WO2018052252A1 - Semiconductor device and semiconductor device package including same - Google Patents

Semiconductor device and semiconductor device package including same Download PDF

Info

Publication number
WO2018052252A1
WO2018052252A1 PCT/KR2017/010065 KR2017010065W WO2018052252A1 WO 2018052252 A1 WO2018052252 A1 WO 2018052252A1 KR 2017010065 W KR2017010065 W KR 2017010065W WO 2018052252 A1 WO2018052252 A1 WO 2018052252A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
point
conductive semiconductor
aluminum
Prior art date
Application number
PCT/KR2017/010065
Other languages
French (fr)
Korean (ko)
Inventor
최낙준
김병조
오현지
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160118243A external-priority patent/KR102648472B1/en
Priority claimed from KR1020160140466A external-priority patent/KR102632215B1/en
Priority claimed from KR1020170115836A external-priority patent/KR102400338B1/en
Priority to CN202211246713.7A priority Critical patent/CN115602765A/en
Priority to CN201780056302.2A priority patent/CN109791960B/en
Priority to CN202211246664.7A priority patent/CN115602764A/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN202211246735.3A priority patent/CN115763652A/en
Priority to EP17851126.7A priority patent/EP3514840A4/en
Priority to US16/331,039 priority patent/US10910519B2/en
Priority to CN202211245094.XA priority patent/CN115566116A/en
Priority to JP2019514006A priority patent/JP7403797B2/en
Priority to CN202211246672.1A priority patent/CN115498078A/en
Publication of WO2018052252A1 publication Critical patent/WO2018052252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • An embodiment relates to a semiconductor device and a semiconductor device package including the same.
  • a semiconductor device including a compound such as GaN, AlGaN, etc. has many advantages, such as having a wide and easy-to-adjust band gap energy, and can be used in various ways as a light emitting device, a light receiving device, and various diodes.
  • light emitting devices such as light emitting diodes and laser diodes using semiconductors of Group 3-5 or Group 2-6 compound semiconductors have been developed through the development of thin film growth technology and device materials.
  • Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.Low power consumption, semi-permanent lifespan, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps can be realized. It has the advantages of safety, environmental friendliness.
  • a light-receiving device such as a photodetector or a solar cell
  • a group 3-5 or 2-6 compound semiconductor material of a semiconductor the development of device materials absorbs light in various wavelength ranges to generate a photocurrent.
  • light in various wavelengths can be used from gamma rays to radio wavelengths. It also has the advantages of fast response speed, safety, environmental friendliness and easy control of device materials, making it easy to use in power control or microwave circuits or communication modules.
  • the semiconductor device may replace a light emitting diode backlight, a fluorescent lamp, or an incandescent bulb, which replaces a cold cathode tube (CCFL) constituting a backlight module of an optical communication means, a backlight of a liquid crystal display (LCD) display device.
  • CCFL cold cathode tube
  • LCD liquid crystal display
  • the light emitting device that emits light in the ultraviolet wavelength region may be used for curing, medical treatment, and sterilization by curing or sterilizing.
  • the ultraviolet light emitting device has a problem that it is difficult to implement a vertical type, and there is a problem that the crystallinity is degraded in the process of separating the substrate.
  • the embodiment provides a vertical ultraviolet light emitting device.
  • a semiconductor device includes a light emitting device including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer. structure; A first electrode electrically connected to the first conductive semiconductor layer; And a second electrode electrically connected to the second conductive semiconductor layer, wherein the second conductive semiconductor layer includes a first surface on which the second electrode is disposed, and the second conductive semiconductor layer includes: The ratio W2: W1 of the second shortest distance W2 from the first surface to the second point and the first shortest distance W1 from the first surface to the first point is 1: 1.25 to 1: 100.
  • the first point is a point having the same composition as the aluminum composition of the well layer closest to the second conductivity-type semiconductor layer among the active layer
  • the second point is the aluminum composition and the dopant composition of the second conductivity-type semiconductor layer It may be the point of equality.
  • the light output can be improved.
  • FIG. 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention.
  • FIG. 3 is a SIMS graph of the light emitting structure according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged view of a part of FIG. 3;
  • FIG. 6 is an enlarged view of a part of FIG. 5;
  • FIG. 7 is a SIMS graph of a light emitting structure according to a third embodiment of the present invention.
  • FIG. 8 is an enlarged view of a part of FIG. 7;
  • FIG. 9 is a conceptual diagram of a semiconductor structure according to an embodiment of the present disclosure.
  • 11A and 11B illustrate SIMS data of a semiconductor structure according to an embodiment of the present disclosure.
  • 11C and 11D are SIMS data of a semiconductor structure according to another embodiment of the present invention.
  • FIGS. 11A-11D is a view showing the aluminum ion strength of FIGS. 11A-11D.
  • FIG. 13A is an enlarged view of a portion of the SIMS data of FIG. 12A;
  • FIG. 13B is a view of converting the SIMS data of FIG. 12B into a linear scale
  • 14A is a conceptual diagram of a second conductivity-type semiconductor layer according to an embodiment of the present invention.
  • FIG. 14B is AFM data of a surface of a second conductivity-type semiconductor layer according to an embodiment of the present invention.
  • 14C is AFM data of a surface of a GaN thin film
  • 14D is AFM data obtained by measuring the surface of the second conductivity type semiconductor layer grown at high speed
  • FIG. 15 is a conceptual diagram of a semiconductor device according to an embodiment of the present disclosure.
  • 16A and 16B are views for explaining a configuration in which light output is improved according to a change in the number of recesses.
  • FIG. 17 is an enlarged view of a portion A of FIG. 15;
  • FIG. 18 is a conceptual diagram of a semiconductor device according to another embodiment of the present disclosure.
  • FIG. 19 is a plan view of FIG. 18,
  • FIG. 20 is a conceptual diagram of a semiconductor device package according to an embodiment of the present disclosure.
  • 21 is a plan view of a semiconductor device package according to an embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view of a semiconductor device package according to another embodiment of the present disclosure.
  • 24 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention.
  • 25 is a graph showing an aluminum composition of a light emitting structure according to an embodiment of the present invention.
  • 26 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention.
  • 27 is a graph measuring light efficiency of a semiconductor device including a conventional light emitting structure
  • 29 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention.
  • FIG. 30 is a conceptual diagram of a light emitting structure grown on a substrate
  • 31 is a view for explaining a process of separating a substrate
  • 32 is a view for explaining a process of etching a light emitting structure
  • 33 is a view illustrating a manufactured semiconductor device.
  • the light emitting structure according to the embodiment of the present invention may output light in the ultraviolet wavelength band.
  • the light emitting structure may output light in the near ultraviolet wavelength range (UV-A), may output light in the far ultraviolet wavelength range (UV-B), and emit light in the deep ultraviolet wavelength range (UV-C).
  • UV-A near ultraviolet wavelength range
  • UV-B far ultraviolet wavelength range
  • UV-C deep ultraviolet wavelength range
  • the wavelength range may be determined by the composition ratio of Al of the light emitting structure 120.
  • the light (UV-A) in the near ultraviolet wavelength band may have a wavelength in the range of 320 nm to 420 nm
  • the light in the far ultraviolet wavelength band (UV-B) may have a wavelength in the range of 280 nm to 320 nm
  • deep ultraviolet light Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
  • Figure 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention
  • Figure 2 is a graph showing the aluminum composition ratio of the light emitting structure according to an embodiment of the present invention.
  • a semiconductor device may include a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124 and a second conductive semiconductor layer. It includes a light emitting structure 120 including an active layer 126 disposed between the (127).
  • the first conductive semiconductor layer 124 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and may be doped with a first dopant.
  • the first conductive semiconductor layer 124 is a semiconductor material having a composition formula of Inx1Aly1Ga1-x1-y1N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example, GaN, AlGaN, InGaN, InAlGaN and the like can be selected.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
  • the active layer 126 is disposed between the first conductive semiconductor layer 124 and the second conductive semiconductor layer 127.
  • the active layer 126 is a layer where electrons (or holes) injected through the first conductive semiconductor layer 124 meet holes (or electrons) injected through the second conductive semiconductor layer 127.
  • the active layer 126 transitions to a low energy level as electrons and holes recombine, and may generate light having an ultraviolet wavelength.
  • the active layer 126 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 126.
  • the structure of is not limited to this.
  • the second conductive semiconductor layer 127 is formed on the active layer 126, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI.
  • the second conductive semiconductor layer 127 may be a second semiconductor layer 127.
  • Dopants may be doped.
  • the second conductive semiconductor layer 127 is a semiconductor material having a composition formula of Inx5Aly2Ga1-x5-y2N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1) or AlInN, AlGaAs, GaP, GaAs It may be formed of a material selected from GaAsP, AlGaInP.
  • the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
  • the second conductive semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
  • the second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c.
  • the 2-1 conductivity type semiconductor layer 127a may have a smaller aluminum composition than the 2-2 conductivity type semiconductor layer 127b.
  • An electron blocking layer 129 may be disposed between the active layer 126 and the second conductive semiconductor layer 127.
  • the electron blocking layer 129 blocks the flow of electrons supplied from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127 so that electrons and holes can be recombined in the active layer 126. You can increase your chances.
  • the energy band gap of the electron blocking layer 129 may be larger than the energy band gap of the active layer 126 and / or the second conductive semiconductor layer 127.
  • the electron blocking layer 129 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1- y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example AlGaN. , InGaN, InAlGaN, etc. may be selected, but is not limited thereto.
  • a first layer 129b having a high aluminum composition and a second layer 129a having a low aluminum composition may be alternately disposed.
  • the first conductive semiconductor layer 124, the barrier layer 126b, the well layer 126a, and the 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c are all It may comprise aluminum. Accordingly, the first conductive semiconductor layer 124, the barrier layer 126b, the well layer 126a, and the 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c may be AlGaN. However, it is not necessarily limited thereto.
  • the electron blocking layer 129 may have an aluminum composition of 50% to 90%.
  • the blocking layer 129 may include a plurality of first blocking layers 129a having a relatively high aluminum composition and a plurality of second blocking layers 129b having a low aluminum composition.
  • the aluminum composition of the blocking layer 129 is less than 50%, the height of the energy barrier for blocking electrons may be insufficient, and the light emitted from the active layer 126 may be absorbed by the blocking layer 129, and the aluminum composition may be 90%. Exceeding the% may deteriorate the electrical characteristics of the semiconductor device.
  • the electron blocking layer 129 may include a first-first section 129-1 and a first-second section 129-2. As the first-first section 129-1 approaches the blocking layer 129, the aluminum composition may increase.
  • the aluminum composition of the first-first section 129-1 may be 80% to 100%. That is, the first-first section 129-1 may be AlGaN or AlN. Alternatively, the first-first section 129-1 may be a superlattice layer in which AlGaN and AlN are alternately arranged.
  • the thickness of the first-first section 129-1 may be about 0.1 nm to 4 nm. If the thickness of the first-first section 129-1 is thinner than 0.1 nm, there may be a problem in that the movement of electrons may not be effectively blocked. In addition, when the thickness of the first-first section 129-1 is greater than 4 nm, there may be a problem in that the efficiency of injecting holes into the active layer is reduced.
  • the first-second section 129-2 may include an undoped section.
  • the first-second section 129-2 may serve to prevent the dopant from being diffused from the second conductive semiconductor layer 127 to the active layer 126.
  • the thickness of the second-second conductive semiconductor layer 127b may be larger than 10 nm and smaller than 200 nm.
  • the thickness of the second conductivity-type semiconductor layer 127b may be 25 nm.
  • the resistance may increase in the horizontal direction, thereby decreasing current injection efficiency.
  • the thickness of the second conductivity-type semiconductor layer 127b is greater than 200 nm, the resistance may increase in the vertical direction, thereby decreasing current injection efficiency.
  • the aluminum composition of the second-conductive semiconductor layer 127b may be higher than that of the well layer 126a.
  • the aluminum composition of the well layer 126a may be about 30% to 70% to generate ultraviolet light. If the aluminum composition of the 2-2 conductivity type semiconductor layer 127b is lower than that of the well layer 126a, the light extraction efficiency may be reduced because the 2-2 conductivity type semiconductor layer 127b absorbs light. Can be. However, in order to prevent the lowering of the crystallinity of the light emitting structure is not necessarily limited thereto. For example, the aluminum composition in a portion of the second-second conductive semiconductor layer 127b may be lower than that of the well layer 126a.
  • the aluminum composition of the second conductive semiconductor layer 127b may be greater than 40% and less than 80%.
  • the aluminum composition of the second conductive semiconductor layer 127b has a problem of absorbing light when less than 40%, and a problem of deterioration of current injection efficiency when larger than 80%.
  • the aluminum composition of the well layer 126a is 30%
  • the aluminum composition of the second-2 conductive semiconductor layer 127b may be 40%.
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be lower than that of the well layer 126a.
  • the resistance between the p-omic electrodes is increased, so that sufficient ohmic is not achieved and current injection efficiency is inferior. .
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be greater than 1% and less than 50%. If it is larger than 50%, a sufficient ohmic may not be achieved with the p-omic electrode. If the composition is smaller than 1%, there is a problem of absorbing light because it is almost close to the GaN composition.
  • the thickness of the 2-1 conductive semiconductor layer 127a may be 1 nm to 30 nm, or 1 nm to 10 nm.
  • the 2-1 conductivity type semiconductor layer 127a may absorb ultraviolet light because the composition of aluminum is low for ohmic. Therefore, it may be advantageous in terms of light output to control the thickness of the second-first conductivity-type semiconductor layer 127a as thin as possible.
  • the thickness of the 2-1 conductive semiconductor layer 127a is controlled to 1 nm or less, the 2-1 conductive semiconductor layer 127a is not disposed in some sections, and the 2-2 conductive semiconductor layer 127b is not disposed. ) May be exposed to the outside of the light emitting structure 120.
  • the thickness is greater than 30 nm, the amount of light absorbed by the 2-1 conductivity type semiconductor layer 127a may be so large that the light output efficiency may decrease.
  • the thickness of the 2-1 conductive semiconductor layer 127a may be smaller than the thickness of the 2-2 conductive semiconductor layer 127b.
  • the thickness ratio of the 2-2 conductive semiconductor layer 127b and the 2-1 conductive semiconductor layer 127a may be 1.5: 1 to 20: 1.
  • the thickness ratio is smaller than 1.5: 1, the thickness of the second conductive semiconductor layer 127b may be too thin, thereby reducing current injection efficiency.
  • the thickness ratio is greater than 20: 1, the thickness of the 2-1 conductivity type semiconductor layer 127a may be too thin, thereby reducing ohmic reliability.
  • the aluminum composition of the second-second conductive semiconductor layer 127b may be smaller as it moves away from the active layer 126.
  • the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller as it moves away from the active layer 126.
  • the aluminum reduction width of the 2-1 conductivity type semiconductor layer 127a may be greater than the aluminum reduction width of the 2-2 conductivity type semiconductor layer 127b. That is, the change rate in the thickness direction of the Al composition ratio of the 2-1 conductivity type semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-2 conductivity type semiconductor layer 127b.
  • the aluminum composition should be higher than that of the well layer 126a, so that the decrease may be relatively slow.
  • the 2-1 conductivity type semiconductor layer 127a has a small thickness and a large variation in the aluminum composition, the decrease in the aluminum composition may be relatively large.
  • the 2-3 conductive semiconductor layer 127c may have a uniform aluminum composition.
  • the thickness of the 2-3 conductive semiconductor layer 127c may be 20 nm to 60 nm.
  • the aluminum composition of the second conductive semiconductor layer 127c may be 40% to 70%.
  • FIG. 3 is a SIMS graph of the light emitting structure according to the first embodiment of the present invention
  • FIG. 4 is an enlarged view of a portion of FIG. 3.
  • the aluminum composition and the composition of the P-type impurity (Mg) may be changed in a direction of decreasing thickness.
  • the composition of aluminum may be lowered and the composition of the P-type impurity Mg may be increased.
  • the second conductive semiconductor layer 127 is formed of the second shortest distance W2 from the surface (a point of zero thickness, the first surface) to the second point P21 and the first point P11 from the surface.
  • the ratio W1: W1 of the shortest distance W1 may be 1: 1.25 to 1: 100, or 1: 1.25 to 1:10.
  • the ratio W2: W1 of the second shortest distance W2 and the first shortest distance W1 is smaller than 1: 1.25
  • the first shortest distance W1 and the second shortest distance W2 are closer to each other to change the aluminum composition. May cause a problem.
  • the ratio (W2: W1) is larger than 1: 100
  • the thickness of the second conductive semiconductor layer 127 becomes too thick, so that the crystallinity of the second conductive semiconductor layer 127 is lowered or applied toward the substrate.
  • the stress to be strengthened can change the wavelength of the light emitted from the active layer.
  • the first point P11 may be a point having the same composition as the aluminum composition of the well layer 126a closest to the second conductivity-type semiconductor layer 127 among the active layers.
  • the range of the first point P11 may be defined as a spectrum measured by the SIMS.
  • the range of the first point P11 may be defined as the second conductivity type semiconductor layer such as aluminum content in the well layer of the active layer.
  • a method based on a SIMS spectrum may be applied, but is not limited thereto.
  • TEM and XRD measurement methods may be applied, but may be simply defined through SIMS spectra.
  • the second point P21 may be a point at which the spectrum for the dopant (eg, Mg) of the second conductivity type semiconductor layer and the spectrum for aluminum cross each other in the SIMS spectrum.
  • the spectrum for the dopant eg, Mg
  • the unit of the value for the dopant of the second conductivity type semiconductor layer may be different, but the spectrum including the inflection point for the aluminum composition of the second conductivity type semiconductor layer and the dopant of the second conductivity type semiconductor layer is different.
  • the boundary region of the 2-1 conductivity type semiconductor layer 127a and the 2-2 conductivity type semiconductor layer 127b may be included within a range including an intersection point. Therefore, the boundary area of the conductive type 2-1 semiconductor layer 127a and the type 2-2 conductive semiconductor layer 127b can be measured, and the range thereof can be defined.
  • the present invention is not limited thereto, and the second point P21 may be a point located in an area in which the aluminum composition is 5% to 55%.
  • the aluminum composition of the second point P21 is less than 5%, the thickness of the 2-1 conductive semiconductor layer 127a may become too thin, which may lower power consumption efficiency of the semiconductor device, and exceeds 55%.
  • the thickness of the 2-1 conductivity type semiconductor layer 127a may be so thick that light extraction efficiency may decrease.
  • the aluminum composition of the second point P21 may be smaller than the aluminum composition of the first point P11.
  • the second point P21 may have an aluminum composition of 40% to 70%.
  • the first shortest distance W1 may be 25 nm to 100 nm
  • the second shortest distance W2 may be 1 nm to 20 nm.
  • the first difference H1 of the average aluminum composition of the electron blocking layer 129 and the aluminum composition at the first point P11 and the second of the aluminum composition of the average aluminum composition of the electron blocking layer and the second point P21 The ratio H1: H2 of the difference H2 may be from 1: 1.2 to 1:10.
  • the ratio of the first difference to the second difference (H1: H2) is less than 1: 1.2, the change in aluminum composition in the section between the first point P11 and the second point is moderate, making it difficult to sufficiently lower the aluminum composition in the contact layer. There is.
  • the ratio (H1: H2) of the first difference and the second difference is greater than 1:10, the change in aluminum composition may be rapid, thereby increasing the probability of absorbing the light emitted from the active layer.
  • FIG. 5 is a SIMS graph of a light emitting structure according to a second embodiment of the present invention
  • FIG. 6 is a partially enlarged view of FIG. 5
  • FIG. 7 is a seamless pattern of a light emitting structure according to a third embodiment of the present invention.
  • SIMS SIMS
  • FIG. 8 is an enlarged view of a portion of FIG. 7.
  • the ratio W2: W1 of the second shortest distance W2 and the first shortest distance W1 described above is 1: 1.25 to 1: 100, or 1: 1.25 to 1:10. It can be seen that satisfactory.
  • the first point P13 and the second point P23 are disposed in close proximity to each other.
  • the first difference between the average aluminum composition of the electron blocking layer 129 and the aluminum composition at the first points P12 and P13, and the average aluminum composition of the electron blocking layer and the aluminum at the second points P22 and P23 It can be seen that the ratio (H1: H2) of the second difference in composition satisfies 1: 1.2 to 1:10.
  • the composition of aluminum on the surface of the second conductive semiconductor layer 127 may be adjusted to 1% to 10%.
  • FIG. 9 is a conceptual diagram of a semiconductor structure according to an embodiment of the present invention
  • FIG. 10 is a graph showing an aluminum composition ratio of a semiconductor structure according to an embodiment of the present invention.
  • a semiconductor device may include a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124 and a second conductivity. And a semiconductor structure 120 including an active layer 126 disposed between the semiconductor semiconductor layers 127.
  • the semiconductor structure 120 may output light in the ultraviolet wavelength band.
  • the semiconductor structure 120 may output light in the near ultraviolet wavelength band (UV-A), may output light in the far ultraviolet wavelength band (UV-B), or light in the deep ultraviolet wavelength band (UV-C). ) Can be printed.
  • UV-A near ultraviolet wavelength band
  • UV-B far ultraviolet wavelength band
  • UV-C deep ultraviolet wavelength band
  • the wavelength range may be determined by the composition ratio of Al of the semiconductor structure 120.
  • the light (UV-A) in the near ultraviolet wavelength band may have a wavelength in the range of 320 nm to 420 nm
  • the light in the far ultraviolet wavelength band (UV-B) may have a wavelength in the range of 280 nm to 320 nm
  • deep ultraviolet light Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
  • each semiconductor layer of the semiconductor structure 120 includes In x1 Al y1 Ga 1 -x1- y1 N (0 ⁇ x1 ⁇ 1 , 0 ⁇ y1) containing aluminum. ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1) material.
  • the composition of Al can be represented by the ratio of the total atomic weight and the Al atomic weight including the In atomic weight, the Ga atomic weight, and the Al atomic weight.
  • the Al composition is 40%, the composition of Ga may be Al 40 Ga 60 N, which is 60%.
  • the meaning that the composition is low or high may be understood as the difference (and / or percentage point) of the composition% of each semiconductor layer.
  • the aluminum composition of the first semiconductor layer is 30% and the aluminum composition of the second conductive semiconductor layer is 60%
  • the aluminum composition of the second conductive semiconductor layer is 30% higher than the aluminum composition of the first semiconductor layer. It can be expressed as higher.
  • the first conductive semiconductor layer 124 may be formed of a compound semiconductor such as a group III-V group or a group II-VI, and may be doped with a first dopant.
  • the first conductive semiconductor layer 124 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example For example, it may be selected from AlGaN, AlN, InAlGaN and the like.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te.
  • the first conductive semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
  • the present invention is not limited thereto, and the first conductive semiconductor layer 124 may be a p-type semiconductor layer.
  • the first conductive semiconductor layer 124 may include the first-first conductive semiconductor layer 124a, the second-second conductive semiconductor layer 124c, and the first-first conductive semiconductor layer 124a and the first-first conductive semiconductor layer 124a.
  • the intermediate layer 124b may be disposed between the two conductive semiconductor layers 124c.
  • the aluminum composition of the first-first conductive semiconductor layer 124a may be 50% to 80%.
  • light extraction efficiency may be improved by lowering the absorption rate of light (UV-C) in the deep ultraviolet wavelength band emitted from the active layer 126.
  • UV-C absorption rate of light
  • the current injection characteristic into the active layer 126 and the current spreading characteristic in the first-first conductive semiconductor layer 124a can be ensured.
  • the first-second conductivity type semiconductor layer 124c may be disposed closer to the active layer 126 than the first-first conductivity type semiconductor layer 124a.
  • the aluminum composition of the 1-2 conductive semiconductor layer 124c may be lower than that of the 1-1 conductive semiconductor layer 124a.
  • the aluminum composition of the 1-2 conductive semiconductor layer 124c may be 40% to 70%.
  • the aluminum composition of the second conductive semiconductor layer 124c is 40% or more, light extraction efficiency may be improved by lowering the absorption rate of light (UV-C) emitted from the active layer 126 in the deep ultraviolet wavelength band.
  • UV-C absorption rate of light
  • the current injection characteristic into the active layer 126 and the current spreading characteristic in the 1-2 conductive semiconductor layer 124c can be secured.
  • the aluminum composition of the first-first conductive semiconductor layer 124a and the first-second conductive semiconductor layer 124c may be higher than that of the well layer 126a. Therefore, when the active layer 126 emits light having a wavelength in the ultraviolet region, the absorption rate may be lowered in the semiconductor structure 120 with respect to light having a wavelength in the ultraviolet region.
  • the semiconductor structure 120 may be formed in the active layer 126 by the difference in refractive index. It may be more advantageous for light to be extracted to the outside. Therefore, light extraction efficiency of the semiconductor structure 120 may be improved.
  • the thickness of the first-second conductive semiconductor layer 124c may be thinner than the thickness of the first-first conductive semiconductor layer 124a.
  • the first-first conductive semiconductor layer 124a may be 130% or more of the thickness of the first-second conductive semiconductor layer 124c. According to this configuration, since the intermediate layer 124b is disposed after sufficiently securing the thickness of the first-first conductivity-type semiconductor layer 124a having a high aluminum composition, the crystallinity of the entire semiconductor structure 120 may be improved.
  • the aluminum composition of the intermediate layer 124b may be lower than that of the first conductive semiconductor layer 124 and the second conductive semiconductor layer 124.
  • the intermediate layer 124b may serve to prevent damage to the active layer 126 by absorbing a laser beam irradiated onto the semiconductor structure 120 during a laser lift-off (LLO) process of removing a growth substrate. Therefore, the semiconductor device according to the embodiment may prevent damage to the active layer 126 during the laser lift-off (LLO) process, thereby improving light output and electrical characteristics.
  • the aluminum composition of the intermediate layer 124b may be a 1-1 conductive semiconductor layer in order to lower the resistance between the intermediate layer 124b and the first electrode to ensure current injection efficiency.
  • the thickness and aluminum composition of the intermediate layer 124b may be appropriately adjusted to absorb the laser irradiated to the semiconductor structure 120 during the LLO process. Therefore, the aluminum composition of the intermediate layer 124b may correspond to the wavelength of the laser light used in the LLO process.
  • the aluminum composition of the intermediate layer 124b may be 30% to 70% and the thickness may be 1 nm to 10 nm.
  • the composition of aluminum of the intermediate layer 124b may be increased to correspond to the LLO laser wavelength.
  • the aluminum composition of the intermediate layer 124b may be increased to 50% to 70%.
  • the intermediate layer 124b may not absorb light emitted from the active layer 126. Therefore, light extraction efficiency can be improved.
  • the LLO laser may have a wavelength lower than the light emission wavelength of the well layer 126a. Therefore, the intermediate layer 124b may have an appropriate aluminum composition so as to absorb the laser for the LLO while not absorbing the light emitted from the well layer 126a.
  • the intermediate layer 124b includes a first intermediate layer (not shown) having a lower aluminum composition than the first conductive semiconductor layer 124 and a second intermediate layer (not shown) having a higher aluminum composition than the first conductive semiconductor layer 124. It may also include. A plurality of first intermediate layers and a plurality of second intermediate layers may be arranged alternately.
  • the active layer 126 may be disposed between the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 127.
  • the active layer 126 may include a plurality of well layers 126a and a plurality of barrier layers 126b.
  • the well layer 126a includes a first carrier (electrons or holes) injected through the first conductive semiconductor layer 124 and a second carrier (holes or electrons) injected through the second conductive semiconductor layer 127. It is a meeting floor.
  • the conduction band and the well layer of the well layer 126a Light having a wavelength corresponding to the difference (energy band gap) of the energy level of the household appliance band 126a may be generated.
  • the active layer 126 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 126.
  • the structure of is not limited to this.
  • the active layer 126 may include a plurality of well layers 126a and a barrier layer 126b.
  • the well layer 126a and the barrier layer 126b may have a composition formula of In x2 Al y2 Ga 1 -x2- y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x2 + y2 ⁇ 1).
  • the well layer 126a may have an aluminum composition depending on the wavelength of light emitted.
  • the second conductive semiconductor layer 127 is formed on the active layer 126, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI.
  • the second conductive semiconductor layer 127 may be a second semiconductor layer 127. Dopants may be doped.
  • the second conductivity-type semiconductor layer 127 is a semiconductor material or AlInN having a composition formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1).
  • AlGaAs, GaP, GaAs, GaAsP, AlGaInP may be formed of a material selected from.
  • the second conductive semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
  • the present invention is not limited thereto, and the second conductivity-type semiconductor layer 124 may be an n-type semiconductor layer.
  • the second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c.
  • the 2-1 conductivity type semiconductor layer 127a may have a smaller aluminum composition than the 2-2 conductivity type semiconductor layer 127b and the 2-3 conductivity type semiconductor layer 127c.
  • the blocking layer 129 may be disposed between the active layer 126 and the second conductivity type semiconductor layer 127.
  • the blocking layer 129 blocks the flow of the first carrier supplied from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 to recombine electrons and holes in the active layer 126. You can increase your chances.
  • the energy bandgap of the blocking layer 129 may be greater than the energy bandgap of the active layer 126 and / or the second conductivity type semiconductor layer 127.
  • the blocking layer 129 may be defined as a portion of the second conductive semiconductor layer 127 because the second dopant is doped.
  • the blocking layer 129 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1- y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example AlGaN, AlN, InAlGaN may be selected from, but is not limited thereto.
  • the first conductive semiconductor layer 124, the active layer 126, the second conductive semiconductor layer 127, and the blocking layer 129 may all include aluminum. Accordingly, the first conductive semiconductor layer 124, the active layer 126, the second conductive semiconductor layer 127, and the blocking layer 129 may have an AlGaN, InAlGaN, or AlN composition.
  • the blocking layer 129 may have a higher aluminum composition than the aluminum composition of the well layer 126a.
  • the blocking layer 129 may have an aluminum composition of 50% to 100%. If the aluminum composition of the blocking layer 129 is 50% or more, it may have a sufficient energy barrier to block the first carrier and may not absorb light emitted from the active layer 126.
  • the blocking layer 129 may include a first-first section 129a and a first-second section 129c.
  • An aluminum composition may be increased in the first-first section 129a in a direction from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127.
  • the aluminum composition of the first-first section 129a may be 80% to 100%. Therefore, the first-first section 129a of the blocking layer 129 may be the portion having the highest Al composition in the semiconductor structure 120.
  • the first-first section 129a may include AlGaN or AlN.
  • the first-first section 129a may be a superlattice layer in which AlGaN and AlN are alternately arranged.
  • the thickness of the first-first section 129a may be about 0.1 nm to 4 nm. In order to effectively block the movement of the first carrier to the second conductive semiconductor layer 127, the thickness of the first-first section 129a may be 0.1 nm or more. In addition, the thickness of the first-first section 129a may be less than or equal to 4 nm to ensure the injection efficiency of injecting the second carrier from the second conductivity-type semiconductor layer 127 into the active layer 126.
  • the thickness of the first-first section 129-a is disposed to be 0.1 nm or more and 4 nm or less to ensure hole injection efficiency and electron blocking efficiency. It is not limited. For example, if it is necessary to selectively secure one of the first carrier blocking function and the second carrier injection function, it may be out of the above-mentioned numerical range.
  • the first to third sections 129b disposed between the first-first section 129a and the first-second section 129c may include an undoped section that does not include a dopant. Therefore, the first to third sections 129b may prevent the second dopant from being diffused from the second conductive semiconductor layer 127 to the active layer 126.
  • the second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c.
  • the thickness of the second-second conductive semiconductor layer 127b may be larger than 10 nm and smaller than 50 nm.
  • the thickness of the second conductivity-type semiconductor layer 127b may be 25 nm.
  • the thickness of the second-second conductive semiconductor layer 127b is 10 nm or more, current diffusion characteristics of the second-second conductive semiconductor layer 127b may be secured.
  • the thickness is 50 nm or less, the injection efficiency of the second carrier injected into the active layer 126 can be ensured, and the absorption rate of the light emitted from the active layer 126 in the 2-2 conductive semiconductor layer 127b is lowered. Can be.
  • the aluminum composition of the second-conductive semiconductor layer 127b may be higher than that of the well layer 126a.
  • the aluminum composition of the well layer 126a may be about 30% to 70% to generate ultraviolet light. Therefore, the aluminum composition of the second conductive semiconductor layer 127b may be 40% or more and 80% or less.
  • the aluminum composition of the second conductive semiconductor layer 127b is 40% or more, the problem of absorbing light may be improved, and when 80% or less, the problem of deteriorating current injection efficiency may be improved.
  • the aluminum composition of the well layer 126a is 30%, the aluminum composition of the second-2 conductive semiconductor layer 127b may be 40%.
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be lower than that of the well layer 126a. If the aluminum composition of the 2-1 conductivity type semiconductor layer 127a is higher than that of the well layer 126a, the resistance between the second electrodes may be increased, resulting in insufficient ohmicity and inferior current injection efficiency.
  • the aluminum composition of the 2-1 conductive semiconductor layer 127a may be 1% or more and 50% or less. If it is 50% or less, the resistance with the second electrode may be lowered. If the composition is 1% or more, the problem of absorbing light in the 2-1 conductive semiconductor layer 127a may be improved.
  • the aluminum composition of the 2-1 conductive semiconductor layer 127a may be smaller than that of the intermediate layer 124b.
  • the thickness of the 2-1 conductive semiconductor layer 127a may be 1 nm to 30 nm. Since the 2-1 conductivity type semiconductor layer 127a may absorb ultraviolet light, it may be advantageous in terms of light output to control the thickness of the 2-1 conductivity type semiconductor layer 127a as thin as possible.
  • the thickness of the 2-1 conductive semiconductor layer 127a is 1 nm or more, the resistance of the 2-1 conductive semiconductor layer 127a may be reduced, thereby improving electrical characteristics of the semiconductor device.
  • the thickness is 30 nm or less, light output efficiency may be improved by reducing the amount of light absorbed by the 2-1 conductive semiconductor layer 127a.
  • the thickness of the 2-1 conductive semiconductor layer 127a may be smaller than the thickness of the 2-2 conductive semiconductor layer 127b.
  • the thickness ratio of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b may be 1: 1.5 to 1:20. If the thickness ratio is greater than 1: 1.5, the thickness of the second conductive semiconductor layer 127b is increased, thereby improving current injection efficiency. In addition, when the thickness ratio is smaller than 1:20, the thickness of the 2-1 conductive semiconductor layer 127a is increased, thereby improving the problem of deterioration of crystallinity. If the thickness of the 2-1 conductive semiconductor layer 127a is too thin, the aluminum composition must be changed rapidly within the thickness range, so that crystallinity may be degraded.
  • the aluminum composition of the second-second conductive semiconductor layer 127b may be smaller as it moves away from the active layer 126.
  • the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller as it moves away from the active layer 126.
  • the aluminum reduction width with respect to the thickness of the 2-1 conductivity type semiconductor layer 127a may be greater than the aluminum reduction width with respect to the thickness of the 2-2 conductivity type semiconductor layer 127b. That is, the change rate in the thickness direction of the Al composition ratio of the 2-1 conductivity type semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-2 conductivity type semiconductor layer 127b.
  • the 2-1 conductivity type semiconductor layer 127a may have a lower aluminum composition than the well layer 126a for low contact resistance with the second electrode. Therefore, the 2-1 conductivity type semiconductor layer 127a may partially absorb light emitted from the well layer 126a.
  • the thickness of the 2-1 conductivity type semiconductor layer 127a may be 1 nm or more and 30 nm or less in order to suppress the absorption of light.
  • the thickness of the 2-1 conductive semiconductor layer 127a may be relatively thin, but the change width of aluminum may be relatively large.
  • the thickness of the 2-2 conductivity type semiconductor layer 127b is thicker than that of the 2-1 conductivity type semiconductor layer 127a, while the aluminum composition is higher than or equal to the well layer 126a, so that the decrease is relatively slow. can do.
  • the composition of aluminum can be changed while growing relatively slowly.
  • the 2-3 conductive semiconductor layer 127c may have a uniform aluminum composition.
  • the thickness of the 2-3 conductive semiconductor layer 127c may be 20 nm to 60 nm.
  • the aluminum composition of the second conductive semiconductor layer 127c may be 40% to 70%.
  • the crystallinity of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b may not decrease.
  • the problem of crystallinity deterioration caused by a drastic change in the aluminum composition of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b can be prevented. It can improve the electrical characteristics.
  • the thickness of the 2-1 conductivity type semiconductor layer 127a is 1 nm to 10 nm
  • the thickness of the 2-2 conductivity type semiconductor layer 127b is 10 nm to 50 nm
  • the 2-3 conductivity type semiconductor layer is 20 nm to 60 nm.
  • the ratio of the thickness of the 2-1 conductivity type semiconductor layer 127a and the total thickness of the second conductivity type semiconductor layer 127 may be 1: 3 to 1: 120. If greater than 1: 3, the 2-1 conductive semiconductor layer 127a can secure electrical characteristics (for example, operating voltage) of the semiconductor device, and if less than 1: 120, optical properties of the semiconductor device (for example, For example, the light output can be secured.
  • the present invention is not limited thereto, and the ratio of the thickness of the second conductive semiconductor layer 127a to the total thickness of the second conductive semiconductor layer 127 may be 1: 3 to 1:50 or 1: 3 to 1 :. May be 70.
  • the second conductive semiconductor layer 127 may include a first point P1 having the highest aluminum composition and a third point P3 having the lowest aluminum composition in the semiconductor structure.
  • the first point P1 may be the first-first section 129a of the blocking layer 129 having the highest aluminum composition
  • the third point P3 may be the second-first conductive semiconductor layer having the lowest aluminum ( 127a).
  • the first conductive semiconductor layer 124 may include a second point P2 having the highest aluminum composition and a fourth point P4 having the lowest aluminum composition in the first conductive semiconductor layer.
  • the second point P2 may be the first-first conductivity-type semiconductor layer 124a and / or the second-second conductivity-type semiconductor layer 124c, and the fourth point P4 may be the intermediate layer 124b. .
  • the aluminum composition of the first-first section 129a may be 80% to 100%.
  • the aluminum composition of the 2-1 conductive semiconductor layer 127a may be 1% or more and 50%. In this case, the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller than that of the well layer 126a.
  • the ratio of the aluminum composition between the third point P3 and the first point P1 may be 1: 4 to 1: 100.
  • the ratio of the aluminum composition is 1: 4 or more, the aluminum composition of the first point P1 is increased to effectively block the first carrier from passing through the second conductive semiconductor layer.
  • the ratio of the aluminum composition is less than 1: 100, the aluminum of the third point P3 may increase, thereby improving the problem of absorbing the light of the third point P3.
  • the aluminum composition of the first-first conductive semiconductor layer 124a may be 50% to 80%.
  • the aluminum composition of the intermediate layer 124b may be 30% to 70%. In this case, the aluminum composition of the intermediate layer 124b may be smaller than that of the first-first conductive semiconductor layer. Therefore, the ratio of the aluminum composition between the fourth point P4 and the second point P2 may be 1: 0.5 to 1: 0.9.
  • the aluminum composition ratio is greater than or equal to 1: 0.5, the aluminum composition of the first-first conductivity type semiconductor layer 124a may be increased to improve crystallinity.
  • the aluminum composition ratio is 1: 0.9 or less, the aluminum composition of the intermediate layer 124b is increased, thereby improving the problem of absorbing light in the ultraviolet wavelength band.
  • FIGS. 11A and 11B are SIMS data of a semiconductor structure according to an embodiment of the present invention
  • FIGS. 11C and 11D are SIMS of a semiconductor structure according to another embodiment of the present invention.
  • FIG. 12 is a view showing the aluminum relative ion intensity of FIGS. 11A to 11D
  • FIG. 13A is an enlarged view of the SIMS data of FIG. 12A
  • FIG. 13B is FIG. 12B. Is a diagram obtained by converting SIMS data into a linear scale.
  • the semiconductor structure may include aluminum (Al), gallium (Ga), a first dopant, a second dopant, and an oxygen (ie, the first conductive semiconductor layer 124) to the second conductive semiconductor layer 127. O), the composition of carbon (C) may change.
  • the first dopant may be silicon (Si) and the second dopant may be magnesium (Mg), but is not limited thereto.
  • the SIMS data may be analytical data by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • Sims (SIMS) data can be analyzed by irradiating primary ions to the surface of the target and counting the number of secondary ions released.
  • the primary ion may be selected from O 2 + , Cs + Bi +, etc.
  • the acceleration voltage may be adjusted within 20 to 30 keV
  • the irradiation current may be adjusted from 0.1 pA to 5.0pA
  • the irradiation area May be 20 nm ⁇ 20 nm.
  • the SIMS data may collect secondary ion mass spectra while gradually etching toward the first conductivity type semiconductor layer from the surface of the second conductivity type semiconductor layer (point of zero depth).
  • the present invention is not limited thereto, and measurement conditions for detecting AlGaN-based and / or GaN-based semiconductor materials and first and second dopant materials may be variously used.
  • results of SIMS analysis can be interpreted as a spectrum of secondary ionic strength or doping concentration of a material, which may include noise occurring within 0.9 to 1.1 times in the analysis of secondary ionic strength or doping concentration. Can be.
  • a description of “equal / identical” may refer to a noise comprising from 0.9 times to 1.1 times greater than one particular secondary ionic strength or doping concentration.
  • FIGS. 11A to 11D show sims data and doping concentration data in one drawing.
  • the spectrum of the aluminum ion intensity and the portion of the concentration spectra of the first and second dopants are shown to cross each other, the data on the ionic strength and the concentration of the dopant may be independent of each other.
  • the ionic strength of aluminum and the doping concentration of the second dopant are intersected near the surface (a point of zero depth), but the reference point of the doping concentration (lowest point on the left Y axis of the drawing) is lowered.
  • the doping concentration graph can be lowered on the data. For example, if the reference point of the second dopant doping concentration is lowered from 1.00E + 14 to 1.00E + 12, since the concentration graph of the second dopant is lowered in the drawing, the second dopant data and the aluminum data may not intersect.
  • the method for measuring the concentrations of the first dopant, the second dopant, oxygen and carbon is not particularly limited.
  • the vertical axis (Y axis) is illustrated as converted to a logarithmic scale.
  • the ionic strength of aluminum gradually increases with increasing depth at the surface and then increases and decreases after the highest strength point.
  • the ionic strength of gallium may be symmetric with the ionic strength of aluminum.
  • Ionic strength according to the embodiment may be increased or decreased depending on the measurement conditions.
  • the intensity graph of secondary ions increases as a whole, and as the intensity of primary ions decreases, the intensity graph of secondary ions (aluminum ions) may decrease as a whole. Therefore, the change in the ionic strength in the thickness direction may be similar even if the measurement conditions are changed.
  • the doping concentration of the second dopant is highest at the surface and may gradually decrease with distance from the surface.
  • the second dopant may be present in all regions of the second conductive semiconductor layer and in some regions of the active layer, but is not limited thereto.
  • the second dopant may be disposed only in the second conductive semiconductor layer, but may be diffused to the active layer.
  • the implantation efficiency of the second dopant implanted into the active layer can be improved.
  • leakage current of the semiconductor device and / or non-emitting recombination of the first and second carriers may occur, thereby reducing reliability and / or luminous efficiency of the semiconductor device. .
  • the first dopant may have a section R1 in which the concentration is lower than the concentration of oxygen in the section between the first conductive semiconductor layer and the active layer.
  • the first dopant may be partly distributed in the active layer. Therefore, the injection efficiency of the first carrier to be injected into the active layer can be improved, and the efficiency of luminous recombination of the first carrier and the second carrier in the active layer can be improved.
  • FIG. 11B to 11D also show the same tendency as FIG. 11A.
  • the aluminum ion strength may include first to sixth points P1, P2, P3, P4, P5, and P6.
  • FIG. 12A is the aluminum ion intensity of FIG. 11A
  • FIG. 12B is the aluminum ion intensity of FIG. 11B
  • FIG. 12C is the aluminum ion intensity of FIG. 11C
  • FIG. ) Is the aluminum ion strength of FIG. 11D.
  • FIGS. 12C and 12D are different from those of FIG. 12 except for having an uneven section P7 in which the ionic strength changes between the first point P1 and the third point P3. It may have a distribution similar to the aluminum ion intensity distribution of a).
  • the embodiment of FIGS. 12C and 12D may have a structure in which a superlattice layer is further disposed on the blocking layer.
  • the ionic strength of aluminum at the first point P1 may be the highest in the semiconductor structure 120. Since the aluminum has the highest ionic strength at the first point P1, it is possible to prevent the first carrier from non-luminescent recombination with the second carrier in the second conductivity type semiconductor layer. Therefore, the light output of the semiconductor element can be improved.
  • the first point P1 may be an area corresponding to the first-first section 129a of the blocking layer 129, but is not limited thereto.
  • the second ionic strength of the second point P2 is the point where the ionic strength of the aluminum is the highest among the points of the ionic strength of the aluminum extending from the first point P1 in the first direction (the direction in which the depth increases, D). Can be.
  • the second point P2 may be the point where the ionic strength of aluminum is the highest in the first conductivity type semiconductor layer 124, and the point nearest the active layer 126 in the first conductivity type semiconductor layer 124. have.
  • the second point P2 may balance the concentration or density of the first and second carriers recombined in the active layer by lowering the first carrier energy injected from the first conductive semiconductor layer 124 toward the active layer. Therefore, light emission efficiency may be improved to improve light output characteristics of the semiconductor device.
  • the third ionic strength of the third point P3 may be a point at which the ionic strength of aluminum is lowest in the direction toward the surface of the semiconductor structure 120 from the first point P1 (the direction opposite to the first direction).
  • the resistance between the third point P3 and the second electrode may be low because the aluminum has the lowest ionic strength of the third point P3, and thus the second electrode Through this, the current injection efficiency injected into the semiconductor structure 120 may be secured.
  • the fourth ionic strength of the fourth point P4 may be a point at which the ionic strength of aluminum is lowest in the first direction at the second point P2.
  • the fourth point P4 may prevent the active layer from being damaged by the LLO process by absorbing the laser to prevent the laser from penetrating into the active layer when the Laser Lift-Off (LLO) process is applied during the semiconductor device process.
  • LLO Laser Lift-Off
  • the resistance between the first electrode and the fourth point P4 may be lowered to improve the injection efficiency of the current injected into the semiconductor structure.
  • the ionic strength of the aluminum at the fourth point P4 may be lowest in the first direction at the second point P2.
  • the fifth point P5 may be disposed between the second point P2 and the fourth point P4.
  • the ionic strength of aluminum at the fifth point P5 may have an ionic strength between the second point P2 and the fourth point P4.
  • the fifth point P5 may be one specific point and may constitute one layer.
  • the current injected through the fourth point P4 may be uniformly distributed in the layer including the fifth point P5 so that the density of the area of the current injected into the active layer may be improved.
  • a point (or layer) having the same or similar ionic strength as aluminum as the fifth point P5 may be spaced apart from the fourth point P4 in the first direction D.
  • the present invention is not limited thereto, and the ionic strength of aluminum in a region spaced apart from the fifth point P5 in the first direction D and farther in the first direction D than the fourth point P4 is the fifth point ( It may have a higher ionic strength than P5).
  • the tenth point P10 may be disposed between the first point P1 and the third point P3 and has the smallest ion intensity between the first point P1 and the second point P2 ( It may have the same ionic strength of aluminum as S22).
  • the thickness of the region between the tenth point P10 and the third point P3 may be 1 nm or more and 30 nm to suppress absorption of light emitted by the semiconductor device and lower contact resistance with the second electrode.
  • the third point P3 electrically connected to the second electrode may have a lower electrical conductivity than the fourth point P4 connected to the first electrode. Therefore, the ionic strength of the third point P3 may be smaller than the ionic strength of the fourth point P4.
  • the average rate of change of the ionic strength of aluminum between the tenth point P10 and the third point P3 is greater than the average rate of change of the ionic strength of aluminum between the first point P1 and the tenth point P10.
  • the average change rate may be a value obtained by dividing the maximum change width of the aluminum ion strength by the thickness.
  • the area S11 between the third point P3 and the tenth point P10 is a section in which the ionic strength of aluminum decreases as it approaches the surface S0, and the ionic strength of aluminum as it approaches the surface S0. May have an inversion section P6 that does not decrease.
  • the inversion section P6 may be a section in which the aluminum ion intensity increases or maintains as the surface S0 approaches.
  • the inversion section P6 When the inversion section P6 is disposed in the region between the third point P3 and the tenth point P10, the current injected into the third point P3 can be spread evenly, so that the current density injected into the active layer can be controlled evenly. Can be. Therefore, the light output characteristics, electrical characteristics, and reliability of the semiconductor device may be improved.
  • the reversal section P6 can be controlled via temperature.
  • the region between the third point P3 and the tenth point P10 may control the composition of aluminum by controlling the temperature. In this case, when the temperature is lowered too rapidly, the crystallinity of the second conductivity-type semiconductor layer may be greatly reduced.
  • the aluminum may be instantaneously contained at the moment when the lowering temperature is increased again, thereby forming the inversion section P6.
  • the composition of the aluminum is changed through the temperature in the process until the third point P3 is formed. It can be controlled, and in this process, the inversion section P6 may be arranged to secure the crystallinity of the second conductivity type semiconductor layer and to secure the current diffusion characteristics.
  • the present invention is not limited thereto, and in another embodiment, the ionic strength of the aluminum is continuously increased as the second point P10 is moved from the tenth point P10 to the third point P3 in order to further secure the current injection characteristic. May be arranged to decrease.
  • the semiconductor structure on the aluminum ion intensity graph may include a first section S1, a second section S2, and a third section S3 in a direction of increasing depth.
  • the first section S1 may be disposed between the first point P1 and the third point P3 and may be formed of a second conductive semiconductor layer.
  • the second section S2 may be disposed between the first point P1 and the second point P2 and may be composed of the active layer 126.
  • the third section S3 is a section disposed in a direction from the second point P2 toward the first direction, and may be composed of the first conductivity type semiconductor layer 124.
  • the second section S2 may be disposed between the first point P1 and the second point P2.
  • the first point P1 is a point where the aluminum ion intensity is the highest in the semiconductor structure, and the second point P2 is spaced apart in the first direction away from the surface (increasing in depth), It may be a point having an ionic strength higher than the maximum ionic strength (the ionic strength of the peak) of the second section (S2).
  • the present invention is not limited thereto, and the second point may have the same height as the fifth point.
  • the second section may be disposed between the first point and the fifth point.
  • the second section S2 is a section corresponding to the active layer 126 and may have a plurality of peaks S21 and a plurality of valleys S22.
  • Valley S22 may be the ionic strength of the well layer
  • peak S21 may be the ionic strength of the barrier layer.
  • the ionic strength ratio M1 of the point where the ionic strength is lowest in the valley S22 and the first point P1 may be 1: 0.4 or more and 1: 0.6 or less, and the ions of the valley S22 and the peak S21 may be
  • the intensity ratio M2 may be 1: 0.5 or more and 1: 0.75 or less.
  • the first point P1 and the third point disposed closer to the surface than the active layer when the ratio of the lowest ionic strength of the valley S22 and the ionic strength M1 of aluminum at the first point P1 is 1: 0.4 or more.
  • the crystallinity of the second conductive semiconductor layer between (P3) can be secured, and the probability of the light emitting recombination in the active layer can be increased by preventing the first carrier from being injected into the second conductive semiconductor layer. Therefore, the light output characteristics of the semiconductor device can be improved.
  • the ionic strength ratio M1 is 1: 0.6 or less, it is possible to secure crystallinity of the second conductive semiconductor layer between the first point P1 and the third point P3 disposed closer to the surface than the active layer.
  • the carrier exits from the well layer included in the active layer to the first conductive semiconductor layer and / or the second conductive semiconductor layer.
  • the barrier layer can be effectively prevented to increase the light emitting recombination probability in the well layer, thereby improving the light output characteristics of the semiconductor device.
  • the stress due to the lattice constant difference between the well layer and the barrier layer is reduced to secure the crystallinity of the semiconductor structure, and the wavelength change and / or luminescence recombination probability by the strain It can be improved.
  • the ratio (M1: M2) of these two ratios may satisfy 1: 0.3 to 1: 0.8. Therefore, a section in which the ratio M1: M2 of the two ratios satisfies 1: 0.3 to 1: 0.8 may be a section in which the actual active layer is disposed.
  • the ionic strength of the third point P3 may be smaller than the lowest ionic strength (the ionic strength of the well layer) in the second section S2.
  • the active layer may be included in the second section S2 and may be defined as an area between the valley P8 closest to the first point P1 and the valley P9 farthest from the first point P1. .
  • an interval between neighboring valleys S22 may be smaller than an interval between the first point P1 and the second point P2. This is because the thickness of the well layer and the barrier layer is smaller than the thickness of the entire active layer 126.
  • the first section S1 may include a surface region S11 having a lower ionic strength than the fourth point P4.
  • the surface area S11 may have a lower ionic strength toward the opposite direction to the first direction D.
  • the first intensity difference D1 between the second point P2 and the fourth point P4 on the seamless data, and the ratio of the second intensity difference D2 between the first point P1 and the third point P3 ( D1: D2) may be 1: 1.5 to 1: 2.5.
  • the ratio (D1: D2) of the difference in strength is 1: 1.5 or more (for example, 1: 1.6)
  • the second strength difference D2 becomes large, so that the aluminum composition at the first point P1 can be sufficiently lowered.
  • the contact resistance with the second electrode can be lowered.
  • the ratio (D1: D2) of the difference in intensity is 1: 2.5 or less (for example, 1: 2.4)
  • the aluminum composition becomes too low and the light emitted from the active layer 126 emits light from the 2-1 conductive semiconductor layer 127a. Absorption in the optical element of the semiconductor device can be solved.
  • the ratio (D3: D4) of the third intensity difference D3 between the seventh point P7 and the first point P1 and the fourth intensity difference D4 between the fourth point P4 and the third point P3 May be 1: 0.2 to 1: 2 or 1: 0.2 to 1: 1.
  • the fourth strength difference D4 becomes relatively large, so that the aluminum composition can be sufficiently lowered.
  • the contact resistance with the second electrode can be reduced.
  • the composition difference is 1: 2 or less, the problem that the aluminum composition changes rapidly within the thickness range of the 2-1 conductive semiconductor layer 127a and the crystallinity is lowered can be improved.
  • the aluminum composition may be so low that the light emitted from the active layer 126 may be absorbed by the 2-1 conductivity type semiconductor layer 127a.
  • the ratio D1: D2 of the first intensity difference D1 and the second intensity difference D2 and the ratio D3: D4 of the third intensity difference D3 and the fourth intensity difference D4 are described above. It can be out of range.
  • the ratio of the intensity difference between the first point P1 and the third point P3 and the intensity difference between the fifth point P5 and the third point P3 may be 1: 0.5 to 1: 0.8.
  • the ratio of the intensity differences is greater than 1: 0.5, the intensity of the fifth point P5 may be increased, thereby improving crystallinity and improving light extraction efficiency.
  • the ratio of the intensity differences is smaller than 1: 0.8, lattice mismatch between the active layer 126 and the first conductivity type semiconductor layer 124 may be alleviated.
  • An ion intensity ratio P3: P1 between the third point P3 and the first point P1 may be 1: 2 to 1: 4.
  • the ionic strength ratio between the third point P3 and the first point P1 is 1: 2 or more (eg, 1: 2.1)
  • the strength of the third point P3 is sufficiently lowered to increase the contact resistance with the second electrode. Can be lowered.
  • the ratio of the ionic strength of the third point P3 and the first point P1 is less than or equal to 1: 4 (eg, 1: 3.9)
  • the aluminum strength of the third point P3 may be increased. Therefore, the problem of absorbing light at the third point P3 can be improved.
  • An ion strength ratio between the tenth point P10 and the first point P1 may be 1: 1.3 to 1: 2.5.
  • the ionic strength ratio between the tenth point P10 and the first point P1 is 1: 1.3 or more, the ionic strength of the first point P1 is increased to effectively block the first carrier from passing through the active layer.
  • the ionic strength ratio between the tenth point P10 and the first point P1 is 1: 2.5 or less, the ionic strength of the tenth point P10 is increased, so that the well layer may generate light in the ultraviolet wavelength range. .
  • An ion intensity ratio between the third point P3 and the fourth point P4 may be 1: 1.1 to 1: 2.
  • the ionic strength ratio between the third point P3 and the fourth point P4 is 1: 1.1 or more, the ionic strength of the fourth point P4 is increased to reduce the absorption rate of light in the ultraviolet wavelength band.
  • the ionic strength ratio between the third point P3 and the fourth point P4 is 1: 2 or less, sufficient ionic strength may be secured at the third point to reduce light absorption in the ultraviolet wavelength band.
  • the ratio of the ionic strength of the second point P2 and the first point P1 may be 1: 1.1 to 1: 2.
  • the ratio of the ionic strength between the second point P2 and the first point P1 is greater than or equal to 1: 1.1, the ionic strength of the first point P1 may be increased to effectively block the first carrier from passing through the active layer.
  • the ratio of the ionic strength of the second point P2 and the first point P1 is less than or equal to 1: 2
  • the concentration of the first carrier and the concentration of the second carrier, which is injected into the active layer and undergoes luminescence recombination may be balanced. Therefore, the amount of light emitted by the semiconductor element can be improved.
  • An ion strength ratio between the fourth point P4 and the second point P2 may be 1: 1.2 to 1: 2.5.
  • the resistance between the fourth point P4 and the first electrode can be lowered.
  • the ionic strength ratio between the fourth point P4 and the second point P2 is less than or equal to 1: 2.5, the ionic strength of the fourth point P4 may increase to reduce the absorption rate of light in the ultraviolet wavelength band.
  • An ion strength ratio between the fifth point P5 and the second point P2 may be 1: 1.1 to 1: 2.0.
  • the semiconductor structure emitting deep ultraviolet light may be formed of a GaN-based material including a large amount of aluminum, compared to a semiconductor structure emitting blue light.
  • the ratio of the mobility of the first carrier to the mobility of the second carrier may be different compared to the semiconductor structure emitting blue light. That is, when the ionic strength ratio between the fifth point P5 and the second point P2 is 1: 1.1 or more, the concentration of the first carrier injected into the active layer can be ensured.
  • the ionic strength ratio between the fifth point P5 and the second point P2 is less than or equal to 1: 2.0, the ionic strength of the fifth point P5 may be increased to improve crystallinity.
  • An ion strength ratio between the fourth point P4 and the fifth point P5 may be 1: 1.1 to 1: 2.0.
  • the ionic strength ratio between the fourth point P4 and the fifth point P5 is 1: 1.1 or more, the ionic strength of the fifth point P5 may be increased to improve crystallinity.
  • the ionic strength ratio between the fourth point P4 and the fifth point P5 is less than or equal to 1: 2.0, the ionic strength of the fourth point P4 may be increased to reduce the absorption rate of light in the ultraviolet wavelength band.
  • the aluminum ion intensity is expressed in a logarithmic scale, but is not necessarily limited thereto, and may be converted to the linear scale as shown in FIG. 13B.
  • the third point P3 since the third point P3 includes aluminum, it can be seen that the first point P1 and the third point P3 are substantially disposed in one order.
  • the order may be a level unit of ionic strength.
  • the first order may be 1.0 ⁇ 10 1 and the second order may be 1.0 ⁇ 10 2 .
  • Each order may also have 10 sub-levels.
  • the first sub level of the first order is 1.0 ⁇ 10 1
  • the second sub level of the first order is 2.0 ⁇ 10 1
  • the third sub level of the first order may be 3.0 ⁇ 10 1
  • the ninth sub level of the first order is 9.0 ⁇ 10 1
  • the tenth sub level of the first order may be 1.0 ⁇ 10 2 . That is, the tenth sub level of the first order may be the same as the first sub level of the second order.
  • dotted lines are displayed for every two sublevels.
  • FIG. 14A is a conceptual diagram of a second conductive semiconductor layer according to an embodiment of the present invention
  • FIG. 14B is AFM data of measuring the surface of a second conductive semiconductor layer according to an embodiment of the present invention. It is AFM data which measured the surface of the GaN thin film
  • FIG. 14D is AFM data which measured the surface of the 2nd conductivity type semiconductor layer grown at high speed.
  • the second conductivity-type semiconductor layer 127 may include 2-1 to 2-3 conductivity-type semiconductor layers 127a, 127b, and 127c.
  • the 2-1 conductivity type semiconductor layer 127a may be a contact layer in contact with the second electrode. Characteristics of each layer may be applied as described above.
  • the surface of the second-first conductive semiconductor layer 127a may include a plurality of clusters C1.
  • the cluster C1 may be a protrusion protruding from the surface.
  • the cluster C1 may be a protrusion protruding about 10 nm or 20 nm or more based on the average surface height.
  • the cluster C1 may be formed by lattice mismatch between aluminum (Al) and gallium (Ga).
  • the 2-1 conductivity type semiconductor layer 127a includes aluminum, and has a large change rate of aluminum with respect to a thickness, and a single layer on the surface because the thickness is thinner than other layers. It may not be formed and may be formed on the surface in the form of a cluster C1.
  • the cluster C1 may include Al, Ga, N, Mg, and the like. However, it is not necessarily limited thereto.
  • a cluster C1 having a relatively bright dot shape may be identified on the surface of the second conductivity-type semiconductor layer 127.
  • the aluminum composition of the 2-1 conductivity type semiconductor layer 127a is 1% to 10%, it may occur in the form of a cluster C1 to increase the junction area.
  • the electrical characteristics can be improved.
  • clusters C1 On the surface of the second conductivity-type semiconductor layer 127, one to eight clusters C1 may be observed per 1 ⁇ m 2 on average.
  • the average value may be an average of values measured at about 10 or more different locations.
  • 12 clusters C1 were observed per unit area having a width of 2 ⁇ m.
  • Cluster (C1) was measured only clusters protruding at least 25nm from the surface. By adjusting the contrast in the AFM image, only the clusters protruding more than 25nm from the surface can be adjusted.
  • the density of the cluster C1 converting the unit based on the measurement result may be 1 ⁇ 10 ⁇ 8 / cm 2 to 8 ⁇ 10 ⁇ 6 / cm 2 . If the density of the cluster C1 is less than 1 ⁇ 10 ⁇ 8 / cm 2 , the contact area may be relatively reduced, and the contact resistance with the second electrode may be increased.
  • the density of the cluster C1 is greater than 8 ⁇ 10 ⁇ 6 / cm 2 , light emitted from the active layer 126 may be absorbed by Ga included in some clusters, thereby reducing light output.
  • the contact resistance with the second electrode can be lowered without lowering the light output. .
  • FIG. 14D is a photograph of a surface of P-AlGaN grown at a rate of 0.06 nm / s.
  • the aluminum composition is 1% to 10% in the surface layer and the growth rate of the surface layer should be sufficiently slow.
  • the growth rate of the 2-1 conductivity type semiconductor layer may be slower than that of the 2-2 and 2-3 conductivity type semiconductor layers.
  • the ratio of the growth rate of the 2-2 conductivity type semiconductor layer and the growth rate of the 2-1 conductivity type semiconductor layer may be 1: 0.2 to 1: 0.8.
  • the growth rate is less than 1: 0.2, the growth rate of the 2-1 conductive semiconductor layer is so slow that Ga is etched at a high temperature at which AlGaN is grown, and AlGaN having high Al composition is grown to decrease ohmic characteristics.
  • the growth rate is greater than 1: 0.8, the growth rate of the 2-1 conductive semiconductor layer may be too high, leading to a decrease in crystallinity.
  • FIG. 15 is a conceptual diagram of a semiconductor device according to an embodiment of the present disclosure.
  • FIGS. 16A and 16B are diagrams for describing a configuration in which light output is improved according to a change in the number of recesses, and
  • FIG. 17 is A of FIG. 15. It is a partial enlarged view.
  • a semiconductor device may include a semiconductor structure 120 including a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and an active layer 126, and a first conductive layer.
  • the first electrode 142 may be electrically connected to the type semiconductor layer 124
  • the second electrode 146 may be electrically connected to the second conductive semiconductor layer 127.
  • the first conductive semiconductor layer 124, the active layer 126, and the second conductive semiconductor layer 127 may be disposed in the first direction (Y direction).
  • first direction (Y direction) which is the thickness direction of each layer, is defined as the vertical direction
  • second direction (X direction) perpendicular to the first direction (Y direction) is defined as the horizontal direction.
  • the above-described structure may be applied to the semiconductor structure 120 according to the embodiment.
  • the semiconductor structure 120 may include a plurality of recesses 128 disposed through the second conductivity type semiconductor layer 127 and the active layer 126 to a portion of the first conductivity type semiconductor layer 124. .
  • the first electrode 142 may be disposed on an upper surface of the recess 128 to be electrically connected to the first conductive semiconductor layer 124.
  • the second electrode 146 may be disposed under the second conductive semiconductor layer 127.
  • the first electrode 142 and the second electrode 146 may be ohmic electrodes.
  • the first electrode 142 and the second electrode 146 are indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZO), and indium gallium zinc oxide (IGZO).
  • the first electrode may have a plurality of metal layers (eg, Cr / Al / Ni), and the second electrode may be ITO.
  • the GaN-based semiconductor structure 120 when the GaN-based semiconductor structure 120 emits ultraviolet rays, the GaN-based semiconductor structure 120 may include aluminum. When the aluminum composition of the semiconductor structure 120 is increased, current dispersal characteristics of the semiconductor structure 120 decrease. Can be. In addition, when the active layer 126 emits UV light including Al, the amount of light emitted to the side of the active layer 126 is increased compared to the GaN-based blue light emitting device (TM mode). This TM mode can occur mainly in ultraviolet semiconductor devices.
  • TM mode GaN-based blue light emitting device
  • Ultraviolet semiconductor devices have poor current dissipation characteristics compared to blue GaN-based semiconductor devices. Accordingly, in the ultraviolet semiconductor device, it is necessary to dispose relatively many first electrodes 142 as compared to the blue GaN-based semiconductor device.
  • the effective emission area P2 may be defined as an area up to a boundary point having a current density of 40% or less based on the current density at the center of the first electrode 142 having the highest current density.
  • the effective light emitting region P2 may be adjusted according to the level of the injection current and the composition of Al within a range of 40 ⁇ m from the center of the recess 128.
  • the low current density region P3 may have a low current density and may emit less light than the effective light emitting region P2. Accordingly, the light output may be improved by further disposing the first electrode 142 in the low current density region P3 having a low current density or by using a reflective structure.
  • a GaN-based semiconductor device emitting blue light has excellent current dispersing characteristics, and thus, it is preferable to minimize the area of the recess 128 and the first electrode 142. This is because the area of the active layer 126 decreases as the area of the recess 128 and the first electrode 142 increases.
  • the composition of aluminum is high and current dispersal characteristics are relatively low, even if the area of the active layer 126 is sacrificed, the area and / or the number of the first electrodes 142 are increased so that the low current density region P3 is increased. It may be desirable to reduce or reduce the number of reflection structures in the low current density region P3.
  • the recesses 128 when the number of the recesses 128 is increased to 48, the recesses 128 may be disposed in a zigzag fashion without being disposed in a straight line in the horizontal and vertical directions. In this case, since the area of the low current density region P3 can be narrowed, most of the active layer 126 can participate in light emission.
  • a current spreading characteristic may be degraded in the semiconductor structure 120, and a smooth current is obtained to secure electrical and optical characteristics and reliability of the semiconductor device by securing a uniform current density characteristic in the semiconductor structure 120. Injection is required. Accordingly, the first electrode 142 may be disposed by forming a larger number of recesses 128 than the general GaN-based semiconductor structure 120 for smooth current injection.
  • the first insulating layer 131 may electrically insulate the first electrode 142 from the active layer 126 and the second conductive semiconductor layer 127. In addition, the first insulating layer 131 may electrically insulate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. In addition, the first insulating layer 131 may function to prevent side surfaces of the active layer 126 from being oxidized during the process of the semiconductor device.
  • the first insulating layer 131 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4 , SixNy, SiOxNy, Al 2 O 3 , TiO 2 , AlN, and the like, but is not limited thereto. .
  • the first insulating layer 131 may be formed in a single layer or multiple layers.
  • the first insulating layer 131 may be a distributed Bragg reflector (DBR) having a multilayer structure including silver Si oxide or a Ti compound.
  • DBR distributed Bragg reflector
  • the present invention is not limited thereto, and the first insulating layer 131 may include various reflective structures.
  • the light extraction efficiency may be improved by reflecting the light L1 emitted toward the side from the active layer 126 upward. In this case, as the number of recesses 128 increases, the light extraction efficiency may be more effective.
  • the diameter W3 of the first electrode 142 may be 24 ⁇ m or more and 50 ⁇ m or less. If this range is satisfied, it may be advantageous for current dispersion, and a large number of first electrodes 142 may be disposed.
  • the diameter W3 of the first electrode 142 is greater than or equal to 24 ⁇ m, a sufficient amount of current injected into the first conductivity type semiconductor layer 124 can be ensured, and when the diameter is less than or equal to 50 ⁇ m, the first conductivity type semiconductor layer
  • the number of the plurality of first electrodes 142 disposed in the area of 124 can be sufficiently secured and the current dispersion characteristic can be secured.
  • the diameter W1 of the recess 128 may be 38 ⁇ m or more and 60 ⁇ m or less.
  • the diameter W1 of the recess 128 may be disposed under the second conductivity type semiconductor layer 127 to define the largest area of the recess 128.
  • the diameter W1 of the recess 128 may be a diameter of the recess 128 disposed on the bottom surface of the second conductive semiconductor layer 127.
  • the first electrode 142 is of the first conductivity type.
  • a process margin for securing an area for electrically connecting with the semiconductor layer 124 may be secured, and when the thickness is 60 ⁇ m or less, the volume of the active layer 126 that is reduced to dispose the first electrode 142 may be prevented. And the luminous efficiency may therefore deteriorate.
  • the inclination angle ⁇ 5 of the recess 128 may be 70 degrees to 90 degrees. If the area range is satisfied, it may be advantageous to form the first electrode 142 on the upper surface, and a large number of recesses 128 may be formed.
  • the area of the active layer 126 removed may increase, but the area in which the first electrode 142 is disposed may be smaller. Therefore, the current injection characteristic can be lowered, and the luminous efficiency can be lowered. Therefore, the area ratio of the first electrode 142 and the second electrode 146 may be adjusted by using the inclination angle ⁇ 5 of the recess 128.
  • the thickness of the second electrode 146 may be thinner than the thickness of the first insulating layer 131. Therefore, the step coverage characteristics of the second conductive layer 150 and the second insulating layer 132 surrounding the second electrode 146 can be ensured, and the reliability of the semiconductor device can be improved.
  • the second electrode 146 may have a first separation distance S1 of 1 ⁇ m to 4 ⁇ m from the first insulating layer 131. When the separation distance is 1 ⁇ m or more, the process margin of the process of disposing the second electrode 146 between the first insulating layers 131 can be ensured, thereby improving the electrical characteristics, optical characteristics, and reliability of the semiconductor device. Can be. When the separation distance is 4 ⁇ m or less, the entire area in which the second electrode 146 may be disposed may be secured, and operating voltage characteristics of the semiconductor device may be improved.
  • the second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 may form one electrical channel.
  • the second conductive layer 150 completely surrounds the second electrode 146 and may be in contact with the side surface and the top surface of the first insulating layer 131.
  • the second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131, and at least one material selected from the group consisting of materials such as Cr, Al, Ti, Ni, Au, and the like. It may be made of an alloy, and may be made of a single layer or a plurality of layers.
  • the thermal and electrical reliability of the second electrode 146 may be improved.
  • the second conductive layer 150 may extend below the first insulating layer 131. In this case, the phenomenon that the end of the first insulating layer 131 is lifted up can be suppressed. Thus, penetration of external moisture or contaminants can be prevented. In addition, it may have a reflection function for reflecting light emitted between the first insulating layer 131 and the second electrode 146 to the top.
  • the second conductive layer 150 may be disposed at a first separation distance S1 between the first insulating layer 131 and the second electrode 146.
  • the second conductive layer 150 may contact the side and top surfaces of the second electrode 146 and the side and top surfaces of the first insulating layer 131 at the first separation distance S1.
  • a region where the second conductive layer 150 and the second conductive semiconductor layer 126 contact each other to form a Schottky junction within the first separation distance S1 may be disposed, and a current may be formed by forming a Schottky junction. Dispersion can be facilitated.
  • the present invention is not limited thereto, and the resistance between the second conductive layer 150 and the second conductive semiconductor layer 127 is higher than the resistance between the second electrode 146 and the second conductive semiconductor layer 127. It can be arranged freely within this larger configuration.
  • the second insulating layer 132 may electrically insulate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
  • the first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
  • the second insulating layer 132 and the first insulating layer 131 may be formed of the same material or may be formed of different materials.
  • the second insulating layer 132 is disposed on the first insulating layer 131 in the region between the first electrode 142 and the second electrode 146, so that the first insulating layer 131 is defective. In this case, the penetration of external moisture and / or other contaminants can be prevented.
  • first insulating layer 131 and the second insulating layer 132 are formed of one layer, defects such as cracks may easily propagate in the thickness direction. Therefore, external moisture or contaminants may penetrate into the semiconductor structure through defects exposed to the outside.
  • the interface between the first insulating layer 131 and the second insulating layer 132 may serve to shield the propagation of defects.
  • the second conductive layer 150 may electrically connect the second electrode 146 and the second electrode pad 166.
  • the second electrode 146 may be directly disposed on the second conductivity type semiconductor layer 127.
  • the second conductivity-type semiconductor layer 127 is AlGaN
  • hole injection may not be smooth due to low electrical conductivity. Therefore, it is necessary to appropriately adjust the Al composition of the second conductivity type semiconductor layer 127. This will be described later.
  • the second conductive layer 150 may be made of at least one material selected from the group consisting of materials such as Cr, Al, Ti, Ni, Au, and alloys thereof, and may be made of a single layer or a plurality of layers. .
  • the first conductive layer 165 and the bonding layer 160 may be disposed along the shape of the bottom surface and the recess 128 of the semiconductor structure 120.
  • the first conductive layer 165 may be made of a material having excellent reflectance.
  • the first conductive layer 165 may include aluminum.
  • the electrode layer 165 includes aluminum, the light emitting efficiency may be improved by reflecting light emitted from the active layer 126 toward the substrate 170.
  • the present invention is not limited thereto, and the first conductive layer 165 may provide a function for electrically connecting the first electrode 142.
  • the first conductive layer 165 may be disposed without a material having high reflectivity, for example, aluminum and / or silver (Ag), in which case the first electrode 142 disposed in the recess 128. ) And a reflective metal layer (not shown) made of a material having high reflectance may be disposed between the first conductive layer 165 and the second conductive semiconductor layer 127 and the first conductive layer 165. .
  • a material having high reflectivity for example, aluminum and / or silver (Ag)
  • a reflective metal layer made of a material having high reflectance may be disposed between the first conductive layer 165 and the second conductive semiconductor layer 127 and the first conductive layer 165.
  • the bonding layer 160 may comprise a conductive material.
  • the bonding layer 160 may include a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or an alloy thereof.
  • the substrate 170 may be made of a conductive material.
  • the substrate 170 may include a metal or a semiconductor material.
  • the substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, heat generated during the operation of the semiconductor device may be quickly released to the outside.
  • the first electrode 142 may receive a current from the outside through the substrate 170.
  • the substrate 170 may include a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or an alloy thereof.
  • the passivation layer 180 may be disposed on the top and side surfaces of the semiconductor structure 120.
  • the passivation layer 180 may have a thickness of 200 nm or more and 500 nm or less. When it is 200 nm or more, the device may be protected from external moisture or foreign matter, thereby improving the electrical and optical reliability of the device. When it is less than 500 nm, the stress applied to the semiconductor device may be reduced, and the optical and electrical reliability of the semiconductor device may be reduced. In addition, as the processing time of the semiconductor device increases, the problem that the cost of the semiconductor device increases.
  • Unevenness may be formed on the upper surface of the semiconductor structure 120. Such unevenness may improve extraction efficiency of light emitted from the semiconductor structure 120.
  • the unevenness may have a different average height according to the ultraviolet wavelength, and in the case of UV-C, the light extraction efficiency may be improved when the UV-C has a height of about 300 nm to 800 nm and an average of about 500 nm to 600 nm.
  • FIG. 18 is a conceptual diagram of a semiconductor device according to another embodiment of the present invention, and FIG. 19 is a plan view of FIG. 18.
  • the above-described configuration of the semiconductor structure 120 may be applied as it is.
  • the plurality of recesses 128 may pass through the second conductivity-type semiconductor layer 127 and the active layer 126 to be disposed to a portion of the first conductivity-type semiconductor layer 124.
  • the semiconductor device may include a side reflector Z1 disposed at an edge thereof.
  • the side reflector Z1 may be formed by protruding the second conductive layer 150, the first conductive layer 165, and the substrate 170 in a thickness direction (Y-axis direction). Referring to FIG. 20, the side reflector Z1 may be disposed along an edge of the semiconductor device to surround the semiconductor structure 120.
  • the second conductive layer 150 of the side reflector Z1 may protrude higher than the active layer 126 to reflect upwardly the light emitted from the active layer 126. Therefore, the light emitted in the horizontal direction (X-axis direction) can be upwardly reflected by the TM mode at the outermost part without forming a separate reflective layer.
  • An inclination angle of the side reflector Z1 may be greater than 90 degrees and smaller than 145 degrees.
  • the inclination angle may be an angle between the second conductive layer 150 and the horizontal plane (XZ plane). When the angle is smaller than 90 degrees or larger than 145 degrees, the efficiency of reflecting light moving toward the side upwards may be inferior.
  • FIG. 20 is a conceptual diagram of a semiconductor device package according to an embodiment of the present invention
  • FIG. 21 is a plan view of a semiconductor device package according to an embodiment of the present invention
  • FIG. 22 is a modification of FIG. 21,
  • FIG. 23 is shown.
  • the semiconductor device package may include a body 2 having grooves (openings 3), a semiconductor device 1 disposed on the body 2, and a body 2 disposed on the body 2. It may include a pair of lead frames (5a, 5b) that are electrically connected.
  • the semiconductor device 1 may include all of the above configurations.
  • the body 2 may include a material or a coating layer that reflects ultraviolet light.
  • the body 2 may be formed by stacking a plurality of layers 2a, 2b, 2c, 2d, and 2e.
  • the plurality of layers 2a, 2b, 2c, 2d, and 2e may be the same material or may include different materials.
  • the plurality of layers 2a, 2b, 2c, 2d, and 2e may include an aluminum material.
  • the groove 3 may be wider as it is farther from the semiconductor device, and a step 3a may be formed on the inclined surface.
  • the light transmitting layer 4 may cover the groove 3.
  • the light transmitting layer 4 may be made of glass, but is not limited thereto.
  • the light transmitting layer 4 is not particularly limited as long as it is a material that can effectively transmit ultraviolet light.
  • the inside of the groove 3 may be an empty space.
  • the semiconductor device 10 may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire.
  • the second lead frame 5b may be disposed to surround side surfaces of the first lead frame.
  • the lead frame may include first to fifth lead frames 5a, 5b, 5c, 5d, and 5e.
  • the first semiconductor element 10a may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire.
  • the second semiconductor device 10b may be disposed on the second lead frame 5b and connected to the third lead frame 5c by wires.
  • the third semiconductor device 10c may be disposed on the third lead frame 5c and connected to the fourth lead frame 5d by a wire.
  • the fourth semiconductor device 10d may be disposed on the fourth lead frame 5d and may be connected to the fifth lead frame 5e by a wire.
  • a semiconductor device package may include a body 10 including a cavity 11, a semiconductor device 100 disposed inside the cavity 11, and a light transmitting member 50 disposed on the cavity 11. ) May be included.
  • the body 10 may be manufactured by processing an aluminum substrate. Therefore, both the inner and outer surfaces of the body 10 according to the embodiment may have conductivity. Such a structure can have various advantages. In the case of using a non-conductive material such as AlN and Al 2 O 3 as the body 10, since the reflectance of the ultraviolet wavelength band is only 20% to 40%, there is a problem in that a separate reflective member must be disposed. In addition, a separate conductive member such as a lead frame and a circuit pattern may be required. As a result, manufacturing costs may rise and the process may become complicated. In addition, a conductive member such as gold (Au) has a problem in that light absorption efficiency is reduced by absorbing ultraviolet rays.
  • Au gold
  • the body 10 itself is made of aluminum, a high reflectance in the ultraviolet wavelength band can be omitted a separate reflection member.
  • the body 10 itself is conductive, separate circuit patterns and lead frames may be omitted.
  • the thermal conductivity may be excellent as 140W / m.k to 160W / m.k. Therefore, the heat dissipation efficiency can also be improved.
  • the body 10 may include a first conductive portion 10a and a second conductive portion 10b.
  • the first insulating portion 42 may be disposed between the first conductive portion 10a and the second conductive portion 10b. Since both of the first conductive portion 10a and the second conductive portion 10b are conductive, the first insulating portion 42 needs to be disposed to separate the poles.
  • the body 10 may include a groove 14 disposed at an edge where the lower surface 12 and the side surface 13 meet, and a second insulating portion 41 disposed on the groove 14.
  • the groove 14 may be disposed entirely along the edge where the lower surface 12 and the side surface 13 meet.
  • the second insulation portion 41 may be made of the same material as the first insulation portion 42 but is not necessarily limited thereto.
  • the first insulating portion 42 and the second insulating portion 41 may be modified by EMC, white silicone, PSR (Photoimageable Solder Resist), silicone resin composition, modified epoxy resin composition such as silicone modified epoxy resin, epoxy modified silicone resin, or the like.
  • Silicone resin composition, polyimide resin composition, modified polyimide resin composition, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT Resins such as resins and the like can be selected.
  • burrs may be prevented from occurring at the edges when cutting the package.
  • burrs may be generated relatively compared to other metal substrates. If a burr occurs, the lower surface 12 may not be flat, and thus the mounting may be poor. In addition, when a burr occurs, the thickness may become uneven, and measurement errors may occur.
  • the third insulation portion 43 may be disposed on the bottom surface 12 of the body 10 and may be connected to the second insulation portion 41 and the first insulation portion 42. According to the embodiment, the lower surface 12 of the body, the lower surface of the second insulating portion 41, and the lower surface of the third insulating portion 43 may be disposed on the same plane.
  • Figure 24 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention
  • Figure 25 is a graph showing the aluminum composition of the light emitting structure according to an embodiment of the present invention.
  • a semiconductor device includes a light emitting structure 120A including a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and an active layer 126.
  • Each semiconductor layer may have the same structure as described with reference to FIG. 1.
  • the first conductive semiconductor layer, the active layer 126, the blocking layer 129, and the second conductive semiconductor layer 127 may all include aluminum.
  • the first conductive semiconductor layer 124, the active layer 126, the blocking layer 129, and the second conductive semiconductor layer 127 may be AlGaN. However, it is not necessarily limited thereto. Some layers may be GaN or AlN.
  • a plurality of well layers 126a and a barrier layer 126b may be alternately disposed.
  • the well layer 126a may have an aluminum composition of about 30% to 50% to emit ultraviolet light.
  • Barrier layer 126b may have an aluminum composition of 50% to 70% to confine the carrier.
  • the well layer closest to the blocking layer 129 among the well layers 126a may be defined as the first well layer 126a and the last barrier disposed between the first well layer 126a and the blocking layer 129.
  • the layer is defined as the first barrier layer 126b.
  • the blocking layer 129 may have an aluminum composition of 50% to 90%.
  • the blocking layer 129 may alternately include a plurality of first blocking layers 129d having a relatively high aluminum composition and a plurality of second blocking layers 129e having a low aluminum composition.
  • the aluminum composition of the blocking layer 129 is less than 50%, the height of the energy barrier for blocking electrons may be insufficient, and the light emitted from the active layer 126 may be absorbed by the blocking layer 129, and the aluminum composition may be 90%. Exceeding the% may deteriorate the electrical characteristics of the semiconductor device.
  • the aluminum composition of the first blocking layer 129d may be 70% to 90%, and the aluminum composition of the second blocking layer 129e may be 50% to 70%.
  • the present invention is not limited thereto, and the aluminum composition of the first blocking layer 129d and the second blocking layer 129e may be adjusted according to the purpose.
  • the first intermediate layer S10 may be disposed between the first well layer 126a and the blocking layer 129 of the active layer 126.
  • the first intermediate layer S10 may include a third-first section S11 having a lower aluminum composition than the blocking layer 129, and a third-second section S12 having a higher aluminum composition than the blocking layer 129. .
  • the first intermediate layer S10 may be a first barrier layer 126b. Therefore, the thickness of the first intermediate layer S10 may be the same as the thickness of the neighboring barrier layer 126b. For example, the thickness of the first intermediate layer S10 may be 2 nm to 10 nm. However, the present disclosure is not limited thereto, and the first intermediate layer S10 may be a separate semiconductor layer disposed between the first barrier layer 126b and the blocking layer 129 or may be part of the blocking layer 129.
  • the aluminum composition of the third section 1 (S11) may be 50% to 70%. That is, the third-first section S11 may be substantially the same as the aluminum composition of the adjacent barrier layer 126b.
  • the thickness of the third-first section S11 may be about 1 nm to 8 nm. When the thickness of the third section S11 is less than or equal to 1 nm, it may be difficult to prevent a problem of crystallinity deterioration caused by a sharp increase in Al content in the well layer 126a. In addition, when the thickness of the third section S11 is thicker than 8 nm, the hole injection efficiency into the active layer 126 may be lowered, thereby lowering optical characteristics.
  • the third-second section S12 may have a higher aluminum composition than the blocking layer 129. As the closer to the blocking layer 129, the third-second section S12 may have a higher aluminum composition.
  • the aluminum composition of the second to third sections S12 may be 80% to 100%. That is, the third-second section S12 may be AlGaN or AlN. Alternatively, the third-second section S12 may be a superlattice layer in which AlGaN and AlN are alternately arranged.
  • the third-second section S12 may be thinner than the third-first section S11.
  • the thickness of the third-second section S12 may be about 0.1 nm to 4 nm. If the thickness of the third section S12 is thinner than 0.1 nm, there may be a problem in that the movement of electrons may not be efficiently blocked. In addition, when the thickness of the third section S12 is thicker than 4 nm, there may be a problem in that the efficiency of injecting holes into the active layer is reduced.
  • the thickness ratio of the third-first section S11 and the third-second section S12 may be 10: 1 to 1: 1. When the above conditions are satisfied, the electron movement may be blocked while the hole injection efficiency may not be reduced.
  • the third-second section S12 may include an undoped section. Although the third-second section S12 grows without supplying the dopant, Mg of the blocking layer 129 may be diffused in a portion of the first section. However, at least a portion of the third-second section S12 may include an undoped section to prevent the dopant from diffusing into the active layer 126.
  • FIG. 26 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention
  • FIG. 27 is a graph measuring light output of a semiconductor device including a conventional light emitting structure
  • FIG. 28 is a view showing another embodiment of the present invention. It is a graph measuring the light output of the light emitting structure according to.
  • the second intermediate layer S20 may be part of the blocking layer 129, but is not necessarily limited thereto.
  • the aluminum composition of the second intermediate layer S20 may be lower than that of the blocking layer 129 and higher than the aluminum composition of the third-first section S11.
  • the aluminum composition of the second intermediate layer S20 may be 50% to 80%.
  • the second intermediate layer S20 may include a fourth-first section S21 that does not include a P-type dopant, and a fourth-second section S22 that includes a P-type dopant.
  • the fourth-first section S21 may be an undoped section. Therefore, it is possible to suppress diffusion of the dopant into the active layer 126 when the blocking layer 129 is grown.
  • the thickness of the fourth section S21 may be 4 nm to 19 nm. When the thickness of the fourth-first section S21 is smaller than 4 nm, it is difficult to suppress diffusion of the dopant, and when the thickness is larger than 19 nm, the hole injection efficiency may be reduced.
  • the fourth-second section S22 may include a P-type dopant.
  • the 4-2 section S22 may include the dopant to improve the efficiency in which holes are injected into the 4-1 section S21. That is, the fourth section S22 may serve as a low resistance layer that lowers the resistance level.
  • the thickness of the fourth section S22 may be 1 nm to 6 nm. When the thickness is smaller than 1 nm, it is difficult to effectively lower the resistance, and when the thickness is larger than 6 nm, the thickness of the 4-1 section S21 may be reduced, which may make it difficult to suppress diffusion of the dopant.
  • the ratio of the thickness of the fourth-first section S21 and the thickness of the fourth-second section S22 may be 19: 1 to 1: 1.5.
  • the present invention is not limited thereto, and the second intermediate layer S20 may have a superlattice structure in which the fourth-first section S21 and the fourth-second section S22 are alternately arranged.
  • the light output decreases by 20% after about 100 hours increase. It can also be seen that after about 500 hours, the light output is reduced by about 25%.
  • the embodiment has about 20% improved light output compared to the diameter of the conventional structure without the intermediate layer.
  • 29 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention.
  • the second conductive semiconductor layer 129 may include a 2-1 conductive semiconductor layer 129a and a 2-2 conductive semiconductor layer 129b.
  • the thickness of the second-first conductive semiconductor layer 127a may be larger than 10 nm and smaller than 200 nm.
  • the resistance may increase in the horizontal direction, thereby lowering the current injection efficiency.
  • the resistance may increase in the vertical direction, thereby lowering the current injection efficiency.
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be higher than that of the well layer 126a.
  • the aluminum composition of the well layer 126a may be about 30% to 50% to generate ultraviolet light. If the aluminum composition of the 2-1 conductive semiconductor layer 127a is lower than that of the well layer 126a, the light extraction efficiency may decrease because the 2-1 conductive semiconductor layer 127a absorbs light. Can be.
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be greater than 40% and less than 80%. If the aluminum composition of the second-first conductive semiconductor layer 127a is less than 40%, there is a problem of absorbing light, and if greater than 80%, the current injection efficiency is deteriorated. For example, when the aluminum composition of the well layer 126a is 30%, the aluminum composition of the 2-1 conductive semiconductor layer 127a may be 40%.
  • the aluminum composition of the second-second conductive semiconductor layer 127a may be lower than that of the well layer 126a. If the aluminum composition of the second-conductive semiconductor layer 127a is higher than that of the well layer 126a, the resistance between the p-omic electrodes is increased, so that sufficient ohmic is not achieved and current injection efficiency is inferior. .
  • the aluminum composition of the second-second conductive semiconductor layer 127a may be greater than 1% and less than 50%. If it is larger than 50%, a sufficient ohmic may not be achieved with the p-omic electrode. If the composition is smaller than 1%, there is a problem of absorbing light because it is almost close to the GaN composition.
  • the thickness of the second-2 conductive semiconductor layer 127a may be greater than 1 nm and smaller than 30 nm. As described above, the second conductive semiconductor layer 127a may absorb ultraviolet light because the composition of aluminum is low for ohmic. Therefore, it may be advantageous in terms of light output to control the thickness of the second-second conductive semiconductor layer 127a as thin as possible.
  • the second-second conductive semiconductor layer 127a when the thickness of the second-second conductive semiconductor layer 127a is controlled to 1 nm or less, the second-second conductive semiconductor layer 127a is not disposed in some sections, and the second-first conductive semiconductor layer 127a is not disposed. ) May be exposed to the outside of the light emitting structure 120. In addition, when the thickness is larger than 30 nm, the amount of light to be absorbed may be too large to reduce the light output efficiency.
  • the second-second conductive semiconductor layer 127a may further include a first sub layer 127e and a second sub layer 127d.
  • the first sub layer 127e may be a surface layer in contact with the second electrode, and the second sub layer 127d may be a layer for adjusting the composition of aluminum.
  • the first sub layer 127e may have an aluminum composition of greater than 1% and less than 20%. Or the aluminum composition may be greater than 1% and less than 10%.
  • the aluminum composition is lower than 1%, there may be a problem that the light absorption rate is too high in the first sub layer 127e. If the aluminum composition is higher than 20%, the contact resistance of the second electrode (p-omic electrode) is increased. There may be a problem that the current injection efficiency is low.
  • the present invention is not limited thereto, and the aluminum composition of the first sub layer 127e may be adjusted in consideration of the current injection characteristic and the light absorption rate. Alternatively, it can be adjusted according to the light output required by the product.
  • the composition ratio of aluminum when the current injection efficiency characteristic is more important than the light absorption rate, the composition ratio of aluminum can be adjusted to 1% to 10%. In the case of products in which light output characteristics are more important than electrical characteristics, the aluminum composition ratio of the first sub layer 127e may be adjusted to 1% to 20%.
  • the aluminum composition ratio of the first sub layer 127e is greater than 1% and less than 20%, the resistance between the first sub layer 127e and the second electrode decreases, thereby lowering the operating voltage. Thus, the electrical characteristics can be improved.
  • the thickness of the first sub layer 127e may be greater than 1 nm and smaller than 10 nm. Therefore, the problem of light absorption can be improved.
  • the thickness of the second-second conductive semiconductor layer 127a may be smaller than the thickness of the second-first conductive semiconductor layer 127a.
  • the thickness ratio of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127a may be 1.5: 1 to 20: 1. When the thickness ratio is smaller than 1.5: 1, the thickness of the 2-1 conductive semiconductor layer 127a may be too thin, thereby reducing current injection efficiency. In addition, when the thickness ratio is greater than 20: 1, the thickness of the second conductive semiconductor layer 127a may be too thin, thereby reducing ohmic reliability.
  • the aluminum composition of the second-first conductive semiconductor layer 127a may be smaller as it moves away from the active layer 126.
  • the aluminum composition of the second-second conductive semiconductor layer 127a may be smaller as it moves away from the active layer 126. Therefore, the aluminum composition of the first sub layer 127e may satisfy 1% to 10%.
  • the present invention is not necessarily limited thereto, and the aluminum compositions of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127a do not continuously decrease, but include a section in which there is no decrease in a certain section. You may.
  • an aluminum reduction width of the second conductive semiconductor layer 127a may be greater than an aluminum reduction width of the second conductive semiconductor layer 127a. That is, the change rate in the thickness direction of the Al composition ratio of the 2-2 conductive semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-1 conductive semiconductor layer 127a.
  • the thickness direction may be a direction from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127 or a direction from the second conductive semiconductor layer 127 to the first conductive semiconductor layer 124. Can be.
  • the aluminum composition should be higher than that of the well layer 126a, so that the decrease may be relatively slow.
  • the thickness of the second-2 conductive semiconductor layer 127a is large and the variation of the aluminum composition is large, the reduction of the aluminum composition may be relatively large.
  • FIG. 30 is a conceptual diagram of a light emitting structure grown on a substrate
  • FIG. 31 is a view for explaining a process of separating a substrate
  • FIG. 32 is a view for explaining a process of etching a light emitting structure
  • FIG. 33 is a manufactured semiconductor. A diagram showing the device.
  • a buffer layer 122, a light absorbing layer 123, a first conductive semiconductor layer 124, an active layer 126, a second conductive semiconductor layer 127, and a second substrate are formed on the growth substrate 121.
  • the second electrode 246 and the second conductive layer 150 may be sequentially formed.
  • a first intermediate layer and a second intermediate layer may be grown between the active layer 126 and the blocking layer 129.
  • the first barrier layer may be grown to have a 1-1 section having an aluminum composition of 50% to 70% and a 1-2 section having an aluminum composition of 80% to 100%.
  • the second intermediate layer may be grown to have a second-first section doped with the P-type dopant and a second-second section doped with the dopant.
  • the light absorption layer 123 includes a first light absorption layer 123a having a low aluminum composition and a second light absorption layer 123b having a high aluminum composition.
  • a plurality of first light absorbing layers 123a and second light absorbing layers 123b may be alternately disposed.
  • the aluminum composition of the first light absorption layer 123a may be lower than that of the first conductive semiconductor layer 124.
  • the first light absorption layer 123a may serve to absorb and separate the laser during the LLO process. Thus, the growth substrate can be removed.
  • the thickness of the first light absorbing layer 123a and the aluminum composition may be appropriately adjusted to absorb a laser having a wavelength (eg, 246 nm).
  • the aluminum composition of the first light absorption layer 123a may be 20% to 50%, and the thickness may be 1 nm to 10 nm.
  • the first light absorption layer 123a may be AlGaN, but is not limited thereto.
  • the aluminum composition of the second light absorption layer 123b may be higher than that of the first conductive semiconductor layer 124.
  • the second light absorption layer 123b may improve the crystallinity of the first conductive semiconductor layer 124 grown on the light absorption layer 123 by increasing the aluminum composition lowered by the first light absorption layer 123a.
  • the aluminum composition of the second light absorption layer 123b may be 60% to 100%, and the thickness may be 0.1 nm to 2.0 nm.
  • the second light absorption layer 123b may be AlGaN or AlN.
  • the thickness of the first light absorption layer 123a may be thicker than the thickness of the second light absorption layer 123b.
  • the thickness of the first light absorbing layer 123a may be 1 nm to 10 nm, and the thickness of the second light absorbing layer 123b may be 0.5 nm to 2.0 nm.
  • the thickness ratio of the first light absorbing layer 123a and the second light absorbing layer 123b may be 2: 1 to 6: 1.
  • the thickness ratio is smaller than 2: 1, the first light absorption layer 123a is thinner, so that it is difficult to absorb the laser sufficiently.
  • the thickness ratio is larger than 6: 1, the second light absorption layer 123b is too thin, so that the total aluminum composition of the light absorption layer is low. There is a problem.
  • the overall thickness of the light absorption layer 123 may be larger than 100 nm and smaller than 400 nm. If the thickness is less than 100 nm, the thickness of the first light absorption layer 123a becomes thin, and thus, it is difficult to sufficiently absorb the 246 nm laser. If the thickness is larger than 400 nm, the aluminum composition is lowered as a whole, thereby deteriorating crystallinity.
  • the light absorption layer 123 having a superlattice structure may be formed to improve crystallinity.
  • the light absorption layer 123 may function as a buffer layer to mitigate lattice mismatch between the growth substrate 121 and the light emitting structure 120.
  • the growth substrate 121 may be separated by irradiating the laser L1 from the growth substrate 121.
  • the laser L1 may have a wavelength band that the first light absorption layer 123a can absorb.
  • the laser may be a KrF laser having a wavelength range of 248 nm.
  • the growth substrate 121 and the second light absorption layer 123b do not absorb the laser L1 due to the large energy band gap.
  • the first light absorption layer 123a having a low aluminum composition may be decomposed by absorbing the laser L1. Therefore, it may be separated together with the growth substrate 121.
  • the light absorption layer 123-2 remaining in the first conductive semiconductor layer 124 may be removed by leveling.
  • a recess penetrating to a part of the first conductive semiconductor layer 124 of the light emitting structure 120 ( A plurality of 128) can be formed.
  • the insulating layer 130 may be formed on the side surface of the recess 128 and the second conductive semiconductor layer 127.
  • the first electrode 142 may be formed in the first conductive semiconductor layer 124b exposed by the recess 128.
  • the first conductive layer 165 may be formed under the insulating layer 130.
  • the first conductive layer 165 may be electrically insulated from the second conductive layer 150 by the insulating layer 130.
  • the conductive substrate 170 may be formed below the first conductive layer 165, and the second electrode pad 166 may be formed on the second conductive layer 150 exposed by mesa etching.
  • the semiconductor device can be applied to various kinds of light source devices.
  • the light source device may be a concept including a sterilizing device, a curing device, a lighting device, and a display device and a vehicle lamp. That is, the semiconductor device may be applied to various electronic devices disposed in a case to provide light.
  • the sterilization apparatus may include a semiconductor device according to the embodiment to sterilize a desired region.
  • the sterilizer may be applied to household appliances such as water purifiers, air conditioners and refrigerators, but is not necessarily limited thereto. That is, the sterilization apparatus can be applied to all the various products (eg, medical devices) requiring sterilization.
  • the water purifier may be provided with a sterilizing device according to the embodiment to sterilize the circulating water.
  • the sterilization apparatus may be disposed at a nozzle or a discharge port through which water circulates to irradiate ultraviolet rays.
  • the sterilization apparatus may include a waterproof structure.
  • the curing apparatus includes a semiconductor device according to an embodiment to cure various kinds of liquids.
  • Liquids can be the broadest concept that includes all of the various materials that cure when irradiated with ultraviolet light.
  • the curing apparatus may cure various kinds of resins.
  • the curing device may be applied to cure a cosmetic product such as a nail polish.
  • the lighting apparatus may include a light source module including a substrate and the semiconductor device of the embodiment, a heat dissipation unit for dissipating heat of the light source module, and a power supply unit for processing or converting an electrical signal provided from the outside and providing the light source module to the light source module.
  • the lighting apparatus may include a lamp, a head lamp, or a street lamp.
  • the display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter.
  • the bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet may constitute a backlight unit.
  • the reflecting plate is disposed on the bottom cover, and the light emitting module may emit light.
  • the light guide plate may be disposed in front of the reflective plate to guide light emitted from the light emitting module to the front, and the optical sheet may include a prism sheet or the like to be disposed in front of the light guide plate.
  • the display panel is disposed in front of the optical sheet, the image signal output circuit supplies an image signal to the display panel, and the color filter may be disposed in front of the display panel.
  • the semiconductor device may be used as an edge type backlight unit or a direct type backlight unit when used as a backlight unit of a display device.
  • the semiconductor element may be a laser diode in addition to the light emitting diode described above.
  • the laser diode may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure.
  • an electro-luminescence phenomenon is used in which light is emitted when a current flows, but the direction of emitted light is used.
  • a laser diode may emit light having a specific wavelength (monochromatic beam) in the same direction with the same phase by using a phenomenon called stimulated emission and a constructive interference phenomenon. Due to this, it can be used for optical communication, medical equipment and semiconductor processing equipment.
  • a photodetector may be a photodetector, which is a type of transducer that detects light and converts its intensity into an electrical signal.
  • Such photodetectors include photovoltaic cells (silicon, selenium), photoelectric devices (cadmium sulfide, cadmium selenide), photodiodes (e.g. PD having peak wavelength in visible blind or true blind spectral regions) Transistors, photomultipliers, phototubes (vacuum, gas encapsulation), infrared (Infra-Red) detectors, and the like, but embodiments are not limited thereto.
  • a semiconductor device such as a photodetector may generally be manufactured using a direct bandgap semiconductor having excellent light conversion efficiency.
  • the photodetector has various structures, and the most common structures include a pin photodetector using a pn junction, a Schottky photodetector using a Schottky junction, a metal semiconductor metal (MSM) photodetector, and the like. have.
  • MSM metal semiconductor metal
  • a photodiode may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer having the above-described structure, and have a pn junction or pin structure.
  • the photodiode operates by applying a reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and current flows. In this case, the magnitude of the current may be approximately proportional to the intensity of light incident on the photodiode.
  • Photovoltaic cells or solar cells are a type of photodiodes that can convert light into electrical current.
  • the solar cell may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure, similarly to the light emitting device.
  • a general diode using a p-n junction it may be used as a rectifier of an electronic circuit, it may be applied to an ultra-high frequency circuit and an oscillation circuit.
  • the semiconductor device described above is not necessarily implemented as a semiconductor and may further include a metal material in some cases.
  • a semiconductor device such as a light receiving device may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, and may be implemented by a p-type or n-type dopant. It may also be implemented using a doped semiconductor material or an intrinsic semiconductor material.

Abstract

One embodiment discloses a semiconductor device and a semiconductor device package including the same, the semiconductor device comprising: a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer arranged between the first conductive semiconductor layer and the second conductive semiconductor layer; a first electrode electrically connected with the first conductive semiconductor layer; and a second electrode electrically connected with the second conductive semiconductor layer, wherein the second conductive semiconductor layer includes a first surface on which the second electrode is arranged and has a ratio (W2:W1) between a second minimum distance (W2) from the first surface to a second point and a first minimum distance (W1) from the first surface to a first point of 1:1.25 to 1:100, respectively, the first point is a point having the same composition as an aluminum composition of a well layer closest to the second conductive semiconductor layer in the active layer, and the second point is the point at which the aluminum composition and a dopant composition of the second conductive semiconductor layer become equal.

Description

반도체 소자 및 이를 포함하는 반도체 소자 패키지Semiconductor device and semiconductor device package including same
실시 예는 반도체 소자 및 이를 포함하는 반도체 소자 패키지에 관한 것이다.An embodiment relates to a semiconductor device and a semiconductor device package including the same.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.A semiconductor device including a compound such as GaN, AlGaN, etc. has many advantages, such as having a wide and easy-to-adjust band gap energy, and can be used in various ways as a light emitting device, a light receiving device, and various diodes.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다. Particularly, light emitting devices such as light emitting diodes and laser diodes using semiconductors of Group 3-5 or Group 2-6 compound semiconductors have been developed through the development of thin film growth technology and device materials. Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.Low power consumption, semi-permanent lifespan, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps can be realized. It has the advantages of safety, environmental friendliness.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.In addition, when a light-receiving device such as a photodetector or a solar cell is also manufactured using a group 3-5 or 2-6 compound semiconductor material of a semiconductor, the development of device materials absorbs light in various wavelength ranges to generate a photocurrent. As a result, light in various wavelengths can be used from gamma rays to radio wavelengths. It also has the advantages of fast response speed, safety, environmental friendliness and easy control of device materials, making it easy to use in power control or microwave circuits or communication modules.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.Therefore, the semiconductor device may replace a light emitting diode backlight, a fluorescent lamp, or an incandescent bulb, which replaces a cold cathode tube (CCFL) constituting a backlight module of an optical communication means, a backlight of a liquid crystal display (LCD) display device. Applications are expanding to include white LED lighting devices, automotive headlights and traffic lights, and sensors that detect gas or fire. In addition, the semiconductor device may be extended to high frequency application circuits, other power control devices, and communication modules.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다In particular, the light emitting device that emits light in the ultraviolet wavelength region may be used for curing, medical treatment, and sterilization by curing or sterilizing.
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있으며, 기판을 분리하는 과정에서 결정성이 저하되는 문제가 있다.Recently, the research on the ultraviolet light emitting device is active, but the ultraviolet light emitting device has a problem that it is difficult to implement a vertical type, and there is a problem that the crystallinity is degraded in the process of separating the substrate.
실시 예는 수직형 자외선 발광소자를 제공한다.The embodiment provides a vertical ultraviolet light emitting device.
또한, 광 출력이 향상된 발광소자를 제공한다.In addition, a light emitting device having improved light output is provided.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problem to be solved in the examples is not limited thereto, and the object or effect that can be grasped from the solution means or the embodiment described below will also be included.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광구조물; 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고, 상기 제2 도전형 반도체층은 상기 제2전극이 배치되는 제1면을 포함하고, 상기 제2 도전형 반도체층은 상기 제1면으로부터 제2지점까지의 제2 최단거리(W2)와 상기 제1면으로부터 제1지점까지의 제1 최단거리(W1)의 비(W2:W1)는 1:1.25 내지 1:100이고, 상기 제1지점은 상기 활성층 중에서 상기 제2 도전형 반도체층과 가장 가까운 우물층의 알루미늄 조성과 동일한 조성을 갖는 지점이고, 상기 제2지점은 알루미늄 조성과 제2 도전형 반도체층의 도펀트 조성이 동일해지는 지점일 수 있다.A semiconductor device according to an embodiment of the present invention includes a light emitting device including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer. structure; A first electrode electrically connected to the first conductive semiconductor layer; And a second electrode electrically connected to the second conductive semiconductor layer, wherein the second conductive semiconductor layer includes a first surface on which the second electrode is disposed, and the second conductive semiconductor layer includes: The ratio W2: W1 of the second shortest distance W2 from the first surface to the second point and the first shortest distance W1 from the first surface to the first point is 1: 1.25 to 1: 100. The first point is a point having the same composition as the aluminum composition of the well layer closest to the second conductivity-type semiconductor layer among the active layer, the second point is the aluminum composition and the dopant composition of the second conductivity-type semiconductor layer It may be the point of equality.
실시 예에 따르면 수직형 자외선 발광소자를 제조할 수 있다.According to the embodiment it is possible to manufacture a vertical ultraviolet light emitting device.
또한, 광 출력을 향상시킬 수 있다.In addition, the light output can be improved.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention are not limited to the above description, and will be more readily understood in the course of describing specific embodiments of the present invention.
도 1은 본 발명의 일 실시 예에 따른 발광구조물의 개념도이고, 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 발광구조물의 알루미늄 조성비를 나타낸 그래프이고,2 is a graph showing the aluminum composition ratio of the light emitting structure according to an embodiment of the present invention,
도 3은 본 발명의 제1실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고,3 is a SIMS graph of the light emitting structure according to the first embodiment of the present invention.
도 4는 도 3의 일부 확대도이고,4 is an enlarged view of a part of FIG. 3;
도 5는 본 발명의 제2실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고,5 is a sims (SIMS) graph of the light emitting structure according to the second embodiment of the present invention,
도 6은 도 5의 일부 확대도이고,6 is an enlarged view of a part of FIG. 5;
도 7은 본 발명의 제3실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고,7 is a SIMS graph of a light emitting structure according to a third embodiment of the present invention,
도 8은 도 7의 일부 확대도이고,8 is an enlarged view of a part of FIG. 7;
도 9는 본 발명의 일 실시 예에 따른 반도체 구조물의 개념도이고, 9 is a conceptual diagram of a semiconductor structure according to an embodiment of the present disclosure;
도 10은 본 발명의 일 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,10 is a graph showing the aluminum composition ratio of the semiconductor structure according to an embodiment of the present invention,
도 11a 및 도 11b는 본 발명의 일 실시 예에 따른 반도체 구조물의 심스 (SIMS) 데이터이고,11A and 11B illustrate SIMS data of a semiconductor structure according to an embodiment of the present disclosure.
도 11c 및 도 11d는 본 발명의 다른 실시 예에 따른 반도체 구조물의 심스(SIMS) 데이터이고,11C and 11D are SIMS data of a semiconductor structure according to another embodiment of the present invention.
도 12는 도 11a 내지 도 11d의 알루미늄 이온 강도를 보여주는 도면이고,12 is a view showing the aluminum ion strength of FIGS. 11A-11D,
도 13a는 도 12의 (a)의 SIMS 데이터를 일부 확대한 도면이고,FIG. 13A is an enlarged view of a portion of the SIMS data of FIG. 12A;
도 13b는 도 12의 (b)의 SIMS 데이터를 리니어 스케일로 변환한 도면이고,FIG. 13B is a view of converting the SIMS data of FIG. 12B into a linear scale,
도 14a는 본 발명의 일 실시 예에 따른 제2 도전형 반도체층의 개념도이고, 14A is a conceptual diagram of a second conductivity-type semiconductor layer according to an embodiment of the present invention;
도 14b는 본 발명의 일 실시 예에 따른 제2 도전형 반도체층의 표면을 측정한 AFM 데이터이고, 14B is AFM data of a surface of a second conductivity-type semiconductor layer according to an embodiment of the present invention.
도 14c는 GaN 박막의 표면을 측정한 AFM 데이터이고, 14C is AFM data of a surface of a GaN thin film,
도 14d는 고속 성장시킨 제2 도전형 반도체층의 표면을 측정한 AFM 데이터이고,14D is AFM data obtained by measuring the surface of the second conductivity type semiconductor layer grown at high speed,
도 15는 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고,15 is a conceptual diagram of a semiconductor device according to an embodiment of the present disclosure;
도 16a 및 도 16b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고,16A and 16B are views for explaining a configuration in which light output is improved according to a change in the number of recesses.
도 17은 도 15의 A부분 확대도이고,17 is an enlarged view of a portion A of FIG. 15;
도 18은 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이고,18 is a conceptual diagram of a semiconductor device according to another embodiment of the present disclosure;
도 19는 도 18의 평면도이고,19 is a plan view of FIG. 18,
도 20은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고,20 is a conceptual diagram of a semiconductor device package according to an embodiment of the present disclosure;
도 21은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고,21 is a plan view of a semiconductor device package according to an embodiment of the present disclosure;
도 22는 도 21의 변형예이고,22 is a modification of FIG. 21,
도 23은 본 발명의 다른 실시 예에 따른 반도체 소자 패키지의 단면도이고,23 is a cross-sectional view of a semiconductor device package according to another embodiment of the present disclosure;
도 24는 본 발명의 일 실시 예에 따른 발광구조물의 개념도이고,24 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention;
도 25는 본 발명의 일 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프이고,25 is a graph showing an aluminum composition of a light emitting structure according to an embodiment of the present invention;
도 26은 본 발명의 다른 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프이고,26 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention;
도 27은 종래 발광구조물을 포함하는 반도체 소자의 광 효율을 측정한 그래프이고,27 is a graph measuring light efficiency of a semiconductor device including a conventional light emitting structure,
도 28은 본 발명의 다른 실시 예에 따른 발광구조물의 광 효율을 측정한 그래프이고,28 is a graph measuring light efficiency of a light emitting structure according to another embodiment of the present invention;
도 29는 본 발명의 또 다른 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프이고,29 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention;
도 30은 기판 상에 성장한 발광구조물의 개념도이고,30 is a conceptual diagram of a light emitting structure grown on a substrate;
도 31은 기판을 분리하는 과정을 설명하기 위한 도면이고,31 is a view for explaining a process of separating a substrate,
도 32는 발광구조물을 식각하는 과정을 설명하기 위한 도면이고,32 is a view for explaining a process of etching a light emitting structure;
도 33은 제조된 반도체 소자를 보여주는 도면이다.33 is a view illustrating a manufactured semiconductor device.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다. The embodiments may be modified in other forms or in various embodiments, and the scope of the present invention is not limited to the embodiments described below.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다. Although matters described in a specific embodiment are not described in other embodiments, it may be understood as descriptions related to other embodiments unless there is a description that is contrary to or contradictory to the matters in other embodiments.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.For example, if a feature is described for component A in a particular embodiment and a feature for component B in another embodiment, a description that is contrary or contradictory, even if the embodiments in which configuration A and configuration B are combined are not explicitly described. Unless otherwise, it should be understood to fall within the scope of the present invention.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiment, when one element is described as being formed "on or under" of another element, it is on (up) or down (on). or under) includes both two elements being directly contacted with each other or one or more other elements are formed indirectly between the two elements. In addition, when expressed as "on" or "under", it may include the meaning of the downward direction as well as the upward direction based on one element.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
본 발명의 실시 예에 따른 발광구조물은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 발광구조물은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 발광구조물(120)의 Al의 조성비에 의해 결정될 수 있다.The light emitting structure according to the embodiment of the present invention may output light in the ultraviolet wavelength band. For example, the light emitting structure may output light in the near ultraviolet wavelength range (UV-A), may output light in the far ultraviolet wavelength range (UV-B), and emit light in the deep ultraviolet wavelength range (UV-C). You can print The wavelength range may be determined by the composition ratio of Al of the light emitting structure 120.
예시적으로, 근자외선 파장대의 광(UV-A)는 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.For example, the light (UV-A) in the near ultraviolet wavelength band may have a wavelength in the range of 320 nm to 420 nm, the light in the far ultraviolet wavelength band (UV-B) may have a wavelength in the range of 280 nm to 320 nm, and deep ultraviolet light Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
도 1은 본 발명의 일 실시 예에 따른 발광구조물의 개념도이고, 도 2는 본 발명의 일 실시 예에 따른 발광구조물의 알루미늄 조성비를 나타낸 그래프이다.1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention, Figure 2 is a graph showing the aluminum composition ratio of the light emitting structure according to an embodiment of the present invention.
도 1을 참조하면, 실시 예에 따른 반도체소자는 제1도전형 반도체층(124), 제2도전형 반도체층(127), 및 제1도전형 반도체층(124)과 제2도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하는 발광구조물(120)을 포함한다.Referring to FIG. 1, a semiconductor device according to an embodiment may include a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124 and a second conductive semiconductor layer. It includes a light emitting structure 120 including an active layer 126 disposed between the (127).
제1도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1도전형 반도체층(124)은 Inx1Aly1Ga1-x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1도전형 반도체층(124)은 n형 반도체층일 수 있다.The first conductive semiconductor layer 124 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and may be doped with a first dopant. The first conductive semiconductor layer 124 is a semiconductor material having a composition formula of Inx1Aly1Ga1-x1-y1N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ x1 + y1 ≦ 1), for example, GaN, AlGaN, InGaN, InAlGaN and the like can be selected. The first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
활성층(126)은 제1도전형 반도체층(124)과 제2도전형 반도체층(127) 사이에 배치된다. 활성층(126)은 제1도전형 반도체층(124)을 통해서 주입되는 전자(또는 정공)와 제2도전형 반도체층(127)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(126)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.The active layer 126 is disposed between the first conductive semiconductor layer 124 and the second conductive semiconductor layer 127. The active layer 126 is a layer where electrons (or holes) injected through the first conductive semiconductor layer 124 meet holes (or electrons) injected through the second conductive semiconductor layer 127. The active layer 126 transitions to a low energy level as electrons and holes recombine, and may generate light having an ultraviolet wavelength.
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.The active layer 126 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 126. The structure of is not limited to this.
제2도전형 반도체층(127)은 활성층(126) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2도전형 반도체층(127)에 제2도펀트가 도핑될 수 있다. 제2도전형 반도체층(127)은 Inx5Aly2Ga1-x5-y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2도전형 반도체층(127)은 p형 반도체층일 수 있다.The second conductive semiconductor layer 127 is formed on the active layer 126, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI. The second conductive semiconductor layer 127 may be a second semiconductor layer 127. Dopants may be doped. The second conductive semiconductor layer 127 is a semiconductor material having a composition formula of Inx5Aly2Ga1-x5-y2N (0≤x5≤1, 0≤y2≤1, 0≤x5 + y2≤1) or AlInN, AlGaAs, GaP, GaAs It may be formed of a material selected from GaAsP, AlGaInP. When the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba, the second conductive semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
제2도전형 반도체층(127)은 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)을 포함할 수 있다. 제2-1 도전형 반도체층(127a)은 제2-2 도전형 반도체층(127b) 보다 알루미늄 조성이 작을 수 있다.The second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c. The 2-1 conductivity type semiconductor layer 127a may have a smaller aluminum composition than the 2-2 conductivity type semiconductor layer 127b.
활성층(126)과 제2도전형 반도체층(127) 사이에는 전자 차단층(129)이 배치될 수 있다. 전자 차단층(129)은 제1도전형 반도체층(124)에서 공급된 전자가 제2도전형 반도체층(127)으로 빠져나가는 흐름을 차단하여, 활성층(126) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층(129)의 에너지 밴드갭은 활성층(126) 및/또는 제2도전형 반도체층(127)의 에너지 밴드갭보다 클 수 있다.An electron blocking layer 129 may be disposed between the active layer 126 and the second conductive semiconductor layer 127. The electron blocking layer 129 blocks the flow of electrons supplied from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127 so that electrons and holes can be recombined in the active layer 126. You can increase your chances. The energy band gap of the electron blocking layer 129 may be larger than the energy band gap of the active layer 126 and / or the second conductive semiconductor layer 127.
전자 차단층(129)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다. 전자 차단층(129)은 알루미늄 조성이 높은 제1층(129b)과 알루미늄 조성이 낮은 제2층(129a)이 교대로 배치될 수 있다.The electron blocking layer 129 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1- y1 N (0≤x1≤1, 0≤y1≤1, 0≤x1 + y1≤1), for example AlGaN. , InGaN, InAlGaN, etc. may be selected, but is not limited thereto. In the electron blocking layer 129, a first layer 129b having a high aluminum composition and a second layer 129a having a low aluminum composition may be alternately disposed.
도 2를 참조하면, 제1도전형 반도체층(124), 장벽층(126b), 우물층(126a), 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)은 모두 알루미늄을 포함할 수 있다. 따라서, 제1도전형 반도체층(124), 장벽층(126b), 우물층(126a), 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)은 AlGaN일 수 있다. 그러나, 반드시 이에 한정하지 않는다.Referring to FIG. 2, the first conductive semiconductor layer 124, the barrier layer 126b, the well layer 126a, and the 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c are all It may comprise aluminum. Accordingly, the first conductive semiconductor layer 124, the barrier layer 126b, the well layer 126a, and the 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c may be AlGaN. However, it is not necessarily limited thereto.
전자 차단층(129)은 알루미늄 조성이 50% 내지 90%일 수 있다. 차단층(129)은 알루미늄 조성이 상대적으로 높은 복수 개의 제1차단층(129a)과 알루미늄 조성이 낮은 복수 개의 제2차단층(129b)이 교대로 배치될 수 있다. 차단층(129)의 알루미늄 조성이 50% 미만일 경우 전자를 차단하기 위한 에너지 장벽의 높이가 부족할 수 있고 활성층(126)에서 방출하는 광을 차단층(129)에서 흡수할 수 있고, 알루미늄 조성이 90%를 초과할 경우 반도체 소자의 전기적 특성이 악화될 수 있다.The electron blocking layer 129 may have an aluminum composition of 50% to 90%. The blocking layer 129 may include a plurality of first blocking layers 129a having a relatively high aluminum composition and a plurality of second blocking layers 129b having a low aluminum composition. When the aluminum composition of the blocking layer 129 is less than 50%, the height of the energy barrier for blocking electrons may be insufficient, and the light emitted from the active layer 126 may be absorbed by the blocking layer 129, and the aluminum composition may be 90%. Exceeding the% may deteriorate the electrical characteristics of the semiconductor device.
전자 차단층(129)은 제1-1구간(129-1)과 제1-2구간(129-2)을 포함할 수 있다. 제1-1구간(129-1)은 차단층(129)에 가까워질수록 알루미늄 조성이 높아질 수 있다. 제1-1구간(129-1)의 알루미늄 조성은 80% 내지 100%일 수 있다. 즉, 제1-1구간(129-1)은 AlGaN일 수도 있고 AlN일 수도 있다. 또는 제1-1구간(129-1)은 AlGaN과 AlN이 교대로 배치되는 초격자층일 수도 있다.The electron blocking layer 129 may include a first-first section 129-1 and a first-second section 129-2. As the first-first section 129-1 approaches the blocking layer 129, the aluminum composition may increase. The aluminum composition of the first-first section 129-1 may be 80% to 100%. That is, the first-first section 129-1 may be AlGaN or AlN. Alternatively, the first-first section 129-1 may be a superlattice layer in which AlGaN and AlN are alternately arranged.
제1-1구간(129-1)의 두께는 약 0.1nm 내지 4nm일 수 있다. 제1-1구간(129-1)의 두께가 0.1nm보다 얇을 경우 전자의 이동을 효율적으로 차단하지 못하는 문제점이 있을 수 있다. 또한, 제1-1구간(129-1)의 두께가 4nm보다 두꺼울 경우 활성층으로 정공이 주입되는 효율이 저하되는 문제점이 있을 수 있다. The thickness of the first-first section 129-1 may be about 0.1 nm to 4 nm. If the thickness of the first-first section 129-1 is thinner than 0.1 nm, there may be a problem in that the movement of electrons may not be effectively blocked. In addition, when the thickness of the first-first section 129-1 is greater than 4 nm, there may be a problem in that the efficiency of injecting holes into the active layer is reduced.
제1-2구간(129-2)은 언도프(undoped)된 구간을 포함할 수 있다. 제1-2구간(129-2)은 도펀트가 제2 도전형 반도체층(127)으로부터 활성층(126)으로 확산되는 것을 방지하는 역할을 수행할 수 있다.The first-second section 129-2 may include an undoped section. The first-second section 129-2 may serve to prevent the dopant from being diffused from the second conductive semiconductor layer 127 to the active layer 126.
제2-2 도전형 반도체층(127b)의 두께는 10nm보다 크고 200nm보다 작을 수 있다. 예시적으로 제2-2 도전형 반도체층(127b)의 두께는 25nm일 수 있다. 제2-2 도전형 반도체층(127b)의 두께가 10nm보다 작은 경우 수평 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다. 또한, 제2-2 도전형 반도체층(127b)의 두께가 200nm보다 큰 경우 수직 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다.The thickness of the second-second conductive semiconductor layer 127b may be larger than 10 nm and smaller than 200 nm. For example, the thickness of the second conductivity-type semiconductor layer 127b may be 25 nm. When the thickness of the second conductivity-type semiconductor layer 127b is less than 10 nm, the resistance may increase in the horizontal direction, thereby decreasing current injection efficiency. In addition, when the thickness of the second conductivity-type semiconductor layer 127b is greater than 200 nm, the resistance may increase in the vertical direction, thereby decreasing current injection efficiency.
제2-2 도전형 반도체층(127b)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 자외선 광을 생성하기 위해 우물층(126a)의 알루미늄 조성은 약 30% 내지 70%일 수 있다. 만약, 제2-2 도전형 반도체층(127b)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제2-2 도전형 반도체층(127b)이 광을 흡수하기 때문에 광 추출 효율이 떨어질 수 있다. 그러나 발광 구조물의 결정성 저하를 방지하기 위해서는 반드시 이에 한정하지 않는다. 예시적으로 제2-2 도전형 반도체층(127b)의 일부 구간에서의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다.The aluminum composition of the second-conductive semiconductor layer 127b may be higher than that of the well layer 126a. The aluminum composition of the well layer 126a may be about 30% to 70% to generate ultraviolet light. If the aluminum composition of the 2-2 conductivity type semiconductor layer 127b is lower than that of the well layer 126a, the light extraction efficiency may be reduced because the 2-2 conductivity type semiconductor layer 127b absorbs light. Can be. However, in order to prevent the lowering of the crystallinity of the light emitting structure is not necessarily limited thereto. For example, the aluminum composition in a portion of the second-second conductive semiconductor layer 127b may be lower than that of the well layer 126a.
제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40%보다 작은 경우 광을 흡수하는 문제가 있으며, 80%보다 큰 경우에는 전류 주입 효율이 악화되는 문제가 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40%일 수 있다.The aluminum composition of the second conductive semiconductor layer 127b may be greater than 40% and less than 80%. The aluminum composition of the second conductive semiconductor layer 127b has a problem of absorbing light when less than 40%, and a problem of deterioration of current injection efficiency when larger than 80%. For example, when the aluminum composition of the well layer 126a is 30%, the aluminum composition of the second-2 conductive semiconductor layer 127b may be 40%.
제2-1 도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다. 제2-1 도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높은 경우 p-오믹 전극 사이의 저항이 높아져 충분한 오믹이 이루어지지 않고, 전류 주입 효율이 떨어지는 문제가 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be lower than that of the well layer 126a. When the aluminum composition of the 2-1 conductive semiconductor layer 127a is higher than that of the well layer 126a, the resistance between the p-omic electrodes is increased, so that sufficient ohmic is not achieved and current injection efficiency is inferior. .
제2-1 도전형 반도체층(127a)의 알루미늄 조성은 1%보다 크고 50%보다 작을 수 있다. 50%보다 큰 경우 p오믹 전극과 충분한 오믹이 이루어지지 않을 수 있고, 조성이 1%보다 작은 경우 거의 GaN 조성과 가까워져 광을 흡수하는 문제가 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be greater than 1% and less than 50%. If it is larger than 50%, a sufficient ohmic may not be achieved with the p-omic electrode. If the composition is smaller than 1%, there is a problem of absorbing light because it is almost close to the GaN composition.
제2-1 도전형 반도체층(127a)의 두께는 1nm 내지 30nm, 또는 1nm 내지 10nm일 수 있다. 전술한 바와 같이 제2-1 도전형 반도체층(127a)은 오믹을 위해 알루미늄의 조성이 낮으므로 자외선 광을 흡수할 수 있다. 따라서, 최대한 제2-1 도전형 반도체층(127a)의 두께를 얇게 제어하는 것이 광 출력 관점에서 유리할 수 있다. The thickness of the 2-1 conductive semiconductor layer 127a may be 1 nm to 30 nm, or 1 nm to 10 nm. As described above, the 2-1 conductivity type semiconductor layer 127a may absorb ultraviolet light because the composition of aluminum is low for ohmic. Therefore, it may be advantageous in terms of light output to control the thickness of the second-first conductivity-type semiconductor layer 127a as thin as possible.
그러나 제2-1 도전형 반도체층(127a)의 두께가 1nm이하로 제어되는 경우 일부 구간은 제2-1 도전형 반도체층(127a)이 배치되지 않고, 제2-2 도전형 반도체층(127b)이 발광구조물(120)의 외부로 노출되는 영역이 발생할 수 있다. 또한, 두께가 30nm보다 큰 경우 제2-1 도전형 반도체층(127a)이 흡수하는 광량이 너무 커져 광 출력 효율이 감소할 수 있다.However, when the thickness of the 2-1 conductive semiconductor layer 127a is controlled to 1 nm or less, the 2-1 conductive semiconductor layer 127a is not disposed in some sections, and the 2-2 conductive semiconductor layer 127b is not disposed. ) May be exposed to the outside of the light emitting structure 120. In addition, when the thickness is greater than 30 nm, the amount of light absorbed by the 2-1 conductivity type semiconductor layer 127a may be so large that the light output efficiency may decrease.
제2-1 도전형 반도체층(127a)의 두께는 제2-2 도전형 반도체층(127b)의 두께보다 작을 수 있다. 제2-2 도전형 반도체층(127b)과 제2-1 도전형 반도체층(127a)의 두께비는 1.5:1 내지 20:1일 수 있다. 두께비가 1.5:1보다 작은 경우 제2-2 도전형 반도체층(127b)의 두께가 너무 얇아져 전류 주입 효율이 감소할 수 있다. 또한, 두께비가 20:1보다 큰 경우 제2-1 도전형 반도체층(127a)의 두께가 너무 얇아져 오믹 신뢰성이 저하될 수 있다.The thickness of the 2-1 conductive semiconductor layer 127a may be smaller than the thickness of the 2-2 conductive semiconductor layer 127b. The thickness ratio of the 2-2 conductive semiconductor layer 127b and the 2-1 conductive semiconductor layer 127a may be 1.5: 1 to 20: 1. When the thickness ratio is smaller than 1.5: 1, the thickness of the second conductive semiconductor layer 127b may be too thin, thereby reducing current injection efficiency. In addition, when the thickness ratio is greater than 20: 1, the thickness of the 2-1 conductivity type semiconductor layer 127a may be too thin, thereby reducing ohmic reliability.
제2-2 도전형 반도체층(127b)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 또한, 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. The aluminum composition of the second-second conductive semiconductor layer 127b may be smaller as it moves away from the active layer 126. In addition, the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller as it moves away from the active layer 126.
이때, 제2-1 도전형 반도체층(127a)의 알루미늄 감소폭은 제2-2 도전형 반도체층(127b)의 알루미늄 감소폭보다 클 수 있다. 즉, 제2-1 도전형 반도체층(127a)의 Al 조성비의 두께 방향에 대한 변화율은 제2-2 도전형 반도체층(127b)의 Al 조성비의 두께 방향에 대한 변화율보다 클 수 있다.In this case, the aluminum reduction width of the 2-1 conductivity type semiconductor layer 127a may be greater than the aluminum reduction width of the 2-2 conductivity type semiconductor layer 127b. That is, the change rate in the thickness direction of the Al composition ratio of the 2-1 conductivity type semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-2 conductivity type semiconductor layer 127b.
제2-2 도전형 반도체층(127b)은 두께는 제2-1 도전형 반도체층(127a)보다 두꺼운 반면, 알루미늄 조성은 우물층(126a)보다 높아야 하므로 감소폭이 상대적으로 완만할 수 있다. 그러나, 제2-1 도전형 반도체층(127a)은 두께가 얇고 알루미늄 조성의 변화폭이 크므로 알루미늄 조성의 감소폭이 상대적으로 클 수 있다. While the thickness of the 2-2 conductivity type semiconductor layer 127b is thicker than that of the 2-1 conductivity type semiconductor layer 127a, the aluminum composition should be higher than that of the well layer 126a, so that the decrease may be relatively slow. However, since the 2-1 conductivity type semiconductor layer 127a has a small thickness and a large variation in the aluminum composition, the decrease in the aluminum composition may be relatively large.
제2-3 도전형 반도체층(127c)는 균일한 알루미늄 조성을 가질 수 있다. 제2-3 도전형 반도체층(127c)의 두께는 20nm 내지 60nm일 수 있다. 제2-3 도전형 반도체층(127c)의 알루미늄 조성은 40% 내지 70%일 수 있다.The 2-3 conductive semiconductor layer 127c may have a uniform aluminum composition. The thickness of the 2-3 conductive semiconductor layer 127c may be 20 nm to 60 nm. The aluminum composition of the second conductive semiconductor layer 127c may be 40% to 70%.
도 3은 본 발명의 제1실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고, 도 4는 도 3의 일부 확대도이다.3 is a SIMS graph of the light emitting structure according to the first embodiment of the present invention, and FIG. 4 is an enlarged view of a portion of FIG. 3.
도 3 및 도 4를 참조하면, 발광 구조물은 두께가 감소하는 방향으로 알루미늄 조성과 P형 불순물(Mg)의 조성이 변화할 수 있다. 제2 도전형 반도체층(127)에서 제2 도전형 반도체층(127)의 표면 방향으로 향할수록 알루미늄의 조성은 낮아지고, P형 불순물(Mg)의 조성은 높아질 수 있다.3 and 4, in the light emitting structure, the aluminum composition and the composition of the P-type impurity (Mg) may be changed in a direction of decreasing thickness. As the second conductive semiconductor layer 127 faces the surface direction of the second conductive semiconductor layer 127, the composition of aluminum may be lowered and the composition of the P-type impurity Mg may be increased.
제2 도전형 반도체층(127)은 표면(두께가 0인 지점, 제1면)으로부터 제2지점(P21)까지의 제2 최단거리(W2)와 표면으로부터 제1지점(P11)까지의 제1 최단거리(W1)의 비(W2:W1)가 1:1.25 내지 1:100, 또는 1:1.25 내지 1:10일 수 있다.The second conductive semiconductor layer 127 is formed of the second shortest distance W2 from the surface (a point of zero thickness, the first surface) to the second point P21 and the first point P11 from the surface. The ratio W1: W1 of the shortest distance W1 may be 1: 1.25 to 1: 100, or 1: 1.25 to 1:10.
제2 최단거리(W2)와 제1 최단거리(W1)의 비(W2:W1)가 1:1.25보다 작은 경우에는 제1 최단거리(W1)와 제2 최단거리(W2)가 가까워져 알루미늄 조성 변화가 급격해지는 문제가 발생할 수 있다. 또한, 비(W2:W1)가 1:100보다 큰 경우 제2도전형 반도체층(127)의 두께가 너무 두꺼워져 제2 도전형 반도체층(127)의 결정성이 저하되거나, 기판 방향으로 인가되는 응력이 강해질 수 있어 활성층에서 방출하는 광의 파장이 변화하는 문제가 있다.When the ratio W2: W1 of the second shortest distance W2 and the first shortest distance W1 is smaller than 1: 1.25, the first shortest distance W1 and the second shortest distance W2 are closer to each other to change the aluminum composition. May cause a problem. In addition, when the ratio (W2: W1) is larger than 1: 100, the thickness of the second conductive semiconductor layer 127 becomes too thick, so that the crystallinity of the second conductive semiconductor layer 127 is lowered or applied toward the substrate. There is a problem that the stress to be strengthened can change the wavelength of the light emitted from the active layer.
여기서, 제1지점(P11)은 활성층 중에서 제2 도전형 반도체층(127)과 가장 가까운 우물층(126a)의 알루미늄 조성과 동일한 조성을 갖는 지점일 수 있다. 제1지점(P11)의 범위는 심스(SIMS)로 측정한 스펙트럼으로 정의할 수 있다. 제1지점(P11)의 범위는 활성층의 우물층에서의 알루미늄 함량과 같은 제2 도전형 반도체층으로 정의할 수 있다.Here, the first point P11 may be a point having the same composition as the aluminum composition of the well layer 126a closest to the second conductivity-type semiconductor layer 127 among the active layers. The range of the first point P11 may be defined as a spectrum measured by the SIMS. The range of the first point P11 may be defined as the second conductivity type semiconductor layer such as aluminum content in the well layer of the active layer.
제1지점(P11)을 측정하여 정의하기 위해서 심스(SIMS) 스펙트럼에 의한 방법을 적용할 수 있으나, 반드시 이에 한정하지는 않는다. 다른 예로 TEM, XRD 측정 방법을 적용할 수 있으나, 간편하게는 심스(SIMS) 스펙트럼을 통해 정의할 수 있다.In order to measure and define the first point P11, a method based on a SIMS spectrum may be applied, but is not limited thereto. As another example, TEM and XRD measurement methods may be applied, but may be simply defined through SIMS spectra.
제2지점(P21)은 심스(SIMS) 스펙트럼에서 제2 도전형 반도체층의 도펀트(예를 들어, Mg)에 대한 스펙트럼과 알루미늄에 대한 스펙트럼이 교차되는 지점일 수 있다. The second point P21 may be a point at which the spectrum for the dopant (eg, Mg) of the second conductivity type semiconductor layer and the spectrum for aluminum cross each other in the SIMS spectrum.
측정에 있어서 제2 도전형 반도체층의 도펀트에 대한 값의 단위는 다를 수 있으나, 제2 도전형 반도체층의 알루미늄 조성에 대한 변곡점을 포함하는 영역과 제2 도전형 반도체층의 도펀트에 대한 스펙트럼이 교차하는 지점을 포함하는 범위 내에서 제2-1 도전형 반도체층(127a)과 제2-2 도전형 반도체층(127b)의 경계 영역이 포함될 수 있다. 따라서, 도전형 제2-1 반도체층(127a)과 제2-2 도전형 반도체층(127b)의 경계 영역을 측정할 수 있고, 그 범위를 정의할 수 있다. In the measurement, the unit of the value for the dopant of the second conductivity type semiconductor layer may be different, but the spectrum including the inflection point for the aluminum composition of the second conductivity type semiconductor layer and the dopant of the second conductivity type semiconductor layer is different. The boundary region of the 2-1 conductivity type semiconductor layer 127a and the 2-2 conductivity type semiconductor layer 127b may be included within a range including an intersection point. Therefore, the boundary area of the conductive type 2-1 semiconductor layer 127a and the type 2-2 conductive semiconductor layer 127b can be measured, and the range thereof can be defined.
그러나, 반드시 이에 한정되는 것은 아니고 제2지점(P21)은 알루미늄 조성이 5% 내지 55%인 영역 내에 위치한 지점일 수 있다. 제2지점(P21)의 알루미늄 조성이 5%미만일 경우, 제2-1 도전형 반도체층(127a)의 두께가 너무 얇아질 수 있어 반도체 소자의 소비 전력 효율이 저하될 수 있고, 55%를 초과할 경우 제2-1 도전형 반도체층(127a)의 두께가 너무 두꺼워져 광 추출 효율이 저하되는 문제가 발생할 수 있다. 이때, 제2지점(P21)의 알루미늄 조성은 제1지점(P11)의 알루미늄 조성보다 작을 수 있다. 예시적으로 제2지점(P21)은 알루미늄 조성이 40% 내지 70%일 수 있다.However, the present invention is not limited thereto, and the second point P21 may be a point located in an area in which the aluminum composition is 5% to 55%. When the aluminum composition of the second point P21 is less than 5%, the thickness of the 2-1 conductive semiconductor layer 127a may become too thin, which may lower power consumption efficiency of the semiconductor device, and exceeds 55%. In this case, the thickness of the 2-1 conductivity type semiconductor layer 127a may be so thick that light extraction efficiency may decrease. In this case, the aluminum composition of the second point P21 may be smaller than the aluminum composition of the first point P11. For example, the second point P21 may have an aluminum composition of 40% to 70%.
예시적으로 제1 최단거리(W1)는 25nm 내지 100nm일 수 있고, 제2 최단거리(W2)는 1nm 내지 20nm일 수 있다.For example, the first shortest distance W1 may be 25 nm to 100 nm, and the second shortest distance W2 may be 1 nm to 20 nm.
전자 차단층(129)의 평균 알루미늄 조성과 제1지점(P11)에서의 알루미늄 조성의 제1차이(H1)와 전자 차단층의 평균 알루미늄 조성과 제2지점(P21)에서의 알루미늄 조성의 제2차이(H2)의 비(H1:H2)는 1:1.2 내지 1:10일 수 있다.The first difference H1 of the average aluminum composition of the electron blocking layer 129 and the aluminum composition at the first point P11 and the second of the aluminum composition of the average aluminum composition of the electron blocking layer and the second point P21 The ratio H1: H2 of the difference H2 may be from 1: 1.2 to 1:10.
제1차이와 제2차이의 비(H1:H2)가 1:1.2보다 작은 경우 제1지점(P11)과 제2점 사이의 구간의 알루미늄 조성 변화가 완만하여 컨택층에서 알루미늄 조성을 충분히 낮추기 어려운 문제가 있다. 또한, 제1차이와 제2차이의 비(H1:H2)가 1:10보다 큰 경우 알루미늄 조성 변화가 급격하여 활성층에서 출사된 광을 흡수할 확률이 높아질 수 있다.When the ratio of the first difference to the second difference (H1: H2) is less than 1: 1.2, the change in aluminum composition in the section between the first point P11 and the second point is moderate, making it difficult to sufficiently lower the aluminum composition in the contact layer. There is. In addition, when the ratio (H1: H2) of the first difference and the second difference is greater than 1:10, the change in aluminum composition may be rapid, thereby increasing the probability of absorbing the light emitted from the active layer.
도 5는 본 발명의 제2실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고, 도 6은 도 5의 일부 확대도이고, 도 7은 본 발명의 제3실시 예에 따른 발광구조물의 심스(SIMS) 그래프이고, 도 8은 도 7의 일부 확대도이다.FIG. 5 is a SIMS graph of a light emitting structure according to a second embodiment of the present invention, FIG. 6 is a partially enlarged view of FIG. 5, and FIG. 7 is a seamless pattern of a light emitting structure according to a third embodiment of the present invention. SIMS) graph, and FIG. 8 is an enlarged view of a portion of FIG. 7.
도 5 내지 도 8을 참조하여도 전술한 제2 최단거리(W2)와 제1 최단거리(W1)의 비(W2:W1)가 1:1.25 내지 1:100, 또는 1:1.25 내지 1:10를 만족함을 알 수 있다. 예시적으로 도 8을 참조하면, 제1지점(P13)과 제2지점(P23)은 매우 근접하게 배치됨을 알 수 있다.5 to 8, the ratio W2: W1 of the second shortest distance W2 and the first shortest distance W1 described above is 1: 1.25 to 1: 100, or 1: 1.25 to 1:10. It can be seen that satisfactory. For example, referring to FIG. 8, it can be seen that the first point P13 and the second point P23 are disposed in close proximity to each other.
또한, 전자 차단층(129)의 평균 알루미늄 조성과 제1지점(P12, P13)에서의 알루미늄 조성의 제1차이와, 전자 차단층의 평균 알루미늄 조성과 제2지점(P22, P23)에서의 알루미늄 조성의 제2차이의 비(H1:H2)는 1:1.2 내지 1:10를 만족함을 알 수 있다.In addition, the first difference between the average aluminum composition of the electron blocking layer 129 and the aluminum composition at the first points P12 and P13, and the average aluminum composition of the electron blocking layer and the aluminum at the second points P22 and P23. It can be seen that the ratio (H1: H2) of the second difference in composition satisfies 1: 1.2 to 1:10.
이러한 조건을 만족하는 경우 제2도전형 반도체층(127)의 표면에서 알루미늄의 조성을 1% 내지 10%로 조절할 수 있다.When the condition is satisfied, the composition of aluminum on the surface of the second conductive semiconductor layer 127 may be adjusted to 1% to 10%.
도 9는 본 발명의 일 실시 예에 따른 반도체 구조물의 개념도이고, 도 10은 본 발명의 일 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이다.9 is a conceptual diagram of a semiconductor structure according to an embodiment of the present invention, and FIG. 10 is a graph showing an aluminum composition ratio of a semiconductor structure according to an embodiment of the present invention.
도 9 및 도 10을 참조하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 및 제1 도전형 반도체층(124)과 제2 도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하는 반도체 구조물(120)을 포함한다.9 and 10, a semiconductor device according to an embodiment may include a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124 and a second conductivity. And a semiconductor structure 120 including an active layer 126 disposed between the semiconductor semiconductor layers 127.
본 발명의 실시 예에 따른 반도체 구조물(120)은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 반도체 구조물(120)은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 반도체 구조물(120)의 Al의 조성비에 의해 결정될 수 있다.The semiconductor structure 120 according to the embodiment of the present invention may output light in the ultraviolet wavelength band. For example, the semiconductor structure 120 may output light in the near ultraviolet wavelength band (UV-A), may output light in the far ultraviolet wavelength band (UV-B), or light in the deep ultraviolet wavelength band (UV-C). ) Can be printed. The wavelength range may be determined by the composition ratio of Al of the semiconductor structure 120.
예시적으로, 근자외선 파장대의 광(UV-A)는 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.For example, the light (UV-A) in the near ultraviolet wavelength band may have a wavelength in the range of 320 nm to 420 nm, the light in the far ultraviolet wavelength band (UV-B) may have a wavelength in the range of 280 nm to 320 nm, and deep ultraviolet light Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
반도체 구조물(120)이 자외선 파장대의 광을 발광할 때, 반도체 구조물(120)의 각 반도체층은 알루미늄을 포함하는 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1) 물질을 포함할 수 있다. 여기서, Al의 조성은 In 원자량과 Ga 원자량 및 Al 원자량을 포함하는 전체 원자량과 Al 원자량의 비율로 나타낼 수 있다. 예를 들어, Al 조성이 40%인 경우 Ga 의 조성은 60%인 Al40Ga60N일 수 있다. When the semiconductor structure 120 emits light in an ultraviolet wavelength band, each semiconductor layer of the semiconductor structure 120 includes In x1 Al y1 Ga 1 -x1- y1 N (0 x1 1 , 0 <y1) containing aluminum. ≦ 1, 0 ≦ x1 + y1 ≦ 1) material. Here, the composition of Al can be represented by the ratio of the total atomic weight and the Al atomic weight including the In atomic weight, the Ga atomic weight, and the Al atomic weight. For example, when the Al composition is 40%, the composition of Ga may be Al 40 Ga 60 N, which is 60%.
또한 실시 예의 설명에 있어서 조성이 낮거나 높다라는 의미는 각 반도체층의 조성 %의 차이(및/또는 % 포인트)로 이해될 수 있다. 예를 들면, 제1 반도체층의 알루미늄 조성이 30%이고 제2 도전형 반도체층의 알루미늄 조성이 60%인 경우, 제2 도전형 반도체층의 알루미늄 조성은 제1 반도체층의 알루미늄 조성보다 30% 더 높다라고 표현할 수 있다.In addition, in the description of the embodiment, the meaning that the composition is low or high may be understood as the difference (and / or percentage point) of the composition% of each semiconductor layer. For example, when the aluminum composition of the first semiconductor layer is 30% and the aluminum composition of the second conductive semiconductor layer is 60%, the aluminum composition of the second conductive semiconductor layer is 30% higher than the aluminum composition of the first semiconductor layer. It can be expressed as higher.
제1 도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도펀트가 도핑될 수 있다. 제1 도전형 반도체층(124)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1 도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1 도펀트가 n형 도펀트인 경우, 제1 도펀트가 도핑된 제1 도전형 반도체층(124)은 n형 반도체층일 수 있다. 다만, 이에 한정하지 않고 제1 도전형 반도체층(124)은 p형 반도체층일 수 있다.The first conductive semiconductor layer 124 may be formed of a compound semiconductor such as a group III-V group or a group II-VI, and may be doped with a first dopant. The first conductive semiconductor layer 124 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0≤x1≤1, 0 <y1≤1, 0≤x1 + y1≤1), for example For example, it may be selected from AlGaN, AlN, InAlGaN and the like. The first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer. However, the present invention is not limited thereto, and the first conductive semiconductor layer 124 may be a p-type semiconductor layer.
제1 도전형 반도체층(124)은 제1-1 도전형 반도체층(124a), 제1-2 도전형 반도체층(124c), 및 제1-1 도전형 반도체층(124a)과 제1-2 도전형 반도체층(124c) 사이에 배치된 중간층(124b)을 포함할 수 있다.The first conductive semiconductor layer 124 may include the first-first conductive semiconductor layer 124a, the second-second conductive semiconductor layer 124c, and the first-first conductive semiconductor layer 124a and the first-first conductive semiconductor layer 124a. The intermediate layer 124b may be disposed between the two conductive semiconductor layers 124c.
제1-1 도전형 반도체층(124a)의 알루미늄 조성은 50% 내지 80%일 수 있다. 제1-1 도전형 반도체층(124a)이 알루미늄 조성이 50% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출 효율을 개선할 수 있고, 80% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제1-1 도전형 반도체층(124a) 내에서의 전류 확산 특성을 확보할 수 있다.The aluminum composition of the first-first conductive semiconductor layer 124a may be 50% to 80%. When the first-first conductivity type semiconductor layer 124a has an aluminum composition of 50% or more, light extraction efficiency may be improved by lowering the absorption rate of light (UV-C) in the deep ultraviolet wavelength band emitted from the active layer 126. When less than or equal to%, the current injection characteristic into the active layer 126 and the current spreading characteristic in the first-first conductive semiconductor layer 124a can be ensured.
제1-2 도전형 반도체층(124c)은 제1-1 도전형 반도체층(124a)보다 활성층(126)에 가까이 배치될 수 있다. 제1-2 도전형 반도체층(124c)의 알루미늄 조성은 제1-1 도전형 반도체층(124a) 보다 낮을 수 있다. The first-second conductivity type semiconductor layer 124c may be disposed closer to the active layer 126 than the first-first conductivity type semiconductor layer 124a. The aluminum composition of the 1-2 conductive semiconductor layer 124c may be lower than that of the 1-1 conductive semiconductor layer 124a.
반도체 구조물(120)이 심자외선 파장대의 광(UV-C)을 방출하는 경우, 제1-2 도전형 반도체층(124c)의 알루미늄 조성은 40% 내지 70%일 수 있다.When the semiconductor structure 120 emits light (UV-C) in the deep ultraviolet wavelength band, the aluminum composition of the 1-2 conductive semiconductor layer 124c may be 40% to 70%.
제1-2 도전형 반도체층(124c)의 알루미늄 조성이 40% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출효율을 개선할 수 있고, 70% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제1-2 도전형 반도체층(124c) 내에서의 전류 확산 특성을 확보할 수 있다. When the aluminum composition of the second conductive semiconductor layer 124c is 40% or more, light extraction efficiency may be improved by lowering the absorption rate of light (UV-C) emitted from the active layer 126 in the deep ultraviolet wavelength band. When less than or equal to%, the current injection characteristic into the active layer 126 and the current spreading characteristic in the 1-2 conductive semiconductor layer 124c can be secured.
제1-1 도전형 반도체층(124a)와 제1-2 도전형 반도체층(124c)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 따라서, 활성층(126)이 자외선 영역의 파장을 갖는 광을 방출하는 경우 자외선 영역의 파장을 갖는 광에 대한 반도체 구조물(120) 내에서 흡수율을 낮출 수 있다.The aluminum composition of the first-first conductive semiconductor layer 124a and the first-second conductive semiconductor layer 124c may be higher than that of the well layer 126a. Therefore, when the active layer 126 emits light having a wavelength in the ultraviolet region, the absorption rate may be lowered in the semiconductor structure 120 with respect to light having a wavelength in the ultraviolet region.
또한, 제1-2 도전형 반도체층(124c)의 알루미늄 조성보다 제1-1 도전형 반도체층(124a)의 알루미늄 조성이 높을 경우 굴절률의 차이에 의해서, 활성층(126)에서 반도체 구조물(120) 외부로 광이 추출되기 더 유리할 수 있다. 따라서, 반도체 구조물(120)의 광추출효율이 개선될 수 있다.In addition, when the aluminum composition of the first-first conductivity-type semiconductor layer 124a is higher than the aluminum composition of the first-second conductivity-type semiconductor layer 124c, the semiconductor structure 120 may be formed in the active layer 126 by the difference in refractive index. It may be more advantageous for light to be extracted to the outside. Therefore, light extraction efficiency of the semiconductor structure 120 may be improved.
제1-2 도전형 반도체층(124c)의 두께는 제1-1 도전형 반도체층(124a)의 두께보다 얇을 수 있다. 제1-1 도전형 반도체층(124a)은 제1-2 도전형 반도체층(124c)의 두께의 130%이상일 수 있다. 이러한 구성에 의하면 알루미늄 조성이 높은 제1-1 도전형 반도체층(124a)의 두께를 충분히 확보한 후에 중간층(124b)이 배치되므로 전체 반도체 구조물(120)의 결정성이 향상될 수 있다.The thickness of the first-second conductive semiconductor layer 124c may be thinner than the thickness of the first-first conductive semiconductor layer 124a. The first-first conductive semiconductor layer 124a may be 130% or more of the thickness of the first-second conductive semiconductor layer 124c. According to this configuration, since the intermediate layer 124b is disposed after sufficiently securing the thickness of the first-first conductivity-type semiconductor layer 124a having a high aluminum composition, the crystallinity of the entire semiconductor structure 120 may be improved.
중간층(124b)의 알루미늄 조성은 제1 도전형 반도체층(124) 및 제2 도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 중간층(124b)은 성장 기판을 제거하는 LLO(Laser Lift-off) 공정시 반도체 구조물(120)에 조사되는 레이저를 흡수하여 활성층(126)이 손상되는 것을 방지하는 역할을 수행할 수 있다. 따라서, 실시 예에 따른 반도체 소자는 LLO(Laser Lift-off) 공정시 활성층(126)의 손상을 방지할 수 있어 광 출력 및 전기적 특성이 향상될 수 있다.The aluminum composition of the intermediate layer 124b may be lower than that of the first conductive semiconductor layer 124 and the second conductive semiconductor layer 124. The intermediate layer 124b may serve to prevent damage to the active layer 126 by absorbing a laser beam irradiated onto the semiconductor structure 120 during a laser lift-off (LLO) process of removing a growth substrate. Therefore, the semiconductor device according to the embodiment may prevent damage to the active layer 126 during the laser lift-off (LLO) process, thereby improving light output and electrical characteristics.
또한, 중간층(124b)이 제1 전극과 접하는 경우 중간층(124b)과 제1 전극 사이의 저항을 낮추어 전류 주입 효율을 확보하기 위해, 중간층(124b)의 알루미늄 조성은 제1-1 도전형 반도체층(124a), 제1-2 도전형 반도체층(124c)의 알루미늄 조성보다 낮을 수 있다.In addition, when the intermediate layer 124b is in contact with the first electrode, the aluminum composition of the intermediate layer 124b may be a 1-1 conductive semiconductor layer in order to lower the resistance between the intermediate layer 124b and the first electrode to ensure current injection efficiency. 124a and lower than the aluminum composition of the 1-2 type conductive semiconductor layer 124c.
중간층(124b)의 두께와 알루미늄 조성은 LLO 공정 시 반도체 구조물(120)에 조사되는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 따라서 중간층(124b)의 알루미늄 조성은 LLO 공정 시 사용하는 레이저 광의 파장에 대응될 수 있다.The thickness and aluminum composition of the intermediate layer 124b may be appropriately adjusted to absorb the laser irradiated to the semiconductor structure 120 during the LLO process. Therefore, the aluminum composition of the intermediate layer 124b may correspond to the wavelength of the laser light used in the LLO process.
LLO용 레이저가 200nm 내지 300nm인 경우, 중간층(124b)의 알루미늄 조성은 30% 내지 70%이고 두께는 1nm 내지 10nm일 수 있다. When the laser for the LLO is 200 nm to 300 nm, the aluminum composition of the intermediate layer 124b may be 30% to 70% and the thickness may be 1 nm to 10 nm.
예시적으로 LLO용 레이저의 파장이 270nm보다 낮아지는 경우 LLO용 레이저 파장에 대응되도록 중간층(124b)의 알루미늄의 조성이 높아질 수 있다. 예시적으로 중간층(124b)의 알루미늄 조성은 50% 내지 70%로 높아질 수 있다. For example, when the wavelength of the LLO laser is lower than 270 nm, the composition of aluminum of the intermediate layer 124b may be increased to correspond to the LLO laser wavelength. For example, the aluminum composition of the intermediate layer 124b may be increased to 50% to 70%.
중간층(124b)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높아지면, 중간층(124b)은 활성층(126)에서 출사된 광을 흡수하지 않을 수 있다. 따라서, 광 추출 효율이 향상될 수 있다. 실시 예에 따르면, LLO용 레이저는 우물층(126a)의 발광파장 보다 낮은 파장이 선택될 수 있다. 따라서, 중간층(124b)은 LLO용 레이저는 흡수하면서 우물층(126a)에서 출사되는 광은 흡수하지 않도록 적절한 알루미늄 조성을 가질 수 있다.When the aluminum composition of the intermediate layer 124b is higher than the aluminum composition of the well layer 126a, the intermediate layer 124b may not absorb light emitted from the active layer 126. Therefore, light extraction efficiency can be improved. According to an embodiment, the LLO laser may have a wavelength lower than the light emission wavelength of the well layer 126a. Therefore, the intermediate layer 124b may have an appropriate aluminum composition so as to absorb the laser for the LLO while not absorbing the light emitted from the well layer 126a.
중간층(124b)은 제1 도전형 반도체층(124)보다 알루미늄 조성이 낮은 제1중간층(미도시), 및 제1 도전형 반도체층(124)보다 알루미늄 조성이 높은 제2중간층(미도시)을 포함할 수도 있다. 제1중간층과 제2중간층은 교대로 복수 개가 배치될 수도 있다.The intermediate layer 124b includes a first intermediate layer (not shown) having a lower aluminum composition than the first conductive semiconductor layer 124 and a second intermediate layer (not shown) having a higher aluminum composition than the first conductive semiconductor layer 124. It may also include. A plurality of first intermediate layers and a plurality of second intermediate layers may be arranged alternately.
활성층(126)은 제1 도전형 반도체층(124)과 제2 도전형 반도체층(127) 사이에 배치될 수 있다. 활성층(126)은 복수의 우물층(126a)과 복수의 장벽층(126b)을 포함할 수 있다. 우물층(126a)은 제1 도전형 반도체층(124)을 통해서 주입되는 제1 캐리어(전자 또는 정공)와 제2 도전형 반도체층(127)을 통해서 주입되는 제2 캐리어(정공 또는 전자)가 만나는 층이다. 전도대의 제1 캐리어(또는 제2 캐리어)와 가전도대의 제2 캐리어(또는 제1 캐리어)가 활성층(126)의 우물층(126a)에서 재결합하면, 우물층(126a)의 전도대와 우물층(126a)의 가전도대의 에너지 레벨의 차이(에너지 밴드갭)에 대응하는 파장을 가지는 빛이 발생될 수 있다.The active layer 126 may be disposed between the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 127. The active layer 126 may include a plurality of well layers 126a and a plurality of barrier layers 126b. The well layer 126a includes a first carrier (electrons or holes) injected through the first conductive semiconductor layer 124 and a second carrier (holes or electrons) injected through the second conductive semiconductor layer 127. It is a meeting floor. When the first carrier (or second carrier) of the conduction band and the second carrier (or first carrier) of the electric conduction band are recombined in the well layer 126a of the active layer 126, the conduction band and the well layer of the well layer 126a ( Light having a wavelength corresponding to the difference (energy band gap) of the energy level of the household appliance band 126a may be generated.
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.The active layer 126 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 126. The structure of is not limited to this.
활성층(126)은 복수 개의 우물층(126a)과 장벽층(126b)을 포함할 수 있다. 우물층(126a)과 장벽층(126b)은 Inx2Aly2Ga1 -x2- y2N(0≤x2≤1, 0<y2≤1, 0≤x2+y2≤1)의 조성식을 가질 수 있다. 우물층(126a)은 발광하는 파장에 따라 알루미늄 조성이 달라질 수 있다.The active layer 126 may include a plurality of well layers 126a and a barrier layer 126b. The well layer 126a and the barrier layer 126b may have a composition formula of In x2 Al y2 Ga 1 -x2- y2 N (0≤x2≤1, 0 <y2≤1, 0≤x2 + y2≤1). . The well layer 126a may have an aluminum composition depending on the wavelength of light emitted.
제2 도전형 반도체층(127)은 활성층(126) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(127)에 제2 도펀트가 도핑될 수 있다. The second conductive semiconductor layer 127 is formed on the active layer 126, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI. The second conductive semiconductor layer 127 may be a second semiconductor layer 127. Dopants may be doped.
제2 도전형 반도체층(127)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0<y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. The second conductivity-type semiconductor layer 127 is a semiconductor material or AlInN having a composition formula of In x5 Al y2 Ga 1 -x5- y2 N (0≤x5≤1, 0 <y2≤1, 0≤x5 + y2≤1). , AlGaAs, GaP, GaAs, GaAsP, AlGaInP may be formed of a material selected from.
제2 도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2 도펀트가 도핑된 제2 도전형 반도체층(127)은 p형 반도체층일 수 있다. 다만, 이에 한정하지 않고 제2 도전형 반도체층(124)은 n형 반도체층일 수도 있다.When the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba, the second conductive semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer. However, the present invention is not limited thereto, and the second conductivity-type semiconductor layer 124 may be an n-type semiconductor layer.
제2 도전형 반도체층(127)은 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)을 포함할 수 있다. 제2-1 도전형 반도체층(127a)은 제2-2 도전형 반도체층(127b) 및 제2-3 도전형 반도체층(127c)보다 알루미늄 조성이 작을 수 있다.The second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c. The 2-1 conductivity type semiconductor layer 127a may have a smaller aluminum composition than the 2-2 conductivity type semiconductor layer 127b and the 2-3 conductivity type semiconductor layer 127c.
차단층(129)은 활성층(126)과 제2 도전형 반도체층(127) 사이에 배치될 수 있다. 차단층(129)은 제1 도전형 반도체층(124)에서 공급된 제1 캐리어가 제2 도전형 반도체층(127)으로 빠져나가는 흐름을 차단하여, 활성층(126) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 차단층(129)의 에너지 밴드갭은 활성층(126) 및/또는 제2 도전형 반도체층(127)의 에너지 밴드갭보다 클 수 있다. 차단층(129)은 제2 도펀트가 도핑되므로 제2 도전형 반도체층(127)의 일부 영역으로 정의될 수도 있다.The blocking layer 129 may be disposed between the active layer 126 and the second conductivity type semiconductor layer 127. The blocking layer 129 blocks the flow of the first carrier supplied from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 to recombine electrons and holes in the active layer 126. You can increase your chances. The energy bandgap of the blocking layer 129 may be greater than the energy bandgap of the active layer 126 and / or the second conductivity type semiconductor layer 127. The blocking layer 129 may be defined as a portion of the second conductive semiconductor layer 127 because the second dopant is doped.
차단층(129)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.The blocking layer 129 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1- y1 N (0≤x1≤1, 0 <y1≤1, 0≤x1 + y1≤1), for example AlGaN, AlN, InAlGaN may be selected from, but is not limited thereto.
실시 예에 따르면, 제1 도전형 반도체층(124), 활성층(126), 제2 도전형 반도체층(127), 및 차단층(129)은 모두 알루미늄을 포함할 수 있다. 따라서, 제1 도전형 반도체층(124), 활성층(126), 제2 도전형 반도체층(127), 및 차단층(129)은 AlGaN, InAlGaN 또는 AlN 조성을 가질 수 있다.According to an embodiment, the first conductive semiconductor layer 124, the active layer 126, the second conductive semiconductor layer 127, and the blocking layer 129 may all include aluminum. Accordingly, the first conductive semiconductor layer 124, the active layer 126, the second conductive semiconductor layer 127, and the blocking layer 129 may have an AlGaN, InAlGaN, or AlN composition.
차단층(129)은 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 예시적으로 차단층(129)은 알루미늄 조성은 50% 내지 100%일 수 있다. 차단층(129)의 알루미늄 조성이 50% 이상일 경우 제1 캐리어를 차단하기 위한 충분한 에너지 장벽을 가질 수 있고, 활성층(126)에서 방출하는 광을 흡수하지 않을 수 있다. The blocking layer 129 may have a higher aluminum composition than the aluminum composition of the well layer 126a. For example, the blocking layer 129 may have an aluminum composition of 50% to 100%. If the aluminum composition of the blocking layer 129 is 50% or more, it may have a sufficient energy barrier to block the first carrier and may not absorb light emitted from the active layer 126.
차단층(129)은 제1-1구간(129a)과 제1-2구간(129c)을 포함할 수 있다. The blocking layer 129 may include a first-first section 129a and a first-second section 129c.
제1-1구간(129a)은 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 향하는 방향으로 향할수록 알루미늄 조성이 높아질 수 있다. An aluminum composition may be increased in the first-first section 129a in a direction from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127.
제1-1구간(129a)의 알루미늄 조성은 80% 내지 100%일 수 있다. 따라서, 차단층(129)의 제1-1구간(129a)은 반도체 구조물(120) 내에서 Al 조성이 가장 높은 부분일 수 있다. The aluminum composition of the first-first section 129a may be 80% to 100%. Therefore, the first-first section 129a of the blocking layer 129 may be the portion having the highest Al composition in the semiconductor structure 120.
제1-1구간(129a)은 AlGaN 또는 AlN을 포함할 수 있다. 또는 제1-1구간(129a)은 AlGaN과 AlN이 교대로 배치되는 초격자층일 수도 있다.The first-first section 129a may include AlGaN or AlN. Alternatively, the first-first section 129a may be a superlattice layer in which AlGaN and AlN are alternately arranged.
제1-1구간(129a)의 두께는 약 0.1nm 내지 4nm일 수 있다. 제1 캐리어의 제2 도전형 반도체층(127)으로의 이동을 효율적으로 차단하기 위해서는 제1-1구간(129a)의 두께는 0.1nm이상으로 배치할 수 있다. 또한, 제2 도전형 반도체층(127)에서 활성층(126)으로 제2 캐리어를 주입하는 주입 효율을 확보하기 위해 제1-1구간(129a)의 두께는 4nm이하로 배치할 수 있다. The thickness of the first-first section 129a may be about 0.1 nm to 4 nm. In order to effectively block the movement of the first carrier to the second conductive semiconductor layer 127, the thickness of the first-first section 129a may be 0.1 nm or more. In addition, the thickness of the first-first section 129a may be less than or equal to 4 nm to ensure the injection efficiency of injecting the second carrier from the second conductivity-type semiconductor layer 127 into the active layer 126.
실시 예의 제1-1구간(129a)은 정공 주입 효율과 전자(Electron)의 차단 효율을 확보하기 위해 제1-1 구간(129-a)의 두께를 0.1nm 이상 내지 4nm 이하로 배치하였으나 반드시 이에 한정하지 않는다. 예시적으로 제1 캐리어 차단기능과 제2 캐리어 주입 기능 중 어느 하나를 선택적으로 더 크게 확보해야 할 필요가 있는 경우 상기 언급한 수치 범위를 벗어날 수도 있다. In the first-first section 129a of the embodiment, the thickness of the first-first section 129-a is disposed to be 0.1 nm or more and 4 nm or less to ensure hole injection efficiency and electron blocking efficiency. It is not limited. For example, if it is necessary to selectively secure one of the first carrier blocking function and the second carrier injection function, it may be out of the above-mentioned numerical range.
제1-1구간(129a)과 제1-2구간(129c) 사이에 배치된 제1-3구간(129b)은 도펀트를 포함하지 않는 언도프(undoped)된 구간을 포함할 수 있다. 따라서, 제1-3구간(129b)은 제2 도펀트가 제2 도전형 반도체층(127)로부터 활성층(126)으로 확산되는 것을 방지하는 역할을 수행할 수 있다.The first to third sections 129b disposed between the first-first section 129a and the first-second section 129c may include an undoped section that does not include a dopant. Therefore, the first to third sections 129b may prevent the second dopant from being diffused from the second conductive semiconductor layer 127 to the active layer 126.
제2 도전형 반도체층(127)은 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)을 포함할 수 있다.The second conductive semiconductor layer 127 may include 2-1 to 2-3 conductive semiconductor layers 127a, 127b, and 127c.
제2-2 도전형 반도체층(127b)의 두께는 10nm 보다 크고 50nm보다 작을 수 있다. 예시적으로 제2-2 도전형 반도체층(127b)의 두께는 25nm일 수 있다. 제2-2 도전형 반도체층(127b)의 두께가 10nm 이상일 경우 제2-2 도전형 반도체층(127b)의 전류 확산 특성을 확보할 수 있다. 또한, 두께가 50nm 이하인 경우, 활성층(126)으로 주입하는 제2 캐리어의 주입 효율을 확보할 수 있고 활성층(126)에서 방출되는 광의 제2-2 도전형 반도체층(127b)에서의 흡수율을 낮출 수 있다. The thickness of the second-second conductive semiconductor layer 127b may be larger than 10 nm and smaller than 50 nm. For example, the thickness of the second conductivity-type semiconductor layer 127b may be 25 nm. When the thickness of the second-second conductive semiconductor layer 127b is 10 nm or more, current diffusion characteristics of the second-second conductive semiconductor layer 127b may be secured. In addition, when the thickness is 50 nm or less, the injection efficiency of the second carrier injected into the active layer 126 can be ensured, and the absorption rate of the light emitted from the active layer 126 in the 2-2 conductive semiconductor layer 127b is lowered. Can be.
제2-2 도전형 반도체층(127b)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 자외선 광을 생성하기 위해 우물층(126a)의 알루미늄 조성은 약 30% 내지 70%일 수 있다. 따라서, 제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40% 이상 80%이하일 수 있다.The aluminum composition of the second-conductive semiconductor layer 127b may be higher than that of the well layer 126a. The aluminum composition of the well layer 126a may be about 30% to 70% to generate ultraviolet light. Therefore, the aluminum composition of the second conductive semiconductor layer 127b may be 40% or more and 80% or less.
제2-2 도전형 반도체층(127b)의 알루미늄 조성이 40% 이상인 경우 광을 흡수하는 문제를 개선할 수 있으며, 80% 이하인 경우에는 전류 주입 효율이 악화되는 문제를 개선할 수 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40%일 수 있다.When the aluminum composition of the second conductive semiconductor layer 127b is 40% or more, the problem of absorbing light may be improved, and when 80% or less, the problem of deteriorating current injection efficiency may be improved. For example, when the aluminum composition of the well layer 126a is 30%, the aluminum composition of the second-2 conductive semiconductor layer 127b may be 40%.
제2-1 도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다. 제2-1 도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높은 경우 제2전극 사이의 저항이 높아져 충분한 오믹이 이루어지지 않고, 전류 주입 효율이 떨어지는 문제가 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be lower than that of the well layer 126a. If the aluminum composition of the 2-1 conductivity type semiconductor layer 127a is higher than that of the well layer 126a, the resistance between the second electrodes may be increased, resulting in insufficient ohmicity and inferior current injection efficiency.
제2-1 도전형 반도체층(127a)의 알루미늄 조성은 1% 이상 50% 이하일 수 있다. 50%이하인 경우 제2전극과의 저항이 낮아질 수 있고, 조성이 1% 이상인 경우 제2-1 도전형 반도체층(127a) 내에서 광을 흡수하는 문제를 개선할 수 있다. 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 중간층(124b)의 알루미늄 조성보다 작을 수 있다.The aluminum composition of the 2-1 conductive semiconductor layer 127a may be 1% or more and 50% or less. If it is 50% or less, the resistance with the second electrode may be lowered. If the composition is 1% or more, the problem of absorbing light in the 2-1 conductive semiconductor layer 127a may be improved. The aluminum composition of the 2-1 conductive semiconductor layer 127a may be smaller than that of the intermediate layer 124b.
제2-1 도전형 반도체층(127a)의 두께는 1nm 내지 30nm일 수 있다. 제2-1 도전형 반도체층(127a)은 자외선 광을 흡수할 수 있으므로 최대한 제2-1 도전형 반도체층(127a)의 두께를 얇게 제어하는 것이 광 출력 관점에서 유리할 수 있다.The thickness of the 2-1 conductive semiconductor layer 127a may be 1 nm to 30 nm. Since the 2-1 conductivity type semiconductor layer 127a may absorb ultraviolet light, it may be advantageous in terms of light output to control the thickness of the 2-1 conductivity type semiconductor layer 127a as thin as possible.
그러나 제2-1 도전형 반도체층(127a)의 두께가 1nm 이상인 경우 제2-1 도전형 반도체층(127a)의 저항을 감소시킬 수 있어 반도체 소자의 전기적 특성이 개선될 수 있다. 또한, 두께가 30nm 이하인 경우 제2-1 도전형 반도체층(127a)이 흡수하는 광량을 줄여 광 출력 효율을 개선할 수 있다.However, when the thickness of the 2-1 conductive semiconductor layer 127a is 1 nm or more, the resistance of the 2-1 conductive semiconductor layer 127a may be reduced, thereby improving electrical characteristics of the semiconductor device. In addition, when the thickness is 30 nm or less, light output efficiency may be improved by reducing the amount of light absorbed by the 2-1 conductive semiconductor layer 127a.
제2-1 도전형 반도체층(127a)의 두께는 제2-2 도전형 반도체층(127b)의 두께보다 작을 수 있다. 제2-1 도전형 반도체층(127a)과 제2-2 도전형 반도체층(127b)의 두께비는 1:1.5 내지 1:20일 수 있다. 두께비가 1:1.5보다 큰 경우 제2-2 도전형 반도체층(127b)의 두께가 증가하므로 전류 주입 효율이 개선될 수 있다. 또한, 두께비가 1:20보다 작은 경우 제2-1 도전형 반도체층(127a)의 두께가 증가하므로 결정성이 저하되는 문제를 개선할 수 있다. 만약 제2-1 도전형 반도체층(127a)의 두께가 너무 얇아지면 그 두께 범위 내에서 알루미늄 조성을 급격히 변화시켜야 하므로 결정성이 저하될 수 있다.The thickness of the 2-1 conductive semiconductor layer 127a may be smaller than the thickness of the 2-2 conductive semiconductor layer 127b. The thickness ratio of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b may be 1: 1.5 to 1:20. If the thickness ratio is greater than 1: 1.5, the thickness of the second conductive semiconductor layer 127b is increased, thereby improving current injection efficiency. In addition, when the thickness ratio is smaller than 1:20, the thickness of the 2-1 conductive semiconductor layer 127a is increased, thereby improving the problem of deterioration of crystallinity. If the thickness of the 2-1 conductive semiconductor layer 127a is too thin, the aluminum composition must be changed rapidly within the thickness range, so that crystallinity may be degraded.
제2-2 도전형 반도체층(127b)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 또한, 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다.The aluminum composition of the second-second conductive semiconductor layer 127b may be smaller as it moves away from the active layer 126. In addition, the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller as it moves away from the active layer 126.
이때, 제2-1 도전형 반도체층(127a)의 두께에 대한 알루미늄 감소폭은 제2-2 도전형 반도체층(127b)의 두께에 대한 알루미늄 감소폭보다 클 수 있다. 즉, 제2-1 도전형 반도체층(127a)의 Al 조성비의 두께 방향에 대한 변화율은 제2-2 도전형 반도체층(127b)의 Al 조성비의 두께 방향에 대한 변화율보다 클 수 있다.At this time, the aluminum reduction width with respect to the thickness of the 2-1 conductivity type semiconductor layer 127a may be greater than the aluminum reduction width with respect to the thickness of the 2-2 conductivity type semiconductor layer 127b. That is, the change rate in the thickness direction of the Al composition ratio of the 2-1 conductivity type semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-2 conductivity type semiconductor layer 127b.
제2-1 도전형 반도체층(127a)은 제2 전극과의 낮은 접촉 저항을 위해 우물층(126a)보다 알루미늄 조성이 낮아질 수 있다. 따라서, 제2-1 도전형 반도체층(127a)은 우물층(126a)에서 발광하는 광을 일부 흡수할 수 있다. The 2-1 conductivity type semiconductor layer 127a may have a lower aluminum composition than the well layer 126a for low contact resistance with the second electrode. Therefore, the 2-1 conductivity type semiconductor layer 127a may partially absorb light emitted from the well layer 126a.
따라서, 제2-1 도전형 반도체층(127a)은 광이 흡수되는 것을 억제하기 위해 제2-1 도전형 반도체층(127a)의 두께를 1 nm 이상 내지 30 nm 이하로 배치할 수 있다. Therefore, the thickness of the 2-1 conductivity type semiconductor layer 127a may be 1 nm or more and 30 nm or less in order to suppress the absorption of light.
그 결과, 제2-1 도전형 반도체층(127a)은 두께는 얇아지는 반면 알루미늄의 변화폭은 상대적으로 크므로 두께에 대한 알루미늄 감소폭이 상대적으로 클 수 있다. As a result, the thickness of the 2-1 conductive semiconductor layer 127a may be relatively thin, but the change width of aluminum may be relatively large.
이에 반해, 제2-2 도전형 반도체층(127b)은 두께는 제2-1 도전형 반도체층(127a)보다 두꺼운 반면, 알루미늄 조성은 우물층(126a)보다 높거나 같으므로 감소폭이 상대적으로 완만할 수 있다. In contrast, the thickness of the 2-2 conductivity type semiconductor layer 127b is thicker than that of the 2-1 conductivity type semiconductor layer 127a, while the aluminum composition is higher than or equal to the well layer 126a, so that the decrease is relatively slow. can do.
제2-1 도전형 반도체층(127a)은 두께가 얇고 두께에 대한 알루미늄 조성의 변화폭이 크므로 상대적으로 느리게 성장시키면서 알루미늄의 조성을 변화시킬 수 있다.Since the 2-1 conductivity type semiconductor layer 127a has a small thickness and a large variation in the aluminum composition with respect to the thickness, the composition of aluminum can be changed while growing relatively slowly.
제2-3 도전형 반도체층(127c)는 균일한 알루미늄 조성을 가질 수 있다. 제2-3 도전형 반도체층(127c)의 두께는 20nm 내지 60nm일 수 있다. 제2-3 도전형 반도체층(127c)의 알루미늄 조성은 40% 내지 70%일 수 있다. 제2-3 도전형 반도체층(127c)의 알루미늄 조성이 40% 이상일 때 제2-1 도전형 반도체층(127a), 제2-2 도전형 반도체층(127b)의 결정성이 저하되지 않을 수 있고, 70% 미만일 때 상기 제2-1 도전형 반도체층(127a), 제2-2 도전형 반도체층(127b)의 알루미늄 조성을 급격하게 변화하여 발생하는 결정성 저하 문제를 방지할 수 있어서 반도체 소자의 전기적 특성을 향상시킬 수 있다.The 2-3 conductive semiconductor layer 127c may have a uniform aluminum composition. The thickness of the 2-3 conductive semiconductor layer 127c may be 20 nm to 60 nm. The aluminum composition of the second conductive semiconductor layer 127c may be 40% to 70%. When the aluminum composition of the 2-3 conductive semiconductor layer 127c is 40% or more, the crystallinity of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b may not decrease. When less than 70%, the problem of crystallinity deterioration caused by a drastic change in the aluminum composition of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127b can be prevented. It can improve the electrical characteristics.
전술한 바와 같이 제2-1 도전형 반도체층(127a)의 두께는 1nm 내지 10nm이고, 제2-2 도전형 반도체층(127b)의 두께는 10nm 내지 50nm이고, 제2-3 도전형 반도체층(127c)의 두께는 20nm 내지 60nm일 수 있다. As described above, the thickness of the 2-1 conductivity type semiconductor layer 127a is 1 nm to 10 nm, the thickness of the 2-2 conductivity type semiconductor layer 127b is 10 nm to 50 nm, and the 2-3 conductivity type semiconductor layer. The thickness of 127c may be 20 nm to 60 nm.
따라서, 제2-1 도전형 반도체층(127a)의 두께와 제2 도전형 반도체층(127)의 전체 두께의 비는 1:3 내지 1:120일 수 있다. 1:3 보다 클 경우 제2-1 도전형 반도체층(127a)가 반도체 소자의 전기적 특성(예를 들어 동작 전압)을 확보할 수 있고, 1:120보다 작을 경우, 반도체 소자의 광학적 특성(예를 들어 광 출력)을 확보할 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 제2-1 도전형 반도체층(127a)의 두께와 제2 도전형 반도체층(127)의 전체 두께의 비는 1:3 내지 1:50 또는 1:3 내지 1:70일 수 있다.Therefore, the ratio of the thickness of the 2-1 conductivity type semiconductor layer 127a and the total thickness of the second conductivity type semiconductor layer 127 may be 1: 3 to 1: 120. If greater than 1: 3, the 2-1 conductive semiconductor layer 127a can secure electrical characteristics (for example, operating voltage) of the semiconductor device, and if less than 1: 120, optical properties of the semiconductor device (for example, For example, the light output can be secured. However, the present invention is not limited thereto, and the ratio of the thickness of the second conductive semiconductor layer 127a to the total thickness of the second conductive semiconductor layer 127 may be 1: 3 to 1:50 or 1: 3 to 1 :. May be 70.
본 발명의 실시 예에 따른 제2 도전형 반도체층(127)은 반도체 구조물 내에서 알루미늄 조성이 가장 높은 제1 지점(P1), 및 알루미늄 조성이 가장 낮은 제3 지점(P3)을 포함할 수 있다. 여기서 제1 지점(P1)은 알루미늄 조성이 가장 높은 차단층(129)의 제1-1 구간(129a)일 수 있고, 제3 지점(P3)은 알루미늄 가장 낮은 제2-1 도전형 반도체층(127a)일 수 있다.The second conductive semiconductor layer 127 according to an embodiment of the present invention may include a first point P1 having the highest aluminum composition and a third point P3 having the lowest aluminum composition in the semiconductor structure. . Here, the first point P1 may be the first-first section 129a of the blocking layer 129 having the highest aluminum composition, and the third point P3 may be the second-first conductive semiconductor layer having the lowest aluminum ( 127a).
제1 도전형 반도체층(124)은 제1 도전형 반도체층내에서 알루미늄 조성이 가장 높은 제2 지점(P2), 및 알루미늄 조성이 가장 낮은 제4 지점(P4)을 포함할 수 있다. 제2 지점(P2)은 제1-1 도전형 반도체층(124a) 및/또는 제1-2 도전형 반도체층(124c)일 수 있고, 제4 지점(P4)은 중간층(124b)일 수 있다.The first conductive semiconductor layer 124 may include a second point P2 having the highest aluminum composition and a fourth point P4 having the lowest aluminum composition in the first conductive semiconductor layer. The second point P2 may be the first-first conductivity-type semiconductor layer 124a and / or the second-second conductivity-type semiconductor layer 124c, and the fourth point P4 may be the intermediate layer 124b. .
제1-1구간(129a)의 알루미늄 조성은 80% 내지 100%일 수 있다. 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 1% 이상 50%일 수 있다. 이때, 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 작을 수 있다.The aluminum composition of the first-first section 129a may be 80% to 100%. The aluminum composition of the 2-1 conductive semiconductor layer 127a may be 1% or more and 50%. In this case, the aluminum composition of the 2-1 conductivity type semiconductor layer 127a may be smaller than that of the well layer 126a.
따라서, 제3 지점(P3)과 제1 지점(P1) 사이의 알루미늄 조성의 비는 1:4 내지 1:100일 수 있다. 알루미늄 조성의 비가 1:4 이상인 경우 제1 지점(P1)의 알루미늄 조성이 증가하여 제1 캐리어가 제2 도전형 반도체층을 지나가는 것을 효과적으로 차단할 수 있다. 또한, 알루미늄 조성의 비가 1:100이하인 경우 제3 지점(P3)의 알루미늄이 증가하여 제3 지점(P3)이 광을 흡수하는 문제를 개선할 수 있다.Therefore, the ratio of the aluminum composition between the third point P3 and the first point P1 may be 1: 4 to 1: 100. When the ratio of the aluminum composition is 1: 4 or more, the aluminum composition of the first point P1 is increased to effectively block the first carrier from passing through the second conductive semiconductor layer. In addition, when the ratio of the aluminum composition is less than 1: 100, the aluminum of the third point P3 may increase, thereby improving the problem of absorbing the light of the third point P3.
제1-1 도전형 반도체층(124a)의 알루미늄 조성은 50% 내지 80%일 수 있다. 중간층(124b)의 알루미늄 조성은 30% 내지 70%일 수 있다. 이때, 중간층(124b)의 알루미늄 조성은 제1-1 도전형 반도체층보다 작을 수 있다. 따라서, 제4 지점(P4)과 제2 지점(P2) 사이의 알루미늄 조성의 비는 1:0.5 내지 1:0.9일 수 있다.The aluminum composition of the first-first conductive semiconductor layer 124a may be 50% to 80%. The aluminum composition of the intermediate layer 124b may be 30% to 70%. In this case, the aluminum composition of the intermediate layer 124b may be smaller than that of the first-first conductive semiconductor layer. Therefore, the ratio of the aluminum composition between the fourth point P4 and the second point P2 may be 1: 0.5 to 1: 0.9.
알루미늄 조성 비가 1:0.5 이상인 경우 제1-1 도전형 반도체층(124a)의 알루미늄 조성이 커져 결정성이 향상될 수 있다. 또한, 알루미늄 조성비가 1:0.9이하인 경우 중간층(124b)의 알루미늄 조성이 커지므로 자외선 파장대의 광을 흡수하는 문제를 개선할 수 있다.When the aluminum composition ratio is greater than or equal to 1: 0.5, the aluminum composition of the first-first conductivity type semiconductor layer 124a may be increased to improve crystallinity. In addition, when the aluminum composition ratio is 1: 0.9 or less, the aluminum composition of the intermediate layer 124b is increased, thereby improving the problem of absorbing light in the ultraviolet wavelength band.
도 11a 및 도 11b는 본 발명의 일 실시 예에 따른 반도체 구조물의 심스 (Secondary Ion Mass Spectrometry, 이하 SIMS) 데이터이고, 도 11c 및 도 11d는 본 발명의 다른 실시 예에 따른 반도체 구조물의 심스(SIMS) 데이터이고, 도 12는 도 11a 내지 도 11d의 알루미늄 상대 이온 강도를 보여주는 도면이고, 도 13a는 도 12의 (a)의 SIMS 데이터를 일부 확대한 도면이고, 도 13b는 도 12의 (b)의 SIMS 데이터를 리니어 스케일로 변환한 도면이다.11A and 11B are SIMS data of a semiconductor structure according to an embodiment of the present invention, and FIGS. 11C and 11D are SIMS of a semiconductor structure according to another embodiment of the present invention. ), FIG. 12 is a view showing the aluminum relative ion intensity of FIGS. 11A to 11D, FIG. 13A is an enlarged view of the SIMS data of FIG. 12A, and FIG. 13B is FIG. 12B. Is a diagram obtained by converting SIMS data into a linear scale.
도 11a를 참조하면, 반도체 구조물은 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 갈수록 알루미늄(Al), 갈륨(Ga), 제1 도펀트, 제2 도펀트, 산소(O), 탄소(C)의 조성이 변화할 수 있다. 제1 도펀트는 실리콘(Si)일 수 있고 제2 도펀트는 마그네슘(Mg)일 수 있으나 반드시 이에 한정하지 않는다. Referring to FIG. 11A, the semiconductor structure may include aluminum (Al), gallium (Ga), a first dopant, a second dopant, and an oxygen (ie, the first conductive semiconductor layer 124) to the second conductive semiconductor layer 127. O), the composition of carbon (C) may change. The first dopant may be silicon (Si) and the second dopant may be magnesium (Mg), but is not limited thereto.
심스 (SIMS) 데이터는 비행 시간형 2차 이온 질량 분석법(TOF-SIMS, Time-of-Flight Secondary Ion Mass Spectrometry)에 의한 분석 데이터일 수 있다.The SIMS data may be analytical data by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
심스 (SIMS) 데이터는 1차 이온을 타켓의 표면에 조사하고 방출되는 2차 이온의 개수를 카운팅하여 분석할 수 있다. 이때, 1차 이온은 O2 +, Cs+ Bi+등에서 선택될 수 있고, 가속 전압은 20 내지 30 keV 내에서 조절될 수 있고, 조사 전류는 0.1 pA 내지 5.0pA에서 조절될 수 있고, 조사 면적은 20nm×20nm일 수 있다. Sims (SIMS) data can be analyzed by irradiating primary ions to the surface of the target and counting the number of secondary ions released. At this time, the primary ion may be selected from O 2 + , Cs + Bi +, etc., the acceleration voltage may be adjusted within 20 to 30 keV, the irradiation current may be adjusted from 0.1 pA to 5.0pA, the irradiation area May be 20 nm × 20 nm.
심스 (SIMS) 데이터는 제2 도전형 반도체층의 표면(깊이가 0인 지점)에서 제1 도전형 반도체층 방향으로 점차 식각하면서 2차 이온 질량 스펙트럼을 수집할 수 있다.The SIMS data may collect secondary ion mass spectra while gradually etching toward the first conductivity type semiconductor layer from the surface of the second conductivity type semiconductor layer (point of zero depth).
다만 이에 한정하지 않고 AlGaN 기반 및/또는 GaN 기반의 반도체 물질, 제1 및 제2 도펀트 물질을 검출하기 위한 측정 조건이 다양하게 이용될 수 있다.However, the present invention is not limited thereto, and measurement conditions for detecting AlGaN-based and / or GaN-based semiconductor materials and first and second dopant materials may be variously used.
또한, SIMS 분석에 의한 결과는 물질의 2차 이온 강도 또는 도핑 농도에 대한 스펙트럼으로 해석할 수 있는데, 2차 이온 강도 또는 도핑 농도의 해석에 있어서 0.9배 이상 내지 1.1배 이내에 발생하는 노이즈를 포함할 수 있다. 따라서, "같다/동일하다" 라는 기재는 하나의 특정 2차 이온 강도 또는 도핑 농도의 0.9배 이상 내지 1.1배 이내의 노이즈를 포함하여 지칭할 수 있다.In addition, the results of SIMS analysis can be interpreted as a spectrum of secondary ionic strength or doping concentration of a material, which may include noise occurring within 0.9 to 1.1 times in the analysis of secondary ionic strength or doping concentration. Can be. Thus, a description of “equal / identical” may refer to a noise comprising from 0.9 times to 1.1 times greater than one particular secondary ionic strength or doping concentration.
도 11a 내지 도 11d의 심스 (SIMS) 데이터상에서 알루미늄과 갈륨은 2차 이온 강도에 대한 스펙트럼 데이터이고, 제1 도펀트, 제2 도펀트, 산소 및 탄소는 도핑 농도를 측정한 데이터이다. 즉, 도 11a 내지 도 11d는 심스 데이터와 도핑 농도 데이터를 하나의 도면에 표현하였다. In the SIMS data of FIGS. 11A to 11D, aluminum and gallium are spectral data for secondary ionic strength, and first dopant, second dopant, oxygen, and carbon are data obtained by measuring doping concentration. That is, FIGS. 11A to 11D show sims data and doping concentration data in one drawing.
도 11a를 참조하면, 알루미늄 이온 강도의 스펙트럼과 제1 및 제2 도펀트의 농도 스펙트럼의 일부가 교차하는 것으로 도시되었으나 이온 강도와 도펀트의 농도에 대한 데이터는 서로 독립적인 관계를 가질 수 있다. Referring to FIG. 11A, although the spectrum of the aluminum ion intensity and the portion of the concentration spectra of the first and second dopants are shown to cross each other, the data on the ionic strength and the concentration of the dopant may be independent of each other.
예시적으로 표면(깊이가 0인 지점)의 근처에서 알루미늄의 이온 강도와 제2 도펀트의 도핑 농도가 교차하는 것으로 표현되었으나, 도핑 농도의 기준점(도면의 좌측 Y축에서 가장 낮은 지점)을 보다 낮게 설정하는 경우 데이터 상에서 도핑 농도 그래프는 낮아질 수 있다. 예를 들면, 제2 도펀트 도핑 농도의 기준점을 1.00E+14에서 1.00E+12로 낮춘다면 제2 도펀트의 농도 그래프는 도면상에서 낮아지게 되므로 제2 도펀트 데이터와 알루미늄 데이터는 교차하지 않을 수도 있다.By way of example, the ionic strength of aluminum and the doping concentration of the second dopant are intersected near the surface (a point of zero depth), but the reference point of the doping concentration (lowest point on the left Y axis of the drawing) is lowered. When set, the doping concentration graph can be lowered on the data. For example, if the reference point of the second dopant doping concentration is lowered from 1.00E + 14 to 1.00E + 12, since the concentration graph of the second dopant is lowered in the drawing, the second dopant data and the aluminum data may not intersect.
제1 도펀트, 제2 도펀트, 산소 및 탄소의 농도를 측정하는 방법은 특별히 한정하지 않는다. 또한, 본 실시 예에서 종축(Y축)은 로그 스케일로 변환하여 도시하였다.The method for measuring the concentrations of the first dopant, the second dopant, oxygen and carbon is not particularly limited. In addition, in the present embodiment, the vertical axis (Y axis) is illustrated as converted to a logarithmic scale.
알루미늄의 이온 강도는 표면에서 깊이가 증가할수록 점차 증가하다가 최고 강도 지점 이후에서는 증감을 반복하는 것을 알 수 있다. GaN 기반의 반도체 물질에서 Al 원자는 Ga 원자를 치환하여 AlGaN 물질을 구성하기 때문에 갈륨의 이온 강도는 알루미늄의 이온 강도와 서로 대칭을 이룰 수 있다. It can be seen that the ionic strength of aluminum gradually increases with increasing depth at the surface and then increases and decreases after the highest strength point. In the GaN-based semiconductor material, since Al atoms replace the Ga atoms to form an AlGaN material, the ionic strength of gallium may be symmetric with the ionic strength of aluminum.
실시 예에 따른 이온 강도는 측정 조건에 따라 증감될 수 있다. 그러나, 1차 이온의 강도가 증가하면 2차 이온(알루미늄 이온)의 강도 그래프는 전체적으로 증가하고, 1차 이온의 강도가 감소하면 2차 이온(알루미늄 이온)의 강도 그래프는 전체적으로 감소할 수 있다. 따라서, 두께 방향으로 이온 강도의 변화는 측정 조건을 변경하여도 유사할 수 있다.Ionic strength according to the embodiment may be increased or decreased depending on the measurement conditions. However, as the intensity of primary ions increases, the intensity graph of secondary ions (aluminum ions) increases as a whole, and as the intensity of primary ions decreases, the intensity graph of secondary ions (aluminum ions) may decrease as a whole. Therefore, the change in the ionic strength in the thickness direction may be similar even if the measurement conditions are changed.
제2 도펀트의 도핑 농도는 표면에서 가장 높고, 표면에서 멀어질수록 점차 감소할 수 있다. 제2 도펀트는 제2 도전형 반도체층의 모든 영역 및 활성층의 일부 영역에 존재할 수 있으나 반드시 이에 한정하지 않는다. 제2 도펀트는 제2 도전형 반도체층 내에만 배치할 수 있으나, 활성층까지 확산될 수 있다. 따라서, 활성층으로 주입되는 제2 도펀트의 주입 효율이 개선될 수 있다. 하지만 제2 도펀트가 제1 도전형 반도체층까지 확산될 경우 반도체 소자의 누설 전류 및/또는 제1 및 제2 캐리어의 비발광 재결합이 발생하여 반도체 소자의 신뢰성 및/또는 발광효율이 저하될 수 있다.The doping concentration of the second dopant is highest at the surface and may gradually decrease with distance from the surface. The second dopant may be present in all regions of the second conductive semiconductor layer and in some regions of the active layer, but is not limited thereto. The second dopant may be disposed only in the second conductive semiconductor layer, but may be diffused to the active layer. Thus, the implantation efficiency of the second dopant implanted into the active layer can be improved. However, when the second dopant is diffused to the first conductivity type semiconductor layer, leakage current of the semiconductor device and / or non-emitting recombination of the first and second carriers may occur, thereby reducing reliability and / or luminous efficiency of the semiconductor device. .
제1 도펀트는 제1 도전형 반도체층과 활성층 사이 구간에서 농도가 산소의 농도보다 낮아지는 구간(R1)을 가질 수 있다. 제1 도펀트는 활성층에도 일부 분포할 수 있다. 따라서, 활성층으로 주입하는 제1캐리어의 주입 효율이 개선될 수 있고, 활성층에서 제1캐리어와 제2캐리어가 발광성 재결합하는 효율이 개선될 수 있다.The first dopant may have a section R1 in which the concentration is lower than the concentration of oxygen in the section between the first conductive semiconductor layer and the active layer. The first dopant may be partly distributed in the active layer. Therefore, the injection efficiency of the first carrier to be injected into the active layer can be improved, and the efficiency of luminous recombination of the first carrier and the second carrier in the active layer can be improved.
도 11b 내지 도 11d 역시 도 11a와 동일한 경향을 보이는 것을 확인할 수 있다.11B to 11D also show the same tendency as FIG. 11A.
도 12 및 도 13a를 참조하면, 알루미늄 이온 강도는 제1지점 내지 제6지점(P1, P2, P3, P4, P5, P6)을 포함할 수 있다. 도 12의 (a)는 도 11a의 알루미늄 이온 강도이고, 도 12의 (b)는 도 11b의 알루미늄 이온 강도이고, 도 12의 (c)는 도 11c의 알루미늄 이온 강도이고, 도 12의 (d)는 도 11d의 알루미늄 이온 강도이다.12 and 13A, the aluminum ion strength may include first to sixth points P1, P2, P3, P4, P5, and P6. FIG. 12A is the aluminum ion intensity of FIG. 11A, FIG. 12B is the aluminum ion intensity of FIG. 11B, FIG. 12C is the aluminum ion intensity of FIG. 11C, and FIG. ) Is the aluminum ion strength of FIG. 11D.
도 12의 (c) 및 도 12의 (d)는 제1지점(P1)과 제3지점(P3) 사이에 이온 강도가 변화하는 요철 구간(P7)을 갖는 점을 제외하고는 도 12의 (a)의 알루미늄 이온 강도 분포와 유사한 분포를 가질 수 있다. 예시적으로 도 12의 (c) 및 도 12의 (d)의 실시 예는 차단층에 초격자층을 더 배치한 구조일 수 있다.12 (c) and 12 (d) are different from those of FIG. 12 except for having an uneven section P7 in which the ionic strength changes between the first point P1 and the third point P3. It may have a distribution similar to the aluminum ion intensity distribution of a). For example, the embodiment of FIGS. 12C and 12D may have a structure in which a superlattice layer is further disposed on the blocking layer.
제1지점(P1)의 알루미늄의 이온 강도는 반도체 구조물(120)내에서 가장 높을 수 있다. 제1지점(P1)의 알루미늄의 이온 강도가 가장 높기 때문에 제1 캐리어가 제2 도전형 반도체층에서 제2 캐리어와 비발광성 재결합하는 것을 방지할 수 있다. 따라서, 반도체 소자의 광출력을 개선할 수 있다. 제1지점(P1)은 차단층(129)의 제1-1 구간(129a)에 대응되는 영역일 수 있으나, 반드시 이에 한정하지는 않는다.The ionic strength of aluminum at the first point P1 may be the highest in the semiconductor structure 120. Since the aluminum has the highest ionic strength at the first point P1, it is possible to prevent the first carrier from non-luminescent recombination with the second carrier in the second conductivity type semiconductor layer. Therefore, the light output of the semiconductor element can be improved. The first point P1 may be an area corresponding to the first-first section 129a of the blocking layer 129, but is not limited thereto.
제2지점(P2)의 제2 이온 강도는 제1지점(P1)에서 제1 방향(깊이가 증가하는 방향, D)으로 연장되는 알루미늄의 이온 강도의 지점 중 알루미늄의 이온 강도가 가장 높은 지점일 수 있다.The second ionic strength of the second point P2 is the point where the ionic strength of the aluminum is the highest among the points of the ionic strength of the aluminum extending from the first point P1 in the first direction (the direction in which the depth increases, D). Can be.
제2지점(P2)은 제1 도전형 반도체층(124) 내에서 알루미늄의 이온 강도가 가장 높은 지점일 수 있고, 제1 도전형 반도체층(124)에서 활성층(126)과 가장 인접한 지점일 수 있다. The second point P2 may be the point where the ionic strength of aluminum is the highest in the first conductivity type semiconductor layer 124, and the point nearest the active layer 126 in the first conductivity type semiconductor layer 124. have.
제2지점(P2)은 제1 도전형 반도체층(124)에서 활성층 방향으로 주입되는 제1 캐리어 에너지를 저하시켜 활성층에서 재결합하는 제1 및 제2 캐리어의 농도 또는 밀도의 균형을 맞출 수 있다. 따라서 발광 효율을 개선하여 반도체 소자의 광출력 특성을 개선할 수 있다. The second point P2 may balance the concentration or density of the first and second carriers recombined in the active layer by lowering the first carrier energy injected from the first conductive semiconductor layer 124 toward the active layer. Therefore, light emission efficiency may be improved to improve light output characteristics of the semiconductor device.
제3지점(P3)의 제3 이온 강도는 제1지점(P1)에서 반도체 구조물(120)의 표면을 향하는 방향(제1방향과 반대방향)으로 알루미늄의 이온 강도가 가장 낮은 지점일 수 있다. The third ionic strength of the third point P3 may be a point at which the ionic strength of aluminum is lowest in the direction toward the surface of the semiconductor structure 120 from the first point P1 (the direction opposite to the first direction).
제3지점(P3)과 제2전극이 접하는 경우 제3지점(P3)의 알루미늄의 이온 강도가 가장 낮기 때문에 제3지점(P3)과 제2전극 사이의 저항이 낮을 수 있고, 따라서 제2전극을 통해 반도체 구조물(120)로 주입되는 전류 주입 효율이 확보될 수 있다.When the third point P3 and the second electrode are in contact with each other, the resistance between the third point P3 and the second electrode may be low because the aluminum has the lowest ionic strength of the third point P3, and thus the second electrode Through this, the current injection efficiency injected into the semiconductor structure 120 may be secured.
제4지점(P4)의 제4 이온 강도는 제2지점(P2)에서 제1 방향으로 알루미늄의 이온 강도가 가장 낮은 지점일 수 있다. The fourth ionic strength of the fourth point P4 may be a point at which the ionic strength of aluminum is lowest in the first direction at the second point P2.
제4지점(P4)은 반도체 소자의 공정 중에 있어서 Laser Lift-Off(이하 LLO) 공정이 적용되는 경우, 활성층으로 레이저가 침투하지 못하도록 레이저를 흡수함으로써 LLO 공정에 의한 활성층이 손상되는 것을 방지할 수 있다.The fourth point P4 may prevent the active layer from being damaged by the LLO process by absorbing the laser to prevent the laser from penetrating into the active layer when the Laser Lift-Off (LLO) process is applied during the semiconductor device process. have.
또한, 제4지점(P4)은 제1전극이 접할 경우, 제1전극과 제4지점(P4) 사이의 저항을 낮추어 반도체 구조물로 주입하는 전류의 주입 효율을 개선할 수 있다. 이러한 관점에서 제4지점(P4)의 알루미늄의 이온 강도는 제2지점(P2)에서 제1 방향으로 가장 낮게 배치될 수 있다.In addition, when the first point P4 is in contact with the fourth point P4, the resistance between the first electrode and the fourth point P4 may be lowered to improve the injection efficiency of the current injected into the semiconductor structure. In this regard, the ionic strength of the aluminum at the fourth point P4 may be lowest in the first direction at the second point P2.
제5지점(P5)은 제2지점(P2)과 제4지점(P4) 사이에 배치될 수 있다. 제5지점(P5)의 알루미늄의 이온 강도는 제2지점(P2)과 제4지점(P4) 사이의 이온 강도를 가질 수 있다. 제5지점(P5)은 하나의 특정 지점일 수 있고, 하나의 층을 구성할 수 있다. 제4지점(P4)을 통해 주입되는 전류가 제5지점(P5)을 포함하는 층에서 균일하게 분포될 수 있도록 하여 활성층으로 주입되는 전류의 면적에 대한 밀도가 균일하도록 개선될 수 있다. The fifth point P5 may be disposed between the second point P2 and the fourth point P4. The ionic strength of aluminum at the fifth point P5 may have an ionic strength between the second point P2 and the fourth point P4. The fifth point P5 may be one specific point and may constitute one layer. The current injected through the fourth point P4 may be uniformly distributed in the layer including the fifth point P5 so that the density of the area of the current injected into the active layer may be improved.
또한, 제5지점(P5)과 동일 또는 유사한 알루미늄의 이온 강도를 갖는 지점(또는 층)은 제4지점(P4)에서 제1 방향(D)으로 이격되어 배치될 수 있다. 즉, 제4지점(P4)에서 제1 방향으로 이온 강도가 상승하는 구간을 가질 수 있다. 따라서, 제4지점(P4)은 제5지점(P5)의 알루미늄의 이온 강도를 갖는 지점(또는 층) 사이에 배치될 수 있다. 다만, 이에 한정하지 않고, 제5지점(P5)과 제1 방향(D)으로 이격되어 제4지점(P4)보다 제1 방향(D)으로 멀리 떨어진 영역의 알루미늄의 이온 강도는 제5지점(P5)보다 높은 이온 강도를 가질 수 있다. In addition, a point (or layer) having the same or similar ionic strength as aluminum as the fifth point P5 may be spaced apart from the fourth point P4 in the first direction D. FIG. That is, it may have a section in which the ionic strength rises in the first direction from the fourth point P4. Therefore, the fourth point P4 may be disposed between the points (or layers) having the ionic strength of aluminum of the fifth point P5. However, the present invention is not limited thereto, and the ionic strength of aluminum in a region spaced apart from the fifth point P5 in the first direction D and farther in the first direction D than the fourth point P4 is the fifth point ( It may have a higher ionic strength than P5).
제10지점(P10)은 제1지점(P1)과 제3지점(P3) 사이에 배치될 수 있고, 제1지점(P1)과 제2지점(P2) 사이에서 가장 작은 이온강도를 갖는 지점(S22)과 동일한 알루미늄의 이온 강도를 가질 수 있다. The tenth point P10 may be disposed between the first point P1 and the third point P3 and has the smallest ion intensity between the first point P1 and the second point P2 ( It may have the same ionic strength of aluminum as S22).
제10지점(P10)과 제3지점(P3) 사이 영역의 두께는 반도체 소자가 방출하는 광이 흡수되는 것을 억제하고 제2 전극과의 접촉 저항을 낮추기 위해 1 nm 이상 내지 30 nm일 수 있다.The thickness of the region between the tenth point P10 and the third point P3 may be 1 nm or more and 30 nm to suppress absorption of light emitted by the semiconductor device and lower contact resistance with the second electrode.
또한, 제2전극과 전기적으로 연결되는 제3지점(P3)은 제1전극과 연결되는 제4지점(P4)에 비해 전기 전도도가 더 낮을 수 있다. 따라서, 제3지점(P3)의 이온 강도는 제4지점(P4)의 이온 강도에 비해 작을 수 있다.In addition, the third point P3 electrically connected to the second electrode may have a lower electrical conductivity than the fourth point P4 connected to the first electrode. Therefore, the ionic strength of the third point P3 may be smaller than the ionic strength of the fourth point P4.
따라서, 제10지점(P10)과 제3지점(P3) 사이의 알루미늄의 이온 강도의 평균 변화율은 제1지점(P1)과 제10지점(P10) 사이의 알루미늄의 이온 강도의 평균 변화율보다 더 클 수 있다. 여기서 평균 변화율은 알루미늄 이온 강도의 최대 변화폭을 두께로 나눈 값일 수 있다.Accordingly, the average rate of change of the ionic strength of aluminum between the tenth point P10 and the third point P3 is greater than the average rate of change of the ionic strength of aluminum between the first point P1 and the tenth point P10. Can be. Here, the average change rate may be a value obtained by dividing the maximum change width of the aluminum ion strength by the thickness.
제3지점(P3)과 제10지점(P10)의 사이 영역(S11)은 표면(S0)에 가까워질수록 알루미늄의 이온 강도가 감소하는 구간, 및 표면(S0)에 가까워질수록 알루미늄의 이온 강도가 감소하지 않는 역전 구간(P6)을 가질 수 있다. 역전 구간(P6)은 표면(S0)에 가까워질수록 알루미늄 이온 강도가 증가하거나 유지되는 구간일 수 있다.The area S11 between the third point P3 and the tenth point P10 is a section in which the ionic strength of aluminum decreases as it approaches the surface S0, and the ionic strength of aluminum as it approaches the surface S0. May have an inversion section P6 that does not decrease. The inversion section P6 may be a section in which the aluminum ion intensity increases or maintains as the surface S0 approaches.
제3지점(P3)과 제10지점(P10) 사이 영역에 역전 구간(P6)이 배치된 경우 제3지점(P3)로 주입되는 전류가 고르게 퍼질 수 있어 활성층으로 주입되는 전류 밀도가 고르게 제어될 수 있다. 따라서 반도체 소자의 광출력 특성 및 전기적 특성과 신뢰성이 향상될 수 있다.When the inversion section P6 is disposed in the region between the third point P3 and the tenth point P10, the current injected into the third point P3 can be spread evenly, so that the current density injected into the active layer can be controlled evenly. Can be. Therefore, the light output characteristics, electrical characteristics, and reliability of the semiconductor device may be improved.
역전 구간(P6)은 온도를 통해 제어될 수 있다. 예를 들어, 제3지점(P3)과 제10지점(P10) 사이 영역은 온도를 제어함으로써 알루미늄의 조성을 제어할 수 있다. 이러한 경우, 온도를 너무 급격하게 낮추는 경우 제2 도전형 반도체층의 결정성이 크게 저하될 수 있다.The reversal section P6 can be controlled via temperature. For example, the region between the third point P3 and the tenth point P10 may control the composition of aluminum by controlling the temperature. In this case, when the temperature is lowered too rapidly, the crystallinity of the second conductivity-type semiconductor layer may be greatly reduced.
따라서, 온도를 연속적으로 낮추고 높이는 공정에 있어서, 낮아지는 온도를 다시 높이는 순간 알루미늄이 순간적으로 많이 포함되게 되어 역전 구간(P6)을 형성할 수 있다. Therefore, in the process of continuously lowering and raising the temperature, the aluminum may be instantaneously contained at the moment when the lowering temperature is increased again, thereby forming the inversion section P6.
즉, 활성층에서 알루미늄의 이온 강도가 가장 낮은 지점과 동일한 알루미늄의 이온 강도를 갖는 제10지점(P10)을 형성한 후, 제3지점(P3)을 형성하기까지의 공정에서 온도를 통해 알루미늄의 조성을 제어할 수 있고, 이 과정에서 제2 도전형 반도체층의 결정성을 확보하고, 전류 확산 특성을 확보하기 위해 역전 구간(P6)을 배치할 수 있다.That is, after forming the tenth point P10 having the same ionic strength of aluminum as the point where the ionic strength of aluminum is the lowest in the active layer, the composition of the aluminum is changed through the temperature in the process until the third point P3 is formed. It can be controlled, and in this process, the inversion section P6 may be arranged to secure the crystallinity of the second conductivity type semiconductor layer and to secure the current diffusion characteristics.
다만 이에 한정하지 않고, 또 다른 실시 예에서는 전류 주입 특성을 더 확보하기 위해 역전 구간(P6)을 갖지 않고, 제10지점(P10)에서 제3지점(P3)으로 향할수록 연속적으로 알루미늄의 이온 강도가 감소하도록 배치할 수도 있다.However, the present invention is not limited thereto, and in another embodiment, the ionic strength of the aluminum is continuously increased as the second point P10 is moved from the tenth point P10 to the third point P3 in order to further secure the current injection characteristic. May be arranged to decrease.
도 13a를 참조하면, 알루미늄 이온 강도 그래프상에서 반도체 구조물은 깊이가 증가하는 방향으로 제1구간(S1), 제2구간(S2), 및 제3구간(S3)을 포함할 수 있다.Referring to FIG. 13A, the semiconductor structure on the aluminum ion intensity graph may include a first section S1, a second section S2, and a third section S3 in a direction of increasing depth.
제1구간(S1)은 제1지점(P1)과 제3지점(P3) 사이에 배치될 수 있고 제2 도전형 반도체층으로 구성될 수 있다. 제2구간(S2)은 제1지점(P1)과 제2지점(P2) 사이에 배치될 수 있고, 활성층(126)으로 구성될 수 있다. 제3구간(S3)은 제2지점(P2)에서 제1 방향으로 향하는 방향에 배치되는 구간으로, 제1 도전형 반도체층(124)으로 구성될 수 있다.The first section S1 may be disposed between the first point P1 and the third point P3 and may be formed of a second conductive semiconductor layer. The second section S2 may be disposed between the first point P1 and the second point P2 and may be composed of the active layer 126. The third section S3 is a section disposed in a direction from the second point P2 toward the first direction, and may be composed of the first conductivity type semiconductor layer 124.
제2구간(S2)은 제1지점(P1)과 제2지점(P2) 사이에 배치될 수 있다. 전술한 바와 같이 제1지점(P1)은 반도체 구조물내에서 알루미늄 이온 강도가 가장 높은 지점이고, 제2지점(P2)은 도면상 표면에서 멀어지는(깊이가 증가하는) 제1방향으로 이격 배치되고, 제2구간(S2)의 최대 이온 강도(피크의 이온 강도)보다 높은 이온 강도를 갖는 지점일 수 있다.The second section S2 may be disposed between the first point P1 and the second point P2. As described above, the first point P1 is a point where the aluminum ion intensity is the highest in the semiconductor structure, and the second point P2 is spaced apart in the first direction away from the surface (increasing in depth), It may be a point having an ionic strength higher than the maximum ionic strength (the ionic strength of the peak) of the second section (S2).
그러나, 반드시 이에 한정되는 것은 아니고 제2지점은 제5지점과 동일한 높이를 가질 수도 있다. 이 경우 제2구간은 제1지점과 제5지점 사이에 배치될 수 있다.However, the present invention is not limited thereto, and the second point may have the same height as the fifth point. In this case, the second section may be disposed between the first point and the fifth point.
제2구간(S2)은 활성층(126)에 대응하는 구간으로 복수 개의 피크(S21) 및 복수 개의 밸리(S22)를 가질 수 있다. 밸리(S22)는 우물층의 이온 강도일 수 있고, 피크(S21)는 장벽층의 이온 강도일 수 있다.The second section S2 is a section corresponding to the active layer 126 and may have a plurality of peaks S21 and a plurality of valleys S22. Valley S22 may be the ionic strength of the well layer, and peak S21 may be the ionic strength of the barrier layer.
이때, 밸리(S22) 중 이온 강도가 가장 낮은 지점과 제1지점(P1)의 이온 강도 비(M1)는 1:0.4 이상 1:0.6 이하일 수 있고, 밸리(S22)와 피크(S21)의 이온 강도비(M2)는 1:0.5 이상 1:0.75 이하일 수 있다. At this time, the ionic strength ratio M1 of the point where the ionic strength is lowest in the valley S22 and the first point P1 may be 1: 0.4 or more and 1: 0.6 or less, and the ions of the valley S22 and the peak S21 may be The intensity ratio M2 may be 1: 0.5 or more and 1: 0.75 or less.
밸리(S22) 중 이온 강도가 가장 낮은 지점과 제1지점(P1)의 알루미늄의 이온 강도 비(M1)가 1:0.4 이상일 경우 활성층보다 표면에 가까이 배치되는 제1지점(P1)과 제3지점(P3) 사이의 제2 도전형 반도체층의 결정성을 확보할 수 있고, 제1 캐리어가 제2 도전형 반도체층으로 주입되는 것을 방지하여 활성층에서 발광성 재결합하는 확률을 높일 수 있다. 따라서, 반도체 소자의 광출력 특성을 개선할 수 있다. The first point P1 and the third point disposed closer to the surface than the active layer when the ratio of the lowest ionic strength of the valley S22 and the ionic strength M1 of aluminum at the first point P1 is 1: 0.4 or more. The crystallinity of the second conductive semiconductor layer between (P3) can be secured, and the probability of the light emitting recombination in the active layer can be increased by preventing the first carrier from being injected into the second conductive semiconductor layer. Therefore, the light output characteristics of the semiconductor device can be improved.
또한, 이온 강도 비(M1)가 1:0.6 이하일 때 활성층보다 표면에 가까이 배치되는 제1지점(P1)과 제3지점(P3) 사이의 제2 도전형 반도체층의 결정성을 확보할 수 있다. In addition, when the ionic strength ratio M1 is 1: 0.6 or less, it is possible to secure crystallinity of the second conductive semiconductor layer between the first point P1 and the third point P3 disposed closer to the surface than the active layer. .
밸리(S22)와 피크(S21)의 이온 강도 비(M2)가 1:0.5 이상 일 때 활성층이 포함하는 우물층에서 제1 도전형 반도체층 및/또는 제2 도전형 반도체층으로 빠져나가는 캐리어를 장벽층이 효과적으로 방지하여 우물층에서의 발광성 재결합 확률을 높임으로써 반도체 소자의 광출력 특성을 향상시킬 수 있다.When the ionic strength ratio M2 of the valley S22 and the peak S21 is 1: 0.5 or more, the carrier exits from the well layer included in the active layer to the first conductive semiconductor layer and / or the second conductive semiconductor layer. The barrier layer can be effectively prevented to increase the light emitting recombination probability in the well layer, thereby improving the light output characteristics of the semiconductor device.
또한, 이온 강도 비(M2)가 1:0.75 이하일 경우 우물층과 장벽층 사이의 격자 상수 차이에 의한 스트레스를 줄여 반도체 구조물의 결정성을 확보하고, 스트레인에 의한 파장 변화 및/또는 발광성 재결합확률을 개선할 수 있다.In addition, when the ionic strength ratio (M2) is less than 1: 0.75, the stress due to the lattice constant difference between the well layer and the barrier layer is reduced to secure the crystallinity of the semiconductor structure, and the wavelength change and / or luminescence recombination probability by the strain It can be improved.
이 두 비율의 비(M1:M2)는 1:0.3 내지 1:0.8를 만족할 수 있다. 따라서, 두 비율의 비(M1:M2)가 1:0.3 내지 1:0.8를 만족하는 구간이 실제 활성층이 배치된 구간일 수 있다.The ratio (M1: M2) of these two ratios may satisfy 1: 0.3 to 1: 0.8. Therefore, a section in which the ratio M1: M2 of the two ratios satisfies 1: 0.3 to 1: 0.8 may be a section in which the actual active layer is disposed.
제3지점(P3)의 이온 강도는 제2구간(S2) 내에서 가장 낮은 이온 강도(우물층의 이온 강도)보다 작을 수 있다. 이때, 활성층은 제2구간(S2) 내에 포함될 수 있고, 제1지점(P1)과 가장 가까운 밸리(P8)와 제1지점(P1)에서 가장 먼 밸리(P9)의 사이 영역으로 정의할 수 있다.The ionic strength of the third point P3 may be smaller than the lowest ionic strength (the ionic strength of the well layer) in the second section S2. In this case, the active layer may be included in the second section S2 and may be defined as an area between the valley P8 closest to the first point P1 and the valley P9 farthest from the first point P1. .
또한, 이웃한 밸리(S22) 사이의 간격은 제1지점(P1)과 제2지점(P2) 사이의 간격보다 좁을 수 있다. 우물층과 장벽층의 두께는 활성층(126) 전체의 두께보다 작기 때문이다.In addition, an interval between neighboring valleys S22 may be smaller than an interval between the first point P1 and the second point P2. This is because the thickness of the well layer and the barrier layer is smaller than the thickness of the entire active layer 126.
제1구간(S1)은 제4지점(P4)보다 이온 강도가 낮은 표면 영역(S11)을 포함할 수 있다. 이때, 표면 영역(S11)은 제1방향(D)과 반대 방향으로 갈수록 이온 강도가 낮아질 수 있다. The first section S1 may include a surface region S11 having a lower ionic strength than the fourth point P4. In this case, the surface area S11 may have a lower ionic strength toward the opposite direction to the first direction D. FIG.
심스 데이터 상에서 제2지점(P2)과 제4지점(P4)의 제1 강도차(D1), 및 제1지점(P1)과 제3지점(P3)의 제2 강도차(D2)의 비(D1:D2)는 1:1.5 내지 1:2.5일 수 있다. 강도 차이의 비(D1:D2)가 1:1.5 이상이면(예: 1:1.6), 제2 강도차(D2)가 커지므로 제1지점(P1)의 알루미늄 조성을 충분히 낮출 수 있다. 따라서, 제2 전극과의 접촉 저항을 낮출 수 있다.The first intensity difference D1 between the second point P2 and the fourth point P4 on the seamless data, and the ratio of the second intensity difference D2 between the first point P1 and the third point P3 ( D1: D2) may be 1: 1.5 to 1: 2.5. When the ratio (D1: D2) of the difference in strength is 1: 1.5 or more (for example, 1: 1.6), the second strength difference D2 becomes large, so that the aluminum composition at the first point P1 can be sufficiently lowered. Thus, the contact resistance with the second electrode can be lowered.
또한, 강도 차이의 비(D1:D2)가 1:2.5이하이면(예: 1:2.4), 알루미늄 조성이 너무 낮아져서 활성층(126)에서 발광하는 광이 제2-1 도전형 반도체층(127a)에서 흡수되어 반도체 소자의 광학적 특성이 저하되는 문제를 해결할 수 있다.In addition, when the ratio (D1: D2) of the difference in intensity is 1: 2.5 or less (for example, 1: 2.4), the aluminum composition becomes too low and the light emitted from the active layer 126 emits light from the 2-1 conductive semiconductor layer 127a. Absorption in the optical element of the semiconductor device can be solved.
제7지점(P7)과 제1지점(P1)의 제3 강도차(D3)와 제4지점(P4)과 제3지점(P3)의 제4 강도차(D4)의 비(D3:D4)는 1:0.2 내지 1:2 또는 1:0.2 내지 1:1일 수 있다.The ratio (D3: D4) of the third intensity difference D3 between the seventh point P7 and the first point P1 and the fourth intensity difference D4 between the fourth point P4 and the third point P3 May be 1: 0.2 to 1: 2 or 1: 0.2 to 1: 1.
강도 차이의 비가 1:0.2 이상이면 제4 강도차(D4)가 상대적으로 커지므로 알루미늄 조성을 충분히 낮출 수 있다. 따라서, 제2전극과의 접촉 저항이 감소할 수 있다. 또한, 조성차가 1:2 이하이면 제2-1 도전형 반도체층(127a)의 두께 범위 내에서 알루미늄 조성이 급격히 변화하여 결정성이 저하되는 문제를 개선할 수 있다. 또한, 알루미늄 조성이 너무 낮아져서 활성층(126)에서 발광하는 광이 제2-1 도전형 반도체층(127a)에서 흡수되는 문제를 개선할 수 있다.If the ratio of the difference in strength is greater than or equal to 1: 0.2, the fourth strength difference D4 becomes relatively large, so that the aluminum composition can be sufficiently lowered. Thus, the contact resistance with the second electrode can be reduced. In addition, when the composition difference is 1: 2 or less, the problem that the aluminum composition changes rapidly within the thickness range of the 2-1 conductive semiconductor layer 127a and the crystallinity is lowered can be improved. In addition, the aluminum composition may be so low that the light emitted from the active layer 126 may be absorbed by the 2-1 conductivity type semiconductor layer 127a.
종래에는 제2 도전형 반도체층(127)과 전극의 오믹 컨택을 위해 얇은 GaN층을 삽입하였다. 그러나, 이 경우 전극과 접촉하는 GaN층은 알루미늄을 포함하지 않으므로 제3지점(P3)의 알루미늄 이온 강도가 측정되지 않거나 급격히 낮아지게 된다. 따라서, 제1 강도차(D1)와 제2 강도차(D2)의 비(D1:D2), 및 제3 강도차(D3)와 제4 강도차(D4)의 비(D3:D4)가 전술한 범위를 벗어날 수 있다.Conventionally, a thin GaN layer is inserted for ohmic contact between the second conductive semiconductor layer 127 and the electrode. However, in this case, since the GaN layer in contact with the electrode does not contain aluminum, the aluminum ion strength of the third point P3 is not measured or rapidly decreases. Therefore, the ratio D1: D2 of the first intensity difference D1 and the second intensity difference D2 and the ratio D3: D4 of the third intensity difference D3 and the fourth intensity difference D4 are described above. It can be out of range.
제1지점(P1)과 제3지점(P3)의 강도차와 제5지점(P5)과 제3지점(P3)의 강도차의 비는 1:0.5 내지 1:0.8일 수 있다. 강도차의 비가 1:0.5 이상이면 제5지점(P5)의 강도가 증가하여 결정성이 향상되고 광 추출 효율이 우수해질 수 있다. 또한, 강도차의 비가 1:0.8보다 작으면 활성층(126)과 제1 도전형 반도체층(124) 사이의 격자 부정합이 완화될 수 있다.The ratio of the intensity difference between the first point P1 and the third point P3 and the intensity difference between the fifth point P5 and the third point P3 may be 1: 0.5 to 1: 0.8. When the ratio of the intensity differences is greater than 1: 0.5, the intensity of the fifth point P5 may be increased, thereby improving crystallinity and improving light extraction efficiency. In addition, when the ratio of the intensity differences is smaller than 1: 0.8, lattice mismatch between the active layer 126 and the first conductivity type semiconductor layer 124 may be alleviated.
제3지점(P3)과 제1지점(P1)의 이온강도 비율(P3:P1)은 1:2 내지 1:4일 수 있다. 제3지점(P3)과 제1지점(P1)의 이온강도 비율이 1:2 이상인 경우(예: 1:2.1)에는 제3지점(P3)의 강도가 충분히 낮아져 제2전극과의 접촉저항을 낮출 수 있다. 또한, 제3지점(P3)과 제1지점(P1)의 이온강도 비율이 1:4이하인 경우(예: 1:3.9)에는 제3지점(P3)의 알루미늄 강도가 높아질 수 있다. 따라서, 제3지점(P3)에서 광을 흡수하는 문제를 개선할 수 있다.An ion intensity ratio P3: P1 between the third point P3 and the first point P1 may be 1: 2 to 1: 4. When the ionic strength ratio between the third point P3 and the first point P1 is 1: 2 or more (eg, 1: 2.1), the strength of the third point P3 is sufficiently lowered to increase the contact resistance with the second electrode. Can be lowered. In addition, when the ratio of the ionic strength of the third point P3 and the first point P1 is less than or equal to 1: 4 (eg, 1: 3.9), the aluminum strength of the third point P3 may be increased. Therefore, the problem of absorbing light at the third point P3 can be improved.
제10지점(P10)과 제1지점(P1)의 이온강도 비율은 1:1.3 내지 1:2.5일 수 있다. 제10지점(P10)과 제1지점(P1)의 이온강도 비율이 1:1.3 이상인 경우에는 제1지점(P1)의 이온 강도가 높아져 제1캐리어가 활성층을 통과하는 것을 효과적으로 차단할 수 있다. 또한, 제10지점(P10)과 제1지점(P1)의 이온강도 비율이 1:2.5이하인 경우에는 제10지점(P10)의 이온 강도가 높아지므로 우물층이 자외선 파장대의 광을 생성할 수 있다.An ion strength ratio between the tenth point P10 and the first point P1 may be 1: 1.3 to 1: 2.5. When the ionic strength ratio between the tenth point P10 and the first point P1 is 1: 1.3 or more, the ionic strength of the first point P1 is increased to effectively block the first carrier from passing through the active layer. In addition, when the ionic strength ratio between the tenth point P10 and the first point P1 is 1: 2.5 or less, the ionic strength of the tenth point P10 is increased, so that the well layer may generate light in the ultraviolet wavelength range. .
제3지점(P3)과 제4지점(P4)의 이온강도 비율은 1:1.1 내지 1:2일 수 있다. 제3지점(P3)과 제4지점(P4)의 이온강도 비율이 1:1.1 이상인 경우에는 제4지점(P4)의 이온 강도가 상승하여 자외선 파장대 광의 흡수율을 줄일 수 있다. 또한, 제3지점(P3)과 제4지점(P4)의 이온강도 비율이 1:2이하인 경우에는 제3지점에서 충분한 이온 강도를 확보하여 자외선 파장대의 광 흡수율을 줄일 수 있다.An ion intensity ratio between the third point P3 and the fourth point P4 may be 1: 1.1 to 1: 2. When the ionic strength ratio between the third point P3 and the fourth point P4 is 1: 1.1 or more, the ionic strength of the fourth point P4 is increased to reduce the absorption rate of light in the ultraviolet wavelength band. In addition, when the ionic strength ratio between the third point P3 and the fourth point P4 is 1: 2 or less, sufficient ionic strength may be secured at the third point to reduce light absorption in the ultraviolet wavelength band.
제2지점(P2)과 제1지점(P1)의 이온강도 비율은 1:1.1 내지 1:2일 수 있다. 제2지점(P2)과 제1지점(P1)의 이온강도 비율이 1:1.1 이상인 경우에는 제1지점(P1)의 이온 강도가 높아져 제1캐리어가 활성층을 통과하는 것을 효과적으로 차단할 수 있다. 또한, 제2지점(P2)과 제1지점(P1)의 이온강도 비율이 1:2이하인 경우에는 활성층 내로 주입되어 발광성 재결합을 하는 제1 캐리어의 농도와 제2 캐리어의 농도의 균형을 이룰 수 있기 때문에 반도체 소자가 발광하는 광량을 향상시킬 수 있다.The ratio of the ionic strength of the second point P2 and the first point P1 may be 1: 1.1 to 1: 2. When the ratio of the ionic strength between the second point P2 and the first point P1 is greater than or equal to 1: 1.1, the ionic strength of the first point P1 may be increased to effectively block the first carrier from passing through the active layer. In addition, when the ratio of the ionic strength of the second point P2 and the first point P1 is less than or equal to 1: 2, the concentration of the first carrier and the concentration of the second carrier, which is injected into the active layer and undergoes luminescence recombination, may be balanced. Therefore, the amount of light emitted by the semiconductor element can be improved.
제4지점(P4)과 제2지점(P2)의 이온강도 비율은 1:1.2 내지 1:2.5일 수 있다. 제4지점(P4)과 제2지점(P2)의 이온강도 비율이 1:1.2 이상인 경우에는 제4지점(P4)과 제1 전극 사이의 저항을 낮출 수 있다. 또한, 제4지점(P4)과 제2지점(P2)의 이온강도 비율이 1:2.5이하인 경우에는 제4지점(P4)의 이온 강도가 상승하여 자외선 파장대 광의 흡수율을 줄일 수 있다.An ion strength ratio between the fourth point P4 and the second point P2 may be 1: 1.2 to 1: 2.5. When the ionic strength ratio between the fourth point P4 and the second point P2 is 1: 1.2 or more, the resistance between the fourth point P4 and the first electrode can be lowered. In addition, when the ionic strength ratio between the fourth point P4 and the second point P2 is less than or equal to 1: 2.5, the ionic strength of the fourth point P4 may increase to reduce the absorption rate of light in the ultraviolet wavelength band.
제5지점(P5)과 제2지점(P2)의 이온강도 비율은 1:1.1 내지 1:2.0일 수 있다. 실시 예의 경우, 심자외선을 발광하는 반도체 구조물은 청색 광을 방출하는 반도체 구조물에 비해 알루미늄을 다량 포함하는 GaN 기반의 물질로 구성될 수 있다. 따라서, 제1 캐리어의 이동도와 제2 캐리어의 이동도의 비율이 청색광을 방출하는 반도체 구조물에 비해 상이할 수 있다. 즉, 제5지점(P5)과 제2지점(P2)의 이온강도 비율이 1:1.1 이상인 경우상기 활성층으로 주입되는 제1 캐리어의 농도를 확보할 수 있다. 또한, 제5지점(P5)과 제2지점(P2)의 이온강도 비율이 1:2.0이하인 경우에는 제5지점(P5)의 이온 강도가 높아져 결정성이 개선될 수 있다.An ion strength ratio between the fifth point P5 and the second point P2 may be 1: 1.1 to 1: 2.0. In an exemplary embodiment, the semiconductor structure emitting deep ultraviolet light may be formed of a GaN-based material including a large amount of aluminum, compared to a semiconductor structure emitting blue light. Thus, the ratio of the mobility of the first carrier to the mobility of the second carrier may be different compared to the semiconductor structure emitting blue light. That is, when the ionic strength ratio between the fifth point P5 and the second point P2 is 1: 1.1 or more, the concentration of the first carrier injected into the active layer can be ensured. In addition, when the ionic strength ratio between the fifth point P5 and the second point P2 is less than or equal to 1: 2.0, the ionic strength of the fifth point P5 may be increased to improve crystallinity.
제4지점(P4)과 제5지점(P5)의 이온강도 비율은 1:1.1 내지 1:2.0일 수 있다. 제4지점(P4)과 제5지점(P5)의 이온강도 비율이 1:1.1 이상인 경우에는 제5지점(P5)의 이온 강도가 높아져 결정성이 개선될 수 있다. 또한, 제4지점(P4)과 제5지점(P5)의 이온강도 비율이 1:2.0이하인 경우에는 제4지점(P4)의 이온 강도가 상승하여 자외선 파장대 광의 흡수율을 줄일 수 있다.An ion strength ratio between the fourth point P4 and the fifth point P5 may be 1: 1.1 to 1: 2.0. When the ionic strength ratio between the fourth point P4 and the fifth point P5 is 1: 1.1 or more, the ionic strength of the fifth point P5 may be increased to improve crystallinity. In addition, when the ionic strength ratio between the fourth point P4 and the fifth point P5 is less than or equal to 1: 2.0, the ionic strength of the fourth point P4 may be increased to reduce the absorption rate of light in the ultraviolet wavelength band.
도 12 및 도 13a에서는 알루미늄 이온 강도를 로그 스케일로 표현하였으나 반드시 이에 한정하는 것은 아니고, 도 13b와 같이 리니어 스케일로 변환할 수 있다.In FIG. 12 and FIG. 13A, the aluminum ion intensity is expressed in a logarithmic scale, but is not necessarily limited thereto, and may be converted to the linear scale as shown in FIG. 13B.
실시 예에 따르면 제3지점(P3)이 알루미늄을 포함하므로 제1지점(P1)과 제3지점(P3)은 실질적으로 하나의 차수(order)내에 배치됨을 확인할 수 있다. 차수는 이온 강도의 레벨 단위일 수 있다. 예시적으로 제1차수는 1.0 ×101이고 제2차수는 1.0 ×102일 수 있다. 또한 각각의 차수는 10개의 서브 레벨을 가질 수 있다. According to the embodiment, since the third point P3 includes aluminum, it can be seen that the first point P1 and the third point P3 are substantially disposed in one order. The order may be a level unit of ionic strength. For example, the first order may be 1.0 × 10 1 and the second order may be 1.0 × 10 2 . Each order may also have 10 sub-levels.
예시적으로 제1차수의 제1서브레벨은 1.0×101이고, 제1차수의 제2서브레벨은 2.0×101이고, 제1차수의 제3서브레벨은 3.0×101이고, 제1차수의 제9서브레벨은 9.0×101이고, 제1차수의 제10서브레벨은 1.0×102일 수 있다. 즉, 제1차수의 제10서브레벨은 제2차수의 제1서브레벨과 같을 수 있다. 도 13b에서는 2개의 서브레벨마다 점선을 표시하였다.For example, the first sub level of the first order is 1.0 × 10 1 , the second sub level of the first order is 2.0 × 10 1 , The third sub level of the first order may be 3.0 × 10 1 , the ninth sub level of the first order is 9.0 × 10 1, and the tenth sub level of the first order may be 1.0 × 10 2 . That is, the tenth sub level of the first order may be the same as the first sub level of the second order. In FIG. 13B, dotted lines are displayed for every two sublevels.
도 14a는 본 발명의 일 실시 예에 따른 제2 도전형 반도체층의 개념도이고, 도 14b는 본 발명의 일 실시 예에 따른 제2 도전형 반도체층의 표면을 측정한 AFM 데이터이고, 도 14c는 GaN 박막의 표면을 측정한 AFM 데이터이고, 도 14d는 고속 성장시킨 제2 도전형 반도체층의 표면을 측정한 AFM 데이터이다.FIG. 14A is a conceptual diagram of a second conductive semiconductor layer according to an embodiment of the present invention, and FIG. 14B is AFM data of measuring the surface of a second conductive semiconductor layer according to an embodiment of the present invention. It is AFM data which measured the surface of the GaN thin film, and FIG. 14D is AFM data which measured the surface of the 2nd conductivity type semiconductor layer grown at high speed.
도 14a을 참조하면, 실시 예에 따른 제2 도전형 반도체층(127)은 제2-1 내지 제2-3 도전형 반도체층(127a, 127b, 127c)을 포함할 수 있다. 제2-1 도전형 반도체층(127a)은 제2전극과 접촉하는 접촉층일 수 있다. 각 층의 특징은 전술한 내용이 그대로 적용될 수 있다.Referring to FIG. 14A, the second conductivity-type semiconductor layer 127 according to the embodiment may include 2-1 to 2-3 conductivity- type semiconductor layers 127a, 127b, and 127c. The 2-1 conductivity type semiconductor layer 127a may be a contact layer in contact with the second electrode. Characteristics of each layer may be applied as described above.
제2-1 도전형 반도체층(127a)의 표면은 복수 개의 클러스터(Cluster, C1)를 포함할 수 있다. 클러스터(C1)는 표면에서 돌출된 돌기일 수 있다. 예시적으로 클러스터(C1)는 평균 표면 높이를 기준으로 약 10nm 또는 20nm이상 돌출된 돌기일 수 있다. 클러스터(C1)는 알루미늄(Al)과 갈륨(Ga)의 격자 불일치에 의해 형성될 수 있다. The surface of the second-first conductive semiconductor layer 127a may include a plurality of clusters C1. The cluster C1 may be a protrusion protruding from the surface. For example, the cluster C1 may be a protrusion protruding about 10 nm or 20 nm or more based on the average surface height. The cluster C1 may be formed by lattice mismatch between aluminum (Al) and gallium (Ga).
실시 예에 따른 제2-1 도전형 반도체층(127a)은 알루미늄을 포함하고, 두께에 대한 알루미늄의 변화율이 크고, 두께가 다른 층(layer)들에 비해 얇기 때문에 표면에서 하나의 층(layer)을 이루지 못하고 클러스터(C1) 형태로 표면에 형성될 수 있다. 클러스터(C1)는 Al, Ga, N, Mg 등을 포함할 수 있다. 그러나, 반드시 이에 한정되는 것은 아니다.The 2-1 conductivity type semiconductor layer 127a according to the embodiment includes aluminum, and has a large change rate of aluminum with respect to a thickness, and a single layer on the surface because the thickness is thinner than other layers. It may not be formed and may be formed on the surface in the form of a cluster C1. The cluster C1 may include Al, Ga, N, Mg, and the like. However, it is not necessarily limited thereto.
도 14b을 참조하면, 제2 도전형 반도체층(127)의 표면에서 상대적으로 밝은 점(dot) 형상의 클러스터(C1)를 확인할 수 있다. 실시 예에 따르면 제2-1 도전형 반도체층(127a)의 알루미늄 조성이 1% 내지 10%이므로 클러스터(C1) 형태로 발생하여 접합 면적이 증가할 수 있다. 따라서, 전기적 특성이 향상될 수 있다.Referring to FIG. 14B, a cluster C1 having a relatively bright dot shape may be identified on the surface of the second conductivity-type semiconductor layer 127. According to the embodiment, since the aluminum composition of the 2-1 conductivity type semiconductor layer 127a is 1% to 10%, it may occur in the form of a cluster C1 to increase the junction area. Thus, the electrical characteristics can be improved.
제2 도전형 반도체층(127)의 표면은 평균 1㎛2당 1개 내지 8개의 클러스터(C1)가 관찰될 수 있다. 여기서 평균값은 약 10개 이상의 서로 다른 위치에서 측정한 값들의 평균일 수 있다. 도 14b의 E1 지점을 측정한 결과, 가로 세로 2㎛인 단위 면적당 12개의 클러스터(C1)가 관측되었다. 클러스터(C1)는 표면에서 25nm이상 돌출된 클러스터만을 측정하였다. AFM 이미지에서 콘트라스트를 조절하여 표면에서 25nm이상 돌출된 클러스터만이 출력되도록 조정할 수 있다.On the surface of the second conductivity-type semiconductor layer 127, one to eight clusters C1 may be observed per 1 μm 2 on average. Here, the average value may be an average of values measured at about 10 or more different locations. As a result of measuring the point E1 in FIG. 14B, 12 clusters C1 were observed per unit area having a width of 2 μm. Cluster (C1) was measured only clusters protruding at least 25nm from the surface. By adjusting the contrast in the AFM image, only the clusters protruding more than 25nm from the surface can be adjusted.
측정 결과를 토대로 단위를 변환한 클러스터(C1)의 밀도는 1×10-8/cm2 내지 8×10-6/cm2일 수 있다. 클러스터(C1)의 밀도가 1×10-8/cm2보다 작으면 상대적으로 접촉면적이 줄어들어 제2전극과의 접촉 저항이 높아질 수 있다.The density of the cluster C1 converting the unit based on the measurement result may be 1 × 10 −8 / cm 2 to 8 × 10 −6 / cm 2 . If the density of the cluster C1 is less than 1 × 10 −8 / cm 2 , the contact area may be relatively reduced, and the contact resistance with the second electrode may be increased.
또한, 클러스터(C1)의 밀도가 8×10-6/cm2보다 크면 일부 클러스터에 포함된 Ga에 의해 활성층(126)에서 방출하는 광이 흡수되어 광 출력이 저하될 수 있다.In addition, when the density of the cluster C1 is greater than 8 × 10 −6 / cm 2 , light emitted from the active layer 126 may be absorbed by Ga included in some clusters, thereby reducing light output.
실시 예에 따르면, 클러스터(C1)의 밀도가 1×10-8/cm2 내지 8×10-6/cm2를 만족하므로 광 출력은 저하시키지 않으면서 제2전극과의 접촉 저항을 낮출 수 있다.According to the embodiment, since the density of the cluster C1 satisfies 1 × 10 −8 / cm 2 to 8 × 10 −6 / cm 2 , the contact resistance with the second electrode can be lowered without lowering the light output. .
도 14c을 참조하면, GaN 박막의 표면에는 클러스터가 관찰되지 않음을 알 수 있다. 이는 클러스터의 밀도가 높아지면서 하나의 층(layer)을 이루기 때문일 수 있다. 따라서, 제2 도전형 반도체층과 제2전극 사이에 GaN 박막을 형성하는 경우에는 접촉면에서 클러스터가 형성되지 않음을 알 수 있다. Referring to FIG. 14C, it can be seen that no cluster is observed on the surface of the GaN thin film. This may be because the density of the clusters forms a layer. Therefore, it can be seen that when the GaN thin film is formed between the second conductive semiconductor layer and the second electrode, no cluster is formed at the contact surface.
도 14d를 참조하면, 제2 도전형 반도체층을 빠르게 성장시키는 경우에도 클러스터가 잘 성장되지 않음을 알 수 있다. 따라서, 제2 도전형 반도체층의 표면에서 알루미늄의 조성이 1% 내지 10%가 되도록 제어하여도 성장 속도가 빠르면 클러스터(C1)가 형성되지 않음을 알 수 있다. 예시적으로 도 14d는 P-AlGaN을 0.06nm/s의 속도로 성장시킨 후 표면을 측정한 사진이다.Referring to FIG. 14D, even when the second conductivity-type semiconductor layer is rapidly grown, it can be seen that the cluster does not grow well. Therefore, even when the composition of aluminum is controlled to be 1% to 10% on the surface of the second conductivity-type semiconductor layer, it can be seen that the cluster C1 is not formed when the growth rate is fast. For example, FIG. 14D is a photograph of a surface of P-AlGaN grown at a rate of 0.06 nm / s.
즉, 제2 도전형 반도체층(127)에 클러스터(C1)가 복수 개 형성되기 위해서는 표면층에서 알루미늄 조성이 1% 내지 10%인 동시에 표면층의 성장 속도가 충분히 느려야 함을 확인할 수 있다.That is, in order to form a plurality of clusters C1 in the second conductivity-type semiconductor layer 127, it may be confirmed that the aluminum composition is 1% to 10% in the surface layer and the growth rate of the surface layer should be sufficiently slow.
실시 예는 제2-1 도전형 반도체층의 성장 속도가 제2-2 및 제2-3 도전형 반도체층의 성장 속도보다 느릴 수 있다. 예시적으로 제2-2 도전형 반도체층의 성장 속도와 제2-1 도전형 반도체층의 성장 속도의 비는 1: 0.2 내지 1: 0.8일 수 있다. 성장 속도의 비가 1: 0.2보다 작은 경우 제2-1 도전형 반도체층의 성장 속도가 너무 느려져 Ga이 AlGaN이 성장되는 높은 온도에서 식각(etch)되어 Al조성이 높은 AlGaN이 성장되어 오믹 특성이 저하되는 문제가 있으며, 성장 속도의 비가 1: 0.8보다 큰 경우 제2-1 도전형 반도체층의 성장 속도가 너무 빨라져 결정성이 저하될 수 있다.In an embodiment, the growth rate of the 2-1 conductivity type semiconductor layer may be slower than that of the 2-2 and 2-3 conductivity type semiconductor layers. For example, the ratio of the growth rate of the 2-2 conductivity type semiconductor layer and the growth rate of the 2-1 conductivity type semiconductor layer may be 1: 0.2 to 1: 0.8. When the growth rate is less than 1: 0.2, the growth rate of the 2-1 conductive semiconductor layer is so slow that Ga is etched at a high temperature at which AlGaN is grown, and AlGaN having high Al composition is grown to decrease ohmic characteristics. If the growth rate is greater than 1: 0.8, the growth rate of the 2-1 conductive semiconductor layer may be too high, leading to a decrease in crystallinity.
도 15는 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고, 도 16a 및 도 16b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고, 도 17은 도 15의 A부분 확대도이다.FIG. 15 is a conceptual diagram of a semiconductor device according to an embodiment of the present disclosure. FIGS. 16A and 16B are diagrams for describing a configuration in which light output is improved according to a change in the number of recesses, and FIG. 17 is A of FIG. 15. It is a partial enlarged view.
도 15를 참조하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 활성층(126)을 포함하는 반도체 구조물(120)과, 제1 도전형 반도체층(124)과 전기적으로 연결되는 제1 전극(142)과, 제2 도전형 반도체층(127)과 전기적으로 연결되는 제2 전극(146)을 포함할 수 있다.Referring to FIG. 15, a semiconductor device according to an embodiment may include a semiconductor structure 120 including a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and an active layer 126, and a first conductive layer. The first electrode 142 may be electrically connected to the type semiconductor layer 124, and the second electrode 146 may be electrically connected to the second conductive semiconductor layer 127.
제1 도전형 반도체층(124), 활성층(126), 및 제2 도전형 반도체층(127)은 제1방향(Y방향)으로 배치될 수 있다. 이하에서는 각 층의 두께 방향인 제1방향(Y방향)을 수직방향으로 정의하고, 제1방향(Y방향)과 수직한 제2방향(X방향)을 수평방향으로 정의한다.The first conductive semiconductor layer 124, the active layer 126, and the second conductive semiconductor layer 127 may be disposed in the first direction (Y direction). Hereinafter, the first direction (Y direction), which is the thickness direction of each layer, is defined as the vertical direction, and the second direction (X direction) perpendicular to the first direction (Y direction) is defined as the horizontal direction.
실시 예에 따른 반도체 구조물(120)은 전술한 구조가 모두 적용될 수 있다. 반도체 구조물(120)은 제2 도전형 반도체층(127) 및 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치되는 복수 개의 리세스(128)를 포함할 수 있다.The above-described structure may be applied to the semiconductor structure 120 according to the embodiment. The semiconductor structure 120 may include a plurality of recesses 128 disposed through the second conductivity type semiconductor layer 127 and the active layer 126 to a portion of the first conductivity type semiconductor layer 124. .
제1 전극(142)은 리세스(128)의 상면에 배치되어 제1 도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2 전극(146)은 제2 도전형 반도체층(127)의 하부에 배치될 수 있다.The first electrode 142 may be disposed on an upper surface of the recess 128 to be electrically connected to the first conductive semiconductor layer 124. The second electrode 146 may be disposed under the second conductive semiconductor layer 127.
제1 전극(142)과 제2 전극(146)은 오믹전극일 수 있다. 제1 전극(142)과 제2 전극(146)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다. 예시적으로, 제1 전극은 복수의 금속층(예: Cr/Al/Ni)을 갖고, 제2 전극은 ITO일 수 있다.The first electrode 142 and the second electrode 146 may be ohmic electrodes. The first electrode 142 and the second electrode 146 are indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZO), and indium gallium zinc oxide (IGZO). ), IGTO (indium gallium tin oxide), AZO (aluminum zinc oxide), ATO (antimony tin oxide), GZO (gallium zinc oxide), IZON (IZO Nitride), AGZO (Al-Ga ZnO), IGZO (In-Ga) ZnO), ZnO, IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au, or Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, At least one of Ru, Mg, Zn, Pt, Au, and Hf may be formed, but is not limited thereto. In exemplary embodiments, the first electrode may have a plurality of metal layers (eg, Cr / Al / Ni), and the second electrode may be ITO.
도 16a를 참조하면, GaN 기반의 반도체 구조물(120)이 자외선을 발광하는 경우 알루미늄을 포함할 수 있고, 반도체 구조물(120)의 알루미늄 조성이 높아지면 반도체 구조물(120) 내에서 전류 분산 특성이 저하될 수 있다. 또한, 활성층(126)이 Al을 포함하여 자외선을 발광하는 경우, 활성층(126)은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 주로 발생할 수 있다.Referring to FIG. 16A, when the GaN-based semiconductor structure 120 emits ultraviolet rays, the GaN-based semiconductor structure 120 may include aluminum. When the aluminum composition of the semiconductor structure 120 is increased, current dispersal characteristics of the semiconductor structure 120 decrease. Can be. In addition, when the active layer 126 emits UV light including Al, the amount of light emitted to the side of the active layer 126 is increased compared to the GaN-based blue light emitting device (TM mode). This TM mode can occur mainly in ultraviolet semiconductor devices.
자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 전류 분산 특성이 떨어진다. 따라서, 자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 상대적으로 많은 제1 전극(142)을 배치할 필요가 있다.Ultraviolet semiconductor devices have poor current dissipation characteristics compared to blue GaN-based semiconductor devices. Accordingly, in the ultraviolet semiconductor device, it is necessary to dispose relatively many first electrodes 142 as compared to the blue GaN-based semiconductor device.
알루미늄의 조성이 높아지면 전류 분산 특성이 악화될 수 있다. 도 16a를 참조하면, 각각의 제1 전극(142)의 인근지점에만 전류가 분산되며, 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁아질 수 있다. Increasing the composition of aluminum can deteriorate the current dispersion characteristics. Referring to FIG. 16A, current is distributed only to a nearby point of each first electrode 142, and a current density may be sharply lowered at a long distance. Therefore, the effective light emitting area P2 can be narrowed.
유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1 전극(142)의 중심에서의 전류 밀도를 기준으로 전류 밀도가 40% 이하인 경계지점까지의 영역으로 정의할 수 있다. 예를 들어, 유효 발광 영역(P2)은 리세스(128)의 중심으로부터 40㎛이내의 범위에서 주입 전류의 레벨, Al의 조성에 따라 조절될 수 있다.The effective emission area P2 may be defined as an area up to a boundary point having a current density of 40% or less based on the current density at the center of the first electrode 142 having the highest current density. For example, the effective light emitting region P2 may be adjusted according to the level of the injection current and the composition of Al within a range of 40 μm from the center of the recess 128.
저전류밀도영역(P3)은 전류밀도가 낮아서 방출되는 광량이 유효 발광 영역(P2)에 비해 적을 수 있다. 따라서, 전류밀도가 낮은 저전류밀도영역(P3)에 제1 전극(142)을 더 배치하거나 반사구조를 이용하여 광 출력을 향상시킬 수 있다.The low current density region P3 may have a low current density and may emit less light than the effective light emitting region P2. Accordingly, the light output may be improved by further disposing the first electrode 142 in the low current density region P3 having a low current density or by using a reflective structure.
일반적으로 청색광을 방출하는 GaN 기반의 반도체 소자의 경우 상대적으로 전류 분산 특성이 우수하므로 리세스(128) 및 제1 전극(142)의 면적을 최소화하는 것이 바람직하다. 리세스(128)와 제1 전극(142)의 면적이 커질수록 활성층(126)의 면적이 작아지기 때문이다. 그러나, 실시 예의 경우 알루미늄의 조성이 높아서 전류 분산 특성이 상대적으로 떨어지므로, 활성층(126)의 면적을 희생하더라도 제1 전극(142)의 면적 및/또는 개수를 증가시켜 저전류밀도영역(P3)을 줄이거나, 또는 저전류밀도영역(P3)에 반사구조를 배치하는 것이 바람직할 수 있다.In general, a GaN-based semiconductor device emitting blue light has excellent current dispersing characteristics, and thus, it is preferable to minimize the area of the recess 128 and the first electrode 142. This is because the area of the active layer 126 decreases as the area of the recess 128 and the first electrode 142 increases. However, in the embodiment, since the composition of aluminum is high and current dispersal characteristics are relatively low, even if the area of the active layer 126 is sacrificed, the area and / or the number of the first electrodes 142 are increased so that the low current density region P3 is increased. It may be desirable to reduce or reduce the number of reflection structures in the low current density region P3.
도 16b를 참조하면, 리세스(128)의 개수가 48개로 증가하는 경우 리세스(128)는 가로 세로 방향으로 일직선으로 배치하지 않고, 지그재그로 배치될 수 있다. 이 경우 저전류밀도영역(P3)의 면적을 좁힐 수 있기 때문에 대부분의 활성층(126)이 발광에 참여할 수 있다.Referring to FIG. 16B, when the number of the recesses 128 is increased to 48, the recesses 128 may be disposed in a zigzag fashion without being disposed in a straight line in the horizontal and vertical directions. In this case, since the area of the low current density region P3 can be narrowed, most of the active layer 126 can participate in light emission.
자외선 발광소자에서는 반도체 구조물(120) 내에서 전류 확산 특성이 저하될 수 있고, 반도체 구조물(120) 내에서 균일한 전류 밀도 특성을 확보하여 반도체 소자의 전기적, 광학적 특성 및 신뢰성을 확보하기 위해 원활한 전류 주입이 필요하다. 따라서, 원활한 전류 주입을 위해 일반적인 GaN 기반의 반도체 구조물(120)에 비해 상대적으로 많은 개수의 리세스(128)를 형성하여 제1 전극(142)을 배치할 수 있다. In the ultraviolet light emitting device, a current spreading characteristic may be degraded in the semiconductor structure 120, and a smooth current is obtained to secure electrical and optical characteristics and reliability of the semiconductor device by securing a uniform current density characteristic in the semiconductor structure 120. Injection is required. Accordingly, the first electrode 142 may be disposed by forming a larger number of recesses 128 than the general GaN-based semiconductor structure 120 for smooth current injection.
도 17을 참조하면, 제1절연층(131)은 제1 전극(142)을 활성층(126) 및 제2 도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2 전극(146) 및 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 상기 반도체 소자의 공정 중에 상기 활성층(126)의 측면이 산화되는 것을 방지하는 기능을 할 수 있다.Referring to FIG. 17, the first insulating layer 131 may electrically insulate the first electrode 142 from the active layer 126 and the second conductive semiconductor layer 127. In addition, the first insulating layer 131 may electrically insulate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. In addition, the first insulating layer 131 may function to prevent side surfaces of the active layer 126 from being oxidized during the process of the semiconductor device.
제1절연층(131)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 제1절연층(131)은 단층 또는 다층으로 형성될 수 있다. 예시적으로 제1절연층(131)은 은 Si 산화물이나 Ti 화합물을 포함하는 다층 구조의 DBR(distributed Bragg reflector) 일 수도 있다. 그러나, 반드시 이에 한정하지 않고 제1절연층(131)은 다양한 반사 구조를 포함할 수 있다.The first insulating layer 131 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4 , SixNy, SiOxNy, Al 2 O 3 , TiO 2 , AlN, and the like, but is not limited thereto. . The first insulating layer 131 may be formed in a single layer or multiple layers. For example, the first insulating layer 131 may be a distributed Bragg reflector (DBR) having a multilayer structure including silver Si oxide or a Ti compound. However, the present invention is not limited thereto, and the first insulating layer 131 may include various reflective structures.
제1절연층(131)이 반사기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광(L1)을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 이 경우 리세스(128)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.When the first insulating layer 131 performs the reflection function, the light extraction efficiency may be improved by reflecting the light L1 emitted toward the side from the active layer 126 upward. In this case, as the number of recesses 128 increases, the light extraction efficiency may be more effective.
제1 전극(142)의 직경(W3)은 24㎛ 이상 50㎛ 이하일 수 있다. 이러한 범위를 만족하는 경우 전류 분산에 유리할 수 있고, 많은 개수의 제1 전극(142)을 배치할 수 있다. 제1 전극(142)의 직경(W3)이 24㎛보다 이상일 때, 제1 도전형 반도체층(124)에 주입되는 전류가 충분하게 확보할 수 있고, 50㎛이하일 때, 제1 도전형 반도체층(124)의 면적에 배치되는 복수 개의 제1 전극(142)의 수를 충분히 확보할 수 있고 전류 분산 특성을 확보할 수 있다. The diameter W3 of the first electrode 142 may be 24 μm or more and 50 μm or less. If this range is satisfied, it may be advantageous for current dispersion, and a large number of first electrodes 142 may be disposed. When the diameter W3 of the first electrode 142 is greater than or equal to 24 µm, a sufficient amount of current injected into the first conductivity type semiconductor layer 124 can be ensured, and when the diameter is less than or equal to 50 µm, the first conductivity type semiconductor layer The number of the plurality of first electrodes 142 disposed in the area of 124 can be sufficiently secured and the current dispersion characteristic can be secured.
리세스(128)의 직경(W1)은 38㎛ 이상 60㎛ 이하일 수 있다. 리세스(128)의 직경(W1)은 제2 도전형 반도체층(127)의 하부에 배치되어 리세스에서 가장 넓은 면적으로 정의할 수 있다. 상기 리세스(128)의 직경(W1)은 상기 제2 도전형 반도체층(127)의 저면에 배치된 리세스(128)의 직경일 수 있다.The diameter W1 of the recess 128 may be 38 µm or more and 60 µm or less. The diameter W1 of the recess 128 may be disposed under the second conductivity type semiconductor layer 127 to define the largest area of the recess 128. The diameter W1 of the recess 128 may be a diameter of the recess 128 disposed on the bottom surface of the second conductive semiconductor layer 127.
리세스(128)의 직경(W1)이 38㎛이상일 때, 리세스(128) 내부에 배치되는 제1 전극(142)을 형성하는 데에 있어서, 상기 제1 전극(142)이 제1 도전형 반도체층(124)과 전기적으로 연결되기 위한 면적을 확보하기 위한 공정 마진을 확보할 수 있고, 60㎛이하일 때, 제1 전극(142)을 배치하기 위해 감소하는 활성층(126)의 볼륨을 방지할 수 있고, 따라서 발광 효율이 악화될 수 있다.When the diameter W1 of the recess 128 is 38 µm or more, in forming the first electrode 142 disposed inside the recess 128, the first electrode 142 is of the first conductivity type. A process margin for securing an area for electrically connecting with the semiconductor layer 124 may be secured, and when the thickness is 60 μm or less, the volume of the active layer 126 that is reduced to dispose the first electrode 142 may be prevented. And the luminous efficiency may therefore deteriorate.
리세스(128)의 경사각도(θ5)는 70도 내지 90도일 수 있다. 이러한 면적 범위를 만족하는 경우 상면에 제1 전극(142)을 형성하는데 유리할 수 있고, 많은 개수의 리세스(128)를 형성할 수 있다. The inclination angle θ5 of the recess 128 may be 70 degrees to 90 degrees. If the area range is satisfied, it may be advantageous to form the first electrode 142 on the upper surface, and a large number of recesses 128 may be formed.
경사각도(θ5)가 70도보다 작으면 제거되는 활성층(126)의 면적이 증가할 수 있지만, 상기 제1 전극(142)이 배치될 면적이 작아질 수 있다. 따라서 전류 주입 특성이 저하될 수 있고, 발광 효율이의 저하될 수 있다. 따라서, 상기 리세스(128)의 경사각도(θ5)를 이용하여 제1 전극(142)과 제2 전극(146)의 면적비를 조절할 수도 있다.When the inclination angle θ5 is smaller than 70 degrees, the area of the active layer 126 removed may increase, but the area in which the first electrode 142 is disposed may be smaller. Therefore, the current injection characteristic can be lowered, and the luminous efficiency can be lowered. Therefore, the area ratio of the first electrode 142 and the second electrode 146 may be adjusted by using the inclination angle θ5 of the recess 128.
제2 전극(146)의 두께는 제1절연층(131)의 두께보다 얇을 수 있다. 따라서, 상기 제2 전극(146)을 감싸는 제2도전층(150)과 제2 절연층(132)의 스텝 커버리지 특성을 확보할 수 있고, 상기 반도체 소자의 신뢰성을 개선할 수 있다. 제2 전극(146)은 제1절연층(131)와 1㎛ ~ 4㎛의 제1 이격 거리(S1)를 가질 수 있다. 1㎛ 이상의 이격 거리를 가질 경우, 제1 절연층(131) 사이에 제2 전극(146)을 배치하는 공정의 공정 마진을 확보할 수 있고, 따라서 반도체 소자의 전기적 특성, 광학적 특성 및 신뢰성이 개선될 수 있다. 이격 거리가 4㎛ 이하일 경우, 제2 전극(146)이 배치될 수 있는 전체 면적을 확보할 수 있고 반도체 소자의 동작 전압 특성을 개선할 수 있다. The thickness of the second electrode 146 may be thinner than the thickness of the first insulating layer 131. Therefore, the step coverage characteristics of the second conductive layer 150 and the second insulating layer 132 surrounding the second electrode 146 can be ensured, and the reliability of the semiconductor device can be improved. The second electrode 146 may have a first separation distance S1 of 1 μm to 4 μm from the first insulating layer 131. When the separation distance is 1 μm or more, the process margin of the process of disposing the second electrode 146 between the first insulating layers 131 can be ensured, thereby improving the electrical characteristics, optical characteristics, and reliability of the semiconductor device. Can be. When the separation distance is 4 μm or less, the entire area in which the second electrode 146 may be disposed may be secured, and operating voltage characteristics of the semiconductor device may be improved.
제2 도전층(150)은 제2 전극(146)을 덮을 수 있다. 따라서, 제2 전극패드(166)와, 제2 도전층(150), 및 제2 전극(146)은 하나의 전기적 채널을 형성할 수 있다.The second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 may form one electrical channel.
제2 도전층(150)은 제2 전극(146)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 제2 도전층(150)은 제1절연층(131)과 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다. The second conductive layer 150 completely surrounds the second electrode 146 and may be in contact with the side surface and the top surface of the first insulating layer 131. The second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131, and at least one material selected from the group consisting of materials such as Cr, Al, Ti, Ni, Au, and the like. It may be made of an alloy, and may be made of a single layer or a plurality of layers.
제2 도전층(150)이 제1절연층(131)의 측면과 하면에 접하는 경우, 제2 전극(146)의 열적, 전기적 신뢰성을 향상할 수 있다. 제2도전층(150)은 제1절연층(131)의 하부로 연장될 수 있다. 이 경우 제1절연층(131)의 끝단이 들뜨는 현상을 억제할 수 있다. 따라서, 외부 습기 또는 오염 물질의 침투를 방지할 수 있다. 또한, 제1절연층(131)과 제2 전극(146) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.When the second conductive layer 150 is in contact with the side surface and the bottom surface of the first insulating layer 131, the thermal and electrical reliability of the second electrode 146 may be improved. The second conductive layer 150 may extend below the first insulating layer 131. In this case, the phenomenon that the end of the first insulating layer 131 is lifted up can be suppressed. Thus, penetration of external moisture or contaminants can be prevented. In addition, it may have a reflection function for reflecting light emitted between the first insulating layer 131 and the second electrode 146 to the top.
제2 도전층(150)은 제1절연층(131)과 제2 전극(146) 사이의 제1 이격 거리(S1)에 배치될 수 있다. 제2 도전층(150)은 제1이격 거리(S1)에서 제2 전극(146)의 측면과 상면 및 제1절연층(131)의 측면과 상면에 접할 수 있다. 또한, 제1 이격 거리(S1) 내에서 제2 도전층(150)과 제2도전성 반도체층(126)이 접촉하여 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다. 다만 이에 한정하지 않고, 상기 제2 전극(146)과 상기 제2 도전형 반도체층(127) 사이의 저항보다 상기 제2 도전층(150)과 상기 제2 도전형 반도체층(127) 사이의 저항이 더 큰 구성 내에서 자유롭게 배치될 수 있다.The second conductive layer 150 may be disposed at a first separation distance S1 between the first insulating layer 131 and the second electrode 146. The second conductive layer 150 may contact the side and top surfaces of the second electrode 146 and the side and top surfaces of the first insulating layer 131 at the first separation distance S1. In addition, a region where the second conductive layer 150 and the second conductive semiconductor layer 126 contact each other to form a Schottky junction within the first separation distance S1 may be disposed, and a current may be formed by forming a Schottky junction. Dispersion can be facilitated. However, the present invention is not limited thereto, and the resistance between the second conductive layer 150 and the second conductive semiconductor layer 127 is higher than the resistance between the second electrode 146 and the second conductive semiconductor layer 127. It can be arranged freely within this larger configuration.
제2절연층(132)은 제2 전극(146), 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 제1 도전층(165)은 제2절연층(132)을 관통하여 제1 전극(142)과 전기적으로 연결될 수 있다. 상기 제2절연층(132)과 상기 제1절연층(131)은 서로 동일한 물질로 배치될 수 있고, 서로 다른 물질로 배치될 수 있다. The second insulating layer 132 may electrically insulate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. The first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132. The second insulating layer 132 and the first insulating layer 131 may be formed of the same material or may be formed of different materials.
실시 예에 따르면, 제1전극(142)과 제2 전극(146) 사이의 영역에서 제2절연층(132)이 제1절연층(131) 상에 배치되므로 제1절연층(131)에 결함이 발생한 경우에도 외부의 습기 및/또는 기타 오염 물질의 침투를 방지할 수 있다.According to an embodiment, the second insulating layer 132 is disposed on the first insulating layer 131 in the region between the first electrode 142 and the second electrode 146, so that the first insulating layer 131 is defective. In this case, the penetration of external moisture and / or other contaminants can be prevented.
예시적으로 제1절연층(131)과 제2절연층(132)이 하나의 층으로 구성된 경우, 크랙과 같은 결함이 두께 방향으로 쉽게 전파될 수 있다. 따라서, 외부로 노출된 결함을 통해 외부의 습기나 오염 물질이 반도체 구조물로 침투할 수 있다.For example, when the first insulating layer 131 and the second insulating layer 132 are formed of one layer, defects such as cracks may easily propagate in the thickness direction. Therefore, external moisture or contaminants may penetrate into the semiconductor structure through defects exposed to the outside.
그러나, 실시 예에 따르면, 제1절연층(131) 상에 별도의 제2절연층(132)이 배치되므로 제1절연층(131)에 형성된 결함이 제2절연층(132)으로 전파되기 어렵다. 즉, 제1절연층(131)과 제2절연층(132) 사이의 계면이 결함의 전파를 차폐하는 역할을 수행할 수 있다.However, according to the embodiment, since a separate second insulating layer 132 is disposed on the first insulating layer 131, defects formed in the first insulating layer 131 are difficult to propagate to the second insulating layer 132. . That is, the interface between the first insulating layer 131 and the second insulating layer 132 may serve to shield the propagation of defects.
다시 도 15를 참조하면, 제2 도전층(150)은 제2 전극(146)과 제2 전극패드(166)를 전기적으로 연결할 수 있다. Referring to FIG. 15 again, the second conductive layer 150 may electrically connect the second electrode 146 and the second electrode pad 166.
제2 전극(146)은 제2 도전형 반도체층(127)에 직접 배치될 수 있다. 제2 도전형 반도체층(127)이 AlGaN인 경우 낮은 전기 전도도에 의해 정공 주입이 원활하지 않을 수 있다. 따라서, 제2 도전형 반도체층(127)의 Al 조성을 적절히 조절할 필요가 있다. 이에 대해서는 후술한다.The second electrode 146 may be directly disposed on the second conductivity type semiconductor layer 127. When the second conductivity-type semiconductor layer 127 is AlGaN, hole injection may not be smooth due to low electrical conductivity. Therefore, it is necessary to appropriately adjust the Al composition of the second conductivity type semiconductor layer 127. This will be described later.
제2 도전층(150)은 Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.The second conductive layer 150 may be made of at least one material selected from the group consisting of materials such as Cr, Al, Ti, Ni, Au, and alloys thereof, and may be made of a single layer or a plurality of layers. .
반도체 구조물(120)의 하부면과 리세스(128)의 형상을 따라 제1 도전층(165)과 접합층(160)이 배치될 수 있다. 제1 도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1 도전층(165)은 알루미늄을 포함할 수 있다. 전극층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 기판(170) 방향으로 방출되는 광을 상부 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다. 다만 이에 한정하지 않고, 제1 도전층(165)은 상기 제1 전극(142)과 전기적으로 연결되기 위한 기능을 제공할 수 있다. 상기 제1 도전층(165)이 반사율이 높은 물질, 예를 들어 알루미늄 및/또는 은(Ag)을 포함하지 않고 배치될 수 있고, 이러한 경우 상기 리세스(128) 내에 배치되는 제1 전극(142)과 상기 제1 도전층(165) 사이, 제2 도전형 반도체층(127)과 상기 제1 도전층(165) 사이에는 반사율이 높은 물질로 구성되는 반사금속층(미도시)이 배치될 수 있다.The first conductive layer 165 and the bonding layer 160 may be disposed along the shape of the bottom surface and the recess 128 of the semiconductor structure 120. The first conductive layer 165 may be made of a material having excellent reflectance. In exemplary embodiments, the first conductive layer 165 may include aluminum. When the electrode layer 165 includes aluminum, the light emitting efficiency may be improved by reflecting light emitted from the active layer 126 toward the substrate 170. However, the present invention is not limited thereto, and the first conductive layer 165 may provide a function for electrically connecting the first electrode 142. The first conductive layer 165 may be disposed without a material having high reflectivity, for example, aluminum and / or silver (Ag), in which case the first electrode 142 disposed in the recess 128. ) And a reflective metal layer (not shown) made of a material having high reflectance may be disposed between the first conductive layer 165 and the second conductive semiconductor layer 127 and the first conductive layer 165. .
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The bonding layer 160 may comprise a conductive material. For example, the bonding layer 160 may include a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or an alloy thereof.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다. 또한 상기 기판(170)이 도전성 물질로 구성되는 경우, 상기 제1 전극(142)은 상기 기판(170)을 통해 외부에서 전류를 공급받을 수 있다.The substrate 170 may be made of a conductive material. In exemplary embodiments, the substrate 170 may include a metal or a semiconductor material. The substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, heat generated during the operation of the semiconductor device may be quickly released to the outside. In addition, when the substrate 170 is made of a conductive material, the first electrode 142 may receive a current from the outside through the substrate 170.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The substrate 170 may include a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or an alloy thereof.
반도체 구조물(120)의 상면과 측면에는 패시베이션층(180)이 배치될 수 있다. 패시베이션층(180)의 두께는 200nm 이상 내지 500nm 이하일 수 있다. 200nm이상일 경우, 소자를 외부의 수분이나 이물질로부터 보호하여 소자의 전기적, 광학적 신뢰성을 개선할 수 있고, 500nm 이하일 경우 반도체 소자에 인가되는 스트레스를 줄일 수 있고, 상기 반도체 소자의 광학적, 전기적 신뢰성이 저하되거나 반도체 소자의 공정 시간이 길어짐에 따라 반도체 소자의 단가가 높아지는 문제점을 개선할 수 있다.The passivation layer 180 may be disposed on the top and side surfaces of the semiconductor structure 120. The passivation layer 180 may have a thickness of 200 nm or more and 500 nm or less. When it is 200 nm or more, the device may be protected from external moisture or foreign matter, thereby improving the electrical and optical reliability of the device. When it is less than 500 nm, the stress applied to the semiconductor device may be reduced, and the optical and electrical reliability of the semiconductor device may be reduced. In addition, as the processing time of the semiconductor device increases, the problem that the cost of the semiconductor device increases.
반도체 구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 반도체 구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500 nm 내지 600 nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.Unevenness may be formed on the upper surface of the semiconductor structure 120. Such unevenness may improve extraction efficiency of light emitted from the semiconductor structure 120. The unevenness may have a different average height according to the ultraviolet wavelength, and in the case of UV-C, the light extraction efficiency may be improved when the UV-C has a height of about 300 nm to 800 nm and an average of about 500 nm to 600 nm.
도 18은 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이고, 도 19는 도 18의 평면도이다.18 is a conceptual diagram of a semiconductor device according to another embodiment of the present invention, and FIG. 19 is a plan view of FIG. 18.
도 18을 참조하면, 반도체 구조물(120)은 전술한 구성이 그대로 적용될 수 있다. 또한, 복수 개의 리세스(128)는 제2 도전형 반도체층(127)과 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치될 수 있다.Referring to FIG. 18, the above-described configuration of the semiconductor structure 120 may be applied as it is. In addition, the plurality of recesses 128 may pass through the second conductivity-type semiconductor layer 127 and the active layer 126 to be disposed to a portion of the first conductivity-type semiconductor layer 124.
반도체 소자는 가장자리에 배치된 측면 반사부(Z1)를 포함할 수 있다. 측면 반사부(Z1)는 제2도전층(150), 제1도전층(165), 및 기판(170)이 두께 방향(Y축 방향)으로 돌출되어 형성될 수 있다. 도 20를 참조하면 측면 반사부(Z1)은 반도체 소자의 가장자리를 따라 배치되어, 반도체 구조물(120)을 감싸면서 배치될 수 있다.The semiconductor device may include a side reflector Z1 disposed at an edge thereof. The side reflector Z1 may be formed by protruding the second conductive layer 150, the first conductive layer 165, and the substrate 170 in a thickness direction (Y-axis direction). Referring to FIG. 20, the side reflector Z1 may be disposed along an edge of the semiconductor device to surround the semiconductor structure 120.
측면 반사부(Z1)의 제2도전층(150)은 활성층(126)보다 높게 돌출되어 활성층(126)에서 방출된 광을 상향 반사할 수 있다. 따라서, 별도의 반사층을 형성하지 않더라고 최외각에서 TM모드로 인해 수평 방향(X축 방향)으로 방출되는 광을 상향 반사할 수 있다.The second conductive layer 150 of the side reflector Z1 may protrude higher than the active layer 126 to reflect upwardly the light emitted from the active layer 126. Therefore, the light emitted in the horizontal direction (X-axis direction) can be upwardly reflected by the TM mode at the outermost part without forming a separate reflective layer.
측면 반사부(Z1)의 경사 각도는 90도 보다 크고 145도보다 작을 수 있다. 경사 각도는 제2도전층(150)이 수평면(XZ 평면)과 이루는 각도일 수 있다. 각도가 90도 보다 작거나 145도 보다 큰 경우에는 측면을 향해 이동하는 광을 상측으로 반사하는 효율이 떨어질 수 있다.An inclination angle of the side reflector Z1 may be greater than 90 degrees and smaller than 145 degrees. The inclination angle may be an angle between the second conductive layer 150 and the horizontal plane (XZ plane). When the angle is smaller than 90 degrees or larger than 145 degrees, the efficiency of reflecting light moving toward the side upwards may be inferior.
도 20은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고, 도 21은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고, 도 22는 도 21의 변형예이고, 도 23은 본 발명의 다른 실시 예에 따른 반도체 소자 패키지의 단면도이다.20 is a conceptual diagram of a semiconductor device package according to an embodiment of the present invention, FIG. 21 is a plan view of a semiconductor device package according to an embodiment of the present invention, FIG. 22 is a modification of FIG. 21, and FIG. 23 is shown. A cross-sectional view of a semiconductor device package according to another embodiment of the invention.
도 20을 참조하면, 반도체 소자 패키지는 홈(개구부, 3)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(5a, 5b)을 포함할 수 있다. 반도체 소자(1)는 전술한 구성을 모두 포함할 수 있다.Referring to FIG. 20, the semiconductor device package may include a body 2 having grooves (openings 3), a semiconductor device 1 disposed on the body 2, and a body 2 disposed on the body 2. It may include a pair of lead frames (5a, 5b) that are electrically connected. The semiconductor device 1 may include all of the above configurations.
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(2)는 복수의 층(2a, 2b, 2c, 2d, 2e)을 적층하여 형성할 수 있다. 복수의 층(2a, 2b, 2c, 2d, 2e)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다. 예시적으로 복수의 층(2a, 2b, 2c, 2d, 2e)은 알루미늄 재질을 포함할 수 있다.The body 2 may include a material or a coating layer that reflects ultraviolet light. The body 2 may be formed by stacking a plurality of layers 2a, 2b, 2c, 2d, and 2e. The plurality of layers 2a, 2b, 2c, 2d, and 2e may be the same material or may include different materials. For example, the plurality of layers 2a, 2b, 2c, 2d, and 2e may include an aluminum material.
홈(3)은 반도체 소자에서 멀어질수록 넓어지게 형성되고, 경사면에는 단차(3a)가 형성될 수 있다.The groove 3 may be wider as it is farther from the semiconductor device, and a step 3a may be formed on the inclined surface.
투광층(4)은 홈(3)을 덮을 수 있다. 투광층(4)은 글라스 재질일 있으나, 반드시 이에 한정하지 않는다. 투광층(4)은 자외선 광을 유효하게 투과할 수 있는 재질이면 특별히 제한하지 않는다. 홈(3)의 내부는 빈 공간일 수 있다.The light transmitting layer 4 may cover the groove 3. The light transmitting layer 4 may be made of glass, but is not limited thereto. The light transmitting layer 4 is not particularly limited as long as it is a material that can effectively transmit ultraviolet light. The inside of the groove 3 may be an empty space.
도 21을 참조하면, 반도체 소자(10)는 제1 리드프레임(5a)상에 배치되고, 제2 리드프레임(5b)과 와이어에 의해 연결될 수 있다. 이때, 제2 리드프레임(5b)은 제1 리드프레임의 측면을 둘러싸도록 배치될 수 있다.Referring to FIG. 21, the semiconductor device 10 may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire. In this case, the second lead frame 5b may be disposed to surround side surfaces of the first lead frame.
도 22를 참조하면, 반도체 소자 패키지는 복수 개의 반도체 소자(10a, 10b, 10c, 10d)가 배치될 수도 있다. 이때, 리드프레임은 제1 내지 제5 리드프레임(5a, 5b, 5c, 5d, 5e)을 포함할 수 있다.Referring to FIG. 22, a plurality of semiconductor devices 10a, 10b, 10c, and 10d may be disposed in the semiconductor device package. In this case, the lead frame may include first to fifth lead frames 5a, 5b, 5c, 5d, and 5e.
제1 반도체 소자(10a)는 제1 리드프레임(5a)상에 배치되고 제2 리드프레임(5b)과 와이어로 연결될 수 있다. 제2 반도체 소자(10b)는 제2 리드프레임(5b)상에 배치되고 제3 리드프레임(5c)과 와이어로 연결될 수 있다. 제3 반도체 소자(10c)는 제3 리드프레임(5c)상에 배치되고 제4 리드프레임(5d)과 와이어로 연결될 수 있다. 제4 반도체 소자(10d)는 제4 리드프레임(5d)상에 배치되고 제5 리드프레임(5e)과 와이어로 연결될 수 있다.The first semiconductor element 10a may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire. The second semiconductor device 10b may be disposed on the second lead frame 5b and connected to the third lead frame 5c by wires. The third semiconductor device 10c may be disposed on the third lead frame 5c and connected to the fourth lead frame 5d by a wire. The fourth semiconductor device 10d may be disposed on the fourth lead frame 5d and may be connected to the fifth lead frame 5e by a wire.
도 23을 참조하면, 반도체 소자 패키지는 캐비티(11)를 포함하는 몸체(10), 캐비티(11)의 내부에 배치되는 반도체 소자(100), 및 캐비티(11) 상에 배치되는 투광부재(50)를 포함할 수 있다.Referring to FIG. 23, a semiconductor device package may include a body 10 including a cavity 11, a semiconductor device 100 disposed inside the cavity 11, and a light transmitting member 50 disposed on the cavity 11. ) May be included.
몸체(10)는 알루미늄 기판을 가공하여 제작할 수 있다. 따라서, 실시 예에 따른 몸체(10)는 내면과 외면이 모두 도전성을 가질 수 있다. 이러한 구조는 다양한 이점을 가질 수 있다. AlN, Al2O3와 같은 비도전성 재질을 몸체(10)로 사용하는 경우, 자외선 파장대의 반사율이 20% 내지 40%에 불과하므로 별도의 반사부재를 배치해야 하는 문제가 있다. 또한, 리드 프레임과 같은 별도의 도전성 부재 및 회로 패턴이 필요할 수 있다. 따라서, 제작 비용이 상승하고 공정이 복잡해질 수 있다. 또한, 금(Au)과 같은 도전성 부재는 자외선을 흡수하여 광 추출 효율이 감소하는 문제가 있다.The body 10 may be manufactured by processing an aluminum substrate. Therefore, both the inner and outer surfaces of the body 10 according to the embodiment may have conductivity. Such a structure can have various advantages. In the case of using a non-conductive material such as AlN and Al 2 O 3 as the body 10, since the reflectance of the ultraviolet wavelength band is only 20% to 40%, there is a problem in that a separate reflective member must be disposed. In addition, a separate conductive member such as a lead frame and a circuit pattern may be required. As a result, manufacturing costs may rise and the process may become complicated. In addition, a conductive member such as gold (Au) has a problem in that light absorption efficiency is reduced by absorbing ultraviolet rays.
그러나, 실시 예에 따르면, 몸체(10) 자체가 알루미늄으로 구성되므로 자외선 파장대에서 반사율이 높아 별도의 반사부재를 생략할 수 있다. 또한, 몸체(10) 자체가 도전성이 있으므로 별도의 회로패턴 및 리드 프레임을 생략할 수 있다. 또한, 알루미늄으로 제작되므로 열전도성이 140W/m.k 내지 160W/m.k으로 우수할 수 있다. 따라서, 열 방출 효율도 향상될 수 있다.However, according to the embodiment, since the body 10 itself is made of aluminum, a high reflectance in the ultraviolet wavelength band can be omitted a separate reflection member. In addition, since the body 10 itself is conductive, separate circuit patterns and lead frames may be omitted. In addition, since it is made of aluminum, the thermal conductivity may be excellent as 140W / m.k to 160W / m.k. Therefore, the heat dissipation efficiency can also be improved.
몸체(10)는 제1도전부(10a)와 제2도전부(10b)를 포함할 수 있다. 제1도전부(10a)와 제2도전부(10b) 사이에는 제1절연부(42)가 배치될 수 있다. 제1도전부(10a)와 제2도전부(10b)는 모두 도전성을 가지므로 극을 분리하기 위해 제1절연부(42)가 배치될 필요가 있다.The body 10 may include a first conductive portion 10a and a second conductive portion 10b. The first insulating portion 42 may be disposed between the first conductive portion 10a and the second conductive portion 10b. Since both of the first conductive portion 10a and the second conductive portion 10b are conductive, the first insulating portion 42 needs to be disposed to separate the poles.
몸체(10)는 하면(12)과 측면(13)이 만나는 모서리에 배치되는 홈(14), 및 홈(14)에 배치되는 제2절연부(41)를 포함할 수 있다. 홈(14)은 하면(12)과 측면(13)이 만나는 모서리를 따라 전체적으로 배치될 수 있다. The body 10 may include a groove 14 disposed at an edge where the lower surface 12 and the side surface 13 meet, and a second insulating portion 41 disposed on the groove 14. The groove 14 may be disposed entirely along the edge where the lower surface 12 and the side surface 13 meet.
제2절연부(41)는 제1절연부(42)와 동일한 재질일 수 있으나 반드시 이에 한정하지 않는다. 제1절연부(42)와 제2절연부(41)는 EMC, 화이트 실리콘, PSR(Photoimageable Solder Resist), 실리콘 수지 조성물, 실리콘 변성 에폭시 수지 등의 변성 에폭시 수지 조성물, 에폭시 변성 실리콘 수지 등의 변성 실리콘 수지 조성물, 폴리이미드 수지 조성물, 변성 폴리이미드 수지 조성물, 폴리프탈아미드(PPA), 폴리카보네이트 수지, 폴리페닐렌 설파이드(PPS), 액정 폴리머(LCP), ABS 수지, 페놀 수지, 아크릴 수지, PBT 수지 등의 수지 등이 선택될 수 있다.The second insulation portion 41 may be made of the same material as the first insulation portion 42 but is not necessarily limited thereto. The first insulating portion 42 and the second insulating portion 41 may be modified by EMC, white silicone, PSR (Photoimageable Solder Resist), silicone resin composition, modified epoxy resin composition such as silicone modified epoxy resin, epoxy modified silicone resin, or the like. Silicone resin composition, polyimide resin composition, modified polyimide resin composition, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT Resins such as resins and the like can be selected.
실시 예에 따르면, 몸체(10)의 하부 모서리에 제2절연부(41)가 배치되므로 패키지 절삭시 모서리에 버(burr)가 발생하는 것을 방지할 수 있다. 알루미늄 기판의 경우 다른 금속 기판에 비해 상대적으로 버(burr)가 잘 발생할 수 있다. 버(burr)가 발생한 경우 하면(12)이 평탄하지 않아 실장이 불량해질 수 있다. 또한, 버(burr)가 발생한 경우 두께가 불균일해질 수 있고, 측정 오차가 발생할 수도 있다.According to the embodiment, since the second insulating portion 41 is disposed at the lower edge of the body 10, burrs may be prevented from occurring at the edges when cutting the package. In the case of an aluminum substrate, burrs may be generated relatively compared to other metal substrates. If a burr occurs, the lower surface 12 may not be flat, and thus the mounting may be poor. In addition, when a burr occurs, the thickness may become uneven, and measurement errors may occur.
제3절연부(43)는 몸체(10)의 하면(12)에 배치되어 제2절연부(41) 및 제1절연부(42)와 연결될 수 있다. 실시 예에 따르면, 몸체의 하면(12), 제2절연부(41)의 하면, 및 제3절연부(43)의 하면은 동일 평면상에 배치될 수 있다.The third insulation portion 43 may be disposed on the bottom surface 12 of the body 10 and may be connected to the second insulation portion 41 and the first insulation portion 42. According to the embodiment, the lower surface 12 of the body, the lower surface of the second insulating portion 41, and the lower surface of the third insulating portion 43 may be disposed on the same plane.
도 24는 본 발명의 일 실시 예에 따른 발광구조물의 개념도이고, 도 25는 본 발명의 일 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프이다.24 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention, Figure 25 is a graph showing the aluminum composition of the light emitting structure according to an embodiment of the present invention.
도 24를 참고하면, 실시 예에 따른 반도체소자는 제1도전형 반도체층(124), 제2도전형 반도체층(127), 및 활성층(126)을 포함하는 발광구조물(120A)을 포함한다. 각 반도체층의 구성은 도 1에서 설명한 구조와 동일할 수 있다.Referring to FIG. 24, a semiconductor device according to the embodiment includes a light emitting structure 120A including a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and an active layer 126. Each semiconductor layer may have the same structure as described with reference to FIG. 1.
도 25를 참고하면, 제1도전형 반도체층, 활성층(126), 차단층(129), 및 제2도전형 반도체층(127)은 모두 알루미늄을 포함할 수 있다. Referring to FIG. 25, the first conductive semiconductor layer, the active layer 126, the blocking layer 129, and the second conductive semiconductor layer 127 may all include aluminum.
따라서, 제1도전형 반도체층(124), 활성층(126), 차단층(129), 및 제2도전형 반도체층(127)은 AlGaN일 수 있다. 그러나, 반드시 이에 한정하지 않는다. 일부 층은 GaN 또는 AlN일 수도 있다.Therefore, the first conductive semiconductor layer 124, the active layer 126, the blocking layer 129, and the second conductive semiconductor layer 127 may be AlGaN. However, it is not necessarily limited thereto. Some layers may be GaN or AlN.
활성층(126)은 복수 개의 우물층(126a)과 장벽층(126b)이 교대로 배치될 수 있다. 우물층(126a)은 자외선을 발광하기 위하여 알루미늄 조성이 약 30% 내지 50%일 수 있다. 장벽층(126b)은 캐리어를 가두기 위해 알루미늄 조성이 50% 내지 70%일 수 있다.In the active layer 126, a plurality of well layers 126a and a barrier layer 126b may be alternately disposed. The well layer 126a may have an aluminum composition of about 30% to 50% to emit ultraviolet light. Barrier layer 126b may have an aluminum composition of 50% to 70% to confine the carrier.
예시적으로 우물층(126a) 중에서 차단층(129)과 가장 가까운 우물층을 제1우물층(126a)으로 정의하고, 제1우물층(126a)과 차단층(129) 사이에 배치되는 마지막 장벽층을 제1장벽층(126b)으로 정의한다.For example, the well layer closest to the blocking layer 129 among the well layers 126a may be defined as the first well layer 126a and the last barrier disposed between the first well layer 126a and the blocking layer 129. The layer is defined as the first barrier layer 126b.
차단층(129)은 알루미늄 조성이 50% 내지 90%일 수 있다. 차단층(129)은 알루미늄 조성이 상대적으로 높은 복수 개의 제1차단층(129d)과 알루미늄 조성이 낮은 복수 개의 제2차단층(129e)이 교대로 배치될 수 있다. 차단층(129)의 알루미늄 조성이 50% 미만일 경우 전자를 차단하기 위한 에너지 장벽의 높이가 부족할 수 있고 활성층(126)에서 방출하는 광을 차단층(129)에서 흡수할 수 있고, 알루미늄 조성이 90%를 초과할 경우 반도체 소자의 전기적 특성이 악화될 수 있다.The blocking layer 129 may have an aluminum composition of 50% to 90%. The blocking layer 129 may alternately include a plurality of first blocking layers 129d having a relatively high aluminum composition and a plurality of second blocking layers 129e having a low aluminum composition. When the aluminum composition of the blocking layer 129 is less than 50%, the height of the energy barrier for blocking electrons may be insufficient, and the light emitted from the active layer 126 may be absorbed by the blocking layer 129, and the aluminum composition may be 90%. Exceeding the% may deteriorate the electrical characteristics of the semiconductor device.
제1차단층(129d)의 알루미늄 조성은 70% 내지 90%이고, 제2차단층(129e)의 알루미늄 조성은 50% 내지 70%일 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고 제1차단층(129d)과 제2차단층(129e)의 알루미늄 조성은 목적에 맞게 조절될 수 있다.The aluminum composition of the first blocking layer 129d may be 70% to 90%, and the aluminum composition of the second blocking layer 129e may be 50% to 70%. However, the present invention is not limited thereto, and the aluminum composition of the first blocking layer 129d and the second blocking layer 129e may be adjusted according to the purpose.
제1중간층(S10)은 활성층(126)의 제1우물층(126a)과 차단층(129) 사이에 배치될 수 있다. 제1중간층(S10)은 차단층(129)보다 알루미늄 조성이 낮은 제3-1구간(S11), 및 차단층(129)보다 알루미늄 조성이 높은 제3-2구간(S12)을 포함할 수 있다. The first intermediate layer S10 may be disposed between the first well layer 126a and the blocking layer 129 of the active layer 126. The first intermediate layer S10 may include a third-first section S11 having a lower aluminum composition than the blocking layer 129, and a third-second section S12 having a higher aluminum composition than the blocking layer 129. .
제1중간층(S10)은 제1장벽층(126b)일 수 있다. 따라서, 제1중간층(S10)의 두께는 이웃한 장벽층(126b)의 두께와 동일할 수 있다. 예시적으로 제1중간층(S10)의 두께는 2nm 내지 10nm일 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고 제1중간층(S10)은 제1장벽층(126b)과 차단층(129) 사이에 배치되는 별도의 반도체층일 수도 이거나 차단층(129)의 일부일 수 있다.The first intermediate layer S10 may be a first barrier layer 126b. Therefore, the thickness of the first intermediate layer S10 may be the same as the thickness of the neighboring barrier layer 126b. For example, the thickness of the first intermediate layer S10 may be 2 nm to 10 nm. However, the present disclosure is not limited thereto, and the first intermediate layer S10 may be a separate semiconductor layer disposed between the first barrier layer 126b and the blocking layer 129 or may be part of the blocking layer 129.
제3-1구간(S11)의 알루미늄 조성은 50% 내지 70%일 수 있다. 즉, 제3-1구간(S11)은 인접한 장벽층(126b)의 알루미늄 조성과 실질적으로 동일할 수 있다. 제3-1구간(S11)의 두께는 약 1nm 내지 8nm일 수 있다. 제3-1구간(S11)의 두께가 1nm이하일 경우 우물층(126a)에서 Al 함량이 급격하게 증가하며 발생하는 결정성 저하 문제를 방지하기 어려울 수 있다. 또한, 제3-1구간(S11)의 두께가 8nm보다 두꺼울 경우 활성층(126)으로의 정공 주입 효율이 저하되어 광학적 특성이 저하될 수 있다.The aluminum composition of the third section 1 (S11) may be 50% to 70%. That is, the third-first section S11 may be substantially the same as the aluminum composition of the adjacent barrier layer 126b. The thickness of the third-first section S11 may be about 1 nm to 8 nm. When the thickness of the third section S11 is less than or equal to 1 nm, it may be difficult to prevent a problem of crystallinity deterioration caused by a sharp increase in Al content in the well layer 126a. In addition, when the thickness of the third section S11 is thicker than 8 nm, the hole injection efficiency into the active layer 126 may be lowered, thereby lowering optical characteristics.
제3-2구간(S12)은 차단층(129)보다 알루미늄 조성이 높을 수 있다. 제3-2구간(S12)은 차단층(129)에 가까워질수록 알루미늄 조성이 높아질 수 있다. 제3-2구간(S12)의 알루미늄 조성은 80% 내지 100%일 수 있다. 즉, 제3-2구간(S12)은 AlGaN일 수도 있고 AlN일 수도 있다. 또는 제3-2구간(S12)은 AlGaN과 AlN이 교대로 배치되는 초격자층일 수도 있다.The third-second section S12 may have a higher aluminum composition than the blocking layer 129. As the closer to the blocking layer 129, the third-second section S12 may have a higher aluminum composition. The aluminum composition of the second to third sections S12 may be 80% to 100%. That is, the third-second section S12 may be AlGaN or AlN. Alternatively, the third-second section S12 may be a superlattice layer in which AlGaN and AlN are alternately arranged.
제3-2구간(S12)은 제3-1구간(S11)에 비해 얇게 형성될 수 있다. 제3-2구간(S12)의 두께는 약 0.1nm 내지 4nm일 수 있다. 제3-2구간(S12)의 두께가 0.1nm보다 얇을 경우 전자의 이동을 효율적으로 차단하지 못하는 문제점이 있을 수 있다. 또한, 제3-2구간(S12)의 두께가 4nm보다 두꺼울 경우 활성층으로 정공이 주입되는 효율이 저하되는 문제점이 있을 수 있다. The third-second section S12 may be thinner than the third-first section S11. The thickness of the third-second section S12 may be about 0.1 nm to 4 nm. If the thickness of the third section S12 is thinner than 0.1 nm, there may be a problem in that the movement of electrons may not be efficiently blocked. In addition, when the thickness of the third section S12 is thicker than 4 nm, there may be a problem in that the efficiency of injecting holes into the active layer is reduced.
제3-1구간(S11)과 제3-2구간(S12)의 두께비는 10:1 내지 1:1일 수 있다. 상기 조건을 만족하는 경우 전자의 이동은 차단하면서 홀의 주입 효율은 저하시키지 않을 수 있다. The thickness ratio of the third-first section S11 and the third-second section S12 may be 10: 1 to 1: 1. When the above conditions are satisfied, the electron movement may be blocked while the hole injection efficiency may not be reduced.
제3-2구간(S12)은 언도프(undoped)된 구간을 포함할 수 있다. 제3-2구간(S12)은 도펀트를 공급하지 않고 성장시킴에도 불구하고, 제1구간의 일부는 차단층(129)의 Mg가 확산될 수 있다. 그러나, 도펀트가 활성층(126)으로 확산되는 것을 방지하기 위해 제3-2구간(S12)의 적어도 일부 영역은 언도프(undoped)된 구간을 포함할 수 있다.The third-second section S12 may include an undoped section. Although the third-second section S12 grows without supplying the dopant, Mg of the blocking layer 129 may be diffused in a portion of the first section. However, at least a portion of the third-second section S12 may include an undoped section to prevent the dopant from diffusing into the active layer 126.
도 26은 본 발명의 다른 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프고, 도 27은 종래 발광구조물을 포함하는 반도체 소자의 광 출력을 측정한 그래프이고, 도 28은 본 발명의 다른 실시 예에 따른 발광구조물의 광 출력을 측정한 그래프이다.FIG. 26 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention, FIG. 27 is a graph measuring light output of a semiconductor device including a conventional light emitting structure, and FIG. 28 is a view showing another embodiment of the present invention. It is a graph measuring the light output of the light emitting structure according to.
도 26을 참고하면, 제2중간층(S20)의 구성을 제외하고는 도 25에서 설명한 구조가 모두 적용될 수 있다. 제2중간층(S20)은 차단층(129)의 일부일 수 있으나 반드시 이에 한정하지 않는다.Referring to FIG. 26, all of the structures described with reference to FIG. 25 may be applied except for the configuration of the second intermediate layer S20. The second intermediate layer S20 may be part of the blocking layer 129, but is not necessarily limited thereto.
제2중간층(S20)의 알루미늄 조성은 차단층(129)보다 낮고, 제3-1구간(S11)의 알루미늄 조성보다는 높을 수 있다. 예시적으로 제2중간층(S20)의 알루미늄 조성은 50% 내지 80%일 수 있다.The aluminum composition of the second intermediate layer S20 may be lower than that of the blocking layer 129 and higher than the aluminum composition of the third-first section S11. For example, the aluminum composition of the second intermediate layer S20 may be 50% to 80%.
제2중간층(S20)은 P형 도펀트를 포함하지 않는 제4-1구간(S21), 및 P형 도펀트를 포함하는 제4-2구간(S22)을 포함할 수 있다.The second intermediate layer S20 may include a fourth-first section S21 that does not include a P-type dopant, and a fourth-second section S22 that includes a P-type dopant.
제4-1구간(S21)은 언도프드된 구간일 수 있다. 따라서, 차단층(129) 성장시 도펀트가 활성층(126)으로 확산되는 것을 억제할 수 있다. 제4-1구간(S21)의 두께는 4nm 내지 19nm일 수 있다. 제4-1구간(S21)의 두께가 4nm보다 작은 경우 도펀트의 확산을 억제하기 어렵고, 두께가 19nm보다 큰 경우 홀의 주입 효율이 떨어질 수 있다.The fourth-first section S21 may be an undoped section. Therefore, it is possible to suppress diffusion of the dopant into the active layer 126 when the blocking layer 129 is grown. The thickness of the fourth section S21 may be 4 nm to 19 nm. When the thickness of the fourth-first section S21 is smaller than 4 nm, it is difficult to suppress diffusion of the dopant, and when the thickness is larger than 19 nm, the hole injection efficiency may be reduced.
제4-2구간(S22)은 P형 도펀트를 포함할 수 있다. 제4-2구간(S22)은 도펀트를 포함하여 제4-1구간(S21)으로 홀이 주입되는 효율을 개선할 수 있다. 즉, 제4-2구간(S22)은 저항 레벨을 낮추는 저저항층의 역할을 수행할 수 있다. The fourth-second section S22 may include a P-type dopant. The 4-2 section S22 may include the dopant to improve the efficiency in which holes are injected into the 4-1 section S21. That is, the fourth section S22 may serve as a low resistance layer that lowers the resistance level.
제4-2구간(S22)의 두께는 1nm 내지 6nm일 수 있다. 두께가 1nm보다 작은 경우 효과적으로 저항을 낮추기 어렵고 두께가 6nm보다 커지는 경우 제4-1구간(S21)의 두께가 줄어들어 도펀트의 확산을 억제하기 어려워질 수 있다. 제4-1구간(S21)의 두께와 제4-2구간(S22)의 두께의 비는 19:1 내지 1:1.5일 수 있다. The thickness of the fourth section S22 may be 1 nm to 6 nm. When the thickness is smaller than 1 nm, it is difficult to effectively lower the resistance, and when the thickness is larger than 6 nm, the thickness of the 4-1 section S21 may be reduced, which may make it difficult to suppress diffusion of the dopant. The ratio of the thickness of the fourth-first section S21 and the thickness of the fourth-second section S22 may be 19: 1 to 1: 1.5.
그러나, 반드시 이에 한정되는 것은 아니고 제2중간층(S20)은 제4-1구간(S21)과 제4-2구간(S22)이 교대로 배치된 초격자 구조일 수도 있다.However, the present invention is not limited thereto, and the second intermediate layer S20 may have a superlattice structure in which the fourth-first section S21 and the fourth-second section S22 are alternately arranged.
도 27을 참고하면, 종래 발광구조물을 갖는 반도체 소자의 경우 약 100시간이 증가하면 광 출력이 20%저하됨을 알 수 있다. 또한, 약 500시간이 경과하면 약 25% 광 출력이 저하됨을 알 수 있다.Referring to FIG. 27, it can be seen that in the case of a semiconductor device having a conventional light emitting structure, the light output decreases by 20% after about 100 hours increase. It can also be seen that after about 500 hours, the light output is reduced by about 25%.
이에 반해 도 28을 참고하면, 실시 예에 따른 발광구조물을 갖는 반도체 소자의 경우 100시간이 경과하여도 약 3.5%정도의 광도가 저하되었고, 약 500시간이 경과한 경우에도 거의 동일한 광 출력을 보이고 있음을 확인할 수 있다. 즉, 중간층이 없이 종래 구조의 경에 비해 실시 예는 약 20% 광 출력이 향상되었음을 알 수 있다.On the contrary, referring to FIG. 28, in the case of the semiconductor device having the light emitting structure according to the embodiment, the luminous intensity of about 3.5% was reduced even after 100 hours, and the light output was about the same even after about 500 hours. It can be confirmed. That is, it can be seen that the embodiment has about 20% improved light output compared to the diameter of the conventional structure without the intermediate layer.
도 29는 본 발명의 또 다른 실시 예에 따른 발광구조물의 알루미늄 조성을 보여주는 그래프다. 29 is a graph showing an aluminum composition of a light emitting structure according to another embodiment of the present invention.
도 29를 참고하면, 제2도전형 반도체층(129)은 제2-1도전형 반도체층(129a)과 제2-2도전형 반도체층(129b)을 포함할 수 있다.Referring to FIG. 29, the second conductive semiconductor layer 129 may include a 2-1 conductive semiconductor layer 129a and a 2-2 conductive semiconductor layer 129b.
제2-1도전형 반도체층(127a)의 두께는 10nm보다 크고 200nm보다 작을 수 있다. 제2-1도전형 반도체층(127a)의 두께가 10nm보다 작은 경우 수평 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다. 또한, 제2-1도전형 반도체층(127a)의 두께가 200nm보다 큰 경우 수직 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다.The thickness of the second-first conductive semiconductor layer 127a may be larger than 10 nm and smaller than 200 nm. When the thickness of the second-first conductive semiconductor layer 127a is smaller than 10 nm, the resistance may increase in the horizontal direction, thereby lowering the current injection efficiency. In addition, when the thickness of the second-first conductive semiconductor layer 127a is greater than 200 nm, the resistance may increase in the vertical direction, thereby lowering the current injection efficiency.
제2-1도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 자외선 광을 생성하기 위해 우물층(126a)의 알루미늄 조성은 약 30% 내지 50%일 수 있다. 만약, 제2-1도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제2-1도전형 반도체층(127a)이 광을 흡수하기 때문에 광 추출 효율이 떨어질 수 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be higher than that of the well layer 126a. The aluminum composition of the well layer 126a may be about 30% to 50% to generate ultraviolet light. If the aluminum composition of the 2-1 conductive semiconductor layer 127a is lower than that of the well layer 126a, the light extraction efficiency may decrease because the 2-1 conductive semiconductor layer 127a absorbs light. Can be.
제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%보다 작은 경우 광을 흡수하는 문제가 있으며, 80%보다 큰 경우에는 전류 주입 효율이 악화되는 문제가 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제2-1도전형 반도체층(127a)의 알루미늄 조성은 40%일 수 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be greater than 40% and less than 80%. If the aluminum composition of the second-first conductive semiconductor layer 127a is less than 40%, there is a problem of absorbing light, and if greater than 80%, the current injection efficiency is deteriorated. For example, when the aluminum composition of the well layer 126a is 30%, the aluminum composition of the 2-1 conductive semiconductor layer 127a may be 40%.
제2-2도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다. 제2-2도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높은 경우 p-오믹 전극 사이의 저항이 높아져 충분한 오믹이 이루어지지 않고, 전류 주입 효율이 떨어지는 문제가 있다.The aluminum composition of the second-second conductive semiconductor layer 127a may be lower than that of the well layer 126a. If the aluminum composition of the second-conductive semiconductor layer 127a is higher than that of the well layer 126a, the resistance between the p-omic electrodes is increased, so that sufficient ohmic is not achieved and current injection efficiency is inferior. .
제2-2도전형 반도체층(127a)의 알루미늄 조성은 1%보다 크고 50%보다 작을 수 있다. 50%보다 큰 경우 p오믹 전극과 충분한 오믹이 이루어지지 않을 수 있고, 조성이 1%보다 작은 경우 거의 GaN 조성과 가까워져 광을 흡수하는 문제가 있다.The aluminum composition of the second-second conductive semiconductor layer 127a may be greater than 1% and less than 50%. If it is larger than 50%, a sufficient ohmic may not be achieved with the p-omic electrode. If the composition is smaller than 1%, there is a problem of absorbing light because it is almost close to the GaN composition.
제2-2도전형 반도체층(127a)의 두께는 1nm보다 크고 30nm보다 작을 수 있다. 전술한 바와 같이 제2-2도전형 반도체층(127a)은 오믹을 위해 알루미늄의 조성이 낮으므로 자외선 광을 흡수할 수 있다. 따라서, 최대한 제2-2도전형 반도체층(127a)의 두께를 얇게 제어하는 것이 광 출력 관점에서 유리할 수 있다. The thickness of the second-2 conductive semiconductor layer 127a may be greater than 1 nm and smaller than 30 nm. As described above, the second conductive semiconductor layer 127a may absorb ultraviolet light because the composition of aluminum is low for ohmic. Therefore, it may be advantageous in terms of light output to control the thickness of the second-second conductive semiconductor layer 127a as thin as possible.
그러나 제2-2도전형 반도체층(127a)의 두께가 1nm이하로 제어되는 경우 일부 구간은 제2-2도전형 반도체층(127a)이 배치되지 않고, 제2-1도전형 반도체층(127a)이 발광구조물(120)의 외부로 노출되는 영역이 발생할 수 있다. 또한, 두께가 30nm보다 큰 경우 흡수하는 광량이 너무 커져 광 출력 효율이 감소할 수 있다.However, when the thickness of the second-second conductive semiconductor layer 127a is controlled to 1 nm or less, the second-second conductive semiconductor layer 127a is not disposed in some sections, and the second-first conductive semiconductor layer 127a is not disposed. ) May be exposed to the outside of the light emitting structure 120. In addition, when the thickness is larger than 30 nm, the amount of light to be absorbed may be too large to reduce the light output efficiency.
제2-2도전형 반도체층(127a)는 제1서브층(127e)과 제2서브층(127d)을 더 포함할 수 있다. 제1서브층(127e)은 제2전극과 접촉하는 표면층일 수 있고, 제2서브층(127d)은 알루미늄의 조성을 조절하는 층일 수 있다.The second-second conductive semiconductor layer 127a may further include a first sub layer 127e and a second sub layer 127d. The first sub layer 127e may be a surface layer in contact with the second electrode, and the second sub layer 127d may be a layer for adjusting the composition of aluminum.
제1서브층(127e)은 알루미늄 조성이 1%보다 크고 20%보다 작을 수 있다. 또는 알루미늄 조성은 1%보다 크고 10%보다 작을 수 있다. The first sub layer 127e may have an aluminum composition of greater than 1% and less than 20%. Or the aluminum composition may be greater than 1% and less than 10%.
알루미늄 조성이 1%보다 낮은 경우, 제1서브층(127e)에서 광흡수율이 너무 높아지는 문제가 있을 수 있고, 알루미늄 조성이 20%보다 높은 경우 제2전극(p-오믹전극)의 접촉 저항이 높아져 전류 주입 효율이 떨어지는 문제점이 있을 수 있다. If the aluminum composition is lower than 1%, there may be a problem that the light absorption rate is too high in the first sub layer 127e. If the aluminum composition is higher than 20%, the contact resistance of the second electrode (p-omic electrode) is increased. There may be a problem that the current injection efficiency is low.
그러나, 반드시 이에 한정되는 것은 아니고 제1서브층(127e)의 알루미늄 조성은 전류 주입 특성과 광 흡수율을 고려하여 조절될 수도 있다. 또는, 제품에서 요구되는 광 출력 따라 조절할 수도 있다.However, the present invention is not limited thereto, and the aluminum composition of the first sub layer 127e may be adjusted in consideration of the current injection characteristic and the light absorption rate. Alternatively, it can be adjusted according to the light output required by the product.
예를 들어, 전류 주입 효율 특성이 광 흡수율보다 더 중요한 경우, 알루미늄의 조성비를 1% 내지 10%로 조절할 수 있다. 광출력 특성이 전기적 특성보다 더 중요한 제품의 경우 제1서브층(127e)의 알루미늄 조성비를 1% 내지 20%로 조절할 수도 있다. For example, when the current injection efficiency characteristic is more important than the light absorption rate, the composition ratio of aluminum can be adjusted to 1% to 10%. In the case of products in which light output characteristics are more important than electrical characteristics, the aluminum composition ratio of the first sub layer 127e may be adjusted to 1% to 20%.
제1서브층(127e)의 알루미늄 조성비가 1%보다 크고 20%보다 작 은 경우, 제1서브층(127e)과 제2전극 사이의 저항이 감소하므로 동작 전압이 낮아질 수 있다. 따라서, 전기적 특성이 향상될 수 있다. 제1서브층(127e)의 두께는 1nm보다 크고 10nm보다 작게 형성될 수 있다. 따라서, 광 흡수 문제를 개선할 수 있다.When the aluminum composition ratio of the first sub layer 127e is greater than 1% and less than 20%, the resistance between the first sub layer 127e and the second electrode decreases, thereby lowering the operating voltage. Thus, the electrical characteristics can be improved. The thickness of the first sub layer 127e may be greater than 1 nm and smaller than 10 nm. Therefore, the problem of light absorption can be improved.
제2-2도전형 반도체층(127a)의 두께는 제2-1도전형 반도체층(127a)의 두께보다 작을 수 있다. 제2-1도전형 반도체층(127a)과 제2-2도전형 반도체층(127a)의 두께비는 1.5:1 내지 20:1일 수 있다. 두께비가 1.5:1보다 작은 경우 제2-1도전형 반도체층(127a)의 두께가 너무 얇아져 전류 주입 효율이 감소할 수 있다. 또한, 두께비가 20:1보다 큰 경우 제2-2도전형 반도체층(127a)의 두께가 너무 얇아져 오믹 신뢰성이 저하될 수 있다.The thickness of the second-second conductive semiconductor layer 127a may be smaller than the thickness of the second-first conductive semiconductor layer 127a. The thickness ratio of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127a may be 1.5: 1 to 20: 1. When the thickness ratio is smaller than 1.5: 1, the thickness of the 2-1 conductive semiconductor layer 127a may be too thin, thereby reducing current injection efficiency. In addition, when the thickness ratio is greater than 20: 1, the thickness of the second conductive semiconductor layer 127a may be too thin, thereby reducing ohmic reliability.
제2-1도전형 반도체층(127a)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 또한, 제2-2도전형 반도체층(127a)의 알루미늄 조성은 활성층(126)에서 멀어질수록 작아질 수 있다. 따라서, 제1서브층(127e)의 알루미늄 조성은 1% 내지 10%를 만족할 수 있다.The aluminum composition of the second-first conductive semiconductor layer 127a may be smaller as it moves away from the active layer 126. In addition, the aluminum composition of the second-second conductive semiconductor layer 127a may be smaller as it moves away from the active layer 126. Therefore, the aluminum composition of the first sub layer 127e may satisfy 1% to 10%.
그러나, 반드시 이에 한정하는 것은 아니고 제2-1도전형 반도체층(127a)과 제2-2도전형 반도체층(127a)의 알루미늄 조성은 연속적으로 감소하는 것이 아니라 일정 구간에서 감소가 없는 구간을 포함할 수도 있다.However, the present invention is not necessarily limited thereto, and the aluminum compositions of the 2-1 conductive semiconductor layer 127a and the 2-2 conductive semiconductor layer 127a do not continuously decrease, but include a section in which there is no decrease in a certain section. You may.
이때, 제2-2도전형 반도체층(127a)의 알루미늄 감소폭은 제2-1도전형 반도체층(127a)의 알루미늄 감소폭보다 클 수 있다. 즉, 제2-2도전형 반도체층(127a)의 Al 조성비의 두께 방향에 대한 변화율은 제2-1도전형 반도체층(127a)의 Al 조성비의 두께 방향에 대한 변화율보다 클 수 있다. 여기서 두께 방향은 제1도전형 반도체층(124)에서 제2도전형 반도체층(127)으로 향하는 방향 또는 제2도전형 반도체층(127)에서 제1도전형 반도체층(124)으로 향하는 방향일 수 있다.In this case, an aluminum reduction width of the second conductive semiconductor layer 127a may be greater than an aluminum reduction width of the second conductive semiconductor layer 127a. That is, the change rate in the thickness direction of the Al composition ratio of the 2-2 conductive semiconductor layer 127a may be greater than the change rate in the thickness direction of the Al composition ratio of the 2-1 conductive semiconductor layer 127a. The thickness direction may be a direction from the first conductive semiconductor layer 124 to the second conductive semiconductor layer 127 or a direction from the second conductive semiconductor layer 127 to the first conductive semiconductor layer 124. Can be.
제2-1도전형 반도체층(127a)은 두께는 제2-2도전형 반도체층(127a)보다 두꺼운 반면, 알루미늄 조성은 우물층(126a)보다 높아야 하므로 감소폭이 상대적으로 완만할 수 있다.While the thickness of the 2-1 conductive semiconductor layer 127a is thicker than that of the 2-2 conductive semiconductor layer 127a, the aluminum composition should be higher than that of the well layer 126a, so that the decrease may be relatively slow.
그러나, 제2-2도전형 반도체층(127a)은 두께가 얇고 알루미늄 조성의 변화폭이 크므로 알루미늄 조성의 감소폭이 상대적으로 클 수 있다.However, since the thickness of the second-2 conductive semiconductor layer 127a is large and the variation of the aluminum composition is large, the reduction of the aluminum composition may be relatively large.
도 30은 기판 상에 성장한 발광구조물의 개념도이고, 도 31은 기판을 분리하는 과정을 설명하기 위한 도면이고, 도 32는 발광구조물을 식각하는 과정을 설명하기 위한 도면이고, 도 33은 제조된 반도체 소자를 보여주는 도면이다.FIG. 30 is a conceptual diagram of a light emitting structure grown on a substrate, FIG. 31 is a view for explaining a process of separating a substrate, FIG. 32 is a view for explaining a process of etching a light emitting structure, and FIG. 33 is a manufactured semiconductor. A diagram showing the device.
도 30을 참고하면, 성장기판(121) 상에 버퍼층(122), 광흡수층(123), 제1도전형 반도체층(124), 활성층(126), 제2도전형 반도체층(127), 제2전극(246), 제2도전층(150)을 순차로 형성할 수 있다.Referring to FIG. 30, a buffer layer 122, a light absorbing layer 123, a first conductive semiconductor layer 124, an active layer 126, a second conductive semiconductor layer 127, and a second substrate are formed on the growth substrate 121. The second electrode 246 and the second conductive layer 150 may be sequentially formed.
이때, 활성층(126)과 차단층(129) 사이에는 제1중간층 및 제2중간층을 성장시킬 수 있다. 제1장벽층은 알루미늄의 조성이 50% 내지 70%인 제1-1구간과 알루미늄 조성은 80% 내지 100%인 제1-2구간을 갖도록 성장시킬 수 있다. 또한, 제2중간층은 P형 도펀트가 도핑되지 않은 제2-1구간과 도펀트가 도핑된 제2-2구간을 갖도록 성장시킬 수 있다.In this case, a first intermediate layer and a second intermediate layer may be grown between the active layer 126 and the blocking layer 129. The first barrier layer may be grown to have a 1-1 section having an aluminum composition of 50% to 70% and a 1-2 section having an aluminum composition of 80% to 100%. In addition, the second intermediate layer may be grown to have a second-first section doped with the P-type dopant and a second-second section doped with the dopant.
광흡수층(123)은 알루미늄 조성이 낮은 제1광흡수층(123a) 및 알루미늄 조성이 높은 제2광흡수층(123b)을 포함한다. 제1광흡수층(123a)과 제2광흡수층(123b)은 교대로 복수 개가 배치될 수 있다.The light absorption layer 123 includes a first light absorption layer 123a having a low aluminum composition and a second light absorption layer 123b having a high aluminum composition. A plurality of first light absorbing layers 123a and second light absorbing layers 123b may be alternately disposed.
제1광흡수층(123a)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 제1광흡수층(123a)은 LLO 공정시 레이저를 흡수하여 분리되는 역할을 수행할 수 있다. 따라서, 성장기판을 제거할 수 있다.The aluminum composition of the first light absorption layer 123a may be lower than that of the first conductive semiconductor layer 124. The first light absorption layer 123a may serve to absorb and separate the laser during the LLO process. Thus, the growth substrate can be removed.
제1광흡수층(123a)의 두께와 알루미늄 조성은 소정(예: 246nm)의 파장을 갖는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 제1광흡수층(123a)의 알루미늄 조성은 20% 내지 50%이고, 두께는 1nm 내지 10nm일 수 있다. 예시적으로 제1광흡수층(123a)은 AlGaN일 수 있으나 이에 한정하지 않는다.The thickness of the first light absorbing layer 123a and the aluminum composition may be appropriately adjusted to absorb a laser having a wavelength (eg, 246 nm). The aluminum composition of the first light absorption layer 123a may be 20% to 50%, and the thickness may be 1 nm to 10 nm. For example, the first light absorption layer 123a may be AlGaN, but is not limited thereto.
제2광흡수층(123b)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 높을 수 있다. 제2광흡수층(123b)은 제1광흡수층(123a)에 의해 낮아진 알루미늄 조성을 높여 광흡수층(123) 위에 성장하는 제1도전형 반도체층(124)의 결정성을 향상시킬 수 있다.The aluminum composition of the second light absorption layer 123b may be higher than that of the first conductive semiconductor layer 124. The second light absorption layer 123b may improve the crystallinity of the first conductive semiconductor layer 124 grown on the light absorption layer 123 by increasing the aluminum composition lowered by the first light absorption layer 123a.
예시적으로 제2광흡수층(123b)의 알루미늄 조성은 60% 내지 100%이고, 두께는 0.1nm 내지 2.0nm일 수 있다. 제2광흡수층(123b)은 AlGaN 또는 AlN일 수도 있다.For example, the aluminum composition of the second light absorption layer 123b may be 60% to 100%, and the thickness may be 0.1 nm to 2.0 nm. The second light absorption layer 123b may be AlGaN or AlN.
246nm의 파장의 레이저를 흡수하기 위해, 제1광흡수층(123a)의 두께는 제2광흡수층(123b)의 두께보다 두꺼울 수 있다. 제1광흡수층(123a)의 두께는 1nm 내지 10nm일 수 있고, 제2광흡수층(123b)의 두께는 0.5nm 내지 2.0nm일 수 있다. In order to absorb a laser having a wavelength of 246 nm, the thickness of the first light absorption layer 123a may be thicker than the thickness of the second light absorption layer 123b. The thickness of the first light absorbing layer 123a may be 1 nm to 10 nm, and the thickness of the second light absorbing layer 123b may be 0.5 nm to 2.0 nm.
제1광흡수층(123a)과 제2광흡수층(123b)의 두께비는 2:1 내지 6:1일 수 있다. 두께비가 2:1보다 작은 경우 제1광흡수층(123a)이 얇아져 레이저를 충분히 흡수하기 어렵고, 두께비가 6:1보다 큰 경우 제2광흡수층(123b)이 너무 얇아져 광흡수층의 알루미늄 전체 조성이 낮아지는 문제가 있다.The thickness ratio of the first light absorbing layer 123a and the second light absorbing layer 123b may be 2: 1 to 6: 1. When the thickness ratio is smaller than 2: 1, the first light absorption layer 123a is thinner, so that it is difficult to absorb the laser sufficiently. When the thickness ratio is larger than 6: 1, the second light absorption layer 123b is too thin, so that the total aluminum composition of the light absorption layer is low. There is a problem.
광흡수층(123)의 전체 두께는 100nm보다 크고 400nm보다 작을 수 있다. 두께가 100nm보다 작은 경우 제1광흡수층(123a)의 두께가 얇아져 246nm 레이저를 충분히 흡수하기 어려운 문제가 있으며, 두께가 400nm보다 커지는 경우 알루미늄 조성이 전체적으로 낮아져 결정성이 악화되는 문제가 있다.The overall thickness of the light absorption layer 123 may be larger than 100 nm and smaller than 400 nm. If the thickness is less than 100 nm, the thickness of the first light absorption layer 123a becomes thin, and thus, it is difficult to sufficiently absorb the 246 nm laser. If the thickness is larger than 400 nm, the aluminum composition is lowered as a whole, thereby deteriorating crystallinity.
실시 예에 따르면, 초격자 구조의 광흡수층(123)을 형성하여 결정성을 향상시킬 수 있다. 이러한 구성에 의하여 광흡수층(123)은 성장기판(121)과 발광구조물(120) 사이의 격자 부정합을 완화하는 버퍼층으로 기능할 수 있다.According to an embodiment, the light absorption layer 123 having a superlattice structure may be formed to improve crystallinity. In this configuration, the light absorption layer 123 may function as a buffer layer to mitigate lattice mismatch between the growth substrate 121 and the light emitting structure 120.
도 31을 참고하면, 성장기판(121)을 제거하는 단계는 성장기판(121) 측에서 레이저(L1)를 조사하여 성장기판(121)을 분리할 수 있다. 레이저(L1)는 제1광흡수층(123a)이 흡수할 수 있는 파장대를 가질 수 있다. 일 예로, 레이저는 248nm 파장대를 갖는 KrF 레이저일 수 있다. Referring to FIG. 31, in the removing of the growth substrate 121, the growth substrate 121 may be separated by irradiating the laser L1 from the growth substrate 121. The laser L1 may have a wavelength band that the first light absorption layer 123a can absorb. As an example, the laser may be a KrF laser having a wavelength range of 248 nm.
성장기판(121), 제2광흡수층(123b)은 에너지 밴드갭이 커서 레이저(L1)를 흡수하지 않는다. 그러나, 알루미늄 조성이 낮은 제1광흡수층(123a)은 레이저(L1)를 흡수하여 분해될 수 있다. 따라서, 성장기판(121)과 함께 분리될 수 있다.The growth substrate 121 and the second light absorption layer 123b do not absorb the laser L1 due to the large energy band gap. However, the first light absorption layer 123a having a low aluminum composition may be decomposed by absorbing the laser L1. Therefore, it may be separated together with the growth substrate 121.
이후, 제1도전형 반도체층(124)에 잔존하는 광흡수층(123-2)은 레벨링에 의해 제거될 수 있다.Thereafter, the light absorption layer 123-2 remaining in the first conductive semiconductor layer 124 may be removed by leveling.
도 32를 참고하면, 제2도전형 반도체층(127)상에 제2도전층(150)을 형성한 후 발광구조물(120)의 제1도전형 반도체층(124) 일부까지 관통하는 리세스(128)를 복수 개 형성할 수 있다. 이후, 절연층(130)을 리세스(128)의 측면 및 제2도전형 반도체층(127)상에 형성할 수 있다. 이후, 리세스(128)에 의해 노출된 제1도전형 반도체층(124b)에 제1전극(142)을 형성할 수 있다.Referring to FIG. 32, after forming the second conductive layer 150 on the second conductive semiconductor layer 127, a recess penetrating to a part of the first conductive semiconductor layer 124 of the light emitting structure 120 ( A plurality of 128) can be formed. Thereafter, the insulating layer 130 may be formed on the side surface of the recess 128 and the second conductive semiconductor layer 127. Thereafter, the first electrode 142 may be formed in the first conductive semiconductor layer 124b exposed by the recess 128.
도 33을 참고하면, 제1도전층(165)은 절연층(130)의 하부에 형성될 수 있다. 제1도전층(165)은 절연층(130)에 의해 제2도전층(150)과 전기적으로 절연될 수 있다.Referring to FIG. 33, the first conductive layer 165 may be formed under the insulating layer 130. The first conductive layer 165 may be electrically insulated from the second conductive layer 150 by the insulating layer 130.
이후, 제1도전층(165)의 하부에 도전성 기판(170)을 형성하고, 메사 식각에 의해 노출된 제2도전층(150)상에는 제2전극패드(166)를 형성할 수 있다.Subsequently, the conductive substrate 170 may be formed below the first conductive layer 165, and the second electrode pad 166 may be formed on the second conductive layer 150 exposed by mesa etching.
반도체 소자는 다양한 종류의 광원 장치에 적용될 수 있다. 예시적으로 광원장치는 살균 장치, 경화 장치, 조명 장치, 및 표시 장치 및 차량용 램프 등을 포함하는 개념일 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다.The semiconductor device can be applied to various kinds of light source devices. For example, the light source device may be a concept including a sterilizing device, a curing device, a lighting device, and a display device and a vehicle lamp. That is, the semiconductor device may be applied to various electronic devices disposed in a case to provide light.
살균 장치는 실시 예에 따른 반도체 소자를 구비하여 원하는 영역을 살균할수 있다. 살균 장치는 정수기, 에어컨, 냉장고 등의 생활 가전에 적용될 수 있으나 반드시 이에 한정하지 않는다. 즉, 살균 장치는 살균이 필요한 다양한 제품(예: 의료 기기)에 모두 적용될 수 있다.The sterilization apparatus may include a semiconductor device according to the embodiment to sterilize a desired region. The sterilizer may be applied to household appliances such as water purifiers, air conditioners and refrigerators, but is not necessarily limited thereto. That is, the sterilization apparatus can be applied to all the various products (eg, medical devices) requiring sterilization.
예시적으로 정수기는 순환하는 물을 살균하기 위해 실시 예에 따른 살균 장치를 구비할 수 있다. 살균 장치는 물이 순환하는 노즐 또는 토출구에 배치되어 자외선을 조사할 수 있다. 이때, 살균 장치는 방수 구조를 포함할 수 있다.Illustratively, the water purifier may be provided with a sterilizing device according to the embodiment to sterilize the circulating water. The sterilization apparatus may be disposed at a nozzle or a discharge port through which water circulates to irradiate ultraviolet rays. At this time, the sterilization apparatus may include a waterproof structure.
경화 장치는 실시 예에 따른 반도체 소자를 구비하여 다양한 종류의 액체를 경화시킬 수 있다. 액체는 자외선이 조사되면 경화되는 다양한 물질을 모두 포함하는 최광의 개념일 수 있다. 예시적으로 경화장치는 다양한 종류의 레진을 경화시킬 수 있다. 또는 경화장치는 매니큐어와 같은 미용 제품을 경화시키는 데 적용될 수도 있다.The curing apparatus includes a semiconductor device according to an embodiment to cure various kinds of liquids. Liquids can be the broadest concept that includes all of the various materials that cure when irradiated with ultraviolet light. By way of example, the curing apparatus may cure various kinds of resins. Alternatively, the curing device may be applied to cure a cosmetic product such as a nail polish.
조명 장치는 기판과 실시 예의 반도체 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 또한, 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다. The lighting apparatus may include a light source module including a substrate and the semiconductor device of the embodiment, a heat dissipation unit for dissipating heat of the light source module, and a power supply unit for processing or converting an electrical signal provided from the outside and providing the light source module to the light source module. In addition, the lighting apparatus may include a lamp, a head lamp, or a street lamp.
표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 구성할 수 있다.The display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter. The bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet may constitute a backlight unit.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출할 수 있다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치될 수 있다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치될 수 있다.The reflecting plate is disposed on the bottom cover, and the light emitting module may emit light. The light guide plate may be disposed in front of the reflective plate to guide light emitted from the light emitting module to the front, and the optical sheet may include a prism sheet or the like to be disposed in front of the light guide plate. The display panel is disposed in front of the optical sheet, the image signal output circuit supplies an image signal to the display panel, and the color filter may be disposed in front of the display panel.
반도체 소자는 표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있다.The semiconductor device may be used as an edge type backlight unit or a direct type backlight unit when used as a backlight unit of a display device.
반도체 소자는 상술한 발광 다이오드 외에 레이저 다이오드일 수도 있다.The semiconductor element may be a laser diode in addition to the light emitting diode described above.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.Like the light emitting device, the laser diode may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure. In addition, although the p-type first conductive semiconductor and the n-type second conductive semiconductor are bonded to each other, an electro-luminescence phenomenon is used in which light is emitted when a current flows, but the direction of emitted light is used. There is a difference in and phase. That is, a laser diode may emit light having a specific wavelength (monochromatic beam) in the same direction with the same phase by using a phenomenon called stimulated emission and a constructive interference phenomenon. Due to this, it can be used for optical communication, medical equipment and semiconductor processing equipment.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.For example, a photodetector may be a photodetector, which is a type of transducer that detects light and converts its intensity into an electrical signal. Such photodetectors include photovoltaic cells (silicon, selenium), photoelectric devices (cadmium sulfide, cadmium selenide), photodiodes (e.g. PD having peak wavelength in visible blind or true blind spectral regions) Transistors, photomultipliers, phototubes (vacuum, gas encapsulation), infrared (Infra-Red) detectors, and the like, but embodiments are not limited thereto.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다. In addition, a semiconductor device such as a photodetector may generally be manufactured using a direct bandgap semiconductor having excellent light conversion efficiency. Alternatively, the photodetector has various structures, and the most common structures include a pin photodetector using a pn junction, a Schottky photodetector using a Schottky junction, a metal semiconductor metal (MSM) photodetector, and the like. have.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.Like a light emitting device, a photodiode may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer having the above-described structure, and have a pn junction or pin structure. The photodiode operates by applying a reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and current flows. In this case, the magnitude of the current may be approximately proportional to the intensity of light incident on the photodiode.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.Photovoltaic cells or solar cells are a type of photodiodes that can convert light into electrical current. The solar cell may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure, similarly to the light emitting device.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.In addition, through the rectification characteristics of a general diode using a p-n junction it may be used as a rectifier of an electronic circuit, it may be applied to an ultra-high frequency circuit and an oscillation circuit.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.In addition, the semiconductor device described above is not necessarily implemented as a semiconductor and may further include a metal material in some cases. For example, a semiconductor device such as a light receiving device may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, and may be implemented by a p-type or n-type dopant. It may also be implemented using a doped semiconductor material or an intrinsic semiconductor material.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although the above description has been made based on the embodiments, these are merely examples and are not intended to limit the present invention. Those skilled in the art to which the present invention pertains may not have been exemplified above without departing from the essential characteristics of the present embodiments. It will be appreciated that many variations and applications are possible. For example, each component specifically shown in the embodiment can be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.

Claims (10)

  1. 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광구조물;A light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer;
    상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및A first electrode electrically connected to the first conductive semiconductor layer; And
    상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고,A second electrode electrically connected to the second conductivity type semiconductor layer,
    상기 제2 도전형 반도체층은 상기 제2전극이 배치되는 제1면을 포함하고,The second conductivity type semiconductor layer includes a first surface on which the second electrode is disposed,
    상기 제2 도전형 반도체층은 상기 제1면으로부터 제2지점까지의 제2 최단거리(W2)와 상기 제1면으로부터 제1지점까지의 제1 최단거리(W1)의 비(W2:W1)는 1:1.25 내지 1:100이고,The second conductivity type semiconductor layer has a ratio (W2: W1) of a second shortest distance W2 from the first surface to a second point and a first shortest distance W1 from the first surface to the first point. Is 1: 1.25 to 1: 100,
    상기 제1지점은 상기 활성층 중에서 상기 제2 도전형 반도체층과 가장 가까운 우물층의 알루미늄 조성과 동일한 조성을 갖는 지점이고,The first point is a point having the same composition as the aluminum composition of the well layer closest to the second conductivity type semiconductor layer among the active layers,
    상기 제2지점은 제2 도전형 반도체층의 알루미늄 조성과 도펀트 조성이 동일해지는 지점인 반도체 소자.And the second point is a point at which the aluminum composition and the dopant composition of the second conductive semiconductor layer are the same.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 최단거리와 제1 최단거리의 비는 1:1.25 내지 1:10인 반도체 소자.The ratio of the second shortest distance and the first shortest distance is 1: 1.25 to 1:10.
  3. 제1항에 있어서,The method of claim 1,
    상기 활성층과 상기 제2 도전형 반도체층 사이에 배치되는 전자 차단층을 포함하고,An electron blocking layer disposed between the active layer and the second conductivity type semiconductor layer,
    상기 전자 차단층의 평균 알루미늄 조성과 상기 제1지점에서의 알루미늄 조성의 제1차이와 상기 전자 차단층의 평균 알루미늄 조성과 상기 제2지점에서의 알루미늄 조성의 제2차이의 비는 1:1.2 내지 1:10인 반도체 소자.The ratio of the first difference between the average aluminum composition of the electron blocking layer and the aluminum composition at the first point and the second difference between the average aluminum composition of the electron blocking layer and the aluminum composition at the second point is from 1: 1.2. A semiconductor device of 1:10.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 도전형 반도체층은,The second conductivity type semiconductor layer,
    제2-1 도전형 반도체층, 및 상기 활성층과 제2-1 도전형 반도체층 사이에 배치되는 제2-2 도전형 반도체층을 포함하고,A 2-1 conductive semiconductor layer, and a 2-2 conductive semiconductor layer disposed between the active layer and the 2-1 conductive semiconductor layer,
    상기 제2 도전형 반도체층은 상기 활성층과 상기 제2-2 도전형 반도체층 사이에 배치되는 제2-3 도전형 반도체층을 포함하는 반도체 소자.The second conductive semiconductor layer includes a second conductive semiconductor layer disposed between the active layer and the second conductive semiconductor layer.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2-1 도전형 반도체층과 상기 제2-2 도전형 반도체층의 알루미늄 조성은 상기 활성층에서 멀어질수록 작아지고,The aluminum composition of the 2-1 conductivity type semiconductor layer and the 2-2 conductivity type semiconductor layer decreases as it moves away from the active layer,
    상기 제2-1 도전형 반도체층의 알루미늄 감소폭은 상기 제2-2 도전형 반도체층의 알루미늄 감소폭보다 큰 반도체 소자.The aluminum reduction width of the 2-1 conductivity type semiconductor layer is greater than the aluminum reduction width of the 2-2 conductivity type semiconductor layer.
  6. 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광구조물;A light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer;
    상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및A first electrode electrically connected to the first conductive semiconductor layer; And
    상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고,A second electrode electrically connected to the second conductivity type semiconductor layer,
    상기 제2 도전형 반도체층은 상기 제2전극이 배치되는 제1면을 포함하고,The second conductivity type semiconductor layer includes a first surface on which the second electrode is disposed,
    상기 제2 도전형 반도체층은 상기 제1면으로부터 제2지점까지의 제2 최단거리(W2)와 상기 제1면으로부터 제1지점까지의 제1 최단거리(W1)의 비(W2:W1)는 1:1.25 내지 1:100이고,The second conductivity type semiconductor layer has a ratio (W2: W1) of a second shortest distance W2 from the first surface to a second point and a first shortest distance W1 from the first surface to the first point. Is 1: 1.25 to 1: 100,
    상기 제1지점은 상기 활성층 중에서 상기 제2 도전형 반도체층과 가장 가까운 우물층의 알루미늄 조성과 동일한 조성을 갖는 지점이고,The first point is a point having the same composition as the aluminum composition of the well layer closest to the second conductivity type semiconductor layer among the active layers,
    상기 제2지점의 알루미늄 조성은 상기 제1지점의 알루미늄 조성보다 작고,The aluminum composition of the second point is smaller than the aluminum composition of the first point,
    상기 제2지점의 알루미늄 조성은 5% 내지 55%인 반도체 소자.The aluminum composition of the second point is 5% to 55% of the semiconductor device.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 최단거리와 제2 최단거리의 비는 1:1.25 내지 1:10인 반도체 소자.The ratio of the first shortest distance and the second shortest distance is 1: 1.25 to 1:10.
  8. 제6항에 있어서,The method of claim 6,
    상기 활성층과 상기 제2 도전형 반도체층 사이에 배치되는 전자 차단층을 포함하고, An electron blocking layer disposed between the active layer and the second conductivity type semiconductor layer,
    상기 전자 차단층의 평균 알루미늄 조성과 상기 제1지점에서의 알루미늄 조성의 제1차이와 상기 전자 차단층의 평균 알루미늄 조성과 상기 제2지점에서의 알루미늄 조성의 제2차이의 비는 1:1.2 내지 1:10인 반도체 소자.The ratio of the first difference between the average aluminum composition of the electron blocking layer and the aluminum composition at the first point and the second difference between the average aluminum composition of the electron blocking layer and the aluminum composition at the second point is from 1: 1.2. A semiconductor device of 1:10.
  9. 제1항에 있어서,The method of claim 1,
    상기 제2 도전형 반도체층은,The second conductivity type semiconductor layer,
    제2-1 도전형 반도체층, 및 상기 활성층과 제2-1 도전형 반도체층 사이에 배치되는 제2-2 도전형 반도체층을 포함하고,A 2-1 conductive semiconductor layer, and a 2-2 conductive semiconductor layer disposed between the active layer and the 2-1 conductive semiconductor layer,
    상기 제2 도전형 반도체층은 상기 활성층과 상기 제2-2 도전형 반도체층 사이에 배치되는 제2-3 도전형 반도체층을 포함하는 반도체 소자.The second conductive semiconductor layer includes a second conductive semiconductor layer disposed between the active layer and the second conductive semiconductor layer.
  10. 몸체; 및Body; And
    상기 몸체에 배치되는 반도체 소자를 포함하고,A semiconductor device disposed in the body,
    상기 반도체 소자는,The semiconductor device,
    제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광구조물;A light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer;
    상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및A first electrode electrically connected to the first conductive semiconductor layer; And
    상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고,A second electrode electrically connected to the second conductivity type semiconductor layer,
    상기 제2 도전형 반도체층은 상기 제2전극이 배치되는 제1면을 포함하고,The second conductivity type semiconductor layer includes a first surface on which the second electrode is disposed,
    상기 제2 도전형 반도체층은 상기 제1면으로부터 제2지점까지의 제2 최단거리(W2)와 상기 제1면으로부터 제1지점까지의 제1 최단거리(W1)의 비(W2:W1)는 1:1.25 내지 1:100이고,The second conductivity type semiconductor layer has a ratio (W2: W1) of a second shortest distance W2 from the first surface to a second point and a first shortest distance W1 from the first surface to the first point. Is 1: 1.25 to 1: 100,
    상기 제1지점은 상기 활성층 중에서 상기 제2 도전형 반도체층과 가장 가까운 우물층의 알루미늄 조성과 동일한 조성을 갖는 지점이고,The first point is a point having the same composition as the aluminum composition of the well layer closest to the second conductivity type semiconductor layer among the active layers,
    상기 제2지점은 알루미늄 조성과 제2 도전형 반도체층의 도펀트 조성이 동일해지는 지점인 반도체 소자 패키지.The second point is a semiconductor device package is a point where the aluminum composition and the dopant composition of the second conductivity-type semiconductor layer is the same.
PCT/KR2017/010065 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including same WO2018052252A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202211246672.1A CN115498078A (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
JP2019514006A JP7403797B2 (en) 2016-09-13 2017-09-13 Semiconductor devices and semiconductor device packages containing them
CN202211245094.XA CN115566116A (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
CN201780056302.2A CN109791960B (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
CN202211246664.7A CN115602764A (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
CN202211246713.7A CN115602765A (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
CN202211246735.3A CN115763652A (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including the same
EP17851126.7A EP3514840A4 (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including same
US16/331,039 US10910519B2 (en) 2016-09-13 2017-09-13 Semiconductor device having layers including aluminum and semiconductor device package including same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0118243 2016-09-13
KR1020160118243A KR102648472B1 (en) 2016-09-13 2016-09-13 Semiconductor device and semiconductor device package including the same
KR10-2016-0140466 2016-10-26
KR1020160140466A KR102632215B1 (en) 2016-10-26 2016-10-26 Semiconductor device and semiconductor device package including the same
KR1020170115836A KR102400338B1 (en) 2017-08-04 2017-09-11 Semiconductor device and semiconductor device package including the same
KR10-2017-0115836 2017-09-11

Publications (1)

Publication Number Publication Date
WO2018052252A1 true WO2018052252A1 (en) 2018-03-22

Family

ID=61620066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010065 WO2018052252A1 (en) 2016-09-13 2017-09-13 Semiconductor device and semiconductor device package including same

Country Status (1)

Country Link
WO (1) WO2018052252A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087712A (en) * 2017-11-10 2019-06-06 豊田合成株式会社 Group iii nitride semiconductor light-emitting device and manufacturing method thereof
CN111668697A (en) * 2019-03-07 2020-09-15 旭化成株式会社 Nitride semiconductor element
JP2021034452A (en) * 2019-08-20 2021-03-01 日機装株式会社 Nitride semiconductor light-emitting element
JP7410508B2 (en) 2019-03-07 2024-01-10 旭化成株式会社 nitride semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP5474292B2 (en) * 2007-11-06 2014-04-16 シャープ株式会社 Nitride semiconductor light emitting diode device
US20150318435A1 (en) * 2012-12-27 2015-11-05 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR20160102774A (en) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR20160103686A (en) * 2015-02-25 2016-09-02 엘지이노텍 주식회사 Light emitting device and light emitting device package having thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474292B2 (en) * 2007-11-06 2014-04-16 シャープ株式会社 Nitride semiconductor light emitting diode device
JP2011187591A (en) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
US20150318435A1 (en) * 2012-12-27 2015-11-05 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR20160102774A (en) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR20160103686A (en) * 2015-02-25 2016-09-02 엘지이노텍 주식회사 Light emitting device and light emitting device package having thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087712A (en) * 2017-11-10 2019-06-06 豊田合成株式会社 Group iii nitride semiconductor light-emitting device and manufacturing method thereof
CN111668697A (en) * 2019-03-07 2020-09-15 旭化成株式会社 Nitride semiconductor element
JP7410508B2 (en) 2019-03-07 2024-01-10 旭化成株式会社 nitride semiconductor device
JP2021034452A (en) * 2019-08-20 2021-03-01 日機装株式会社 Nitride semiconductor light-emitting element
US11322654B2 (en) 2019-08-20 2022-05-03 Nikkiso Co., Ltd. Nitride semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
WO2017222279A1 (en) Semiconductor device
WO2017160119A1 (en) Semiconductor device and display device including same
WO2017222341A1 (en) Semiconductor device and semiconductor device package comprising same
WO2019054547A1 (en) Light emitting device package and lighting apparatus comprising same
WO2017191923A1 (en) Light emitting diode
WO2017191966A1 (en) Semiconductor element package
WO2010047553A2 (en) Semiconductor light emitting device
WO2018052252A1 (en) Semiconductor device and semiconductor device package including same
WO2017078402A1 (en) Optical plate, lighting element, and light source module
WO2018048275A1 (en) Semiconductor device
WO2017034356A1 (en) Light-emitting device and light-emitting device package comprising same
WO2019004518A1 (en) Light emitting device package and light source apparatus
WO2019132490A1 (en) Semiconductor device
WO2018106030A9 (en) Light emitting device
WO2018008960A1 (en) Semiconductor element
WO2018164371A1 (en) Semiconductor device and semiconductor device package
WO2018139770A1 (en) Semiconductor device and semiconductor device package
WO2019045166A1 (en) Light-emitting device package
WO2018128419A1 (en) Semiconductor device and light emitting device package comprising same
WO2017026753A1 (en) Light emitting diode and light emitting diode package
WO2016144103A1 (en) Light emitting module and lighting device having same
WO2019045513A1 (en) Light-emitting element package and lighting device comprising same
WO2019054548A1 (en) Light emitting device package
WO2020040449A1 (en) Semiconductor device
WO2018212625A1 (en) Semiconductor device and semiconductor device manufacturing method comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017851126

Country of ref document: EP

Effective date: 20190415