動回路2には、仮想グラウンドVGに対する負電源(後述する第2駆動電圧生成回路5L:図5参照)が必要である。ここで、スイッチング素子3をオン状態に制御する電位(上述した約15~20[V]程度の電位に相当する)を第1電位“+V1”と称する。第1電位“+V1”は、スイッチング素子3の負極側の端子の電位(仮想グラウンドVG)に対して正の電位である。また、スイッチング素子3をオフ状態に制御する電位を第2電位“-V2”と称する。第2電位“-V2”は、スイッチング素子3の負極側の端子の電位(仮想グラウンドVG)に対して負の電位である。駆動電圧生成回路5は、第1電位“+V1”及び第2電位“-V2”を、高圧バッテリ11(第1直流電源)よりも定格電圧が低い低圧バッテリ15(第2直流電源)から生成する。
 駆動電圧生成回路5は、図4及び図5に示すように一次側コイルL1(L11,L21)及び二次側コイルL2(L12,L22)を備えたトランスT(T1,T2)を用いた電力変換回路52(52H,52L)と、制御回路(PCNTL)51とを有している。図4は、第1電位“+V1”を生成する第1駆動電圧生成回路5Hを例示しており、図5は、第2電位“-V2”を生成する第2駆動電圧生成回路5Lを例示している。第1駆動電圧生成回路5Hの構成と第2駆動電圧生成回路5Lの構成とは、コイルの極性や巻数、二次側ダイオードD2の極性を除いて同様である。従って、特に区別する必要が無い限り、駆動電圧生成回路5として共通の符号を用いて説明する。制御回路51については、共通の制御回路51によって複数の電力変換回路52(52H,52L)を制御する形態を例示している。
 電力変換回路52は、一次側コイルL1(L11,L21)、一次側抵抗R10(R11,R21)、一次側ダイオードD1(D11,D21)、一次側コンデンサC1(C11,C21)、及び電源制御用スイッチング素子S1(S1H,S1L)を備えた一次側回路と、二次側コイルL2(L12,L22)、二次側ダイオードD2(D12,D22)、及び二次側コンデンサC2(C12,C22)を備えた二次側回路と、を備えている。制御回路51は、一次側回路の電源制御用スイッチング素子S1(S1H,S1L)をスイッチングして、一次側コイルL1(L11,L21)への通電を制御する。このようなトランスを利用した電源回路は、公知であるから電力変換動作など、詳細な説明は省略する。尚、一次側コイルL1(L11,L21)は低圧系回路LVに接続され、二次側コイルL2(L12,L22)は高圧系回路HVに接続されている。
 駆動電圧生成回路5は、それぞれのスイッチング素子3に駆動信号DSを伝達する駆動回路2に対して、独立して駆動電圧を供給する。本実施形態では、インバータ10が6つのスイッチング素子3を備え、これに対応して6つの駆動回路2が設けられている(図7参照)。駆動電圧生成回路5は、基本的にはそれぞれの駆動回路2に対応して設けられる。駆動電圧生成回路5の二次側回路のグラウンド(仮想グラウンドVG)は、それぞれのスイッチング素子3の負極“N”側の端子(ソース端子S)の電位である。図7に示すように、上段側スイッチング素子3Hに対応する仮想グラウンドVGは、U,V,W相でそれぞれ異なる電位(VGUH,VGVH,VGWH)である。但し、下段側スイッチング素子3Lに関しては、スイッチング素子3の負極側の端子の電位(VGUL,VGVL,VGWL)が全てインバータ10の負極“N”であり、仮想グラウンドVGは共通である。従って、第2駆動電圧生成回路5Lは、下段側の全相に共通して設けられていてもよい(図7にはこの形態を例示)。この場合には、図7に示すように、3つの第1駆動電圧生成回路5Hと、1つの第2駆動電圧生成回路5Lとで、合計4つの駆動電圧生成回路5が設けられる。
 ところで、駆動電圧生成回路5は、図6に例示するように、第1駆動電圧生成回路5Hと第2駆動電圧生成回路5Lとを組み合わせて構成されていてもよい。図6は、プッシュプル型のトランス型電力変換回路を例示している。この駆動電圧生成回路5(5HL)は、図6に示すように一次側コイルL1(L11,L21)及び二次側コイルL2(L12,L22)を備えたトランスT(T3)を用いた電力変換回路(56)と、制御回路(55)とを有している。尚、機能的に共通する構成については、図4及び図5と共通の符号を用いて例示している。このような電源回路も、公知であるから回路構成や電力変換動作などについての詳細な説明は省略する。尚、この場合には、駆動電圧生成回路5(5HL)は、6つのスイッチング素子3及び6つの駆動回路2に対応して6つ設けられる。
 このように、駆動電圧生成回路5(第2駆動電圧生成回路5L)は、図5及び図6の何れの形態であっても、一次側コイルL1及び二次側コイルL2を有するトランス回路である。負電源(第2駆動電圧生成回路5L)の出力側回路は、二次側コイルL2と、出力端V2outから二次側コイルL2の第1端n1へ向かう方向を順方向として接続された整流用ダイオード(二次側ダイオード(D22))と、第1端n1とは異なる二次側コイルL2の第2端n2と出力端V2outとの間に接続されたコンデンサ(二次側コンデンサ(C22))とを備える。当該第2端n2は、駆動対象のスイッチング素子3の負極(仮想グラウンドVG)の側に接続されている。また、本実施形態では、駆動電圧生成回路5が図5及び図6の何れの形態であっても、第2電位“-V2”は、駆動対象のスイッチング素子3の負極(仮想グラウンドVG)の側よりも電位の低い負電源(第2駆動電圧生成回路5L)の出力端V2outに接続される。
 図7に示すように、スイッチング制御信号伝送用のフォトカプラ6も、それぞれのスイッチング素子3に対して独立して設けられており、本実施形態では6つ設けられている。フォトカプラは、互いに絶縁された発光ダイオードとフォトトランジスタ(又はフォトダイオード)とを備えており、光信号によって信号を伝送する。スイッチング制御信号伝送用のフォトカプラ6の信号入力側の発光ダイオードは低圧系回路LVに接続され、信号出力側のフォトトランジスタ(又はフォトダイオード)は高圧系回路HVに接続されている。信号出力側のフォトトランジスタ(又はフォトダイオード)には、例えば、駆動電圧生成回路5や高圧バッテリ11から、不図示のレギュレータ回路を介して生成された電力が供給される。
 駆動回路2は、インバータ10を制御するインバータ制御装置20から出力されるスイッチング制御信号SWの論理レベルに応じて、第1電位“+V1”の駆動信号DS、又は、第2電位“-V2”の駆動信号DSを生成して、スイッチング素子3の制御端子に伝達する。ここで、インバータ制御装置20から出力されるスイッチング制御信号SWとは、上述したようにスイッチング制御信号伝送用のフォトカプラ6を介して伝達された信号である。
 図2に示すように、駆動回路2は、相補的にスイッチングする2つのスイッチング素子(ここではトランジスタ(21H,21L))を有するプッシュプルバッファ回路21(エミッタフォロワ回路)を有して構成されている。具体的には、駆動回路2は、NPN型の上段側トランジスタ21H(上段側バッファ素子)、PNP型の下段側トランジスタ21L(下段側バッファ素子)、補償抵抗R2、入力側プルダウン抵抗R3、上段側電流制限抵抗R21H、下段側電流制限抵抗R21Lを有して構成されている。上段側トランジスタ21Hのコレクタ端子は、上段側電流制限抵抗R21Hを介して第1電位“+V1”に接続され、下段側トランジスタ21Lのコレクタ端子は、下段側電流制限抵抗R21Lを介して第2電位“-V2”に接続されている。上段側トランジスタ21Hのベース端子と下段側トランジスタ21Lのベース端子とは接続されており、共にスイッチング制御信号SW(スイッチング制御信号の源信号、増幅前のスイッチング制御信号)が入力される。
 プッシュプルバッファ回路21は、上述したように、極性の異なるスイッチング素子がバッファ素子(21H,21L)として、第1電位“+V1”と、第1電位“+V1”よりも低電位の第2電位“-V2”との間に直列接続されて構成されている。プッシュプルバッファ回路21は、第1電位“+V1”の側の上段側バッファ素子(上段側トランジスタ21H)と、第2電位“-V2”の側の下段側バッファ素子(下段側トランジスタ21L)の制御端子(ベース端子B)同士の接続点を入力部INとし、上段側バッファ素子(上段側トランジスタ21H)と下段側バッファ素子(下段側トランジスタ21L)の入出力端子(エミッタ端子E)同士の接続点を出力部OUTとする。また、プッシュプルバッファ回路21は、第1電位“+V1”と上段側バッファ素子(上段側トランジスタ21H)との間に上段側電流制限抵抗R21Hを有し、第2電位“-V2”と下段側バッファ素子(下段側トランジスタ21L)との間に下段側電流制限抵抗R21Lを有する。入力部INにスイッチング制御信号SW(スイッチング制御信号の源信号)が入力され、出力部OUTが駆動対象のスイッチング素子3の制御端子(ゲート端子G)に接続される。
 尚、上段側トランジスタ21Hのオン抵抗の値と、上段側電流制限抵抗R21Hとの和は、出力部OUTと第1電位“+V1”との間の抵抗値に相当する。仮に上段側電流制限抵抗R21Hを設置しない場合には、上段側トランジスタ21Hのオン抵抗の値が、出力部OUTと第1電位“+V1”との間の抵抗値となる。また、上段側電流制限抵抗R21Hが設置され、上段側電流制限抵抗R21Hに比べて上段側トランジスタ21Hのオン抵抗の値が充分小さい場合には、出力部OUTと第1電位“+V1”との間の抵抗値は、上段側電流制限抵抗R21Hの抵抗値とほぼ等価となる。
 同様に、下段側トランジスタ21Lのオン抵抗の値と、下段側電流制限抵抗R21Lとの和は、出力部OUTと第2電位“-V2”との間の抵抗値に相当する。仮に下段側電流制限抵抗R21Lを設置しない場合には、下段側トランジスタ21Lのオン抵抗の値が、出力部OUTと第2電位“-V2”との間の抵抗値となる。また、下段側電流制限抵抗R21Lが設置され、下段側電流制限抵抗R21Lに比べて下段側トランジスタ21Lのオン抵抗の値が充分小さい場合には、出力部OUTと第2電位“-V2”との間の抵抗値は、下段側電流制限抵抗R21Lの抵抗値とほぼ等価となる。
 NPN型の上段側トランジスタ21HとPNP型の下段側トランジスタ21Lとは、スイッチング制御信号SWの論理レベルに応じて、相補的にオン状態となる。駆動回路2は、スイッチング制御信号SWの論理レベルがハイ状態のとき、第1電位“+V1”の駆動信号DSを出力し、駆動対象のスイッチング素子3のゲート端子G(制御端子)に対して電流を吐き出す(プッシュ動作)。また、駆動回路2は、スイッチング制御信号SWの論理レベルがロー状態のとき、第2電位“-V2”の駆動信号DSを出力し、駆動対象のスイッチング素子3のゲート端子G(制御端子)から電流を吸い込む(プル動作)。
 上段側電流制限抵抗R21H及び下段側電流制限抵抗R21Lは、プッシュ動作及びプル動作において、バッファ素子(上段側トランジスタ21H、下段側トランジスタ21L)に流れる電流が定格内に収まるように電流を制限する抵抗である。定格の範囲内でスイッチング素子3を適切に駆動するために充分な電流を流す必要があるため、上段側電流制限抵抗R21H及び下段側電流制限抵抗R21Lの抵抗値は、一般的には数Ω(10[Ω]以下程度)である。一方、入力側プルダウン抵抗R3は、通常動作時における損失を低減するために、上段側電流制限抵抗R21H及び下段側電流制限抵抗R21Lに比べて大きい抵抗値を有する。1つの態様として、入力側プルダウン抵抗R3の抵抗値は、上段側電流制限抵抗R21H及び下段側電流制限抵抗R21Lの抵抗値の100倍以上に設定されている。また、上段側電流制限抵抗R21H及び下段側電流制限抵抗R21Lの抵抗値は、同じ値が好ましいが、異なっていることを妨げるものではない。尚、両抵抗値が異なる場合であっても、入力側プルダウン抵抗R3の抵抗値は、少なくとも下段側電流制限抵抗R21Lの抵抗値の100倍以上に設定されていることが好ましい。
 補償抵抗R2は、上段側トランジスタ21H及び下段側トランジスタ21Lのベース-コレクタ間のダイオードによる電圧降下(0.6~0.7[V])を補償する。従って、補償抵抗R2は、スイッチング制御信号SWによって与えられる電流によって上段側トランジスタ21H及び下段側トランジスタ21Lがオン状態に遷移するために必要十分な抵抗値が設定されている。好適には、補償抵抗R2の抵抗値は、入力側プルダウン抵抗R3と同等、或いは、入力側プルダウン抵抗R3よりもやや小さい値に設定されている。
 上述したように、駆動対象のスイッチング素子3のゲートバイアス抵抗R1は、接続されていなくても良く、従って、ゲートバイアス抵抗R1の抵抗値は概ね100[kΩ]以上の大きな値である。ゲートバイアス抵抗R1、補償抵抗R2、入力側プルダウン抵抗R3、下段側電流制限抵抗R21Lの抵抗値の関係は、概ね以下のようになる。
 R1 > R2+R3 > R21L
 上述したように、駆動電圧生成回路5は、低圧バッテリ15から第1電位“+V1”及び第2電位“-V2”を生成する。従って、低圧バッテリ15からの電力の供給が遮断された場合などには、第1電位“+V1”及び第2電位“-V2”を生成することができなくなる。上述したように、スイッチング素子3が、SiC-MOSFETの場合、駆動信号DSの電位が、第2電位“-V2”でなければ、安定的にスイッチング素子3をオフ状態に制御することができない場合がある。例えば駆動信号DSの電位と、スイッチング素子3の負極側の電位(仮想グラウンドVG)との差が0[V]程度の場合には、ノイズ等によってスイッチング素子3がオン状態となってソース-ドレイン間に電流が流れる場合がある。高圧バッテリ11とインバータ10との接続が維持されている場合(コンタクタ9が閉じている場合)や、当該接続が遮断されていても(コンタクタ9が開放されていても)直流リンクコンデンサ4に多くの電荷が蓄積されている場合に、アーム3Aの両方のスイッチング素子3がオン状態となると、短絡によって大きな電流がアーム3Aに流れる場合がある。また、回転電機80が回転していて、誘導起電力により大きな電流がアーム3Aに流れる場合もある。
 従って、低圧バッテリ15からの電力の供給が遮断された場合などで、駆動電圧生成回路5が第2電位“-V2”を生成することができなくなっても、駆動回路2は、スイッチング素子3を適切にオフ状態とすることが望まれる。
 図3のタイミングチャートは、駆動対象のスイッチング素子3の挙動の一例を示している。図9、図10を参照して後述する比較例と比べると、時刻t1において、スイッチング素子3のドレイン-ソース間電圧VDSが急上昇し、それに応答してゲート-ソース間電圧VGSが上昇し、しきい値電圧Vthを超えることにより生じるドレイン-ソース間電流IDSの発生がほぼ解消されている。詳細については後述する。
 図8は、駆動回路2の比較例(比較回路2B)を示している。尚、比較が容易になるように、駆動回路2と同様の構成については、図2と同じ符号を用いて例示している。比較回路2Bは、駆動回路2に比べて、補償抵抗R2及び入力側プルダウン抵抗R3を有していない点が異なる。
 図9及び図10のタイミングチャートは、比較回路2Bにより駆動対象のスイッチング素子3を駆動する場合におけるスイッチング素子3の挙動の一例を示している。時刻t1において、スイッチング素子3のドレイン-ソース間電圧VDSが急激に上昇すると、ゲート端子Gの寄生容量(ゲート-ドレイン間及びゲート-ソース間の寄生容量)により、ゲート-ソース間電圧VGSも急激に上昇する。ゲート-ソース間電圧VGSがしきい値電圧Vthを超えると、スイッチング素子3がオン状態へと遷移し、ドレイン-ソース間電流IDSが流れる。寄生容量の電荷(特にゲート-ドレイン間の寄生容量の電荷)は、ゲートバイアス抵抗R1を介して負極側(ソース端子Sの側)に放電され、ゲート-ソース間電圧VGSは低下していく。ゲート-ソース間電圧VGSの低下に伴って、ドレイン-ソース間電流IDSも減少し、ゲート-ソース間電圧VGSがしきい値電圧Vthを下回ると、ドレイン-ソース間電流IDSは、ほぼゼロとなる(時刻t3)。しかし、ドレイン-ソース間電圧VDSが印加されているため、スイッチング素子3に生じる漏れ電流がゲートバイアス抵抗R1を流れ、ゲート-ソース間電圧VGSが発生する。漏れ電流が増加すると、ゲートバイアス抵抗R1の両端電圧、即ちゲート-ソース間電圧VGSが上昇し、しきい値電圧Vthを超える場合がある(時刻t5)。
 上述したように、ゲートバイアス抵抗R1の抵抗値は概ね100[kΩ]以上の大きな値である。従って、ゲートバイアス抵抗R1に流れる電流が少なくても、ゲートバイアス抵抗R1の両端電圧は高くなる傾向がある。上述したように、漏れ電流に起因して、時刻t3以降にゲート-ソース間電圧VGSが上昇することを抑制する方法として、ゲートバイアス抵抗R1の抵抗値を小さくすることが考えられる。図10のタイミングチャートは、その場合のスイッチング素子3の挙動の一例を示している。図9と図10との比較により明らかなように、漏れ電流によるゲート-ソース間電圧VGSの上昇は抑制される。但し、時刻t1において生じる現象、即ち、寄生容量に起因するゲート-ソース間電圧VGSの上昇、並びに、ドレイン-ソース間電流IDSの発生は、抑制されない。従って、対策としては不充分である。また、ゲートバイアス抵抗R1の抵抗値を小さくすると通常動作時においてゲートバイアス抵抗R1を流れる電流が増加することになり、エネルギーロスが増加する。
 ここで、図2及び図3を参照して、本実施形態の駆動回路2を適用した場合のスイッチング素子3の挙動を説明する。時刻t1において、スイッチング素子3のドレイン-ソース間電圧VDSが急激に上昇すると、ゲート端子Gの寄生容量(ゲート-ドレイン間及びゲート-ソース間の寄生容量)により、ゲート-ソース間電圧VGSも急激に上昇する。但し、上述したように、ゲート端子Gからスイッチング素子3の仮想グラウンドVGに向かって直列接続されている補償抵抗R2と入力側プルダウン抵抗R3との抵抗値の和は、ゲートバイアス抵抗R1の抵抗値に比べて小さい。補償抵抗R2と入力側プルダウン抵抗R3との抵抗値の和は、好適には10[kΩ]程度であり、ゲートバイアス抵抗R1の抵抗値は100[kΩ]程度である。このため、寄生容量の電荷(特にゲート-ドレイン間の寄生容量の電荷)は、補償抵抗R2及び入力側プルダウン抵抗R3を通って仮想グラウンドVGへ放電される。
 補償抵抗R2を流れる電流によって、補償抵抗R2の両端に電位差が生じる。これにより、プッシュプルバッファ回路21の上段側トランジスタ21H及び下段側トランジスタ21Lのベース-エミッタ間には負の電圧が印加され、PNP型の下段側トランジスタ21Lがオン状態へ遷移する。下段側電流制限抵抗R21Lの抵抗値は、数Ω程度であり、補償抵抗R2と入力側プルダウン抵抗R3との抵抗値の和(10[kΩ]程度)、ゲートバイアス抵抗R1の抵抗値(100[kΩ]程度)に比べて非常に小さい。このため、寄生容量に伴う電流も、漏れ電流に伴う電流も、下段側トランジスタ21Lを流れる(後述するように、仮想グラウンドVGへと流れる。)。このため、時刻t1におけるゲート-ソース間電圧VGSの上昇も瞬時に解消され、スイッチング素子3がオン状態へと遷移してドレイン-ソース間電流IDSが流れることも抑制される。
 ところで、駆動電圧生成回路5は、低圧バッテリ15から第1電位“+V1”及び第2電位“-V2”を生成する。従って、低圧バッテリ15からの電力の供給が遮断された場合などには、第1電位“+V1”及び第2電位“-V2”を生成することができなくなる。下段側トランジスタ21Lは、第2電位“-V2”に接続されているが、駆動電圧生成回路5が第2電位“-V2”を生成することができない状態において、下段側トランジスタ21Lは、下段側電流制限抵抗R21Lを介して仮想グラウンドVGに接続されることになる(詳細は図5を参照して後述する。)。従って、寄生容量に伴う電流も、漏れ電流に伴う電流も、下段側トランジスタ21L及び下段側電流制限抵抗R21Lを介して仮想グラウンドVGへ流れる。
 図5に示すように、第2駆動電圧生成回路5Lの出力端V2outは、出力端V2outから仮想グラウンドVGの方に順方向接続された二次側ダイオードD2(D22)、及び、二次側コイルL2(L22)を介して、仮想グラウンドVGに接続されている。下段側トランジスタ21Lは、下段側電流制限抵抗R21Lを介して第2駆動電圧生成回路5Lの出力端V2out(第2電位“-V2”)に接続されているから、仮想グラウンドVGにも接続されることになる。これは、図6に例示した駆動電圧生成回路5(5HL)でも同様である。   
〔実施形態の概要〕
 以下、上記において説明したスイッチング素子駆動回路(2)の概要について簡単に説明する。
 スイッチング制御信号(SW)の電力を増幅して駆動対象のスイッチング素子(3)の制御端子(G)へ伝達するプッシュプルバッファ回路(21)を備え、前記駆動対象のスイッチング素子(3)を駆動するスイッチング素子駆動回路(2)は、1つの態様として、
 前記プッシュプルバッファ回路(21)が、極性の異なるスイッチング素子がバッファ素子(21H,21L)として、第1電位(+V1)と前記第1電位よりも低電位の第2電位(-V2)との間に直列接続され、前記第1電位(+V1)の側の上段側バッファ素子(21H)と前記第2電位(-V2)の側の下段側バッファ素子(21L)の制御端子(B)同士の接続点を入力部(IN)とし、前記上段側バッファ素子(21H)と前記下段側バッファ素子(21L)の入出力端子(E)同士の接続点を出力部(OUT)とし、前記第1電位(+V1)と前記上段側バッファ素子(21H)との間に上段側電流制限抵抗(R21H)を有し、前記第2電位(-V2)と前記下段側バッファ素子(21L)との間に下段側電流制限抵抗(R21L)を有し、前記入力部(IN)に前記スイッチング制御信号(SW)が入力され、前記出力部(OUT)が前記駆動対象のスイッチング素子(3)の制御端子(G)に接続され、
 さらに、
 前記入力部(IN)と前記出力部(OUT)とを接続する補償抵抗(R2)と、
 前記入力部(IN)と前記駆動対象のスイッチング素子(3)の負極(VG)側とを接続する入力側プルダウン抵抗(R3)と、を備え、
 前記補償抵抗(R2)の抵抗値と前記入力側プルダウン抵抗(R3)の抵抗値との和が、前記駆動対象のスイッチング素子(3)の制御端子(G)と当該スイッチング素子(3)のエミッタ端子又はソース端子(S)との間の抵抗値(R1)よりも小さく、前記下段側電流制限抵抗(R21L)の抵抗値よりも大きい値に設定されている。
 駆動対象のスイッチング素子(3)の入出力端子間(ドレイン-ソース間やコレクタ-エミッタ間)に電圧が印加されると、制御端子(ゲート端子(G)やベース端子(B))の浮遊容量によって制御端子の駆動電圧(ゲート-ソース間電圧(VGS)やゲート-エミッタ間電圧やベース-エミッタ間電圧)が急激に上昇する場合がある。スイッチング素子駆動回路(2)は、制御端子(G)と負極(VG)との間に補償抵抗(R2)と入力側プルダウン抵抗(R3)との直列回路を備えている。補償抵抗(R2)の抵抗値と入力側プルダウン抵抗(R3)の抵抗値との和は、制御端子(G)と当該スイッチング素子(3)のエミッタ端子又はソース端子(S)との間の抵抗値(R1)よりも小さい。従って、寄生容量の電荷は、補償抵抗(R2)及び入力側プルダウン抵抗(R3)を通って駆動対象のスイッチング素子(3)の負極(VG)へと放電される。このとき、補償抵抗(R2)を流れる電流によって、補償抵抗(R2)の両端に電位差が生じ、プッシュプルバッファ回路(21)の下段側バッファ素子(21L)がオン状態に遷移する。下段側電流制限抵抗(R21L)の抵抗値は、補償抵抗(R2)の抵抗値と入力側プルダウン抵抗(R3)の抵抗値との和よりも小さい。従って、下段側バッファ素子(21L)がオン状態に遷移すると、浮遊容量の電荷や駆動対象のスイッチング素子(3)に流れる漏れ電流は、下段側バッファ素子(21L)及び下段側電流制限抵抗(R21L)を通って流れる。これにより、駆動対象のスイッチング素子(3)の制御端子に、当該スイッチング素子(3)をオン状態に遷移させるような電圧が生じることが抑制される。このように、本構成によれば、スイッチング制御信号(SW)を増幅してスイッチング素子(3)に伝達する駆動回路(2)への電力供給が滞った場合においても、適切にスイッチング素子(3)をオフ状態に制御することができる。
 ここで、前記第2電位(-V2)は、前記駆動対象のスイッチング素子(3)の負極(VG)の側よりも電位の低い負電源(5L)の出力端(V2out)に接続され、前記負電源(5)は一次側コイル(L21)及び二次側コイル(L22)を有するトランス回路であり、前記負電源(5L)の出力側回路は、前記二次側コイル(L22)と、前記出力端(V2out)から前記二次側コイル(L22)の第1端(n1)へ向かう方向を順方向として接続された整流用ダイオード(D22)と、前記第1端(n1)とは異なる前記二次側コイル(L22)の第2端(n2)と前記出力端(V2out)との間に接続されたコンデンサ(C22)と、を備え、前記第2端(n2)が前記駆動対象のスイッチング素子(3)の負極(VG)の側に接続されていると好適である。
 この構成によれば、負電源(5L)への電力供給が遮断された場合であっても負電源(5L)の出力端(V2out)は、出力端(V2out)から駆動対象のスイッチング素子(3)の負極(VG)の方に向かって順方向接続された整流用ダイオード(D22)、及び、二次側コイル(L22)を介して、当該負極(VG)に接続されている。下段側トランジスタ(21L)は、下段側電流制限抵抗(R21L)を介して負電源(5L)の出力端(V2out(第2電位(-V2)))に接続されているから、当該負極(VG)にも接続されることになる。従って、負電源(5L)が正常に機能しておらず、駆動回路(2)への電力供給が滞った場合においても、電流を駆動対象のスイッチング素子(3)の負極(VG)に導いて、適切にスイッチング素子(3)をオフ状態に制御することができる。
 また、前記入力側プルダウン抵抗(R3)の抵抗値は、前記下段側電流制限抵抗(R21L)の抵抗値の100倍以上に設定されていると好適である。
 この構成によれば、下段側バッファ素子(21L)を通って駆動対象のスイッチング素子(3)の負極(VG)へ至る経路の抵抗値が、入力側プルダウン抵抗(R3)を通って当該負極(VG)へ至る経路の抵抗値よりも遙かに小さくなる。従って、下段側バッファ素子(21L)を介して、電流を駆動対象のスイッチング素子(3)の負極(VG)に導いて、適切にスイッチング素子(3)をオフ状態に制御することができる。
2     駆動回路(スイッチング素子駆動回路)
3     スイッチング素子
3F    MOSFET(スイッチング素子)
3H    上段側スイッチング素子(スイッチング素子)
3L    下段側スイッチング素子(スイッチング素子)
5L    第2駆動電圧生成回路(負電源)
21    プッシュプルバッファ回路
21H   上段側トランジスタ(上段側バッファ素子)
21L   下段側トランジスタ(下段側バッファ素子)
B     ベース端子(制御端子)
C22   二次側コンデンサ
D22   二次側ダイオード(整流用ダイオード)
E     エミッタ端子
G     ゲート端子(制御端子)
IN    プッシュプルバッファ回路の入力部
n1    二次側コイルの第1端
n1    二次側コイルの第2端
OUT   プッシュプルバッファ回路の出力部
R1    ゲートバイアス抵抗
R2    補償抵抗
R21H  上段側電流制限抵抗
R21L  下段側電流制限抵抗
R3    入力側プルダウン抵抗
S     ソース端子
SW    スイッチング制御信号
T     トランス
V2out 負電源の出力端
 
 
 

Claims (3)

  1.  スイッチング制御信号の電力を増幅して駆動対象のスイッチング素子の制御端子へ伝達するプッシュプルバッファ回路を備え、前記駆動対象のスイッチング素子を駆動するスイッチング素子駆動回路であって、
     前記プッシュプルバッファ回路は、極性の異なるスイッチング素子がバッファ素子として、第1電位と前記第1電位よりも低電位の第2電位との間に直列接続され、前記第1電位の側の上段側バッファ素子と前記第2電位の側の下段側バッファ素子の制御端子同士の接続点を入力部とし、前記上段側バッファ素子と前記下段側バッファ素子の入出力端子同士の接続点を出力部とし、前記第1電位と前記上段側バッファ素子との間に上段側電流制限抵抗を有し、前記第2電位と前記下段側バッファ素子との間に下段側電流制限抵抗を有し、前記入力部に前記スイッチング制御信号が入力され、前記出力部が前記駆動対象のスイッチング素子の制御端子に接続され、
     さらに、
     前記入力部と前記出力部とを接続する補償抵抗と、
     前記入力部と前記駆動対象のスイッチング素子の負極側とを接続する入力側プルダウン抵抗と、を備え、
     前記補償抵抗の抵抗値と前記入力側プルダウン抵抗の抵抗値との和は、前記駆動対象のスイッチング素子の制御端子と当該スイッチング素子のエミッタ端子又はソース端子との間の抵抗値よりも小さく、前記下段側電流制限抵抗の抵抗値よりも大きい値に設定されているスイッチング素子駆動回路。
  2.  前記第2電位は、前記駆動対象のスイッチング素子の負極側よりも電位の低い負電源の出力端に接続され、
     前記負電源は一次側コイル及び二次側コイルを有するトランス回路であり、
     前記負電源の出力側回路は、前記二次側コイルと、前記出力端から前記二次側コイルの第1端へ向かう方向を順方向として接続された整流用ダイオードと、前記第1端とは異なる前記二次側コイルの第2端と前記出力端との間に接続されたコンデンサと、を備え、
     前記第2端が前記駆動対象のスイッチング素子の負極側に接続されている請求項1に記載のスイッチング素子駆動回路。
  3.  前記入力側プルダウン抵抗の抵抗値は、前記下段側電流制限抵抗の抵抗値の100倍以上に設定されている請求項1又は2に記載のスイッチング素子駆動回路。
     
PCT/JP2017/027059 2016-09-23 2017-07-26 スイッチング素子駆動回路 WO2018055900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/310,167 US10483967B2 (en) 2016-09-23 2017-07-26 Switching element driving circuit
CN201780056934.9A CN109792242B (zh) 2016-09-23 2017-07-26 开关元件驱动电路
DE112017003600.3T DE112017003600T5 (de) 2016-09-23 2017-07-26 Schaltelementansteuerungsschaltung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016185833A JP6699487B2 (ja) 2016-09-23 2016-09-23 スイッチング素子駆動回路
JP2016-185833 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018055900A1 true WO2018055900A1 (ja) 2018-03-29

Family

ID=61689403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027059 WO2018055900A1 (ja) 2016-09-23 2017-07-26 スイッチング素子駆動回路

Country Status (5)

Country Link
US (1) US10483967B2 (ja)
JP (1) JP6699487B2 (ja)
CN (1) CN109792242B (ja)
DE (1) DE112017003600T5 (ja)
WO (1) WO2018055900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069857A (zh) * 2019-04-23 2019-07-30 杭州电子科技大学 一种基于负阻控制的忆阻器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159107B2 (en) * 2018-09-07 2021-10-26 U-Mhi Platech Co., Ltd. Motor driving apparatus
CN114079296B (zh) * 2020-07-31 2024-04-12 华为数字能源技术有限公司 电压转换电路、控制方法、dc/dc变换器以及设备
CN112104206B (zh) * 2020-08-20 2023-04-14 珠海格力电器股份有限公司 一种开关驱动电路、方法、变频器及空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141720A (ja) * 1989-10-27 1991-06-17 Hitachi Ltd パワースイッチ回路
JP2000253646A (ja) * 1999-02-26 2000-09-14 Toshiba Corp 絶縁ゲート型半導体素子のゲート回路
JP2012034450A (ja) * 2010-07-29 2012-02-16 Denso Corp スイッチング素子の駆動装置
JP2013062965A (ja) * 2011-09-14 2013-04-04 Sanken Electric Co Ltd 半導体モジュール
JP2015205574A (ja) * 2014-04-18 2015-11-19 アスモ株式会社 ワイパ制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265124A (ja) * 1995-03-24 1996-10-11 Nemic Lambda Kk 電界効果トランジスタのゲート駆動回路
JP2003092873A (ja) * 2001-09-19 2003-03-28 Fuji Electric Co Ltd スイッチング電源回路およびその半導体集積回路
JP2004242475A (ja) 2003-02-07 2004-08-26 Kri Inc スイッチング素子の駆動方式
CN2836340Y (zh) * 2005-11-02 2006-11-08 张继科 Igbt模块驱动电路
CN103620962B (zh) 2011-05-12 2016-06-22 日产自动车株式会社 开关电路和半导体模块
JP2013026963A (ja) * 2011-07-25 2013-02-04 Denso Corp トランジスタ駆動回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141720A (ja) * 1989-10-27 1991-06-17 Hitachi Ltd パワースイッチ回路
JP2000253646A (ja) * 1999-02-26 2000-09-14 Toshiba Corp 絶縁ゲート型半導体素子のゲート回路
JP2012034450A (ja) * 2010-07-29 2012-02-16 Denso Corp スイッチング素子の駆動装置
JP2013062965A (ja) * 2011-09-14 2013-04-04 Sanken Electric Co Ltd 半導体モジュール
JP2015205574A (ja) * 2014-04-18 2015-11-19 アスモ株式会社 ワイパ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069857A (zh) * 2019-04-23 2019-07-30 杭州电子科技大学 一种基于负阻控制的忆阻器
CN110069857B (zh) * 2019-04-23 2023-04-18 杭州电子科技大学 一种基于负阻控制的忆阻器

Also Published As

Publication number Publication date
DE112017003600T5 (de) 2019-05-02
CN109792242A (zh) 2019-05-21
JP6699487B2 (ja) 2020-05-27
US20190326904A1 (en) 2019-10-24
US10483967B2 (en) 2019-11-19
CN109792242B (zh) 2022-11-08
JP2018050243A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018055900A1 (ja) スイッチング素子駆動回路
US9166499B2 (en) Electronic circuit operating based on isolated switching power source
JP6291899B2 (ja) 回転電機制御装置
JP4903214B2 (ja) 半導体スイッチをガルバニック絶縁で制御する方法および回路装置
US10622933B2 (en) Inverter device that reduces a loss caused by switching elements
US20130193903A1 (en) Synchronous machine with switching element in the excitation circuit
US11114949B2 (en) Inverter control board that is configured so that a detection circuit is appropriately arranged
US20200220489A1 (en) Driving power supply device
JP3052792B2 (ja) インバータ装置
WO2015045107A1 (ja) 突入電流制限回路、及び電力変換装置
US20120275069A1 (en) Electric machine assembly with fail-safe arrangement
WO2012115900A2 (en) Driver circuit for a semiconductor power switch
US6222751B1 (en) Driver circuit for a polyphase DC motor with minimized voltage spikes
CN106330152B (zh) 包括场效应晶体管的功率半导体电路
CN112534720B (zh) 驱动电路
JP6638504B2 (ja) インバータ駆動装置
JP2015198461A (ja) インバータ制御装置
JP2003324966A (ja) インバータ駆動回路
JP2009077104A (ja) コイル駆動回路
JP2019088078A (ja) ドライバ回路および電力変換装置
JP7259563B2 (ja) 回転電機制御システム
CN110912426B (zh) 整流电路和直流功率生成电路
WO2023148988A1 (ja) ゲート駆動回路および電力変換装置
US20220070030A1 (en) Interference-free transmission of signals between different earth potentials
JP2020025385A (ja) 制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17852681

Country of ref document: EP

Kind code of ref document: A1