WO2018054100A1 - 动力电池包 - Google Patents

动力电池包 Download PDF

Info

Publication number
WO2018054100A1
WO2018054100A1 PCT/CN2017/087568 CN2017087568W WO2018054100A1 WO 2018054100 A1 WO2018054100 A1 WO 2018054100A1 CN 2017087568 W CN2017087568 W CN 2017087568W WO 2018054100 A1 WO2018054100 A1 WO 2018054100A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
liquid cooling
power battery
oil
main pipe
Prior art date
Application number
PCT/CN2017/087568
Other languages
English (en)
French (fr)
Inventor
赵继阳
赖庆
任艳姿
朱建华
朱燕
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112019005480A priority Critical patent/BR112019005480A2/pt
Priority to KR1020197007566A priority patent/KR20190040259A/ko
Priority to US16/335,186 priority patent/US10916750B2/en
Priority to EP17852173.8A priority patent/EP3506385A4/en
Publication of WO2018054100A1 publication Critical patent/WO2018054100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of power battery technologies, and in particular, to a power battery pack.
  • Conventional power battery packs typically use a wind-cooled structure or a liquid-cooled structure to perform a single thermal management of the individual cells in the battery module.
  • the cooling efficiency of the air-cooled structure is low, and it is unable to meet the safety requirements and heat dissipation requirements of a battery pack with high power, high energy density, and large heat generation.
  • the structure of the liquid-cooled structure is complicated and takes up a large space, which is disadvantageous to the weight reduction and compactness of the battery module.
  • the present application is based on the discovery and recognition of the following facts and problems by the inventors:
  • the inventors have found that the service life of the power battery pack and the charge and discharge rate decrease linearly after the use of the liquid-cooled power battery pack in the related art for a period of time. Through experimental analysis, it is found that after using for a period of time, the service life of the power battery pack and the charge and discharge rate drop linearly because the oil temperature is too high and the heat dissipation is not good.
  • the present disclosure is intended to address at least one of the technical problems existing in the prior art. To this end, it is an object of the present disclosure to provide a power battery pack that has a good heat dissipation effect.
  • the power battery pack according to the present disclosure includes: a battery pack case, the battery pack case is formed with an oil inlet port and an oil outlet port, and the battery pack case is filled with insulating oil from the oil inlet port; At least one battery module, the at least one battery module is disposed in the battery case, each battery module includes a module case and at least one single cell disposed in the module case, At least one single cell is immersed in the insulating oil, the bottom of the module housing is provided with a through hole and at the top is provided with at least one vent hole; and a return pipe is disposed outside the battery case The return pipe is connected between the oil outlet and the oil inlet.
  • the fuel tank port can be injected into the battery pack case through the oil inlet port.
  • Insulating oil making single battery Immersed in insulating oil
  • the return pipe can make the insulating oil flow back between the oil inlet and the oil outlet, increasing the heat dissipation area of the battery module, thereby improving the heat dissipation effect of the power battery package and reducing the temperature of the power battery package. , thereby improving the service life of the power battery pack, charge and discharge rate.
  • the immersion of the single battery in the insulating oil can isolate the single battery from the air, thereby eliminating the risk of spontaneous combustion of the battery module under extreme conditions.
  • the oil inlet is disposed adjacent to a bottom wall of the battery pack housing, and the oil outlet is disposed at a top of the battery pack housing.
  • an oil return passage is formed between the return pipe and the battery pack casing through the oil inlet port and the oil outlet port, and an oil pump is disposed on the oil return passage.
  • the return tube is a transparent tube or a translucent tube.
  • a partition is disposed in the battery pack housing, and the partition partitions the interior of the battery pack housing into a first receiving space and a second receiving space, the at least one battery module Provided in the second receiving space.
  • the battery pack case is provided with a sealing plate
  • the sealing plate includes a first sealing plate and a second sealing plate
  • the first sealing plate is for sealing the first receiving space
  • the second sealing plate is for sealing the second receiving space.
  • the top of the second sealing plate is provided with at least one fixing member, and the fixing member is formed with a fixing hole through which the return pipe passes and is fixed at the second Sealing plate.
  • the battery pack housing is further provided with a liquid cooling device, and the liquid cooling device is located at the bottom of the at least one battery module.
  • the oil inlet is disposed adjacent to the liquid cooling device.
  • the liquid cooling device includes a first main pipe, a second main pipe, and a plurality of liquid cooling members, each of the first main pipe and the second main pipe extending in the first direction,
  • the first main pipe has a liquid inlet and the second main pipe has a liquid discharge port, a plurality of the liquid cooling members are connected in parallel between the first main pipe and the second main pipe, and a plurality of the liquid cooling members are used for Cooling the at least one battery module.
  • the first main pipe and the second main pipe are arranged side by side and are both located on the same side of the at least one battery module in a second direction perpendicular to the first direction.
  • a first end of each liquid cooling member is connected to the first main pipe through a first transfer tube, and a second end of each liquid cooling member passes between the second end and the second main pipe The second transfer tube is connected.
  • the first transfer tube and the second transfer tube are respectively bent tubes arranged in an up and down direction.
  • each liquid cooling member comprises a curvedly extending flat tube.
  • each liquid cooling member further includes an adjacent one of the flat tubes disposed adjacent to the at least one electric A liquid-cooled plate on one side of the pool module.
  • FIG. 1 is a perspective view of a power battery pack in accordance with an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a battery pack case, a battery module, and a liquid cooling device of a power battery pack according to an embodiment of the present disclosure
  • FIG. 3 is a perspective view of a battery pack case and a liquid cooling device of a power battery pack according to an embodiment of the present disclosure
  • FIG. 4 is a perspective view of a liquid cooling device in accordance with an embodiment of the present disclosure.
  • FIG. 5 is another perspective view of a liquid cooling device in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a top plan view of a liquid cooling device in accordance with an embodiment of the present disclosure.
  • FIG. 7 is a rear elevational view of a liquid cooling device in accordance with an embodiment of the present disclosure.
  • FIG. 8 is a perspective view of a liquid cooling device according to another embodiment of the present disclosure.
  • FIG. 9 is another perspective view of a liquid cooling device according to another embodiment of the present disclosure.
  • FIG. 10 is a plan view of a liquid cooling device according to another embodiment of the present disclosure.
  • FIG. 11 is a rear elevational view of a liquid cooling device in accordance with another embodiment of the present disclosure.
  • FIG. 12 is a partial schematic view of a power battery pack according to an embodiment of the present disclosure, showing a pressure plate fitted in a cable take-out slot and a cable passing through the cable take-out slot;
  • FIG. 13 is an exploded view of a seal ring, a pressure plate, a platen seal, a take-up groove seal, and a backing plate in accordance with an embodiment of the present disclosure
  • Figure 14 is a bottom plan view of a portion of the power battery pack shown in Figure 12;
  • Figure 15 is a front elevational view showing a portion of the power battery pack shown in Figure 12;
  • Figure 16 is a cross-sectional view taken along line A-A of Figure 15;
  • FIG. 17 is a perspective view of a conductive post mounting body of a power battery pack in accordance with an embodiment of the present disclosure
  • FIG. 18 is a front elevational view of a conductive post mounting body of a power battery pack in accordance with an embodiment of the present disclosure
  • Figure 19 is a cross-sectional view taken along line B-B of Figure 18.
  • Battery pack housing 1, oil inlet 11, oil outlet 12, partition 13, cable take-out slot 131, first receiving space 14, a second receiving space 15, a sealing plate 16, a first sealing plate 161, a second sealing plate 162, a fixing member 1621,
  • the liquid cooling device 4 the first main pipe 41, the liquid inlet 411, the second main pipe 42, the liquid outlet 421, the liquid cooling member 43, the flat tube 431, the liquid cooling plate 432, the first transfer tube 44, and the second transfer tube 45 ,
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality of means two or more unless otherwise stated.
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.
  • a power battery pack 100 according to an embodiment of the present disclosure will be described below with reference to FIGS.
  • a power battery pack 100 includes a battery pack case 1, a plurality of battery modules 2, and a return pipe 3.
  • an oil inlet port 11 is formed in the battery pack case 1 and an oil outlet port 12 is formed in an upper portion of the battery pack case 1, and the battery pack case 1 can be filled with insulating oil from the oil inlet port 11.
  • the oil inlet port 11 may be formed as a length of inlet pipe to fill the battery pack casing 1 with insulating oil through the oil inlet port 11.
  • the return pipe 3 is disposed outside the battery pack casing 1, and the return pipe 3 is connected to the oil outlet 12 and the oil inlet port 11 between. Specifically, the return pipe 3 is provided at the top of the battery pack case 1. Thereby, it is convenient to return the insulating oil between the oil inlet port 11 and the oil outlet port 12, thereby facilitating the dissipation of the heat absorbed by the insulating oil and making the temperature of the insulating oil in the battery pack casing 1 uniform, thereby improving the power battery pack. 100 heat dissipation effect.
  • the location of the oil outlet 12 is higher than the oil inlet port 11.
  • the oil inlet port 11 may be disposed adjacent to the bottom wall of the battery pack case 1.
  • the oil outlet 12 may be provided at the top of the battery pack case 1.
  • the insulating oil can enter the battery pack case 1 (specifically, the second accommodating space 15, as will be described later in detail) from the bottom of the battery pack case 1, effectively reducing the gas in the battery pack case 1.
  • the air bubbles are reduced, and the safety and reliability of the power battery pack 100 are improved.
  • At least one battery module 2 is disposed in the battery pack case 1.
  • the battery module 2 may be one or plural.
  • the battery pack case 1 may be formed in a rectangular parallelepiped shape, and the plurality of battery modules 2 may be in a first direction (for example, in FIG. 1).
  • the left and right directions are arranged side by side in the battery pack case 1.
  • the plurality of battery modules 2 can also be arranged side by side in a second direction perpendicular to the first direction (for example, the front-rear direction in FIG. 1 ), or a part of the batteries in the plurality of battery modules 2 .
  • the modules 2 may be arranged side by side in the first direction, and the other battery modules 2 of the plurality of battery modules 2 are arranged side by side in the second direction.
  • the plurality of battery modules 2 may be provided in one layer or in multiple layers. When the plurality of battery modules 2 are provided in a plurality of layers, the battery modules 2 can be stacked in the vertical direction.
  • the specific arrangement of the battery module 2 can be adjusted according to the actual use situation of the power battery pack 100, which is not specifically limited in the present disclosure.
  • Each of the battery modules 2 includes a module housing and at least one single cell disposed in the module housing.
  • the single battery is immersed in the insulating oil, thereby absorbing the single battery through the heat capacity of the insulating oil itself.
  • the heat generated during the process is used to achieve thermal buffering, and the battery module 2 is cooled and cooled.
  • immersing the unit cells in the insulating oil can keep the battery temperature of the power battery pack 100 consistent and can directly contact the insulating oil with the inner wall of the battery module 2, thereby increasing the heat dissipation surface of the battery module 2, The heat dissipation effect is effectively improved, thereby increasing the charge and discharge rate of the power battery pack 100, and prolonging the service life of the power battery pack 100.
  • the bottom of the module housing is provided with a through hole and the top is provided with at least one vent hole.
  • the exhaust hole at the top of the module housing can effectively discharge the gas in the auxiliary auxiliary module housing, so that the insulating oil can flow into the module housing more easily, and the filling speed of the insulating oil is accelerated.
  • the through hole at the bottom of the module housing can increase the filling speed of the insulating oil so that the insulating oil is quickly filled in the battery module 2.
  • the module housing is a plastic piece. Plastic parts are low in material cost and easy to process.
  • the oil inlet port 11 and the oil discharge port 12 are provided on the battery pack case 1, and the return pipe 3 is provided between the oil inlet port 11 and the oil discharge port 12.
  • the insulating oil can be injected into the battery pack case 1 through the oil inlet port 11, so that the unit cell is immersed in the insulating oil, and the return pipe can make the insulating oil flow back between the oil inlet port 11 and the oil outlet port 12,
  • the heat dissipation area of the battery module 2 is increased, thereby improving the heat dissipation effect of the power battery pack 100, and making the temperature of the insulating oil in the battery pack case 1 uniform, reducing the temperature of the power battery pack 100, thereby improving the power battery.
  • the service life and charge and discharge rate of the package 100 At the same time, the immersion of the unit cells in the insulating oil can isolate the unit cells from the air, thereby eliminating the risk of spontaneous combustion of the battery module 2 under extreme conditions.
  • an oil return passage is formed between the return pipe 3 and the battery pack casing 1 through the oil inlet port 11 and the oil discharge port 12, and an oil pump (not shown) is disposed on the oil return passage.
  • an oil pump (not shown) is disposed on the oil return passage.
  • a cooling device may be provided in the return pipe 3 or the oil pump, and the heat of the insulating oil is taken away by the cooling device.
  • the heat dissipation of the insulating oil can be further accelerated by the cooling device, the heat dissipation effect of the power battery pack 100 can be improved, and the service life and the charge and discharge rate of the power battery pack 100 can be prolonged.
  • the battery pack case 1 has a partition 13 therein, and the partition plate 13 may extend in the width direction of the battery pack case 1 (for example, the front-rear direction in FIG. 2).
  • the partition 13 partitions the inside of the battery pack case 1 into a first accommodating space 14 and a second accommodating space 15.
  • the plurality of battery modules 2 are disposed in the second accommodation space 15 of the battery pack case 1, and the oil inlet port 11 may be provided on the partition plate 13.
  • the oil inlet port 11 is a section of the inlet pipe, and one end of the inlet pipe (e.g., the right end in Fig.
  • the first accommodating space 14 is not filled with insulating oil, and the first accommodating space 14 can be used for placing components such as control elements. Thereby, the layout inside the battery pack case 1 can be made more compact and compact.
  • the battery pack case 1 is provided with a sealing plate 16 including a first sealing plate 161 and a second sealing plate 162.
  • the first sealing plate 161 is for sealing the first accommodating space 14 of the battery pack case 1
  • the second sealing plate 162 is for sealing the second accommodating space 15 of the battery pack case 1.
  • the first sealing plate 161 and the second sealing plate 162 may be fixed to the battery pack case 1 by screw fasteners. Thereby, the sealing property of the power battery pack 11 can be improved, thereby improving the protection level and safety of the power battery pack 100, so that the protection level of the power battery pack 100 is satisfied. IP67 requirements.
  • the return pipe 3 is a transparent pipe or a translucent pipe, but is not limited thereto. Thereby, it is convenient for the user to observe the filling condition of the insulating oil in the battery pack case 1 through the return pipe 3, and to prevent air bubbles from remaining inside the insulating oil.
  • the return pipe 3 may be disposed above the second sealing plate 162.
  • the second sealing plate 162 may be provided with at least one fixing member 1621.
  • the fixing member 1621 is formed with a return pipe fixing hole, and the return pipe 3 passes through the return pipe fixing hole.
  • the return pipe 3 is fixed to the second sealing plate 162.
  • the fixing members 1621 may be one or more.
  • the fixing members 1621 are two, and the two fixing members 1621 are spaced apart in the width direction of the second sealing plate 162 (for example, the front-rear direction in FIG. 1), and each fixing member 1621 may be along The longitudinal direction of the second sealing plate 162 (for example, the left-right direction in FIG. 1) extends.
  • the insulating oil may be an insulating silicone oil or the like, but is not limited thereto.
  • the insulating silicone oil has better cooling performance and insulating performance, and is low in cost, thereby effectively improving the cooling effect and the insulating performance, and reducing the cost.
  • the insulating silicone oil has flame retardancy, can eliminate the risk of spontaneous combustion of the battery module 2 under extreme conditions, and further improve the protection level and safety of the power battery pack 100.
  • the battery pack housing 1 is further provided with a liquid cooling device 4, and the liquid cooling device 4 is located at the bottom of the battery module 2.
  • the temperature of the insulating oil can be effectively reduced by the liquid cooling device 4, thereby further improving the heat dissipation effect of the power battery pack 100.
  • the heat generated by the battery module 2 is transferred to the insulating oil, and the liquid cooling device 4 at the bottom of the battery module 2 can lower the temperature of the insulating oil in the lower portion of the battery pack case 1, the battery pack
  • the insulating oil having a relatively high temperature in the upper portion of the casing 1 is returned to the oil inlet port 11 through the return pipe 3, enters the battery pack casing 1 from the oil inlet port 11, and is cooled by the liquid cooling device 4.
  • the heat dissipation of the insulating oil can be accelerated, so that the temperature of the insulating oil in the battery pack case 1 is uniform, thereby improving the heat dissipation effect of the power battery pack 100, and prolonging the service life and the charge and discharge rate of the power battery pack 100.
  • the liquid cooling device 4 includes a first main pipe 41, a second main pipe 42, and a plurality of liquid cooling members 43.
  • the first main pipe 41 and the second main pipe 42 each extend in a first direction (for example, the left-right direction in FIG. 4), the first main pipe 41 has a liquid inlet 411 and the second main pipe 42 has a liquid outlet 421.
  • a plurality of liquid cooling members 43 are connected in parallel between the first main pipe 41 and the second main pipe 42, and the plurality of liquid cooling members 43 are used to cool at least one of the plurality of battery modules 2.
  • each liquid cooling member 43 can cool the battery module 2 corresponding thereto, so that the rear stage cooling is not performed.
  • the influence of the cooling of the front stage i.e., the cooling effect of the subsequent liquid cooling member 43 and the cooling effect of the preceding liquid cooling member 43 are not affected), and each liquid cooling member 43 is secured.
  • the cooling effect is the same, the cooling effect of the liquid cooling device 4 is improved, the heat dissipation effect of the power battery pack 100 is improved, and the temperature of the power battery pack 100 is lowered.
  • the plurality of liquid cooling members 43 are in one-to-one correspondence with the plurality of battery modules 2, that is, the number of the liquid cooling members 43 is the same as the number of the battery modules 2, and each liquid cooling member 43 can cool the battery module 2 corresponding thereto.
  • the heat dissipation effect of the power battery pack 100 can be further improved, and the temperature of the power battery pack 100 can be lowered.
  • the liquid inlet 411 is formed at one end of the first main pipe 41 (for example, the left end in FIG. 4), and the liquid outlet 421 is formed at one end of the second main pipe 42 (for example, the left end in FIG. 4) .
  • the liquid cooling member 43 has a first end and a second end, and the first end of the liquid cooling member 43 (for example, the left end in FIG. 4) may be coupled to the first main pipe 41, and the second end of the liquid cooling member 43 (for example, The right end of 4 can be connected to the second main pipe 42.
  • the coolant may enter the first end of the liquid cooling member 43 from the liquid inlet 411 of the first main pipe 41, the cooling liquid flows in the liquid cooling member 43, and then flows into the second main pipe 42 from the second end of the liquid cooling member 43 and finally The water outlet 421 of the second main pipe 42 flows out to complete a cooling cycle.
  • the first main pipe 41 and the second main pipe 42 are arranged side by side and are both located on the same side of the plurality of battery modules 2 in the second direction.
  • the second direction is perpendicular to the first direction, the first direction may be the left-right direction in FIG. 4, and the second direction may be the front-rear direction in FIG.
  • the first main pipe 41 and the second main pipe 42 are arranged side by side in the up and down direction and the first main pipe 41 is located above the second main pipe 42, and the first main pipe 41 and the second main pipe 42 are located at a plurality of The rear side of the battery module 2.
  • each liquid cooling member 43 is connected to the first main pipe 41 through the first transfer pipe 44, and the second end of each liquid cooling member 43 and the second main pipe 42 are passed through the second transfer pipe. 45 connections.
  • the first transfer tube 44 and the second transfer tube 45 are respectively bent tubes arranged in the up and down direction.
  • the first transfer tube 44 and the second transfer tube 45 may be generally formed as a U-shaped tube.
  • the first transfer tube 44 and the second transfer tube 45 may be formed as a circular tube, that is, the first transfer tube 44 and the second transfer tube 45 have circular cross sections, respectively.
  • the first end of the first transfer tube 44 (eg, the left end in FIG. 4) may be coupled to the first end of the liquid cooling member 43, and the second end of the first transfer tube 44 (eg, the right end in FIG. 4) may be The first supervisor 41 is connected.
  • the first end of the second transfer tube 45 (eg, the left end in FIG. 4) may be coupled to the second main tube 42, and the second end of the second transfer tube 45 (eg, the right end in FIG.
  • the liquid cooling member 43 can be conveniently connected between the first main pipe 41 and the second main pipe 42 through the first transfer pipe 44 and the second transfer pipe 45, the assembly process is simplified, the assembly efficiency is improved, and the assembly efficiency is effectively The flow resistance of the coolant is reduced, thereby reducing the load of the drive pump that drives the flow of the coolant, and reducing the use cost of the power pack 100.
  • each of the liquid cooling members 43 includes a curved tube 431 that is curvedly extended.
  • the liquid cooling member 43 may be formed by bending a circular tube according to the arrangement of the unit cell or the battery module 2, so that the round tube forms a shape matching the battery module 2, and then the bent round tube is formed.
  • the flattened tube 431 is formed by flattening. Thereby, the cooling effect of the liquid cooling member 43 can be ensured and the occupied space of the liquid cooling member 43 can be reduced, and the structure is simple and the processing is convenient.
  • the flat tube 431 may be bent into an M shape, a U shape, or an S shape, but is not limited thereto, as long as the bent shape of the flat tube 431 is matched with the battery module 2, the present disclosure. This is not specifically limited.
  • each of the liquid cooling members 43 further includes a liquid cooling plate 432 disposed on a surface of the flat tube 431 adjacent to the battery module 2.
  • a plurality of liquid cooling members 43 are respectively disposed at the bottoms of the plurality of battery modules 2.
  • a liquid-cooled plate 432 is provided on the upper surface of the flat tube 431.
  • the liquid cooling plate 432 may be formed in a rectangular flat plate structure.
  • each of the liquid cooling members 43 may also be formed in a flat shape, and each of the liquid cooling members 43 defines a liquid-cooled flow path in which both ends are in communication with the first main pipe 41 and the second main pipe 42, respectively. .
  • the contact area between the liquid cooling member 43 and the battery module 2 can be effectively increased, the heat dissipation area can be increased, and the heat dissipation effect of the power battery pack 100 can be improved.
  • each of the liquid cooling members 43 may also include only the flat tubes 431 (as shown in FIGS. 4-7), and thus, the liquid cooling member 43 may also be passed through.
  • the battery module 2 is cooled.
  • a plurality of liquid cooling members 43 are respectively disposed at the bottoms of the plurality of battery modules 2. Thereby, the heat dissipation of the battery module 2 can be ensured and the assembly is convenient and the space is small.
  • a battery take-out slot 131 is formed on the battery pack case 1, and the power battery pack 100 further includes a cable 51, and more. Sealing ring 52 and pressure plate 53.
  • the cable 51 may be a signal cable of the power battery pack 100 or the battery module 2.
  • the cable take-out slot 131 may be formed on the partition plate 13, and the first end of the cable 51 (for example, the right end in FIG. 12) is disposed in the second receiving space 15, the cable The second end of the 51 (e.g., the left end in Fig. 12) extends out of the second receiving space 15 through the cable take-out slot 131.
  • the cross section of the cable take-out groove 131 may be formed in a circular shape, but is not limited thereto. The cable 51 can be taken out from the center of the cable take-out slot 131. Thereby, the cable 51 can be easily taken out.
  • a plurality of sealing rings 52 are sleeved on the cable 51 and located in the cable take-out slots 131.
  • Each of the sealing rings 52 is provided with a protrusion 523 which is partially covered by the sealing ring 52.
  • One side surface of the seal ring 52 is convexly formed toward the other side surface of the seal ring 52.
  • the cable 51 passes through the pressure plate 53, and the pressure plate 53 has a plurality of sealing rings 52
  • the cable is taken out in the cable take-out groove 131 to seal the gap between the outer peripheral edge of the seal ring 52 and the inner peripheral wall of the cable take-out groove 131 and seal the gap between the inner periphery of the seal ring 52 and the cable 51.
  • the sealing property of the cable take-out groove 131 can be improved, and the insulating oil can be prevented from leaking from the cable take-out groove 131.
  • the protrusion 523 may be formed by a portion of the seal ring 52 protruding from the left side surface of the seal ring 52 toward the right side surface of the seal ring 52, or by a portion of the seal ring 52 from the right side surface of the seal ring 52 toward the seal ring 52.
  • the left side surface is convexly formed.
  • the cross section of the sealing ring 52 may be circular.
  • the center of the sealing ring 52 is provided with a cable through hole to facilitate the sleeves of the plurality of sealing rings 52 on the cable 51 to improve the sealing property of the cable take-out groove 131.
  • the pressing plate 53 may be formed in a flat plate structure that matches the cross section of the cable take-out groove 131, for example, a circular flat plate-like structure.
  • the center of the pressure plate 53 is formed as an inner hole through which the cable 51 can pass. Thereby, the pressure plate 53 is facilitated to press the plurality of seal rings 52 in the cable take-out groove 131 to seal the gap between the outer circumference of the seal ring 52 and the inner peripheral wall of the cable take-out groove 131 and seal the inner circumference of the seal ring 52.
  • the gap between the cable 51 and the cable 51 allows the cable of the battery module 2 or the power battery pack 100 to be easily taken out and sealed.
  • the outer circumference of the seal ring 52 refers to the radially outer end surface of the seal ring 52, and the inner circumference of the seal ring 52 refers to the inner peripheral wall of the cable passage hole.
  • the seal ring 52 includes a plurality of first seal rings 521 and a plurality of second seal rings 522, the plurality of first seal rings 521 and the plurality of second seal rings 522 along the axis of the cable 51 Staggered to (for example, the left-right direction in FIG. 16), the projection 523 of the first seal ring 521 and the projection 523 of the second seal ring 522 are opposed to each other.
  • the first sealing ring 521 and the second sealing ring 522 may be the first sealing ring 521, the second sealing ring 522, the first sealing ring 521, and the second sealing ring. Arranged in the order of 522....
  • the projections 523 are opposed to each other.
  • the protrusion 523 of the first seal ring 521 and the protrusion 523 of the second seal ring 522 define a seal groove 524 which is located radially inward of the seal ring 52 with respect to the protrusion 523.
  • a further sealing groove is defined between the protrusion 523 of the second sealing ring 522 and the protrusion 523 of the other first sealing ring 521 adjacent thereto (for example, the third sealing ring 52 from the left in FIG. 16) 524.
  • the protrusion 523 of the first sealing ring 521 and the protrusion 523 of the second sealing ring 522 are partially pressed along the first sealing ring 521 and the second sealing ring, respectively.
  • the radial extension of 522 causes the inner circumference of the seal ring 52 to contact the outer peripheral surface of the cable 51 and the outer circumference of the seal ring 52 to contact the inner peripheral wall of the cable take-out groove 131, thereby achieving sealing.
  • a portion of the air remains in the sealing groove 524, and the air remaining in the sealing groove 524 can maintain the sealing elasticity of the sealing ring 52 while forming a gas seal. Thereby, the sealing effect of the seal ring 52 is effectively improved.
  • the protrusion 523 may be formed as an annular protrusion 523 that extends in the circumferential direction of the cable 51.
  • the structure is simple and the processing is convenient.
  • the power battery pack 100 further includes: a platen seal 54 including a first platen seal section 541 and a second platen seal section sequentially connected in the axial direction. 542.
  • the first platen seal section 541 is disposed in the inner bore of the pressure plate 53 and fitted over the cable 51, and the second platen seal section 542 is disposed between the one of the plurality of seal rings 52 closest to the pressure plate 53 and the pressure plate 53.
  • a platen seal 54 including a first platen seal section 541 and a second platen seal section sequentially connected in the axial direction. 542.
  • the first platen seal section 541 is disposed in the inner bore of the pressure plate 53 and fitted over the cable 51
  • the second platen seal section 542 is disposed between the one of the plurality of seal rings 52 closest to the pressure plate 53 and the pressure plate 53.
  • the second platen seal section 542 is coupled to the right end of the first platen seal section 541, the first platen seal section 54 extends into the inner bore of the pressure plate 53, and the second platen seal section 542 is disposed on the press plate. 53 is between the seal ring 52 closest to the pressure plate 53. Thereby, the sealing property of the cable take-out groove 131 is further improved.
  • one end of the first platen seal section 541 remote from the second platen seal section 542 (for example, the left end in FIG. 16) is provided with a platen rib 54111.
  • the platen ribs 5411 are located on the side of the pressure plate 53 remote from the plurality of seal rings 52.
  • the platen ribs 5411 extend outward in the radial direction of the cable 51, and the plate ribs 5411 and the outer surface of the platen 53 (such as the left side surface in Fig. 16) are stopped.
  • the platen ribs 5411 may be formed as annular ribs, but are not limited thereto.
  • the platen gasket 54 is an integrally formed piece, thereby simplifying the processing process and reducing processing costs.
  • the power battery pack 100 further includes a take-out slot seal 55 that includes a first take-out slot seal section 551 and a second take-off slot seal section 552 that are sequentially connected in the axial direction.
  • the first take-out groove sealing section 551 is disposed in the inner hole of the cable take-out groove 131 and is sleeved on the cable 51
  • the second take-out groove sealing section 552 is disposed in one of the plurality of seal rings 52 which is the farthest from the pressure plate 53.
  • the cable is drawn between the inner walls of the slots 131. For example, in the example of FIG.
  • the take-up groove gasket 55 is provided at one end of the cable take-out groove 131 away from the pressure plate 53 (for example, the right end in FIG. 16), wherein the first take-out groove seal section 551 is connected to the second lead-out The right end of the slot sealing section 552, the first outlet slot sealing section 551 is disposed in the inner hole of the cable take-out slot 131 and is sleeved on the cable 51.
  • the cable take-out slot 131 has a stepped inner wall at the right end thereof, and the second lead-out slot
  • the seal segment 552 is disposed between a seal ring 52 that is furthest from the platen 53 and a stepped inner wall of the cable take-up groove 131. Thereby, the sealing property of the cable take-out groove 131 is further improved.
  • first take-out groove sealing section 551 away from the second take-out groove sealing section 552 (for example, the right end in FIG. 16) is provided with a take-out groove rib 5511, and the lead-out groove rib 5511 is located at the cable take-out groove 131. Keep away from the side of the pressure plate 53.
  • the lead groove rib 5511 may extend outward in the radial direction of the cable 51, and the lead groove rib 5511 and the right side surface of the partition plate 13 may be abutted.
  • the lead groove rib 5511 may be formed as a ring rib, but is not limited thereto.
  • the first take-out groove sealing section 551 can be prevented from slipping out of the cable take-out groove 131, so that the position of the take-out groove seal 55 is stabilized. Thereby, the sealing effect of the cable take-out groove 131 is ensured.
  • the take-up slot gasket 55 is an integrally formed piece, thereby simplifying the machining process and reducing processing costs.
  • a pad 56 is disposed between the lead slot gasket 55 and the cable take-up slot 131. Thereby, the sealing property of the cable take-out groove 131 is further improved.
  • the backing plate 56 is an aluminum alloy piece, but is not limited thereto.
  • the pressure plate 53 is screwed to the battery pack case 1.
  • the pressure plate 53 may be provided with a screw hole, and a threaded fastener 57 (such as a screw or the like) may be connected to the battery pack case 1 through the screw hole to connect the pressure plate 53 to the battery pack case 1 with a simple structure. Easy to disassemble and high reliability.
  • the pressure plate 53 is coupled to the battery pack case 1 by three threaded fasteners 57.
  • the power battery pack 100 further includes a conductive post mounting body 61 and a pressing member 62.
  • a mounting groove that is open on one side is formed in the battery pack case 1.
  • the mounting groove may be formed on the partition 13 and the mounting groove is located at one end of the partition 13 away from the cable take-out groove 131 (for example, the front end in FIG. 2).
  • a plurality of conductive pillars 611 are disposed on the conductive pillar mounting body 61, and an insulating member 612 is disposed on an outer circumferential surface of each of the conductive pillars 611.
  • a sealing member 613 is disposed on each of two sides of the conductive post mounting body 61 along the axial direction of the conductive post 611, and the sealing member 613 is disposed around the conductive post 611.
  • the pressing member 62 is provided on the above side of the mounting groove and presses the conductive post mounting body 61 in the mounting groove.
  • the conductive pillars 611 may be copper rods or the like. The copper rod has good electrical conductivity and is not easily rusted.
  • the conductive pillar mounting body 61 may be formed into a circular flat structure, and the conductive pillar mounting body 61 is provided with a plurality of conductive pillar lead-out holes, and the plurality of conductive pillar lead-out holes may be evenly distributed.
  • the conductive post is mounted on the body 61.
  • the conductive column lead-out holes may be formed as circular through holes, and the conductive posts 611 pass through the conductive post lead-out holes and protrude from the mounting grooves.
  • the insulating member 612 may be wrapped on the outer peripheral surface of the conductive post 611, the insulating member 612 may be disposed at a central portion of the conductive post 611, and both ends of the insulating member 612 (for example, the left end and the right end in FIG. 19) respectively protrude from the mounting groove. That is, the axial ends of the insulating member 612 respectively protrude from the corresponding surfaces of the conductive post mounting body 61.
  • the power of the power battery pack 100 can be easily taken out, and the insulation of the conductive post 611 is improved, thereby improving the safety of the power battery pack 100 and adapting to the large current output of the conductive post 611.
  • middle portion refers to the middle portion in a broad sense.
  • the middle portion of the conductive post 611 refers to the position between the axial ends of the conductive post 611.
  • Each of the two ends of the conductive post 611 is provided with a sealing member 613, the sealing member 613 may be annular, and the sealing member 613 is disposed around the conductive post 611.
  • the seal 613 is disposed around the conductive post take-up aperture.
  • the pressing member 62 is disposed on the one side (ie, the left side) of the mounting groove and presses the conductive post mounting body 61 into the mounting groove, and is pressed by the pressing between the pressing member 62 and the conductive post mounting body 61 to achieve an effective sealing. Thereby, the conductive column installation can be effectively improved
  • the sealing property of the body 61 prevents the insulating oil in the battery pack case 1 from leaking from the conductive post mounting body 61.
  • the seal 613 includes a plurality of third seal rings 6131, each of which surrounds one of the conductive posts 611. Thereby, the sealing property of the conductive column take-out hole can be ensured and the material of the sealing member 613 can be effectively reduced, and the material cost can be reduced.
  • the third sealing ring 6131 may be a rubber ring or the like, but is not limited thereto.
  • the sealing member 613 further includes a connecting rib 6132 connected between the plurality of third sealing rings 6131.
  • the plurality of third seal rings 6131 can be connected as a whole by the connecting ribs 6132.
  • the sealing member 613 can be integrally assembled to the conductive post mounting body 61, which simplifies the assembly process and improves assembly efficiency.
  • the both sides of the conductive post mounting body 61 along the axial direction of the conductive post 611 are respectively formed with receiving grooves for accommodating the sealing member 613.
  • the third seal ring 6131 includes a plurality of sealing ribs 6133 spaced around the conductive post 611 and spaced apart in the radial direction of the conductive post 611 (for example, the up and down direction in FIG. 19).
  • the third seal ring 6131 includes two sealing ribs 6133 that surround the conductive posts 611 and are spaced apart in the radial direction of the conductive posts 611, respectively.
  • the seal 613 is an integrally formed piece. Thereby, the processing process is simplified and the processing cost is reduced.
  • the conductive posts 611 are sintered and bonded to the insulator 612. Therefore, the insulating member 612 can withstand the locking torque of the copper row, realize the insulation and sealing of the lead-out hole of the conductive column, and has a simple process and low processing cost.
  • the conductive post mounting body 61 is an aluminum alloy member, and is not limited thereto.
  • the insulating member 612 is a glass member or a ceramic member.
  • the conductive post 611 can be sintered to a glass or ceramic piece.
  • the glass member and the ceramic member are low in material cost and good in insulation, thereby effectively reducing the material cost of the insulating member 612 and improving the insulating property of the conductive post 611.
  • the conductive pillars 611 may be four, but are not limited thereto.
  • the four conductive pillars 611 may include two positive terminals and two negative terminals. Thereby, the voltage of the conductive post 611 can be effectively reduced, and the safety of the power battery can be improved.
  • the conductive pillars 611 can also be two, six, etc., which are not specifically limited in the present disclosure.
  • the power battery pack 100 of the embodiment of the present disclosure heat dissipation is good, and power of the power battery pack 100 can be easily taken out.
  • the power battery pack 100 has good insulation and sealing properties and high safety.

Abstract

本公开提供了一种动力电池包,包括:电池包壳体、至少一个电池模组和回流管。电池包壳体上形成有进油口和出油口,从进油口向电池包壳体内充注绝缘油。至少一个电池模组均设在电池包壳体内,每个电池模组包括模组壳体和设在模组壳体内的至少一个单体电池。单体电池浸没在绝缘油中,模组壳体的底部设有通孔且顶部设有至少一个排气孔。回流管设在电池包壳体外,回流管连接在出油口和进油口之间。

Description

动力电池包 技术领域
本公开涉及动力电池技术领域,尤其是涉及一种动力电池包。
背景技术
相关技术中,动力电池包在大电流充放电过程中,电池内部会积聚大量的热,如果热量不及时加以控制,电池模组的温度会急剧升高。尤其是大容量电池模组,其能量密度更大、放热量更高,容易导致热失控,使得电池出现释放气体、冒烟、漏液等问题,甚至可能会引起电池燃烧、爆炸等。
传统的动力电池包通常采用风冷结构或液冷结构对电池模组中的单体电池进行单一的热管理。然而,风冷结构的冷却效率低,无法满足大功率、高能量密度、发热量巨大的电池组的安全需求和散热需求。液冷结构的结构复杂,占用空间大,不利于电池模组的轻量化和紧凑化。
发明内容
本申请是基于发明人对以下事实和问题的发现和认识作出的:发明人发现,相关技术中的液冷动力电池包使用一段时间后,动力电池包的使用寿命和充放电倍率直线下降。经试验分析发现,使用一段时间后,动力电池包的使用寿命和充放电倍率直线下降的原因为:油温温度过高,散热不好。
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种动力电池包,该动力电池包的散热效果好。
根据本公开的动力电池包,包括:电池包壳体,所述电池包壳体上形成有进油口和出油口,从所述进油口向所述电池包壳体内充注绝缘油;至少一个电池模组,所述至少一个电池模组设在所述电池包壳体内,每个电池模组包括模组壳体和设在所述模组壳体内的至少一个单体电池,所述至少一个单体电池浸没在所述绝缘油中,所述模组壳体的底部设有通孔且顶部设有至少一个排气孔;回流管,所述回流管设在所述电池包壳体外,所述回流管连接在所述出油口和所述进油口之间。
根据本公开的动力电池包,通过在电池包壳体上设置进油口和出油口,并在进油口和出油口之间设置回流管,可以通过进油口向电池包壳体内注入绝缘油,使得单体电池 浸没在绝缘油中,回流管可以使绝缘油在进油口和出油口之间回流,增大电池模组的散热面积,从而提高了动力电池包的散热效果,降低了动力电池包的温度,进而提高了动力电池包的使用寿命,充放电倍率。同时,单体电池浸没在绝缘油中可以使得单体电池与空气隔绝,从而可以消除电池模组在极端情况下的自燃风险。
根据本公开的一些实施例,所述进油口邻近所述电池包壳体的底壁设置,所述出油口设在所述电池包壳体的顶部。
根据本公开的一些实施例,所述回流管和所述电池包壳体之间通过所述进油口和所述出油口构成回油通路,所述回油通路上设有油泵。
根据本公开的一些实施例,所述回流管为透明管或半透明管。
根据本公开的一些实施例,所述电池包壳体内设有隔板,所述隔板将所述电池包壳体内部分隔为第一容纳空间和第二容纳空间,所述至少一个电池模组设在所述第二容纳空间内。
根据本公开的一些实施例,所述电池包壳体上设有密封板,所述密封板包括第一密封板和第二密封板,所述第一密封板用于密封所述第一容纳空间,所述第二密封板用于密封所述第二容纳空间。
根据本公开的一些实施例,所述第二密封板的顶部设有至少一个固定件,所述固定件上形成有固定孔,所述回流管穿过所述固定孔且固定在所述第二密封板上。
根据本公开的一些实施例,所述电池包壳体内还设有液冷装置,所述液冷装置位于所述至少一个电池模组的底部。
根据本公开的一些实施例,所述进油口邻近所述液冷装置设置。
根据本公开的一些实施例,所述液冷装置包括第一主管、第二主管和多个液冷件,所述第一主管和所述第二主管均沿所述第一方向延伸,所述第一主管具有进液口且所述第二主管具有出液口,多个所述液冷件并联在所述第一主管和所述第二主管之间,多个所述液冷件用于对所述至少一个电池模组进行冷却。
根据本公开的一些实施例,所述第一主管和所述第二主管并排布置且均位于所述至少一个电池模组的沿与所述第一方向垂直的第二方向上的同一侧。
根据本公开的一些实施例,每个液冷件的第一端与所述第一主管之间通过第一转接管连接,每个液冷件的第二端与所述第二主管之间通过第二转接管连接。
根据本公开的一些实施例,所述第一转接管和所述第二转接管分别为沿上下方向布置的弯管。
根据本公开的一些实施例,每个液冷件包括弯曲延伸的扁管。
根据本公开的一些实施例,每个液冷件还包括设在所述扁管的邻近所述至少一个电 池模组的一侧表面上的液冷板。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的动力电池包的立体图;
图2是根据本公开实施例的动力电池包的电池包壳体、电池模组和液冷装置的立体图;
图3是根据本公开实施例的动力电池包的电池包壳体和液冷装置的立体图;
图4是根据本公开实施例的液冷装置的立体图;
图5是根据本公开实施例的液冷装置的另一立体图;
图6是根据本公开实施例的液冷装置的俯视图;
图7是根据本公开实施例的液冷装置的后视图;
图8是根据本公开另一实施例的液冷装置的立体图;
图9是根据本公开另一实施例的液冷装置的另一立体图;
图10是根据本公开另一实施例的液冷装置的俯视图;
图11是根据本公开另一实施例的液冷装置的后视图;
图12是根据本公开实施例的动力电池包的局部的示意图,示出配合在线缆引出槽内的压板以及穿过线缆引出槽的线缆;
图13是根据本公开实施例的密封圈、压板、压板密封垫、引出槽密封垫和垫板的爆炸图;
图14是图12中所示的动力电池包的局部的仰视图;
图15是图12中所示的动力电池包的局部的主视图;
图16是沿图15中A-A线的剖视图;
图17是根据本公开实施例的动力电池包的导电柱安装本体的立体图;
图18是根据本公开实施例的动力电池包的导电柱安装本体的主视图;
图19是沿图18中B-B线的剖视图。
附图标记:
动力电池包100,
电池包壳体1,进油口11,出油口12,隔板13,线缆引出槽131,第一容纳空间 14,第二容纳空间15,密封板16,第一密封板161,第二密封板162,固定件1621,
电池模组2,
回流管3,
液冷装置4,第一主管41,进液口411,第二主管42,出液口421,液冷件43,扁管431,液冷板432,第一转接管44,第二转接管45,
线缆51,密封圈52,第一密封圈521,第二密封圈522,凸起523,密封凹槽524,压板53,压板密封垫54,第一压板密封段541,压板凸筋5411,第二压板密封段542,引出槽密封垫55,第一引出槽密封段551,引出槽凸筋5511,第二引出槽密封段552,垫板56,螺纹紧固件57,
导电柱安装本体61,导电柱611,绝缘件612,密封件613,第三密封圈6131,连接筋6132,密封筋6133,压件62。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
下面参考图1-图19描述根据本公开实施例的动力电池包100。
如图1和图2所示,根据本公开实施例的动力电池包100,包括:电池包壳体1、多个电池模组2和回流管3。
具体地,电池包壳体1上形成有进油口11且电池包壳体1的上部形成有出油口12,从进油口11可以向电池包壳体1内充注绝缘油。在本公开的一些实施例中,进油口11可以形成为一段进口管,以便通过进油口11向电池包壳体1内充注绝缘油。
参照图1,回流管3设在电池包壳体1外,回流管3连接在出油口12和进油口11 之间。具体地,回流管3设在电池包壳体1的顶部。由此,便于绝缘油在进油口11和出油口12之间回流,从而便于将绝缘油吸收的热量散发出去且使得电池包壳体1内的绝缘油的温度均匀,提高了动力电池包100的散热效果。
在本公开的一些实施例中,出油口12的位置高于进油口11。参照图2和图3,进油口11可以邻近电池包壳体1的底壁设置。如图1所示,出油口12可以设在电池包壳体1的顶部。由此,绝缘油可以从电池包壳体1的底部进入电池包壳体1(具体为第二容纳空间15,下文中将详细描述)内,有效地减小了电池包壳体1内的气体,减少了气泡,提高了动力电池包100的安全性和可靠性。
至少一个电池模组2设在电池包壳体1内。其中,电池模组2可以为一个,也可以为多个。例如,参照图1并结合图2和图3,电池包壳体1可以形成为长方体形状,电池模组2为多个,多个电池模组2可以沿第一方向(例如,图1中的左右方向)并排布置在电池包壳体1内。
当然,可以理解的是,多个电池模组2也可以沿与第一方向垂直的第二方向(例如,图1中的前后方向)并排设置,或者,多个电池模组2中的部分电池模组2可以沿第一方向并排设置,多个电池模组2中的另一部分电池模组2沿第二方向并排设置。在本公开的一些实施例中,多个电池模组2可以设置为一层,也可以设置为多层。多个电池模组2设置为多层时,电池模组2可以在上下方向上层叠设置。电池模组2的具体布置方式,可以根据动力电池包100的实际使用场合调整设计,本公开对此不作具体限定。
每个电池模组2包括模组壳体和设在模组壳体内的至少一个单体电池,单体电池浸没在绝缘油中,由此,可以通过绝缘油自身的热容吸收单体电池在使用过程中产生的热量,实现热缓冲作用,对电池模组2进行冷却散热。此外,将单体电池浸没在绝缘油中,可以使得动力电池包100的电池温度保持一致且可使得绝缘油与电池模组2的内壁直接接触,从而增大了电池模组2的散热面,有效地提高了散热效果,进而提高了动力电池包100的充放电倍率,延长了动力电池包100的使用寿命。
具体地,模组壳体的底部设有通孔且顶部设有至少一个排气孔。模组壳体顶部的排气孔可以将有效辅助模组壳体内气体的排出,使得绝缘油更容易流进模组壳体内,加快了绝缘油的充注速度。模组壳体的底部的通孔可以提高绝缘油的充注速度,以便绝缘油快速的在电池模组2内充满。在本公开的一些实施例中,模组壳体为塑料件。塑料件的材料成本低且加工方便。
这里,需要说明的是,本申请中所说的“至少一个”指的是一个或者一个以上。此外,在本公开的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径 向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
根据本公开实施例的动力电池包100,在电池包壳体1上设置进油口11和出油口12,并在进油口11和出油口12之间设置回流管3。由此,可以通过进油口11向电池包壳体1内注入绝缘油,使得单体电池浸没在绝缘油中,回流管可以使绝缘油在进油口11和出油口12之间回流,增大电池模组2的散热面积,从而提高了动力电池包100的散热效果,并使得电池包壳体1内的绝缘油的温度均匀,降低了动力电池包100的温度,进而提高了动力电池包100的使用寿命和充放电倍率。同时,单体电池浸没在绝缘油中可以使得单体电池与空气隔绝,从而可以消除电池模组2在极端情况下的自燃风险。
根据本公开的一些实施例,回流管3和电池包壳体1之间通过进油口11和出油口12构成回油通路,回油通路上设有油泵(图未示出)。由此,可以通过油泵实现电池包壳体1内的绝缘油对流,加快动力电池包100的散热,从而进一步地提高了动力电池包100的散热效果。此外,油泵可以控制排气,减小绝缘油中的气体,从而进一步地减小了电池包壳体1内的气体,提高了动力电池包100的安全性和可靠性。
进一步地,可以在回流管3或油泵内设置冷却装置,通过冷却装置带走绝缘油的热量。由此,可以通过冷却装置进一步地加快绝缘油的散热,提高动力电池包100的散热效果,延长动力电池包100的使用寿命和充放电倍率。
根据本公开的一些实施例,参照图2和图3,电池包壳体1内具有隔板13,隔板13可以沿电池包壳体1的宽度方向(例如,图2中的前后方向)延伸,隔板13将电池包壳体1内部分隔为第一容纳空间14和第二容纳空间15。多个电池模组2设在电池包壳体1的第二容纳空间15内,进油口11可以设在隔板13上。例如,参照图2和图3,进油口11为一段进口管,进口管的一端(例如,图2中的右端)连接在隔板13上并与第二容纳空间15连通,进口管的另一端(例如,图2中的左端)远离第二容纳空间15的延伸至第一容纳空间14内。由此,便于从进油口11向第二容纳空间15内充注绝缘油。第一容纳空间14内不充注绝缘油,第一容纳空间14可以用于放置控制元件等部件。由此,可以使得电池包壳体1内的布局更加整齐、紧凑。
进一步地,电池包壳体1上设有密封板16,密封板16包括第一密封板161和第二密封板162。第一密封板161用于密封电池包壳体1的第一容纳空间14,第二密封板162可以用于密封电池包壳体1的第二容纳空间15。第一密封板161和第二密封板162可以通过螺纹紧固件固定在电池包壳体1上。由此,可以提高动力电池包11的密封性,从而提高了动力电池包100的防护等级和安全性,使得动力电池包100的防护等级满足 IP67的要求。
在本公开的一些实施例中,回流管3为透明管或半透明管,但不限于此。由此,便于用户通过回流管3观察电池包壳体1内的绝缘油充注情况,防止绝缘油内部有气泡残留。
回流管3可以设在第二密封板162的上方,第二密封板162上可以设有至少一个固定件1621,固定件1621上形成有回流管固定孔,回流管3穿过回流管固定孔,以将回流管3固定在第二密封板162上。由此,结构简单,装配方便且有效地提高了回流管3的安装稳定性。
具体地,固定件1621可以为一个或多个。例如,在图1的示例中,固定件1621为两个,两个固定件1621沿第二密封板162的宽度方向(例如,图1中的前后方向)间隔设置,每个固定件1621可以沿第二密封板162的长度方向(例如,图1中的左右方向)延伸。
在本公开的一些实施例中,绝缘油可以为绝缘硅油等,但不限于此。绝缘硅油的冷却性能和绝缘性能较好,且成本低廉,由此,有效地提高了冷却效果和绝缘性能,降低了成本。此外,绝缘硅油具有阻燃性,可以消除电池模组2在极端情况下的自燃风险,进一步地提高动力电池包100的防护等级和安全性。
根据本公开的一些实施例,参照图3,电池包壳体1内还设有液冷装置4,液冷装置4位于电池模组2的底部。由此,可以通过液冷装置4有效地降低绝缘油的温度,从而进一步地提高了动力电池包100的散热效果。
具体地,在动力电池包100工作过程中,电池模组2产生的热量传递给绝缘油,电池模组2底部的液冷装置4可以降低电池包壳体1下部的绝缘油的温度,电池包壳体1上部的温度较高的绝缘油通过回流管3回流至进油口11处,从进油口11进入电池包壳体1并通过液冷装置4进行降温。由此,可以加快绝缘油的散热,使得电池包壳体1内的绝缘油的温度均匀,从而提高了动力电池包100的散热效果,延长了动力电池包100的使用寿命和充放电倍率。
具体地,参照图4-图11,液冷装置4包括第一主管41、第二主管42和多个液冷件43。第一主管41和第二主管42均沿第一方向(例如,图4中的左右方向)延伸,第一主管41具有进液口411且第二主管42具有出液口421。多个液冷件43并联在第一主管41和第二主管42之间,多个液冷件43用于对多个电池模组2中的至少一个进行冷却。由此,通过将多个液冷件43并联在第一主管41和第二主管42之间,使得每个液冷件43可以对与其对应的电池模组2进行冷却,使得后级冷却不受前级冷却的影响(即在后的液冷件43的冷却效果与在前的液冷件43的冷却效果互不影响),保证每个液冷件43 的冷却效果相同,提高了液冷装置4的冷却效果,从而提高了动力电池包100的散热效果,降低了动力电池包100的温度。
根据本公开的一个具体实施例,多个液冷件43与多个电池模组2一一对应,也就是说,液冷件43的数量与电池模组2的数量相同,每个液冷件43可以对与其对应的电池模组2进行冷却。由此,可以进一步地提高动力电池包100的散热效果,降低动力电池包100的温度。
具体地,参照图4,进液口411形成在第一主管41的一端(例如,图4中的左端),出液口421形成在第二主管42的一端(例如,图4中的左端)。液冷件43具有第一端和第二端,液冷件43的第一端(例如,图4中的左端)可以与第一主管41连接,液冷件43的第二端(例如,图4中的右端)可以与第二主管42连接。冷却液可以由第一主管41的进液口411进入液冷件43的第一端,冷却液在液冷件43内流动,然后由液冷件43的第二端流入第二主管42,最后从第二主管42的出液口421流出,完成一个冷却循环。
根据本公开的一些实施例,第一主管41和第二主管42并排布置且均位于多个电池模组2的沿第二方向的同一侧。第二方向与第一方向垂直,第一方向可以为图4中的左右方向,第二方向可以为图4中的前后方向。例如,在图4的示例中,第一主管41和第二主管42在上下方向上并排设置且第一主管41位于第二主管42的上方,第一主管41和第二主管42均位于多个电池模组2的后侧。由此,可使得液冷装置4的结构更加紧凑,减小了液冷装置4的占用空间。
具体地,每个液冷件43的第一端与第一主管41之间通过第一转接管44连接,每个液冷件43的第二端与第二主管42之间通过第二转接管45连接。第一转接管44和第二转接管45分别为沿上下方向布置的弯管。由此,可以通过第一转接管44和第二转接管45方便地将液冷件43连接在第一主管41和第二主管42之间,结构简单,装配方便。
参照图4、图7、图8和图11,第一转接管44和第二转接管45可以大体形成为U形管。第一转接管44和第二转接管45可以形成为圆管,即第一转接管44和第二转接管45的横截面分别呈圆形。第一转接管44的第一端(例如,图4中的左端)可以与液冷件43的第一端相连,第一转接管44的第二端(例如,图4中的右端)可以与第一主管41相连。第二转接管45的第一端(例如,图4中的左端)可以与第二主管42相连,第二转接管45的第二端(例如,图4中的右端)可以与液冷件43的第二端相连。由此,可以通过第一转接管44和第二转接管45方便地将液冷件43连接在第一主管41和第二主管42之间,简化了装配工艺,提高了装配效率,且有效地减小了冷却液的流动阻力,从而降低了驱动冷却液流动的驱动泵的载荷,降低了动力电池包100的使用成本。
根据本公开的一些实施例,参照图8-图11,每个液冷件43包括弯曲延伸的扁管431。例如,液冷件43可以由圆管根据单体电池或电池模组2的排布情况进行弯折而形成,使得圆管形成与电池模组2匹配的形状,然后将弯折后的圆管压扁形成扁管431。由此,可以保证液冷件43的冷却效果且可以减小液冷件43的占用空间,且结构简单,加工方便。
在本公开的一些实施例中,扁管431可以折弯成M形、U形或S形,但不限于此,只要使得扁管431的弯折形状与电池模组2匹配即可,本公开对此不作具体限定。
进一步地,每个液冷件43还包括设在扁管431的邻近电池模组2的表面上的液冷板432。参照图2并结合图3,多个液冷件43分别设在多个电池模组2的底部。参照图8-图11,液冷板432设在扁管431的上表面上。具体地,液冷板432可以形成为长方形的平板状结构。由此,可以有效地增大液冷件43与电池模组2的接触面积,从而增大了散热面积,提高了散热效果,降低了电池模组2的温度,提高了动力电池包100的充放电倍率,延长了动力电池包100的使用寿命。
根据本公开的另一些实施例,每个液冷件43也可以形成为平板状,每个液冷件43内限定出两端分别与第一主管41和第二主管42连通的液冷流道。由此,同样可以有效地增大液冷件43与电池模组2的接触面积,增大散热面积,提高动力电池包100的散热效果。
当然,可以理解的是,在本公开的一些实施例中,每个液冷件43也可以仅包括扁管431(如图4-图7所示),由此,同样可以通过液冷件43对电池模组2进行冷却。
具体地,多个液冷件43分别设在多个电池模组2的底部。由此,可以保证电池模组2的散热且装配方便、占用空间小。
参照图2、图3并结合图12、图14和图16,根据本公开的一些实施例,电池包壳体1上形成有线缆引出槽131,动力电池包100还包括线缆51、多个密封圈52和压板53。线缆51可以为动力电池包100或电池模组2的信号电缆。
具体地,参照图2和图12,线缆引出槽131可以形成在隔板13上,线缆51的第一端(例如,图12中的右端)设在第二容纳空间15内,线缆51的第二端(例如,图12中的左端)穿过线缆引出槽131伸出第二容纳空间15外。线缆引出槽131的截面可以形成为圆形,但不限于此。线缆51可以从线缆引出槽131的中心引出。由此,可以方便地将线缆51引出。
参照图13和图16,多个密封圈52套设在线缆51上且位于线缆引出槽131内,每个密封圈52上设有凸起523,凸起523由密封圈52的一部分从密封圈52的一侧表面向密封圈52的另一侧表面凸出形成。线缆51穿过压板53,且压板53将多个密封圈52 压紧在线缆引出槽131内以密封密封圈52的外周缘与线缆引出槽131的内周壁之间的间隙且密封密封圈52的内周缘与线缆51之间的间隙。由此,可以提高线缆引出槽131的密封性,防止绝缘油从线缆引出槽131处泄露。
凸起523可以由密封圈52的一部分从密封圈52的左侧表面向密封圈52的右侧表面凸出形成,或者由密封圈52的一部分从密封圈52的右侧表面向密封圈52的左侧表面凸出形成。每个密封圈52上可以有一个或多个凸起523。
密封圈52的截面可以为圆形,密封圈52的中心设有线缆穿出孔,以便于将多个密封圈52套设在线缆51上,提高线缆引出槽131的密封性。压板53可以形成为与线缆引出槽131的截面相匹配的平板状结构,例如圆形的平板状结构。压板53的中心处形成为内孔,线缆51可以从压板53的内孔穿过。由此,便于压板53将多个密封圈52压紧在线缆引出槽131内以密封密封圈52的外周缘与线缆引出槽131的内周壁之间的间隙且密封密封圈52的内周缘与线缆51之间的间隙,从而可以方便地将电池模组2或动力电池包100的电缆引出且密封性好。
密封圈52的外周缘指的是密封圈52的径向外侧的端面,密封圈52的内周缘指的是线缆穿出孔的内周壁。
根据本公开的一些实施例,密封圈52包括:多个第一密封圈521和多个第二密封圈522,多个第一密封圈521和多个第二密封圈522沿线缆51的轴向(例如,图16中的左右方向)交错布置,第一密封圈521的凸起523和第二密封圈522的凸起523彼此相对。例如,参照图16,在从左到右的方向上,第一密封圈521和第二密封圈522可以按第一密封圈521、第二密封圈522、第一密封圈521、第二密封圈522……的顺序排列。第一密封圈521(例如,图16中最左侧的密封圈52)的凸起523和与其相邻的一个第二密封圈522(例如,图16中左起第二个密封圈52)的凸起523彼此相对。上述第一密封圈521的凸起523和上述第二密封圈522的凸起523限定出密封凹槽524,该密封凹槽524相对于凸起523位于密封圈52的径向内侧。上述第二密封圈522的凸起523和与其相邻的另一个第一密封圈521(例如,图16中左起第三个密封圈52)的凸起523之间限定出另一密封凹槽524。
例如,在压板53压紧密封圈52的过程中,第一密封圈521的凸起523和第二密封圈522的凸起523部分受到挤压后分别沿第一密封圈521和第二密封圈522的径向伸展,使得密封圈52的内周缘与线缆51的外周面接触且密封圈52的外周缘与线缆引出槽131的内周壁接触,进而实现密封。此外,在凸起523的伸展过程中,密封凹槽524内会残留部分空气,空气留在密封凹槽524内可以保持密封圈52的密封弹性同时形成气封。由此,有效地提高了密封圈52的密封效果。
在本公开的一些实施例中,凸起523可以形成为沿线缆51的周向延伸的环形凸起523。结构简单,加工方便。
根据本公开的一些实施例,参照图13和图16,动力电池包100进一步包括:压板密封垫54,压板密封垫54包括沿轴向依次相连的第一压板密封段541和第二压板密封段542。第一压板密封段541设在压板53的内孔内且套在线缆51上,第二压板密封段542设在多个密封圈52中与压板53最近的一个和压板53之间。例如,在图16的示例中,第二压板密封段542连接在第一压板密封段541的右端,第一压板密封段54伸入压板53的内孔内,第二压板密封段542设在压板53和与压板53最近的一个密封圈52之间。由此,进一步地提高了线缆引出槽131的密封性。
具体地,第一压板密封段541的远离第二压板密封段542的一端(例如,图16中的左端)设有压板凸筋5411。当第一压板密封段541伸入压板53的内孔后,压板凸筋5411位于压板53的远离多个密封圈52的一侧。压板凸筋5411沿线缆51的径向向外延伸,压板凸筋5411与压板53的外表面(如图16中的左侧表面)止抵。压板凸筋5411可以形成为环形凸筋,但不限于此。由此,可以防止第一压板密封段541从压板53的内孔中滑出,使得压板密封垫54的位置稳定,从而保证了线缆引出槽131的密封效果。
在本公开的一些实施例中,压板密封垫54为一体成型件,由此简化了加工工艺,降低了加工成本。
根据本公开的一些实施例,动力电池包100进一步包括:引出槽密封垫55,引出槽密封垫55包括沿轴向依次相连的第一引出槽密封段551和第二引出槽密封段552。第一引出槽密封段551设在线缆引出槽131的内孔内且套在线缆51上,第二引出槽密封段552设在多个密封圈52中与压板53最远的一个和线缆引出槽131的内壁之间。例如,在图16的示例中,引出槽密封垫55设在线缆引出槽131的远离压板53的一端(例如,图16中的右端),其中第一引出槽密封段551连接在第二引出槽密封段552的右端,第一引出槽密封段551设在线缆引出槽131的内孔内且套在线缆51上,线缆引出槽131在其右端具有台阶状内壁,第二引出槽密封段552设在与压板53距离最远的一个密封圈52和线缆引出槽131的台阶状内壁之间。由此,更进一步地提高了线缆引出槽131的密封性。
具体地,第一引出槽密封段551的远离第二引出槽密封段552的一端(例如,图16中的右端)设有引出槽凸筋5511,引出槽凸筋5511位于线缆引出槽131的远离压板53的一侧。引出槽凸筋5511可以沿线缆51的径向向外延伸,引出槽凸筋5511与隔板13的右侧表面止抵。引出槽凸筋5511可以形成为环形凸筋,但不限于此。由此,可以防止第一引出槽密封段551从线缆引出槽131中滑出,使得引出槽密封垫55的位置稳定, 从而保证了线缆引出槽131的密封效果。
在本公开的一些实施例中,引出槽密封垫55为一体成型件,由此简化了加工工艺,降低了加工成本。
进一步地,引出槽密封垫55和线缆引出槽131之间设有垫板56。由此,进一步地提高了线缆引出槽131的密封性。
在本公开的一些实施例中,垫板56为铝合金件,但不限于此。
根据本公开的一些实施例,压板53螺纹连接至电池包壳体1。具体地,压板53上可以设有螺钉孔,螺纹紧固件57(例如螺钉等)可以穿过螺钉孔与电池包壳体1相连,以将压板53连接至电池包壳体1上,结构简单,拆装方便且可靠性高。例如,在图12的示例中,压板53通过三个螺纹紧固件57连接至电池包壳体1上。
根据本公开的一些实施例,参照图2和图3并结合图17-图19,动力电池包100还包括导电柱安装本体61和压件62。电池包壳体1上形成有一侧(例如,图2中的左侧)敞开的安装槽。具体地,安装槽可以形成在隔板13上,且安装槽位于隔板13的远离线缆引出槽131的一端(例如,图2中的前端)。导电柱安装本体61上穿设有间隔设置的多个导电柱611,每个导电柱611的外周面上设有绝缘件612。导电柱安装本体61的沿导电柱611的轴向的两侧分别设有密封件613,密封件613环绕导电柱611设置。压件62设在安装槽的上述一侧且将导电柱安装本体61压紧在安装槽内。在本公开的一些实施例中,导电柱611可以为紫铜棒等。紫铜棒的导电性好且不易生锈。
具体地,参照图17-图19,导电柱安装本体61可以形成为圆形的平板状结构,导电柱安装本体61上设有多个导电柱引出孔,多个导电柱引出孔可以均匀分布在导电柱安装本体61上。导电柱引出孔可以形成为圆形的通孔,导电柱611穿过导电柱引出孔并伸出安装槽。绝缘件612可以包裹在导电柱611的外周面上,绝缘件612可以设在导电柱611的中部,绝缘件612的两端(例如,图19中的左端和右端)分别伸出安装槽。也就是说,绝缘件612的轴向两端分别伸出导电柱安装本体61的对应表面。由此,可以方便地将动力电池包100的动力引出,且提高了导电柱611的绝缘性,从而提高了动力电池包100的安全性且可以适应导电柱611的大电流输出。
这里,需要说明的是,本申请中所说的“中部”指的是广义上的中部。导电柱611的中部指的是导电柱611的轴向两端之间的位置。
每个导电柱611的轴向两端分别设有一个密封件613,密封件613可以为环形,密封件613环绕导电柱611设置。例如,密封件613环绕导电柱引出孔设置。压件62设在安装槽的上述一侧(即左侧)且将导电柱安装本体61压紧在安装槽内,通过压件62与导电柱安装本体61之间的挤压,实现有效密封。由此,可以有效地提高导电柱安装 本体61的密封性,防止电池包壳体1内的绝缘油从导电柱安装本体61处泄露。
根据本公开的一些实施例,密封件613包括多个第三密封圈6131,每个第三密封圈6131环绕一个导电柱611。由此,可以保证导电柱引出孔的密封性且可以有效地减小密封件613的用料,降低材料成本。
在本公开的一些实施例中,第三密封圈6131可以为橡胶圈等,但不限于此。
进一步地,密封件613还包括连接筋6132,连接筋6132连接在多个第三密封圈6131之间。由此,可以通过连接筋6132将多个第三密封圈6131连接为一个整体。在装配过程中,可以直接将密封件613整体装配至导电柱安装本体61上,简化了装配工艺,提高了装配效率。
具体地,导电柱安装本体61的沿导电柱611的轴向的两侧面上分别形成有用于容纳密封件613的容纳槽。由此,便于将密封件613安装至导电柱安装本体61上,且使得密封件613的位置稳定,提高了密封件613的装配效率和密封效果。
进一步地,第三密封圈6131包括围绕导电柱611且在导电柱611的径向(例如,图19中的上下方向)上间隔设置的多个密封筋6133。例如,参照图19,第三密封圈6131包括两个密封筋6133,两个密封筋6133分别围绕导电柱611且在导电柱611的径向上间隔设置。由此,可以通过密封筋6133有效地提高第三密封圈6131的密封效果且结构简单、加工方便。
在本公开的一些实施例中,密封件613为一体成型件。由此,简化了加工工艺,降低了加工成本。
在本公开的一些实施例中,导电柱611与绝缘件612烧结固化连接。由此,绝缘件612可以承受铜排锁紧扭矩,实现导电柱引出孔的绝缘与密封且工艺简单,加工成本低。
在本公开的一些实施例中,导电柱安装本体61为铝合金件,不限于此。
根据本公开的一些实施例,绝缘件612为玻璃件或陶瓷件。例如,导电柱611可以与玻璃件或陶瓷件烧结固化连接。玻璃件和陶瓷件的材料成本低且绝缘性好,由此,有效地降低了绝缘件612的材料成本并提高了导电柱611的绝缘性能。
根据本公开的一些实施例,导电柱611可以为四个,但不限于此。四个导电柱611可以包括两个正极端子和两个负极端子。由此,可以有效地降低导电柱611的电压,提高动力电池的安全性。
当然,可以理解的是,导电柱611还可以为两个、六个等,本公开对此不作具体限定。
根据本公开实施例的动力电池包100,散热性好,且可以方便地将动力电池包100的动力引出。此外,动力电池包100的绝缘密封性好、安全性高。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种动力电池包,包括:
    电池包壳体,所述电池包壳体上形成有进油口和出油口,从所述进油口向所述电池包壳体内充注绝缘油;
    至少一个电池模组,所述至少一个电池模组设在所述电池包壳体内,每个电池模组包括模组壳体和设在所述模组壳体内的至少一个单体电池,所述至少一个单体电池浸没在所述绝缘油中,所述模组壳体的底部设有通孔且顶部设有至少一个排气孔;以及
    回流管,所述回流管设在所述电池包壳体外,所述回流管连接在所述出油口和所述进油口之间。
  2. 根据权利要求1所述的动力电池包,其特征在于,所述进油口邻近所述电池包壳体的底壁设置,所述出油口设在所述电池包壳体的顶部。
  3. 根据权利要求1或2所述的动力电池包,其特征在于,所述回流管和所述电池包壳体之间通过所述进油口和所述出油口构成回油通路,所述回油通路上设有油泵。
  4. 根据权利要求1-3中任一项所述的动力电池包,其特征在于,所述回流管为透明管或半透明管。
  5. 根据权利要求1-4中任一项所述的动力电池包,其特征在于,所述电池包壳体内设有隔板,所述隔板将所述电池包壳体内部分隔为第一容纳空间和第二容纳空间,所述至少一个电池模组设在所述第二容纳空间内。
  6. 根据权利要求5所述的动力电池包,其特征在于,所述电池包壳体上设有密封板,所述密封板包括第一密封板和第二密封板,所述第一密封板用于密封所述第一容纳空间,所述第二密封板用于密封所述第二容纳空间。
  7. 根据权利要求6所述的动力电池包,其特征在于,所述第二密封板的顶部设有至少一个固定件,所述至少一个固定件上形成有回流管固定孔,所述回流管穿过所述回流管固定孔且固定在所述第二密封板上。
  8. 根据权利要求1-7中任一项所述的动力电池包,其特征在于,所述电池包壳体内还设有液冷装置,所述液冷装置位于所述至少一个电池模组的底部。
  9. 根据权利要求8所述的动力电池包,其特征在于,所述进油口邻近所述液冷装置设置。
  10. 根据权利要求8或9所述的动力电池包,其特征在于,所述液冷装置包括第一主管、第二主管和多个液冷件,所述第一主管和所述第二主管均沿第一方向延伸,所述第一主管具有进液口且所述第二主管具有出液口,多个所述液冷件并联在所述第一主管和所述第二主管之间,多个所述液冷件用于对所述至少一个电池模组进行冷却。
  11. 根据权利要求10所述的动力电池包,其特征在于,所述第一主管和所述第二主管并排布置且均位于所述至少一个电池模组的沿与所述第一方向垂直的第二方向上的同一侧。
  12. 根据权利要求10或11所述的动力电池包,其特征在于,每个液冷件的第一端与所述第一主管之间通过第一转接管连接,每个液冷件的第二端与所述第二主管之间通过第二转接管连接。
  13. 根据权利要求12所述的动力电池包,其特征在于,所述第一转接管和所述第二转接管分别为沿上下方向布置的弯管。
  14. 根据权利要求10-13中任一项所述的动力电池包,其特征在于,每个液冷件包括弯曲延伸的扁管。
  15. 根据权利要求14所述的动力电池包,其特征在于,每个液冷件还包括设在所述扁管的邻近所述至少一个电池模组的一侧表面上的液冷板。
PCT/CN2017/087568 2016-09-21 2017-06-08 动力电池包 WO2018054100A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112019005480A BR112019005480A2 (pt) 2016-09-21 2017-06-08 conjunto de baterias de alimentação
KR1020197007566A KR20190040259A (ko) 2016-09-21 2017-06-08 파워 배터리 팩
US16/335,186 US10916750B2 (en) 2016-09-21 2017-06-08 Power battery pack
EP17852173.8A EP3506385A4 (en) 2016-09-21 2017-06-08 POWER BATTERY PACK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610840579.1 2016-09-21
CN201610840579.1A CN106992273B (zh) 2016-09-21 2016-09-21 动力电池包

Publications (1)

Publication Number Publication Date
WO2018054100A1 true WO2018054100A1 (zh) 2018-03-29

Family

ID=59414307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087568 WO2018054100A1 (zh) 2016-09-21 2017-06-08 动力电池包

Country Status (6)

Country Link
US (1) US10916750B2 (zh)
EP (1) EP3506385A4 (zh)
KR (1) KR20190040259A (zh)
CN (1) CN106992273B (zh)
BR (1) BR112019005480A2 (zh)
WO (1) WO2018054100A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639858A (zh) * 2017-11-10 2018-01-30 浙江大学滨海产业技术研究院 一种具有损伤感知的复合材料动力电池包及其制备方法
CN108232361B (zh) * 2017-12-28 2020-07-21 曙光节能技术(北京)股份有限公司 一种动力电池包的散热系统以及动力电池的散热系统
US10797279B2 (en) 2018-06-28 2020-10-06 Caterpillar Inc. Battery housing systems
CN108923008A (zh) * 2018-08-21 2018-11-30 广东亿鑫丰智能装备股份有限公司 一种改进型液冷电池箱
JP6706294B2 (ja) * 2018-08-31 2020-06-03 本田技研工業株式会社 バッテリパックの冷却構造
US11955651B2 (en) 2019-01-09 2024-04-09 Byd Company Limited Power battery pack and electric vehicle
CN110364784A (zh) * 2019-01-18 2019-10-22 丰疆智能科技股份有限公司 混合散热的电池模组及其组装方法和散热方法
CN112117509B (zh) * 2019-06-21 2023-04-07 比亚迪股份有限公司 动力电池包及具有其的车辆
CN112133851A (zh) * 2019-06-25 2020-12-25 比亚迪股份有限公司 电池包以及具有该电池包的车辆
CN112310519B (zh) * 2019-07-25 2022-05-13 比亚迪股份有限公司 电池托盘、动力电池包及车辆
DE102019122287B4 (de) * 2019-08-20 2021-10-21 Lisa Dräxlmaier GmbH Abdichtelement und Energiespeichersystem mit Abdichtelement
KR20210134164A (ko) * 2020-04-29 2021-11-09 주식회사 엘지에너지솔루션 배터리 팩, 그것을 포함하는 전자 디바이스, 및 자동차
CN113851770B (zh) * 2020-06-09 2023-07-14 比亚迪股份有限公司 一种电池包及电动车
DE102020124745A1 (de) * 2020-09-23 2022-03-24 Lisa Dräxlmaier GmbH Batteriemodulgehäuse und verfahren zum herstellen eines batteriemoduls
KR102375766B1 (ko) * 2021-03-09 2022-03-18 울산과학기술원 배터리팩을 수용하는 배터리랙 및 배터리랙 모듈
DE102021211039A1 (de) 2021-09-30 2023-03-30 Mahle International Gmbh Batterievorrichtung
CN114374020A (zh) * 2021-12-31 2022-04-19 中国第一汽车股份有限公司 电池包及具有其的车辆
WO2024021110A1 (zh) * 2022-07-29 2024-02-01 华为技术有限公司 冷却系统、电池系统及电动车
KR20240053775A (ko) * 2022-10-18 2024-04-25 주식회사 엘지에너지솔루션 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스
CN117543129A (zh) * 2023-12-20 2024-02-09 新疆阳光电通科技股份有限公司 一种智能防护型电池储能装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728595A (zh) * 2008-10-10 2010-06-09 比亚迪股份有限公司 电池组
WO2014013981A1 (ja) * 2012-07-17 2014-01-23 株式会社 東芝 電池パック
CN103682511A (zh) * 2012-09-13 2014-03-26 微宏动力系统(湖州)有限公司 电动汽车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307139A (ja) * 1998-04-23 1999-11-05 Nippon Soken Inc 電池冷却装置
KR101112442B1 (ko) * 2008-10-14 2012-02-20 주식회사 엘지화학 냉각 효율성이 향상된 전지모듈 어셈블리
CN202217748U (zh) * 2011-07-05 2012-05-09 惠州比亚迪电池有限公司 一种电池散热装置及电池组
KR101515114B1 (ko) * 2012-06-14 2015-04-27 주식회사 엘지화학 냉매로서 퍼플루오르화 물질을 사용하는 전지팩
CN202817141U (zh) * 2012-09-13 2013-03-20 微宏动力系统(湖州)有限公司 电动汽车
JP2014060088A (ja) * 2012-09-19 2014-04-03 Toshiba Corp 二次電池装置および二次電池システム
CN204741054U (zh) * 2015-07-15 2015-11-04 惠州市亿能电子有限公司 一种电池侧面散热模组
CN204947036U (zh) * 2015-09-06 2016-01-06 北京长城华冠汽车科技股份有限公司 电池热管理装置及电池箱
CN206148572U (zh) * 2016-09-21 2017-05-03 比亚迪股份有限公司 动力电池包

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728595A (zh) * 2008-10-10 2010-06-09 比亚迪股份有限公司 电池组
WO2014013981A1 (ja) * 2012-07-17 2014-01-23 株式会社 東芝 電池パック
CN103682511A (zh) * 2012-09-13 2014-03-26 微宏动力系统(湖州)有限公司 电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506385A4 *

Also Published As

Publication number Publication date
US10916750B2 (en) 2021-02-09
EP3506385A1 (en) 2019-07-03
EP3506385A4 (en) 2019-09-18
CN106992273B (zh) 2018-09-11
BR112019005480A2 (pt) 2019-06-04
US20190348652A1 (en) 2019-11-14
CN106992273A (zh) 2017-07-28
KR20190040259A (ko) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2018054100A1 (zh) 动力电池包
KR101106103B1 (ko) 안전성이 향상된 전지모듈
KR101084969B1 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
US20110097617A1 (en) Battery Set with Heat Conducting Jelly
WO2011092773A1 (ja) 電池モジュール
KR20130086018A (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
KR20110126764A (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
KR20120096133A (ko) 냉각 효율성이 향상된 냉각부재와 이를 포함하는 전지모듈
JP2012156057A (ja) 電池モジュールおよびそれを含む電池パック
KR102026386B1 (ko) 배터리 모듈
JP2012043767A (ja) エネルギー保存装置モジュール
CN211879414U (zh) 密封散热电池包
WO2024087801A1 (zh) 电芯托盘、电池模组及车辆
KR20190074402A (ko) 이차전지 모듈
CN111477778A (zh) 一种密封散热电池包
CN115000568A (zh) 电芯模组和动力电池总成
KR20240005078A (ko) 열 교환기 하우징을 갖는 배터리 모듈 및 배터리 시스템(battery module and battery system with heat exchanger housing)
CN114284594A (zh) 一种电池及电池包
CN105932186B (zh) 一种电池箱
CN219575789U (zh) 便携式储能电池包
CN217691533U (zh) 电池组件
US20240030518A1 (en) Lithium-ion secondary battery and electric vehicle
CN220491995U (zh) 电池壳体、锂离子二次电池及电动交通工具
TWI797874B (zh) 電池散熱、剛性與阻燃一體化熱管理模組
CN219979664U (zh) 一种冷板、圆柱电池包及电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007566

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019536629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005480

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017852173

Country of ref document: EP

Effective date: 20190328

ENP Entry into the national phase

Ref document number: 112019005480

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190320