WO2018054101A1 - 一种基于圆片级封装的mems风速风向传感器结构及封装方法 - Google Patents

一种基于圆片级封装的mems风速风向传感器结构及封装方法 Download PDF

Info

Publication number
WO2018054101A1
WO2018054101A1 PCT/CN2017/088026 CN2017088026W WO2018054101A1 WO 2018054101 A1 WO2018054101 A1 WO 2018054101A1 CN 2017088026 W CN2017088026 W CN 2017088026W WO 2018054101 A1 WO2018054101 A1 WO 2018054101A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
temperature measuring
wafer
chip
ceramic substrate
Prior art date
Application number
PCT/CN2017/088026
Other languages
English (en)
French (fr)
Inventor
黄庆安
高适萱
秦明
易真翔
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2018054101A1 publication Critical patent/WO2018054101A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Definitions

  • the invention belongs to the technical field of sensors for measuring wind speed and direction, and particularly relates to a structure and a packaging method of a MEMS wind speed and direction sensor based on a wafer level package.
  • Wind speed and wind direction are very important parameters reflecting the meteorological situation. They have important influences on environmental monitoring, transportation and industrial and agricultural production. Therefore, rapid measurement of wind speed and wind direction has important practical significance. However, because wind speed non-uniformity is very common, large wind speed differences occur in the same area separated by hundreds of meters. Therefore, large-scale sensing nodes are needed to obtain more accurate wind speed and direction. In the early stage, the traditional mechanical wind cup was used, and the wind speed detection system based on the ultrasonic principle and the Doppler principle appeared later. However, these wind speed sensors are bulky and non-movable, high in power consumption, and high in price, and require regular maintenance. The emergence of MEMS technology has made it possible to miniaturize portable wind speed and direction detection systems.
  • packaging has always been a technical bottleneck that hinders its development.
  • the packaging material requires good heat conduction, and the sensor has a protective effect, and the cost factor is also considered in the design.
  • the back side of the silicon sensitive chip was attached to the front side of the ceramic, and the back side of the ceramic was sensible. The heat of the heating needs to be transferred from the heating surface of the silicon to the other side and then to the ceramic, and then the ceramic back surface was generated under the action of the wind field.
  • the temperature difference, and then the temperature difference is transmitted back to the heating surface of the silicon for detection, which will affect the sensitivity and response time of the sensor, and since the silicon wafer is attached to the ceramic chip with the thermal conductive adhesive, the thermal conductive adhesive may not be completely completed during the packaging process. Symmetry also affects sensor performance.
  • the front surface of the silicon wafer is flip-chip bonded to the front surface of the ceramic substrate, and the reverse surface of the ceramic substrate serves as an interface between the sensor and the wind, and only the silicon wafer and the ceramic substrate need to be bonded at a low temperature.
  • the central temperature measuring element, the heating element and the thermal sensing temperature measuring element can be electrically connected to the back of the silicon wafer through the through hole through the through silicon via hole on the silicon chip, thereby being connected to the control and detection circuit.
  • the heating element, the central temperature measuring element and the hot end of the thermal sensing temperature measuring element are in close contact with the ceramic substrate. This reduces costs, improves sensitivity and reduces response time relative to previous structures.
  • the object of the present invention is to overcome the deficiencies of the prior art and reduce the cost of the sensor, and to provide a MEMS wind speed and direction sensor structure and a packaging method based on a wafer level package.
  • the technical solution adopted by the invention is: a MEMS wind speed and direction sensor structure based on a wafer level package, comprising a silicon chip and a ceramic chip;
  • the silicon chip comprises a silicon wafer and a silicon dioxide heat insulating layer, the silicon dioxide heat insulating layer is disposed on the silicon wafer, and the silicon dioxide insulating layer is provided with a heating element for generating heat, a central temperature measuring element and a thermal sensing
  • the temperature element, a central temperature measuring element is arranged at the center of the square silicon chip, and the four heating elements and the four heat sensing temperature measuring elements are uniformly arranged centering on the center of the central temperature measuring element, the heating element and the heat sensing temperature measuring
  • the position of the component is parallel to the side of the silicon chip, and the center temperature measuring component is sequentially a heating element, a heat insulating groove and a heat sensing temperature measuring element toward the side of the silicon chip.
  • Four thermal sensing temperature measuring elements are disposed outside the heating element to sense the distribution of the temperature field, and the wind speed and direction information are reflected by the thermal temperature difference on the relative thermal sensing temperature measuring elements.
  • the ceramic chip includes a ceramic substrate, the front surface of the silicon wafer is bonded to the front surface of the ceramic substrate in a wafer-level packaging manner, and the back surface of the ceramic substrate is used for the wind-sensing surface;
  • the silicon chip electrically connects the central temperature measuring element, the heating element and the thermal sensing temperature measuring element to the back of the sensor through the through silicon via, and is connected to the control and detection circuit.
  • TSVs and MEMS chips in three-dimensional wafer-level packages have become an inevitable trend.
  • a method for packaging a MEMS wind speed and direction sensor based on a wafer level package comprising the following steps:
  • the first step the preparation of silicon chips
  • Step 1 Prepare a silicon wafer with a through-silicon via and electroplating, including etching a blind hole in a fixed position of the silicon wafer, then depositing a silicon oxide insulating layer, performing seed layer sputtering, and stripping and stripping. Filling the blind hole, finally thinning to the bottom exposed hole, and oxidizing a silicon dioxide insulating layer on the silicon wafer;
  • Step 2 spin-coating a photoresist on the surface of the silicon dioxide thermal insulation layer, and exposing the exposure to form a central temperature measuring element, a heating element and a thermal sensing temperature measuring element;
  • Step 3 sputtering an adhesion layer and a thermistor, which constitute a central temperature measuring element, a heating element and a thermal sensing temperature measuring element;
  • Step 4 stripping process, removing photoresist and unnecessary adhesion layer and thermistor;
  • Step 5 dry etching the heat insulating groove
  • Step 6 preparing a passivation layer to protect the adhesion layer and the thermistor
  • Step 7 bumping the metal on the passivation layer and patterning, plating the pad on the silicon wafer;
  • the second step the preparation of ceramic chips
  • the photoresist is spin-coated on the ceramic substrate, the bump solder region is exposed, the bump metal is sputtered and patterned, and the pads on the ceramic substrate are plated to complete the preparation of the thermal connection pads.
  • Step 3 Flip-chip wafer level package
  • the flip-chip bonding technology is used to realize the interconnection between the upper connection pad and the lower connection pad through the connection bumps, and the thermal path between the ceramic substrate and the silicon wafer is realized by the low-temperature eutectic wafer level key.
  • the temperature in the bond and process is approximately 310 ° C, which satisfies the temperature range of the MEMS anemometer.
  • the fourth step dicing, complete the preparation of MEMS wind speed and direction sensor.
  • the ceramic substrate and the silicon wafer are passed through a low temperature key and a wafer level package is realized, and the bond and temperature are 310 °C.
  • the use of thinner silicon wafers with high thermal conductivity can greatly reduce power consumption.
  • through-silicon vias are introduced in the silicon chip. Since the through-silicon vias allow the conductors to pass through the silicon chip, the lead frame and the wire bonds are not required, thereby reducing the cost of the package.
  • the ceramic substrate of the sensor of the invention serves as a package substrate for protecting the silicon chip on the one hand, and as a sensitive component for sensing the change of the external wind speed on the other hand.
  • the entire sensor only has the back surface of the ceramic substrate and the air to make environmental contact, and other components including the silicon chip, the central temperature measuring element, the heating element, and the thermal sensing temperature measuring element are not in contact with the environment, so that it can have stable properties.
  • the invention is packaged by solder bumps, low temperature keys and wafer level packaging on the front surface of the ceramic substrate and the front surface of the silicon wafer, wherein the solder acts as a thermal path for the silicon wafer and the ceramic substrate, and the back surface of the ceramic substrate is windy due to
  • the heating element on the silicon, the hot end of the central temperature measuring element and the thermal sensing temperature measuring element are in close contact with the ceramic substrate, and the temperature field established by the heating element on the surface of the ceramic substrate changes with the wind, and the thermal sensing temperature measuring element is due to the ceramic
  • the substrate is in close contact and the temperature field distribution can be felt. Under the condition that there is no wind outside, the distribution of the temperature field shows a completely symmetrical state.
  • the heat sensing temperature measuring element When the outside wind blows over the back surface of the ceramic substrate, the wind will take away part of the heat from the back surface of the ceramic substrate by heat convection, and the heat sensing temperature measuring element will measure the temperature change, thereby reflecting the magnitude of the wind speed;
  • the differential output of the upstream and downstream thermal sensing temperature sensing elements reflects changes in the temperature field gradient on the ceramic substrate and can reflect changes in wind direction.
  • the packaging process of the present invention belongs to a sensor wafer-level package, and the ceramic substrate is exactly the same size as before the silicon wafer package, and the thermal connection between the silicon wafer and the ceramic substrate is realized by flip-chip solder packaging, and only after packaging A complete sensor is required for a simple scribe.
  • the wafer-level package greatly reduces the packaging cost of the MEMS component and improves the packaging efficiency of the sensor.
  • the consistency of the deviation caused by the sensor package is ensured, and the cost of sensor rear-end signal conditioning is reduced.
  • All of the MEMS devices of the present invention are fabricated on a silicon chip, and the central heating element and the thermal sensing temperature measuring element are placed on the silicon wafer relative to the previous heating element. Since the ceramic substrate is much rougher than the silicon chip, The difference in resistance between the structure on the silicon chip including the heating element and the center temperature measuring element and the thermal sensing temperature measuring element is much smaller. It can reduce the pressure brought by the later circuit parameter matching and wind speed and direction calibration, and greatly reduce the cost of manpower and material resources in sensor calibration.
  • the present invention employs a wafer-level packaged MEMS wind speed and direction sensor having a through-silicon via structure. Since the through-silicon via is used as an electrical connection, the interconnection distance between the sensor and the circuit is shortened, compared to the previous The wire bonding structure reduces the time for subsequent wire bonding, reduces the package error of wire bonding, is more suitable for mass production, and can be precisely controlled and molded at one time. Since the sensor device can be obtained only after dicing the wafer wafer-level package, the chip after dicing can not waste the area of the ceramic chip, and a large number of sensor preparation can be realized on the 4-inch wafer. And after simple dicing, compared with the structure without the through silicon via, the silicon wafer does not need to be split, no subsequent processing is needed, the process cost is reduced, and the utilization rate of the ceramic substrate is improved.
  • the method can improve the connection reliability and the heat conduction performance, and greatly improve the sensitivity and response time of the sensor.
  • the low temperature key and technology adopted by the invention realize the thermal connection between the ceramic substrate and the silicon chip, and the key and the gold-tin bump used have the characteristics of stable geometric and material properties and good performance consistency, which is a very
  • the ideal sensor wafer-level packaging technology with a key and process ambient temperature of 310 ° C is compatible with the anemometer's temperature tolerance.
  • Figure 1 is a process for preparing a silicon chip of the present invention
  • FIG. 2 is a top view of a silicon chip of the present invention
  • Figure 3 is a side view of a silicon chip of the present invention.
  • Figure 4 is a side view of the ceramic chip of the present invention.
  • Figure 5 is a top view of the ceramic chip of the present invention.
  • Figure 6 is a side elevational view of the monolithic sensor chip after the final dicing of the present invention.
  • a MEMS wind speed and direction sensor structure based on a wafer level package includes a silicon chip 110 and a ceramic chip;
  • the silicon chip 110 includes a silicon wafer 20 and a silicon dioxide heat insulating layer 10, and a silicon dioxide heat insulating layer 10 is disposed on the silicon wafer 20.
  • the silicon dioxide heat insulating layer 10 is provided with a heating element 26 for generating heat, and a center.
  • the temperature measuring element 28 and the thermal sensing temperature measuring element 24, one central temperature measuring element 28 is disposed at the center of the square silicon chip 110, and the four heating elements 26 and the four thermal sensing temperature measuring elements 24 are both centered temperature measuring elements 28
  • the center of the heating element 26 and the thermal sensing temperature measuring element 24 are parallel to the side of the silicon chip 110, and the heating element 26 and the heat insulating groove 70 are sequentially arranged from the central temperature measuring element 28 to the side of the silicon chip 110.
  • thermal sensing temperature measuring element 24 Four thermal sensing temperature measuring elements 24 are disposed on the outside of the heating element 26 for sensing the distribution of the temperature field and reacting the wind speed and direction information by the thermal temperature difference on the opposing thermal sensing temperature measuring
  • the ceramic chip comprises a ceramic substrate 90, the front surface of the silicon wafer 20 is bonded to the front surface of the ceramic substrate 90 in a wafer-level packaging manner, and the back surface of the ceramic substrate 90 is used for the wind-sensing surface;
  • the silicon chip 110 electrically connects the central temperature measuring element 28, the heating element 26 and the thermal sensing temperature measuring element 24 through the through silicon vias (30, 32, 34) to The sensor 210 is back and is connected to a control and detection circuit.
  • a packaging method for a MEMS wind speed and direction sensor based on a wafer level package comprising the following steps:
  • Step 1 Prepare a silicon wafer 20 with a through silicon via 30 and electroplating, including etching a blind hole in a fixed position of the silicon wafer, then depositing a silicon oxide insulating layer, and then performing seed layer sputtering to remove the adhesive. After plating, the blind hole is filled, finally thinned to the bottom exposed hole, and a silicon dioxide insulating layer 10 is oxidized on the silicon wafer;
  • Step 2 the surface of the silicon dioxide thermal insulation layer 10 is spin-coated with photoresist 40, and the exposure is patterned to expose the preparation center temperature measuring element 28, the heating element 26 and the thermal sensing temperature measuring element 24;
  • Step 3 sputter adhesion layer 50 and thermistor 60, which constitute a central temperature measuring element 28, heating element 26 and thermal sensing temperature measuring element 24;
  • Step 4 the stripping process, removing the photoresist 40 and the unnecessary adhesion layer 50 and the thermistor 60;
  • Step 5 dry etching the heat insulating groove 70
  • Step 6 preparing a passivation layer 80 to protect the adhesion layer 50 and the thermistor 60;
  • Step 7 on the passivation layer on the underlying metal and patterned, electroplating the silicon wafer on the pad 100;
  • the second step the preparation of ceramic chips
  • the photoresist is spin-coated on the ceramic substrate 90, the bump solder region is exposed, the bump metal is sputtered and patterned, and the pads (92, 94) on the ceramic substrate are plated to complete the preparation of the thermal connection pads.
  • Step 3 Flip-chip wafer level package
  • the flip-chip bonding technology is used to realize the interconnection between the upper connection pad and the lower connection pad through the connection bumps, and the thermal path between the ceramic substrate 90 and the silicon wafer 20 is realized by the low-temperature eutectic wafer level key and the manner. .
  • the temperature in the bond and process is approximately 310 ° C, which satisfies the temperature range of the MEMS anemometer.
  • the fourth step dicing, complete the preparation of MEMS wind speed and direction sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Micromachines (AREA)

Abstract

提供一种基于圆片级封装的MEMS风速风向传感器结构及封装方法,其将硅圆片(20)正面以倒装焊的方式圆片级封装在陶瓷基板(90)上,而陶瓷基板(90)的反面作为传感器和风接触的界面,仅需要对硅圆片(20)和陶瓷基板(90)低温键合,进行划片得到的传感器中,硅芯片上可以通过硅通孔将中心测温元件(28),加热元件(26)和热传感测温元件(24)连接到电路上进行控制和检测。为了将硅芯片(20)和陶瓷基板(90)更好的热接触,加热元件(26),中心测温元件(28)和热传感测温元件(24)的热端紧贴陶瓷基板(90)。这样相对于之前的结构,可以降低成本,提高灵敏度和降低响应时间。该基于圆片级封装的MEMS风速风向传感器具有成本低、灵敏度高,响应时间快以及制作工艺简单的优点。

Description

一种基于圆片级封装的MEMS风速风向传感器结构及封装方法 技术领域
本发明属于测量风速风向的传感器技术领域,具体涉及一种基于圆片级封装的MEMS风速风向传感器结构及封装方法。
背景技术
风速、风向是反映气象情况非常重要的参数,对环境监测、交通运输和工农业生产有重要的影响,因此,快速测量出风速和风向具有重要的实际意义。但是由于风速的不均匀性十分常见,同一地区相隔数百米就会出现较大的风速差异,所以,需要采用大规模传感节点来获得更加精确的风速和风向。早期采用传统的机械风杯,后期出现了基于超声原理和多普勒原理的风速检测系统。但是这些风速传感器体积庞大不可移动,功耗高,价格高还需要定期维护,MEMS技术的出现由于使得小型化,便携式的风速风向检测系统成为了可能。
众所周知,在MEMS传感器的制作中,封装一直以来都是阻碍其发展的技术瓶颈。一方面封装材料要求具有良好的热传导,又要对传感器有保护作用,并且设计中还要考虑成本的因素。以往都是将硅敏感芯片背面贴于陶瓷正面,陶瓷的背面感风,这样加热的热量需要从硅的加热面传到另一面再传到陶瓷上,然后再在风场作用下,陶瓷背面产生温度差,再将温差传回到硅的加热面进行检测,这样会影响传感器的灵敏度和响应时间,并且由于是用导热胶将硅片贴在陶瓷芯片上,由于封装过程中导热胶不可能完全对称,也会影响传感器的性能。
本发明将硅圆片正面以倒装焊的方式圆片级封装方式键和于陶瓷基板正面,而陶瓷基板的反面作为传感器和风接触的界面,仅需要对硅圆片和陶瓷基板低温键合,进行划片得到的传感器中,硅芯片上可以通过硅通孔将中心测温元件,加热元件和热传感测温元件通过通孔导电连接到硅圆片背部,从而与控制和检测电路相连。为了将硅芯片和陶瓷基板更好的热接触,加热元件,中心测温元件和热传感测温元件的热端紧贴陶瓷基板。这样相对于之前的结构,可以降低成本,提高灵敏度和降低响应时间。
发明内容
本发明的目的是为了克服现有技术存在的不足并降低传感器的成本,提供一种基于圆片级封装的MEMS风速风向传感器结构及封装方法。
本发明采用的技术方案为:一种基于圆片级封装的MEMS风速风向传感器结构,包括硅芯片和陶瓷芯片;
所述硅芯片包括硅圆片和二氧化硅绝热层,二氧化硅绝热层设置在硅圆片上,二氧化硅绝热层上设有用于产生热量的加热元件、中心测温元件和热传感测温元件,一个中心测温元件设在方形硅芯片的中心,四个加热元件和四个热传感测温元件都以中心测温元件的中心为中心均匀设置,加热元件和热传感测温元件的位置平行于硅芯片的边,由中心测温元件向硅芯片的边依次为加热元件、隔热槽和热传感测温元件。四个热传感测温元件设置在加热元件的外侧,用以感应温度场的分布,通过相对的热传感测温元件上的热温差来反应风速和风向信息。
所述陶瓷芯片包括陶瓷基板,所述硅圆片正面以圆片级封装方式键和于陶瓷基板正面,陶瓷基板背面用于感风面;
所述硅芯片和陶瓷芯片连接得到的传感器中,硅芯片通过硅通孔将中心测温元件,加热元件和热传感测温元件导电连接到传感器背部,并与控制和检测电路相连。
随着MEMS元器件的竞争越来越激烈,以及对MEMS元器件要求越来越高,为了进一步缩小MEMS芯片的体积和降低工艺成本,TSV与三维圆片级封装的MEMS芯片成为必然趋势。
一种上述基于圆片级封装的MEMS风速风向传感器的封装方法,包括以下步骤:
第一步:硅芯片的制备
步骤1,制备带硅通孔并电镀填充的硅圆片,包括在硅片的固定位置深硅刻蚀出盲孔,然后沉积氧化硅绝缘层,再进行种子层溅射,去胶剥离后电镀填充盲孔,最后减薄到底面露出孔,并在硅圆片上氧化一层二氧化硅绝热层;
步骤2,在二氧化硅绝热层上表面旋涂光刻胶,曝光进行图形化露出制备中心测温元件,加热元件和热传感测温元件;
步骤3,溅射粘附层和热敏电阻,其组成中心测温元件,加热元件和热传感测温元件;
步骤4,剥离工艺,去除光刻胶和不必要的粘附层和热敏电阻;
步骤5,干法刻蚀隔热槽;
步骤6,制备钝化层保护粘附层和热敏电阻;
步骤7,在钝化层上凸点下金属并图形化,电镀硅圆片上焊盘;
第二步:陶瓷芯片的制备
在陶瓷基板旋涂光刻胶,图形化露出凸点焊料区域,溅射凸点金属并图形化,电镀陶瓷基板上焊盘,完成热连接焊盘的制备。
第三步:倒装焊圆片级封装
利用倒装焊技术,经过连接凸点上实现上连接焊盘与下连接焊盘的互连,以低温共晶的圆片级键和方式实现陶瓷基板与硅圆片之间的热通路。键和过程中温度约为310℃,满足MEMS风速计的温度范围。
第四步:划片,完成MEMS风速风向传感器的制备。
本发明传感器中,陶瓷基板和硅圆片之间通过低温键和实现圆片级封装,键和温度310℃。采用较薄的具有高热导率的硅圆片,能大大的降低功耗。并且在硅芯片中引入了硅通孔,由于硅通孔可以使得导电体穿过硅芯片,不需要引线框和引线键和,从而降低了封装的成本。
本发明传感器的陶瓷基板一方面作为保护硅芯片的封装基板,另一方面又可以用作感受外界风速变化的敏感元件。整个传感器只有陶瓷基板的背面和风进行环境接触,其他元件包括硅芯片,中心测温元件,加热元件,和热传感测温元件都不和环境接触,从而可以具有稳定的性质。
本发明通过在陶瓷基板正面和硅圆片正面做焊料凸点,低温键和的圆片级封装方式进行封装,其中焊料做为硅圆片和陶瓷基板的热通路,陶瓷基板背面感风,由于硅上加热元件,中心测温元件和热传感测温元件的热端紧贴陶瓷基板,加热元件在陶瓷基板表面建立的温度场随风的变化而变化,热传感测温元件由于与陶瓷基板紧贴,可以感受到温度场分布的变化情况。在外界无风的条件下,温度场的分布呈现完全对称的状态。当外界有风吹过陶瓷基板背面时,风将以热对流的方式从陶瓷基板背面带走部分的热量,热传感测温元件将测出温度的变化,从而反映风速的大小;对称分布的上游和下游热传感测温元件的差分输出反映陶瓷基板上的温度场梯度的变化,能够反映风向的变化信息。
有益效果:1.本发明的封装工艺属于传感器圆片级封装,陶瓷基板与硅圆片封装前大小完全相同,通过倒装焊封装实现硅圆片和陶瓷基板之间的热连接,封装后仅需要简单的划片就可以得到完整的传感器。这种圆片级封装的方式与传统单芯片封装的风速风向传感器相比,一方面大大降低了MEMS元件的封装成本,提高了传感器的封装效率, 另一方面保证了传感器封装造成的偏差的一致性,降低了传感器后端信号调理的成本。
2.本发明所有MEMS器件都做在硅芯片上,相对于之前加热元件放在陶瓷片上,中心测温元件和热传感测温元件做在硅片上,由于陶瓷基板相对硅芯片粗糙很多,硅芯片上的结构包括加热元件和中心测温元件和热传感测温元件之间阻值之间差异就小很多。可以减小后期电路参数匹配及风速风向校准带来的压力,并大大降低传感器校准方面人力,物力的成本。
3.本发明采用了一种具有硅通孔结构的圆片级封装的MEMS风速风向传感器,由于采用硅通孔作为电连接,缩短了传感器和电路之间的互连线距离,相对于之前的金属丝焊结构,降低了后续打线的时间,减少了引线键合的封装误差,更加适合量产,并且能够精确控制,一次成型。由于传感器圆片级封装后仅需要划片就可以得到传感器器件,划片后的芯片可以不浪费陶瓷芯片面积,在4寸晶圆上可以实现大量的传感器制备。并且简单的划片后即可,相对于之前没有硅通孔的结构,不需要将硅圆片进行裂片,不需后续处理,降低工艺成本,提高陶瓷基板利用率。
4.由于将加热元件,中心测温元件和热传感测温元件的热端紧贴陶瓷基板,相比于之前将硅芯片背面贴在陶瓷基板上,再用陶瓷基板另一面进行感风的方法,可以提高连接可靠性和热传导性能,较大程度提高了传感器的灵敏度和响应时间。
5.本发明采用的低温键和技术实现陶瓷基板与硅芯片之间的热连接,所使用的键和用金锡凸点具有几何和材料特性稳定,性能一致性好的特点,是一种非常理想的传感器圆片级封装技术,键和过程环境温度为310℃,与风速计能承受温度兼容。
附图说明
图1为本发明硅芯片制备过程;
图2为本发明硅芯片俯视图;
图3为本发明硅芯片侧视图;
图4为本发明陶瓷芯片侧视图;
图5为本发明陶瓷芯片俯视图;
图6为本发明最后完成划片后的单片传感器芯片侧视图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
如图1-6所示,一种基于圆片级封装的MEMS风速风向传感器结构,包括硅芯片110和陶瓷芯片;
所述硅芯片110包括硅圆片20和二氧化硅绝热层10,二氧化硅绝热层10设置在硅圆片20上,二氧化硅绝热层10上设有用于产生热量的加热元件26、中心测温元件28和热传感测温元件24,一个中心测温元件28设在方形硅芯片110的中心,四个加热元件26和四个热传感测温元件24都以中心测温元件28的中心为中心均匀设置,加热元件26和热传感测温元件24的位置平行于硅芯片110的边,由中心测温元件28向硅芯片110的边依次为加热元件26、隔热槽70和热传感测温元件24。四个热传感测温元件24设置在加热元件26的外侧,用以感应温度场的分布,通过相对的热传感测温元件24上的热温差来反应风速和风向信息。
所述陶瓷芯片包括陶瓷基板90,所述硅圆片20正面以圆片级封装方式键和于陶瓷基板90正面,陶瓷基板90背面用于感风面;
所述硅芯片110和陶瓷芯片连接得到的传感器210中,硅芯片110通过硅通孔(30、32、34)将中心测温元件28,加热元件26和热传感测温元件24导电连接到传感器210背部,并与控制和检测电路相连。
一种基于圆片级封装的MEMS风速风向传感器的封装方法,包括以下步骤:
第一步:硅芯片110的制备
步骤1,制备带硅通孔30并电镀填充的硅圆片20,包括在硅片的固定位置深硅刻蚀出盲孔,然后沉积氧化硅绝缘层,再进行种子层溅射,去胶剥离后电镀填充盲孔,最后减薄到底面露出孔,并在硅圆片上氧化一层二氧化硅绝热层10;
步骤2,在二氧化硅绝热层10上表面旋涂光刻胶40,曝光进行图形化露出制备中心测温元件28,加热元件26和热传感测温元件24;
步骤3,溅射粘附层50和热敏电阻60,其组成中心测温元件28,加热元件26和热传感测温元件24;
步骤4,剥离工艺,去除光刻胶40和不必要的粘附层50和热敏电阻60;
步骤5,干法刻蚀隔热槽70;
步骤6,制备钝化层80保护粘附层50和热敏电阻60;
步骤7,在钝化层上凸点下金属并图形化,电镀硅圆片上焊盘100;
第二步:陶瓷芯片的制备
在陶瓷基板90旋涂光刻胶,图形化露出凸点焊料区域,溅射凸点金属并图形化,电镀陶瓷基板上焊盘(92、94),完成热连接焊盘的制备。
第三步:倒装焊圆片级封装
利用倒装焊技术,经过连接凸点上实现上连接焊盘与下连接焊盘的互连,以低温共晶的圆片级键和方式实现陶瓷基板90与硅圆片20之间的热通路。键和过程中温度约为310℃,满足MEMS风速计的温度范围。
第四步:划片,完成MEMS风速风向传感器的制备。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (3)

  1. 一种基于圆片级封装的MEMS风速风向传感器结构,其特征在于:包括硅芯片和陶瓷芯片;
    所述硅芯片包括硅圆片和二氧化硅绝热层,二氧化硅绝热层设置在硅圆片上,二氧化硅绝热层上设有用于产生热量的加热元件、中心测温元件和热传感测温元件,一个中心测温元件设在方形硅芯片的中心,四个加热元件和四个热传感测温元件都以中心测温元件的中心为中心均匀设置,加热元件和热传感测温元件的位置平行于硅芯片的边,由中心测温元件向硅芯片的边依次为加热元件、隔热槽和热传感测温元件;
    所述陶瓷芯片包括陶瓷基板,所述硅圆片正面以圆片级封装方式键和于陶瓷基板正面,陶瓷基板背面用于感风面;
    所述硅芯片和陶瓷芯片连接得到的传感器中,硅芯片通过硅通孔将中心测温元件,加热元件和热传感测温元件导电连接到传感器背部,并与控制和检测电路相连。
  2. 根据权利要求1一种基于圆片级封装的MEMS风速风向传感器的封装方法,其特征在于:包括以下步骤:
    第一步:硅芯片的制备
    步骤1,制备带硅通孔并电镀填充的硅圆片,包括在硅片的固定位置深硅刻蚀出盲孔,然后沉积氧化硅绝缘层,再进行种子层溅射,去胶剥离后电镀填充盲孔,最后减薄到底面露出孔,并在硅圆片上氧化一层二氧化硅绝热层;
    步骤2,在二氧化硅绝热层上表面旋涂光刻胶,曝光进行图形化露出制备中心测温元件,加热元件和热传感测温元件;
    步骤3,溅射粘附层和热敏电阻,其组成中心测温元件,加热元件和热传感测温元件;
    步骤4,剥离工艺,去除光刻胶和不必要的粘附层和热敏电阻;
    步骤5,干法刻蚀隔热槽;
    步骤6,制备钝化层保护粘附层和热敏电阻;
    步骤7,在钝化层上凸点下金属并图形化,电镀硅圆片上焊盘;
    第二步:陶瓷芯片的制备
    在陶瓷基板旋涂光刻胶,图形化露出凸点焊料区域,溅射凸点金属并图形化,电镀陶瓷基板上焊盘,完成热连接焊盘的制备;
    第三步:倒装焊圆片级封装
    利用倒装焊技术,经过连接凸点上实现上连接焊盘与下连接焊盘的互连,以低温共晶的圆片级键和方式实现陶瓷基板与硅圆片之间的热通路;
    第四步:划片,完成MEMS风速风向传感器的制备。
  3. 根据权利要求2一种基于圆片级封装的MEMS风速风向传感器的封装方法,其特征在于:所述第三步中,键和过程中温度为310℃,满足MEMS风速计的温度范围。
PCT/CN2017/088026 2016-09-21 2017-06-13 一种基于圆片级封装的mems风速风向传感器结构及封装方法 WO2018054101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610840148.5A CN106443056A (zh) 2016-09-21 2016-09-21 一种基于圆片级封装的mems风速风向传感器结构及封装方法
CN201610840148.5 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018054101A1 true WO2018054101A1 (zh) 2018-03-29

Family

ID=58166665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088026 WO2018054101A1 (zh) 2016-09-21 2017-06-13 一种基于圆片级封装的mems风速风向传感器结构及封装方法

Country Status (2)

Country Link
CN (1) CN106443056A (zh)
WO (1) WO2018054101A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707844A (zh) * 2020-05-29 2020-09-25 上海应用技术大学 一种风速传感器及其制备方法
CN112904170A (zh) * 2021-01-19 2021-06-04 安徽安晶半导体有限公司 一种平板式晶闸管在线监测装置及检测系统
CN114113674A (zh) * 2021-11-09 2022-03-01 北京遥测技术研究所 一种热膜式火星表面风场测量传感器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443056A (zh) * 2016-09-21 2017-02-22 东南大学 一种基于圆片级封装的mems风速风向传感器结构及封装方法
CN107449477A (zh) * 2017-07-28 2017-12-08 佛山市川东磁电股份有限公司 一种宽量程高精度流量传感器及制作方法
CN107291167B (zh) * 2017-07-28 2019-06-14 京东方科技集团股份有限公司 一种腕部可穿戴的装置
CN108609574B (zh) * 2018-05-31 2019-12-31 中国科学院微电子研究所 封闭结构、其制作方法与器件
CN109384189B (zh) * 2018-09-14 2020-06-12 常州大学 一种基于键合工艺的热式风速风向传感器及其制备方法
CN109545775B (zh) * 2018-11-22 2020-08-04 中芯集成电路(宁波)有限公司 一种半导体结构及其形成方法
CN113092809B (zh) * 2021-04-09 2022-07-22 东南大学 一种正面感风背面引线的膜式风速风向传感器及其制造方法
CN113884701B (zh) * 2021-09-28 2023-04-25 东南大学 一种提高测量范围和全量程精度的风速风向传感器
CN115077648B (zh) * 2022-08-19 2022-11-04 无锡芯感智半导体有限公司 一种mems质量流量传感器及制备方法
CN116435258B (zh) * 2023-06-13 2023-09-26 中诚华隆计算机技术有限公司 一种芯片的封装方法及其封装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059528A (zh) * 2007-05-11 2007-10-24 东南大学 十字架结构的二维风速风向传感器及其制备方法
CN101294977A (zh) * 2007-04-25 2008-10-29 中国科学院电子学研究所 一种基于微机电技术的硅压阻式风速风向传感器
CN101349708A (zh) * 2008-07-04 2009-01-21 东南大学 微机械二维风速风向传感器及其信号处理电路
CN101819214A (zh) * 2010-01-29 2010-09-01 东南大学 基于陶瓷圆片级封装的集成风速风向传感器及其制备方法
CN102082105A (zh) * 2010-12-06 2011-06-01 东南大学 基于阳极键合工艺的热式风速风向传感器及其制备方法
CN102095888A (zh) * 2010-12-14 2011-06-15 东南大学 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN104991087A (zh) * 2015-06-19 2015-10-21 东南大学 一种具有片上自标定功能的mems热式风速传感器
CN106443056A (zh) * 2016-09-21 2017-02-22 东南大学 一种基于圆片级封装的mems风速风向传感器结构及封装方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325879C (zh) * 2005-04-13 2007-07-11 东南大学 温度、风速、风向和气压集成传感器
CN102169126B (zh) * 2011-01-17 2012-12-19 东南大学 基于减薄工艺的热式风速风向传感器及其制备方法
CN104061967B (zh) * 2014-07-09 2017-05-10 东南大学 基于衬底转移工艺的热式风速风向传感器及其封装方法
CN104730283B (zh) * 2015-03-12 2017-06-23 东南大学 一种基于mems技术的三维风速风向传感器及其制备方法
CN105225965B (zh) * 2015-11-03 2019-01-25 中芯长电半导体(江阴)有限公司 一种扇出型封装结构及其制作方法
CN105547371B (zh) * 2016-01-19 2018-05-08 东南大学 基于陶瓷封装的二维热式风速风向传感器及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294977A (zh) * 2007-04-25 2008-10-29 中国科学院电子学研究所 一种基于微机电技术的硅压阻式风速风向传感器
CN101059528A (zh) * 2007-05-11 2007-10-24 东南大学 十字架结构的二维风速风向传感器及其制备方法
CN101349708A (zh) * 2008-07-04 2009-01-21 东南大学 微机械二维风速风向传感器及其信号处理电路
CN101819214A (zh) * 2010-01-29 2010-09-01 东南大学 基于陶瓷圆片级封装的集成风速风向传感器及其制备方法
CN102082105A (zh) * 2010-12-06 2011-06-01 东南大学 基于阳极键合工艺的热式风速风向传感器及其制备方法
CN102095888A (zh) * 2010-12-14 2011-06-15 东南大学 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN104991087A (zh) * 2015-06-19 2015-10-21 东南大学 一种具有片上自标定功能的mems热式风速传感器
CN106443056A (zh) * 2016-09-21 2017-02-22 东南大学 一种基于圆片级封装的mems风速风向传感器结构及封装方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707844A (zh) * 2020-05-29 2020-09-25 上海应用技术大学 一种风速传感器及其制备方法
CN112904170A (zh) * 2021-01-19 2021-06-04 安徽安晶半导体有限公司 一种平板式晶闸管在线监测装置及检测系统
CN112904170B (zh) * 2021-01-19 2024-03-22 安徽安晶半导体有限公司 一种平板式晶闸管在线监测装置及检测系统
CN114113674A (zh) * 2021-11-09 2022-03-01 北京遥测技术研究所 一种热膜式火星表面风场测量传感器

Also Published As

Publication number Publication date
CN106443056A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018054101A1 (zh) 一种基于圆片级封装的mems风速风向传感器结构及封装方法
CN102072967B (zh) 基于金金键合工艺的热式风速风向传感器及其制备方法
CN101819214B (zh) 基于陶瓷圆片级封装的集成风速风向传感器
WO2019242349A1 (zh) 一种超小型高灵敏度二维风速计及其制作方法
US9759613B2 (en) Temperature sensor device and radiation thermometer using this device, production method of temperature sensor device, multi-layered thin film thermopile using photo-resist film and radiation thermometer using this thermopile, and production method of multi-layered thin film thermopile
CN102169126B (zh) 基于减薄工艺的热式风速风向传感器及其制备方法
CN104991087B (zh) 一种具有片上自标定功能的mems热式风速传感器
CN102095888B (zh) 一种具有热隔离结构的热式风速风向传感器及其制备方法
US20110180891A1 (en) Conductor package structure and method of the same
CN104061967B (zh) 基于衬底转移工艺的热式风速风向传感器及其封装方法
CN106226361A (zh) 一种新型微热板式气体敏感元件
CN202102009U (zh) 基于金金键合工艺的热式风速风向传感器
CN102082105B (zh) 基于阳极键合工艺的热式风速风向传感器及其制备方法
CN102147421B (zh) 基于各向异性导热衬底的热式风传感器及其制备方法
WO2019242348A1 (zh) 一种高灵敏硅二维风速计及其制作方法
CN201886035U (zh) 一种具有热隔离结构的热式风速风向传感器
CN201993380U (zh) 基于减薄工艺的热式风速风向传感器
JP2001174323A (ja) 赤外線検出装置
TWI585870B (zh) 晶片封裝體及其製造方法
CN206057238U (zh) 一种新型微热板式气体敏感元件
JP2001174324A (ja) 赤外線検出器および赤外線検出装置
TW202032683A (zh) 微機電系統元件與特殊應用處理電路晶片之積體封裝方法和結構
WO2021189817A1 (zh) 封装结构、半导体器件和封装方法
JPH0472656A (ja) マルチチップ・モジュールの製造方法
JP5558189B2 (ja) 赤外線センサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17852174

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17852174

Country of ref document: EP

Kind code of ref document: A1