WO2018054041A1 - 一种脉冲射流与机械冲击联合破岩机构 - Google Patents

一种脉冲射流与机械冲击联合破岩机构 Download PDF

Info

Publication number
WO2018054041A1
WO2018054041A1 PCT/CN2017/080270 CN2017080270W WO2018054041A1 WO 2018054041 A1 WO2018054041 A1 WO 2018054041A1 CN 2017080270 W CN2017080270 W CN 2017080270W WO 2018054041 A1 WO2018054041 A1 WO 2018054041A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
drill
jet
power head
dynamic seal
Prior art date
Application number
PCT/CN2017/080270
Other languages
English (en)
French (fr)
Inventor
江红祥
杜长龙
刘送永
阳培
杨道龙
胡正伟
高魁东
李洪盛
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2017329832A priority Critical patent/AU2017329832B2/en
Priority to RU2018132250A priority patent/RU2683606C1/ru
Priority to CA3013099A priority patent/CA3013099C/en
Publication of WO2018054041A1 publication Critical patent/WO2018054041A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/60Slitting by jets of water or other liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C45/00Methods of hydraulic mining; Hydraulic monitors
    • E21C45/02Means for generating pulsating fluid jets
    • E21C45/04Means for generating pulsating fluid jets by use of highly pressurised liquid

Definitions

  • the invention relates to a combined rock breaking mechanism and a mechanical impact rock breaking mechanism, which is most suitable for drilling or breaking rock with high hardness coefficient.
  • coal mining has gradually developed into deep and complex formations, and has put forward higher requirements and new challenges for safe and efficient mining technology and equipment for deep and complex formation coal resources.
  • Coal and rock drilling is the premise of efficient implementation of ore body blasting, pressure relief mining and roadway support.
  • the problems of low drilling efficiency and large dust volume of hard coal rock directly restrict the ore body resources such as coal in deep and complex formations. Efficient development.
  • underground coal and rock drilling mainly adopts two methods of mechanical cutting and impact: when the mechanical cutting breaks the rock, the tool wear is serious and the consumption is large.
  • High-pressure water jet rock breaking is a coal rock crushing technology that uses high-speed “water arrow” impact crushing and erosion. Its auxiliary function has been proven to improve the rock breaking capacity of the tool and prolong the service life of the tool, but the continuous high pressure water jet consumption.
  • the water volume conference caused a large area of water to be generated in the coal rock crushing machinery working place, which made the equipment difficult to work properly.
  • the common continuous water jet assisted rock breaking only produces a single "water hammer pressure", and the impact rock breaking ability is limited, and the subsequent "stagnation pressure” is difficult to aggravate the internal damage and crack propagation of the hard coal rock, resulting in its failure to be hard.
  • Pulse jet assisted rock breaking can produce multiple “water hammer pressure” in the gap.
  • the multi-source compressive stress wave is superimposed and reflected in coal rock to cause volume breakage of coal and rock. Fatigue damage.
  • the use of pulse jet low temperature impact and low water consumption characteristics can reduce the ball tooth wear rate and consumption, extend the life of the ball teeth, and improve the mechanical impact rock breaking working conditions.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a pulse jet and a mechanical impact combined with rock breaking, which can efficiently realize rock drilling or breaking with extremely high hardness coefficient of the Rockwell hardness, and reduce the difficulty of mechanical impact rock breaking and The dust concentration of the rock breaks the service life of the mechanical ball teeth.
  • the technical scheme adopted by the invention is: a pulse jet and mechanical impact combined rock breaking mechanism, including a guide rail, a propulsion cylinder, a hydraulic impact power head, a drill pipe, a drill bit, a dynamic seal combination sleeve, a static seal transition sleeve, a circlip, a static sealing ring, a dynamic sealing ring and a drill rod support seat, the drill rod support seat is fixed on the guide rail, the cylinder of the propulsion cylinder is hinged with the guide rail, and the piston rod of the propulsion cylinder is hinged with the housing of the hydraulic impact power head, and the hydraulic impact
  • the power head is slidably mounted on the guide rail, and the output shaft of the hydraulic impact power head is connected with one end of the drill rod through a thread.
  • the other end of the drill rod is connected with the drill bit through a thread, and the drill rod passes through a hole in the drill rod support seat, and the dynamic seal combination
  • the sleeve is fixed on the hydraulic impact power head housing by screws, the high pressure water inlet of the dynamic sealing combination sleeve, the internal water channel of the hydraulic impact power head output shaft, the internal water channel of the drill pipe, the inner water channel of the drill bit, and the jet ball of the self-oscillating jet ball tooth.
  • the tooth oscillating chambers are connected in sequence, and the drill pipe and the hydraulic impact power head output shaft and the drill bit connection end are fixedly installed by the circlip ring to form a static seal transition. .
  • the dynamic seal combination sleeve is fixed on the casing of the hydraulic impact power head by a fastening screw
  • the inner sleeve of the dynamic seal combination sleeve is fixed on the dynamic seal combination sleeve by the fastening screw
  • the combined seal sleeve and the dynamic seal combination sleeve and The corresponding position of the inner sleeve is provided with a high-pressure water inlet
  • the dynamic sealing combination sleeve and the inner sleeve complete the high-pressure water-seal sealing through the end surface static sealing ring
  • the inner surface of the inner sleeve of the dynamic sealing combination sleeve is treated by a hard chrome plating process.
  • the hydraulic impact power head output shaft is internally provided with a right angle water channel and a plurality of output shaft dynamic seal ring grooves.
  • the drill rod is machined with a shoulder I and a shoulder II.
  • the outer diameters of the shoulder I and the shoulder II are respectively adjacent to the external thread of the hydraulic impact power head output shaft, and the end face of the drill thread is connected with the internal thread. Match.
  • the drill bit is regularly embedded with a plurality of mechanical ball teeth and self-oscillating jet ball teeth, and the top end of the self-oscillating jet ball teeth lags behind the top end of the mechanical ball teeth, and the bit body is circumferentially processed with multiple guides. Chip flutes.
  • the jet ball tooth alloy head of the self-excited oscillating jet ball tooth is embedded in the jet ball tooth body, the jet ball tooth alloy head is internally processed with a small water channel I, the jet ball tooth body bottom is processed with a small water channel II, the jet The spherical tooth tooth head and the jet ball tooth body constitute a jet ball tooth oscillating cavity, and the diameter of the small water channel I and the small water channel II is about 1 mm to 2 mm, and the preferred value of the angle between the small water channel I and the center line of the jet ball tooth alloy head is selected. The range is 10 o to 15 o .
  • the sealing position of the sealing transition sleeve adopts an O-ring, wherein the static sealing ring and the end surface static sealing ring are preferably nitrile rubber materials, and the dynamic sealing ring is preferably a polytetrafluoroethylene material.
  • the inner surface of the static seal transition sleeve is treated by a hard chrome plating process.
  • the high-pressure water outputted by the high-pressure water pump of the invention is introduced into the internal water channel of the output shaft of the hydraulic impact power head through the water inlet of the dynamic seal combination sleeve and the inner sleeve, and then introduced into the internal water channel of the drill pipe, the internal water channel of the drill bit, and the self through the static sealing transition sleeve.
  • the oscillating jet spheroidal oscillation chamber When the hydraulic impact power head is working, the drill pipe and the drill bit have both rotational torque and intermittent impact force.
  • the propulsion cylinder pushes the hydraulic impact power head, the drill pipe and the drill bit to move forward and provides a certain propulsive force and linear speed, and then the drill bit frequently impacts. Rotate the broken rock.
  • the propulsion cylinder rod extends out of the hydraulic impact power head, the drill rod and the drill bit to complete the drilling once, and the screw connection between the output shaft of the hydraulic impact power head and the drill rod is released, and the hydraulic cylinder rod is retracted to make the hydraulic pressure
  • the impact power head is returned to the initial position, and another drill pipe of the same structure and size is connected, and the propeller piston rod of the propulsion cylinder is extended again to advance the hydraulic impact power head, the drill pipe and the drill bit to complete one drilling, and the drill pipe is completed after the rock drilling is completed.
  • the recycling process is just the opposite.
  • the hydraulic impact power head is characterized by the advantage of mechanical impact rock breaking than mechanical cutting rock breaking.
  • the self-excited oscillating jet ball teeth are characterized by high-pressure pulse jet impacting rock breaking ability than continuous jet, which can maximize the performance.
  • Mechanical and water jets break rock properties.
  • the high-pressure water output from the high-pressure water pump is inserted into the nozzle, the internal water channel of the output shaft of the hydraulic impact power head, the internal water channel of the drill pipe, the internal water channel of the drill bit, and the high-pressure pulse jet formed by the self-excited oscillating jet ball teeth can impact the rock, the rock interior. Damage occurs and the strength decreases, which makes the mechanical ball teeth on the drill bit difficult to break the rock, prolongs the service life of the mechanical ball teeth, improves the efficiency and ability of mechanical ball teeth impact rock breaking, and achieves efficient crushing of hard rock.
  • the invention has the advantages that the whole invention is driven by full hydraulic pressure, the overall size is small, the structure is simple and compact, the installation and disassembly are convenient, the propulsion cylinder and the hydraulic impact power head are small in size, the power is large, the high pressure water seal is simple and reliable, and the pulse jet assists. Under the action, high-efficiency fracture of rock with high hardness coefficient can be realized.
  • the pulse jet generated by the self-oscillating jet ball tooth can damage or damage the rock in advance, minimize the impact crushing ability of the hard rock, reduce the difficulty of mechanical ball tooth impact crushing hard rock, and improve the impact of the rock breaking mechanism. The ability and efficiency to drill into hard rock.
  • the pulse jet not only can well suppress the dust generated by rock fragmentation, but also reduce it.
  • the difficulty of mechanical ball teeth impacting hard rock, prolonging the service life of mechanical ball teeth, improving the safe and efficient development of energy resources has important social significance for the sustainable development of mines in China.
  • 1a is a schematic structural view of a combined rock breaking mechanism of a pulse jet and a mechanical impact according to the present invention
  • Figure 1b is a plan view of Figure 1a;
  • Figure 1c is an enlarged view of A in Figure 1a;
  • Figure 2 is a cross-sectional view of the drill pipe of the present invention.
  • Figure 3a is a schematic view of the structure of the drill bit of the present invention.
  • Figure 3b is a side view of Figure 3a
  • Figure 4 is a cross-sectional view of the dynamic seal assembly of the present invention.
  • Figure 5 is a cross-sectional view showing the output shaft of the hydraulic impact power head of the present invention.
  • Figure 6 is a cross-sectional view of the self-oscillating jet of the present invention.
  • the invention relates to a pulse jet and mechanical impact combined rock breaking mechanism, which mainly comprises a guide rail 1, a propulsion cylinder 2, a hydraulic impact power head 3, a drill rod 4, a drill bit 5, a dynamic seal combination sleeve 6, a static seal transition sleeve 7, and an elasticity.
  • the cylinder of the propulsion cylinder 2 is hinged with the guide rail 1
  • the piston rod of the propulsion cylinder 2 is hinged with the housing of the hydraulic impact power head 3, and the housing of the hydraulic impact power head 3 is slidably mounted on the guide rail 1, and one end of the drill rod 4 is drilled.
  • the output shaft 3-1 (hereinafter referred to as the output shaft) is connected, and the other end of the drill pipe 4 is connected to the drill bit 5 through the drill pipe connecting the external thread 4-6 and the drill connecting internal thread 5-4.
  • the dynamic seal combination sleeve outer casing 6-1 is mounted on the casing of the hydraulic impact power head 3 by screws, and the dynamic seal combination sleeve inner sleeve 6-2 is mounted on the dynamic seal combination sleeve outer casing 6-1 by fastening screws 6-5.
  • the dynamic seal combination sleeve outer casing 6-1 and the dynamic seal combination sleeve inner sleeve 6-2 are provided with a high pressure water inlet 6-4, a dynamic seal combination sleeve outer casing 6-1 and a dynamic sealing combined sleeve inner sleeve 6-2.
  • the high pressure water static sealing is completed by the end face static sealing ring 6-3, and the high pressure water inlet port 6-4 of the dynamic sealing combination sleeve 6 and the output shaft internal water channel 3-1-2 of the output shaft 3-1 are mounted on the output shaft to be dynamically sealed.
  • the dynamic seal 10 in the ring groove 3-1-1 and the inner surface of the dynamic seal combination sleeve inner sleeve 6-2 are in dynamic contact to complete the high pressure water dynamic sealing.
  • the connection between the drill pipe 4 and the output shaft 3-1, and the connection between the drill bit 5 and the drill pipe 4 are respectively fixed by the circlip 8 installed in the drill rib ring groove 4-3 and the bit rib groove 5-6. Seal the transition sleeve 7.
  • the output shaft internal water channel 3-1-2 of the output shaft 3-1 of the hydraulic impact power head 3, the internal water channel 4-4 of the drill pipe, and the internal water channel 5-5 of the drill bit are all mounted on the output shaft 3-1 static seal groove 3 -1-4, the static seal ring 9 on the drill stem static seal groove 4-7 and the inner surface of the static seal transition sleeve 7 are in static contact to complete the high pressure water static seal, thereby introducing the high pressure water to the self-excited oscillation on the drill bit 5
  • the jet ball oscillating chamber 5-3-3 of the jet ball teeth 5-3 forms a pulse jet.
  • the propulsion cylinder 2 When a certain pressure hydraulic oil is connected to the propulsion cylinder 2 and the hydraulic impact power head 3, the propulsion cylinder 2 integrally pushes the hydraulic impact power head 3, the drill rod 4 and the drill bit 5 to realize the impact of the mechanical ball teeth 5-1 mounted on the drill bit 5. The rock is broken and the rock debris is discharged through the guide vanes 5-2.
  • the high-pressure water passes through the output shaft of the output shaft 3-1, the internal water channel 3-1-2, the internal water channel of the drill pipe 4-4, the internal water channel of the drill bit 5-5, and the self-excited
  • the oscillating jet ball teeth 5-3 form a pulse jet, thereby realizing the high-pressure pulse jet and the mechanical ball teeth 5-1 combined impact rock breaking, improving the mechanical impact rock breaking ability and prolonging the service life of the mechanical ball teeth 5-1.
  • the screw connection between the output shaft 3-1 of the hydraulic impact power head 3 and the drill pipe 4 is released, and the piston rod of the propulsion cylinder 2 is retracted to return the hydraulic impact power head 3 to the initial position.
  • the piston rod of the propulsion cylinder 2 is extended again to advance the hydraulic impact power head 3, the drill pipe 4 and the drill bit 5 to complete one drilling, and the drilling of the rock drill 4 is completed after the rock drilling is completed.
  • the recycling process is just the opposite.
  • the rotational torque and the intermittent impact force of the output shaft 3-1 of the hydraulic impact power head 3 are transmitted to the drill bit 5 through the drill pipe 4, and the mechanical ball teeth 5-1 on the drill bit 5 are rotated to impact the crushed rock.
  • High pressure The high-pressure water supplied by the water pump passes through the high-pressure water inlet 6-4 of the dynamic sealing combination sleeve 6 through the hydraulic impact power head 3, the right-angle water channel inside the output shaft 3-1, the internal water channel of the drill pipe 4-4, the internal water channel of the drill bit 5- 5.
  • the jet ball oscillating chamber 5-3-3 of the self-oscillating jet ball teeth 5-3 forms a high-speed pulse jet.
  • the pulse jet combined with rock breaking formed by the mechanical ball teeth 5-1 and the self-oscillating jet ball teeth 5-3 on the drill bit 5 can be realized by giving appropriate parameters. Improve the impact of mechanical ball teeth 5-1 impact rock breaking, prolong the service life of mechanical ball teeth 5-1, reduce the dust concentration of rock crushing, and improve the efficiency of rock breaking mechanism drilling rock.

Abstract

公开了一种脉冲射流与机械冲击联合破岩机构,包括导轨(1)、推进油缸(2)、液压冲击动力头(3)、钻杆(4)、钻头(5)、动密封组合套(6)、静密封过渡套(7)、弹性挡圈(8)、静密封圈(9)、动密封圈(10)、钻杆支撑座(11);推进油缸(2)缸体与导轨(1)铰接,推进油缸(2)活塞杆与液压冲击动力头(3)壳体铰接,液压冲击动力头(3)滑动装配在导轨(1)上,液压冲击动力头输出轴(3-1)通过螺纹与钻杆(4)一端连接,钻杆(4)另一端通过螺纹与钻头(5)连接,液压冲击动力头输出轴(3-1)与钻杆(4)、钻杆(4)与钻头(5)连接处均设有静密封过渡套(7);动密封组合套(6)外套通过螺钉装配在液压冲击动力头(3)壳体上,动密封组合套(6)内套通过螺钉装配在动密封组合套外套上。该机构结构紧凑、密封结构简单可靠且易于更换、破岩能力强。

Description

一种脉冲射流与机械冲击联合破岩机构 技术领域
本发明涉及一种脉冲射流与机械冲击联合破岩机构,最适用于普氏硬度系数高的岩石钻孔或破碎。
背景技术
2015年,《BP世界能源统计年鉴》指出:中国仍然是世界最大的能源消费国,占全球消费量的23%和全球净增长的61%;煤炭资源消耗占消费总量的66.03%,在未来很长一段时期内作为我国主体能源具有无法替代的地位。《国家中长期科学和技术发展规划纲要(2006~2020)》明确指出:亟需大力加强煤炭资源安全高效开采和利用技术研究,明确要求重点研究深层和复杂地层矿体采矿技术。2011年,国家能源局发布的《国家能源科技“十二五”规划》明确指出复杂地质条件下煤炭资源的高效开发是今后的主要攻关方向,要求研发符合我国复杂地层条件下多模式岩石巷道掘进、煤炭开采技术和装备。
目前,煤炭开采已经逐渐向深层和复杂地层发展,对深层、复杂地层煤炭资源安全高效开采技术和装备提出了更高的要求和新的挑战。由于地应力的增大,通常深层、复杂地层煤岩的弹性模量、硬度和破坏强度等随之增大,单轴抗压强度往往达到150MPa以上。煤岩钻孔是矿体爆破、卸压开采以及巷道支护等工程高效实施的前提,而坚硬煤岩钻孔效率低、粉尘量大等问题直接制约了深层、复杂地层煤炭等矿体资源的高效开发。目前,井下煤岩钻孔主要采用机械切削和冲击两种方式:机械切削破岩时刀具磨损严重、消耗量大,主要用于切削破碎普氏硬度系数f≤8的煤岩;机械冲击可以破碎大部分煤岩,但在坚硬煤岩(f>15)中工作存在球齿磨损严重和脱落、破岩效率低以及粉尘量大等问题,大大降低了机械冲击破岩能力、效率以及设备使用寿命和可靠性,如何实现坚硬煤岩的安全高效破碎已经成为深层、复杂地层煤炭等矿体资源高效开发的关键问题和难点。
高压水射流破岩是一项利用高速“水箭”冲击破碎和侵蚀等作用的煤岩破碎技术,其辅助作用已经被证实可以提高刀具破岩能力,延长刀具使用寿命,但连续高压水射流耗水量大会导致煤岩破碎机械作业场所产生大面积的积水,造成设备难以正常工作。常见的连续水射流辅助破岩仅产生单一的“水锤压力”,冲击破岩能力有限,而后续的“滞止压力”低难以加剧坚硬煤岩内部损伤和裂纹扩展,导致其未能在坚硬煤岩破碎装备中 得到广泛地应用。脉冲射流冲击破碎煤岩能力远强于连续射流,脉冲射流辅助破岩可以间隙性产生多个“水锤压力”,多源压缩应力波在煤岩内部叠加、反射等作用造成煤岩体积破碎和疲劳破坏。此外,利用脉冲射流的低温冲击和耗水量低特性,可以降低球齿磨损率和消耗量,延长球齿使用寿命,改善机械冲击破岩工作条件。
发明内容
本发明的目的是克服已有技术存在的不足,提供一种脉冲射流与机械冲击联合破岩,能够高效的实现普氏硬度系数极高的岩石钻孔或破碎,降低了机械冲击破岩难度和岩石破碎的粉尘浓度,延长了机械球齿的使用寿命。
本发明采用的技术方案为:一种脉冲射流与机械冲击联合破岩机构,包括导轨、推进油缸、液压冲击动力头、钻杆、钻头、动密封组合套、静密封过渡套、弹性挡圈、静密封圈、动密封圈和钻杆支撑座,所述钻杆支撑座固定在导轨上,推进油缸的缸体与导轨铰接,推进油缸的活塞杆与液压冲击动力头的壳体铰接,液压冲击动力头滑动安装在导轨上,液压冲击动力头输出轴通过螺纹与钻杆一端相连接,钻杆的另一端通过螺纹与钻头相连接,钻杆穿过钻杆支撑座上的孔,动密封组合套通过螺钉固定在液压冲击动力头壳体上,动密封组合套的高压水入水口、液压冲击动力头输出轴内部水道、钻杆内部水道、钻头内部水道、自激振荡射流球齿的射流球齿振荡腔依次相连接,钻杆与液压冲击动力头输出轴、钻头连接端内部均通过弹性挡圈固定安装静密封过渡套。
作为优选,所述动密封组合套外套通过紧固螺钉固定在液压冲击动力头的壳体上,动密封组合套内套通过紧固螺钉固定在动密封组合套外套上,动密封组合套外套和内套对应位置设有高压水入水口,动密封组合套外套和内套通过端面静密封圈完成高压水静密封,动密封组合套内套的内表面采用镀硬铬工艺处理。
作为优选,所述液压冲击动力头输出轴内部设有直角形水道和多个输出轴动密封圈凹槽。
作为优选,所述钻杆上加工有轴肩I和轴肩II,轴肩I和轴肩II的外径分别与液压冲击动力头输出轴连接外螺纹毗邻处、钻头连接内螺纹处端面外经相匹配。
作为优选,所述钻头上有规律的镶嵌多个机械球齿和自激振荡射流球齿,自激振荡射流球齿的顶端滞后于机械球齿顶端一定距离,钻头体周向加工有多个导屑槽。
作为优选,所述自激振荡射流球齿的射流球齿合金头镶嵌在射流球齿齿体上,射流球齿合金头内部加工有细小水道I,射流球齿齿体底部加工细小水道II,射流球齿合金 头和射流球齿齿体内部构成射流球齿振荡腔,细小水道I和细小水道II的直径约1mm~2mm,细小水道I与射流球齿合金头中心线之间夹角的优选值范围10o~15o
作为优选,所述的液压冲击动力头输出轴、动密封组合套外套和内套、钻杆、静密封过渡套,液压冲击动力头输出轴、动密封组合套外套和内套、钻杆、静密封过渡套的连接位置密封件均采用O型密封圈,其中静密封圈和端面静密封圈优选丁晴橡胶材料,动密封圈优选聚四氟乙烯材料。
作为优选,所述的静密封过渡套内表面采用镀硬铬工艺处理。
本发明高压水泵输出的高压水经过动密封组合套外套和内套的入水口引入至液压冲击动力头输出轴的内部水道,进而经过静密封过渡套引入至钻杆内部水道、钻头内部水道以及自激振荡射流球齿振荡腔。液压冲击动力头工作时,钻杆和钻头同时具有旋转扭力以及间隙性冲击力,推进油缸推动液压冲击动力头、钻杆和钻头向前运动且提供一定的推进力和直线速度,进而钻头频繁冲击旋转破碎岩石。推进油缸活塞杆伸出推进液压冲击动力头、钻杆以及钻头一个钻杆长度完成一次钻进,松开液压冲击动力头输出轴与钻杆之间的螺纹连接,推进油缸活塞杆缩回使液压冲击动力头退回初始位置,接入另外一根结构和尺寸完全相同的钻杆,推进油缸活塞杆再次伸出推进液压冲击动力头、钻杆以及钻头完成一次钻进,岩石钻孔完成后钻杆的回收工序刚好相反。采用液压冲击动力头是利用机械冲击破岩比机械切削破岩能力强的特性,采用自激振荡射流球齿是利用高压脉冲射流冲击破岩能力比连续射流好的特点,进而能够最大限度地发挥机械和水射流破岩特性。高压水泵输出的高压水经动密封组合套入水口、液压冲击动力头输出轴内部水道、钻杆内部水道、钻头内部水道以及自激振荡射流球齿形成的高压脉冲射流能够超前冲击岩石,岩石内部发生损伤而强度下降,使钻头上机械球齿破岩难度大大降低,延长了机械球齿使用寿命,提高了机械球齿冲击破岩效率和能力,实现了坚硬岩石的高效破碎。
本发明的有益效果在于:本发明采用全液压驱动,整体尺寸小,结构简单紧凑,安装、拆卸方便,推进油缸和液压冲击动力头体积小、动力大,高压水密封简单、可靠,脉冲射流辅助作用下可以实现普氏硬度系数高的岩石高效破碎。自激振荡射流球齿产生的脉冲射流可以预先对岩石进行冲击破坏或损伤,最大限度地降低坚硬岩石的抗冲击破碎能力,降低了机械球齿冲击破碎坚硬岩石的难度,提高了破岩机构冲击钻进坚硬岩石的能力和效率。此外,脉冲射流不仅可以很好地抑制岩石破碎产生的粉尘,还能够降低 机械球齿冲击破碎坚硬岩石的难度,延长机械球齿的使用寿命,提高了能源资源的安全、高效开发,对我国矿山的可持续发展有重要的社会意义。
附图说明
图1a是本发明脉冲射流与机械冲击联合破岩机构结构示意图;
图1b是图1a的俯视图;
图1c是图1a中A处放大图;
图2是本发明钻杆剖视图;
图3a是本发明钻头结构示意图;
图3b是图3a的侧视图;
图4是本发明动密封组合套剖视图;
图5是本发明液压冲击动力头输出轴剖视图;
图6是本发明自激振荡射流截齿剖视图。
图中:1—导轨;2—推进油缸;3—液压冲击动力头;4—钻杆;5—钻头;6—动密封组合套;7—静密封过渡套;8—弹性挡圈;9—静密封圈;10—动密封圈;11—钻杆支撑座;3-1—液压冲击动力头输出轴;4-1—钻杆轴肩I;4-2—钻杆连接内螺纹;4-3—钻杆弹性挡圈槽;4-4—钻杆内部水道;4-5—钻杆轴肩II;4-6—钻杆连接外螺纹;4-7—钻杆静密封圈凹槽;5-1—机械球齿;5-2—导屑槽;5-3—自激振荡射流球齿;5-4—钻头连接内螺纹;5-5—钻头内部水道;5-6—钻头弹性挡圈槽;6-1—动密封组合套外套;6-2—动密封组合套内套;6-3—端面静密封圈;6-4—高压水入水口;6-5—紧固螺钉;3-1-1—输出轴动密封圈凹槽;3-1-2—输出轴内部水道;3-1-3—输出轴连接外螺纹;3-1-4—输出轴静密封圈凹槽;5-3-1—射流球齿合金头;5-3-2—射流球齿齿体;5-3-3—射流球齿振荡腔;5-3-4—细小水道I;5-3-5—细小水道II。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
本发明的一种脉冲射流与机械冲击联合破岩机构,主要包括导轨1、推进油缸2、液压冲击动力头3、钻杆4、钻头5、动密封组合套6、静密封过渡套7、弹性挡圈8、静密封圈9、动密封圈10、钻杆支撑座11。推进油缸2的缸体与导轨1铰接,推进油缸2的活塞杆与液压冲击动力头3的壳体铰接,液压冲击动力头3的壳体滑动安装在导轨1上,钻杆4的一端通过钻杆连接内螺纹4-2、输出轴连接外螺纹3-1-3与液压冲击动力头 输出轴3-1(以下简称输出轴)连接,钻杆4的另一端通过钻杆连接外螺纹4-6、钻头连接内螺纹5-4与钻头5连接。动密封组合套外套6-1通过螺钉安装在液压冲击动力头3的壳体上,动密封组合套内套6-2通过紧固螺钉6-5安装在动密封组合套外套6-1上,动密封组合套外套6-1和动密封组合套内套6-2对应位置设有高压水入水口6-4,动密封组合套外套6-1和动密封组合套内套6-2之间通过端面静密封圈6-3完成高压水静密封,动密封组合套6的高压水入水口6-4与输出轴3-1的输出轴内部水道3-1-2通过安装在输出轴动密封圈凹槽3-1-1内的动密封圈10与动密封组合套内套6-2的内表面动态接触完成高压水动态密封。钻杆4与输出轴3-1连接处、钻头5与钻杆4连接处分别通过安装在钻杆弹性挡圈槽4-3、钻头弹性挡圈槽5-6的弹性挡圈8固定安装静密封过渡套7。液压冲击动力头3输出轴3-1的输出轴内部水道3-1-2、钻杆内部水道4-4、钻头内部水道5-5均通过安装在输出轴3-1静密封圈凹槽3-1-4、钻杆静密封圈凹槽4-7上的静密封圈9与静密封过渡套7内表面静态接触完成高压水静密封,进而将高压水引入至钻头5上的自激振荡射流球齿5-3的射流球齿振荡腔5-3-3形成脉冲射流。当一定压力液压油接入推进油缸2和液压冲击动力头3时,推进油缸2整体推进液压冲击动力头3、钻杆4以及钻头5,实现安装在钻头5上的机械球齿5-1冲击旋转破碎岩石,且岩石碎屑通过导屑槽5-2排出。当一定压力的高压水接入动密封组合套6,高压水经输出轴3-1的输出轴内部水道3-1-2、钻杆内部水道4-4、钻头内部水道5-5、自激振荡射流球齿5-3形成脉冲射流,进而实现高压脉冲射流与机械球齿5-1联合冲击破岩,提高机械冲击破岩能力,延长机械球齿5-1使用寿命。完成一节钻杆4的推进后,松开液压冲击动力头3的输出轴3-1与钻杆4之间的螺纹连接,推进油缸2活塞杆缩回使液压冲击动力头3退回初始位置,接入另外一根结构和尺寸完全相同的钻杆4,推进油缸2活塞杆再次伸出推进液压冲击动力头3、钻杆4以及钻头5完成一次钻进,岩石钻孔完成后钻杆4的回收工序刚好相反。
工作原理:利用脉冲射流与机械冲击联合破岩机构破岩时,巷道内液压泵系统给推进油缸2和液压冲击动力头3提供具有一定压力的油,使推进油缸2活塞杆具有推进力和直线速度,液压冲击动力头3输出轴3-1具有旋转扭矩和间隙性冲击力。推进油缸2活塞杆的推进力和直线速度经液压冲击动力头3壳体、输出轴3-1、钻杆4传递至钻头5,使钻头上机械球齿5-1接触挤压岩石。液压冲击动力头3输出轴3-1的旋转扭矩和间隙性冲击力经钻杆4传递至钻头5,使钻头5上机械球齿5-1旋转冲击破碎岩石。高压 水泵提供的高压水经动密封组合套6的高压水入水口6-4依次经过液压冲击动力头3输出轴3-1内部的直角形水道、钻杆内部水道4-4、钻头内部水道5-5、自激振荡射流球齿5-3的射流球齿振荡腔5-3-3形成高速脉冲射流。当破岩机构同时接入一定压力的油和高压水,给定适当的参数即可实现钻头5上机械球齿5-1和自激振荡射流球齿5-3形成的脉冲射流联合破岩,提高机械球齿5-1冲击破岩能力,延长机械球齿5-1使用寿命,降低岩石破碎的粉尘浓度,提高破岩机构钻进岩石的效率。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (8)

  1. 一种脉冲射流与机械冲击联合破岩机构,其特征在于:包括导轨(1)、推进油缸(2)、液压冲击动力头(3)、钻杆(4)、钻头(5)、动密封组合套(6)、静密封过渡套(7)、弹性挡圈(8)、静密封圈(9)、动密封圈(10)和钻杆支撑座(11),所述钻杆支撑座(11)固定在导轨(1)上,推进油缸(2)的缸体与导轨(1)铰接,推进油缸(2)的活塞杆与液压冲击动力头(3)的壳体铰接,液压冲击动力头(3)滑动安装在导轨(1)上,液压冲击动力头输出轴(3-1)通过螺纹与钻杆(4)一端相连接,钻杆(4)的另一端通过螺纹与钻头(5)相连接,钻杆(4)穿过钻杆支撑座(11)上的孔,动密封组合套(6)通过螺钉固定在液压冲击动力头(3)壳体上,动密封组合套(6)的高压水入水口(6-4)、液压冲击动力头输出轴(3-1)的输出轴内部水道(3-1-2)、钻杆内部水道(4-4)、钻头内部水道(5-5)、自激振荡射流球齿(5-3)的射流球齿振荡腔(5-3-3)依次相连接,钻杆(4)与液压冲击动力头输出轴(3-1)、钻头(5)连接端内部均通过弹性挡圈(8)固定安装静密封过渡套(7)。
  2. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述动密封组合套(6)的动密封组合套外套(6-1)通过螺钉固定在液压冲击动力头(3)的壳体上,动密封组合套内套(6-2)通过紧固螺钉(6-5)固定在动密封组合套外套(6-1)上,动密封组合套外套(6-1)和动密封组合套内套(6-2)对应位置设有高压水入水口(6-4),动密封组合套外套(6-1)和动密封组合套内套(6-2)通过端面静密封圈(6-3)完成高压水静密封,动密封组合套内套(6-2)的内表面采用镀硬铬工艺处理。
  3. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述液压冲击动力头输出轴(3-1)内部设有直角形水道和多个输出轴动密封圈凹槽(3-1-1)。
  4. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述钻杆(4)上加工有钻杆轴肩I(4-1)和钻杆轴肩II(4-5),钻杆轴肩I(4-1)和钻杆轴肩II(4-5)的外径分别与液压冲击动力头输出轴(3-1)的输出轴连接外螺纹(3-1-3)毗邻处、钻头连接内螺纹(5-4)处端面外经相匹配。
  5. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述钻头(5)上有规律的镶嵌多个机械球齿(5-1)和自激振荡射流球齿(5-3),自激振荡射流球齿(5-3)的顶端滞后于机械球齿(5-1)顶端一定距离,钻头(5)体周向加工有多个导屑槽(5-2)。
  6. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述自激振荡射流球齿(5-3)的射流球齿合金头(5-3-1)镶嵌在射流球齿齿体(5-3-2)上,射流球齿合金头(5-3-1)内部加工有细小水道I(5-3-4),射流球齿齿体(5-3-2)底部加工细小水道II(5-3-5),射流球齿合金头(5-3-1)和射流球齿齿体(5-3-2)内部构成射流球齿振荡腔(5-3-3),细小水道I(5-3-4)和细小水道II(5-3-5)的直径为1mm~2mm,细小水道I(5-3-4)与射流球齿合金头(5-3-1)中心线之间夹角的范围10°~15°。
  7. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述液压冲击动力头输出轴(3-1)、动密封组合套外套(6-1)和动密封组合套内套(6-2)、钻杆(4)、静密封过渡套(7)的连接位置密封件均采用O型密封圈,其中静密封圈(9)和端面静密封圈(6-3)为丁晴橡胶材料,动密封圈(10)为聚四氟乙烯材料。
  8. 根据权利要求书1所述的一种脉冲射流与机械冲击联合破岩机构,其特征在于:所述静密封过渡套(7)内表面采用镀硬铬工艺处理。
PCT/CN2017/080270 2016-09-23 2017-04-12 一种脉冲射流与机械冲击联合破岩机构 WO2018054041A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017329832A AU2017329832B2 (en) 2016-09-23 2017-04-12 Rock breaking mechanism by combined pulsed jet and mechanical impact
RU2018132250A RU2683606C1 (ru) 2016-09-23 2017-04-12 Устройство дробления породы комбинированного импульсного и механического действия
CA3013099A CA3013099C (en) 2016-09-23 2017-04-12 Rock breaking mechanism by combined pulsed jet and mechanical impact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610846699.2 2016-09-23
CN201610846699.2A CN106246175B (zh) 2016-09-23 2016-09-23 一种脉冲射流与机械冲击联合破岩机构

Publications (1)

Publication Number Publication Date
WO2018054041A1 true WO2018054041A1 (zh) 2018-03-29

Family

ID=57611154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080270 WO2018054041A1 (zh) 2016-09-23 2017-04-12 一种脉冲射流与机械冲击联合破岩机构

Country Status (5)

Country Link
CN (1) CN106246175B (zh)
AU (1) AU2017329832B2 (zh)
CA (1) CA3013099C (zh)
RU (1) RU2683606C1 (zh)
WO (1) WO2018054041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116067803A (zh) * 2023-02-16 2023-05-05 广西大学 高温高渗化学耦合下真三向动静组合剪切实验设备和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246175B (zh) * 2016-09-23 2018-06-15 中国矿业大学 一种脉冲射流与机械冲击联合破岩机构
CN107083922B (zh) * 2017-06-09 2019-01-11 中国矿业大学 一种气动自进式超高压脉冲射流辅助冲击破岩设备
CN109236176B (zh) * 2018-11-23 2023-12-15 湖南湘江水力环保设备科技有限公司 高压水射流凿岩钻机
CN109668754A (zh) * 2019-01-30 2019-04-23 中铁工程装备集团有限公司 适于第四代半、第五代破岩方式的多模式测试实验台
CN111520156B (zh) * 2020-04-30 2021-01-29 中国矿业大学 一种聚能射流破岩与流态化运载系统及方法
CN112554785A (zh) * 2020-11-25 2021-03-26 重庆勤牛工程机械有限责任公司 一种锚固钻机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348058A (en) * 1980-04-01 1982-09-07 Slurry Mining Engineering Inc. Method and apparatus for slurry borehole mining
RU2301337C1 (ru) * 2006-01-26 2007-06-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Снаряд для скважинной гидродобычи твердых полезных ископаемых
CN103470264A (zh) * 2013-09-16 2013-12-25 金陵科技学院 一种水刀
CN104863506A (zh) * 2015-04-21 2015-08-26 中国石油大学(华东) 一种射流温度致裂装置
CN105275402A (zh) * 2015-11-12 2016-01-27 中国石油大学(华东) 粒子射流冲击破岩钻头
CN106246175A (zh) * 2016-09-23 2016-12-21 中国矿业大学 一种脉冲射流与机械冲击联合破岩机构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU420784A1 (zh) * 1970-09-01 1974-03-25 институт добычи угл гидравлическим способом
DE2713781C3 (de) * 1977-03-29 1983-02-24 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren und Vorrichtung zur kombinierten hydraulisch-mechanischen untertägigen Gewinnung vorwiegend harter mineralischer Rohstoffe
SU735765A1 (ru) * 1977-04-13 1980-05-25 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Гидроимпульсатор
SU676732A1 (ru) * 1978-01-23 1979-07-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Добычи Угля Гидравлическим Способом "Вниигидроуголь" Механо-гидравлический комбайн
SU1052658A1 (ru) * 1981-06-16 1983-11-07 Всесоюзный научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом Гидромониторный агрегат
SU1578328A1 (ru) * 1988-08-08 1990-07-15 Украинский Научно-Исследовательский И Проектно-Конструкторский Институт Гидравлической Добычи Угля Способ гидравлического бурени скважин на крутых выбросоопасных, склонных к высыпанию пластах и устройство дл его осуществлени
CN103696686A (zh) * 2013-12-09 2014-04-02 吉林大学 射流式激增压力脉冲减阻钻具
RU2542016C1 (ru) * 2014-02-07 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ обработки прискважинной зоны продуктивного пласта
CN105317378A (zh) * 2014-06-08 2016-02-10 符祥怡 水压钻井钻头
CN105672884B (zh) * 2014-11-21 2018-08-28 中石化胜利石油工程有限公司钻井工艺研究院 一种钻井工具及其钻井方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348058A (en) * 1980-04-01 1982-09-07 Slurry Mining Engineering Inc. Method and apparatus for slurry borehole mining
RU2301337C1 (ru) * 2006-01-26 2007-06-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Снаряд для скважинной гидродобычи твердых полезных ископаемых
CN103470264A (zh) * 2013-09-16 2013-12-25 金陵科技学院 一种水刀
CN104863506A (zh) * 2015-04-21 2015-08-26 中国石油大学(华东) 一种射流温度致裂装置
CN105275402A (zh) * 2015-11-12 2016-01-27 中国石油大学(华东) 粒子射流冲击破岩钻头
CN106246175A (zh) * 2016-09-23 2016-12-21 中国矿业大学 一种脉冲射流与机械冲击联合破岩机构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116067803A (zh) * 2023-02-16 2023-05-05 广西大学 高温高渗化学耦合下真三向动静组合剪切实验设备和方法
CN116067803B (zh) * 2023-02-16 2023-10-13 广西大学 高温高渗化学耦合下真三向动静组合剪切实验设备和方法

Also Published As

Publication number Publication date
CA3013099C (en) 2019-08-27
CA3013099A1 (en) 2018-03-29
CN106246175B (zh) 2018-06-15
AU2017329832A1 (en) 2018-08-16
RU2683606C1 (ru) 2019-03-29
CN106246175A (zh) 2016-12-21
AU2017329832B2 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2018054041A1 (zh) 一种脉冲射流与机械冲击联合破岩机构
CN105239928B (zh) 一种超高压旋转磨料水射流钻机
WO2018223421A1 (zh) 一种气动自进式超高压脉冲射流辅助冲击破岩设备
CN110617044B (zh) 一种超高压水射流割缝系统及其使用方法
US7240744B1 (en) Rotary and mud-powered percussive drill bit assembly and method
CA3014355C (en) Rock drilling, swelling and chiselling integrated machine based on high-pressure foam medium
CN101614135B (zh) 钻、爆、抽三位一体瓦斯抽采方法
CN102839927B (zh) 高压水密封双动力螺旋钻杆
CN216642002U (zh) 一种快速钻进硬岩的装置
CN105209709B (zh) 用于在硬地层中钻进的流动压力驱动的高频率冲击锤
CN111608589B (zh) 一种井底应力诱导卸荷钻头及其提高钻井速度方法
CN209469421U (zh) 一种坚硬岩石钻孔切缝压裂一体装置
CN102425370B (zh) 孔底油压马达碎石器组合动力钻具施工方法及装置
CN106168115B (zh) 一种配合旋挖钻机的硬岩钻进钻头
CN209195294U (zh) 一种钻冲两用三翼螺旋高压密封钻杆
Zeng et al. Reasonable location parameters of pick and nozzle in combined cutting system
CN113638688A (zh) 一种增强型脉动冲击载荷发生装置
CN114293915B (zh) 一种快速钻进硬岩的装置及方法
CN108868661A (zh) 一种钻冲两用三翼螺旋高压密封钻杆
CN211144362U (zh) 一种冲击器
CN202718627U (zh) 一种利于排出岩屑的凿岩机
CN210033296U (zh) 一种外螺纹球齿钎头
CN103998706A (zh) 在硬地层中冲击钻孔的高频液压驱动钻锤
CN114033311A (zh) 一种超高压水射流与机械冲击耦合破岩钻井提速装置
CN109441356B (zh) 基于凸轮与叶轮的水力振荡器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3013099

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017329832

Country of ref document: AU

Date of ref document: 20170412

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852117

Country of ref document: EP

Kind code of ref document: A1