WO2018052213A1 - Procédé de fabrication d'électrode - Google Patents

Procédé de fabrication d'électrode Download PDF

Info

Publication number
WO2018052213A1
WO2018052213A1 PCT/KR2017/009717 KR2017009717W WO2018052213A1 WO 2018052213 A1 WO2018052213 A1 WO 2018052213A1 KR 2017009717 W KR2017009717 W KR 2017009717W WO 2018052213 A1 WO2018052213 A1 WO 2018052213A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
electrode current
polymer film
solvent
Prior art date
Application number
PCT/KR2017/009717
Other languages
English (en)
Korean (ko)
Inventor
김대수
양진호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170112722A external-priority patent/KR102040257B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004231.1A priority Critical patent/CN108292742B/zh
Priority to US15/774,926 priority patent/US10333136B2/en
Priority to EP17851087.1A priority patent/EP3370284B1/fr
Priority to PL17851087T priority patent/PL3370284T3/pl
Publication of WO2018052213A1 publication Critical patent/WO2018052213A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an electrode.
  • the lithium secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and an electrode such as a positive electrode or a negative electrode applies, dries, and rolls an electrode slurry including an electrode active material, a polymer binder, and a solvent to an electrode current collector. It is manufactured by.
  • the solvent is evaporated to the upper side of the electrode during the drying process of the electrode, the polymer binder is moved in the evaporation direction of the solvent, the distribution of the polymer binder in the electrode active material layer uneven problem There was.
  • the nonuniform distribution of the polymer binder there is a problem that the output of the battery is lowered due to the decrease in adhesion between the electrode current collector and the electrode active material layer.
  • An object of the present invention is to provide a method for producing an electrode which can prevent nonuniform distribution of a polymer binder in a method for producing an electrode.
  • (S5) may further comprise the step of removing the polymer film.
  • the polymer film may be a poly methyl methacrylate, polydimethylsiloxane or plastic paraffin film.
  • the electrode current collector may be a porous electrode current collector.
  • the pores of the porous electrode current collector may have a diameter of 1 to 20 ⁇ m.
  • the manufacturing method of the present invention it is possible to solve the non-uniform dispersion of the polymer binder and to improve the adhesion between the electrode current collector and the electrode active material layer.
  • FIG. 1 is a cross-sectional view schematically showing a drying step of a conventional electrode.
  • FIG. 2 is a cross-sectional view schematically showing a drying step of an electrode according to an embodiment of the present invention.
  • 3 is a graph showing the adhesive force between the active material layer and the current collector of the electrode prepared according to the Example and Comparative Example.
  • FIG. 1 is a cross-sectional view schematically showing a drying step of a conventional electrode.
  • an electrode slurry 110 including an electrode active material 112, a polymer binder 111, and a solvent is coated on one surface of an electrode current collector 120.
  • the solvent evaporates in the process of drying the slurry and the polymer binder 111 moves in the evaporation direction of the solvent, the distribution of the polymer binder 111 in the electrode active material layer is uneven. There appeared to be a problem.
  • FIG. 2 is a cross-sectional view schematically showing a drying step of an electrode according to an embodiment of the present invention.
  • the present invention laminates a polymer film 200 capable of preventing evaporation of a solvent on an upper surface of the electrode slurry 110, and controls the evaporation direction of the solvent to the side of the electrode 100, thereby polymerizing the polymer. Non-uniform distribution of the binder 111 can be prevented.
  • a method of manufacturing an electrode includes: (S1) applying an electrode slurry in which an electrode active material, a polymer binder, and a conductive material are dispersed in a solvent to one surface of an electrode current collector; (S2) stacking a polymer film on the upper surface to which the electrode slurry is applied; (S3) evaporating the solvent by drying the electrode current collector on which the polymer film is stacked; And (S4) rolling the electrode current collector on which the polymer film is laminated to produce an electrode.
  • step (S1) an electrode slurry in which the electrode active material, the polymer binder, and the conductive material are dispersed in a solvent is applied to one surface of the electrode current collector.
  • the electrode active material may be a positive electrode active material or a negative electrode active material.
  • the positive electrode active material may be a lithium containing oxide, and a lithium containing transition metal oxide may be preferably used.
  • a lithium metal As the negative electrode active material, a lithium metal, a carbon material, a metal compound, or a mixture thereof, which can normally occlude and release lithium ions, may be used.
  • both low crystalline carbon and high crystalline carbon may be used as the carbon material.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the metal compound may be Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, and Ba
  • the compound containing 1 or more types of metal elements is mentioned. These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the polymer binder may be polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), polyvinylidene fluoride-hexafluorofluoropropylene (polyvinylidene fluoride-co-hexafluoro propylene) , Polyvinylidene fluorideco-trichloro ethylene, polymethyl methacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone (polyvinylpyrrolidone), polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate (celluloseacetate), cellulose acetate butylate cellulose acetate butyrate, cellulose acetate propionate e acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinylalcohol, cyanoe
  • the solvent is acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylform amide, N-methyl-2-pyrrolidone (N-methyl-2 -pyrrolidone, NMP), cyclohexane and any one selected from the group consisting of water or a mixture of two or more thereof.
  • the electrode current collector may be a positive electrode current collector or a negative electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like on the surface may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • the polymer film is laminated on the upper surface to which the electrode slurry is applied.
  • the polymer film is not limited as long as it can prevent evaporation of a solvent, and polymethyl methacrylate (Poly (methyl methacrylate)), polydimethylsiloxane, plastic paraffin film, etc. may be used. Preferably, poly (methyl methacrylate) may be used. Since the polymer film is removed later, there is no limitation in thickness, but preferably, may have a thickness of 100 ⁇ m to 2000 ⁇ m.
  • the electrode current collector in which the polymer film is laminated is dried to evaporate the solvent. Due to the polymer film, as the solvent is evaporated and removed in the lateral direction of the electrode, it is possible to prevent the polymer binder from moving to the upper surface of the electrode current collector.
  • step (S4) by rolling the electrode current collector in which the polymer film is laminated to prepare an electrode.
  • the porosity and porosity of the electrode can be adjusted, and the adhesion between the electrode current collector and the electrode active material layer can be improved.
  • the electrode manufacturing method according to another aspect of the present invention may further comprise the step of removing the polymer film after (S3-2) drying.
  • the electrode current collector may be a porous electrode current collector. Since the electrode current collector has a plurality of pores, the solvent may be evaporated through the pores, thereby achieving a uniform distribution of the polymer binder.
  • the pores of the porous electrode current collector may have a diameter of 1 to 20 ⁇ m.
  • a negative electrode was mixed with NMP solvent by mixing a mixture containing 95.6 wt% of a negative active material, 1.0 wt% of carbon black conductive material, 2.3 wt% of PVdF binder, and 1.1 wt% of CMC thickener, in which artificial graphite and natural graphite were mixed in a weight ratio of 90:10. Slurry was prepared.
  • This negative electrode slurry was applied onto a copper current collector so as to have a loading amount of 4.0 mAh / cm 2 , then a polymer film formed of polymethyl methacrylate was laminated thereon, and then dried in a vacuum oven at 120 ° C. for at least 10 hours. The NMP solvent was evaporated.
  • a negative electrode was mixed with NMP solvent by mixing a mixture containing 95.6 wt% of a negative active material, 1.0 wt% of carbon black conductive material, 2.3 wt% of PVdF binder, and 1.1 wt% of CMC thickener, in which artificial graphite and natural graphite were mixed in a weight ratio of 90:10. Slurry was prepared.
  • This negative electrode slurry was applied onto a copper current collector so as to have a loading amount of 4.0 mAh / cm 2 , and then dried in a vacuum oven at 120 ° C. for at least 10 hours to evaporate the NMP solvent.
  • the negative electrode was produced by rolling it using the roll form press.
  • 3 is a graph showing the adhesive force between the active material layer and the current collector of the electrode prepared according to the Example and Comparative Example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Afin de résoudre le problème avec un liant polymère dispersé de manière non uniforme dans une couche de matériau actif d'électrode et d'améliorer la force d'adhérence entre un collecteur de courant d'électrode et une couche de matériau actif d'électrode, la présente invention concerne un procédé de fabrication d'une électrode, comprenant les étapes consistant à : (S1) appliquer, sur une surface d'un collecteur de courant d'électrode, une bouillie d'électrode obtenue par dispersion d'un matériau actif d'électrode, d'un liant polymère et d'un matériau conducteur dans un solvant; (S2) stratifier un film polymère sur la surface supérieure du collecteur de courant d'électrode sur lequel la bouillie d'électrode est appliquée; (S3) sécher le collecteur de courant d'électrode ayant le film polymère stratifié sur celui-ci pour évaporer le solvant; et (S4) enrouler le collecteur de courant d'électrode ayant le film polymère stratifié sur celui-ci pour produire une électrode.
PCT/KR2017/009717 2016-09-13 2017-09-05 Procédé de fabrication d'électrode WO2018052213A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780004231.1A CN108292742B (zh) 2016-09-13 2017-09-05 制造电极的方法
US15/774,926 US10333136B2 (en) 2016-09-13 2017-09-05 Method for manufacturing electrode
EP17851087.1A EP3370284B1 (fr) 2016-09-13 2017-09-05 Procédé de fabrication d'électrode
PL17851087T PL3370284T3 (pl) 2016-09-13 2017-09-05 Sposób wytwarzania elektrody

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0118087 2016-09-13
KR20160118087 2016-09-13
KR10-2017-0112722 2017-09-04
KR1020170112722A KR102040257B1 (ko) 2016-09-13 2017-09-04 전극의 제조방법

Publications (1)

Publication Number Publication Date
WO2018052213A1 true WO2018052213A1 (fr) 2018-03-22

Family

ID=61619634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009717 WO2018052213A1 (fr) 2016-09-13 2017-09-05 Procédé de fabrication d'électrode

Country Status (1)

Country Link
WO (1) WO2018052213A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340216A (ja) * 1999-05-25 2000-12-08 Kao Corp 二次電池用負極の製造方法
US20140101931A1 (en) * 2009-09-29 2014-04-17 Lg Chem, Ltd. Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
JP2014130742A (ja) * 2012-12-28 2014-07-10 Ngk Insulators Ltd 電池用電極塗膜の乾燥方法及び乾燥炉
JP2014157773A (ja) * 2013-02-18 2014-08-28 Toyota Motor Corp 電極の製造方法
KR20150080745A (ko) * 2014-01-02 2015-07-10 주식회사 엘지화학 전극 전도도가 향상된 전기 화학 소자용 전극 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340216A (ja) * 1999-05-25 2000-12-08 Kao Corp 二次電池用負極の製造方法
US20140101931A1 (en) * 2009-09-29 2014-04-17 Lg Chem, Ltd. Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
JP2014130742A (ja) * 2012-12-28 2014-07-10 Ngk Insulators Ltd 電池用電極塗膜の乾燥方法及び乾燥炉
JP2014157773A (ja) * 2013-02-18 2014-08-28 Toyota Motor Corp 電極の製造方法
KR20150080745A (ko) * 2014-01-02 2015-07-10 주식회사 엘지화학 전극 전도도가 향상된 전기 화학 소자용 전극 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
WO2017135792A1 (fr) Électrode positive et batterie secondaire au lithium comprenant celle-ci
WO2014084692A1 (fr) Bouillie avec une meilleure dispersibilité et utilisation à cet effet
WO2014084681A1 (fr) Membrane de séparation de batterie secondaire contenant des couches de revêtement à double porosité en particules inorganiques ayant différentes propriétés de surface, batterie secondaire l'intégrant et procédé de fabrication d'une membrane de séparation
WO2017171294A1 (fr) Procédé de fabrication d'électrode
KR102040257B1 (ko) 전극의 제조방법
WO2018147714A1 (fr) Film de séparation pour batterie secondaire au lithium à couche adhésive
WO2020032471A1 (fr) Électrode pour batterie secondaire au lithium et batterie secondaire au lithium la comprenant
WO2020013667A1 (fr) Batterie secondaire au lithium comprenant une solution d'électrolyte inorganique
WO2019093709A1 (fr) Composite électrolytique pour batterie lithium-soufre, dispositif électrochimique le comprenant et son procédé de préparation
WO2019203379A1 (fr) Procédé de fabrication d'une batterie secondaire au lithium tout solide
WO2018044013A1 (fr) Procédé de fabrication d'électrode à l'aide d'un collecteur de courant ayant des pores ou des trous de type à pénétration formés sur celui-ci
WO2016133345A1 (fr) Électrode, pile rechargeable la contenant et son procédé de fabrication
WO2022045554A1 (fr) Collecteur de courant comprenant une couche de revêtement d'apprêt ayant une résistance adhésive améliorée, et son procédé de fabrication
WO2019004655A1 (fr) Ensemble d'électrodes et batterie secondaire au lithium le comprenant
WO2014193187A1 (fr) Matériau conducteur pour batterie secondaire et électrode pour batterie secondaire au lithium comprenant ledit matériau
WO2022092679A1 (fr) Ensemble électrode et élément de batterie le comprenant
WO2016163654A1 (fr) Ensemble d'électrodes de type à empilement/pliage à sécurité améliorée et batterie rechargeable au lithium le comprenant
WO2021133127A1 (fr) Suspension aqueuse d'électrode positive, composition d'électrode positive, batterie secondaire au lithium-ion comprenant ladite composition d'électrode positive, et leurs procédés de fabrication
WO2018117405A1 (fr) Procédé de séchage d'électrodes
WO2018093151A1 (fr) Procédé de fabrication d'une suspension épaisse de matériau actif d'électrode positive
KR20210098330A (ko) 다층 구조의 무기물층을 포함하는 분리막합체전극 제조방법 및 그에 따른 분리막합체전극
KR20170057761A (ko) 유기 및 무기물 복합 분리막 및 이의 제조방법
WO2018052213A1 (fr) Procédé de fabrication d'électrode
WO2017126918A1 (fr) Ensemble électrode et son procédé de fabrication
WO2021172809A1 (fr) Procédé de fabrication d'électrode pour batterie secondaire au lithium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017851087

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE