WO2018053888A1 - 光斑增强处理方法、装置及激光测距仪 - Google Patents

光斑增强处理方法、装置及激光测距仪 Download PDF

Info

Publication number
WO2018053888A1
WO2018053888A1 PCT/CN2016/101959 CN2016101959W WO2018053888A1 WO 2018053888 A1 WO2018053888 A1 WO 2018053888A1 CN 2016101959 W CN2016101959 W CN 2016101959W WO 2018053888 A1 WO2018053888 A1 WO 2018053888A1
Authority
WO
WIPO (PCT)
Prior art keywords
range finder
module
distance
spot
directions
Prior art date
Application number
PCT/CN2016/101959
Other languages
English (en)
French (fr)
Inventor
李春来
侴智
骆龙
陈文东
Original Assignee
深圳市迈测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市迈测科技股份有限公司 filed Critical 深圳市迈测科技股份有限公司
Publication of WO2018053888A1 publication Critical patent/WO2018053888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the invention relates to a correction method, in particular to a method and a system for correcting an optical distance finder which is simple, convenient and accurate.
  • a method for correcting a photoelectric range finder includes the following steps:
  • the journey is integrated to obtain a corrected route.
  • the method further includes:
  • the distance s is integrated to obtain the corrected distance.
  • the step of performing integration processing on the path s includes:
  • a method for correcting a photoelectric range finder includes the following steps:
  • the journey is integrated to obtain a corrected route.
  • a correction system for a photoelectric range finder comprising a setting module, a detecting module, a recording module and a processing module;
  • the setting module is configured to place the range finder on a curved or curved surface to be tested, so that the range finder passes the position of the curve or curved surface to be tested;
  • the detecting module is configured to detect a horizontal tilt angle of the range finder
  • the recording module is configured to record a distance that the range finder passes when it is at a horizontal inclination
  • the processing module is configured to perform integration processing on the route to obtain a corrected route.
  • the detecting module is configured to detect a horizontal tilt angle ⁇ of the range finder in real time
  • the recording module is configured to record a distance t of the range finder passing by ⁇ ;
  • the recording module is further configured to acquire an actual distance s according to the distance t;
  • the processing module is configured to perform integration processing on the path s to obtain the corrected distance.
  • a correction system for a photoelectric range finder comprising a gyroscope, an acquisition module, an integration module, a path module and a correction module;
  • the gyroscope is mounted on the range finder;
  • the collecting module is configured to collect angular velocities of the X, Y and Z directions of the range finder in the process of the distance measuring device passing the position of the curve or the curved surface to be tested;
  • the integration module is configured to obtain angle values of three directions of X, Y and Z by integrating time;
  • the path module is configured to record a distance traveled by the range finder in the three directions of X, Y and Z directions;
  • the correction module is configured to integrate the path to obtain a corrected path.
  • the above-mentioned photoelectric distance measuring instrument correction method and system can integrate the distance by detecting the horizontal inclination angle of the range finder or the angle values of the X, Y and Z angle directions, thereby eliminating the horizontal direction.
  • the path error, or the error in the three directions of X, Y and Z, makes the distance traveled by the rangefinder more precise.
  • 1 is a flow chart of a method for correcting a photoelectric range finder
  • FIG. 2 is a flow chart of a method for correcting a photoelectric range finder
  • Figure 3 is a block diagram of a correction system of the photoelectric range finder
  • Figure 4 is a block diagram of the correction system of the photoelectric range finder.
  • FIG. 1 it is a flow chart of a method for correcting a photoelectric range finder.
  • a method for correcting a photoelectric range finder includes the following steps:
  • Step S110 placing the range finder on the curve or the curved surface to be tested, so that the range finder passes the position of the curve or the curved surface to be tested.
  • Step S120 Detect a horizontal tilt angle of the range finder.
  • the horizontal tilt angle ⁇ of the range finder is detected in real time.
  • Step S130 Record the distance that the range finder passes when it is at a horizontal inclination.
  • Step S140 performing integration processing on the route to obtain a corrected route.
  • the distance s is integrated to obtain the corrected distance.
  • the steps of integrating the distance s include:
  • error correction can be performed by the acceleration sensor in order to eliminate the measurement error in the horizontal direction.
  • the use of accelerometers has now become a common use function of laser range finder, which makes the roller more advantageous in the use of laser range finder.
  • a method for correcting a photoelectric range finder includes the following steps:
  • Step S210 installing a gyroscope on the range finder
  • Step S220 collecting, in the process of the distance measuring device passing the position of the curve or the curved surface to be measured, the angular velocities of the X, Y and Z directions of the range finder;
  • Step S230 Obtain an angle value in three directions of X, Y, and Z by integrating the time;
  • Step S240 recording a distance that the range finder passes when the angle values are in the X, Y, and Z directions;
  • step S250 the route is integrated, so that the corrected route is obtained.
  • the gyroscope can output angular velocities in three directions of space X, Y and Z. By integrating the time, the angle value of the rotation around the three axes X, Y and Z can be obtained. According to the above-mentioned correction method of the horizontal error, the correction of the spatial error can be similarly obtained.
  • the snail is also a common use function on laser range finder.
  • FIG. 3 it is a block diagram of the correction system of the photoelectric range finder.
  • a correction system for a photoelectric range finder includes a setting module 301, a detecting module 302, a recording module 303, and a processing module 307.
  • the setting module 301 is configured to place the range finder on the curve or curved surface to be tested, so that the range finder passes the position of the curve or curved surface to be tested.
  • the detecting module 302 is configured to detect a horizontal tilt angle of the range finder.
  • the recording module 303 is configured to record the distance that the range finder passes when it is at a horizontal inclination.
  • the processing module 304 is configured to perform integration processing on the route to obtain a corrected route.
  • the detecting module 302 is configured to detect the horizontal tilt angle ⁇ of the range finder in real time.
  • the recording module 303 is configured to record the distance t through which the range finder passes.
  • the recording module 303 is further configured to acquire the actual distance s according to the distance t.
  • the processing module 304 is configured to perform integration processing on the path s to obtain the corrected distance.
  • FIG. 4 it is a block diagram of the correction system of the photoelectric range finder.
  • a correction system for a photoelectric range finder includes a gyro 401, an acquisition module 402, an integration module 403, a path module 404, and a correction module 405.
  • the gyroscope 401 is mounted on the range finder.
  • the collecting module 402 is configured to collect angular velocities of the X, Y and Z directions of the range finder in the process of the distance measuring device passing the position of the curve or the curved surface to be tested.
  • the integration module 403 is configured to obtain angle values in three directions of X, Y, and Z by integrating the time.
  • the path module 404 is configured to record the distance that the range finder passes when the angle values are in the X, Y, and Z directions.
  • the correction module 405 is configured to perform integration processing on the path to obtain a corrected path.
  • the above-mentioned photoelectric distance measuring instrument correction method and system can integrate the distance by detecting the horizontal inclination angle of the range finder or the angle values of the X, Y and Z angle directions, thereby eliminating the horizontal direction.
  • the path error, or the error in the three directions of X, Y and Z, makes the rangefinder pass The journey is more precise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种光斑增强处理方法,应用于激光测距。该方法包括:获取激光光斑图像的灰度值极大值点p1,p2,……pn(S100);预设光斑半径r,将光斑半径r与灰度值极大值点p1,p2,……pn两两之间的距离进行比较,获取光斑中心(S200);对以光斑中心为圆心、r为半径的区域进行图像增强处理(S300)。该方法通过先获取光斑的灰度值极大值点,再确定其中的一点为光斑中心,并对相应区域进行增强处理,能够对激光产生光斑进行增强显示,使得用户能够清楚地对光斑进行观察,并且不需要借助辅助设备,提供了很大的方便。还提供了一种应用上述光斑增强处理方法的装置及激光测距仪。

Description

光电测距仪的矫正方法和系统 技术领域
本发明涉及矫正方法,特别是涉及一种简单方便、测量准确的光电测距仪的矫正方法和系统。
背景技术
在测距仪中,使用滚轮进行曲面或曲线测距的一个可能问题是,由于手的用力不均衡,滚轮走过的路径展开后不是一条直线,显然这样测量的结果比实际距离偏大,使得测量结果不准确。
发明内容
基于此,有必要提供一种简单方便、测量准确的光电测距仪的矫正方法和系统。
一种光电测距仪的矫正方法,包括以下步骤:
将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置;
检测所述测距仪的水平倾角;
记录所述测距仪在水平倾角时通过的路程;
对该路程进行积分处理,从而得到矫正后的路程。
在其中一个实施例中,还包括:
实时检测所述测距仪的水平倾角θ;
记录所述测距仪在θ通过的路程t;
根据所述路程t获取实际路程s;
对该路程s进行积分处理,获取矫正后的距离。
在其中一个实施例中,所述对该路程s进行积分处理的步骤包括:
采用s=∫tcosθdθ公式进行积分处理。
一种光电测距仪的矫正方法,包括以下步骤:
将陀螺仪安装于所述测距仪上;
在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度;
通过对时间的积分获取X,Y和Z三个方向的角度值;
记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程;
对该路程进行积分处理,从而得到矫正后的路程。
一种光电测距仪的矫正系统,包括设置模块、检测模块、记录模块及处理模块;
所述设置模块用于将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置;
所述检测模块用于检测所述测距仪的水平倾角;
所述记录模块用于记录所述测距仪在水平倾角时通过的路程;
所述处理模块用于对该路程进行积分处理,从而得到矫正后的路程。
在其中一个实施例中,所述检测模块用于实时检测所述测距仪的水平倾角θ;
所述记录模块用于记录所述测距仪在θ通过的路程t;
所述记录模块还用于根据所述路程t获取实际路程s;
所述处理模块用于对该路程s进行积分处理,获取矫正后的距离。
在其中一个实施例中,所述处理模块还用于采用s=∫tcosθdθ公式进行积分处理。
一种光电测距仪的矫正系统,包括陀螺仪、采集模块、积分模块、路程模块及矫正模块;
所述陀螺仪安装于所述测距仪上;
所述采集模块用于在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度;
所述积分模块用于通过对时间的积分获取X,Y和Z三个方向的角度值;
所述路程模块用于记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程;
所述矫正模块用于对该路程进行积分处理,从而得到矫正后的路程。
上述光电测距仪的矫正方法和系统通过检测测距仪的水平倾角或X,Y和Z三个方向的角度值时通过的路程,进而对该路程进行积分处理,因此,能够消除水平方向上的路程误差,或是X,Y和Z三个方向上的误差,使得测距仪通过的路程更为精确。
附图说明
图1为光电测距仪的矫正方法的流程图之一;
图2为光电测距仪的矫正方法的流程图之一;
图3为光电测距仪的矫正系统的模块图之一;
图4为光电测距仪的矫正系统的模块图之一。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,为光电测距仪的矫正方法的流程图。
一种光电测距仪的矫正方法,包括以下步骤:
步骤S110、将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置。
步骤S120、检测所述测距仪的水平倾角。
具体的,实时检测所述测距仪的水平倾角θ。
步骤S130、记录所述测距仪在水平倾角时通过的路程。
记录所述测距仪在θ通过的路程t;根据所述路程t获取实际路程s。
步骤S140、对该路程进行积分处理,从而得到矫正后的路程。
对该路程s进行积分处理,获取矫正后的距离。
对该路程s进行积分处理的步骤包括:
采用s=∫tcosθdθ公式进行积分处理。
基于上述实施例,为了消除水平方向的测量误差可以通过加速度传感器进行误差矫正。加速度传感器实时检测测距仪的水平倾角θ,在θ走过的路程为t,则实际距离应为s=tcosθ,通过积分s=∫tcosθdθ可以得到矫正距离。尤其需要指出的是加速度传感器的使用目前已经基本上成为激光测距仪的常见的使用功能,这样使得滚轮在激光测距仪的使用中更加具有优势。
如图2所示,为光电测距仪的矫正方法的流程图
一种光电测距仪的矫正方法,包括以下步骤:
步骤S210、将陀螺仪安装于所述测距仪上;
步骤S220、在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度;
步骤S230、通过对时间的积分获取X,Y和Z三个方向的角度值;
步骤S240、记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程;
步骤S250、对该路程进行积分处理,从而得到矫正后的路程。
基于上述实施例,除了上述对水平倾角的测量进行误差矫正外,还有另一种方式。如果滚轮移动并不是水平移动的,需要在滚动过程中还能进行更多矫正,可以使用陀螺仪进行矫正。陀螺仪可以输出绕空间X,Y和Z三个方向的角速度,通过对时间的积分可以得到绕空间X,Y和Z三个轴转动的角度值。依照上述水平误差的矫正方法,类似地可以到得到空间误差的矫正。同样的,陀 螺仪在激光测距仪上也是常见的使用功能。
如图3所示,为光电测距仪的矫正系统的模块图。
一种光电测距仪的矫正系统,包括设置模块301、检测模块302、记录模块303及处理模块307。
所述设置模块301用于将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置。
所述检测模块302用于检测所述测距仪的水平倾角。
所述记录模块303用于记录所述测距仪在水平倾角时通过的路程。
所述处理模块304用于对该路程进行积分处理,从而得到矫正后的路程。
检测模块302用于实时检测所述测距仪的水平倾角θ。
所述记录模块303用于记录所述测距仪在θ通过的路程t。
所述记录模块303还用于根据所述路程t获取实际路程s。
所述处理模块304用于对该路程s进行积分处理,获取矫正后的距离。
所述处理模块304还用于采用s=∫tcosθdθ公式进行积分处理。
如图4所示,为光电测距仪的矫正系统的模块图。
一种光电测距仪的矫正系统,包括陀螺仪401、采集模块402、积分模块403、路程模块404及矫正模块405。
所述陀螺仪401安装于所述测距仪上。
所述采集模块402用于在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度。
所述积分模块403用于通过对时间的积分获取X,Y和Z三个方向的角度值。
所述路程模块404用于记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程。
所述矫正模块405用于对该路程进行积分处理,从而得到矫正后的路程。
上述光电测距仪的矫正方法和系统通过检测测距仪的水平倾角或X,Y和Z三个方向的角度值时通过的路程,进而对该路程进行积分处理,因此,能够消除水平方向上的路程误差,或是X,Y和Z三个方向上的误差,使得测距仪通 过的路程更为精确。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种光电测距仪的矫正方法,其特征在于,包括以下步骤:
    将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置;
    检测所述测距仪的水平倾角;
    记录所述测距仪在水平倾角时通过的路程;
    对该路程进行积分处理,从而得到矫正后的路程。
  2. 根据权利要求1所述的光电测距仪的矫正方法,其特征在于,还包括:
    实时检测所述测距仪的水平倾角θ;
    记录所述测距仪在θ通过的路程t;
    根据所述路程t获取实际路程s;
    对该路程s进行积分处理,获取矫正后的距离。
  3. 根据权利要求1所述的光电测距仪的矫正方法,其特征在于,所述对该路程s进行积分处理的步骤包括:
    采用s=∫ tcos θ d θ公式进行积分处理。
  4. 一种光电测距仪的矫正方法,其特征在于,包括以下步骤:
    将陀螺仪安装于所述测距仪上;
    在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度;
    通过对时间的积分获取X,Y和Z三个方向的角度值;
    记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程;
    对该路程进行积分处理,从而得到矫正后的路程。
  5. 一种光电测距仪的矫正系统,其特征在于,包括设置模块、检测模块、记录模块及处理模块;
    所述设置模块用于将测距仪置于待测曲线或曲面位置上,使所述测距仪通过所述待测曲线或曲面位置;
    所述检测模块用于检测所述测距仪的水平倾角;
    所述记录模块用于记录所述测距仪在水平倾角时通过的路程;
    所述处理模块用于对该路程进行积分处理,从而得到矫正后的路程。
  6. 根据权利要求5所述的光电测距仪的矫正系统,其特征在于,所述检测模块用于实时检测所述测距仪的水平倾角θ;
    所述记录模块用于记录所述测距仪在θ通过的路程t;
    所述记录模块还用于根据所述路程t获取实际路程s;
    所述处理模块用于对该路程s进行积分处理,获取矫正后的距离。
  7. 根据权利要求5所述的光电测距仪的矫正系统,其特征在于,
    所述处理模块还用于采用s=∫ tcos θ d θ公式进行积分处理。
  8. 一种光电测距仪的矫正系统,其特征在于,包括陀螺仪、采集模块、积分模块、路程模块及矫正模块;
    所述陀螺仪安装于所述测距仪上;
    所述采集模块用于在所述测距仪通过所述待测曲线或曲面位置的过程中,采集所述测距仪的X,Y和Z三个方向的角速度;
    所述积分模块用于通过对时间的积分获取X,Y和Z三个方向的角度值;
    所述路程模块用于记录所述测距仪在X,Y和Z三个方向的角度值时通过的路程;
    所述矫正模块用于对该路程进行积分处理,从而得到矫正后的路程。
PCT/CN2016/101959 2016-09-23 2016-10-13 光斑增强处理方法、装置及激光测距仪 WO2018053888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610848440.1A CN106249220B (zh) 2016-09-23 2016-09-23 光斑增强处理方法、装置及激光测距仪
CN201610848440.1 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018053888A1 true WO2018053888A1 (zh) 2018-03-29

Family

ID=57611653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101959 WO2018053888A1 (zh) 2016-09-23 2016-10-13 光斑增强处理方法、装置及激光测距仪

Country Status (2)

Country Link
CN (1) CN106249220B (zh)
WO (1) WO2018053888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211335B (zh) * 2018-01-19 2023-12-05 南京先进激光技术研究院 一种激光模拟对战系统及击中判断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360079A (zh) * 2011-07-05 2012-02-22 上海理工大学 一种激光测距仪及工作方法
CN102636788A (zh) * 2012-05-03 2012-08-15 山东卡尔电气股份有限公司 一种跟踪激光点的测距方法和系统
CN206178134U (zh) * 2016-09-23 2017-05-17 深圳市迈测科技股份有限公司 光斑增强处理装置及激光测距仪

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183389C (zh) * 2001-03-09 2005-01-05 亚洲光学股份有限公司 激光测距的信号处理方法及装置
CN101408985B (zh) * 2008-09-22 2010-09-22 北京航空航天大学 一种圆形光斑亚像素中心提取方法及装置
CN104966308B (zh) * 2015-06-12 2017-12-01 深圳大学 一种计算激光光束光斑大小的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360079A (zh) * 2011-07-05 2012-02-22 上海理工大学 一种激光测距仪及工作方法
CN102636788A (zh) * 2012-05-03 2012-08-15 山东卡尔电气股份有限公司 一种跟踪激光点的测距方法和系统
CN206178134U (zh) * 2016-09-23 2017-05-17 深圳市迈测科技股份有限公司 光斑增强处理装置及激光测距仪

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI, LI ET AL.: "Improved algorithm of laser spot image enhancement based on particle swarm optimization", COMPUTER ENGINEERING AND DESIGN, vol. 35, no. 3, 30 March 2014 (2014-03-30), pages 964 - 967, ISSN: 1000-7024 *
LIU, HAOLONG ET AL.: "An Improved Algorithm of Laser Spot Center Location", COMPUTER MEASUREMENT & CONTROL, vol. 22, no. 1, 31 January 2014 (2014-01-31), pages 139 - 141, ISSN: 1671-4598 *
WANG, FENGPENG ET AL.: "Distance Measurement using Digital Cameras Based on Laser Spot Detection", JOURNAL OF GANNAN NORMAL UNIVERSITY, 30 June 2011 (2011-06-30), pages 40 - 42, ISSN: 1004-8332 *
WU, ZEKAI ET AL.: "Laser spot center detection based on improved circle fitting algorithm", LASER & INFRARED, vol. 46, no. 3, 30 March 2016 (2016-03-30), pages 346 - 348, ISSN: 1001-5078 *

Also Published As

Publication number Publication date
CN106249220A (zh) 2016-12-21
CN106249220B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
US10641617B2 (en) Calibration device and calibration method
CN101334294B (zh) 基于gps的车辆中传感器校准算法
JPH02266221A (ja) 自立航法装置に用いる角速度センサの較正装置
JPH10332415A (ja) ナビゲーション装置
CN104215229B (zh) Rtk设备调节方法、系统及rtk测量方法
JP2009505062A (ja) リアルタイムバイアス推定器に基づく慣性機器のための自己較正
US20140298883A1 (en) Method of Calibrating an Inertial Assembly Comprising a Dynamic Phase Between Two Static Phases
JP2007033395A (ja) 位置補正方法及びナビゲーション装置
CH709876B1 (it) Strumento di geodesia.
JP6383907B2 (ja) 車輌位置計測装置及び方法
CN109712157B (zh) 一种基于单目视觉的重力场法加速度计校准方法
CN103759743B (zh) 惯性测量装置方位基准传递装置及大倾角时方位确定方法
US20170131107A1 (en) Angular velocity sensor correction device and method for correcting output signal from angular velocity sensor, and direction estimation device and method for estimating direction by correcting output signal from angular velocity sensor
JP2021518529A (ja) 車両に装備されたジャイロメータの較正方法
WO2018053888A1 (zh) 光斑增强处理方法、装置及激光测距仪
EP2488829B1 (en) A method of detecting parasitic movements while aligning an inertial unit
US20140046623A1 (en) Method and device for determining the inclined position of a vehicle
JP4916780B2 (ja) 測量装置
WO2018058704A1 (zh) 光电测距仪的矫正方法和系统
JP3381520B2 (ja) ナビゲーション装置
JP2021017073A (ja) 位置推定装置
JP3451636B2 (ja) 速度センサ係数算出装置
JP6699355B2 (ja) 角速度センサ補正装置および角速度センサ補正方法
TWI382153B (zh) 慣性導航系統地圖回饋校正方法
US20090099765A1 (en) Apparatus and method for measuring velocity of moving object in a navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16916627

Country of ref document: EP

Kind code of ref document: A1