WO2018051857A1 - Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same - Google Patents

Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same Download PDF

Info

Publication number
WO2018051857A1
WO2018051857A1 PCT/JP2017/032047 JP2017032047W WO2018051857A1 WO 2018051857 A1 WO2018051857 A1 WO 2018051857A1 JP 2017032047 W JP2017032047 W JP 2017032047W WO 2018051857 A1 WO2018051857 A1 WO 2018051857A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive sheet
sheet laminate
covering portion
Prior art date
Application number
PCT/JP2017/032047
Other languages
French (fr)
Japanese (ja)
Inventor
記央 佐藤
誠 稲永
加苗 鈴木
達也 村中
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017042839A external-priority patent/JP6880839B2/en
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201780056747.0A priority Critical patent/CN109715753B/en
Priority to KR1020227004951A priority patent/KR20220025254A/en
Priority to KR1020227004946A priority patent/KR102457647B1/en
Priority to KR1020227004949A priority patent/KR20220025253A/en
Priority to KR1020197010663A priority patent/KR102426469B1/en
Publication of WO2018051857A1 publication Critical patent/WO2018051857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/005Presence of polyolefin in the release coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/105Presence of homo or copolymers of propene in the release coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/005Presence of polyester in the release coating

Definitions

  • the present invention can be suitably used for forming an image display device such as a personal computer, a mobile terminal (PDA), a game machine, a television (TV), a car navigation system, a touch panel, and a pen tablet.
  • PDA mobile terminal
  • TV television
  • TV television
  • touch panel a touch panel
  • pen tablet a pen tablet.
  • the present invention relates to a pressure-sensitive adhesive sheet laminate and a pressure-sensitive adhesive sheet laminate suitable for forming a shaped pressure-sensitive adhesive sheet laminate.
  • a touch panel image display device is usually configured by combining a surface protection panel, a touch panel, and an image display panel (collectively, also referred to as “component for image display device”).
  • component for image display device surface protection panels for touch panel image display devices such as smartphones and tablet terminals have been made of tempered glass and plastic materials such as acrylic resin plates and polycarbonate plates. The part is printed in black.
  • a plastic film sensor is used together with the glass sensor, a touch-on lens (TOL) member in which the touch panel function is integrated with the surface protection panel, or the touch panel function is integrated in the image display panel.
  • TOL touch-on lens
  • the gaps between the constituent members for each image display device are made of a transparent resin such as a liquid adhesive, a thermoplastic adhesive sheet material, and an adhesive sheet material.
  • a transparent resin such as a liquid adhesive, a thermoplastic adhesive sheet material, and an adhesive sheet material.
  • the structure to fill is common.
  • the concealing part When the concealing part is formed with a color other than black, the concealing property is low, and therefore the height of the concealing part, that is, the printing part tends to be higher than that of black. Therefore, it is required that the pressure-sensitive adhesive sheet for laminating components having such a printing unit be filled to every corner following a large printing step. Therefore, various methods for filling the printing step have been proposed.
  • Patent Document 1 discloses a new image display device that can be bonded to a surface to be adhered in a close contact state even if the surface to be bonded to which the pressure-sensitive adhesive sheet is bonded has a step due to printing or the like.
  • a double-sided pressure-sensitive adhesive sheet for bonding any two adherends selected from the constituent members for image display devices of a surface protection panel, a touch panel and an image display panel as a double-sided pressure-sensitive adhesive sheet The body has a stepped portion on the adherend surface to which the double-sided pressure-sensitive adhesive sheet is adhered, and the double-sided pressure-sensitive adhesive sheet has the shape of the bonding surface to be bonded to the adherend surface along the surface shape of the adherend surface.
  • a double-sided pressure-sensitive adhesive sheet for an image display device, which is shaped, is disclosed.
  • the double-sided adhesive sheet before bonding is A double-sided pressure-sensitive adhesive sheet for an image display device, wherein the pressure-sensitive adhesive composition having a gel fraction of less than 40% is formed into the same surface shape as the uneven shape of the bonding surface of the adherend.
  • a manufacturing method is disclosed.
  • a pressure-sensitive adhesive sheet laminate in which release sheets are laminated on both sides of the pressure-sensitive adhesive sheet is press-molded.
  • a method of forming a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface is assumed.
  • a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface is obtained. The problem that it is difficult to form on the surface of an adhesive sheet with high accuracy has been clarified.
  • the present invention relates to a pressure-sensitive adhesive sheet laminate comprising a pressure-sensitive adhesive layer and a covering portion that is detachably laminated on one side of the pressure-sensitive adhesive layer, and has an uneven shape that matches the unevenness on the adherend surface.
  • a new pressure-sensitive adhesive sheet laminate that can be formed on the surface of the pressure-sensitive adhesive layer and a shaped pressure-sensitive adhesive sheet laminate using the pressure-sensitive adhesive sheet laminate are proposed.
  • the present invention relates to a pressure-sensitive adhesive sheet laminate comprising a pressure-sensitive adhesive layer and a covering portion I that is peelably laminated on one surface of the pressure-sensitive adhesive layer, and a storage elastic modulus E ′ of the covering portion I at 100 ° C. MA) is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. is 5.0 ⁇ 10 7 to 1.0 ⁇ .
  • a pressure-sensitive adhesive sheet laminate having a pressure of 10 10 Pa is proposed.
  • the present invention is also a shaped pressure-sensitive adhesive sheet laminate using the pressure-sensitive adhesive sheet laminate, wherein the pressure-sensitive adhesive layer has a concave portion, a convex portion, or a concave-convex portion (referred to as “pressure-sensitive adhesive layer surface concave-convex portion”) on one surface of the front and back sides. ), And the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and is provided with a concave portion, a convex portion, or an uneven portion (referred to as a “cover portion surface uneven portion”) on the front and back side surface.
  • a convex portion or a concave portion or a convex concave portion (referred to as a “covered portion back surface convex concave portion”) having irregularities that coincide with the concave and convex portions on the surface of the adhesive material layer on the front and back other side surfaces opposite to the one side of the front and back sides. Proposed is a shaped adhesive sheet laminate.
  • the covering portion I can maintain shape retention in a normal state, it is easy to handle and is not too hard, so that it is possible to suppress unnecessary unintentional unevenness on the adhesive layer. it can.
  • the shaped pressure-sensitive adhesive sheet laminate proposed by the present invention comprises a pressure-sensitive adhesive sheet surface uneven portion on the front and back side surfaces of the pressure-sensitive adhesive layer, and the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer.
  • the front and back one side surface is provided with a covering portion surface uneven portion
  • the front and back other side surface opposite to the front and back one side is provided with a covering portion back surface convex concave portion.
  • the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and is peeled to the front and back side surfaces of the pressure-sensitive adhesive layer.
  • the covering portion I is configured to be laminated, it is possible to prevent dust and the like from adhering to the surface of the pressure-sensitive adhesive layer to reduce the adhesive force, and the pressure-sensitive adhesive layer.
  • the shape of the uneven surface of the adhesive material layer formed on the front and back surfaces of the surface prevents moisture from absorbing moisture and collapsing, and dust adheres to the surface and reduces adhesive strength. You can also.
  • the pressure-sensitive adhesive sheet laminate (referred to as “the present pressure-sensitive adhesive sheet laminate”) according to an example of the embodiment of the present invention can be peeled off on the front and back sides of the pressure-sensitive adhesive layer. It is the adhesive sheet laminated body provided with the coating
  • the covering portion II is arbitrary, and the covering portion II may not be stacked.
  • the pressure-sensitive adhesive layer of this pressure-sensitive adhesive sheet laminate can function as a double-sided pressure-sensitive adhesive sheet when the covering portion I and the covering portion II are peeled off, and has a hot melt property that softens or melts when heated. That's fine.
  • the pressure-sensitive adhesive layer preferably has a loss tangent tan ⁇ (SA) at 100 ° C. of 1.0 or more. Further, the loss tangent tan ⁇ (SB) at 30 ° C. is preferably less than 1.0.
  • the loss tangent tan ⁇ means the ratio (G ′′ / G ′) between the loss elastic modulus G ′′ and the storage elastic modulus G ′. Since the temperature at which the pressure-sensitive adhesive sheet laminate is heat-molded is usually 70 to 120 ° C., if the loss tangent tan ⁇ (SA) at 100 ° C. is 1.0 or more, an uneven shape is formed on the surface of the pressure-sensitive adhesive layer. It becomes easy.
  • the loss tangent tan ⁇ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is less than 1.0, the shape can be maintained in a normal state, so that the uneven shape matching the uneven portion on the adherend surface can be accurately obtained.
  • the state formed on the surface of the adhesive layer can be maintained.
  • a polymer material has both a viscous property and an elastic property, and the loss tangent tan ⁇ is 1.0 or more, and the viscosity value becomes stronger as the value increases.
  • the elastic property becomes stronger as the loss tangent tan ⁇ is less than 1.0 and the value is further reduced. For this reason, by controlling the loss tangent tan ⁇ at different temperatures of the adhesive layer, it becomes possible to have both formability and shape retention.
  • the loss tangent tan ⁇ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is preferably 1.0 or more, more preferably 1.5 or more and 30 or less, and particularly preferably 3.0 or more and 20 or less. preferable.
  • the loss tangent tan ⁇ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is preferably less than 1.0, particularly 0.01 or more and 0.9 or less, and more preferably 0.1 or more and 0.8 or less. Is preferred.
  • the loss tangent tan ⁇ (SA) at 100 ° C. and the loss tangent tan ⁇ (SB) at 30 ° C. of the adhesive layer adjust the components, gel fraction, weight average molecular weight, etc. of the composition constituting the adhesive layer. Can be adjusted to the above range.
  • the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is less than 1.0 ⁇ 10 4 Pa.
  • the storage elastic modulus G '(SB) in 30 degreeC of the said adhesive material layer is 1.0 * 10 ⁇ 4 > Pa or more. If the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is less than 1.0 ⁇ 10 4 Pa, it is preferable because sufficient moldability can be obtained. On the other hand, the storage elastic modulus at 30 ° C. of the pressure-sensitive adhesive layer. If G ′ (SB) is 1.0 ⁇ 10 4 Pa or more, it is preferable from the viewpoint of shape stability after molding.
  • the storage elastic modulus G ′ (SA) at 100 ° C. of the adhesive layer is preferably less than 1.0 ⁇ 10 4 Pa, among which 5.0 ⁇ 10 1 Pa or more or 5.0 ⁇ 10 3. It is more preferable that it is Pa or less, and among these, 1.0 ⁇ 10 2 Pa or more or 1.0 ⁇ 10 3 Pa or less is more preferable. From the above, the storage elastic modulus G ′ (SA) at 100 ° C. of the adhesive layer is 5.0 ⁇ 10 1 Pa or more and less than 1.0 ⁇ 10 4 Pa, or 5.0 ⁇ 10 1 Pa or more and 5.0.
  • X10 3 Pa or less is more preferable, and in particular, 1.0 ⁇ 10 2 Pa or more and less than 1.0 ⁇ 10 4 Pa, or 1.0 ⁇ 10 2 Pa or more and 5.0 ⁇ 10 3 Pa or less. More preferably, it is 1.0 ⁇ 10 2 Pa or more and 1.0 ⁇ 10 3 Pa or less.
  • the storage elastic modulus G ′ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is preferably 1.0 ⁇ 10 4 Pa or more, and more preferably 2.0 ⁇ 10 4 Pa or more or 1.0 ⁇ . 10 7 Pa or less is more preferable, and among them, 5.0 ⁇ 10 4 Pa or more or 1.0 ⁇ 10 6 Pa or less is more preferable.
  • the storage elastic modulus G ′ (SB) at 30 ° C. of the adhesive layer is 1.0 ⁇ 10 4 Pa or more and 1.0 ⁇ 10 7 Pa or less, or 1.0 ⁇ 10 4 Pa or more and 1 0.0 ⁇ 10 6 Pa or less is more preferable, among which 2.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 7 Pa, or 2.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 6 Pa. Or less, and most preferably 5.0 ⁇ 10 4 Pa or more and 1.0 ⁇ 10 6 Pa or less.
  • the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer and the storage elastic modulus G ′ (SB) at 30 ° C. of the pressure-sensitive adhesive layer are components and gel fractions of the composition constituting the pressure-sensitive adhesive layer.
  • the temperature at which the loss tangent tan ⁇ of the pressure-sensitive adhesive layer is 1.0 is preferably 50 to 150 ° C., more preferably 60 ° C. or more and 130 ° C. or less, and particularly preferably 70 ° C. or more or 110 ° C. or less. . If the temperature at which the loss tangent tan ⁇ of the pressure-sensitive adhesive layer is 1.0 is 50 to 150 ° C., the pressure-sensitive adhesive sheet laminate can be molded by heating to 50 to 150 ° C.
  • the glass transition temperature (Tg) of the base resin of the adhesive layer is preferably ⁇ 50 to 40 ° C., more preferably ⁇ 30 ° C. or higher or 25 ° C. or lower, and particularly preferably ⁇ 10 ° C. or higher or 20 ° C. or lower. Further preferred.
  • the measurement of the glass transition temperature refers to the midpoint between the inflection points of the baseline shift when the temperature is increased at a rate of 3 ° C./min using a differential scanning calorimeter (DSC).
  • the pressure-sensitive adhesive layer can be given adhesiveness, and the temperature at which the loss tangent tan ⁇ of the pressure-sensitive adhesive layer becomes 1.0 is set. It is possible to adjust to 50 to 150 ° C.
  • a conventionally known adhesive sheet can be used as long as it can be adjusted to a predetermined viscoelastic behavior.
  • a (meth) acrylic acid ester-based polymer including a copolymer, hereinafter referred to as “acrylic ester-based (co) polymer”
  • acrylic ester-based (co) polymer is used as a base resin, and a crosslinking monomer is necessary for this.
  • a pressure-sensitive adhesive sheet formed by blending a crosslinking initiator or a reaction catalyst 2) A pressure-sensitive adhesive sheet formed by using a butadiene or isoprene-based copolymer as a base resin, blending a crosslinking monomer, a crosslinking initiator or a reaction catalyst as necessary, and causing a crosslinking reaction; 3) A pressure-sensitive adhesive sheet formed by crosslinking reaction by using a silicone polymer as a base resin, blending a crosslinking monomer, a crosslinking initiator or a reaction catalyst if necessary, and the like, 4) A polyurethane-based pressure-sensitive adhesive sheet using a polyurethane-based polymer as a base resin can be used.
  • the physical properties of the adhesive layer itself are not an essential problem in the present invention, except for the viscoelastic properties and thermal properties described above.
  • those using the acrylate ester (co) polymer of 1) as a base resin are preferable.
  • performance such as electrical characteristics and low refractive index is required, those based on the butadiene or isoprene-based copolymer of 2) above are preferable.
  • performances such as heat resistance and rubber elasticity in a wide temperature range are required, those using the silicone copolymer of 3) as a base resin are preferable.
  • performance such as removability is required, those using the polyurethane polymer of 4) as a base resin are preferable.
  • the pressure-sensitive adhesive layer it was formed from a resin composition containing a (meth) acrylic copolymer (a) as a base resin, a crosslinking agent (b), and a photopolymerization initiator (c).
  • An adhesive sheet can be illustrated.
  • the gel fraction of the adhesive layer is 40% or less.
  • the gel fraction of the pressure-sensitive adhesive layer is 40% or less, the bonding between the molecular chains constituting the pressure-sensitive adhesive layer is suppressed to an appropriate range.
  • the gel fraction of the pressure-sensitive adhesive layer is preferably 40% or less, more preferably 20% or less, and particularly preferably 10% or less.
  • the minimum of the gel fraction of an adhesive material layer is not limited, 0% may be sufficient.
  • the gel fraction of said adhesive material layer is a resin composition containing (meth) acrylic-type copolymer (a), a crosslinking agent (b), and a photoinitiator (c) as base resin. The same applies to the case where other resin composition is used as the adhesive layer.
  • the (meth) acrylic copolymer (a) has properties such as a glass transition temperature (Tg) as appropriate depending on the type and composition ratio of the acrylic monomer and methacrylic monomer used for polymerizing the (meth) acrylic copolymer (a). It is possible to adjust.
  • Tg glass transition temperature
  • acrylic monomer and methacrylic monomer used for polymerizing the acrylate polymer examples include 2-ethylhexyl acrylate, n-octyl acrylate, n-butyl acrylate, ethyl acrylate, methyl methacrylate, and the like.
  • Vinyl acetate, hydroxyethyl acrylate, acrylic acid, glycidyl acrylate, acrylamide, acrylonitrile, methacrylonitrile, fluorine acrylate, silicone acrylate, etc., which are copolymerized with a hydrophilic group or an organic functional group, can also be used.
  • (meth) acrylic acid alkyl ester copolymers are particularly preferable.
  • the (meth) acrylate used for forming the (meth) acrylic acid alkyl ester copolymer that is, the alkyl acrylate or alkyl methacrylate component
  • the alkyl group is n-octyl, isooctyl, 2-ethylhexyl, n-butyl
  • alkyl acrylate or alkyl methacrylate which is any one of isobutyl, methyl, ethyl and isopropyl, or a mixture of two or more selected from these is preferable.
  • an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group
  • an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group
  • a monomer component obtained by appropriately and selectively combining the alkyl (meth) acrylate component and the (meth) acrylate component having an organic functional group as a starting material is subjected to heat polymerization to form a (meth) acrylate ester copolymer.
  • a polymer polymer can be obtained.
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • examples include those obtained by copolymerizing at
  • polymerization treatment using these monomers known polymerization methods such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like can be employed.
  • a thermal polymerization initiator or photopolymerization is used according to the polymerization method.
  • An acrylic ester copolymer can be obtained by using a polymerization initiator such as an initiator.
  • (Acrylic copolymer (A1)) As an example of a preferable base polymer of the adhesive material layer, there can be mentioned a (meth) acrylic copolymer (A1) composed of a graft copolymer having a macromonomer as a branch component.
  • the pressure-sensitive adhesive layer is composed of the acrylic copolymer (A1) as a base resin
  • the pressure-sensitive adhesive layer can exhibit self-adhesion while maintaining a sheet shape at room temperature, and when heated in an uncrosslinked state It has a hot melt property that melts or flows, and can be photocured, and after photocuring, it exhibits excellent cohesive force and can be bonded. Therefore, when the acrylic copolymer (A1) is used as the base polymer of the adhesive material layer, it exhibits adhesiveness at room temperature (20 ° C.) even in an uncrosslinked state, and more preferably 50 to 100 ° C. Can be softened or fluidized when heated to a temperature of 60 ° C. or higher or 90 ° C. or lower.
  • the glass transition temperature of the copolymer constituting the trunk component of the acrylic copolymer (A1) is preferably ⁇ 70 to 0 ° C.
  • the glass transition temperature of the copolymer component constituting the trunk component refers to the glass transition temperature of the polymer obtained by copolymerizing only the monomer component constituting the trunk component of the acrylic copolymer (A1). .
  • it means a value calculated by the Fox formula from the glass transition temperature and the composition ratio of the polymer obtained from the homopolymer of each component of the copolymer.
  • the calculation formula of Fox is a calculation value calculated
  • the glass transition temperature of the copolymer component constituting the backbone component of the acrylic copolymer (A1) is the flexibility of the adhesive layer at room temperature, the wettability of the adhesive layer to the adherend,
  • the glass transition temperature is preferably ⁇ 70 ° C. to 0 ° C., in particular, ⁇ 65 ° C. in order for the pressure-sensitive adhesive layer to have appropriate adhesion (tackiness) at room temperature because it affects the adhesion. Above, or ⁇ 5 ° C. or less, particularly preferably ⁇ 60 ° C. or more or ⁇ 10 ° C. or less.
  • the viscoelasticity can be adjusted by adjusting the molecular weight. For example, it can be made more flexible by reducing the molecular weight of the copolymer component.
  • Examples of the (meth) acrylic acid ester monomer contained in the main component of the acrylic copolymer (A1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl ( (Meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth
  • hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycerol (meth) acrylate having a hydrophilic group or an organic functional group
  • hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycerol (meth) acrylate having a hydrophilic group or an organic functional group
  • Acrylic acid 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxypropyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxypropyl phthalate Acid, 2- (
  • Monomers containing amide group, vinyl pyrrolidone, vinyl pyridine can also be used heterocyclic basic monomers such as vinyl carbazole.
  • Various vinyl monomers such as vinyl monomers can also be used as appropriate.
  • the trunk component of the acrylic copolymer (A1) contains a hydrophobic (meth) acrylate monomer and a hydrophilic (meth) acrylate monomer as constituent units. If the trunk component of the acrylic copolymer (A1) is composed only of a hydrophobic monomer, a tendency to wet-heat whitening is recognized. Therefore, it is preferable to introduce a hydrophilic monomer into the trunk component to prevent wet-heat whitening. .
  • the acrylic copolymer (A1) a hydrophobic (meth) acrylate monomer, a hydrophilic (meth) acrylate monomer, and a polymerizable functional group at the end of the macromonomer are included.
  • the copolymer component formed by random copolymerization can be mentioned.
  • examples of the hydrophobic (meth) acrylate monomer include n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, and pentyl (meth) ) Acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth) ) Acrylate, isononyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isodecyl
  • hydrophilic (meth) acrylate monomer examples include methyl acrylate, (meth) acrylic acid, tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) ) Acrylate, hydroxyl-containing (meth) acrylate such as glycerol (meth) acrylate, (meth) acrylic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyloxypropylhexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxypropyl phthalic acid, 2- (meth) acryloyloxyethyl maleic acid, 2- (meth) acryloyloxypropyl maleic acid, 2- Carboxyl group-containing mono
  • the acrylic copolymer (A1) preferably contains a macromonomer-derived repeating unit by introducing a macromonomer as a branch component of the graft copolymer.
  • the macromonomer is a polymer monomer having a terminal polymerizable functional group and a high molecular weight skeleton component.
  • the glass transition temperature (Tg) of the macromonomer is preferably higher than the glass transition temperature of the copolymer component constituting the acrylic copolymer (A1). Specifically, since the glass transition temperature (Tg) of the macromonomer affects the heating and melting temperature (hot melt temperature) of the pressure-sensitive adhesive layer 2, the glass transition temperature (Tg) of the macromonomer is 30 ° C. to 120 ° C. Among them, it is preferable to be 40 ° C or higher or 110 ° C or lower, and it is more preferable to be 50 ° C or higher or 100 ° C or lower.
  • the glass transition temperature of the macromonomer refers to the glass transition temperature of the macromonomer itself, and can be measured with a differential scanning calorimeter (DSC).
  • the branch components are attracted to each other and can maintain a state where they are physically cross-linked as a pressure-sensitive adhesive composition, and the physical cross-linking is released by heating to an appropriate temperature.
  • the macromonomer is preferably contained in the acrylic copolymer (A1) in a proportion of 5% by mass to 30% by mass, particularly 6% by mass or 25% by mass, and more preferably 8% by mass. It is preferable that the amount is 20% by mass or more.
  • the number average molecular weight of the macromonomer is preferably 500 or more and less than 8000, more preferably 800 or more and less than 7500, and particularly preferably 1000 or more and less than 7000.
  • a generally produced one for example, a macromonomer manufactured by Toa Gosei Co., Ltd.
  • the high molecular weight skeleton component of the macromonomer is preferably composed of an acrylic polymer or a vinyl polymer.
  • Examples of the high molecular weight skeleton component of the macromonomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the terminal polymerizable functional group of the macromonomer include a methacryloyl group, an acryloyl group, and a vinyl group.
  • Crosslinking agent (b) As the crosslinking agent (b), a crosslinking monomer used when the acrylic ester polymer is crosslinked can be used.
  • a crosslinking monomer used when the acrylic ester polymer is crosslinked can be used.
  • at least one crosslinkable functional group selected from (meth) acryloyl group, epoxy group, isocyanate group, carboxyl group, hydroxyl group, carbodiimide group, oxazoline group, aziridine group, vinyl group, amino group, imino group, and amide group The crosslinking agent which has can be mentioned, You may use 1 type or in combination of 2 or more types.
  • the crosslinkable functional group may be protected with a deprotectable protecting group.
  • a polyfunctional organic function having two or more organic functional groups such as a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups, an isocyanate group, an epoxy group, a melamine group, a glycol group, a siloxane group or an amino group.
  • An organometallic compound having a metal complex such as a base resin, zinc, aluminum, sodium, zirconium, or calcium can be preferably used.
  • polyfunctional (meth) acrylate examples include 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin glycidyl ether di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polyalkoxydi (meth) Acrylate, bisphenol F polyalkoxy di (meth) acrylate, polyalkylene glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, ⁇ -caprolactone modified tri (2-hydroxyethyl) isocyanurate tri (me
  • polyfunctional (meth) acrylic acid ester monomers among the above-mentioned polyfunctional (meth) acrylate monomers, polar functional groups such as a hydroxyl group, a carboxyl group, and an amide group can be used. Polyfunctional monomers or oligomers containing are preferred. Among these, it is preferable to use a polyfunctional (meth) acrylic acid ester having a hydroxyl group or an amide group.
  • a hydrophobic acrylate monomer and a hydrophilic acrylate monomer as a trunk component of the (meth) acrylate copolymer, for example, a graft copolymer
  • a polyfunctional (meth) acrylic acid ester having a hydroxyl group as a crosslinking agent.
  • the content of the crosslinking agent is 0.1 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic copolymer, from the viewpoint of balancing the flexibility and cohesive force of the pressure-sensitive adhesive composition.
  • the ratio is preferably 0.5 parts by mass or more and 15 parts by mass or less, and particularly preferably 1 part by mass or more or 13 parts by mass or less.
  • Photopolymerization initiator (c) When crosslinking the acrylic ester polymer, a crosslinking initiator (peroxidation initiator, photopolymerization initiator) and reaction catalyst (tertiary amine compound, quaternary ammonium compound, tin laurate compound, etc.) are appropriately used. It is effective when added.
  • a crosslinking initiator peroxidation initiator, photopolymerization initiator
  • reaction catalyst tertiary amine compound, quaternary ammonium compound, tin laurate compound, etc.
  • a photopolymerization initiator (c).
  • the photopolymerization initiator (c) is roughly classified into two types depending on the radical generation mechanism.
  • the photopolymerization initiator is capable of generating a radical by cleaving the single bond of the photopolymerization initiator itself, and photoexcitation.
  • the initiator and the hydrogen donor in the system form an exciplex and can be roughly classified into a hydrogen abstraction type photopolymerization initiator that can transfer hydrogen of the hydrogen donor.
  • the cleavage type photopolymerization initiator is decomposed when a radical is generated by light irradiation to be another compound, and once excited, it does not function as a reaction initiator.
  • the intramolecular cleavage type is used as a photopolymerization initiator having an absorption wavelength in the visible light region, light-reactive light is obtained after the pressure-sensitive adhesive sheet is cross-linked by light irradiation as compared with the case of using a hydrogen abstraction type.
  • a polymerizable initiator is preferable because it remains as an unreacted residue in the pressure-sensitive adhesive composition and is unlikely to cause an unexpected change with time or promotion of crosslinking.
  • the coloring specific to the photopolymerizable initiator is also preferable because it becomes a reaction decomposition product, so that absorption in the visible light region is eliminated and a color to be erased can be appropriately selected.
  • a hydrogen abstraction type photopolymerization initiator does not generate a decomposition product such as a cleavage type photopolymerization initiator during radical generation reaction by irradiation of active energy rays such as ultraviolet rays, so that it is difficult to become a volatile component after completion of the reaction. Damage to the body can be reduced.
  • cleavage type photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenyl-propane-1.
  • bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine is a cleavage-type photopolymerization initiator, and becomes a degradation product after the reaction and discolors.
  • Acylphosphine oxide photoinitiators such as fin oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine oxide are preferred.
  • the content of the photopolymerization initiator is not particularly limited.
  • a photoinitiator can be used 1 type or in combination of 2 or more types.
  • pigments such as pigments and dyes having near-infrared absorption characteristics, tackifiers, antioxidants, antioxidants, hygroscopic agents, ultraviolet absorbers, silane coupling agents, natural products, Various additives such as synthetic resins, glass fibers and glass beads can be appropriately blended.
  • the adhesive material layer may be a single layer or a plurality of layers such as two layers or three layers.
  • the pressure-sensitive adhesive layer may have a structure in which a base layer (non-sticky layer) is provided as a core layer, and layers made of a pressure-sensitive adhesive are laminated on both sides of the base layer. .
  • the base material layer as the core layer preferably has a material and characteristics such that the pressure-sensitive adhesive sheet laminate can be heat-molded.
  • the adhesive layer excluding the base material layer has the above-described characteristics with respect to loss tangent tan ⁇ (SA), loss tangent tan ⁇ (SB), storage elastic modulus G ′ (SA), and storage elastic modulus G ′ (SB). It is preferable.
  • the thickness of the adhesive layer is not particularly limited. In particular, the range of 20 ⁇ m to 500 ⁇ m is preferable. If it is this range, if it is a thin adhesive material layer like thickness 20 micrometers, the adhesive sheet excellent in the printing level
  • the pressure-sensitive adhesive sheet laminate includes a covering portion I that is detachably laminated on one side of the pressure-sensitive adhesive layer, for example, on the side that forms irregularities on the surface.
  • the storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is preferably 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa. Since the temperature at which the pressure-sensitive adhesive sheet laminate is heat-molded is usually 70 to 120 ° C., the storage elastic modulus E ′ (MA) at 100 ° C. is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa.
  • the covering portion I can follow the uneven shape sufficiently and can be deformed, but also on the surface of the pressure-sensitive adhesive layer pressed by the covering portion I during molding.
  • the desired uneven shape can be molded with high accuracy, for example, so that the corners are not rounded.
  • the storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is preferably 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, and more preferably 5.0 ⁇ 10 6 Pa or more. 1.0 ⁇ 10 9 Pa or less, more preferably 1.0 ⁇ 10 7 Pa or more or 5.0 ⁇ 10 8 Pa or less. From the above, the storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is 1.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 6 to 5.0 ⁇ 10 8. More preferably, it is Pa, more preferably 5.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, or even more preferably 5.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa. Most preferably, it is 0 ⁇ 10 7 to 1.0 ⁇ 10 9 Pa or less, or 1.0 ⁇ 10 7 to 5.0 ⁇ 10 8 Pa.
  • the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa. If the storage elastic modulus E ′ (MB) at 30 ° C. of the covering part I is 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa, shape retention can be maintained in a normal state, and handling is easy. For example, since it is easy to peel off and is not too hard, it is possible to suppress unnecessary undesired unevenness on the adhesive layer. From this viewpoint, the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa, and more preferably 1.0 ⁇ 10 8 Pa or more.
  • the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is 5.0 ⁇ 10 7 to 8.0 ⁇ 10 9 Pa, or 5.0 ⁇ 10 7 to 5.0 ⁇ 10 9. More preferably, it is Pa, more preferably 1.0 ⁇ 10 8 Pa to 1.0 ⁇ 10 10 Pa, or 1.0 ⁇ 10 8 Pa to 8.0 ⁇ 10 9 Pa, Most preferably, it is 1.0 ⁇ 10 9 to 8.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 9 to 5.0 ⁇ 10 9 Pa.
  • the type of the base resin, the copolymer resin component, the weight average molecular weight, the glass transition temperature, the crystallinity, etc. for example, the type of the base resin, the copolymer resin component, the weight average molecular weight, the glass transition temperature, the crystallinity, etc. While adjusting the conditions of the material, it can be adjusted by adjusting the presence / absence of stretching, molding conditions, and in the case of stretching, production conditions such as stretching conditions. However, it is not limited to these methods.
  • the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. satisfy the following relational expression (1). (1) ... E '(MB) / E' (MA) ⁇ 2.0
  • E ′ (MA) of the covering portion I at 100 ° C. and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. satisfy the relational expression (1), sufficient formability can be obtained. More preferably. From this viewpoint, it is preferable that E ′ (MB) / E ′ (MA) ⁇ 2.0, and in particular, 30 ⁇ E ′ (MB) / E ′ (MA) or E ′ (MB) / E ′ (MA ) ⁇ 3.0, more preferably 10 ⁇ E ′ (MB) / E ′ (MA) or E ′ (MB) / E ′ (MA) ⁇ 5.0.
  • E ′ (MB) and E ′ (MA) to have the above relationship, for example, the type of base resin, copolymer resin component, weight average molecular weight, glass transition temperature, crystallinity, etc. While adjusting the conditions of the material, it can be adjusted by adjusting the presence / absence of stretching, molding conditions, and in the case of stretching, production conditions such as stretching conditions. However, it is not limited to these methods.
  • the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer and the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. satisfy the following relational expression (2). preferable. (2) .. 1.0 ⁇ 10 3 ⁇ E ′ (MA) / G ′ (SA) ⁇ 1.0 ⁇ 10 7
  • E ′ (MA) / G ′ (SA) is preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 7 , and more preferably 5.0 ⁇ 10 3 or more or 5.0 ⁇ 10 6.
  • it is particularly preferably 1.0 ⁇ 10 4 or more or 1.0 ⁇ 10 6 or less.
  • E ′ (MA) / G ′ (SA) is more preferably 1.0 ⁇ 10 3 to 5.0 ⁇ 10 6 , or 1.0 ⁇ 10 3 to 1.0 ⁇ 10 6.
  • it is 5.0 ⁇ 10 3 to 5.0 ⁇ 10 6 , or more preferably 5.0 ⁇ 10 3 to 1.0 ⁇ 10 6 , and 1.0 ⁇ 10 4 to 5.0 ⁇ 10 6. 6 or 1.0 ⁇ 10 4 to 1.0 ⁇ 10 6 is most preferable.
  • the characteristics of the adhesive layer or the covering portion I may be adjusted.
  • the characteristics of the pressure-sensitive adhesive layer can be achieved, for example, by adjusting the components, gel fraction, weight average molecular weight, and the like of the composition constituting the pressure-sensitive adhesive layer.
  • the characteristics of the covering portion I for example, the conditions of the material of the covering portion I such as the type of the base resin, the copolymer resin component, the weight average molecular weight, the glass transition temperature, and the crystallinity are adjusted, whether or not there is stretching, molding In the case of stretching, it can be adjusted by adjusting the production conditions such as stretching conditions. However, it is not limited to these methods.
  • the covering portion I has a peeling force F (C) of 0.2 N / cm or less when peeling the covering portion I from the adhesive layer in an atmosphere of 30 ° C.
  • the peeling force F (C) is 0.2 N / cm or less, the covering portion I can be easily peeled from the adhesive material layer.
  • the peeling force F (C) is preferably 0.2 N / cm or less, more preferably 0.01 N / cm or more or 0.15 N / cm or less, and more preferably 0.02 N / cm. / Cm or more or 0.1 N / cm or less is more preferable.
  • the covering portion I further has a peeling force F (D) when the pressure-sensitive adhesive sheet laminate is heated to 100 ° C. for 5 minutes and then cooled to 30 ° C. Is preferably 0.2 N / cm or less. If the peel force F (D) obtained by heating the pressure-sensitive adhesive sheet laminate at 100 ° C. for 5 minutes and then cooling to 30 ° C. and measuring in an atmosphere at 30 ° C. is approximately the same as the peel force F (C) Even if the pressure-sensitive adhesive sheet laminate is heat-molded, the peeling force F (D) does not change, so that the covering portion I can be easily peeled from the pressure-sensitive adhesive layer.
  • a peeling force F (D) when the pressure-sensitive adhesive sheet laminate is heated to 100 ° C. for 5 minutes and then cooled to 30 ° C. Is preferably 0.2 N / cm or less. If the peel force F (D) obtained by heating the pressure-sensitive adhesive sheet laminate at 100 ° C. for 5 minutes and then cooling to 30 ° C. and measuring
  • the peeling force F (D) is preferably 0.2 N / cm or less, more preferably 0.01 N / cm or more or 0.15 N / cm or less, and more preferably 0.02 N / cm. / Cm or more or 0.1 N / cm or less is more preferable.
  • the covering portion I preferably further has an absolute value of a difference between the peeling force F (C) and the peeling force F (D) of 0.1 N / cm or less.
  • the pressure-sensitive adhesive sheet laminate is heated at 100 ° C. for 5 minutes and then cooled to 30 ° C., and the difference between the peel force F (D) obtained by measurement in an atmosphere at 30 ° C. and the peel force F (C) in a normal state If the absolute value is 0.1 N / cm or less, the peeling force F (D) does not change even if the pressure-sensitive adhesive sheet laminate is heat-molded, so that the covering portion I can be easily peeled from the pressure-sensitive adhesive layer. it can.
  • the absolute value of the difference between the peeling force F (C) and the peeling force F (D) is preferably 0.1 N / cm or less, more preferably 0.08 N / cm or less, and particularly 0.05 N / cm. More preferably, it is as follows.
  • peeling force F (C) and the peeling force F (D) of the covering portion I can be prepared depending on the type of the release layer formed on one side of the covering portion I. However, it is not limited to this method.
  • coated part I As a structural example of the coating
  • the covering base layer is, for example, a stretched or unstretched layer mainly composed of one type of resin or two or more types of resins selected from the group consisting of polyester, copolyester, polyolefin and copolyolefin. That is, it is preferably a single layer or a multilayer having a layer made of a stretched or non-stretched film containing these resins as a main component.
  • the covering base layer constituting the covering portion I is, for example, a copolymerized polyester, a polyolefin, or a stretched or non-stretched film containing a copolymerized polyolefin as a main component from the viewpoint of mechanical strength, chemical resistance, and the like. It is preferable that it is a single layer provided with the layer which consists of or multiple layers.
  • the copolymerized polyester include copolymerized polyethylene terephthalate obtained by arbitrarily copolymerizing, for example, isophthalic acid as a dicarboxylic acid, cyclohexanedimethanol, 1,4-butanediol, diethylene glycol or the like as a diol.
  • polystyrene resin examples include an ⁇ -olefin homopolymer, and examples thereof include a propylene homopolymer and a homopolymer of 4-methylpentene-1.
  • polyolefin copolymer examples include copolymers such as ethylene, propylene, other ⁇ -olefins and vinyl monomers.
  • the release layer is preferably a layer containing a modified polyolefin in addition to a release agent such as silicone.
  • a modified polyolefin constituting the release layer include resins mainly composed of an unsaturated carboxylic acid or an anhydride thereof, or a polyolefin modified with a silane coupling agent.
  • Examples of the unsaturated carboxylic acid or its anhydride include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, citraconic acid, citraconic anhydride, itaconic acid, itaconic anhydride or monoepoxy compounds of these derivatives and the acid. Ester compounds, polymers having a group capable of reacting with these acids in the molecule, and reaction products of the acids. These metal salts can also be used. Among these, maleic anhydride is more preferably used. Moreover, these copolymers can be used individually or in mixture of 2 or more types, respectively.
  • these modified monomers can be copolymerized at the stage of polymerizing in advance, or these modified monomers can be graft copolymerized with the polymer once polymerized.
  • these modified monomers may be used alone or in combination, and the content thereof is 0.1% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more. In the range of 5% by mass or less, preferably 4.5% by mass or less, more preferably 4.0% by mass or less is preferably used. Of these, those that have been graft-modified are preferably used.
  • modified polyolefin resin examples include maleic anhydride-modified polypropylene resin, maleic anhydride-modified polyethylene resin, maleic anhydride ethylene-vinyl acetate copolymer, and the like.
  • the thickness of the covering portion I is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m or more and 300 ⁇ m or less, and particularly preferably 30 ⁇ m or more or 150 ⁇ m or less.
  • this pressure-sensitive adhesive sheet laminate has a covering portion I laminated on the front and back sides of the pressure-sensitive adhesive layer so as to be peelable, and can be peeled on the opposite side of the covering portion I, that is, on the other side of the pressure-sensitive adhesive layer. It can be set as the structure which laminate
  • the covering portion II is not particularly limited in material and configuration as long as it is formed by being peelably laminated on the other side of the adhesive layer.
  • the covering portion II may be, for example, the same laminated structure and material as the covering portion I, and may be the same thickness as the covering portion I or a different thickness. If the covering part II is the same laminate structure and material as the covering part I, it is possible to prevent warping from occurring when the present adhesive sheet laminate is heated.
  • the covering portion II has the same configuration as the covering portion I, but has a storage elastic modulus E ′ (MA) at 100 ° C., a storage elastic modulus E ′ (MB) at 30 ° C., and a ratio thereof (E ′ (MB) / E ′). (MA)), peel force F (C), peel force F (D), and the like may be different from those of the covering portion I. Further, the covering portion II may have a laminated structure and material different from those of the covering portion I. For the covering part II, for example, a generally used release film (also referred to as “release film”) can be used. Specific examples include materials having a storage elastic modulus E ′ (MC) at 100 ° C. of 2.0 ⁇ 10 9 to 1.0 ⁇ 10 11 Pa, such as a biaxially stretched polyethylene terephthalate (PET) film. Etc. can be used.
  • PET biaxially stretched polyethylene terephthalate
  • the covering portion I As a structural example of the covering portion I, a coating film in which a coating layer is provided on one side of a copolyester film, and a storage elastic modulus E ′ at 100 ° C. is 1.5 ⁇ 10 9 Pa or less.
  • the coated film (referred to as “the present coated film”) will be described. If this coating film is used, for example, after heating the pressure-sensitive adhesive sheet laminate, the mold is pressed against a coating film provided with a coating layer having releasability so as to match the irregularities on the surface of the adherend. The uneven shape to be formed can be formed on the surface of the pressure sensitive adhesive sheet with high accuracy.
  • the coated film can maintain shape retention in a normal state, it is not only easy to handle, but also is not too hard, so that it is possible to suppress unnecessary unintended irregularities on the adhesive sheet. .
  • the copolymerized polyester film constituting the coated film may have a single layer structure or a laminated structure.
  • the copolymer polyester film has four layers or more unless the gist of the present invention is exceeded.
  • the above multilayer may be used, and is not particularly limited. Also, for example, when a three-layer structure (surface layer / intermediate layer / surface layer) is used, one or more of the surface layer or intermediate layer is used as a copolymerized polyester component, and the other layers are copolymerized. It is also possible to comprise a polyester component that does not contain the component.
  • the copolyester film refers to a film stretched as necessary after cooling the molten polyester sheet extruded by an extrusion method.
  • terephthalic acid As the dicarboxylic acid component of the copolyester, terephthalic acid is preferable. Besides, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid One or more known dicarboxylic acids such as cyclohexanedicarboxylic acid may be contained as a copolymerization component. As the diol component, ethylene glycol is preferable.
  • diols such as pentyl glycol
  • copolymerized polyethylene terephthalate obtained by arbitrarily copolymerizing phthalic acid or isophthalic acid as the dicarboxylic acid component and 1,4-cyclohexanedimethanol, 1,4-butanediol, diethylene glycol or the like as the diol component is more preferable.
  • the content of the copolymer component is preferably 1 mol% or more and 50 mol% or less, more preferably 3 mol% or more or 40 mol% or less, and further preferably 4 mol% or more or 30 mol% or less.
  • the content of the copolymerization component is 1 mol% or more, a concave shape, a convex shape, or an uneven shape can be formed on the pressure-sensitive adhesive sheet surface when laminated with the pressure-sensitive adhesive sheet.
  • by being 50 mol% or less not only has sufficient dimensional stability, but generation
  • the melting point of the copolymerized polyester film is preferably designed to be 260 ° C. or lower, more preferably 200 to 255 ° C. When the melting point is 260 ° C. or less, sufficient strength can be obtained even in a heat treatment at a temperature lower than the melting point of the copolyester film in the heat treatment step after stretching.
  • particles are contained in the copolymerized polyester film.
  • inorganic particles such as calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, lithium phosphate, magnesium phosphate, calcium phosphate, lithium fluoride, aluminum oxide, silicon oxide, kaolin; organic such as acrylic resin and guanamine resin Particles: Examples thereof include, but are not limited to, precipitated particles obtained by making catalyst residuals into particles.
  • the particle size of these particles and the content in the copolyester film can be appropriately determined according to the purpose.
  • the particles to be contained may be a single component, or two or more components may be used simultaneously.
  • Various stabilizers, lubricants, antistatic agents and the like can also be added as appropriate.
  • the average particle size of the particles contained in the copolymerized polyester film is preferably 0.1 to 5.0 ⁇ m.
  • the average particle size of the particles is less than 0.1 ⁇ m, the slipperiness of the film becomes insufficient and workability may be lowered.
  • the average particle diameter of the particles exceeds 5.0 ⁇ m, the smoothness of the film surface may be impaired.
  • the content of particles contained in the copolymerized polyester film is preferably 0.01 to 0.3% by weight.
  • the content of the particles is less than 0.01% by weight, the slipperiness of the film becomes insufficient and workability may be lowered.
  • the content of the particles exceeds 0.3% by weight, the smoothness of the film surface may be impaired.
  • the method for adding particles to the copolymerized polyester film is not particularly limited, and a known method can be adopted.
  • it can be added at any stage for producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or before the start of the polycondensation reaction after completion of the transesterification reaction.
  • the condensation reaction may proceed.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder For example, a method for depositing particles in a polyester production process system.
  • the intrinsic viscosity of the copolyester is usually 0.40 to 1.10 dl / g, preferably 0.45 to 0.90 dl / g, more preferably 0.50 to 0.80 dl / g.
  • the intrinsic viscosity is less than 0.40 dl / g, the mechanical strength of the film tends to be weakened.
  • the intrinsic viscosity exceeds 1.10 dl / g, the melt viscosity becomes high and the extruder is overloaded. There is a case.
  • a method of using the copolymer polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable.
  • the obtained unstretched sheet is preferably stretched at least in a uniaxial direction, and more preferably biaxially stretched in a biaxial direction.
  • the unstretched sheet is stretched in the machine direction in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 75 to 110 ° C., and the stretching ratio is usually 2.5 to 7.0 times, preferably 3.0 to 6.0 times.
  • the film is stretched in the direction perpendicular to the first-stage stretching direction (machine direction).
  • the stretching temperature is usually 70 to 170 ° C.
  • the stretching ratio is usually 3.0 to 7.0 times, preferably 3.5 to 6.0 times.
  • heat treatment is performed at a temperature of 150 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
  • a method of performing unidirectional stretching in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • simultaneous biaxial stretching can be adopted for the production of the copolyester film.
  • Simultaneous biaxial stretching is a method in which the unstretched sheet is stretched and oriented in the machine direction and the width direction at the same time, usually at a temperature of 70 to 120 ° C., preferably 75 to 110 ° C.
  • the draw ratio is preferably 4 to 50 times, more preferably 7 to 35 times, and still more preferably 10 to 25 times in terms of area magnification.
  • heat treatment is performed at a temperature of 150 to 250 ° C. under tension or under relaxation within 30% to obtain a biaxially stretched film.
  • conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be employed.
  • Coating layer In this coating film, it is important to provide a coating layer on at least one side of the copolymerized polyester film. Although it does not specifically limit as a coating layer, A mold release layer, an antistatic layer, an oligomer sealing layer, an easily bonding layer, a primer layer, etc. are mentioned concretely. Especially, when manufacturing the adhesive sheet laminated body laminated
  • the release layer As a specific example of the coating layer constituting the coating film, the release layer will be described below.
  • the resin used for the release layer include a curable silicone resin, a fluorine-based resin, and a polyolefin-based resin, among which a curable silicone resin is preferable.
  • a type or the like may be used.
  • any of the curing reaction types such as an addition type, a condensation type, an ultraviolet curable type, an electron beam curable type, and a solventless type can be used.
  • Specific examples include KS-774, KS-775, KS-778, KS-779H, KS-847H, KS-856, X-62-2422, X-62-2461, X, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the curing conditions for forming the release layer on the copolymerized polyester film are not particularly limited.
  • heat treatment is usually performed at 120 to 200 ° C. for 3 to 40 seconds, preferably 100 to 180 ° C. for 3 to 40 seconds.
  • active energy ray irradiation such as ultraviolet irradiation
  • a conventionally well-known apparatus and energy source can be used as an energy source for hardening by active energy ray irradiation.
  • the coating amount (after drying) of the release layer is usually 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 , and more preferably 0.01 to 0.5 g from the viewpoint of coating properties.
  • the range is 0.2 g / m 2 .
  • the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film.
  • the coating is thicker than 1 g / m 2 , the coating layer adhesion and curability of the release layer itself may be lowered.
  • the copolyester film may be subjected to a surface treatment in advance in order to provide a coating layer such as a corona treatment, a plasma treatment, or an ultraviolet irradiation treatment.
  • a surface treatment such as a corona treatment, a plasma treatment, or an ultraviolet irradiation treatment.
  • the thickness of the coated film is usually 9 ⁇ m to 250 ⁇ m, preferably 12 ⁇ m to 125 ⁇ m, and more preferably 25 ⁇ m to 75 ⁇ m.
  • the thickness is less than 9 ⁇ m, the film tension becomes insufficient, and there may be a problem that wrinkles are likely to occur when slitting.
  • it exceeds 250 ⁇ m for example, the followability to a molded product having a curved shape may be insufficient.
  • the storage elastic modulus E ′ at 100 ° C. of the coated film is 1.5 ⁇ 10 9 Pa or less, preferably 1.0 ⁇ 10 9 Pa or less.
  • a concave shape, a convex shape, or a concave-convex shape can be formed on the pressure-sensitive adhesive sheet surface when laminated with the pressure-sensitive adhesive sheet.
  • the storage elastic modulus E ′ at 100 ° C. it can be satisfied by adjusting the type and content of the copolymer component contained in the copolymer polyester film.
  • 1.0 * 10 ⁇ 7 > Pa or more is preferable and 1.0 * 10 ⁇ 8 > Pa or more is more preferable.
  • the shrinkage ratio of the coated film after heating at 120 ° C. for 5 minutes is 3.0% or less, preferably 2.5% or less.
  • the shrinkage rate is 3.0% or less, sufficient dimensional stability is obtained, so that when the adhesive sheet is laminated, a concave shape, a convex shape, or a concave-convex shape can be formed on the pressure-sensitive adhesive sheet surface. .
  • the generation of wrinkles is suppressed during processing, wrinkles are not transferred to the pressure-sensitive adhesive sheet, and a pressure-sensitive adhesive sheet having a sufficient appearance can be produced.
  • the shrinkage in the machine direction (MD) after heating at 120 ° C. for 5 minutes is preferably 3.0% or less, and preferably 2.5% or less.
  • the shrinkage in the machine direction (MD) after heating at 120 ° C. for 5 minutes is preferably 3.0% or less, and preferably 2.5% or less.
  • 0.1% or more is preferable and 0.5% or more is more preferable.
  • the shrinkage in the machine direction and the vertical direction (TD) after heating at 120 ° C. for 5 minutes is preferably 1.0% or less, and preferably 0.8% or less.
  • the lower limit is preferably ⁇ 1.0% or more, more preferably ⁇ 0.5% or more.
  • this coated film has an oligomer extraction amount of 1.0 from the surface of the coating layer after heat treatment (180 ° C., 10 minutes). ⁇ 10 ⁇ 3 mg / cm 2 or less is preferable, and 5.0 ⁇ 10 ⁇ 4 mg / cm 2 or less is more preferable.
  • the oligomer extraction amount exceeds the above range, contamination due to oligomer adhesion to the mold may be serious during molding.
  • mold contamination is promoted by the deposition of precipitated oligomers, so it is important to control the amount of oligomer precipitation during heating. For the above reasons, the smaller the amount of oligomer extracted, the more preferable.
  • Method for producing this pressure-sensitive adhesive sheet laminate As an example of the manufacturing method of this adhesive sheet laminated body, the method of forming an adhesive material layer using a laminator can be mentioned, for example, by sandwiching an adhesive composition between two coating parts I or II. Moreover, as another method, the method of apply
  • a shaped pressure-sensitive adhesive sheet laminate 1 (referred to as “the present shaped pressure-sensitive adhesive sheet laminate 1”) having an uneven shape formed on the surface of the pressure-sensitive adhesive layer is produced as follows. Can do.
  • the shaped adhesive sheet laminate 1 includes an adhesive material layer 2, a covering portion I that is detachably laminated on the front and back sides of the adhesive material layer 2, and the adhesive material layer 2. And the other side of the front and back of the cover part II that is laminated in a peelable manner,
  • the pressure-sensitive adhesive layer 2 includes a concave portion, a convex portion, or an uneven portion (referred to as “adhesive sheet surface uneven portion 2B”) on the front and back one side surface 2A, and the front and back other side surface 2C is a flat surface
  • the covering portion I is in close contact with the front and back one side surface 2A of the pressure-sensitive adhesive sheet 2 and includes a concave portion, a convex portion, or an uneven portion (referred to as “covering portion surface uneven portion 3B”) on the front and back one side surface 3A.
  • the sheet back surface 3C is provided with a convex portion, a concave portion or a convex concave portion (referred to as "protective sheet back surface convex concave portion 3D") that coincides with the adhesive sheet surface concave and convex portion 2B, in other words, is fitted.
  • the covering portion II may have a configuration including a flat surface along the front and back other surface 2C of the pressure-sensitive adhesive sheet 2.
  • the front and back other surface 2C can be a flat surface as shown in FIG. 3, and the front and back other surface 2C can also be formed to have a concave portion, a convex portion, or an uneven portion. it can.
  • the present shaped adhesive sheet laminate 1 having such a structure is formed by subjecting the present adhesive sheet laminate to press molding, vacuum forming, pressure forming, or roll forming, thereby stacking the present adhesive sheet laminate. It can be manufactured by shaping the concavo-convex shape integrally with the body. By manufacturing in this way, the pressure-sensitive adhesive sheet surface uneven portion 2B of the pressure-sensitive adhesive layer 2, the protective sheet surface uneven portion 3B and the protective sheet back surface concave / convex portion 3D of the covering portion I have unevenness corresponding to the same location, respectively. It can be.
  • the pressure-sensitive adhesive layer 2 can be used as a double-sided pressure-sensitive adhesive sheet for bonding together two image display device constituent members (each also referred to as “adhered body”) constituting the image display device, for example. That is, the pressure-sensitive adhesive sheet surface uneven portion 2B in the pressure-sensitive adhesive layer 2 is a concave portion, a convex portion, or a concave-convex portion (“adhered surface uneven portion”) on the bonding surface (also referred to as “bonding surface”) of the adherend. So that they can be formed in the same contour shape. Therefore, the adhesive sheet surface uneven part 2B in the shaped adhesive sheet laminate 1 can be fitted to the adherend surface uneven part in the image display device constituting member as the adherend.
  • the image display device for example, a smartphone or a tablet including a liquid crystal display device (LCD), an organic EL display device (OLED), electronic paper, a micro electro mechanical system (MEMS) display, a plasma display (PDP), and the like
  • LCD liquid crystal display device
  • OLED organic EL display device
  • MEMS micro electro mechanical system
  • PDP plasma display
  • a terminal, a mobile phone, a television, a game machine, a personal computer, a car navigation system, an ATM, a fish finder, and the like can be given.
  • the image display device constituent member as the adherend is a member constituting these image display devices, and examples thereof include a surface protection panel, a touch panel, and an image display panel.
  • the adherend 1 can be used for bonding any two adherends selected from, for example, a surface protection panel, a touch panel, and an image display panel.
  • a surface protection panel for example, it can be used to bond a surface protection panel and a touch panel, or a touch panel and an image display panel.
  • the adherend is not limited to these.
  • the concave-convex shape is integrally formed on the pressure-sensitive adhesive sheet laminate 1.
  • the forming method include press forming, vacuum forming, pressure forming, forming by a roll, forming by lamination, and the like.
  • press molding is particularly preferable from the viewpoints of moldability and workability.
  • the pressure-sensitive adhesive sheet laminate is preheated with a heater, and the pressure-sensitive adhesive sheet laminate is transported to a press molding machine when it is heated to a predetermined temperature, and has a shape corresponding to the printed step shape of the adherend in advance.
  • the shape of the pressure-sensitive adhesive sheet laminate 1 can be produced by transferring the shape of the mold to one side of the pressure-sensitive adhesive sheet laminate and forming the unevenness on one side. .
  • the preheating of the pressure-sensitive adhesive sheet laminate is preferably performed at a temperature at which the pressure-sensitive adhesive layer is softened, specifically 70 to 120 ° C.
  • corrugated shaping is not specifically limited.
  • resin-based materials such as silicone resin and fluororesin
  • metal-based materials such as stainless steel and aluminum can be used.
  • metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
  • the cooling after the press working may be performed after the mold is opened, or the mold may be cooled and cooled at the same time as pressing.
  • molding conditions such as pressing pressure and pressing time are not particularly specified, and may be appropriately adjusted depending on the dimension and shape to be molded, the material to be used, and the like. Moreover, you may cut using a Thomson blade, a rotary blade, etc. after a shaping
  • an adhesive material layer surface irregularity coinciding with the irregularities on the surface of the adherend can be formed on the adhesive material layer surface with high accuracy, and preferably continuous.
  • the present invention proposes a new method for producing a shaped pressure-sensitive adhesive sheet laminate that can be produced.
  • an adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer are provided, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion (
  • the pressure-sensitive adhesive layer and the pressure-sensitive adhesive layer are peelably laminated on one surface.
  • a heating method for forming a heated pressure-sensitive adhesive sheet laminate and cooling to produce a shaped pressure-sensitive adhesive sheet laminate, and heating the pressure-sensitive adhesive sheet laminate Then, molding was started in a state where the storage elastic modulus E ′ (MS) of the covering portion I was 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, and the storage elastic modulus E ′ (MF) of the covering portion I was ) Features that exits the molding while it is 5.0 ⁇ 10 7 ⁇ 1.0 ⁇ 10 10 Pa
  • production method 1 a method for manufacturing a new shaping adhesive sheet laminate
  • the present manufacturing method 1 further proposes that the heated pressure-sensitive adhesive sheet laminate is molded using a cooled mold in the new method for producing a shaped pressure-sensitive adhesive sheet laminate.
  • the covering portion I starts forming in a predetermined state, and the covering portion I finishes forming in the predetermined state.
  • An uneven shape matching the uneven portion on the surface of the adherend can be formed with high accuracy on the surface of the adhesive layer.
  • the heated pressure-sensitive adhesive sheet laminate is molded, if it is molded using a cooled mold, it can be cooled at the same time as the molding, and the process can be completed simultaneously. Can do.
  • This manufacturing method 1 is a method for manufacturing a shaped pressure-sensitive adhesive sheet laminate (referred to as “the present manufacturing method”) according to an example of the present embodiment. It is a manufacturing method provided with the process of shape
  • the present manufacturing method 1 may include other steps as long as it includes the heating step and the forming / cooling step.
  • you may provide processes, such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed.
  • processes such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed.
  • it is not limited to these processes.
  • the pressure-sensitive adhesive sheet laminate as a starting member in the production method 1 only needs to include a pressure-sensitive adhesive layer and a covering portion I that is detachably laminated on one surface of the pressure-sensitive adhesive layer, and includes other members. It may be.
  • a pressure-sensitive adhesive sheet laminate provided with the covering portion II can be exemplified. However, whether or not the covering portion II is provided is arbitrary, and the covering portion II may not be stacked. In addition, it is as above-mentioned about the detail of an adhesive sheet laminated body.
  • the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is in the range of 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa. preferable. If the storage elastic modulus E ′ (M) of the covering portion I is in the above range, the covering portion I can be deformed to an extent suitable for molding, and a desired uneven shape is accurately formed on the surface of the adhesive layer. It can be shaped. From this viewpoint, it is preferable to heat the pressure-sensitive adhesive sheet laminate so that the storage elastic modulus E ′ (M) of the covering portion I is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa.
  • the adhesive sheet laminate is heated, and the storage elastic modulus E ′ (M) of the covering portion I is 1.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 6 to 5 More preferably, it is in a state of 0.0 ⁇ 10 8 , among which 5.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, or 5.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa. More preferably, the state is 1.0 ⁇ 10 7 to 1.0 ⁇ 10 9 Pa, or most preferably 1.0 ⁇ 10 7 to 5.0 ⁇ 10 8 .
  • the components and gel components of the composition constituting the covering portion I can be adjusted. It can adjust by adjusting heating temperature according to a rate, a weight average molecular weight, etc. However, it is not limited to this method.
  • the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, and the storage elasticity of the pressure-sensitive adhesive layer is It is even more preferable that the rate G ′ (S) is less than 1.0 ⁇ 10 4 Pa. If the storage elastic modulus E ′ (M) of the covering portion I is adjusted to the above range, the above-described effects can be obtained, and in addition, the storage elastic modulus G ′ (S) of the adhesive layer is 1. If it is less than 0 * 10 ⁇ 4 > Pa, sufficient moldability can be provided to an adhesive material layer.
  • the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is in the above range, and the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is 1.
  • a state of less than 0.0 ⁇ 10 4 Pa particularly in a state of 5.0 ⁇ 10 1 Pa or more or 5.0 ⁇ 10 3 Pa or less, in particular, 1.0 ⁇ 10 2 Pa or more or 1.0 ⁇ 10 3 It is preferable to be in a state of Pa or less.
  • the pressure-sensitive adhesive sheet laminate is heated, the storage elastic modulus E ′ (M) of the covering portion I is in the above range, and the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is 5 .0 ⁇ 10 1 Pa or more 1.0 ⁇ less than 10 4 Pa, or more preferably to the state is not more than 5.0 ⁇ 10 1 Pa or more 5.0 ⁇ 10 3 Pa, among others, 1.0 ⁇ 10 2 Pa or more 1.0 ⁇ less than 10 4 Pa, or more preferably be a state is 1.0 ⁇ 10 2 Pa or more 5.0 ⁇ 10 3 Pa or less, 1.0 ⁇ 10 2 Pa or more 1 Most preferably, it is in a state of 0.0 ⁇ 10 3 Pa or less.
  • the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is adjusted by adjusting the heating temperature according to the components, gel fraction, weight average molecular weight, etc. of the composition constituting the pressure-sensitive adhesive layer. Can do. However, it is not limited to this method.
  • the pressure-sensitive adhesive sheet laminate so that the value of the loss tangent tan ⁇ of the pressure-sensitive adhesive layer becomes 1.0 or more.
  • the loss tangent tan ⁇ will be described later. If the value of the loss tangent tan ⁇ of the pressure-sensitive adhesive layer is 1.0 or more, it is preferable that the adhesive material layer is flexible enough to be molded. From this point of view, it is particularly preferable to heat the pressure-sensitive adhesive sheet laminate so that the value of the loss tangent tan ⁇ of the pressure-sensitive adhesive layer is 1.0 or more. More preferably, it is 3.0 or more or 10 or less. However, the upper limit is not limited to this.
  • the pressure-sensitive adhesive sheet laminate it is preferable to heat the pressure-sensitive adhesive sheet laminate so that the surface temperature of the covering portion I becomes 70 to 180 ° C. If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer can be sufficiently softened and the covering portion I can be sufficiently deformed. It is preferable because adverse effects such as generation of heat and decomposition of the adhesive layer due to heat can be suppressed. From this point of view, it is preferable that the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C., particularly 75 ° C. or higher or 150 ° C. or lower, especially 80 ° C. or higher or 120 ° C. It is even more preferable that the temperature is not higher than ° C.
  • a method for heating the pressure-sensitive adhesive sheet laminate for example, a method of heating the pressure-sensitive adhesive sheet laminate from above and below between upper and lower heating plates provided with a heating body such as an electric heater, a method of directly sandwiching with a heating plate, The method using a heating roll, the method of immersing in hot water, etc. can be mentioned. However, it is not limited to these methods.
  • the pressure-sensitive adhesive sheet laminate heated as described above is formed, and the pressure-sensitive adhesive sheet laminate is formed and cooled. That is, the pressure-sensitive adhesive sheet laminated body in a state where the pressure-sensitive adhesive layer and the covering portion I are laminated and integrated is formed as it is. Therefore, the covering portion I is formed by the mold, and the adhesive material layer is also simultaneously formed through the covering portion I.
  • the heated pressure-sensitive adhesive sheet laminate may be molded and then cooled, or may be cooled simultaneously with the molding.
  • molding and cooling can be performed simultaneously and completed simultaneously.
  • the molding method is not particularly limited as long as the uneven shape can be integrally formed with the pressure-sensitive adhesive sheet laminate.
  • press molding vacuum forming, pressure forming, shaping by a roll, compression molding, shaping by lamination and the like can be mentioned.
  • press molding is particularly preferable from the viewpoints of moldability and workability.
  • the material of the mold is not particularly limited.
  • resin-based materials such as silicone resin and fluororesin
  • metal-based materials such as stainless steel and aluminum
  • metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
  • the mold cooling means a usual cooling means can be adopted.
  • cooling means by water cooling or compressed air can be mentioned.
  • the mold is a bonding surface of an adherend that adheres a predetermined uneven shape, for example, an adhesive material layer, to the inner wall surface of at least one of the pair of molds to be opened and closed.
  • a predetermined uneven shape for example, an adhesive material layer
  • the pressure-sensitive adhesive sheet laminate is press-molded, vacuum-molded, compressed-air molded or rolled using the mold.
  • the uneven shape can be transferred to the pressure-sensitive adhesive sheet laminate and shaped.
  • start molding means, for example, in the case of molding using a mold, closes the mold, that is, starts pressing the pressure-sensitive adhesive sheet laminate with the mold.
  • the storage elastic modulus E ′ (MS) of the covering portion I is in the range of 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, the covering portion I can be deformed to an extent suitable for molding, In addition, a desired uneven shape can be accurately formed on the surface of the adhesive layer. From this point of view, it is preferable to start forming the pressure-sensitive adhesive sheet laminate in a state where the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa. It is even more preferable to start molding in a state of 0.0 ⁇ 10 6 Pa or more or 1.0 ⁇ 10 9 Pa or less, in particular, a state of 1.0 ⁇ 10 7 Pa or more or 5.0 ⁇ 10 8 Pa or less. preferable.
  • the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 6 to 5.0 ⁇ 10 8 Pa. It is more preferable to start forming the pressure-sensitive adhesive sheet laminate in a state, among which 5.0 ⁇ 10 6 to 1.0 ⁇ 10 9 Pa or 5.0 ⁇ 10 6 to 5.0 ⁇ 10 8 Pa More preferably, the molding is started in a state of 1.0 ⁇ 10 7 to 1.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 7 to 5.0 ⁇ 10 8 Pa. Is most preferred.
  • the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa
  • the storage elastic modulus G ′ (SS) of the adhesive layer is 1.0. It is even more preferable to start forming the pressure-sensitive adhesive sheet laminate in a state of less than ⁇ 10 4 Pa.
  • the storage elastic modulus G ′ (SS) of the adhesive layer starts in a state of less than 1.0 ⁇ 10 4 Pa, the pressure-sensitive adhesive layer can be formed in a state having more sufficient formability.
  • the storage elastic modulus E ′ (MS) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SS) of the adhesive layer is less than 1.0 ⁇ 10 4 Pa. More preferably, the G ′ (SS) is 5.0 ⁇ 10 1 Pa or more or 5.0 ⁇ 10 3 Pa or less, more preferably 1.0 ⁇ 10 2 Pa or more or 1.0 ⁇ 10. It is even more preferable to start molding in a state of 3 Pa or less. From the above, the storage elastic modulus E ′ (MS) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SS) of the adhesive layer is 5.0 ⁇ 10 1 Pa or more.
  • molding is more preferable to start molding in a state of less than 0 ⁇ 10 4 Pa or 5.0 ⁇ 10 1 Pa to 5.0 ⁇ 10 3 Pa, and above all, 1.0 ⁇ 10 2 Pa to 1. It is more preferable to start molding in a state of less than 0 ⁇ 10 4 Pa or 1.0 ⁇ 10 2 Pa to 5.0 ⁇ 10 3 Pa, and more preferably 1.0 ⁇ 10 2 Pa to 1.0 ⁇ . Most preferably, molding is started in a state of 10 3 Pa or less.
  • the surface temperature of the covering portion I is 70 to 180 ° C. If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer is sufficiently softened and the covering portion I can be sufficiently deformed. This is preferable because generation of wrinkles and decomposition of the adhesive layer due to heat can be suppressed. Therefore, it is preferable to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and above all, 75 ° C. or more and 150 ° C. or less, and more preferably 80 ° C. or more and 120 ° C. or less. Even more preferred.
  • finishing the molding means ending the molding pressure on the pressure-sensitive adhesive sheet laminate, and means that the mold is opened if molding is performed.
  • the storage elastic modulus E ′ (MF) of the covering portion I is in the range of 5.0 ⁇ 10 7 Pa to 1.0 ⁇ 10 10 Pa, it is preferable because the shape stability after molding is excellent. From this point of view, it is preferable that the molding is finished in a state where the storage elastic modulus E ′ (MF) of the covering portion I is 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa. It is even more preferable to finish the molding in a state of 8 Pa or more or 8.0 ⁇ 10 9 Pa or less, in particular, a state of 1.0 ⁇ 10 9 Pa or more or 5.0 ⁇ 10 9 Pa or less.
  • the storage elastic modulus E ′ (MF) of the covering portion I is 5.0 ⁇ 10 7 to 8.0 ⁇ 10 9 Pa, or 5.0 ⁇ 10 7 to 5.0 ⁇ . More preferably, the molding is finished in a state of 10 9 Pa, and in particular, 1.0 ⁇ 10 8 to 8.0 ⁇ 10 9 Pa, or 1.0 ⁇ 10 8 to 5.0 ⁇ 10 9 Pa. The molding is preferably finished in a certain state, and the molding is finished in a state of 1.0 ⁇ 10 9 to 8.0 ⁇ 10 9 Pa or 1.0 ⁇ 10 9 to 5.0 ⁇ 10 9 Pa. Most preferred.
  • the molded pressure-sensitive adhesive layer can maintain its shape.
  • the storage elastic modulus E ′ (MF) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SF) of the adhesive layer is 1.0 ⁇ 10 4 Pa or more. It is preferable to finish the molding, and among them, the storage elastic modulus G ′ (SF) of the pressure-sensitive adhesive layer is 5.0 ⁇ 10 4 Pa or more or 5.0 ⁇ 10 7 Pa or less. More preferably, the molding is finished in a state of x10 4 Pa or more or 1.0 x 10 7 Pa or less.
  • the molding in a state where the surface temperature of the covering portion I is less than 50 ° C.
  • the surface temperature of the covering portion I is less than 50 ° C.
  • the storage elastic modulus E ′ (MS) of the covering portion I is in the range of 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa, the molded body after molding is finished. This is preferable because it can be prevented from being deformed when the material is taken out and warping due to thermal contraction of the covering portion I can be suppressed.
  • the molding is finished in a state where the surface temperature of the covering portion I is less than 50 ° C., particularly in a state where the surface temperature is 0 ° C. or more or 45 ° C. or less, and in particular, in a state where it is 10 ° C. or more or 40 ° C. Is preferred.
  • the storage elastic modulus E ′ (MS) of the covering portion I at the start of molding and the storage elastic modulus E ′ (MF) of the covering portion I at the end of forming satisfy the following relational expression (1). preferable.
  • the molding is started at the start of molding. It is preferable because it is as soft as possible and has hardness to the extent that the molded shape can be maintained after completion of molding.
  • E ′ (MF) / E ′ (MS) ⁇ 1.3.
  • the upper limit of E ′ (MF) / E ′ (MS) is not limited to this.
  • the storage elastic modulus E ′ (MF) of the covering portion I at the end of the molding and the storage elastic modulus G ′ (SF) of the adhesive layer at the end of the molding satisfy the following relational expression (2). Is preferred. (2) .. E ′ (MF) / G ′ (SF) ⁇ 1.0 ⁇ 10 7
  • the storage elastic modulus E ′ (MF) of the covering portion I at the end of the molding and the storage elastic modulus G ′ (SF) of the adhesive layer at the end of the molding satisfy the relational expression (2).
  • the formed pressure-sensitive adhesive layer can maintain its shape.
  • E ′ (MF) / G ′ (SF) ⁇ 1.0 ⁇ 10 7
  • /G′(SF) ⁇ 5.0 ⁇ 10 6 , of which 1.0 ⁇ 10 1 ⁇ E ′ (MF) / G ′ (SF) or E ′ (MF) / G ′ (SF) ⁇ 1.0 More preferably, it is ⁇ 10 6 .
  • the mold may be press-molded and cooled after the mold is opened, or the mold may be cooled and cooled at the same time as the press molding. If the mold is cooled in this way and cooled at the same time as the press molding, the cooling can be completed at the same time as the molding. Therefore, since the shaped pressure-sensitive adhesive sheet laminate can be conveyed to the next step immediately after the molding and cooling are completed, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
  • the surface temperature of the mold is preferably 0 to 50 ° C. If the surface temperature of the mold is 50 ° C. or less, the shape of the pressure-sensitive adhesive sheet laminate can be fixed in a short time, the resulting molded body is accurate, and warps due to thermal shrinkage in the cooling process after molding. It is preferable from the viewpoint of suppression. Accordingly, the surface temperature of the mold is preferably 0 to 50 ° C., more preferably 10 ° C. or more and 40 ° C. or less, and more preferably 15 ° C. or more and 30 ° C. or less.
  • conditions concerning press molding such as a press pressure and a press time are not particularly limited, and may be appropriately adjusted depending on a dimension and shape to be molded, a material to be used, and the like.
  • the shaped pressure-sensitive adhesive sheet laminate obtained in the molding / cooling step may be wound as it is, may be heat-treated, or may be cut into a predetermined size and shape.
  • a cutting method using a Thomson blade or a rotary blade can be used.
  • the pressure-sensitive adhesive sheet laminate is transported to a heating unit such as a heater, and the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit.
  • a heating unit such as a heater
  • the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit.
  • it is transferred to a molding die, and in the molding unit, for example, a cooled die is pressed and cooled at the same time as molding, and further transported to the next unit as necessary.
  • a shaped pressure-sensitive adhesive sheet laminate can be produced.
  • an adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer are provided, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion (
  • the pressure-sensitive adhesive layer and the pressure-sensitive adhesive layer are peelably laminated on one surface.
  • a manufacturing method for manufacturing a shaped pressure-sensitive adhesive sheet laminate by heating a pressure-sensitive adhesive sheet laminate comprising a covering portion I and forming the heated pressure-sensitive adhesive sheet laminate with a mold, the pressure-sensitive adhesive sheet laminate Heating to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and taking out the shaped adhesive sheet laminate from the mold after the surface temperature of the covering portion I becomes less than 60 ° C.
  • Method for producing a shaped pressure-sensitive adhesive sheet laminate (“Production Method 2”) It referred to) propose.
  • the pressure-sensitive adhesive sheet laminate is heated and molding is started in a state where the surface temperature of the covering portion I is 70 to 180 ° C. After the surface temperature of the covering portion I becomes less than 60 ° C.
  • a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface can be formed with high accuracy on the surface of the pressure-sensitive adhesive layer.
  • the present production method 2 is a production method including a step of heating (adhesion sheet laminate) described later (heating step), and forming and cooling the heated adhesive sheet laminate (molding / cooling step).
  • the present manufacturing method 2 may include other steps as long as it includes the heating step and the molding / cooling step.
  • you may provide processes, such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed.
  • processes such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed.
  • it is not limited to these processes.
  • the pressure-sensitive adhesive sheet laminate as a starting member in the present production method 2 only needs to include the pressure-sensitive adhesive layer and the covering portion I that is detachably laminated on one surface of the pressure-sensitive adhesive layer, and includes other members. It may be. For example, as shown in FIG. 1, an adhesive material layer, a covering portion I that is detachably laminated on one side of the adhesive material layer, and a peelable laminate on the other side of the adhesive material layer.
  • a pressure-sensitive adhesive sheet laminate provided with the covering portion II can be exemplified. However, whether or not the covering portion II is provided is arbitrary, and the covering portion II may not be stacked. In addition, it is as above-mentioned about the detail of an adhesive sheet laminated body.
  • the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C. If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer can be sufficiently softened and the covering portion I can be sufficiently deformed. It is preferable because adverse effects such as generation of heat and decomposition of the adhesive layer due to heat can be suppressed. From this point of view, it is preferable that the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C., particularly 75 ° C. or higher or 150 ° C. or lower, especially 80 ° C. or higher or 120 ° C. It is even more preferable that the temperature is not higher than ° C.
  • the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I is 70 to 150 ° C. or 70 to 120 ° C. Among them, 75 to 150 ° C. or 75 to 120 ° C. is more preferable, and 80 to 150 ° C. or 80 to 120 ° C. is most preferable.
  • a method for heating the pressure-sensitive adhesive sheet laminate for example, a method of heating the pressure-sensitive adhesive sheet laminate from above and below between upper and lower heating plates provided with a heating body such as an electric heater, a method of directly sandwiching with a heating plate, The method using a heating roll, the method of immersing in hot water, etc. can be mentioned. However, it is not limited to these methods.
  • the adhesive material layer can also be shape
  • the heated pressure-sensitive adhesive sheet laminate may be molded and then cooled, or may be cooled simultaneously with the molding.
  • molding and cooling can be performed simultaneously and completed simultaneously.
  • the molding method is not particularly limited as long as the uneven shape can be integrally formed with the pressure-sensitive adhesive sheet laminate.
  • press molding vacuum forming, pressure forming, shaping by roll (roll forming molding), compression molding, shaping by lamination and the like can be mentioned.
  • press molding is particularly preferable from the viewpoints of moldability and workability.
  • the material of the mold is not particularly limited.
  • resin-based materials such as silicone resin and fluororesin
  • metal-based materials such as stainless steel and aluminum
  • metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
  • the mold cooling means a usual cooling means can be adopted.
  • cooling means by water cooling or compressed air can be mentioned.
  • the mold is a bonding surface of an adherend that adheres a predetermined uneven shape, for example, an adhesive material layer, to the inner wall surface of at least one of the pair of molds to be opened and closed.
  • a predetermined uneven shape for example, an adhesive material layer
  • the pressure-sensitive adhesive sheet laminate is press-molded, vacuum-molded, compressed-air molded or rolled using the mold.
  • the uneven shape can be transferred to the pressure-sensitive adhesive sheet laminate and shaped.
  • the molding is preferably started in a state where the surface temperature of the covering portion I is 70 to 180 ° C. If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer is sufficiently softened and the covering portion I can be sufficiently deformed. This is preferable because generation of wrinkles and decomposition of the adhesive layer due to heat can be suppressed. Therefore, it is preferable to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and above all, 75 ° C. or more and 150 ° C. or less, and more preferably 80 ° C. or more and 120 ° C. or less. Even more preferred.
  • this step it is preferable to finish the molding in a state where the surface temperature of the covering portion I is less than 60 ° C.
  • finishing the molding means ending the molding pressure on the pressure-sensitive adhesive sheet laminate, and means that the mold is opened if molding is performed.
  • the covering portion I is less than 60 ° C., it is preferable that the covering portion I can be prevented from being deformed when the molded body is taken out after completion of molding, or warping due to thermal shrinkage of the covering portion I can be suppressed. . From this point of view, the molding is finished in a state where the surface temperature of the covering portion I is less than 60 ° C., particularly in a state where the surface temperature is 0 ° C. or more or 50 ° C. or less, and in particular, in a state where the surface temperature is 10 ° C. or more or 40 ° C. or less. Is preferred.
  • the mold may be press-molded and cooled after the mold is opened, or the mold may be cooled and cooled at the same time as the press molding. If the mold is cooled in this way and cooled at the same time as the press molding, the cooling can be completed at the same time as the molding. Therefore, since the shaped pressure-sensitive adhesive sheet laminate can be conveyed to the next step immediately after the molding and cooling are completed, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
  • the surface temperature of the mold is preferably less than 60 ° C. If the surface temperature of the mold is less than 60 ° C., the shape of the pressure-sensitive adhesive sheet laminate can be fixed in a short time, the resulting molded body is accurate, and warps due to thermal shrinkage in the cooling process after molding. It is preferable from the viewpoint of suppression. Therefore, the surface temperature of the mold is preferably less than 60 ° C, more preferably 0 ° C or more or 50 ° C or less, and more preferably 10 ° C or more or 40 ° C or less.
  • the difference in surface temperature of the covering portion I at the start of molding and at the end of molding is preferably 10 to 100 ° C., more preferably 20 ° C. or more and 90 ° C. or less.
  • the surface temperature difference of the covering portion I is 10 to 100 ° C., for example, when the uneven shape is transferred to the pressure-sensitive adhesive sheet laminate and shaped, the shaped pressure-sensitive adhesive sheet is immediately after finishing the molding and cooling. Since the laminate can be conveyed to the next step, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
  • conditions concerning press molding such as a press pressure and a press time are not particularly limited, and may be appropriately adjusted depending on a dimension and shape to be molded, a material to be used, and the like.
  • the shaped pressure-sensitive adhesive sheet laminate obtained in the molding / cooling step may be wound as it is, may be heat-treated, or may be cut into a predetermined size and shape.
  • a cutting method using a Thomson blade or a rotary blade can be used.
  • the pressure-sensitive adhesive sheet laminate is transported to a heating unit such as a heater, and the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit.
  • a heating unit such as a heater
  • the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit.
  • it is transferred to a molding die, and in the molding unit, for example, a cooled die is pressed and cooled at the same time as molding, and further transported to the next unit as necessary.
  • a shaped pressure-sensitive adhesive sheet laminate can be produced.
  • repair is often performed as a manual work by a repair worker, and skill of the repair worker is required. That is, if it is not an expert, when an image display part is loaded via an adhesive sheet, air will enter inside or an adhesive material will protrude.
  • this shaped adhesive sheet laminate 1 is used, a highly accurate step shape or the like can be given in advance. For example, a step shape corresponding to the model of the image display device is given in advance to the adhesive material layer. By doing so, the repair work is greatly simplified and can be carried out without requiring the skill of a repair worker.
  • the pressure-sensitive adhesive sheet laminate of the present invention can be usefully used for repairing image display devices.
  • the boundary between the sheet and the film is not clear, and it is not necessary to distinguish the two in terms of the wording in the present invention. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included. “Film” is also included.
  • Example / Comparative Group 1 The cover portion 1-I of the pressure-sensitive adhesive sheet laminate in Examples 1-1 to 1-3 and Comparative Example 1-1 (hereinafter collectively referred to as “Example / Comparative Group 1”) includes the following: The coating parts 1-A to 1-D were used. The value of each storage modulus is shown in Table 1.
  • Covering portion 1-A a film obtained by laminating a release layer (thickness: 2 ⁇ m) made of a silicone compound on one side of a biaxially stretched isophthalic acid copolymerized PET film (thickness: 75 ⁇ m).
  • Covering part 1-B a film obtained by laminating a release layer (thickness: 38 ⁇ m) made of modified polyolefin on one side of an unstretched polyolefin film (thickness: 50 ⁇ m) made of 4-methylpentene-1.
  • Covering portion 1-C a film made of a polyolefin film (thickness: 70 ⁇ m) made of unstretched polypropylene.
  • Covering part 1-D a film obtained by laminating a release layer (thickness: 2 ⁇ m) made of a silicone compound on one side of a biaxially stretched homo-PET film (thickness: 75 ⁇ m).
  • Example 1-1 (Production of double-sided PSA sheet)
  • the (meth) acrylic copolymer (1-a) 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer having a number average molecular weight of 2400 (Tg: 105 ° C.) and butyl acrylate (Tg: ⁇ 55 ° C.)
  • 81 1 kg of acrylic copolymer (1-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.)
  • a cross-linking agent (1-b) 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (1-b-1), and 2, 4, as photopolymerization initiator (1-c) 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name:
  • the obtained resin composition 1-1 was sandwiched between two sheets of PET film (Mitsubishi Resin Co., Ltd., product name: Diafoil MRV-V06, thickness: 100 ⁇ m) and covering portion 1-A, Using a laminator, the resin composition 1-1 was shaped into a sheet so that the thickness of the resin composition 1-1 was 100 ⁇ m, and the pressure-sensitive adhesive sheet laminate 1-1 was produced. The release layer side of the covering portion 1-A was disposed so as to be in contact with the resin composition 1-1.
  • the obtained pressure-sensitive adhesive sheet laminate 1-1 was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., model FKS-0632-20). 1 was produced. That is, with the IR heater preheated to 400 ° C., the surface of the pressure-sensitive adhesive sheet laminate 1-1 was heated to 100 ° C. and then cooled to 25 ° C., and the mold clamping pressure was 8 MPa. Was subjected to press molding for 5 seconds to produce a shaped pressure-sensitive adhesive sheet laminate 1-1 having irregularities formed on the surface.
  • Example 1-2 A pressure-sensitive adhesive sheet laminated body 1-2 and a shaped pressure-sensitive adhesive sheet laminated body 1-2 were produced in the same manner as in Example 1-1 except that the coating part 1-B was used instead of the coating part 1-A. .
  • Example 1-3 A pressure-sensitive adhesive sheet laminate 1-3 and a shaped pressure-sensitive adhesive sheet laminate 1-3 were produced in the same manner as in Example 1-1 except that the coating portion 1-C was used instead of the coating portion 1-A. .
  • Example 1-1 A pressure-sensitive adhesive sheet laminate 1-4 and a shaped pressure-sensitive adhesive sheet laminate 1-4 were produced in the same manner as in Example 1-1 except that the coating portion 1-D was used instead of the coating portion 1-A. .
  • the gel fraction of the pressure-sensitive adhesive layer was obtained by collecting about 0.05 g of each pressure-sensitive adhesive layer obtained in Group 1 of Examples and Comparative Examples, and measuring the mass (X) in advance with a SUS mesh (# 200). After wrapping the bag and closing the bag mouth, measuring the mass (Y) of the wrap, immersing it in 100 ml of ethyl acetate and storing it in the dark at 23 ° C. for 24 hours, then removing the wrap at 70 ° C. It was heated for 4.5 hours to evaporate the adhering ethyl acetate, the mass (Z) of the dried packet was measured, and the calculated mass was substituted into the following formula.
  • Gel fraction [%] [(ZX) / (YX)] ⁇ 100
  • the upper and lower molds of the molding mold are convex molds having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm,
  • the aluminum plate was 170 mm wide and 40 mm thick.
  • a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold. , 75 ⁇ m and 100 ⁇ m, four rectangular concave portions (89 mm long and 58 mm wide) in plan view are provided.
  • the covering portions 1-A to 1-D of the shaped pressure-sensitive adhesive sheet laminate formed with unevenness obtained by the method described in the group 1 of Examples / Comparative Examples are peeled off, and the concave portions corresponding to the printing steps and the display
  • the pressure-sensitive adhesive sheet laminate produced in Group 1 of Examples and Comparative Examples was cut into a length of 150 mm and a width of 50 mm, and the interface between the coating portions 1-A to 1-D and the pressure-sensitive adhesive layer was 180 at a test speed of 300 mm / min. ° A peel test was performed.
  • the peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D).
  • a peel force of 1 to D was used.
  • the storage elastic modulus E ′ (MB) at 30 ° C. is 5.0 ⁇ 10.
  • a coating portion having a storage elastic modulus E ′ (MA) at 100 ° C. of 7 ⁇ 1.0 ⁇ 10 10 Pa and a storage modulus E ′ (MA) of 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa is laminated on the adhesive layer.
  • the concavo-convex shape can be shaped with high accuracy in the adhesive material layer.
  • Comparative Example 1-1 when a biaxially stretched homo-PET film generally used widely as a release film is used, the storage elastic modulus of the covering portion is 2.0 ⁇ 10 9 Pa even in a high temperature range. For this reason, sufficient unevenness could not be formed on the adhesive layer even when thermoforming.
  • the storage elastic modulus E ′ (MB) at 30 ° C. is 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa and the storage elastic modulus E ′ (MA) at 100 ° C. is 1. It was found that a shaped pressure-sensitive adhesive sheet with good irregularities can be obtained by laminating a covering portion of 0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa on the pressure-sensitive adhesive layer and performing molding.
  • the loss tangent tan ⁇ (A) at 100 ° C. of the adhesive layer satisfies the condition of 1.0 or more
  • the loss tangent tan ⁇ (B) at 30 ° C. of the adhesive layer satisfies the condition of less than 1.0. It was also found that more accurate shaping can be achieved by using such a pressure-sensitive adhesive sheet laminate.
  • the irregularities corresponding to the printing steps of the image display device as the adherend are accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
  • the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less. It was confirmed that the peel force of -D was not different from the peel force of the covering portions 1-A to 1-D in the pressure-sensitive adhesive sheet laminate.
  • Example 2-1> (Production of double-sided PSA sheet)
  • the (meth) acrylic copolymer (2-a) 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer (Tg: 105 ° C.) having a number average molecular weight of 2400 and 81 of butyl acrylate (Tg: ⁇ 55 ° C.) 1 kg of acrylic copolymer (2-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.)
  • a crosslinking agent (2-b) 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (2-b-1), and 2, 4, as photopolymerization initiator (2-c) 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name:
  • the obtained resin composition 2-1 was sandwiched between two sheets of a PET film (manufactured by Mitsubishi Plastics, product name: Diafoil MRV-V06, thickness: 100 ⁇ m) and a covering part 2-I. Using a laminator, the resin composition 2-1 was shaped into a sheet so that the thickness was 100 ⁇ m, and an adhesive sheet laminate 2-1 was produced. The release layer side of the covering portion 2-I was disposed so as to be in contact with the resin composition 2-1.
  • the obtained pressure-sensitive adhesive sheet laminate 2-1 was subjected to thermoforming by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., FKS-0632-20 type) and a molding die, and shaped adhesive.
  • a sheet laminate 2-1 was produced.
  • the mold for molding is a convex mold having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm and a width.
  • the aluminum plate was 170 mm and 40 mm thick. As shown in FIG.
  • a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold, and the depth is 25 ⁇ m and 50 ⁇ m in the molding surface of the convex portion.
  • 75 ⁇ m and 100 ⁇ m four rectangular recesses (89 mm long and 58 mm wide) in plan view were provided.
  • the storage elastic modulus E ′ (MS) of the covering portion 2-I is 2.1 ⁇ 10 8 Pa
  • the storage elastic modulus G ′ (SS) of the adhesive layer is 2.9 ⁇ 10 2 Pa.
  • press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-1 was produced.
  • E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa
  • the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa
  • the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-1 was produced.
  • the ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 13.3. Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 ⁇ 10 4 . Further, the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding was 4.8, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding was 0.6.
  • Example 2-2 The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-2 reached 110 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 1.3 ⁇ 10 8 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 9.6 ⁇ 10 1 Pa.
  • press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-2 was produced.
  • E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa
  • the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa
  • the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-2 was produced.
  • Example 2-3 The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-3 became 90 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 3.5 ⁇ 10 8 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 8.9 ⁇ 10 2 Pa.
  • press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-3 was produced.
  • E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa
  • the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa
  • the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-3 was produced.
  • the ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 8.0. Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 ⁇ 10 4 . Further, the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding was 2.7, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding was 0.6.
  • Example 2-4 The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-4 reached 70 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 1.9 ⁇ 10 9 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 6.4 ⁇ 10 3 Pa.
  • press molding was performed for 5 seconds under a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 25 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-4 was produced.
  • E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa
  • the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa
  • the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-4 was produced.
  • the ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 1.4. Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 ⁇ 10 4 . Further, the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding was 1.4, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding was 0.6.
  • Example 2-1 The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-5 reached 60 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 2.4 ⁇ 10 9 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 1.3 ⁇ 10 4 Pa.
  • press molding was performed for 5 seconds under a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 25 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-5 was produced.
  • E ′ (MF) of the covering portion 2-I was 2 .8 ⁇ a 10 9 Pa
  • the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 ⁇ 10 4 Pa
  • the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-5 was produced.
  • the ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 1.2. Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 ⁇ 10 4 . Further, the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding was 1.1, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding was 0.6.
  • the ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 8.0. Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 9.7 ⁇ 10 3 . Further, the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding was 0.6, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding was 0.6.
  • the storage elastic modulus E ′ (MS) and E ′ (MF) of the covering portion 2-I was cut into a length of 50 mm and a width of 4 mm, and a dynamic viscoelastic device (ITA Measurement Control Co., Ltd. DVA-200) was used. The distance between chucks was measured with a strain of 25 mm and 1%. The measurement temperature range was ⁇ 50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
  • the value of the storage elastic modulus at each molding start temperature in Examples and Comparative Examples was E ′ (MS), and the value of the storage elastic modulus at each molding end temperature was E ′ (MF).
  • Example 2-1 since the temperature at the start of molding is 100 ° C., the storage elastic modulus E ′ (MS) of Example 2-1 is the storage elastic modulus E ′ (MA) at 100 ° C. . Moreover, since the temperature at the time of completion of molding was 30 ° C. for any of the group 2 of the example / comparative example, the E ′ (MF) was stored at 30 ° C. for the group 2 of any example / comparative example. It is the same as the elastic modulus E ′ (MB).
  • the storage elastic modulus G ′ (SA) and G ′ (SB) of the adhesive material layer were stacked and laminated to a thickness of 1 mm. It was measured using (Thermo Fisher Scientific MARSII). The measurement temperature range was ⁇ 50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
  • the storage elastic modulus value at each molding start temperature of Group 2 of Examples and Comparative Examples is G ′ (SS)
  • the loss elastic modulus value is G ′′ (SS)
  • each molding is completed.
  • the storage elastic modulus value at hourly temperature is G ′ (SF)
  • the loss elastic modulus value is G ′′ (SF)
  • the G ′′ / G ′ value under each temperature condition is The loss tangent tan ⁇ (SS, SF) was used.
  • the pressure-sensitive adhesive sheet laminate produced in Example 2 and Comparative Example 2 was cut into a length of 150 mm and a width of 50 mm, and the 180 ° peel test was performed at a test speed of 300 mm / min on the interface between the covering part 2-I and the pressure-sensitive adhesive layer. went.
  • the peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D). It was set as the peeling force.
  • the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding is larger than 2.0 ⁇ 10 9 Pa, the adhesive material even if thermoforming is performed. Sufficient irregularities could not be formed on the layer.
  • the storage elastic modulus E ′ (MS) of the covering part 2-I at the start of molding is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa, and the covering part 2 at the end of molding -I shaped storage pressure-sensitive adhesive sheet that is formed with good irregularities by adjusting the storage elastic modulus E '(MF) of I to 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa. It turns out that can be obtained.
  • the loss tangent tan ⁇ (SS) of the adhesive layer at the start of molding satisfies the condition of 1.0 or more, and the loss tangent tan ⁇ (SF) of the adhesive layer at the end of molding is less than 1.0. It was also found that more accurate shaping can be achieved by performing molding while adjusting so as to satisfy the above.
  • the pressure-sensitive adhesive sheet laminate as described above the unevenness corresponding to the printing steps of the image display device as the adherend is accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
  • the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less, so it was confirmed that the peeling force hardly changed before and after heating. It was done.
  • the pressure-sensitive adhesive sheet laminate was heated to start molding in a state where the storage elastic modulus E ′ (MS) of the covering portion 2-I was 1.0 ⁇ 10 6 to 2.0 ⁇ 10 9 Pa.
  • the molding is finished in a state where the storage elastic modulus E ′ (MF) of the part 2-I is 5.0 ⁇ 10 7 to 1.0 ⁇ 10 10 Pa, the unevenness coincident with the uneven portion on the adherend surface. It was found that the shape can be formed with high accuracy on the surface of the adhesive layer.
  • Example / Comparative Group 3 A film obtained by laminating a release layer (thickness: 2 ⁇ m) made of a silicone compound on one side of a biaxially stretched isophthalic acid copolymerized PET film (thickness: 75 ⁇ m) was used. Each storage modulus value is shown in Table 3.
  • Example 3-1 (Production of double-sided PSA sheet)
  • the (meth) acrylic copolymer (3-a) 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer (Tg: 105 ° C.) having a number average molecular weight of 2400 and 81 of butyl acrylate (Tg: ⁇ 55 ° C.) 1 kg of acrylic copolymer (3-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.) And 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (3-b-1) as the crosslinking agent (3-b), and 2, 4, as the photopolymerization initiator (3-c).
  • GMR glycerin dimethacrylate
  • 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name: Ezacure TZT) (3-c-1) 15 g of resin is uniformly mixed and used for the adhesive layer -1 were produced.
  • the resulting resin composition had a glass transition temperature of ⁇ 5 ° C.
  • the obtained resin composition 3-1 was sandwiched between two pieces of a PET film (Mitsubishi Resin, product name: Diafoil MRV-V06, thickness: 100 ⁇ m) and a covering portion 3-I, Using a laminator, the resin composition 3-1 was shaped into a sheet so that the thickness of the resin composition 3-1 was 100 ⁇ m, and an adhesive sheet laminate 3-1 was produced. The release layer side of the covering portion 3-I was disposed so as to be in contact with the resin composition 3-1.
  • a PET film Mitsubishi Resin, product name: Diafoil MRV-V06, thickness: 100 ⁇ m
  • the obtained pressure-sensitive adhesive sheet laminate 3-1 was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., model FKS-0632-20) and a molding die, and shaped adhesive.
  • a sheet laminate 3-1 was produced.
  • the mold for molding is a convex mold having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm and a width.
  • the aluminum plate was 170 mm and 40 mm thick. As shown in FIG.
  • a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold, and the depth is 25 ⁇ m and 50 ⁇ m in the molding surface of the convex portion.
  • 75 ⁇ m and 100 ⁇ m four rectangular recesses (89 mm long and 58 mm wide) in plan view were provided.
  • the surface of the covering portion 3-I of the pressure-sensitive adhesive sheet laminate 3-1 is heated to 100 ° C., and the heated pressure-sensitive adhesive sheet laminate 3-1 is heated to the mold surface temperature.
  • press-molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa, then the die was opened, and a shaped pressure-sensitive adhesive sheet laminate 3- 1 was produced.
  • Example 3-2 The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the adhesive sheet laminate 3-2 reached 70 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-2 having a surface with irregularities was produced.
  • Example 3-3 The pressure-sensitive adhesive sheet laminate 3-1 used in Example 3-1 is heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the pressure-sensitive adhesive sheet laminate 3-3 reaches 100 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was adjusted to 50 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-3 having a surface with irregularities was produced.
  • Example 3-1 The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the coating portion 3-I of the adhesive sheet laminate 3-5 reached 60 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-4 formed by forming irregularities on the surface was produced.
  • Example 3-1 The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the adhesive sheet laminate 3-5 reached 100 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was adjusted to 80 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-5 having a surface with irregularities was produced.
  • the storage elastic modulus of the covering part 3-I was cut into a length of 50 mm and a width of 4 mm, and the distance between chucks was 25 mm and a strain of 1% using a dynamic viscoelastic device (ITA Measurement Control Co., Ltd. DVA-200). Measured over time. The measurement temperature range was ⁇ 50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
  • the storage elastic modulus value of the covering portion 3-I at 30 ° C. was E ′ (MB)
  • the storage elastic modulus value of the covering portion 3-I at 100 ° C. was E ′ (MA).
  • the pressure-sensitive adhesive sheet laminate produced in Example 3 / Comparative Example 3 was cut into a length of 150 mm and a width of 50 mm, and the 180 ° peel test was performed at a test speed of 300 mm / min on the interface between the coating part 3-I and the pressure-sensitive adhesive layer. went.
  • the peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D). It was set as the peeling force.
  • Table 3 shows the evaluation results of the shaped adhesive sheet laminates 3-1 to 3-5 obtained in Examples 3-1 to 3-3 and Comparative examples 3-1 to 3-2.
  • Comparative Example 3-2 when the surface temperature of the covering portion 3-I is 70 ° C. or more when the molding is finished and the molded product is taken out from the mold, the molded product is caused by the thermal contraction of the sheet. It was found that warp and undulation occurred in the case.
  • molding is started with the surface temperature of the covering portion 3-I being 70 to 180 ° C., and the surface temperature of the covering portion 3-I is less than 60 ° C. After that, it was found preferable to perform the molding so that the molding is finished and the molded product is taken out from the mold.
  • the pressure-sensitive adhesive sheet laminate as described above the unevenness corresponding to the printing steps of the image display device as the adherend is accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
  • the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less, so it was confirmed that the peeling force hardly changed before and after heating. It was done.
  • Example Group 4 The polyester raw materials used in the following Examples 4-1 to 4-5 (hereinafter collectively referred to as “Example Group 4”) are as follows.
  • Method for producing polyester 4-A Take 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.07 part of calcium acetate monohydrate in a reactor, heat up and evaporate methanol to conduct transesterification, and take about 4 and a half hours after starting the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, 0.04 part of phosphoric acid and 0.035 part of antimony trioxide were added and polymerized in accordance with a conventional method. That is, the reaction temperature was gradually raised to finally 280 ° C., while the pressure was gradually reduced to finally 0.05 mmHg. After 4 hours, the reaction was completed, and chipped into polyester 4-A according to a conventional method. The intrinsic viscosity IV of the obtained polyester chip was 0.70 dl / g.
  • Polyester 4-B was produced in the same manner as for polyester A except that in the production method of polyester 4-A, 78 mol% of terephthalic acid and 22 mol% of isophthalic acid were used as dicarboxylic acid units.
  • the intrinsic viscosity IV of the obtained polyester chip was 0.70 dl / g.
  • polyester 4-C (Method for producing polyester 4-C) When the polyester 4-A was produced, 6000 ppm of amorphous silica having an average particle size of 3 ⁇ m was added to prepare polyester 4-C.
  • polyester 4-D (Method for producing polyester 4-D) When the polyester 4-A was produced, 6000 ppm of amorphous silica having an average particle diameter of 4 ⁇ m was added to prepare polyester 4-D.
  • Example 4-1 The raw materials in which the polyesters 4-B, 4-A, and 4-D are mixed at a ratio of 65% by weight, 30% by weight, and 5% by weight are melt-extruded by a melt extruder to obtain a single layer amorphous sheet. It was. Next, the sheet was coextruded on a cooled casting drum and solidified by cooling to obtain a non-oriented sheet. Next, the film was stretched 3.4 times at 80 ° C. in the machine direction (longitudinal direction), and further stretched 3.9 times at 80 ° C. in the direction perpendicular to the machine direction (lateral direction) through a preheating process in a tenter. After biaxial stretching, a heat treatment was performed at 185 ° C. for 3 seconds, and then a 6.4% relaxation treatment was performed in the width direction to obtain a polyester film having a thickness of 50 ⁇ m. The evaluation results are shown in Table 4 below.
  • Example 4-2 [Example 4-3] A polyester film was obtained in the same manner as in Example 4-1, except that the conditions were changed to those shown in Table 4 below. The evaluation results are shown in Table 4 below.
  • Example 4-4 The raw materials obtained by mixing the polyesters 4-A and 4-C in proportions of 86% by weight and 14% by weight are used as raw materials for the surface layer, and the polyesters 4-B and 4-A are 45% by weight and 55% by weight, respectively.
  • the raw materials mixed in proportion were used as intermediate layer raw materials.
  • Two types and three layers (surface layer / intermediate layer / surface layer) of amorphous sheets were obtained by melt extrusion using different melt extruders. Next, the sheet was coextruded on a cooled casting drum, and cooled and solidified to obtain a non-oriented sheet.
  • the film was stretched 3.4 times in the machine direction (MD) at 82 ° C., and further subjected to a preheating process in the tenter and stretched 3.9 times in the direction perpendicular to the machine direction (width direction, TD) at 110 ° C.
  • TD machine direction
  • a heat treatment was performed at 210 ° C. for 3 seconds, and then a 2.4% relaxation treatment was performed in the width direction to obtain a polyester film having a thickness of 50 ⁇ m.
  • Table 4 The evaluation results are shown in Table 4 below.
  • Example 4-5 A polyester film was obtained in the same manner as in Example 4-4 except that the conditions shown in Table 4 were changed. The evaluation results are shown in Table 4 below.
  • polyester film was treated for 10 minutes in a hot air circulation oven at 180 ° C. in a nitrogen atmosphere with the film obtained in Group 4 of the example.
  • the surface of the polyester film after the heat treatment was brought into contact with DMF (dimethylformamide) for 3 minutes to dissolve the oligomer deposited on the surface.
  • DMF dimethylformamide
  • the method described in the elution apparatus used for the single-side elution method in the elution test can be adopted in the voluntary standard for food containers and packaging made of synthetic resin such as polyolefin.
  • the concentration of the obtained DMF was adjusted by a method such as dilution if necessary, and supplied to liquid chromatography (Shimadzu LC-2010) to determine the amount of oligomer in DMF. This value was brought into contact with DMF. Dividing by the film area, the amount of oligomer on the film surface (mg / cm2) was obtained. The amount of oligomer in DMF was determined from the peak area ratio between the standard sample peak area and the measured sample peak area (absolute calibration curve method). The standard sample was prepared by accurately weighing an oligomer (cyclic trimer) collected in advance and dissolving it in accurately measured DMF. The concentration of the standard sample is preferably in the range of 0.001 to 0.01 mg / ml.
  • the obtained resin composition is sandwiched from above and below with two release films obtained from the polyester fill shown in Group 4 of the Examples (the upper and lower combinations are sandwiched between the same release films), and a laminator is used.
  • the resin composition was shaped into a sheet shape so that the thickness was 100 ⁇ m, and an adhesive sheet laminate was produced. In addition, it arrange
  • the obtained pressure-sensitive adhesive sheet laminate was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jigyo Co., Ltd., model FKS-0632-20) to produce a shaped pressure-sensitive adhesive sheet laminate.
  • the surface of the pressure-sensitive adhesive sheet laminate was heated to 100 ° C., and then cooled to 25 ° C. for 5 seconds under a clamping pressure of 8 MPa. Press-molding was performed to produce a shaped pressure-sensitive adhesive sheet laminate having irregularities formed on the surface.
  • the polyester film of the shaped pressure-sensitive adhesive sheet laminate with irregularities is peeled off, and the heights of the concave and convex parts of the shaped pressure-sensitive adhesive sheet are measured by a non-contact method using a scanning white interference microscope, respectively, and molded The height of the body was h.
  • the height h of the convex part of the molded body with respect to the depth of the mold of 100 ⁇ m is measured.
  • the transfer rate derived from the following formula is 70% or more, ⁇ , 50% or more and less than 70%, ⁇ , 50% Those less than were evaluated as x.
  • Transfer rate (%) h (molded body height) / 100 (mold depth) ⁇ 100
  • Adhesive layer appearance The appearances of the pressure-sensitive adhesive layer laminates obtained by the method described in (4) before press molding were evaluated by the evaluation methods shown below. ⁇ Evaluation method> ⁇ : Laminated without wrinkles, maintaining good appearance. X: Wrinkles are generated on the film, and the wrinkles are transferred to the adhesive layer, so that the product cannot be used.
  • the shaped adhesive sheet laminate of the present invention is suitable for forming an image display device such as a personal computer, a mobile terminal (PDA), a game machine, a television (TV), a car navigation system, a touch panel, and a pen tablet. Can be used.
  • PDA mobile terminal
  • TV television
  • TV television
  • car navigation system a touch panel
  • pen tablet a pen tablet.
  • the pressure-sensitive adhesive sheet laminate and the coated film of the present invention can be suitably used when forming such a shaped pressure-sensitive adhesive sheet laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is an adhesive sheet laminate provided with an adhesive material layer and a cover portion I peelably laminated on one surface of the adhesive material layer, as a novel adhesive sheet laminate with which it is possible to form an uneven shape matching an uneven portion of an adherend surface at high accuracy on the adhesive material layer surface, wherein the adhesive sheet laminate is characterized in that the storage modulus E'(MA) of the cover portion I at 100°C is 1.0 × 106 to 2.0 × 109 Pa, and the storage modulus E'(MB) of the cover portion I at 30°C is 5.0 × 107 to 1.0 × 1010 Pa.

Description

粘着シート積層体、賦形粘着シート積層体及びその製造方法Adhesive sheet laminate, shaped adhesive sheet laminate and method for producing the same
 本発明は、例えばパーソナルコンピュータ、モバイル端末(PDA)、ゲーム機、テレビ(TV)、カーナビゲーションシステム、タッチパネル、ペンタブレットなどのような画像表示装置を形成する際に好適に用いることができる賦形粘着シート積層体、並びに賦形粘着シート積層体を形成するのに好適な粘着シート積層体に関する。 The present invention can be suitably used for forming an image display device such as a personal computer, a mobile terminal (PDA), a game machine, a television (TV), a car navigation system, a touch panel, and a pen tablet. The present invention relates to a pressure-sensitive adhesive sheet laminate and a pressure-sensitive adhesive sheet laminate suitable for forming a shaped pressure-sensitive adhesive sheet laminate.
 タッチパネル方式の画像表示装置は、通常、表面保護パネル、タッチパネル及び画像表示パネル(総称して、「画像表示装置用構成部材」ともいう)が組み合わされて構成されている。
 近年、スマートフォンやタブレット端末などのタッチパネル方式の画像表示装置の表面保護パネルは、強化ガラスと共にアクリル樹脂板やポリカーボネート板などのプラスチック材が用いられており、該表面保護パネルの視認開口面部以外の周縁部は、黒色印刷されている。
 また、タッチパネルでは、ガラスセンサーと共にプラスチックフィルムセンサーを用いたり、タッチパネル機能が表面保護パネルと一体化されたタッチオンレンズ(TOL)なる部材が用いられたり、タッチパネル機能が画像表示パネルに一体化されたオンセルやインセルなる部材が用いられたりしている。
A touch panel image display device is usually configured by combining a surface protection panel, a touch panel, and an image display panel (collectively, also referred to as “component for image display device”).
In recent years, surface protection panels for touch panel image display devices such as smartphones and tablet terminals have been made of tempered glass and plastic materials such as acrylic resin plates and polycarbonate plates. The part is printed in black.
In the touch panel, a plastic film sensor is used together with the glass sensor, a touch-on lens (TOL) member in which the touch panel function is integrated with the surface protection panel, or the touch panel function is integrated in the image display panel. Members such as on-cell and in-cell are used.
 この種の画像表示装置においては、画像視認性をより向上させるために、各画像表示装置用構成部材間の空隙を、液状接着剤、熱可塑性接着シート材、粘着シート材などの透明な樹脂で埋める構造が一般的である。
 ところで、携帯電話やモバイル端末を中心とする画像表示装置の分野では、薄肉化、高精密化に加えて、デザインの多様化が進んでおり、表面保護パネルの周縁部には、枠状に黒色の隠蔽部を印刷するのが従来は一般的であったが、デザインの多様化に伴い、この枠状の隠蔽部を、黒色以外の色で形成することが行われ始めている。黒色以外の色で隠蔽部を形成する場合、隠蔽性が低いため、黒色に比べて隠蔽部、すなわち印刷部の高さが高くなる傾向にある。そのため、このような印刷部を備えた構成部材を貼り合わせるための粘着シートには、大きな印刷段差に追従して隅々まで充填することが求められている。
 そこで従来から、印刷段差を埋めるための方法が種々提案されている。
In this type of image display device, in order to further improve the image visibility, the gaps between the constituent members for each image display device are made of a transparent resin such as a liquid adhesive, a thermoplastic adhesive sheet material, and an adhesive sheet material. The structure to fill is common.
By the way, in the field of image display devices centering on mobile phones and mobile terminals, in addition to thinning and high precision, design diversification has progressed, and the peripheral edge of the surface protection panel has a black frame shape. In the past, it has been common to print the concealing portion, but with the diversification of design, the frame-shaped concealing portion has begun to be formed in a color other than black. When the concealing part is formed with a color other than black, the concealing property is low, and therefore the height of the concealing part, that is, the printing part tends to be higher than that of black. Therefore, it is required that the pressure-sensitive adhesive sheet for laminating components having such a printing unit be filled to every corner following a large printing step.
Therefore, various methods for filling the printing step have been proposed.
 例えば特許文献1には、粘着シートを貼合する被着面に印刷などによる段差を有していても、被着面に隙間なく密着状に貼合することができる、新たな画像表示装置用両面粘着シートとして、表面保護パネル、タッチパネル及び画像表示パネルの画像表示装置用構成部材から選択されるいずれか2つの被着体を貼合するための両面粘着シートであって、少なくとも一方の被着体は、両面粘着シートを被着する被着面に段差部を有し、両面粘着シートは、前記被着面に貼合する貼合面の形状を前記被着面の面形状に沿わせて賦形してなる、画像表示装置用両面粘着シートが開示されている。 For example, Patent Document 1 discloses a new image display device that can be bonded to a surface to be adhered in a close contact state even if the surface to be bonded to which the pressure-sensitive adhesive sheet is bonded has a step due to printing or the like. A double-sided pressure-sensitive adhesive sheet for bonding any two adherends selected from the constituent members for image display devices of a surface protection panel, a touch panel and an image display panel as a double-sided pressure-sensitive adhesive sheet, The body has a stepped portion on the adherend surface to which the double-sided pressure-sensitive adhesive sheet is adhered, and the double-sided pressure-sensitive adhesive sheet has the shape of the bonding surface to be bonded to the adherend surface along the surface shape of the adherend surface. A double-sided pressure-sensitive adhesive sheet for an image display device, which is shaped, is disclosed.
 また、特許文献2には、表面保護パネル、タッチパネル及び画像表示パネルから選択されるいずれか2つの被着体を貼合するための両面粘着シートの製造方法について、貼合前の両面粘着シートは、ゲル分率が40%未満である粘着剤組成物を用い、前記被着体の貼合面の凹凸形状と同一の面形状に賦形することを特徴とする画像表示装置用両面粘着シートの製造方法が開示されている。 Moreover, in patent document 2, about the manufacturing method of the double-sided adhesive sheet for bonding any two adherends selected from a surface protection panel, a touch panel, and an image display panel, the double-sided adhesive sheet before bonding is A double-sided pressure-sensitive adhesive sheet for an image display device, wherein the pressure-sensitive adhesive composition having a gel fraction of less than 40% is formed into the same surface shape as the uneven shape of the bonding surface of the adherend. A manufacturing method is disclosed.
WO2014/073316 A1WO2014 / 073316 A1 WO2015/174392 A1WO2015 / 174392 A1
 近年、携帯電話やモバイル端末を中心とする画像表示装置の分野では、薄肉化、高精密化がさらに要求されており、画像表示装置構成部材を貼り合わせるための粘着シートにも、印刷段差などの被着体表面の凹凸部を精度高く充填することができ、それでいて粘着材が外側にはみ出ることがないことが求められている。そのための対策として、上述の先行特許文献に開示されているように、粘着シートの表面形状を、予め被着体の表面形状に沿わせて形成しておくことが検討されている。 In recent years, in the field of image display devices centering on mobile phones and mobile terminals, there has been a further demand for thinning and high precision, and adhesive sheets for bonding image display device components also have printing steps and the like. It is required that the uneven portion on the surface of the adherend can be filled with high accuracy and that the adhesive material does not protrude outside. As a countermeasure for this, it has been studied that the surface shape of the pressure-sensitive adhesive sheet is formed in advance along the surface shape of the adherend as disclosed in the above-mentioned prior patent documents.
 そして、そのように粘着シートの表面形状を、予め被着体の表面形状に沿わせて形成するためには、粘着シートの両側に離形シートが積層してなる粘着シート積層体をプレス成型して、被着体表面の凹凸部と符合する凹凸形状を形成する方法が想定される。
 しかし、通常の離形シートが粘着シートの両側に積層してなる粘着シート積層体を使用して、前記方法を実際に実施してみた結果、被着体表面の凹凸部と符合する凹凸形状を精度高く粘着シート表面に形成することが難しいという課題が明らかになってきた。
And in order to form the surface shape of the pressure-sensitive adhesive sheet along the surface shape of the adherend in advance, a pressure-sensitive adhesive sheet laminate in which release sheets are laminated on both sides of the pressure-sensitive adhesive sheet is press-molded. Thus, a method of forming a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface is assumed.
However, as a result of actually carrying out the method using a pressure-sensitive adhesive sheet laminate formed by laminating a normal release sheet on both sides of the pressure-sensitive adhesive sheet, a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface is obtained. The problem that it is difficult to form on the surface of an adhesive sheet with high accuracy has been clarified.
 そこで本発明は、粘着材層と、当該粘着材層の片面に剥離可能に積層してなる被覆部とを備えた粘着シート積層体に関し、被着体表面の凹凸部と符合する凹凸形状を精度高く粘着材層表面に形成することができる新たな粘着シート積層体、並びに、その粘着シート積層体を用いた賦形粘着シート積層体を提案せんとするものとある。 Therefore, the present invention relates to a pressure-sensitive adhesive sheet laminate comprising a pressure-sensitive adhesive layer and a covering portion that is detachably laminated on one side of the pressure-sensitive adhesive layer, and has an uneven shape that matches the unevenness on the adherend surface. A new pressure-sensitive adhesive sheet laminate that can be formed on the surface of the pressure-sensitive adhesive layer and a shaped pressure-sensitive adhesive sheet laminate using the pressure-sensitive adhesive sheet laminate are proposed.
 本発明は、粘着材層と、当該粘着材層の片面に剥離可能に積層してなる被覆部Iとを備えた粘着シート積層体において、前記被覆部Iの100℃における貯蔵弾性率E’(MA)が1.0×10~2.0×10Paであり、且つ、前記被覆部Iの30℃における貯蔵弾性率E’(MB)が5.0×10~1.0×1010Paであることを特徴とする粘着シート積層体を提案する。 The present invention relates to a pressure-sensitive adhesive sheet laminate comprising a pressure-sensitive adhesive layer and a covering portion I that is peelably laminated on one surface of the pressure-sensitive adhesive layer, and a storage elastic modulus E ′ of the covering portion I at 100 ° C. MA) is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. is 5.0 × 10 7 to 1.0 ×. A pressure-sensitive adhesive sheet laminate having a pressure of 10 10 Pa is proposed.
 本発明はまた、前記粘着シート積層体を用いた賦形粘着シート積層体として、前記粘着材層は、表裏一側表面に凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)を備え、且つ、前記被覆部Iは、前記粘着材層の表裏一側表面に密着し、表裏一側表面に凹部又は凸部又は凹凸部(「被覆部表面凹凸部」と称する)を備え、且つ、前記表裏一側とは反対側の表裏他側表面に前記粘着材層表面凹凸部に符合する凹凸をなした凸部又は凹部又は凸凹部(「被覆部裏面凸凹部」と称する)を備えた賦形粘着シート積層体を提案する。 The present invention is also a shaped pressure-sensitive adhesive sheet laminate using the pressure-sensitive adhesive sheet laminate, wherein the pressure-sensitive adhesive layer has a concave portion, a convex portion, or a concave-convex portion (referred to as “pressure-sensitive adhesive layer surface concave-convex portion”) on one surface of the front and back sides. ), And the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and is provided with a concave portion, a convex portion, or an uneven portion (referred to as a “cover portion surface uneven portion”) on the front and back side surface. In addition, a convex portion or a concave portion or a convex concave portion (referred to as a “covered portion back surface convex concave portion”) having irregularities that coincide with the concave and convex portions on the surface of the adhesive material layer on the front and back other side surfaces opposite to the one side of the front and back sides. Proposed is a shaped adhesive sheet laminate.
 本発明が提案する粘着シート積層体によれば、例えば、前記粘着シート積層体を加熱した後、被覆部Iに型を押し付けて成型することにより、被着体表面の凹凸部と符合する凹凸形状を粘着材層表面に精度高く形成することができる。また、被覆部Iは、常態において形状保持性を維持することができるから、取り扱いが容易であるばかりか、硬過ぎないから、粘着材層に不要な意図しない凹凸をつけることを抑制することができる。 According to the pressure-sensitive adhesive sheet laminate proposed by the present invention, for example, after the pressure-sensitive adhesive sheet laminate is heated, a mold is pressed against the covering portion I to form a concave-convex shape that matches the concave-convex portion on the adherend surface. Can be formed on the surface of the adhesive layer with high accuracy. In addition, since the covering portion I can maintain shape retention in a normal state, it is easy to handle and is not too hard, so that it is possible to suppress unnecessary unintentional unevenness on the adhesive layer. it can.
 本発明が提案する賦形粘着シート積層体は、粘着材層の表裏一側表面に粘着シート表面凹凸部を備え、且つ、前記被覆部Iは、前記粘着材層の表裏一側表面に密着し、表裏一側表面に被覆部表面凹凸部を備え、且つ、前記表裏一側とは反対側の表裏他側表面に被覆部裏面凸凹部を備えたものである。このように、本発明が提案する賦形粘着シート積層体は、前記粘着材層の表裏一側表面に前記被覆部Iが隙間なく密着し、且つ、前記粘着材層の表裏一側表面に剥離可能に前記被覆部Iが積層してなる構成を備えているから、粘着材層の表面に埃などが付着して粘着力が低下したりするのを防ぐことができ、しかも、前記粘着材層の表裏一側表面に形成してなる粘着材層表面凹凸部の形状が、空気中の水分を吸湿して崩れたり、表面に埃などが付着して粘着力が低下したりするのを防止することもできる。 The shaped pressure-sensitive adhesive sheet laminate proposed by the present invention comprises a pressure-sensitive adhesive sheet surface uneven portion on the front and back side surfaces of the pressure-sensitive adhesive layer, and the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer. The front and back one side surface is provided with a covering portion surface uneven portion, and the front and back other side surface opposite to the front and back one side is provided with a covering portion back surface convex concave portion. Thus, in the shaped pressure-sensitive adhesive sheet laminate proposed by the present invention, the covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and is peeled to the front and back side surfaces of the pressure-sensitive adhesive layer. Since the covering portion I is configured to be laminated, it is possible to prevent dust and the like from adhering to the surface of the pressure-sensitive adhesive layer to reduce the adhesive force, and the pressure-sensitive adhesive layer. The shape of the uneven surface of the adhesive material layer formed on the front and back surfaces of the surface prevents moisture from absorbing moisture and collapsing, and dust adheres to the surface and reduces adhesive strength. You can also.
本発明の実施例である粘着シート積層体の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the adhesive sheet laminated body which is an Example of this invention. 本発明の実施例である粘着シート積層体の一例を用いて、賦形粘着シート積層体を製造する際のプレス工程の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the press process at the time of manufacturing a shaped adhesive sheet laminated body using an example of the adhesive sheet laminated body which is an Example of this invention. 本発明の実施例である賦形粘着シート積層体の一例を模式的に示した図であり、(A)は断面図、(B)は斜視図である。It is the figure which showed typically an example of the shaped adhesive sheet laminated body which is an Example of this invention, (A) is sectional drawing, (B) is a perspective view. 実施例・比較例で作製した粘着シート積層体に用いた材料の粘弾性曲線を示した図である。It is the figure which showed the viscoelastic curve of the material used for the adhesive sheet laminated body produced by the Example and the comparative example. 実施例・比較例で使用した金型の一方を示した斜視図である。It is the perspective view which showed one side of the metal mold | die used by the Example and the comparative example.
 以下に本発明の実施形態の一例について説明する。ただし、本発明が下記実施形態に制限されるものではない。 Hereinafter, an example of the embodiment of the present invention will be described. However, the present invention is not limited to the following embodiment.
[本粘着シート積層体]
 本発明の実施形態の一例に係る粘着シート積層体(「本粘着シート積層体」と称する)は、図1に示すように、粘着材層と、当該粘着材層の表裏一側に剥離可能に積層してなる被覆部Iと、当該粘着材層の表裏他側に剥離可能に積層してなる被覆部IIとを備えた粘着シート積層体である。ここで被覆部IIは任意であり、被覆部IIを積層しない構成としてもよい。
[This adhesive sheet laminate]
As shown in FIG. 1, the pressure-sensitive adhesive sheet laminate (referred to as “the present pressure-sensitive adhesive sheet laminate”) according to an example of the embodiment of the present invention can be peeled off on the front and back sides of the pressure-sensitive adhesive layer. It is the adhesive sheet laminated body provided with the coating | coated part I laminated | stacked and the coating | coated part II laminated | stacked on the front and back other side of the said adhesive material layer so that peeling is possible. Here, the covering portion II is arbitrary, and the covering portion II may not be stacked.
<粘着材層>
 本粘着シート積層体の粘着材層は、被覆部I及び被覆部IIを剥離すると、両面粘着シートとして機能し得るものであって、加熱すると柔軟化乃至溶融するホットメルト性を備えたものであればよい。
<Adhesive layer>
The pressure-sensitive adhesive layer of this pressure-sensitive adhesive sheet laminate can function as a double-sided pressure-sensitive adhesive sheet when the covering portion I and the covering portion II are peeled off, and has a hot melt property that softens or melts when heated. That's fine.
 粘着材層は、100℃における損失正接tanδ(SA)が1.0以上であるのが好ましい。また、30℃における損失正接tanδ(SB)が1.0未満であるのが好ましい。
 ここで、損失正接tanδは、損失弾性率G’’と貯蔵弾性率G’との比(G’’/G’)を意味する。
 本粘着シート積層体を加熱成型する際の温度は通常70~120℃であるから、100℃における損失正接tanδ(SA)が1.0以上であれば、粘着材層表面に凹凸形状を成型することが容易となる。
 また、粘着材層の30℃における損失正接tanδ(SB)が1.0未満であれば、常態において形状を保持することができるため、被着体表面の凹凸部と符合する凹凸形状を精度高く粘着材層表面に形成した状態を保持することができる。
 一般に高分子材料は粘性的性質と弾性的性質を兼ね備えており、損失正接tanδが1.0以上、更にその値が大きくなるほど粘性的性質が強くなる。一方、損失正接tanδが1.0未満、更にその値が小さくなるほど弾性的性質が強くなる。このため、粘着材層の異なる温度における損失正接tanδを制御することにより、成形性と形状保持性を兼備することが可能となる。
The pressure-sensitive adhesive layer preferably has a loss tangent tan δ (SA) at 100 ° C. of 1.0 or more. Further, the loss tangent tan δ (SB) at 30 ° C. is preferably less than 1.0.
Here, the loss tangent tan δ means the ratio (G ″ / G ′) between the loss elastic modulus G ″ and the storage elastic modulus G ′.
Since the temperature at which the pressure-sensitive adhesive sheet laminate is heat-molded is usually 70 to 120 ° C., if the loss tangent tan δ (SA) at 100 ° C. is 1.0 or more, an uneven shape is formed on the surface of the pressure-sensitive adhesive layer. It becomes easy.
Further, if the loss tangent tan δ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is less than 1.0, the shape can be maintained in a normal state, so that the uneven shape matching the uneven portion on the adherend surface can be accurately obtained. The state formed on the surface of the adhesive layer can be maintained.
In general, a polymer material has both a viscous property and an elastic property, and the loss tangent tan δ is 1.0 or more, and the viscosity value becomes stronger as the value increases. On the other hand, the elastic property becomes stronger as the loss tangent tan δ is less than 1.0 and the value is further reduced. For this reason, by controlling the loss tangent tan δ at different temperatures of the adhesive layer, it becomes possible to have both formability and shape retention.
 かかる観点から、粘着材層の100℃における損失正接tanδ(SA)は1.0以上であるのが好ましく、中でも1.5以上或いは30以下、その中でも3.0以上或いは20以下であるのが好ましい。
 他方、粘着材層の30℃における損失正接tanδ(SB)は1.0未満であるのが好ましく、中でも0.01以上或いは0.9以下、その中でも0.1以上或いは0.8以下であるのが好ましい。
From this viewpoint, the loss tangent tan δ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is preferably 1.0 or more, more preferably 1.5 or more and 30 or less, and particularly preferably 3.0 or more and 20 or less. preferable.
On the other hand, the loss tangent tan δ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is preferably less than 1.0, particularly 0.01 or more and 0.9 or less, and more preferably 0.1 or more and 0.8 or less. Is preferred.
 ここで、粘着材層の100℃における損失正接tanδ(SA)及び30℃における損失正接tanδ(SB)は、粘着材層を構成する組成物の成分やゲル分率、重量平均分子量等を調整することによって上記範囲に調整することができる。 Here, the loss tangent tan δ (SA) at 100 ° C. and the loss tangent tan δ (SB) at 30 ° C. of the adhesive layer adjust the components, gel fraction, weight average molecular weight, etc. of the composition constituting the adhesive layer. Can be adjusted to the above range.
 さらに、粘着材層の100℃における貯蔵弾性率G’(SA)が1.0×10Pa未満であるのが好ましい。また、前記粘着材層の30℃における貯蔵弾性率G’(SB)は1.0×10Pa以上であるのが好ましい。
 粘着材層の100℃における貯蔵弾性率G’(SA)が1.0×10Pa未満であれば、十分な成形性が得られるため好ましく、他方、粘着材層の30℃における貯蔵弾性率G’(SB)が1.0×10Pa以上であれば、成形後の形状安定性の観点で好ましい。
Furthermore, it is preferable that the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is less than 1.0 × 10 4 Pa. Moreover, it is preferable that the storage elastic modulus G '(SB) in 30 degreeC of the said adhesive material layer is 1.0 * 10 < 4 > Pa or more.
If the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is less than 1.0 × 10 4 Pa, it is preferable because sufficient moldability can be obtained. On the other hand, the storage elastic modulus at 30 ° C. of the pressure-sensitive adhesive layer. If G ′ (SB) is 1.0 × 10 4 Pa or more, it is preferable from the viewpoint of shape stability after molding.
 かかる観点から、粘着材層の100℃における貯蔵弾性率G’(SA)は1.0×10Pa未満であるのが好ましく、中でも5.0×10Pa以上或いは5.0×10Pa以下であるのがさらに好ましく、その中でも1.0×10Pa以上或いは1.0×10Pa以下であるのがさらに好ましい。
 以上から、粘着材層の100℃における貯蔵弾性率G’(SA)は、5.0×10Pa以上1.0×10Pa未満、或いは、5.0×10Pa以上5.0×10Pa以下であることがより好ましく、中でも、1.0×10Pa以上1.0×10Pa未満、或いは、1.0×10Pa以上5.0×10Pa以下であることがさらに好ましく、1.0×10Pa以上1.0×10Pa以下であることがもっとも好ましい。
 また、かかる観点から、粘着材層の30℃における貯蔵弾性率G’(SB)は1.0×10Pa以上であるのが好ましく、中でも2.0×10Pa以上或いは1.0×10Pa以下であるのがさらに好ましく、その中でも5.0×10Pa以上或いは1.0×10Pa以下であるのがさらに好ましい。
 また、以上から、粘着材層の30℃における貯蔵弾性率G’(SB)は、1.0×10Pa以上1.0×10Pa以下、或いは、1.0×10Pa以上1.0×10Pa以下であることがより好ましく、中でも、2.0×10Pa以上1.0×10Pa以下、或いは、2.0×10Pa以上1.0×10Pa以下であることがより好ましく、5.0×10Pa以上1.0×10Pa以下であることがもっとも好ましい。
From this point of view, the storage elastic modulus G ′ (SA) at 100 ° C. of the adhesive layer is preferably less than 1.0 × 10 4 Pa, among which 5.0 × 10 1 Pa or more or 5.0 × 10 3. It is more preferable that it is Pa or less, and among these, 1.0 × 10 2 Pa or more or 1.0 × 10 3 Pa or less is more preferable.
From the above, the storage elastic modulus G ′ (SA) at 100 ° C. of the adhesive layer is 5.0 × 10 1 Pa or more and less than 1.0 × 10 4 Pa, or 5.0 × 10 1 Pa or more and 5.0. X10 3 Pa or less is more preferable, and in particular, 1.0 × 10 2 Pa or more and less than 1.0 × 10 4 Pa, or 1.0 × 10 2 Pa or more and 5.0 × 10 3 Pa or less. More preferably, it is 1.0 × 10 2 Pa or more and 1.0 × 10 3 Pa or less.
From this viewpoint, the storage elastic modulus G ′ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is preferably 1.0 × 10 4 Pa or more, and more preferably 2.0 × 10 4 Pa or more or 1.0 ×. 10 7 Pa or less is more preferable, and among them, 5.0 × 10 4 Pa or more or 1.0 × 10 6 Pa or less is more preferable.
From the above, the storage elastic modulus G ′ (SB) at 30 ° C. of the adhesive layer is 1.0 × 10 4 Pa or more and 1.0 × 10 7 Pa or less, or 1.0 × 10 4 Pa or more and 1 0.0 × 10 6 Pa or less is more preferable, among which 2.0 × 10 4 Pa to 1.0 × 10 7 Pa, or 2.0 × 10 4 Pa to 1.0 × 10 6 Pa. Or less, and most preferably 5.0 × 10 4 Pa or more and 1.0 × 10 6 Pa or less.
 ここで、粘着材層の100℃における貯蔵弾性率G’(SA)及び粘着材層の30℃における貯蔵弾性率G’(SB)は、粘着材層を構成する組成物の成分やゲル分率、重量平均分子量等を調整することにより上記範囲に調整することができる。 Here, the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer and the storage elastic modulus G ′ (SB) at 30 ° C. of the pressure-sensitive adhesive layer are components and gel fractions of the composition constituting the pressure-sensitive adhesive layer. By adjusting the weight average molecular weight or the like, the above range can be adjusted.
 粘着材層の損失正接tanδが1.0となる温度は、50~150℃であるのが好ましく、中でも60℃以上或いは130℃以下、その中でも70℃以上或いは110℃以下であるのがさらに好ましい。
 粘着材層の損失正接tanδが1.0となる温度が50~150℃であれば、本粘着シート積層体を50~150℃に加熱しておくことで金型成形することができる。
The temperature at which the loss tangent tan δ of the pressure-sensitive adhesive layer is 1.0 is preferably 50 to 150 ° C., more preferably 60 ° C. or more and 130 ° C. or less, and particularly preferably 70 ° C. or more or 110 ° C. or less. .
If the temperature at which the loss tangent tan δ of the pressure-sensitive adhesive layer is 1.0 is 50 to 150 ° C., the pressure-sensitive adhesive sheet laminate can be molded by heating to 50 to 150 ° C.
 粘着材層のベース樹脂のガラス転移温度(Tg)は、-50~40℃であるのが好ましく、中でも-30℃以上或いは25℃以下、その中でも-10℃以上或いは20℃以下であるのがさらに好ましい。ここで、ガラス転移温度の測定は、示差走査熱量計(DSC)を使用し、3℃/分の速度で昇温した際の、ベースラインシフトの変曲点間の中点をいう。
 粘着材層のベース樹脂のガラス転移温度(Tg)が上記範囲であれば、粘着材層に粘着性を付与することができ、さらに、粘着材層の損失正接tanδが1.0となる温度を50~150℃に調整することが可能である。
The glass transition temperature (Tg) of the base resin of the adhesive layer is preferably −50 to 40 ° C., more preferably −30 ° C. or higher or 25 ° C. or lower, and particularly preferably −10 ° C. or higher or 20 ° C. or lower. Further preferred. Here, the measurement of the glass transition temperature refers to the midpoint between the inflection points of the baseline shift when the temperature is increased at a rate of 3 ° C./min using a differential scanning calorimeter (DSC).
If the glass transition temperature (Tg) of the base resin of the pressure-sensitive adhesive layer is within the above range, the pressure-sensitive adhesive layer can be given adhesiveness, and the temperature at which the loss tangent tan δ of the pressure-sensitive adhesive layer becomes 1.0 is set. It is possible to adjust to 50 to 150 ° C.
 粘着材層の材料としては、所定の粘弾性挙動に調製可能な材料であれば、従来公知の粘着シートを用いることができる。
 例えば、1)(メタ)アクリル酸エステル系重合体(共重合体を含む意で、以下「アクリル酸エステル系(共)重合体」と称する。)をベース樹脂として用い、これに架橋モノマー、必要に応じて架橋開始剤や反応触媒などを配合して、架橋反応させて形成した粘着シートや、
2)ブタジエン又はイソプレン系共重合体をベース樹脂として用い、これに架橋モノマー、必要に応じて架橋開始剤や反応触媒などを配合して、架橋反応させて形成した粘着シートや、
3)シリコーン系重合体をベース樹脂と用い、これに架橋モノマー、必要に応じて架橋開始剤や反応触媒などを配合して、架橋反応させて形成した粘着シートや、
4)ポリウレタン系重合体をベース樹脂として用いたポリウレタン系粘着シートなどを挙げることができる。
As the material of the adhesive layer, a conventionally known adhesive sheet can be used as long as it can be adjusted to a predetermined viscoelastic behavior.
For example, 1) a (meth) acrylic acid ester-based polymer (including a copolymer, hereinafter referred to as “acrylic ester-based (co) polymer”) is used as a base resin, and a crosslinking monomer is necessary for this. Depending on the pressure-sensitive adhesive sheet formed by blending a crosslinking initiator or a reaction catalyst,
2) A pressure-sensitive adhesive sheet formed by using a butadiene or isoprene-based copolymer as a base resin, blending a crosslinking monomer, a crosslinking initiator or a reaction catalyst as necessary, and causing a crosslinking reaction;
3) A pressure-sensitive adhesive sheet formed by crosslinking reaction by using a silicone polymer as a base resin, blending a crosslinking monomer, a crosslinking initiator or a reaction catalyst if necessary, and the like,
4) A polyurethane-based pressure-sensitive adhesive sheet using a polyurethane-based polymer as a base resin can be used.
 粘着材層そのものの物性は、前記した粘弾性的性質や熱的性質を除いては、本発明では本質的な問題ではない。ただし、粘着性、透明性、及び耐候性などの観点から、前記1)のアクリル酸エステル系(共)重合体をベース樹脂とするものが好ましい。
 電気的特性、低屈折率などの性能が求められる場合は、前記2)のブタジエン又はイソプレン系共重合体をベース樹脂とするものが好ましい。
 耐熱性、広い温度域におけるゴム弾性などの性能が求められる場合は、前記3)のシリコーン系共重合体をベース樹脂とするものが好ましい。
 再剥離性等の性能が求められる場合は、前記4)のポリウレタン系重合体をベース樹脂とするものが好ましい。
The physical properties of the adhesive layer itself are not an essential problem in the present invention, except for the viscoelastic properties and thermal properties described above. However, from the viewpoints of tackiness, transparency, weather resistance, and the like, those using the acrylate ester (co) polymer of 1) as a base resin are preferable.
When performance such as electrical characteristics and low refractive index is required, those based on the butadiene or isoprene-based copolymer of 2) above are preferable.
When performances such as heat resistance and rubber elasticity in a wide temperature range are required, those using the silicone copolymer of 3) as a base resin are preferable.
When performance such as removability is required, those using the polyurethane polymer of 4) as a base resin are preferable.
 前記粘着材層の一例として、ベース樹脂としての(メタ)アクリル系共重合体(a)と、架橋剤(b)と、光重合開始剤(c)とを含有する樹脂組成物から形成された粘着シートを例示することができる。
 この場合、未架橋状態すなわち3次元的に架橋した網目構造が形成される前の状態で、前記の粘弾性特性を満足することが必要である。かかる観点から、粘着材層のゲル分率は40%以下であるのが好ましい。
As an example of the pressure-sensitive adhesive layer, it was formed from a resin composition containing a (meth) acrylic copolymer (a) as a base resin, a crosslinking agent (b), and a photopolymerization initiator (c). An adhesive sheet can be illustrated.
In this case, it is necessary to satisfy the viscoelastic characteristics in an uncrosslinked state, that is, before a three-dimensionally crosslinked network structure is formed. From this viewpoint, it is preferable that the gel fraction of the adhesive layer is 40% or less.
 粘着材層のゲル分率が40%以下であれば、粘着材層を構成する分子鎖同士の結合が適切な範囲に抑えられるため、賦形粘着シート積層体に成形する際に適度な流動性を備えることができるようになる。
 かかる観点から、粘着材層のゲル分率は40%以下であるのが好ましく、中でも20%以下、その中でも10%以下であるのが特に好ましい。なお、粘着材層のゲル分率の下限は限定されず、0%でもよい。
 なお、上記の粘着材層のゲル分率は、ベース樹脂として(メタ)アクリル系共重合体(a)と、架橋剤(b)と、光重合開始剤(c)とを含有する樹脂組成物を用いる場合に限らず、粘着材層として他の樹脂組成物を用いる場合についても同様である。
If the gel fraction of the pressure-sensitive adhesive layer is 40% or less, the bonding between the molecular chains constituting the pressure-sensitive adhesive layer is suppressed to an appropriate range. Can be provided.
From this viewpoint, the gel fraction of the pressure-sensitive adhesive layer is preferably 40% or less, more preferably 20% or less, and particularly preferably 10% or less. In addition, the minimum of the gel fraction of an adhesive material layer is not limited, 0% may be sufficient.
In addition, the gel fraction of said adhesive material layer is a resin composition containing (meth) acrylic-type copolymer (a), a crosslinking agent (b), and a photoinitiator (c) as base resin. The same applies to the case where other resin composition is used as the adhesive layer.
((メタ)アクリル系共重合体(a))
 (メタ)アクリル系共重合体(a)は、これを重合するために用いられるアクリルモノマーやメタクリルモノマーの種類、組成比率、さらには重合条件等によって、ガラス転移温度(Tg)等の特性を適宜調整することが可能である。
((Meth) acrylic copolymer (a))
The (meth) acrylic copolymer (a) has properties such as a glass transition temperature (Tg) as appropriate depending on the type and composition ratio of the acrylic monomer and methacrylic monomer used for polymerizing the (meth) acrylic copolymer (a). It is possible to adjust.
 アクリル酸エステル重合体を重合するために用いられるアクリルモノマーやメタクリルモノマーとしては、例えば2-エチルヘキシルアクリレート、n-オクチルアクリート、n-ブチルアクリレート、エチルアクリレート、メチルメタクリレート等を挙げることができる。これらに親水基や有機官能基などを共重合させた酢酸ビニル、ヒドロキシエチルアクリレート、アクリル酸、グリシジルアクリレート、アクリルアミド、アクリルニトリル、メタクリルニトリル、フッ素アクリレート、シリコーンアクリレートなども用いることができる。 Examples of the acrylic monomer and methacrylic monomer used for polymerizing the acrylate polymer include 2-ethylhexyl acrylate, n-octyl acrylate, n-butyl acrylate, ethyl acrylate, methyl methacrylate, and the like. Vinyl acetate, hydroxyethyl acrylate, acrylic acid, glycidyl acrylate, acrylamide, acrylonitrile, methacrylonitrile, fluorine acrylate, silicone acrylate, etc., which are copolymerized with a hydrophilic group or an organic functional group, can also be used.
 アクリル酸エステル重合体の中でも、(メタ)アクリル酸アルキルエステル系共重合体が特に好ましい。
 (メタ)アクリル酸アルキルエステル系共重合体を形成するために用いる(メタ)アクリレート、即ち、アルキルアクリレート又はアルキルメタクリレート成分としては、アルキル基がn-オクチル、イソオクチル、2-エチルヘキシル、n-ブチル、イソブチル、メチル、エチル、イソプロピルのうちのいずれか1つであるアルキルアクリレート又はアルキルメタクリレートの1種又はこれらから選ばれた2種以上の混合物であるのが好ましい。
Among the acrylic ester polymers, (meth) acrylic acid alkyl ester copolymers are particularly preferable.
As the (meth) acrylate used for forming the (meth) acrylic acid alkyl ester copolymer, that is, the alkyl acrylate or alkyl methacrylate component, the alkyl group is n-octyl, isooctyl, 2-ethylhexyl, n-butyl, One of alkyl acrylate or alkyl methacrylate which is any one of isobutyl, methyl, ethyl and isopropyl, or a mixture of two or more selected from these is preferable.
 その他の成分として、カルボキシル基、水酸基、グリシジル基等の有機官能基を有するアクリレート又はメタクリレートを共重合させてもよい。具体的には、前記アルキル(メタ)アクリレート成分と有機官能基を有する(メタ)アクリレート成分とを適宜に選択的に組み合わせたモノマー成分を出発原料として加熱重合して(メタ)アクリル酸エステル系共重合体ポリマーを得ることができる。
 中でも好ましくは、イソ-オクチルアクリレート、n-オクチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレートの1種又はこれらから選ばれた2種以上の混合物か、或いは、イソ-オクチルアクリレート、n-オクチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等から少なくとも1種類以上と、アクリル酸とを共重合させたものを挙げることができる。
As other components, an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group may be copolymerized. Specifically, a monomer component obtained by appropriately and selectively combining the alkyl (meth) acrylate component and the (meth) acrylate component having an organic functional group as a starting material is subjected to heat polymerization to form a (meth) acrylate ester copolymer. A polymer polymer can be obtained.
Among them, preferably, one of alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate, Examples include those obtained by copolymerizing at least one or more of n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and the like with acrylic acid.
 これらのモノマーを用いた重合処理としては、溶液重合、乳化重合、塊状重合、懸濁重合などの公知の重合方法が採用可能であり、その際に重合方法に応じて熱重合開始剤や光重合開始剤などの重合開始剤を用いることによりアクリル酸エステル共重合体を得ることができる。 As the polymerization treatment using these monomers, known polymerization methods such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like can be employed. In this case, a thermal polymerization initiator or photopolymerization is used according to the polymerization method. An acrylic ester copolymer can be obtained by using a polymerization initiator such as an initiator.
(アクリル系共重合体(A1))
 粘着材層の好ましいベースポリマーの一例として、枝成分としてマクロモノマーを備えたグラフト共重合体からなる(メタ)アクリル系共重合体(A1)を挙げることができる。
(Acrylic copolymer (A1))
As an example of a preferable base polymer of the adhesive material layer, there can be mentioned a (meth) acrylic copolymer (A1) composed of a graft copolymer having a macromonomer as a branch component.
 前記アクリル系共重合体(A1)をベース樹脂として粘着材層を構成すれば、粘着材層は、室温状態でシート状を保持しつつ自着性を示すことができ、未架橋状態において加熱すると溶融乃至流動するホットメルト性を有し、さらには光硬化させることができ、光硬化後は優れた凝集力を発揮させて接着させることができる。
 よって、粘着材層のベースポリマーとしてアクリル系共重合体(A1)を使用すれば、未架橋状態であっても、室温(20℃)において粘着性を示し、且つ、50~100℃、より好ましくは60℃以上或いは90℃以下の温度に加熱すると軟化乃至流動化する性質を備えることができる。
If the pressure-sensitive adhesive layer is composed of the acrylic copolymer (A1) as a base resin, the pressure-sensitive adhesive layer can exhibit self-adhesion while maintaining a sheet shape at room temperature, and when heated in an uncrosslinked state It has a hot melt property that melts or flows, and can be photocured, and after photocuring, it exhibits excellent cohesive force and can be bonded.
Therefore, when the acrylic copolymer (A1) is used as the base polymer of the adhesive material layer, it exhibits adhesiveness at room temperature (20 ° C.) even in an uncrosslinked state, and more preferably 50 to 100 ° C. Can be softened or fluidized when heated to a temperature of 60 ° C. or higher or 90 ° C. or lower.
 前記アクリル系共重合体(A1)の幹成分を構成する共重合体のガラス転移温度は-70~0℃であるのが好ましい。
 この際、幹成分を構成する共重合体成分のガラス転移温度とは、アクリル系共重合体(A1)の幹成分を組成するモノマー成分のみを共重合して得られるポリマーのガラス転移温度を指す。具体的には、当該共重合体各成分のホモポリマーから得られるポリマーのガラス転移温度と構成比率から、Foxの計算式によって算出される値を意味する。
 なお、Foxの計算式とは、以下の式により求められる計算値であり、ポリマーハンドブック〔Polymer HandBook,J.Brandrup,Interscience,1989〕に記載されている値を用いて求めることができる。
   1/(273+Tg)=Σ(Wi/(273+Tgi))
 [式中、Wiはモノマーiの重量分率、TgiはモノマーiのホモポリマーのTg(℃)を示す。]
The glass transition temperature of the copolymer constituting the trunk component of the acrylic copolymer (A1) is preferably −70 to 0 ° C.
At this time, the glass transition temperature of the copolymer component constituting the trunk component refers to the glass transition temperature of the polymer obtained by copolymerizing only the monomer component constituting the trunk component of the acrylic copolymer (A1). . Specifically, it means a value calculated by the Fox formula from the glass transition temperature and the composition ratio of the polymer obtained from the homopolymer of each component of the copolymer.
In addition, the calculation formula of Fox is a calculation value calculated | required by the following formula | equation, Polymer handbook [Polymer HandBook, J.M. Brandrup, Interscience, 1989].
1 / (273 + Tg) = Σ (Wi / (273 + Tgi))
[Wherein Wi represents the weight fraction of monomer i, and Tgi represents Tg (° C.) of the homopolymer of monomer i. ]
 前記アクリル系共重合体(A1)の幹成分を構成する共重合体成分のガラス転移温度は、室温状態での粘着材層の柔軟性や、被着体への粘着材層の濡れ性、すなわち接着性に影響するため、粘着材層が室温状態で適度な接着性(タック性)を得るためには、当該ガラス転移温度は、-70℃~0℃であるのが好ましく、中でも-65℃以上或いは-5℃以下、その中でも-60℃以上或いは-10℃以下であるのが特に好ましい。
 但し、当該共重合体成分のガラス転移温度が同じ温度であったとしても、分子量を調整することにより粘弾性を調整することができる。例えば共重合体成分の分子量を小さくすることにより、より柔軟化させることができる。
The glass transition temperature of the copolymer component constituting the backbone component of the acrylic copolymer (A1) is the flexibility of the adhesive layer at room temperature, the wettability of the adhesive layer to the adherend, The glass transition temperature is preferably −70 ° C. to 0 ° C., in particular, −65 ° C. in order for the pressure-sensitive adhesive layer to have appropriate adhesion (tackiness) at room temperature because it affects the adhesion. Above, or −5 ° C. or less, particularly preferably −60 ° C. or more or −10 ° C. or less.
However, even if the glass transition temperature of the copolymer component is the same temperature, the viscoelasticity can be adjusted by adjusting the molecular weight. For example, it can be made more flexible by reducing the molecular weight of the copolymer component.
 前記アクリル系共重合体(A1)の幹成分が含有する(メタ)アクリル酸エステルモノマーとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3,5,5-トリメチルシクロヘキサンアクリレート、p-クミルフェノールEO変性(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等を挙げることができる。これらに、親水基や有機官能基などをもつヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリレートや、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、イタコン酸モノメチル等のカルボキシル基含有モノマー、無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマー、(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有モノマー、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリル酸エステル系モノマー、(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトンアクリルアミド、マレイン酸アミド、マレイミド等のアミド基を含有するモノマー、ビニルピロリドン、ビニルピリジン、ビニルカルバゾール等の複素環系塩基性モノマー等を用いることもできる。
 また、前記アクリルモノマーやメタクリルモノマーと共重合可能な、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、メタクリロニトニル、酢酸ビニル、プロピオン酸ビニル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルキルビニルモノマー等の各種ビニルモノマーも適宜用いることができる。
Examples of the (meth) acrylic acid ester monomer contained in the main component of the acrylic copolymer (A1) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl ( (Meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth) acrylate, isononyl (meta Acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isostearyl ( (Meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexane acrylate, p-cumylphenol EO-modified (meth) acrylate, dicyclopenta Nyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, benzyl (meth) acrylate, etc. . These include hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycerol (meth) acrylate having a hydrophilic group or an organic functional group, ) Acrylic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxypropyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxypropyl phthalate Acid, 2- (meth) acryloyloxyethylmaleic acid, 2- (meth) acryloyloxypropylmaleic acid, 2- (meth) acryloyloxyethylsuccinic acid, 2- (meth) acryloyloxypropylsuccinic acid, crotonic acid, fumaric acid Carboxyl group-containing monomers such as maleic acid, itaconic acid, monomethyl maleate and monomethyl itaconic acid, acid anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, glycidyl (meth) acrylate, glycidyl α-ethyl acrylate , Epoxy group-containing monomers such as (meth) acrylic acid 3,4-epoxybutyl, amino group-containing (meth) acrylate monomers such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate, (meth) Acrylamide, Nt-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, diacetone acrylamide, maleic acid amide, maleimide, etc. Monomers containing amide group, vinyl pyrrolidone, vinyl pyridine, can also be used heterocyclic basic monomers such as vinyl carbazole.
Also, styrene, t-butylstyrene, α-methylstyrene, vinyltoluene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, alkyl vinyl ether, hydroxyalkyl vinyl ether, alkyl, which can be copolymerized with the acrylic monomer or methacrylic monomer. Various vinyl monomers such as vinyl monomers can also be used as appropriate.
 また、アクリル系共重合体(A1)の幹成分は、疎水性の(メタ)アクリレートモノマーと、親水性の(メタ)アクリレートモノマーとを構成単位として含有するのが好ましい。
 アクリル系共重合体(A1)の幹成分が、疎水性モノマーのみから構成されると、湿熱白化する傾向が認められるため、親水性モノマーも幹成分に導入して湿熱白化を防止するのが好ましい。
Moreover, it is preferable that the trunk component of the acrylic copolymer (A1) contains a hydrophobic (meth) acrylate monomer and a hydrophilic (meth) acrylate monomer as constituent units.
If the trunk component of the acrylic copolymer (A1) is composed only of a hydrophobic monomer, a tendency to wet-heat whitening is recognized. Therefore, it is preferable to introduce a hydrophilic monomer into the trunk component to prevent wet-heat whitening. .
 具体的には、前記アクリル系共重合体(A1)の幹成分として、疎水性の(メタ)アクリレートモノマーと、親水性の(メタ)アクリレートモノマーと、マクロモノマーの末端の重合性官能基とがランダム共重合してなる共重合体成分を挙げることができる。 Specifically, as the main component of the acrylic copolymer (A1), a hydrophobic (meth) acrylate monomer, a hydrophilic (meth) acrylate monomer, and a polymerizable functional group at the end of the macromonomer are included. The copolymer component formed by random copolymerization can be mentioned.
 ここで、前記の疎水性の(メタ)アクリレートモノマーとしては、例えばn-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、メチルメタクリレートを挙げることができる。
 また、疎水性のビニルモノマーとしては酢酸ビニル、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アルキルビニルモノマーなどを挙げることができる。
Here, examples of the hydrophobic (meth) acrylate monomer include n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, and pentyl (meth) ) Acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth) ) Acrylate, isononyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate , Lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyloxyethyl Examples thereof include (meth) acrylate and methyl methacrylate.
Examples of the hydrophobic vinyl monomer include vinyl acetate, styrene, t-butyl styrene, α-methyl styrene, vinyl toluene, and alkyl vinyl monomers.
 前記の親水性の(メタ)アクリレートモノマーとしては、例えばメチルアクリレート、(メタ)アクリル酸、テトラヒドロフルフリル(メタ)アクリレートや、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリレートや、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、イタコン酸モノメチル等のカルボキシル基含有モノマー、無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマー、(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有モノマー、メトキシポリエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレート、N,N-ジメチルアクリルアミド、ヒドロキシエチルアクリルアミド等などを挙げることができる。  Examples of the hydrophilic (meth) acrylate monomer include methyl acrylate, (meth) acrylic acid, tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) ) Acrylate, hydroxyl-containing (meth) acrylate such as glycerol (meth) acrylate, (meth) acrylic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyloxypropylhexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxypropyl phthalic acid, 2- (meth) acryloyloxyethyl maleic acid, 2- (meth) acryloyloxypropyl maleic acid, 2- Carboxyl group-containing monomers such as (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxypropyl succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, monomethyl maleate, monomethyl itaconic acid, maleic anhydride, anhydrous Monomers containing acid anhydride groups such as itaconic acid, monomers containing epoxy groups such as glycidyl (meth) acrylate, glycidyl α-ethyl acrylate, and 3,4-epoxybutyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate And alkoxypolyalkylene glycol (meth) acrylate, N, N-dimethylacrylamide, hydroxyethylacrylamide and the like. *
 アクリル系共重合体(A1)は、グラフト共重合体の枝成分として、マクロモノマーを導入し、マクロモノマー由来の繰り返し単位を含有することが好ましい。
 マクロモノマーとは、末端の重合性官能基と高分子量骨格成分とを有する高分子単量体である。
The acrylic copolymer (A1) preferably contains a macromonomer-derived repeating unit by introducing a macromonomer as a branch component of the graft copolymer.
The macromonomer is a polymer monomer having a terminal polymerizable functional group and a high molecular weight skeleton component.
 マクロモノマーのガラス転移温度(Tg)は、前記アクリル系共重合体(A1)を構成する共重合体成分のガラス転移温度よりも高いことが好ましい。
 具体的には、マクロモノマーのガラス転移温度(Tg)は、粘着材層2の加熱溶融温度(ホットメルト温度)に影響するため、マクロモノマーのガラス転移温度(Tg)は30℃~120℃であるのが好ましく、中でも40℃以上或いは110℃以下、その中でも50℃以上或いは100℃以下であるのがさらに好ましい。
 このようなガラス転移温度(Tg)であれば、分子量を調整することにより、優れた加工性や保管安定性を保持できると共に、80℃付近でホットメルトするように調整することができる。
 マクロモノマーのガラス転移温度とは、当該マクロモノマー自体のガラス転移温度をさし、示差走査熱量計(DSC)で測定することができる。
The glass transition temperature (Tg) of the macromonomer is preferably higher than the glass transition temperature of the copolymer component constituting the acrylic copolymer (A1).
Specifically, since the glass transition temperature (Tg) of the macromonomer affects the heating and melting temperature (hot melt temperature) of the pressure-sensitive adhesive layer 2, the glass transition temperature (Tg) of the macromonomer is 30 ° C. to 120 ° C. Among them, it is preferable to be 40 ° C or higher or 110 ° C or lower, and it is more preferable to be 50 ° C or higher or 100 ° C or lower.
With such a glass transition temperature (Tg), by adjusting the molecular weight, it is possible to maintain excellent processability and storage stability, and to adjust so as to hot-melt near 80 ° C.
The glass transition temperature of the macromonomer refers to the glass transition temperature of the macromonomer itself, and can be measured with a differential scanning calorimeter (DSC).
 また、室温状態では、枝成分同士が引き寄せ合って粘着剤組成物として物理的架橋をしたような状態を維持することができ、しかも、適度な温度に加熱することで前記物理的架橋が解れて流動性を得ることができるようにするためには、マクロモノマーの分子量や含有量を調整することも好ましいことである。
 かかる観点から、マクロモノマーは、アクリル系共重合体(A1)中に5質量%~30質量%の割合で含有することが好ましく、中でも6質量%以上或いは25質量%以下、その中でも8質量%以上或いは20質量%以下であるのが好ましい。
 また、マクロモノマーの数平均分子量は500以上8000未満であることが好ましく、中でも800以上或いは7500未満、その中でも1000以上或いは7000未満であるのが好ましい。
 マクロモノマーは、一般に製造されているもの(例えば、東亜合成社製マクロモノマーなど)を適宜使用することができる。
Further, at room temperature, the branch components are attracted to each other and can maintain a state where they are physically cross-linked as a pressure-sensitive adhesive composition, and the physical cross-linking is released by heating to an appropriate temperature. In order to obtain fluidity, it is also preferable to adjust the molecular weight and content of the macromonomer.
From this viewpoint, the macromonomer is preferably contained in the acrylic copolymer (A1) in a proportion of 5% by mass to 30% by mass, particularly 6% by mass or 25% by mass, and more preferably 8% by mass. It is preferable that the amount is 20% by mass or more.
The number average molecular weight of the macromonomer is preferably 500 or more and less than 8000, more preferably 800 or more and less than 7500, and particularly preferably 1000 or more and less than 7000.
As the macromonomer, a generally produced one (for example, a macromonomer manufactured by Toa Gosei Co., Ltd.) can be appropriately used.
 マクロモノマーの高分子量骨格成分は、アクリル系重合体またはビニル系重合体から構成されるのが好ましい。
 前記マクロモノマーの高分子量骨格成分としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3,5,5-トリメチルシクロヘキサンアクリレート、p-クミルフェノールEO変性(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸、グリシジル(メタ)アクリレート、(メタ)アクリルアミド、N、N-ジメチル(メタ)アクリルアミド、(メタ)アクリルニトリル、アルコキシアルキル(メタ)アクリレート、アルコキシポリアルキレングリコール(メタ)アクリレート等の(メタ)アクリレートモノマーや、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アルキルビニルモノマー、酢酸ビニル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル等の各種ビニルモノマーが挙げられ、これらは単独で又は2種類以上を組み合わせて使用することができる。
The high molecular weight skeleton component of the macromonomer is preferably composed of an acrylic polymer or a vinyl polymer.
Examples of the high molecular weight skeleton component of the macromonomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , Sec-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) ) Acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, t-butylcyclohexyl ( (Meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) ) Acrylate, isobornyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexane acrylate, p-cumylphenol EO modified (meth) acrylate, dicyclopentanyl (meth) acrylate, di Cyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, benzyl (meth) acrylate, hydroxyalkyl (meth) acrylate, (meth) acrylic acid, (Meth) acrylate monomers such as lysidyl (meth) acrylate, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acrylonitrile, alkoxyalkyl (meth) acrylate, alkoxypolyalkylene glycol (meth) acrylate, , Styrene, t-butyl styrene, α-methyl styrene, vinyl toluene, alkyl vinyl monomer, vinyl acetate, alkyl vinyl ether, hydroxyalkyl vinyl ether, and other vinyl monomers. These may be used alone or in combination of two or more. can do.
 前記マクロモノマーの末端重合性官能基としては、例えば、メタクリロイル基、アクリロイル基、ビニル基などを挙げることができる。 Examples of the terminal polymerizable functional group of the macromonomer include a methacryloyl group, an acryloyl group, and a vinyl group.
(架橋剤(b))
 架橋剤(b)は、アクリル酸エステル重合体を架橋する際に用いる架橋モノマーを使用することができる。例えば(メタ)アクリロイル基、エポキシ基、イソシアネート基、カルボキシル基、ヒドロキシル基、カルボジイミド基、オキサゾリン基、アジリジン基、ビニル基、アミノ基、イミノ基、アミド基から選ばれる少なくとも1種の架橋性官能基を有する架橋剤を挙げることができ、1種又は2種以上を組み合わせて使用してもよい。
 なお、前記架橋性官能基は、脱保護可能な保護基で保護されていてもよい。
(Crosslinking agent (b))
As the crosslinking agent (b), a crosslinking monomer used when the acrylic ester polymer is crosslinked can be used. For example, at least one crosslinkable functional group selected from (meth) acryloyl group, epoxy group, isocyanate group, carboxyl group, hydroxyl group, carbodiimide group, oxazoline group, aziridine group, vinyl group, amino group, imino group, and amide group The crosslinking agent which has can be mentioned, You may use 1 type or in combination of 2 or more types.
The crosslinkable functional group may be protected with a deprotectable protecting group.
 中でも、(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレート、イソシアネート基、エポキシ基、メラミン基、グリコール基、シロキサン基、アミノ基などの有機官能基を2個以上有する多官能有機官能基樹脂、亜鉛、アルミ、ナトリウム、ジルコニウム、カルシウムなどの金属錯体を有する有機金属化合物を好ましく用いることができる。 Above all, a polyfunctional organic function having two or more organic functional groups such as a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups, an isocyanate group, an epoxy group, a melamine group, a glycol group, a siloxane group or an amino group. An organometallic compound having a metal complex such as a base resin, zinc, aluminum, sodium, zirconium, or calcium can be preferably used.
 前記の多官能(メタ)アクリレートとしては、例えば1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリングリシジルエーテルジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリアルコキシジ(メタ)アクリレート、ビスフェノールFポリアルコキシジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、ε-カプロラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、ヒドロキシビバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシビバリン酸ネオペングリコールのε-カプロラクトン付加物のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アルコキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の紫外線硬化型の多官能モノマー類のほか、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート等の多官能アクリルオリゴマー類を挙げることができる。 Examples of the polyfunctional (meth) acrylate include 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin glycidyl ether di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polyalkoxydi (meth) Acrylate, bisphenol F polyalkoxy di (meth) acrylate, polyalkylene glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, ε-caprolactone modified tri (2-hydroxyethyl) isocyanurate tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Propoxylated pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, polyethylene glycol di (meth) acrylate, tris (acryloxyethyl) isocyanurate, pentaerythritol tetra ( (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) Di (meta) of ε-caprolactone adduct of acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol penta (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxybivalate, neopentyl hydroxybivalate ) In addition to UV-curable polyfunctional monomers such as acrylate, trimethylolpropane tri (meth) acrylate, alkoxylated trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, polyester (meth) acrylate, Polyfunctional acrylic oligomers such as epoxy (meth) acrylate, urethane (meth) acrylate, and polyether (meth) acrylate can be exemplified.
 前記に挙げた中でも、被着体への密着性や湿熱白化抑制の効果を向上させる観点から、前記多官能(メタ)アクリル酸エステルモノマーの中でも、水酸基やカルボキシル基、アミド基等の極性官能基を含有する多官能モノマーもしくはオリゴマーが好ましい。その中でも、水酸基又はアミド基を有する多官能(メタ)アクリル酸エステルを用いるのが好ましい。
 湿熱白化を防止する観点からは、前記(メタ)アクリル酸エステル共重合体、例えばグラフト共重合体の幹成分として、疎水性のアクリレートモノマーと、親水性のアクリレートモノマーとを含有するのが好ましく、さらには、架橋剤として、水酸基を有する多官能(メタ)アクリル酸エステルを用いるのが好ましい。
 また、密着性や耐湿熱性、耐熱性等の効果を調整するために、架橋剤と反応する、単官能又は多官能の(メタ)アクリル酸エステルを、更に加えてもよい。
Among the polyfunctional (meth) acrylic acid ester monomers, among the above-mentioned polyfunctional (meth) acrylate monomers, polar functional groups such as a hydroxyl group, a carboxyl group, and an amide group can be used. Polyfunctional monomers or oligomers containing are preferred. Among these, it is preferable to use a polyfunctional (meth) acrylic acid ester having a hydroxyl group or an amide group.
From the viewpoint of preventing wet heat whitening, it is preferable to contain a hydrophobic acrylate monomer and a hydrophilic acrylate monomer as a trunk component of the (meth) acrylate copolymer, for example, a graft copolymer, Furthermore, it is preferable to use a polyfunctional (meth) acrylic acid ester having a hydroxyl group as a crosslinking agent.
Moreover, in order to adjust effects, such as adhesiveness, heat-and-moisture resistance, and heat resistance, you may further add monofunctional or polyfunctional (meth) acrylic acid ester which reacts with a crosslinking agent.
 架橋剤の含有量は、粘着剤組成物たる柔軟性と凝集力をバランスさせる観点から、前記(メタ)アクリル系共重合体100質量部に対して、0.1~20質量部の割合で含有するのが好ましく、中でも0.5質量部以上或いは15質量部以下、その中でも1質量部以上或いは13質量部以下の割合であるのが特に好ましい。 The content of the crosslinking agent is 0.1 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic copolymer, from the viewpoint of balancing the flexibility and cohesive force of the pressure-sensitive adhesive composition. In particular, the ratio is preferably 0.5 parts by mass or more and 15 parts by mass or less, and particularly preferably 1 part by mass or more or 13 parts by mass or less.
(光重合開始剤(c))
 アクリル酸エステル重合体を架橋する際には、架橋開始剤(過酸化開始剤、光重合開始剤)や反応触媒(三級アミン系化合物、四級アンモニウム系化合物、ラウリル酸スズ化合物など)を適宜添加すると効果的である。
(Photopolymerization initiator (c))
When crosslinking the acrylic ester polymer, a crosslinking initiator (peroxidation initiator, photopolymerization initiator) and reaction catalyst (tertiary amine compound, quaternary ammonium compound, tin laurate compound, etc.) are appropriately used. It is effective when added.
 紫外線照射架橋の場合には、光重合開始剤(c)を配合するのが好ましい。
 光重合開始剤(c)は、ラジカル発生機構によって大きく2つに分類され、光重合性開始剤自身の単結合を開裂分解してラジカルを発生させることができる開裂型光重合開始剤と、光励起した開始剤と系中の水素供与体とが励起錯体を形成し、水素供与体の水素を転移させることができる水素引抜型光重合開始剤と、に大別される。
 これらのうちの開裂型光重合開始剤は、光照射によってラジカルを発生する際に分解して別の化合物となり、一度励起されると反応開始剤としての機能をもたなくなる。このため、可視光線域に吸収波長をもつ光重合開始剤として該分子内開裂型を用いると、水素引抜型を用いる場合に比べて、光線照射によって粘着シートを架橋した後、光線反応性の光重合性開始剤が本粘着剤組成物中に未反応残渣として残り、粘着シートの予期せぬ経時変化や架橋の促進を招く可能性が低いため好ましい。また、光重合性開始剤特有の着色についても、反応分解物となることで、可視光線域の吸収がなくなり、消色するものを適宜選択することができるため好ましい。
 他方、水素引抜型の光重合開始剤は、紫外線などの活性エネルギー線照射によるラジカル発生反応時に、開裂型光重合開始剤のような分解物を生じないので、反応終了後に揮発成分となりにくく、被着体へのダメージを低減させることができる。
In the case of UV irradiation crosslinking, it is preferable to blend a photopolymerization initiator (c).
The photopolymerization initiator (c) is roughly classified into two types depending on the radical generation mechanism. The photopolymerization initiator is capable of generating a radical by cleaving the single bond of the photopolymerization initiator itself, and photoexcitation. In general, the initiator and the hydrogen donor in the system form an exciplex and can be roughly classified into a hydrogen abstraction type photopolymerization initiator that can transfer hydrogen of the hydrogen donor.
Among these, the cleavage type photopolymerization initiator is decomposed when a radical is generated by light irradiation to be another compound, and once excited, it does not function as a reaction initiator. For this reason, when the intramolecular cleavage type is used as a photopolymerization initiator having an absorption wavelength in the visible light region, light-reactive light is obtained after the pressure-sensitive adhesive sheet is cross-linked by light irradiation as compared with the case of using a hydrogen abstraction type. A polymerizable initiator is preferable because it remains as an unreacted residue in the pressure-sensitive adhesive composition and is unlikely to cause an unexpected change with time or promotion of crosslinking. Further, the coloring specific to the photopolymerizable initiator is also preferable because it becomes a reaction decomposition product, so that absorption in the visible light region is eliminated and a color to be erased can be appropriately selected.
On the other hand, a hydrogen abstraction type photopolymerization initiator does not generate a decomposition product such as a cleavage type photopolymerization initiator during radical generation reaction by irradiation of active energy rays such as ultraviolet rays, so that it is difficult to become a volatile component after completion of the reaction. Damage to the body can be reduced.
 前記開裂型光重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-[4-{4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル}フェニル]-2-メチル-プロパン-1-オン、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)、フェニルグリオキシリック酸メチル、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキサイドや、それらの誘導体などを挙げることができる。 Examples of the cleavage type photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenyl-propane-1. -One, 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- {4- (2-hydroxy- 2-methyl-propionyl) benzyl} phenyl] -2-methyl-propan-1-one, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone), phenylglyoxy Methyl lickate, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -On, 2- (dimethylamino)- 2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4, 6-trimethylbenzoyldiphenylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine oxide, and their derivatives Can be mentioned.
 この中でも、開裂型光重合性開始剤で、反応後に分解物となり消色する点で、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド系光開始剤が好ましい。
 さらに、枝成分としてマクロモノマーを備えたグラフト共重合体からなるアクリル系共重合体との相性からは、光重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキサイドなどを用いるのが好ましい。
Among these, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine is a cleavage-type photopolymerization initiator, and becomes a degradation product after the reaction and discolors. Acylphosphine oxide photoinitiators such as fin oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine oxide are preferred.
Furthermore, from the compatibility with an acrylic copolymer comprising a graft copolymer having a macromonomer as a branch component, 2,4,6-trimethylbenzoyldiphenylphosphine oxide as a photopolymerization initiator, It is preferable to use 6-trimethylbenzoyl) ethoxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine oxide, and the like.
 光重合開始剤の含有量は、特に制限されるものではない。例えば(メタ)アクリル系共重合体100質量部に対して0.1~10質量部、中でも0.2質量部以上或いは5質量部以下、その中でも0.5質量部以上或いは3質量部以下の割合で含入するのが特に好ましい。但し、他の要素とのバランスでこの範囲を超えてもよい。
 光重合開始剤は、1種又は2種以上を組み合わせて使用することができる。
The content of the photopolymerization initiator is not particularly limited. For example, with respect to 100 parts by weight of the (meth) acrylic copolymer, 0.1 to 10 parts by weight, particularly 0.2 parts by weight or more and 5 parts by weight or less, and more preferably 0.5 parts by weight or more or 3 parts by weight or less. It is particularly preferable to include them in proportions. However, this range may be exceeded in balance with other elements.
A photoinitiator can be used 1 type or in combination of 2 or more types.
 前記成分のほか、必要に応じて、近赤外線吸収特性を有する顔料や染料などの色素、粘着付与剤、酸化防止剤、老化防止剤、吸湿剤、紫外線吸収剤、シランカップリング剤、天然物や合成物の樹脂類、ガラス繊維やガラスビーズなどの各種の添加剤を適宜配合することもできる。 In addition to the above components, pigments such as pigments and dyes having near-infrared absorption characteristics, tackifiers, antioxidants, antioxidants, hygroscopic agents, ultraviolet absorbers, silane coupling agents, natural products, Various additives such as synthetic resins, glass fibers and glass beads can be appropriately blended.
(粘着材層の層構造及び厚さ)
 粘着材層は、単層のほか、二層、三層などの複数層でもよい。
 また、粘着材層は、芯層として基材層(粘着性を有さない層)を有し、該基材層の両側に、粘着材からなる層が積層してなる構成であってもよい。このような構成の場合、芯層としての基材層は粘着シート積層体が加熱成型可能となるような材質や特性を有することが好ましい。また、基材層を除いた粘着材層が、損失正接tanδ(SA)、損失正接tanδ(SB)、貯蔵弾性率G’(SA)及び貯蔵弾性率G’(SB)について上記特性を備えているのが好ましい。
(Layer structure and thickness of adhesive layer)
The adhesive material layer may be a single layer or a plurality of layers such as two layers or three layers.
The pressure-sensitive adhesive layer may have a structure in which a base layer (non-sticky layer) is provided as a core layer, and layers made of a pressure-sensitive adhesive are laminated on both sides of the base layer. . In the case of such a configuration, the base material layer as the core layer preferably has a material and characteristics such that the pressure-sensitive adhesive sheet laminate can be heat-molded. Further, the adhesive layer excluding the base material layer has the above-described characteristics with respect to loss tangent tan δ (SA), loss tangent tan δ (SB), storage elastic modulus G ′ (SA), and storage elastic modulus G ′ (SB). It is preferable.
 粘着材層の厚さは特に限定されない。中でも20μm~500μmの範囲が好ましい。この範囲であれば、例えば厚さ20μmのような薄い粘着材層であれば、印刷段差追従性に優れた粘着シートが提供できる。また、厚さ500μmのような厚い粘着材層では印刷段差相当分が予め賦形されていることにより、貼合時の粘着材のオーバーフローを抑制することも可能になる。
 したがって、粘着材層の厚さは20μm~500μmであるのが好ましく、中でも30μm以上或いは300μm以下、その中でも50μm以上或いは200μm以下であるのがさらに好ましい。
The thickness of the adhesive layer is not particularly limited. In particular, the range of 20 μm to 500 μm is preferable. If it is this range, if it is a thin adhesive material layer like thickness 20 micrometers, the adhesive sheet excellent in the printing level | step difference followable | trackability can be provided. Moreover, in the thick adhesive material layer having a thickness of 500 μm, it is possible to suppress the overflow of the adhesive material at the time of pasting because the portion corresponding to the printing step is shaped in advance.
Accordingly, the thickness of the adhesive layer is preferably 20 μm to 500 μm, more preferably 30 μm or more and 300 μm or less, and particularly preferably 50 μm or more and 200 μm or less.
<被覆部I>
 本粘着シート積層体は、図1に示すように、粘着材層の表裏一側、例えば表面に凹凸を賦形する側に剥離可能に積層してなる被覆部Iを備えている。
<Coating part I>
As shown in FIG. 1, the pressure-sensitive adhesive sheet laminate includes a covering portion I that is detachably laminated on one side of the pressure-sensitive adhesive layer, for example, on the side that forms irregularities on the surface.
 被覆部Iの100℃における貯蔵弾性率E’(MA)は1.0×10~2.0×10Paであるのが好ましい。
 本粘着シート積層体を加熱成型する際の温度は通常70~120℃であるから、100℃における貯蔵弾性率E’(MA)が1.0×10~2.0×10Paであれば、前記粘着剤組成物が可塑化乃至流動する温度領域において、被覆部Iも凹凸形状を十分追随して変形可能であるばかりか、成型時に被覆部Iによって押圧される粘着材層の表面に所望の凹凸形状を精度高く、例えば角部が丸くならないように成型することができる。
The storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is preferably 1.0 × 10 6 to 2.0 × 10 9 Pa.
Since the temperature at which the pressure-sensitive adhesive sheet laminate is heat-molded is usually 70 to 120 ° C., the storage elastic modulus E ′ (MA) at 100 ° C. is 1.0 × 10 6 to 2.0 × 10 9 Pa. For example, in the temperature range where the pressure-sensitive adhesive composition is plasticized or fluidized, the covering portion I can follow the uneven shape sufficiently and can be deformed, but also on the surface of the pressure-sensitive adhesive layer pressed by the covering portion I during molding. The desired uneven shape can be molded with high accuracy, for example, so that the corners are not rounded.
 従来、粘着シートに積層する離型フィルムとして、貯蔵弾性率の高い、換言すると“硬い”材料が多用されてきた。これは、離型フィルムに要求される特性が、主として粘着材層の保護と、離型性であったためである。しかしながら、本発明者らの検討によれば、粘着シートに離型フィルムを積層した状態で加熱成形するという新たな用途において、加熱成型性という新たな課題が要求された場合には、従来の離型フィルムに備わっていた上記のような物理的特性では達成できないことが見出された。このため、加熱成型時に生じている現象や、粘着材層のもつ特性等を精査した結果、これまで一般に用いられてきた離型フィルムとは異なる特性とした方が、加熱成型性という新たな課題を解決するためには有利であることを見出したものである。特に、特定の温度における貯蔵弾性率を特定範囲に制御することによって、上記の課題が解決し得ることが見出された。 Conventionally, as a release film laminated on an adhesive sheet, a material having a high storage elastic modulus, in other words, a “hard” material has been frequently used. This is because the properties required for the release film were mainly the protection of the adhesive layer and the release property. However, according to the study by the present inventors, when a new problem of heat moldability is required in a new application of heat forming in a state where a release film is laminated on an adhesive sheet, a conventional release is required. It has been found that the above-mentioned physical properties provided in the mold film cannot be achieved. For this reason, as a result of scrutinizing the phenomena occurring during heat molding and the characteristics of the adhesive layer, it is a new problem of heat moldability that has characteristics different from those of the release films that have been generally used so far. It has been found that it is advantageous for solving the problem. In particular, it has been found that the above problem can be solved by controlling the storage elastic modulus at a specific temperature within a specific range.
 かかる観点から、被覆部Iの100℃における貯蔵弾性率E’(MA)は1.0×10~2.0×10Paであるのが好ましく、中でも5.0×10Pa以上或いは1.0×10Pa以下、その中でも1.0×10Pa以上或いは5.0×10Pa以下であるのがさらに好ましい。
 以上から、被覆部Iの100℃における貯蔵弾性率E’(MA)は、1.0×10~1.0×10Pa、或いは、1.0×10~5.0×10Paであることがより好ましく、中でも、5.0×10~2.0×10Pa、或いは、5.0×10~1.0×10Paであることがさらに好ましく、1.0×10~1.0×10Pa以下、或いは、1.0×10~5.0×10Paであることがもっとも好ましい。
From this viewpoint, the storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is preferably 1.0 × 10 6 to 2.0 × 10 9 Pa, and more preferably 5.0 × 10 6 Pa or more. 1.0 × 10 9 Pa or less, more preferably 1.0 × 10 7 Pa or more or 5.0 × 10 8 Pa or less.
From the above, the storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I is 1.0 × 10 6 to 1.0 × 10 9 Pa, or 1.0 × 10 6 to 5.0 × 10 8. More preferably, it is Pa, more preferably 5.0 × 10 6 to 2.0 × 10 9 Pa, or even more preferably 5.0 × 10 6 to 1.0 × 10 9 Pa. Most preferably, it is 0 × 10 7 to 1.0 × 10 9 Pa or less, or 1.0 × 10 7 to 5.0 × 10 8 Pa.
 また、被覆部Iの30℃における貯蔵弾性率E’(MB)は5.0×10~1.0×1010Paであるのが好ましい。
 被覆部Iの30℃における貯蔵弾性率E’(MB)が5.0×10~1.0×1010Paであれば、常態において形状保持性を維持することができるから、取り扱いが容易であり、例えば剥離し易いばかりか、硬過ぎないから、粘着材層に不要な意図しない凹凸をつけることを抑制することができる。
 かかる観点から、被覆部Iの30℃における貯蔵弾性率E’(MB)は5.0×10~1.0×1010Paであるのが好ましく、中でも1.0×10Pa以上或いは8.0×10Pa以下、その中でも1.0×10Pa以上或いは5.0×10Pa以下であるのがさらに好ましい。
 以上から、被覆部Iの30℃における貯蔵弾性率E’(MB)は、5.0×10~8.0×10Pa、或いは、5.0×10~5.0×10Paであることがより好ましく、中でも、1.0×10Pa~1.0×1010Pa、或いは、1.0×10Pa~8.0×10Paであることがさらに好ましく、1.0×10~8.0×10Pa、或いは、1.0×10~5.0×10Paであることがもっとも好ましい。
Further, the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is preferably 5.0 × 10 7 to 1.0 × 10 10 Pa.
If the storage elastic modulus E ′ (MB) at 30 ° C. of the covering part I is 5.0 × 10 7 to 1.0 × 10 10 Pa, shape retention can be maintained in a normal state, and handling is easy. For example, since it is easy to peel off and is not too hard, it is possible to suppress unnecessary undesired unevenness on the adhesive layer.
From this viewpoint, the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is preferably 5.0 × 10 7 to 1.0 × 10 10 Pa, and more preferably 1.0 × 10 8 Pa or more. 8.0 × 10 9 Pa or less, more preferably 1.0 × 10 9 Pa or more or 5.0 × 10 9 Pa or less.
From the above, the storage elastic modulus E ′ (MB) at 30 ° C. of the covering portion I is 5.0 × 10 7 to 8.0 × 10 9 Pa, or 5.0 × 10 7 to 5.0 × 10 9. More preferably, it is Pa, more preferably 1.0 × 10 8 Pa to 1.0 × 10 10 Pa, or 1.0 × 10 8 Pa to 8.0 × 10 9 Pa, Most preferably, it is 1.0 × 10 9 to 8.0 × 10 9 Pa, or 1.0 × 10 9 to 5.0 × 10 9 Pa.
 被覆部Iの30℃、100℃における貯蔵弾性率を前記のように調整するには、例えばベース樹脂の種類、共重合樹脂成分、重量平均分子量、ガラス転移温度、結晶性などの被覆部Iの材料の条件を調整する共に、延伸の有無、成形条件、延伸する場合には延伸条件などの製造条件を調整することで調整できる。但し、これらの方法に限定するものではない。 In order to adjust the storage elastic modulus at 30 ° C. and 100 ° C. of the coating part I as described above, for example, the type of the base resin, the copolymer resin component, the weight average molecular weight, the glass transition temperature, the crystallinity, etc. While adjusting the conditions of the material, it can be adjusted by adjusting the presence / absence of stretching, molding conditions, and in the case of stretching, production conditions such as stretching conditions. However, it is not limited to these methods.
 さらに、被覆部Iの100℃における貯蔵弾性率E’(MA)と、被覆部Iの30℃における貯蔵弾性率E’(MB)とが以下の関係式(1)を満たすことが好ましい。
(1)・・E’(MB)/E’(MA)≧2.0
Furthermore, it is preferable that the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. satisfy the following relational expression (1).
(1) ... E '(MB) / E' (MA) ≧ 2.0
 被覆部Iの100℃における貯蔵弾性率E’(MA)と、被覆部Iの30℃における貯蔵弾性率E’(MB)とが前記関係式(1)を満たせば、十分な成形性が得られるからさらに好ましい。
 かかる観点から、E’(MB)/E’(MA)≧2.0であるのが好ましく、中でも30≧E’(MB)/E’(MA)或いはE’(MB)/E’(MA)≧3.0であるのがさらに好ましく、その中でも10≧E’(MB)/E’(MA)或いはE’(MB)/E’(MA)≧5.0であるのが特に好ましい。
If the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. and the storage elastic modulus E ′ (MB) of the covering portion I at 30 ° C. satisfy the relational expression (1), sufficient formability can be obtained. More preferably.
From this viewpoint, it is preferable that E ′ (MB) / E ′ (MA) ≧ 2.0, and in particular, 30 ≧ E ′ (MB) / E ′ (MA) or E ′ (MB) / E ′ (MA ) ≧ 3.0, more preferably 10 ≧ E ′ (MB) / E ′ (MA) or E ′ (MB) / E ′ (MA) ≧ 5.0.
 E’(MB)とE’(MA)が前記関係になるように調整するには、例えばベース樹脂の種類、共重合樹脂成分、重量平均分子量、ガラス転移温度、結晶性などの被覆部Iの材料の条件を調整する共に、延伸の有無、成形条件、延伸する場合には延伸条件などの製造条件を調整することで調整できる。但し、これらの方法に限定するものではない。 In order to adjust E ′ (MB) and E ′ (MA) to have the above relationship, for example, the type of base resin, copolymer resin component, weight average molecular weight, glass transition temperature, crystallinity, etc. While adjusting the conditions of the material, it can be adjusted by adjusting the presence / absence of stretching, molding conditions, and in the case of stretching, production conditions such as stretching conditions. However, it is not limited to these methods.
 またさらに、前記粘着材層の100℃における貯蔵弾性率G’(SA)と、前記被覆部Iの100℃における貯蔵弾性率E’(MA)とが以下の関係式(2)を満たすことが好ましい。
(2)・・1.0×10≦E’(MA)/G’(SA)≦1.0×10
Furthermore, the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer and the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. satisfy the following relational expression (2). preferable.
(2) .. 1.0 × 10 3 ≦ E ′ (MA) / G ′ (SA) ≦ 1.0 × 10 7
 前記粘着材層の100℃における貯蔵弾性率G’(SA)と、前記被覆部Iの100℃における貯蔵弾性率E’(MA)とが前記関係式(2)を満たせば、十分な成形性が得られるからさらに好ましい。
 かかる観点から、E’(MA)/G’(SA)は1.0×10~1.0×10であるのが好ましく、中でも5.0×10以上或いは5.0×10以下、その中でも1.0×10以上或いは1.0×10以下であるのが特に好ましい。
 以上から、E’(MA)/G’(SA)は、1.0×10~5.0×10、或いは、1.0×10~1.0×10であることがより好ましく、5.0×10~5.0×10、或いは、5.0×10~1.0×10であることがさらに好ましく、1.0×10~5.0×10、或いは、1.0×10~1.0×10であることがもっとも好ましい。
If the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer and the storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. satisfy the relational expression (2), sufficient formability is obtained. Is more preferable.
From this viewpoint, E ′ (MA) / G ′ (SA) is preferably 1.0 × 10 3 to 1.0 × 10 7 , and more preferably 5.0 × 10 3 or more or 5.0 × 10 6. Hereinafter, it is particularly preferably 1.0 × 10 4 or more or 1.0 × 10 6 or less.
From the above, E ′ (MA) / G ′ (SA) is more preferably 1.0 × 10 3 to 5.0 × 10 6 , or 1.0 × 10 3 to 1.0 × 10 6. Preferably, it is 5.0 × 10 3 to 5.0 × 10 6 , or more preferably 5.0 × 10 3 to 1.0 × 10 6 , and 1.0 × 10 4 to 5.0 × 10 6. 6 or 1.0 × 10 4 to 1.0 × 10 6 is most preferable.
 E’(MA)及びG’(SA)が前記関係になるように調整するには、粘着材層或いは被覆部Iの特性を調整すればよい。粘着材層の特性としては、例えば、粘着材層を構成する組成物の成分やゲル分率、重量平均分子量等を調整することによって達成することができる。また、被覆部Iの特性としては、例えばベース樹脂の種類、共重合樹脂成分、重量平均分子量、ガラス転移温度、結晶性などの被覆部Iの材料の条件を調整する共に、延伸の有無、成形条件、延伸する場合には延伸条件などの製造条件を調整することで調整できる。但し、これらの方法に限定するものではない。 In order to adjust E ′ (MA) and G ′ (SA) to be in the above relationship, the characteristics of the adhesive layer or the covering portion I may be adjusted. The characteristics of the pressure-sensitive adhesive layer can be achieved, for example, by adjusting the components, gel fraction, weight average molecular weight, and the like of the composition constituting the pressure-sensitive adhesive layer. In addition, as the characteristics of the covering portion I, for example, the conditions of the material of the covering portion I such as the type of the base resin, the copolymer resin component, the weight average molecular weight, the glass transition temperature, and the crystallinity are adjusted, whether or not there is stretching, molding In the case of stretching, it can be adjusted by adjusting the production conditions such as stretching conditions. However, it is not limited to these methods.
 被覆部Iはさらに、30℃雰囲気下において、粘着材層から前記被覆部Iを剥離する際の剥離力F(C)が0.2N/cm以下であるのが好ましい。
 剥離力F(C)が0.2N/cm以下であれば、粘着材層から前記被覆部Iを容易に剥離することができる。
 かかる観点から、当該剥離力F(C)は0.2N/cm以下であるのが好ましく、中でも0.01N/cm以上或いは0.15N/cm以下であるのがさらに好ましく、その中でも0.02N/cm以上或いは0.1N/cm以下であるのがさらに好ましい。
Further, it is preferable that the covering portion I has a peeling force F (C) of 0.2 N / cm or less when peeling the covering portion I from the adhesive layer in an atmosphere of 30 ° C.
When the peeling force F (C) is 0.2 N / cm or less, the covering portion I can be easily peeled from the adhesive material layer.
From such a viewpoint, the peeling force F (C) is preferably 0.2 N / cm or less, more preferably 0.01 N / cm or more or 0.15 N / cm or less, and more preferably 0.02 N / cm. / Cm or more or 0.1 N / cm or less is more preferable.
 被覆部Iはさらに、粘着シート積層体を100℃で5分間加熱後30℃まで冷却させ、30℃雰囲気下において前記粘着材層から前記被覆部Iを剥離する際の剥離力F(D)がが0.2N/cm以下であるのが好ましい。
 粘着シート積層体を100℃で5分間加熱後30℃まで冷却させて、30℃雰囲気下で測定して得られる剥離力F(D)が、前記剥離力F(C)と同程度であれば、粘着シート積層体を加熱成型しても、剥離力F(D)が変化しないから、粘着材層から前記被覆部Iを容易に剥離することができる。
 かかる観点から、当該剥離力F(D)は0.2N/cm以下であるのが好ましく、中でも0.01N/cm以上或いは0.15N/cm以下であるのがさらに好ましく、その中でも0.02N/cm以上或いは0.1N/cm以下であるのがさらに好ましい。
The covering portion I further has a peeling force F (D) when the pressure-sensitive adhesive sheet laminate is heated to 100 ° C. for 5 minutes and then cooled to 30 ° C. Is preferably 0.2 N / cm or less.
If the peel force F (D) obtained by heating the pressure-sensitive adhesive sheet laminate at 100 ° C. for 5 minutes and then cooling to 30 ° C. and measuring in an atmosphere at 30 ° C. is approximately the same as the peel force F (C) Even if the pressure-sensitive adhesive sheet laminate is heat-molded, the peeling force F (D) does not change, so that the covering portion I can be easily peeled from the pressure-sensitive adhesive layer.
From this viewpoint, the peeling force F (D) is preferably 0.2 N / cm or less, more preferably 0.01 N / cm or more or 0.15 N / cm or less, and more preferably 0.02 N / cm. / Cm or more or 0.1 N / cm or less is more preferable.
 被覆部Iはさらに、前記剥離力F(C)と前記剥離力F(D)の差の絶対値が0.1N/cm以下であるのが好ましい。
 粘着シート積層体を100℃で5分間加熱後30℃まで冷却させて、30℃雰囲気下で測定して得られる剥離力F(D)と、通常状態での剥離力F(C)と差の絶対値が0.1N/cm以下であれば、粘着シート積層体を加熱成型しても、剥離力F(D)が変化しないから、粘着材層から前記被覆部Iを容易に剥離することができる。
 かかる観点から、剥離力F(C)と剥離力F(D)の差の絶対値は0.1N/cm以下であるのが好ましく、中でも0.08N/cm以下、その中でも0.05N/cm以下であるのがさらに好ましい。
The covering portion I preferably further has an absolute value of a difference between the peeling force F (C) and the peeling force F (D) of 0.1 N / cm or less.
The pressure-sensitive adhesive sheet laminate is heated at 100 ° C. for 5 minutes and then cooled to 30 ° C., and the difference between the peel force F (D) obtained by measurement in an atmosphere at 30 ° C. and the peel force F (C) in a normal state If the absolute value is 0.1 N / cm or less, the peeling force F (D) does not change even if the pressure-sensitive adhesive sheet laminate is heat-molded, so that the covering portion I can be easily peeled from the pressure-sensitive adhesive layer. it can.
From this viewpoint, the absolute value of the difference between the peeling force F (C) and the peeling force F (D) is preferably 0.1 N / cm or less, more preferably 0.08 N / cm or less, and particularly 0.05 N / cm. More preferably, it is as follows.
 なお、被覆部Iの剥離力F(C)及び剥離力F(D)は、被覆部Iの一側に形成する離形層の種類などにより調製することができる。ただし、この方法に限定するものではない。 Note that the peeling force F (C) and the peeling force F (D) of the covering portion I can be prepared depending on the type of the release layer formed on one side of the covering portion I. However, it is not limited to this method.
 被覆部Iの構成例としては、被覆基材層と離形層とを備えた構成例を挙げることができる。被覆基材層の片面に離形層を積層することで、被覆部Iが粘着材層から剥離し易いように構成することができる。 As a structural example of the coating | coated part I, the structural example provided with the coating | coated base material layer and the release layer can be mentioned. By laminating the release layer on one surface of the covering base material layer, the covering portion I can be configured to be easily peeled from the adhesive material layer.
 この際、当該被覆基材層は、例えばポリエステル、共重合ポリエステル、ポリオレフィンおよび共重合ポリオレフィンからなる群から選択される1種の樹脂又は2種以上の樹脂を主成分とする延伸又は無延伸の層、すなわち、これらの樹脂を主成分とする延伸又は無延伸のフィルムからなる層を備えた単層又は複層であるのが好ましい。 In this case, the covering base layer is, for example, a stretched or unstretched layer mainly composed of one type of resin or two or more types of resins selected from the group consisting of polyester, copolyester, polyolefin and copolyolefin. That is, it is preferably a single layer or a multilayer having a layer made of a stretched or non-stretched film containing these resins as a main component.
 中でも、前記被覆部Iを構成する被覆基材層は、機械的強度や耐薬品性等の観点から、例えば共重合ポリエステル、ポリオレフィン、又は、共重合ポリオレフィンを主成分とする延伸又は無延伸のフィルムからなる層を備えた単層又は複層であるのが好ましい。
 前記共重合ポリエステルの具体例としては、例えばジカルボン酸としてのイソフタル酸や、ジオールとしてのシクロヘキサンジメタノール、1,4-ブタンジオール、ジエチレングリコール等を任意に共重合した、共重合ポリエチレンテレフタレートを挙げることができる。
 前記ポリオレフィンの具体例としてはα-オレフィン単独重合体が挙げられ、例えばプロピレン単独重合体や4-メチルペンテン-1の単独重合体を挙げることができる。
 前記ポリオレフィン共重合体の具体例としては、例えばエチレン、プロピレン、その他のα-オレフィンやビニルモノマー等の共重合体を挙げることができる。
Among them, the covering base layer constituting the covering portion I is, for example, a copolymerized polyester, a polyolefin, or a stretched or non-stretched film containing a copolymerized polyolefin as a main component from the viewpoint of mechanical strength, chemical resistance, and the like. It is preferable that it is a single layer provided with the layer which consists of or multiple layers.
Specific examples of the copolymerized polyester include copolymerized polyethylene terephthalate obtained by arbitrarily copolymerizing, for example, isophthalic acid as a dicarboxylic acid, cyclohexanedimethanol, 1,4-butanediol, diethylene glycol or the like as a diol. it can.
Specific examples of the polyolefin include an α-olefin homopolymer, and examples thereof include a propylene homopolymer and a homopolymer of 4-methylpentene-1.
Specific examples of the polyolefin copolymer include copolymers such as ethylene, propylene, other α-olefins and vinyl monomers.
 前記離形層は、シリコーンなどの離形剤のほか、変性ポリオレフィンを含む層とするのが好ましい。
 ここで、前記離形層を構成する変性オレフィンとしては、不飽和カルボン酸又はその無水物、あるいはシラン系カップリング剤で変性されたポリオレフィンを主成分とする樹脂を挙げることができる。
The release layer is preferably a layer containing a modified polyolefin in addition to a release agent such as silicone.
Here, examples of the modified olefin constituting the release layer include resins mainly composed of an unsaturated carboxylic acid or an anhydride thereof, or a polyolefin modified with a silane coupling agent.
 前記不飽和カルボン酸又はその無水物としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸、イタコン酸、無水イタコン酸あるいはこれらの誘導体のモノエポキシ化合物と前記酸とのエステル化合物、分子内にこれらの酸と反応し得る基を有する重合体と酸との反応生成物などを挙げることができる。また、これらの金属塩も使用することができる。これらの中でも、無水マレイン酸がより好ましく用いられる。また、これらの共重合体は、各々単独に、又は2種以上を混合して使用することができる。 Examples of the unsaturated carboxylic acid or its anhydride include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, citraconic acid, citraconic anhydride, itaconic acid, itaconic anhydride or monoepoxy compounds of these derivatives and the acid. Ester compounds, polymers having a group capable of reacting with these acids in the molecule, and reaction products of the acids. These metal salts can also be used. Among these, maleic anhydride is more preferably used. Moreover, these copolymers can be used individually or in mixture of 2 or more types, respectively.
 変性ポリオレフィン系樹脂を製造するには、例えば、予めポリマーを重合する段階でこれらの変性モノマーを共重合させることもできるし、一旦重合したポリマーにこれらの変性モノマーをグラフト共重合させることもできる。また変性ポリオレフィン系樹脂としては、これらの変性モノマーを単独で又は複数を併用し、その含有率が0.1質量%以上、好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、5質量%以下、好ましくは4.5質量%以下、さらに好ましくは4.0質量%以下の範囲のものが好適に使用される。この中でもグラフト変性したものが好適に用いられる。 In order to produce a modified polyolefin-based resin, for example, these modified monomers can be copolymerized at the stage of polymerizing in advance, or these modified monomers can be graft copolymerized with the polymer once polymerized. Further, as the modified polyolefin resin, these modified monomers may be used alone or in combination, and the content thereof is 0.1% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more. In the range of 5% by mass or less, preferably 4.5% by mass or less, more preferably 4.0% by mass or less is preferably used. Of these, those that have been graft-modified are preferably used.
 変性ポリオレフィン系樹脂の好適な例としては、無水マレイン酸変性ポリプロピレン樹脂、無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸エチレン-酢酸ビニル共重合体などを挙げることができる。 Preferable examples of the modified polyolefin resin include maleic anhydride-modified polypropylene resin, maleic anhydride-modified polyethylene resin, maleic anhydride ethylene-vinyl acetate copolymer, and the like.
 被覆部Iの厚さは、成形性の観点から、10μm~500μmであるのが好ましく、中でも20μm以上或いは300μm以下、その中でも30μm以上或いは150μm以下であるのが特に好ましい。 From the viewpoint of moldability, the thickness of the covering portion I is preferably 10 μm to 500 μm, more preferably 20 μm or more and 300 μm or less, and particularly preferably 30 μm or more or 150 μm or less.
<被覆部II>
 上述のように、本粘着シート積層体は、粘着材層の表裏一側に剥離可能に被覆部Iを積層し、該被覆部Iとは反対側すなわち粘着材層の表裏他側に剥離可能に被覆部IIを積層してなる構成とすることができる。このように、粘着材層の表裏他側に剥離可能に被覆部IIを積層することで、ハンドリング性を高めることができる。但し、被覆部IIを積層しない構成とすることも可能である。
<Coating II>
As described above, this pressure-sensitive adhesive sheet laminate has a covering portion I laminated on the front and back sides of the pressure-sensitive adhesive layer so as to be peelable, and can be peeled on the opposite side of the covering portion I, that is, on the other side of the pressure-sensitive adhesive layer. It can be set as the structure which laminate | stacks the coating | coated part II. Thus, handling property can be improved by laminating | stacking the coating | coated part II on the front and back other side of an adhesive material layer so that peeling is possible. However, a configuration in which the covering portion II is not stacked is also possible.
 被覆部IIは、粘着材層の表裏他側に剥離可能に積層してなるものであれば、特にその材料及び構成を限定するものではない。 The covering portion II is not particularly limited in material and configuration as long as it is formed by being peelably laminated on the other side of the adhesive layer.
 被覆部IIは、例えば、前記被覆部Iと同じ積層構成及び材料であってもよく、その際、前記被覆部Iと同じ厚さであっても、異なる厚さであってもよい。
 被覆部IIが被覆部Iと同じ積層構成及び材料であれば、本粘着シート積層体を加熱した際などに反りが発生するのを防止することができる。
The covering portion II may be, for example, the same laminated structure and material as the covering portion I, and may be the same thickness as the covering portion I or a different thickness.
If the covering part II is the same laminate structure and material as the covering part I, it is possible to prevent warping from occurring when the present adhesive sheet laminate is heated.
 被覆部IIは、被覆部Iと同じ構成としつつ、100℃における貯蔵弾性率E’(MA)、30℃における貯蔵弾性率E’(MB)、それらの比率(E’(MB)/E’(MA))、剥離力F(C)、剥離力F(D)等が被覆部Iと異なるものを採用することもできる。
 さらに被覆部IIは、前記被覆部Iと異なる積層構成及び材料であってもよい。
 被覆部IIには、例えば通常使用されている離形フィルム(「剥離フィルム」とも称されている)を使用することもできる。具体的には、100℃における貯蔵弾性率E’(MC)が2.0×10~1.0×1011Paであるような材料が挙げられ、例えば2軸延伸ポリエチレンテレフタレート(PET)フィルムなどを用いることができる。
The covering portion II has the same configuration as the covering portion I, but has a storage elastic modulus E ′ (MA) at 100 ° C., a storage elastic modulus E ′ (MB) at 30 ° C., and a ratio thereof (E ′ (MB) / E ′). (MA)), peel force F (C), peel force F (D), and the like may be different from those of the covering portion I.
Further, the covering portion II may have a laminated structure and material different from those of the covering portion I.
For the covering part II, for example, a generally used release film (also referred to as “release film”) can be used. Specific examples include materials having a storage elastic modulus E ′ (MC) at 100 ° C. of 2.0 × 10 9 to 1.0 × 10 11 Pa, such as a biaxially stretched polyethylene terephthalate (PET) film. Etc. can be used.
[被覆部I]
 上記被覆部Iの構成例として、共重合ポリエステルフィルムの片面に塗布層が設けられた塗布フィルムであり、100℃での貯蔵弾性率E’が1.5×10Pa以下であることを特徴とする塗布フィルム(「本塗布フィルム」と称する)について説明する。
 本塗布フィルムを用いれば、例えば、前記粘着シート積層体を加熱した後、離型性を有する塗布層を設けた塗布フィルムに型を押し付けて成型することにより、被着体表面の凹凸部と符合する凹凸形状を粘着シート表面に精度高く形成することができる。また、塗布フィルムは、常態において形状保持性を維持することができるから、取り扱いが容易であるばかりでなく、硬過ぎないから、粘着シートに不要な意図しない凹凸をつけることを抑制することができる。
[Coating I]
As a structural example of the covering portion I, a coating film in which a coating layer is provided on one side of a copolyester film, and a storage elastic modulus E ′ at 100 ° C. is 1.5 × 10 9 Pa or less. The coated film (referred to as “the present coated film”) will be described.
If this coating film is used, for example, after heating the pressure-sensitive adhesive sheet laminate, the mold is pressed against a coating film provided with a coating layer having releasability so as to match the irregularities on the surface of the adherend. The uneven shape to be formed can be formed on the surface of the pressure sensitive adhesive sheet with high accuracy. In addition, since the coated film can maintain shape retention in a normal state, it is not only easy to handle, but also is not too hard, so that it is possible to suppress unnecessary unintended irregularities on the adhesive sheet. .
<共重合ポリエステルフィルム>
 本塗布フィルムを構成する共重合ポリエステルフィルムは単層構成であっても積層構成であってもよく、例えば、2層、3層構成以外にも本発明の要旨を超えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。また、例えば3層構成(表層/中間層/表層)とした場合に、その表層もしくは中間層のいずれか1つ、または2つ以上の層を共重合ポリエステル成分とし、それ以外の層は共重合成分を含まないポリエステル成分で構成することも可能である。
<Copolymerized polyester film>
The copolymerized polyester film constituting the coated film may have a single layer structure or a laminated structure. For example, in addition to the two-layer or three-layer structure, the copolymer polyester film has four layers or more unless the gist of the present invention is exceeded. The above multilayer may be used, and is not particularly limited. Also, for example, when a three-layer structure (surface layer / intermediate layer / surface layer) is used, one or more of the surface layer or intermediate layer is used as a copolymerized polyester component, and the other layers are copolymerized. It is also possible to comprise a polyester component that does not contain the component.
 また、共重合ポリエステルフィルムは、押出法により押出した溶融ポリエステルシートを冷却した後、必要に応じ、延伸したフィルムのことを指す。 The copolyester film refers to a film stretched as necessary after cooling the molten polyester sheet extruded by an extrusion method.
 共重合ポリエステルのジカルボン酸成分としては、テレフタル酸が好ましく、ほかには、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸などの公知のジカルボン酸の一種以上を、共重合成分として含んでいてもよい。また、ジオール成分としては、エチレングリコールが好ましく、ほかには、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、ネオペンチルグリコールなどの公知のジオールの一種以上を、共重合成分として含んでいてもよい。
 中でも、ジカルボン酸成分としてフタル酸、イソフタル酸、ジオール成分として1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、ジエチレングリコール等を任意に共重合させた共重合ポリエチレンテレフタレートがより好ましい。
As the dicarboxylic acid component of the copolyester, terephthalic acid is preferable. Besides, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid One or more known dicarboxylic acids such as cyclohexanedicarboxylic acid may be contained as a copolymerization component. As the diol component, ethylene glycol is preferable. In addition, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, neodymium One or more known diols such as pentyl glycol may be contained as a copolymerization component.
Of these, copolymerized polyethylene terephthalate obtained by arbitrarily copolymerizing phthalic acid or isophthalic acid as the dicarboxylic acid component and 1,4-cyclohexanedimethanol, 1,4-butanediol, diethylene glycol or the like as the diol component is more preferable.
 共重合成分の含有量は、1mol%以上50mol%以下が好ましく、3mol%以上或いは40mol%以下がより好ましく、4mol%以上或いは30mol%以下がさらに好ましい。共重合成分の含有量は、1mol%以上であることによって、粘着シートと積層させた時に、凹形状、凸形状、または凹凸形状を粘着シート表面に形成することができる。一方、50mol%以下であることによって、十分な寸法安定性を有するだけでなく、加工時におけるシワの発生を十分抑制することができる。 The content of the copolymer component is preferably 1 mol% or more and 50 mol% or less, more preferably 3 mol% or more or 40 mol% or less, and further preferably 4 mol% or more or 30 mol% or less. When the content of the copolymerization component is 1 mol% or more, a concave shape, a convex shape, or an uneven shape can be formed on the pressure-sensitive adhesive sheet surface when laminated with the pressure-sensitive adhesive sheet. On the other hand, by being 50 mol% or less, not only has sufficient dimensional stability, but generation | occurrence | production of the wrinkle at the time of a process can fully be suppressed.
 共重合ポリエステルフィルムの融点は、好ましくは260℃以下、より好ましくは200~255℃の範囲となるように設計するのが好ましい。前記融点が260℃以下であることによって、延伸後の熱処理工程において、共重合ポリエステルフィルムの融点より低い温度の熱処理でも十分な強度を得ることが可能となる。 The melting point of the copolymerized polyester film is preferably designed to be 260 ° C. or lower, more preferably 200 to 255 ° C. When the melting point is 260 ° C. or less, sufficient strength can be obtained even in a heat treatment at a temperature lower than the melting point of the copolyester film in the heat treatment step after stretching.
 共重合ポリエステルフィルム中には粒子を含有させることが、フィルム作業性向上の点で望ましい。粒子としては、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸マグネシウム、リン酸カルシウム、フッ化リチウム、酸化アルミニウム、酸化珪素、カオリン等の無機粒子;アクリル樹脂、グアナミン樹脂等の有機粒子;触媒残差を粒子化させた析出粒子を挙げることができるが、これらに限定されるものではない。これら粒子の粒径や共重合ポリエステルフィルム中の含有量は目的に応じ適宜決めることができる。含有させる粒子は、単成分でもよく、また、2成分以上を同時に用いてもよい。また、各種安定剤、潤滑剤、帯電防止剤等を適宜加えることもできる。 It is desirable from the viewpoint of improving film workability that particles are contained in the copolymerized polyester film. As particles, inorganic particles such as calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, lithium phosphate, magnesium phosphate, calcium phosphate, lithium fluoride, aluminum oxide, silicon oxide, kaolin; organic such as acrylic resin and guanamine resin Particles: Examples thereof include, but are not limited to, precipitated particles obtained by making catalyst residuals into particles. The particle size of these particles and the content in the copolyester film can be appropriately determined according to the purpose. The particles to be contained may be a single component, or two or more components may be used simultaneously. Various stabilizers, lubricants, antistatic agents and the like can also be added as appropriate.
 共重合ポリエステルフィルム中に含有する粒子の平均粒径は、0.1~5.0μmが好ましい。前記粒子の平均粒径が0.1μm未満である場合、フィルムの滑り性が不十分と
なり、作業性が低下する場合がある。一方、前記粒子の平均粒径が5.0μmを超える場合、フィルム表面の平滑性が損なわれる場合がある。
The average particle size of the particles contained in the copolymerized polyester film is preferably 0.1 to 5.0 μm. When the average particle size of the particles is less than 0.1 μm, the slipperiness of the film becomes insufficient and workability may be lowered. On the other hand, when the average particle diameter of the particles exceeds 5.0 μm, the smoothness of the film surface may be impaired.
 共重合ポリエステルフィルム中に含有する粒子の含有量は0.01~0.3重量%が好ましい。前記粒子の含有量が0.01重量%未満である場合、フィルムの滑り性が不十分となり、作業性が低下する場合がある。一方、前記粒子の含有量が0.3重量%を超える場合、フィルム表面の平滑性が損なわれる場合がある。 The content of particles contained in the copolymerized polyester film is preferably 0.01 to 0.3% by weight. When the content of the particles is less than 0.01% by weight, the slipperiness of the film becomes insufficient and workability may be lowered. On the other hand, when the content of the particles exceeds 0.3% by weight, the smoothness of the film surface may be impaired.
 共重合ポリエステルフィルム中に粒子を添加する方法としては、特に限定されるものではなく、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法、ポリエステル製造工程系で粒子を析出させる方法になどによって行われる。 The method for adding particles to the copolymerized polyester film is not particularly limited, and a known method can be adopted. For example, it can be added at any stage for producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or before the start of the polycondensation reaction after completion of the transesterification reaction. The condensation reaction may proceed. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. For example, a method for depositing particles in a polyester production process system.
 共重合ポリエステルの極限粘度は、通常0.40~1.10dl/g、好ましくは0.45~0.90dl/g、さらに好ましくは0.50~0.80dl/gである。極限粘度が0.40dl/g未満では、フィルムの機械的強度が弱くなる傾向があり、極限粘度が1.10dl/gを超える場合は、溶融粘度が高くなり、押出機に負荷が過剰にかかる場合がある。 The intrinsic viscosity of the copolyester is usually 0.40 to 1.10 dl / g, preferably 0.45 to 0.90 dl / g, more preferably 0.50 to 0.80 dl / g. When the intrinsic viscosity is less than 0.40 dl / g, the mechanical strength of the film tends to be weakened. When the intrinsic viscosity exceeds 1.10 dl / g, the melt viscosity becomes high and the extruder is overloaded. There is a case.
 次に共重合ポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。 Next, a production example of the copolyester film will be specifically described, but it is not limited to the following production example.
 まず、先に述べた共重合ポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高める必要があり、静電印加密着法および/または液体塗布密着法が好ましく採用される。
 次に得られた未延伸シートは少なくとも一軸方向に延伸されるのが好ましく、二軸方向に延伸される二軸延伸がより好ましい。例えば二軸延伸として、逐次二軸延伸の場合、前記未延伸シートを一方向にロールまたはテンター方式の延伸機により機械方向に延伸する。延伸温度は、通常70~120℃、好ましくは75~110℃であり、延伸倍率は通常2.5~7.0倍、好ましくは3.0~6.0倍である。次いで、一段目の延伸方向(機械方向)と垂直方向に延伸する。延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7.0倍、好ましくは3.5~6.0倍である。そして、引き続き150~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上述の二軸延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。
First, a method of using the copolymer polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is necessary to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed.
Next, the obtained unstretched sheet is preferably stretched at least in a uniaxial direction, and more preferably biaxially stretched in a biaxial direction. For example, in the case of sequential biaxial stretching as biaxial stretching, the unstretched sheet is stretched in the machine direction in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 75 to 110 ° C., and the stretching ratio is usually 2.5 to 7.0 times, preferably 3.0 to 6.0 times. Next, the film is stretched in the direction perpendicular to the first-stage stretching direction (machine direction). The stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7.0 times, preferably 3.5 to 6.0 times. Subsequently, heat treatment is performed at a temperature of 150 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film. In the above-described biaxial stretching, a method of performing unidirectional stretching in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、共重合ポリエステルフィルムの製造に関しては、同時二軸延伸を採用することもできる。同時二軸延伸は、前記未延伸シートを通常70~120℃、好ましくは75~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法である。延伸倍率としては、面積倍率で好ましくは4~50倍、より好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き150~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸延伸フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来から公知の延伸方式を採用することができる。 Also, simultaneous biaxial stretching can be adopted for the production of the copolyester film. Simultaneous biaxial stretching is a method in which the unstretched sheet is stretched and oriented in the machine direction and the width direction at the same time, usually at a temperature of 70 to 120 ° C., preferably 75 to 110 ° C. The draw ratio is preferably 4 to 50 times, more preferably 7 to 35 times, and still more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 150 to 250 ° C. under tension or under relaxation within 30% to obtain a biaxially stretched film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be employed.
(塗布層)
 本塗布フィルムでは、共重合ポリエステルフィルムの少なくとも片面に塗布層を設けることが重要である。塗布層としては、特に限定はされないが、離型層、帯電防止層、オリゴマー封止層、易接着層、プライマー層などが具体的に挙げられる。中でも、粘着シートと積層させた粘着シート積層体を製造する上では、離型層がより好ましい。また、上記のような機能層を2種類以上組み合わせることも可能である。
(Coating layer)
In this coating film, it is important to provide a coating layer on at least one side of the copolymerized polyester film. Although it does not specifically limit as a coating layer, A mold release layer, an antistatic layer, an oligomer sealing layer, an easily bonding layer, a primer layer, etc. are mentioned concretely. Especially, when manufacturing the adhesive sheet laminated body laminated | stacked with the adhesive sheet, a mold release layer is more preferable. It is also possible to combine two or more types of functional layers as described above.
 塗布フィルムを構成する塗布層の具体例として、離型層について以下に説明する。 As a specific example of the coating layer constituting the coating film, the release layer will be described below.
 離型層に用いる樹脂の種類は、具体的には硬化型シリコーン樹脂、フッ素系樹脂、ポリオレフィン系樹脂などが挙げられるが、中でも硬化型シリコーン樹脂が好ましい。硬化型シリコーン樹脂でも、硬化型シリコーン樹脂を主成分とするタイプでもよいし、本発明の主旨を損なわない範囲において、ウレタン樹脂、エポキシ樹脂、アルキッド樹脂等の有機樹脂とのグラフト重合等による変性シリコーンタイプ等を使用してもよい。 Specific examples of the resin used for the release layer include a curable silicone resin, a fluorine-based resin, and a polyolefin-based resin, among which a curable silicone resin is preferable. Either a curable silicone resin or a type having a curable silicone resin as a main component, or a modified silicone by graft polymerization with an organic resin such as a urethane resin, an epoxy resin, or an alkyd resin as long as the gist of the present invention is not impaired. A type or the like may be used.
 硬化型シリコーン樹脂の種類としては、付加型・縮合型・紫外線硬化型・電子線硬化型・無溶剤型等、何れの硬化反応タイプでも用いることができる。具体例を挙げると、信越化学工業(株)製KS-774、KS-775、KS-778、KS-779H、KS-847H、KS-856、X-62-2422、X-62-2461、X-62-1387、X-62-5039、X-62-5040、KNS-3051、X-62-1496、KNS320A、KNS316、X-62-1574A/B、X-62-7052、X-62-7028A/B、X-62-7619、X-62-7213;モメンティブ・パフォーマンス・マテリアルズ製YSR-3022、TPR-6700、TPR-6720、TPR-6721、TPR6500、TPR6501、UV9300、UV9425、XS56-A2775、XS56-A2982、UV9430、TPR6600、TPR6604、TPR6605;東レ・ダウコ-ニング(株)製SRX357、SRX211、SD7220、SD7292、LTC750A、LTC760A、LTC303E、SP7259、BY24-468C、SP7248S、BY24-452、DKQ3-202、DKQ3-203、DKQ3-204、DKQ3-205、DKQ3-210等が例示される。さらに離型層の剥離性等を調整するために剥離コントロール剤を併用してもよい。 As the type of the curable silicone resin, any of the curing reaction types such as an addition type, a condensation type, an ultraviolet curable type, an electron beam curable type, and a solventless type can be used. Specific examples include KS-774, KS-775, KS-778, KS-779H, KS-847H, KS-856, X-62-2422, X-62-2461, X, manufactured by Shin-Etsu Chemical Co., Ltd. -62-1387, X-62-5039, X-62-5040, KNS-3051, X-62-1496, KNS320A, KNS316, X-62-1574A / B, X-62-7052, X-62-7028A / B, X-62-7619, X-62-7213; YSR-3022, TPR-6700, TPR-6720, TPR-6721, TPR6500, TPR6501, UV9300, UV9425, XS56-A2775, manufactured by Momentive Performance Materials XS56-A2982, UV9430, TPR6600, TPR66 4, TPR 6605; SRX357, SRX211, SD7220, SD7292, LTC750A, LTC760A, LTC303E, SP7259, BY24-468C, SP7248S, BY24-452, DKQ3-202, DKQ3-203, manufactured by Toray Dow Corning Co., Ltd. DKQ3-205, DKQ3-210, etc. Further, a release control agent may be used in combination to adjust the release property of the release layer.
 共重合ポリエステルフィルム上に離型層を形成する際の硬化条件は、特に限定されない。オフラインコーティングにより離型層を設ける場合、通常、120~200℃で3~40秒間、好ましくは100~180℃で3~40秒間を目安として熱処理を行うのが良い。また、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。尚、活性エネルギー線照射による硬化のためのエネルギー源としては、従来から公知の装置,エネルギー源を用いることができる。離型層の塗工量(乾燥後)は塗工性の面から、通常、0.005~1g/m、好ましくは0.005~0.5g/m、さらに好ましくは0.01~0.2g/m範囲である。塗工量(乾燥後)が0.005g/m未満の場合、塗工性の面より安定性に欠け、均一な塗膜を得るのが困難になる場合がある。一方、1g/mを超えて厚塗りにする場合には離型層自体の塗膜密着性、硬化性等が低下する場合がある。 The curing conditions for forming the release layer on the copolymerized polyester film are not particularly limited. In the case of providing a release layer by off-line coating, heat treatment is usually performed at 120 to 200 ° C. for 3 to 40 seconds, preferably 100 to 180 ° C. for 3 to 40 seconds. Moreover, you may use together heat processing and active energy ray irradiation, such as ultraviolet irradiation, as needed. In addition, a conventionally well-known apparatus and energy source can be used as an energy source for hardening by active energy ray irradiation. The coating amount (after drying) of the release layer is usually 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 , and more preferably 0.01 to 0.5 g from the viewpoint of coating properties. The range is 0.2 g / m 2 . When the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film. On the other hand, when the coating is thicker than 1 g / m 2 , the coating layer adhesion and curability of the release layer itself may be lowered.
 共重合ポリエステルフィルムに離型層を設ける方法として、リバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。塗工方式に関しては「コーティング方式」(槇書店 原崎勇次著、1979年発行)に記載例がある。 Conventionally known coating methods such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, and curtain coating can be used as a method for providing a release layer on the copolymerized polyester film. Regarding the coating method, there is a description example in “Coating method” (Tsubaki Shoten, written by Yuji Harasaki, published in 1979).
 また、共重合ポリエステルフィルムには予め、コロナ処理、プラズマ処理、紫外線照射処理など、塗布層を設けるために表面処理を施してもよい。 In addition, the copolyester film may be subjected to a surface treatment in advance in order to provide a coating layer such as a corona treatment, a plasma treatment, or an ultraviolet irradiation treatment.
(塗布フィルム)
 本塗布フィルムの厚みは、通常、9μm~250μmであり、好ましくは12μm~125μm、さらに好ましくは25μm~75μmである。
 前記厚みが9μm未満の場合、フィルム張力が不十分となり、スリット時にしわが入り易い等の不具合を生じる場合がある。一方、250μmを超えると、例えば、曲面形状を有する成形品への追従性が不十分となる場合がある。
(Coating film)
The thickness of the coated film is usually 9 μm to 250 μm, preferably 12 μm to 125 μm, and more preferably 25 μm to 75 μm.
When the thickness is less than 9 μm, the film tension becomes insufficient, and there may be a problem that wrinkles are likely to occur when slitting. On the other hand, when it exceeds 250 μm, for example, the followability to a molded product having a curved shape may be insufficient.
 本塗布フィルムの100℃での貯蔵弾性率E’は1.5×10Pa以下であり、好ましくは1.0×10Pa以下である。前記貯蔵弾性率E’が1.5×10Pa以下であることによって、粘着シートと積層させた時に、凹形状、凸形状、もしくは凹凸形状を粘着シート表面に形成することができる。100℃での貯蔵弾性率E’が前記範囲を満たすためには、共重合ポリエステルフィルムに含まれる共重合成分の種類および含有量を調整することによって満たすことができる。
 一方、下限としては特に限定はされないが、1.0×10Pa以上が好ましく、1.0×10Pa以上がより好ましい。
The storage elastic modulus E ′ at 100 ° C. of the coated film is 1.5 × 10 9 Pa or less, preferably 1.0 × 10 9 Pa or less. When the storage elastic modulus E ′ is 1.5 × 10 9 Pa or less, a concave shape, a convex shape, or a concave-convex shape can be formed on the pressure-sensitive adhesive sheet surface when laminated with the pressure-sensitive adhesive sheet. In order for the storage elastic modulus E ′ at 100 ° C. to satisfy the above range, it can be satisfied by adjusting the type and content of the copolymer component contained in the copolymer polyester film.
On the other hand, although it does not specifically limit as a minimum, 1.0 * 10 < 7 > Pa or more is preferable and 1.0 * 10 < 8 > Pa or more is more preferable.
 本塗布フィルムの120℃で5分間加熱後の収縮率は3.0%以下であり、2.5%以下が好ましい。前記収縮率が3.0%以下であることによって、十分な寸法安定性を有するため、粘着シートと積層させた時に、凹形状、凸形状、もしくは凹凸形状を粘着シート表面に形成することができる。さらに、加工時にシワの発生が抑えられるため、粘着シートにシワが転写されず、十分な外観を有する粘着シートを製造することができる。 The shrinkage ratio of the coated film after heating at 120 ° C. for 5 minutes is 3.0% or less, preferably 2.5% or less. When the shrinkage rate is 3.0% or less, sufficient dimensional stability is obtained, so that when the adhesive sheet is laminated, a concave shape, a convex shape, or a concave-convex shape can be formed on the pressure-sensitive adhesive sheet surface. . Furthermore, since the generation of wrinkles is suppressed during processing, wrinkles are not transferred to the pressure-sensitive adhesive sheet, and a pressure-sensitive adhesive sheet having a sufficient appearance can be produced.
 中でも、120℃で5分間加熱後の機械方向(MD)の収縮率は3.0%以下が好ましく、2.5%以下が好ましい。一方、下限としては特に限定はされないが、0.1%以上が好ましく、0.5%以上がより好ましい。 Among them, the shrinkage in the machine direction (MD) after heating at 120 ° C. for 5 minutes is preferably 3.0% or less, and preferably 2.5% or less. On the other hand, although it does not specifically limit as a minimum, 0.1% or more is preferable and 0.5% or more is more preferable.
 また、120℃で5分間加熱後の機械方向と垂直方向(TD)の収縮率は1.0%以下が好ましく、0.8%以下が好ましい。一方、下限としては、-1.0%以上が好ましく、-0.5%以上がより好ましい。 Also, the shrinkage in the machine direction and the vertical direction (TD) after heating at 120 ° C. for 5 minutes is preferably 1.0% or less, and preferably 0.8% or less. On the other hand, the lower limit is preferably −1.0% or more, more preferably −0.5% or more.
 本塗布フィルムは、成形加工時、金型へのオリゴマー(環状三量体)付着による汚染防止の観点から、熱処理(180℃、10分間)後、塗布層表面からのオリゴマー抽出量が1.0×10-3mg/cm2以下であることが好ましく、より好ましくは5.0×10-4mg/cm以下である。
 前記オリゴマー抽出量が当該範囲を超える場合、成形加工時、金型へのオリゴマー付着による汚染がひどくなる場合がある。一例として、何度も連続で加熱成形させる加工においては、析出オリゴマーの堆積により金型汚染が促進されるため、加熱時のオリゴマー析出量の制御が重要となる。前記理由により、前記オリゴマー抽出量は少なければ少ないほどより好ましい。
From the viewpoint of preventing contamination due to adhesion of oligomer (cyclic trimer) to the mold during molding, this coated film has an oligomer extraction amount of 1.0 from the surface of the coating layer after heat treatment (180 ° C., 10 minutes). × 10 −3 mg / cm 2 or less is preferable, and 5.0 × 10 −4 mg / cm 2 or less is more preferable.
When the oligomer extraction amount exceeds the above range, contamination due to oligomer adhesion to the mold may be serious during molding. As an example, in the process of continuously heat-molding many times, mold contamination is promoted by the deposition of precipitated oligomers, so it is important to control the amount of oligomer precipitation during heating. For the above reasons, the smaller the amount of oligomer extracted, the more preferable.
[本粘着シート積層体の製造方法]
 本粘着シート積層体の製造方法の一例としては、例えば、粘着剤組成物を被覆部I又はIIの2枚で挟み、ラミネータを用いて粘着材層を形成する方法を挙げることができる。また、その他の方法として、被覆部I又はIIに粘着剤組成物を塗布して粘着材層を形成する方法を挙げることができる。但し、かかる製造方法に限定するものではない。
 粘着剤組成物を塗布する方法としては、例えばリバースロールコート、グラビアコート、バーコート、ドクターブレードコート等、従来公知の塗工方式を挙げることができる。
[Method for producing this pressure-sensitive adhesive sheet laminate]
As an example of the manufacturing method of this adhesive sheet laminated body, the method of forming an adhesive material layer using a laminator can be mentioned, for example, by sandwiching an adhesive composition between two coating parts I or II. Moreover, as another method, the method of apply | coating an adhesive composition to the coating | coated part I or II, and forming the adhesive material layer can be mentioned. However, it is not limited to this manufacturing method.
Examples of the method for applying the pressure-sensitive adhesive composition include conventionally known coating methods such as reverse roll coating, gravure coating, bar coating, and doctor blade coating.
[本賦形粘着シート積層体]
 本粘着シート積層体を用いて、次のように、粘着材層表面に凹凸形状が形成された賦形粘着シート積層体1(「本賦形粘着シート積層体1」と称する)を作製することができる。
[This shaped adhesive sheet laminate]
Using this pressure-sensitive adhesive sheet laminate, a shaped pressure-sensitive adhesive sheet laminate 1 (referred to as “the present shaped pressure-sensitive adhesive sheet laminate 1”) having an uneven shape formed on the surface of the pressure-sensitive adhesive layer is produced as follows. Can do.
 本賦形粘着シート積層体1は、図3に示すように、粘着材層2と、当該粘着材層2の表裏一側に剥離可能に積層してなる被覆部Iと、当該粘着材層2の表裏他側に剥離可能に積層してなる被覆部IIとを備え、
 粘着材層2は、表裏一側表面2Aに凹部又は凸部又は凹凸部(「粘着シート表面凹凸部2B」と称する)を備え、且つ、表裏他側表面2Cは平坦面であり、
 被覆部Iは、前記粘着シート2の表裏一側表面2Aに密着しており、表裏一側表面3Aに凹部又は凸部又は凹凸部(「被覆部表面凹凸部3B」と称する)を備え、且つ、シート裏面3Cに前記粘着シート表面凹凸部2Bと符合する、言い換えれば嵌合する凹凸をなす凸部又は凹部又は凸凹部(「保護シート裏面凸凹部3D」と称する)を備え、
 被覆部IIは、前記粘着シート2の表裏他側表面2Cに沿って平坦面からなる構成を備えたものとすることができる。
As shown in FIG. 3, the shaped adhesive sheet laminate 1 includes an adhesive material layer 2, a covering portion I that is detachably laminated on the front and back sides of the adhesive material layer 2, and the adhesive material layer 2. And the other side of the front and back of the cover part II that is laminated in a peelable manner,
The pressure-sensitive adhesive layer 2 includes a concave portion, a convex portion, or an uneven portion (referred to as “adhesive sheet surface uneven portion 2B”) on the front and back one side surface 2A, and the front and back other side surface 2C is a flat surface,
The covering portion I is in close contact with the front and back one side surface 2A of the pressure-sensitive adhesive sheet 2 and includes a concave portion, a convex portion, or an uneven portion (referred to as “covering portion surface uneven portion 3B”) on the front and back one side surface 3A. In addition, the sheet back surface 3C is provided with a convex portion, a concave portion or a convex concave portion (referred to as "protective sheet back surface convex concave portion 3D") that coincides with the adhesive sheet surface concave and convex portion 2B, in other words, is fitted.
The covering portion II may have a configuration including a flat surface along the front and back other surface 2C of the pressure-sensitive adhesive sheet 2.
 なお、表裏他側表面2Cは、図3に示すように、平坦面とすることもできるし、また、表裏他側表面2Cにも、凹部又は凸部又は凹凸部を備えるように形成することもできる。 The front and back other surface 2C can be a flat surface as shown in FIG. 3, and the front and back other surface 2C can also be formed to have a concave portion, a convex portion, or an uneven portion. it can.
 このような構成を備えた本賦形粘着シート積層体1は、図2に示すように、前記本粘着シート積層体をプレス成形、真空成形、圧空成形又はロール成形することによって、本粘着シート積層体に対して一体的に凹凸形状を賦形することにより製造することができる。
 このように製造することにより、粘着材層2の粘着シート表面凹凸部2B、被覆部Iの保護シート表面凹凸部3B及び保護シート裏面凸凹部3Dは、同一箇所にそれぞれ対応して凹凸をなすものとすることができる。
As shown in FIG. 2, the present shaped adhesive sheet laminate 1 having such a structure is formed by subjecting the present adhesive sheet laminate to press molding, vacuum forming, pressure forming, or roll forming, thereby stacking the present adhesive sheet laminate. It can be manufactured by shaping the concavo-convex shape integrally with the body.
By manufacturing in this way, the pressure-sensitive adhesive sheet surface uneven portion 2B of the pressure-sensitive adhesive layer 2, the protective sheet surface uneven portion 3B and the protective sheet back surface concave / convex portion 3D of the covering portion I have unevenness corresponding to the same location, respectively. It can be.
 粘着材層2は、例えば画像表示装置を構成する2つの画像表示装置構成部材(それぞれ「被着体」とも称する)を貼り合わせるための両面粘着シートとして用いることができる。
 すなわち、前記粘着材層2における粘着シート表面凹凸部2Bは、前記被着体の貼り合わせ面(「貼合面」とも称する)における凹部又は凸部又は凹凸部(「被着体表面凹凸部」と称する)と符合するように、好ましくは同一輪郭形状に形成することができる。よって、被着体としての画像表示装置構成部材における被着体表面凹凸部に対して、本賦形粘着シート積層体1における粘着シート表面凹凸部2Bを嵌め合わせることができる。
The pressure-sensitive adhesive layer 2 can be used as a double-sided pressure-sensitive adhesive sheet for bonding together two image display device constituent members (each also referred to as “adhered body”) constituting the image display device, for example.
That is, the pressure-sensitive adhesive sheet surface uneven portion 2B in the pressure-sensitive adhesive layer 2 is a concave portion, a convex portion, or a concave-convex portion (“adhered surface uneven portion”) on the bonding surface (also referred to as “bonding surface”) of the adherend. So that they can be formed in the same contour shape. Therefore, the adhesive sheet surface uneven part 2B in the shaped adhesive sheet laminate 1 can be fitted to the adherend surface uneven part in the image display device constituting member as the adherend.
 ここで、前記画像表示装置としては、例えば液晶表示装置(LCD)、有機EL表示装置(OLED)、電子ペーパー、微小電気機械システム(MEMS)ディスプレイ及びプラズマディスプレイ(PDP)などを備えたスマートフォン、タブレット端末、携帯電話、テレビ、ゲーム機、パーソナルコンピュータ、カーナビゲーションシステム、ATM、魚群探知機などを挙げることができる。ただし、これらに限定するものではない。
 そして、被着体としての画像表示装置構成部材とは、これら画像表示装置を構成する部材であり、例えば表面保護パネル、タッチパネル、画像表示パネルなどを挙げることができ、本賦形粘着シート積層体1は、例えば、表面保護パネル、タッチパネル及び画像表示パネルから選択されるいずれか2つの被着体を貼合するために用いることができる。例えば、表面保護パネルとタッチパネルとを、或いは、タッチパネルと画像表示パネルとを貼合するために用いることができる。ただし、被着体をこれらに限定するものではない。
Here, as the image display device, for example, a smartphone or a tablet including a liquid crystal display device (LCD), an organic EL display device (OLED), electronic paper, a micro electro mechanical system (MEMS) display, a plasma display (PDP), and the like A terminal, a mobile phone, a television, a game machine, a personal computer, a car navigation system, an ATM, a fish finder, and the like can be given. However, it is not limited to these.
The image display device constituent member as the adherend is a member constituting these image display devices, and examples thereof include a surface protection panel, a touch panel, and an image display panel. 1 can be used for bonding any two adherends selected from, for example, a surface protection panel, a touch panel, and an image display panel. For example, it can be used to bond a surface protection panel and a touch panel, or a touch panel and an image display panel. However, the adherend is not limited to these.
<製造方法>
 ここで、本賦形粘着シート積層体1の製造方法の詳細について説明する。
<Manufacturing method>
Here, the detail of the manufacturing method of this shaped adhesive sheet laminated body 1 is demonstrated.
 上述したように、図2に示すように、前記本粘着シート積層体を加熱して成形することによって、本粘着シート積層体1に対して一体的に凹凸形状を賦形することにより製造することができる。
 この際、成形加工方法としては、例えばプレス成形、真空成形、圧空成形、ロールによる賦形、積層による賦形などを挙げることができる。中でも成形性及び加工性の観点からプレス成形が特に好ましい。
As described above, as shown in FIG. 2, by manufacturing the pressure-sensitive adhesive sheet laminate by heating and forming it, the concave-convex shape is integrally formed on the pressure-sensitive adhesive sheet laminate 1. Can do.
In this case, examples of the forming method include press forming, vacuum forming, pressure forming, forming by a roll, forming by lamination, and the like. Among these, press molding is particularly preferable from the viewpoints of moldability and workability.
 より詳細な具体例について説明する。
 本粘着シート積層体をヒーターで予熱し、所定の温度に温まった段階で本粘着シート積層体をプレス成形機に搬送し、予め被着体の印刷段差形状に相当する分の凹凸形状をかたどった金型でプレス加工を行うと共に冷却することで、本粘着シート積層体の片面に金型形状を転写させて、片面に凹凸賦形された本賦形粘着シート積層体1を製造することができる。
A more specific example will be described.
The pressure-sensitive adhesive sheet laminate is preheated with a heater, and the pressure-sensitive adhesive sheet laminate is transported to a press molding machine when it is heated to a predetermined temperature, and has a shape corresponding to the printed step shape of the adherend in advance. By performing press working with a mold and cooling, the shape of the pressure-sensitive adhesive sheet laminate 1 can be produced by transferring the shape of the mold to one side of the pressure-sensitive adhesive sheet laminate and forming the unevenness on one side. .
 この際、本粘着シート積層体の予熱は、粘着材層が柔軟化する温度、具体的には70~120℃に加熱するのが好ましい。 At this time, the preheating of the pressure-sensitive adhesive sheet laminate is preferably performed at a temperature at which the pressure-sensitive adhesive layer is softened, specifically 70 to 120 ° C.
 凹凸賦形に使用する型の材質は特に限定されない。例えばシリコーン樹脂やフッ素樹脂等の樹脂系材料、ステンレスやアルミなどの金属系材料等を挙げることができる。中でも被着体の凹凸賦形には高精度の成形性が求められることから成形時の温度コントロールが可能な金属系の金型が特に好ましい。
 また、プレス加工後の冷却は、型開き後に冷却してもよいし、金型を冷却しておき、プレスと同時に冷却するようにしてもよい。
The material of the type | mold used for uneven | corrugated shaping is not specifically limited. For example, resin-based materials such as silicone resin and fluororesin, and metal-based materials such as stainless steel and aluminum can be used. Among these, metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
Further, the cooling after the press working may be performed after the mold is opened, or the mold may be cooled and cooled at the same time as pressing.
 なお、本発明においてプレス圧、プレス時間等の成形にかかる条件は特に指定はなく、成形される寸法や形状、使用する材料等によって適宜調整すればよい。
 また、成形加工後にトムソン刃やロータリー刃等を用いてカットしてもよい。
In the present invention, molding conditions such as pressing pressure and pressing time are not particularly specified, and may be appropriately adjusted depending on the dimension and shape to be molded, the material to be used, and the like.
Moreover, you may cut using a Thomson blade, a rotary blade, etc. after a shaping | molding process.
[本賦形粘着シート積層体の製造方法]
 次に、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え、当該粘着材の一面には凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)が賦形されてなる構成を備えた賦形粘着シート積層体の製造方法の特に好ましい形態について説明する。
[Manufacturing method of the present shaped adhesive sheet laminate]
Next, an adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer are provided. A particularly preferable embodiment of a method for producing a shaped pressure-sensitive adhesive sheet laminate having a structure formed by shaping a part ”will be described.
 後述する本製造方法1及び本製造方法2に関する発明は、本被着体表面の凹凸部と符合する粘着材層表面凹凸部を精度高く粘着材層表面に形成することができ、好ましくは連続的に製造することができる新たな賦形粘着シート積層体の製造方法を提案せんとするものである。 In the invention relating to the present production method 1 and the present production method 2 described later, an adhesive material layer surface irregularity coinciding with the irregularities on the surface of the adherend can be formed on the adhesive material layer surface with high accuracy, and preferably continuous. The present invention proposes a new method for producing a shaped pressure-sensitive adhesive sheet laminate that can be produced.
 本発明の実施形態の一例として、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え、当該粘着材の一面には凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)が賦形されてなる構成を備えた賦形粘着シート積層体の製造方法において、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え粘着シート積層体を加熱し、加熱された粘着シート積層体を成形すると共に冷却して賦形粘着シート積層体を製造する製造方法であって、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paである状態で成形を開始し、被覆部Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paである状態で成形を終了することを特徴とする新たな賦形粘着シート積層体の製造方法(「本製造方法1」と称する)を提案する。
 本製造方法1ではさらに、前記新たな賦形粘着シート積層体の製造方法において、加熱された粘着シート積層体を成形する際、冷却した金型を用いて成形することを提案する。
As an example of an embodiment of the present invention, an adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer are provided, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion ( In the method for producing a shaped pressure-sensitive adhesive sheet laminate having a configuration in which the “adhesive material layer surface irregularity portion” is shaped, the pressure-sensitive adhesive layer and the pressure-sensitive adhesive layer are peelably laminated on one surface. And a heating method for forming a heated pressure-sensitive adhesive sheet laminate and cooling to produce a shaped pressure-sensitive adhesive sheet laminate, and heating the pressure-sensitive adhesive sheet laminate Then, molding was started in a state where the storage elastic modulus E ′ (MS) of the covering portion I was 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus E ′ (MF) of the covering portion I was ) Features that exits the molding while it is 5.0 × 10 7 ~ 1.0 × 10 10 Pa We propose a method for manufacturing a new shaping adhesive sheet laminate (referred to as "production method 1") to.
The present manufacturing method 1 further proposes that the heated pressure-sensitive adhesive sheet laminate is molded using a cooled mold in the new method for producing a shaped pressure-sensitive adhesive sheet laminate.
 本製造方法1によれば、例えば、前記粘着シート積層体を加熱した後、被覆部Iが所定の状態で成形を開始し、且つ被覆部Iが所定の状態で成形を終了することにより、被着体表面の凹凸部と符合する凹凸形状を粘着材層表面に精度高く形成することができる。
 さらに、加熱された粘着シート積層体を成形する際に、冷却した金型を用いて成形すれば、成形と同時に冷却を行い同時に終了することができるから、前記の製造方法を連続的に行うことができる。
According to this manufacturing method 1, for example, after the pressure-sensitive adhesive sheet laminate is heated, the covering portion I starts forming in a predetermined state, and the covering portion I finishes forming in the predetermined state. An uneven shape matching the uneven portion on the surface of the adherend can be formed with high accuracy on the surface of the adhesive layer.
Furthermore, when the heated pressure-sensitive adhesive sheet laminate is molded, if it is molded using a cooled mold, it can be cooled at the same time as the molding, and the process can be completed simultaneously. Can do.
<本製造方法1>
 本製造方法1は、本実施形態の一例に係る賦形粘着シート積層体の製造方法(「本製造方法」と称する)は、後述する粘着シート積層体を加熱し(加熱工程)、加熱された粘着シート積層体を成形すると共に冷却する(成形・冷却工程)工程を備えた製造方法である。
<This manufacturing method 1>
This manufacturing method 1 is a method for manufacturing a shaped pressure-sensitive adhesive sheet laminate (referred to as “the present manufacturing method”) according to an example of the present embodiment. It is a manufacturing method provided with the process of shape | molding and cooling an adhesive sheet laminated body (molding | cooling process).
 本製造方法1は、前記加熱工程及び前記成形・冷却工程を備えていれば、他の工程を備えていてもよい。例えば熱処理工程、搬送工程、スリット工程、裁断工程などの工程を必要に応じて備えていてもよい。但し、これらの工程に限定するものではない。 The present manufacturing method 1 may include other steps as long as it includes the heating step and the forming / cooling step. For example, you may provide processes, such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed. However, it is not limited to these processes.
(粘着シート積層体)
 本製造方法1における出発部材としての粘着シート積層体は、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備えていればよく、他の部材を備えていてもよい。例えば図1に示すように、粘着材層と、当該粘着材層の表裏一側に剥離可能に積層してなる被覆部Iと、当該粘着材層の表裏他側に剥離可能に積層してなる被覆部IIとを備えた粘着シート積層体を例示することができる。但し、被覆部IIを備えるか否かは任意であり、被覆部IIを積層しない構成としてもよい。
 なお、粘着シート積層体の詳細については、前述のとおりである。
(Adhesive sheet laminate)
The pressure-sensitive adhesive sheet laminate as a starting member in the production method 1 only needs to include a pressure-sensitive adhesive layer and a covering portion I that is detachably laminated on one surface of the pressure-sensitive adhesive layer, and includes other members. It may be. For example, as shown in FIG. 1, an adhesive material layer, a covering portion I that is detachably laminated on one side of the adhesive material layer, and a peelable laminate on the other side of the adhesive material layer. A pressure-sensitive adhesive sheet laminate provided with the covering portion II can be exemplified. However, whether or not the covering portion II is provided is arbitrary, and the covering portion II may not be stacked.
In addition, it is as above-mentioned about the detail of an adhesive sheet laminated body.
(加熱工程)
 本製造方法1では、前記粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が1.0×10~2.0×10Paである状態とするのが好ましい。
 被覆部Iの貯蔵弾性率E’(M)が前記範囲であれば、被覆部Iが成形に適した程度に変形させることが可能となり、且つ粘着材層の表面に所望の凹凸形状を精度良く賦形することができるようになる。
 かかる観点から、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が1.0×10~2.0×10Paである状態とするのが好ましく、中でも5.0×10Pa以上或いは1.0×10Pa以下、その中でも1.0×10Pa以上或いは5.0×10Pa以下である状態とするのがさらに好ましい。
 以上から、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が1.0×10~1.0×10Pa、或いは、1.0×10~5.0×10である状態とするのがより好ましく、中でも、5.0×10~2.0×10Pa、或いは、5.0×10~1.0×10Paである状態とするのがさらに好ましく、1.0×10~1.0×10Pa、或いは、1.0×10~~5.0×10である状態とするのがもっとも好ましい。
(Heating process)
In the present production method 1, the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is in the range of 1.0 × 10 6 to 2.0 × 10 9 Pa. preferable.
If the storage elastic modulus E ′ (M) of the covering portion I is in the above range, the covering portion I can be deformed to an extent suitable for molding, and a desired uneven shape is accurately formed on the surface of the adhesive layer. It can be shaped.
From this viewpoint, it is preferable to heat the pressure-sensitive adhesive sheet laminate so that the storage elastic modulus E ′ (M) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa. 5.0 × 10 6 Pa or more or 1.0 × 10 9 Pa or less, more preferably 1.0 × 10 7 Pa or more or 5.0 × 10 8 Pa or less.
From the above, the adhesive sheet laminate is heated, and the storage elastic modulus E ′ (M) of the covering portion I is 1.0 × 10 6 to 1.0 × 10 9 Pa, or 1.0 × 10 6 to 5 More preferably, it is in a state of 0.0 × 10 8 , among which 5.0 × 10 6 to 2.0 × 10 9 Pa, or 5.0 × 10 6 to 1.0 × 10 9 Pa. More preferably, the state is 1.0 × 10 7 to 1.0 × 10 9 Pa, or most preferably 1.0 × 10 7 to 5.0 × 10 8 .
 ここで、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が前記範囲になるように調整するためには、被覆部Iを構成する組成物の成分やゲル分率、重量平均分子量等に応じて、加熱温度を調整することで調整することができる。但し、かかる方法に限定するものではない。 Here, in order to adjust the storage elastic modulus E ′ (M) of the covering portion I within the above range by heating the pressure-sensitive adhesive sheet laminate, the components and gel components of the composition constituting the covering portion I can be adjusted. It can adjust by adjusting heating temperature according to a rate, a weight average molecular weight, etc. However, it is not limited to this method.
 さらに、前記粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が1.0×10~2.0×10Paであり、且つ、粘着材層の貯蔵弾性率G’(S)が1.0×10Pa未満である状態とするのがより一層好ましい。
 被覆部Iの貯蔵弾性率E’(M)を前記範囲に調整すれば、上述のような効果を得ることができるのに加えて、粘着材層の貯蔵弾性率G’(S)が1.0×10Pa未満であれば、十分な成形性を粘着材層に付与することができる。
 かかる観点から、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が前記範囲の状態であって、且つ、粘着材層の貯蔵弾性率G’(S)が1.0×10Pa未満である状態、中でも5.0×10Pa以上或いは5.0×10Pa以下である状態、その中でも1.0×10Pa以上或いは1.0×10Pa以下である状態とするのが好ましい。
 以上から、粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(M)が前記範囲の状態であって、且つ、粘着材層の貯蔵弾性率G’(S)が、5.0×10Pa以上1.0×10Pa未満、或いは、5.0×10Pa以上5.0×10Pa以下である状態とすることがより好ましく、中でも、1.0×10Pa以上1.0×10Pa未満、或いは、1.0×10Pa以上5.0×10Pa以下である状態とすることがさらに好ましく、1.0×10Pa以上1.0×10Pa以下である状態とするのがもっとも好ましい。
Further, the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elasticity of the pressure-sensitive adhesive layer is It is even more preferable that the rate G ′ (S) is less than 1.0 × 10 4 Pa.
If the storage elastic modulus E ′ (M) of the covering portion I is adjusted to the above range, the above-described effects can be obtained, and in addition, the storage elastic modulus G ′ (S) of the adhesive layer is 1. If it is less than 0 * 10 < 4 > Pa, sufficient moldability can be provided to an adhesive material layer.
From this viewpoint, the pressure-sensitive adhesive sheet laminate is heated so that the storage elastic modulus E ′ (M) of the covering portion I is in the above range, and the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is 1. In a state of less than 0.0 × 10 4 Pa, particularly in a state of 5.0 × 10 1 Pa or more or 5.0 × 10 3 Pa or less, in particular, 1.0 × 10 2 Pa or more or 1.0 × 10 3 It is preferable to be in a state of Pa or less.
From the above, the pressure-sensitive adhesive sheet laminate is heated, the storage elastic modulus E ′ (M) of the covering portion I is in the above range, and the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is 5 .0 × 10 1 Pa or more 1.0 × less than 10 4 Pa, or more preferably to the state is not more than 5.0 × 10 1 Pa or more 5.0 × 10 3 Pa, among others, 1.0 × 10 2 Pa or more 1.0 × less than 10 4 Pa, or more preferably be a state is 1.0 × 10 2 Pa or more 5.0 × 10 3 Pa or less, 1.0 × 10 2 Pa or more 1 Most preferably, it is in a state of 0.0 × 10 3 Pa or less.
 ここで、粘着材層の貯蔵弾性率G’(S)は、粘着材層を構成する組成物の成分やゲル分率、重量平均分子量等に応じて、加熱温度を調整することで調整することができる。但し、かかる方法に限定するものではない。 Here, the storage elastic modulus G ′ (S) of the pressure-sensitive adhesive layer is adjusted by adjusting the heating temperature according to the components, gel fraction, weight average molecular weight, etc. of the composition constituting the pressure-sensitive adhesive layer. Can do. However, it is not limited to this method.
 さらに、粘着シート積層体を加熱して、粘着材層の損失正接tanδの値が1.0以上となるようにするのが特に好ましい。なお、当該損失正接tanδについては後述する。
 粘着材層の損失正接tanδの値が1.0以上であれば、成形可能な程度に柔軟性を有することになるから好ましい。
 かかる観点から、粘着シート積層体を加熱して、粘着材層の損失正接tanδの値が1.0以上となるようにするのが特に好ましく、その中でも1.5以上或いは20以下、さらにその中でも3.0以上或いは10以下となるようにするのがさらに好ましい。但し、上限についてはこの限りではない。
Furthermore, it is particularly preferable to heat the pressure-sensitive adhesive sheet laminate so that the value of the loss tangent tan δ of the pressure-sensitive adhesive layer becomes 1.0 or more. The loss tangent tan δ will be described later.
If the value of the loss tangent tan δ of the pressure-sensitive adhesive layer is 1.0 or more, it is preferable that the adhesive material layer is flexible enough to be molded.
From this point of view, it is particularly preferable to heat the pressure-sensitive adhesive sheet laminate so that the value of the loss tangent tan δ of the pressure-sensitive adhesive layer is 1.0 or more. More preferably, it is 3.0 or more or 10 or less. However, the upper limit is not limited to this.
 本製造方法1では、粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃となるようにするのが好ましい。
 被覆部Iの表面温度が70℃以上であれば、粘着材層が十分に軟化し、且つ、被覆部Iを十分に変形可能とすることができ、180℃以下であれば、熱収縮によるシワの発生や、熱による粘着材層の分解等の弊害を抑制できることから、好ましい。
 かかる観点から、前記粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃となるようにするのが好ましく、中でも75℃以上或いは150℃以下、その中でも80℃以上或いは120℃以下となるようにするのがより一層好ましい。
In this production method 1, it is preferable to heat the pressure-sensitive adhesive sheet laminate so that the surface temperature of the covering portion I becomes 70 to 180 ° C.
If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer can be sufficiently softened and the covering portion I can be sufficiently deformed. It is preferable because adverse effects such as generation of heat and decomposition of the adhesive layer due to heat can be suppressed.
From this point of view, it is preferable that the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C., particularly 75 ° C. or higher or 150 ° C. or lower, especially 80 ° C. or higher or 120 ° C. It is even more preferable that the temperature is not higher than ° C.
 粘着シート積層体の加熱方法としては、例えば、電熱ヒーターなどの加熱体を内部に備えた上下の加熱板の間に粘着シート積層体を存在させて上下から加熱する方法や、加熱板で直接挟む方法、加熱ロールを用いる方法、熱水に浸漬させる方法等を挙げることができる。但し、これらの方法に限定するものではない。 As a method for heating the pressure-sensitive adhesive sheet laminate, for example, a method of heating the pressure-sensitive adhesive sheet laminate from above and below between upper and lower heating plates provided with a heating body such as an electric heater, a method of directly sandwiching with a heating plate, The method using a heating roll, the method of immersing in hot water, etc. can be mentioned. However, it is not limited to these methods.
(成形・冷却工程)
 本工程では、前記のように加熱された粘着シート積層体を成形して、粘着シート積層体を成形すると共に冷却する。すなわち、粘着材層及び被覆部Iが積層されて一体となった状態の粘着シート積層体をそのまま成形する。よって、金型によって被覆部Iが成形され、当該被覆部Iを介して粘着材層も同時に成形されることになる。
(Molding / cooling process)
In this step, the pressure-sensitive adhesive sheet laminate heated as described above is formed, and the pressure-sensitive adhesive sheet laminate is formed and cooled. That is, the pressure-sensitive adhesive sheet laminated body in a state where the pressure-sensitive adhesive layer and the covering portion I are laminated and integrated is formed as it is. Therefore, the covering portion I is formed by the mold, and the adhesive material layer is also simultaneously formed through the covering portion I.
 本工程では、加熱された粘着シート積層体を成形した後、冷却してもよいし、また、成形と同時に冷却してもよい。例えば冷却した金型でプレスすることにより、成形と冷却を同時に行い同時に終了することができる。これにより、後述するように、連続的に本製造方法1を実施することができる。 In this step, the heated pressure-sensitive adhesive sheet laminate may be molded and then cooled, or may be cooled simultaneously with the molding. For example, by pressing with a cooled mold, molding and cooling can be performed simultaneously and completed simultaneously. Thereby, this manufacturing method 1 can be implemented continuously so that it may mention later.
 成形方法としては、粘着シート積層体に対して一体的に凹凸形状を賦形することができれば、特に成形方法を限定するものではない。例えばプレス成形、真空成形、圧空成形、ロールによる賦形、圧縮成形、積層による賦形などを挙げることができる。中でも成形性及び加工性の観点から、プレス成形が特に好ましい。 The molding method is not particularly limited as long as the uneven shape can be integrally formed with the pressure-sensitive adhesive sheet laminate. For example, press molding, vacuum forming, pressure forming, shaping by a roll, compression molding, shaping by lamination and the like can be mentioned. Among these, press molding is particularly preferable from the viewpoints of moldability and workability.
 金型の材質は特に限定するものではない。例えばシリコーン樹脂やフッ素樹脂等の樹脂系材料、ステンレスやアルミなどの金属系材料等を挙げることができる。中でも被着体の凹凸賦形には高精度の成形性が求められることから、成形時の温度コントロールが可能な金属系の金型が特に好ましい。
 金型の冷却手段は、通常行われている冷却手段を採用することができる。例えば、水冷や圧縮エアーによる冷却手段を挙げることができる。
The material of the mold is not particularly limited. For example, resin-based materials such as silicone resin and fluororesin, and metal-based materials such as stainless steel and aluminum can be used. Among these, metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
As the mold cooling means, a usual cooling means can be adopted. For example, cooling means by water cooling or compressed air can be mentioned.
 金型は、例えば図2に示すように、開閉する一対の金型のうちの少なくとも一方の金型の内壁面に所定の凹凸形状、例えば粘着材層を被着する被着体の貼り合わせ面(「貼合面」とも称する)における凹部又は凸部又は凹凸部と符合する凹凸形状を設けておくことで、当該金型を用いて粘着シート積層体をプレス成形、真空成形、圧空成形又はロール成形することによって、粘着シート積層体に前記凹凸形状を転写して賦形することができる。 For example, as shown in FIG. 2, the mold is a bonding surface of an adherend that adheres a predetermined uneven shape, for example, an adhesive material layer, to the inner wall surface of at least one of the pair of molds to be opened and closed. By providing a concave / convex shape coincident with the concave or convex portion or the concave / convex portion (also referred to as “bonding surface”), the pressure-sensitive adhesive sheet laminate is press-molded, vacuum-molded, compressed-air molded or rolled using the mold. By forming, the uneven shape can be transferred to the pressure-sensitive adhesive sheet laminate and shaped.
 本工程においては、上述のように、粘着シート積層体における被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paである状態で成形を開始するのが好ましい。
 ここで、「成形を開始する」とは、例えば金型を用いた成形の場合であれば、金型を閉じる、すなわち粘着シート積層体を金型で押圧を開始することを意味する。
In this step, as described above, molding is started in a state where the storage elastic modulus E ′ (MS) of the covering portion I in the pressure-sensitive adhesive sheet laminate is 1.0 × 10 6 to 2.0 × 10 9 Pa. Is preferred.
Here, “start molding” means, for example, in the case of molding using a mold, closes the mold, that is, starts pressing the pressure-sensitive adhesive sheet laminate with the mold.
 被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paの範囲であれば、被覆部Iが成形に適した程度に変形させることが可能となり、且つ粘着材層の表面に所望の凹凸形状を精度良く賦形することができるようになる。
 かかる観点から、被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paである状態で粘着シート積層体の成形を開始するのが好ましく、中でも5.0×10Pa以上或いは1.0×10Pa以下の状態、その中でも1.0×10Pa以上或いは5.0×10Pa以下である状態で成形を開始するのがより一層好ましい。
 以上から、被覆部Iの貯蔵弾性率E’(MS)が、1.0×10~1.0×10Pa、或いは、1.0×10~5.0×10Paである状態で粘着シート積層体の成形を開始するのがより好ましく、中でも、5.0×10~1.0×10Pa、或いは、5.0×10~5.0×10Paの状態で成形を開始することがさらに好ましく、1.0×10~1.0×10Pa、或いは、1.0×10~5.0×10Paの状態で成形を開始するのがもっとも好ましい。
If the storage elastic modulus E ′ (MS) of the covering portion I is in the range of 1.0 × 10 6 to 2.0 × 10 9 Pa, the covering portion I can be deformed to an extent suitable for molding, In addition, a desired uneven shape can be accurately formed on the surface of the adhesive layer.
From this point of view, it is preferable to start forming the pressure-sensitive adhesive sheet laminate in a state where the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa. It is even more preferable to start molding in a state of 0.0 × 10 6 Pa or more or 1.0 × 10 9 Pa or less, in particular, a state of 1.0 × 10 7 Pa or more or 5.0 × 10 8 Pa or less. preferable.
From the above, the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 × 10 6 to 1.0 × 10 9 Pa, or 1.0 × 10 6 to 5.0 × 10 8 Pa. It is more preferable to start forming the pressure-sensitive adhesive sheet laminate in a state, among which 5.0 × 10 6 to 1.0 × 10 9 Pa or 5.0 × 10 6 to 5.0 × 10 8 Pa More preferably, the molding is started in a state of 1.0 × 10 7 to 1.0 × 10 9 Pa, or 1.0 × 10 7 to 5.0 × 10 8 Pa. Is most preferred.
 さらに、被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paであり、且つ、粘着材層の貯蔵弾性率G’(SS)が1.0×10Pa未満である状態で粘着シート積層体の成形を開始するのがより一層好ましい。
 被覆部Iの貯蔵弾性率E’(MS)が前記範囲である状態で成形を開始すれば上述のような効果を得ることができるのに加えて、粘着材層の貯蔵弾性率G’(SS)が1.0×10Pa未満の状態で成形を開始すれば、粘着材層がより十分な成形性を有する状態で成形することができる。
 かかる観点から、被覆部Iの貯蔵弾性率E’(MS)が前記範囲の状態であって、且つ、粘着材層の貯蔵弾性率G’(SS)が1.0×10Pa未満である状態、中でも当該G’(SS)が5.0×10Pa以上或いは5.0×10Pa以下であるのがさらに好ましく、その中でも1.0×10Pa以上或いは1.0×10Pa以下である状態で成形を開始するのがさらにより一層好ましい。
 以上から、被覆部Iの貯蔵弾性率E’(MS)が前記範囲の状態であって、且つ、粘着材層の貯蔵弾性率G’(SS)が、5.0×10Pa以上1.0×10Pa未満、或いは、5.0×10Pa以上5.0×10Pa以下である状態で成形を開始するのがより好ましく、中でも、1.0×10Pa以上1.0×10Pa未満、或いは、1.0×10Pa以上5.0×10Pa以下である状態で成形を開始するのがさらに好ましく、1.0×10Pa以上1.0×10Pa以下である状態で成形を開始することがもっとも好ましい。
Further, the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 1.0. It is even more preferable to start forming the pressure-sensitive adhesive sheet laminate in a state of less than × 10 4 Pa.
In addition to being able to obtain the effects described above if molding is started in a state where the storage elastic modulus E ′ (MS) of the covering portion I is within the above range, the storage elastic modulus G ′ (SS) of the adhesive layer ) Starts in a state of less than 1.0 × 10 4 Pa, the pressure-sensitive adhesive layer can be formed in a state having more sufficient formability.
From this point of view, the storage elastic modulus E ′ (MS) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SS) of the adhesive layer is less than 1.0 × 10 4 Pa. More preferably, the G ′ (SS) is 5.0 × 10 1 Pa or more or 5.0 × 10 3 Pa or less, more preferably 1.0 × 10 2 Pa or more or 1.0 × 10. It is even more preferable to start molding in a state of 3 Pa or less.
From the above, the storage elastic modulus E ′ (MS) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SS) of the adhesive layer is 5.0 × 10 1 Pa or more. It is more preferable to start molding in a state of less than 0 × 10 4 Pa or 5.0 × 10 1 Pa to 5.0 × 10 3 Pa, and above all, 1.0 × 10 2 Pa to 1. It is more preferable to start molding in a state of less than 0 × 10 4 Pa or 1.0 × 10 2 Pa to 5.0 × 10 3 Pa, and more preferably 1.0 × 10 2 Pa to 1.0 ×. Most preferably, molding is started in a state of 10 3 Pa or less.
 また、前記被覆部Iの表面温度が70~180℃である状態で成形を開始するのが好ましい。
 当該被覆部Iの表面温度が70℃以上であれば、粘着材層が十分に軟化し、且つ、被覆部Iを十分に変形可能とすることができ、180℃以下であれば、熱収縮によるシワの発生や、熱による粘着材層の分解等の弊害を抑制できることから好ましい。
 よって、被覆部Iの表面温度が70~180℃である状態で成形を開始するのが好ましく、中でも75℃以上或いは150℃以下、その中でも80℃以上或いは120℃以下となるようにするのがより一層好ましい。
Further, it is preferable to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C.
If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer is sufficiently softened and the covering portion I can be sufficiently deformed. This is preferable because generation of wrinkles and decomposition of the adhesive layer due to heat can be suppressed.
Therefore, it is preferable to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and above all, 75 ° C. or more and 150 ° C. or less, and more preferably 80 ° C. or more and 120 ° C. or less. Even more preferred.
 他方、本工程では、前記被覆部Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paである状態で成形を終了するのが好ましい。
 ここで、「成形を終了する」とは、粘着シート積層体に対して成形圧力を加えるのを終了することを意味し、金型成形であれば、金型を開くことを意味する。
On the other hand, in this step, it is preferable to finish the molding in a state where the storage elastic modulus E ′ (MF) of the covering portion I is 5.0 × 10 7 to 1.0 × 10 10 Pa.
Here, “finishing the molding” means ending the molding pressure on the pressure-sensitive adhesive sheet laminate, and means that the mold is opened if molding is performed.
 前記被覆部Iの貯蔵弾性率E’(MF)が5.0×10Pa以上1.0×1010Pa以下の範囲であれば成形後の形状安定性に優れることから好ましい。
 かかる観点から、前記被覆部Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paである状態で成形を終了するのが好ましく、中でも1.0×10Pa以上或いは8.0×10Pa以下である状態、その中でも1.0×10Pa以上或いは5.0×10Pa以下である状態で成形を終了するのがより一層好ましい。
 以上から、本工程では、前記被覆部Iの貯蔵弾性率E’(MF)が、5.0×10~8.0×10Pa、或いは、5.0×10~5.0×10Paである状態で成形を終了するのがより好ましく、中でも、1.0×10~8.0×10Pa、或いは、1.0×10~5.0×10Paである状態で成形を終了することが好ましく、1.0×10~8.0×10Pa、或いは、1.0×10~5.0×10Paである状態で成形を終了することがもっとも好ましい。
If the storage elastic modulus E ′ (MF) of the covering portion I is in the range of 5.0 × 10 7 Pa to 1.0 × 10 10 Pa, it is preferable because the shape stability after molding is excellent.
From this point of view, it is preferable that the molding is finished in a state where the storage elastic modulus E ′ (MF) of the covering portion I is 5.0 × 10 7 to 1.0 × 10 10 Pa. It is even more preferable to finish the molding in a state of 8 Pa or more or 8.0 × 10 9 Pa or less, in particular, a state of 1.0 × 10 9 Pa or more or 5.0 × 10 9 Pa or less.
From the above, in this step, the storage elastic modulus E ′ (MF) of the covering portion I is 5.0 × 10 7 to 8.0 × 10 9 Pa, or 5.0 × 10 7 to 5.0 ×. More preferably, the molding is finished in a state of 10 9 Pa, and in particular, 1.0 × 10 8 to 8.0 × 10 9 Pa, or 1.0 × 10 8 to 5.0 × 10 9 Pa. The molding is preferably finished in a certain state, and the molding is finished in a state of 1.0 × 10 9 to 8.0 × 10 9 Pa or 1.0 × 10 9 to 5.0 × 10 9 Pa. Most preferred.
 さらに、前記被覆部Iの貯蔵弾性率E’(MF)が前記範囲にある状態で、且つ粘着材層の貯蔵弾性率G’(SF)が1.0×10Pa以上である状態で成形を終了するのがより一層好ましい。
 前記被覆部Iの貯蔵弾性率E’(MF)が前記範囲である状態で成形を終了すれば上述のような効果を得ることができるのに加えて、粘着材層の貯蔵弾性率G’(SS)が1.0×10Pa以上の状態で成形を終了すれば、成形された粘着材層が形状を維持することができる。
 かかる観点から、前記被覆部Iの貯蔵弾性率E’(MF)が前記範囲にある状態で、且つ粘着材層の貯蔵弾性率G’(SF)が1.0×10Pa以上である状態で成形を終了するのが好ましく、中でも、粘着材層の貯蔵弾性率G’(SF)が5.0×10Pa以上或いは5.0×10Pa以下である状態、その中でも1.0×10Pa以上或いは1.0×10Pa以下の状態で成形を終了するのがさらに好ましい。
Furthermore, it is molded in a state where the storage elastic modulus E ′ (MF) of the covering portion I is in the above range and the storage elastic modulus G ′ (SF) of the adhesive layer is 1.0 × 10 4 Pa or more. It is even more preferable to end the process.
In addition to obtaining the above-described effects if the molding is completed in a state where the storage elastic modulus E ′ (MF) of the covering portion I is within the above range, the storage elastic modulus G ′ ( If molding is finished in a state where SS) is 1.0 × 10 4 Pa or more, the molded pressure-sensitive adhesive layer can maintain its shape.
From this viewpoint, the storage elastic modulus E ′ (MF) of the covering portion I is in the above range, and the storage elastic modulus G ′ (SF) of the adhesive layer is 1.0 × 10 4 Pa or more. It is preferable to finish the molding, and among them, the storage elastic modulus G ′ (SF) of the pressure-sensitive adhesive layer is 5.0 × 10 4 Pa or more or 5.0 × 10 7 Pa or less. More preferably, the molding is finished in a state of x10 4 Pa or more or 1.0 x 10 7 Pa or less.
 また、前記被覆部Iの表面温度が50℃未満になった状態で成形を終了するのが好ましい。例えば、プレス成形の場合には表面温度が50℃未満になった状態で金型を型開きするのが好ましい。
 被覆部Iの表面温度が50℃未満で、被覆部Iの貯蔵弾性率E’(MS)が5.0×10~1.0×1010Paの範囲であれば、成形終了後に成形体を取り出す際に変形したり、被覆部Iの熱収縮に伴う反りの発生することを抑制できることから好ましい。
 かかる観点から、被覆部Iの表面温度が50℃未満になった状態、中でも0℃以上或いは45℃以下になった状態、その中でも10℃以上或いは40℃以下になった状態で成形を終了するのが好ましい。
Further, it is preferable to finish the molding in a state where the surface temperature of the covering portion I is less than 50 ° C. For example, in the case of press molding, it is preferable to open the mold while the surface temperature is less than 50 ° C.
If the surface temperature of the covering portion I is less than 50 ° C. and the storage elastic modulus E ′ (MS) of the covering portion I is in the range of 5.0 × 10 7 to 1.0 × 10 10 Pa, the molded body after molding is finished. This is preferable because it can be prevented from being deformed when the material is taken out and warping due to thermal contraction of the covering portion I can be suppressed.
From this point of view, the molding is finished in a state where the surface temperature of the covering portion I is less than 50 ° C., particularly in a state where the surface temperature is 0 ° C. or more or 45 ° C. or less, and in particular, in a state where it is 10 ° C. or more or 40 ° C. Is preferred.
 さらに、前記成形開始時の被覆部Iの貯蔵弾性率E’(MS)と前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)とが以下の関係式(1)を満たすことが好ましい。
(1)・・E’(MF)/E’(MS)≧1.3
 ここで、前記被覆部Iの貯蔵弾性率E’(MS)と前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)とが前記関係式(1)を満たせば、成形開始時には成形可能な程度に軟らかく、且つ成形終了後には成形した形状を維持できる程度に硬さを有することから好ましい。
 かかる観点から、E’(MF)/E’(MS)≧1.3であるのが好ましく、中でも100≧E’(MF)/E’(MS)或いはE’(MF)/E’(MS)≧3.0であるのがさらに好ましく、その中でも50≧E’(MF)/E’(MS)或いはE’(MF)/E’(MS)≧5.0であるのが特に好ましい。但し、E’(MF)/E’(MS)の上限はこれに限定されるものではない。
Furthermore, the storage elastic modulus E ′ (MS) of the covering portion I at the start of molding and the storage elastic modulus E ′ (MF) of the covering portion I at the end of forming satisfy the following relational expression (1). preferable.
(1) E '(MF) / E' (MS) ≧ 1.3
Here, if the storage elastic modulus E ′ (MS) of the covering portion I and the storage elastic modulus E ′ (MF) of the covering portion I at the end of molding satisfy the relational expression (1), the molding is started at the start of molding. It is preferable because it is as soft as possible and has hardness to the extent that the molded shape can be maintained after completion of molding.
From this point of view, it is preferable that E ′ (MF) / E ′ (MS) ≧ 1.3. Above all, 100 ≧ E ′ (MF) / E ′ (MS) or E ′ (MF) / E ′ (MS ) ≧ 3.0, more preferably 50 ≧ E ′ (MF) / E ′ (MS) or E ′ (MF) / E ′ (MS) ≧ 5.0. However, the upper limit of E ′ (MF) / E ′ (MS) is not limited to this.
 また、前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)と、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)とが以下の関係式(2)を満たすことが好ましい。
(2)・・E’(MF)/G’(SF)≦1.0×10
 ここで、前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)と、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)とが前記関係式(2)を満たせば、成形された粘着材層が形状を維持することができる。
 かかる観点から、E’(MF)/G’(SF)≦1.0×10であるのが好ましく、中でも1.0≦E’(MF)/G’(SF)或いはE’(MF)/G’(SF)≦5.0×10、その中でも1.0×10≦E’(MF)/G’(SF)或いはE’(MF)/G’(SF)≦1.0×10であるのがさらに好ましい。
Moreover, the storage elastic modulus E ′ (MF) of the covering portion I at the end of the molding and the storage elastic modulus G ′ (SF) of the adhesive layer at the end of the molding satisfy the following relational expression (2). Is preferred.
(2) .. E ′ (MF) / G ′ (SF) ≦ 1.0 × 10 7
Here, if the storage elastic modulus E ′ (MF) of the covering portion I at the end of the molding and the storage elastic modulus G ′ (SF) of the adhesive layer at the end of the molding satisfy the relational expression (2). The formed pressure-sensitive adhesive layer can maintain its shape.
From this viewpoint, it is preferable that E ′ (MF) / G ′ (SF) ≦ 1.0 × 10 7 , and 1.0 ≦ E ′ (MF) / G ′ (SF) or E ′ (MF) among them. /G′(SF)≦5.0×10 6 , of which 1.0 × 10 1 ≦ E ′ (MF) / G ′ (SF) or E ′ (MF) / G ′ (SF) ≦ 1.0 More preferably, it is × 10 6 .
 繰り返しになるが、本製造方法1では、金型でプレス成形し、型開き後に冷却してもよいし、金型を冷却しておき、プレス成形と同時に冷却するようにしてもよい。このように金型を冷却しておき、プレス成形と同時に冷却するようにすれば、成形と同時に冷却を終了することができる。よって、成形及び冷却を終了した後すぐに賦形粘着シート積層体を次工程に搬送することができるから、賦形粘着シート積層体を連続的に製造することができる。 Again, in this production method 1, the mold may be press-molded and cooled after the mold is opened, or the mold may be cooled and cooled at the same time as the press molding. If the mold is cooled in this way and cooled at the same time as the press molding, the cooling can be completed at the same time as the molding. Therefore, since the shaped pressure-sensitive adhesive sheet laminate can be conveyed to the next step immediately after the molding and cooling are completed, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
 金型成形と同時に冷却する場合、金型の表面温度は0~50℃であるのが好ましい。
 金型の表面温度が50℃以下であれば、短時間で粘着シート積層体の形状を固定することができ、得られる成形体が精度良く、且つ成形後の冷却過程における熱収縮に伴う反りを抑制できる観点から好ましい。
 よって、金型の表面温度は、0~50℃であるのが好ましく、中でも10℃以上或いは40℃以下、その中でも15℃以上或いは30℃以下であるのがさらに好ましい。
When cooling at the same time as the mold forming, the surface temperature of the mold is preferably 0 to 50 ° C.
If the surface temperature of the mold is 50 ° C. or less, the shape of the pressure-sensitive adhesive sheet laminate can be fixed in a short time, the resulting molded body is accurate, and warps due to thermal shrinkage in the cooling process after molding. It is preferable from the viewpoint of suppression.
Accordingly, the surface temperature of the mold is preferably 0 to 50 ° C., more preferably 10 ° C. or more and 40 ° C. or less, and more preferably 15 ° C. or more and 30 ° C. or less.
 なお、プレス圧、プレス時間等のプレス成形にかかる条件は特に限定するものではなく、成形される寸法や形状、使用する材料等によって適宜調整すればよい。 In addition, conditions concerning press molding such as a press pressure and a press time are not particularly limited, and may be appropriately adjusted depending on a dimension and shape to be molded, a material to be used, and the like.
(その他)
 前記成形・冷却工程で得られた賦形粘着シート積層体は、そのまま巻き取ってもよいし、また、熱処理してもよいし、また、所定の大きさ及び形状に裁断してもよい。
 裁断する際には、例えばトムソン刃やロータリー刃等を用いて裁断する方法を挙げることができる。
(Other)
The shaped pressure-sensitive adhesive sheet laminate obtained in the molding / cooling step may be wound as it is, may be heat-treated, or may be cut into a predetermined size and shape.
When cutting, for example, a cutting method using a Thomson blade or a rotary blade can be used.
 本製造方法1では、連続して賦形粘着シート積層体を製造するのが好ましい。
 例えば粘着シート積層体を加熱ユニット例えばヒーターに搬送して、当該加熱ユニットでは、所定時間搬送を停止して加熱するか或いは搬送しながら加熱するかした後、加熱された粘着シート積層体を成形ユニット例えば成形金型に搬送して、該成形ユニットでは、例えば冷却された金型でプレスして成形と同時に冷却を行い、さらに必要に応じて次のユニットに搬送するようにして、連続的に賦形粘着シート積層体を製造することができる。
In this manufacturing method 1, it is preferable to manufacture a shaped adhesive sheet laminated body continuously.
For example, the pressure-sensitive adhesive sheet laminate is transported to a heating unit such as a heater, and the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit. For example, it is transferred to a molding die, and in the molding unit, for example, a cooled die is pressed and cooled at the same time as molding, and further transported to the next unit as necessary. A shaped pressure-sensitive adhesive sheet laminate can be produced.
<本製造方法2>
 本発明の実施形態の一例として、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え、当該粘着材の一面には凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)が賦形されてなる構成を備えた賦形粘着シート積層体の製造方法において、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備えた粘着シート積層体を加熱し、加熱された粘着シート積層体を金型により成形して賦形粘着シート積層体を製造する製造方法であって、粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃の状態で成形を開始し、被覆部Iの表面温度が60℃未満になった後に金型から賦形粘着シート積層体を取り出すことを特徴とする賦形粘着シート積層体の製造方法(「本製造方法2」と称する)を提案する。
<Production Method 2>
As an example of an embodiment of the present invention, an adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer are provided, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion ( In the method for producing a shaped pressure-sensitive adhesive sheet laminate having a configuration in which the “adhesive material layer surface irregularity portion” is shaped, the pressure-sensitive adhesive layer and the pressure-sensitive adhesive layer are peelably laminated on one surface. A manufacturing method for manufacturing a shaped pressure-sensitive adhesive sheet laminate by heating a pressure-sensitive adhesive sheet laminate comprising a covering portion I and forming the heated pressure-sensitive adhesive sheet laminate with a mold, the pressure-sensitive adhesive sheet laminate Heating to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and taking out the shaped adhesive sheet laminate from the mold after the surface temperature of the covering portion I becomes less than 60 ° C. Method for producing a shaped pressure-sensitive adhesive sheet laminate (“Production Method 2”) It referred to) propose.
 本製造方法2によれば、粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃の状態で成形を開始し、被覆部Iの表面温度が60℃未満になった後に金型から賦形粘着シート積層体を取り出すことにより、例えば被着体表面の凹凸部と符合する凹凸形状を粘着材層表面に精度高く形成することができる。 According to this production method 2, the pressure-sensitive adhesive sheet laminate is heated and molding is started in a state where the surface temperature of the covering portion I is 70 to 180 ° C. After the surface temperature of the covering portion I becomes less than 60 ° C. By taking out the shaped pressure-sensitive adhesive sheet laminate from the mold, for example, a concavo-convex shape coinciding with the concavo-convex portion on the adherend surface can be formed with high accuracy on the surface of the pressure-sensitive adhesive layer.
 本製造方法2は、後述する粘着シート積層体を加熱し(加熱工程)、加熱された粘着シート積層体を成形すると共に冷却する(成形・冷却工程)工程を備えた製造方法である。 The present production method 2 is a production method including a step of heating (adhesion sheet laminate) described later (heating step), and forming and cooling the heated adhesive sheet laminate (molding / cooling step).
 本製造方法2は、前記加熱工程及び前記成形・冷却工程を備えていれば、他の工程を備えていてもよい。例えば熱処理工程、搬送工程、スリット工程、裁断工程などの工程を必要に応じて備えていてもよい。但し、これらの工程に限定するものではない。 The present manufacturing method 2 may include other steps as long as it includes the heating step and the molding / cooling step. For example, you may provide processes, such as a heat treatment process, a conveyance process, a slit process, and a cutting process, as needed. However, it is not limited to these processes.
(粘着シート積層体)
 本製造方法2における出発部材としての粘着シート積層体は、粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備えていればよく、他の部材を備えていてもよい。例えば図1に示すように、粘着材層と、当該粘着材層の表裏一側に剥離可能に積層してなる被覆部Iと、当該粘着材層の表裏他側に剥離可能に積層してなる被覆部IIとを備えた粘着シート積層体を例示することができる。但し、被覆部IIを備えるか否かは任意であり、被覆部IIを積層しない構成としてもよい。
 なお、粘着シート積層体の詳細については、前述のとおりである。
(Adhesive sheet laminate)
The pressure-sensitive adhesive sheet laminate as a starting member in the present production method 2 only needs to include the pressure-sensitive adhesive layer and the covering portion I that is detachably laminated on one surface of the pressure-sensitive adhesive layer, and includes other members. It may be. For example, as shown in FIG. 1, an adhesive material layer, a covering portion I that is detachably laminated on one side of the adhesive material layer, and a peelable laminate on the other side of the adhesive material layer. A pressure-sensitive adhesive sheet laminate provided with the covering portion II can be exemplified. However, whether or not the covering portion II is provided is arbitrary, and the covering portion II may not be stacked.
In addition, it is as above-mentioned about the detail of an adhesive sheet laminated body.
(加熱工程)
 本工程では、前記粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃となるようにする。
 被覆部Iの表面温度が70℃以上であれば、粘着材層が十分に軟化し、且つ、被覆部Iを十分に変形可能とすることができ、180℃以下であれば、熱収縮によるシワの発生や、熱による粘着材層の分解等の弊害を抑制できることから、好ましい。
 かかる観点から、前記粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃となるようにするのが好ましく、中でも75℃以上或いは150℃以下、その中でも80℃以上或いは120℃以下となるようにするのがより一層好ましい。
 以上から、前記粘着シート積層体を加熱して、被覆部Iの表面温度が、70~150℃、或いは、70~120℃となるようにするのがより好ましく、中でも、75~150℃、或いは、75~120℃となるようにするのがさらに好ましく、80~150℃、或いは、80~120℃となるようにするのがもっとも好ましい。
(Heating process)
In this step, the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C.
If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer can be sufficiently softened and the covering portion I can be sufficiently deformed. It is preferable because adverse effects such as generation of heat and decomposition of the adhesive layer due to heat can be suppressed.
From this point of view, it is preferable that the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I becomes 70 to 180 ° C., particularly 75 ° C. or higher or 150 ° C. or lower, especially 80 ° C. or higher or 120 ° C. It is even more preferable that the temperature is not higher than ° C.
From the above, it is more preferable that the pressure-sensitive adhesive sheet laminate is heated so that the surface temperature of the covering portion I is 70 to 150 ° C. or 70 to 120 ° C. Among them, 75 to 150 ° C. or 75 to 120 ° C. is more preferable, and 80 to 150 ° C. or 80 to 120 ° C. is most preferable.
 粘着シート積層体の加熱方法としては、例えば、電熱ヒーターなどの加熱体を内部に備えた上下の加熱板の間に粘着シート積層体を存在させて上下から加熱する方法や、加熱板で直接挟む方法、加熱ロールを用いる方法、熱水に浸漬させる方法等を挙げることができる。但し、これらの方法に限定するものではない。 As a method for heating the pressure-sensitive adhesive sheet laminate, for example, a method of heating the pressure-sensitive adhesive sheet laminate from above and below between upper and lower heating plates provided with a heating body such as an electric heater, a method of directly sandwiching with a heating plate, The method using a heating roll, the method of immersing in hot water, etc. can be mentioned. However, it is not limited to these methods.
(成形・冷却工程)
 本工程では、前記のように被覆部Iの表面温度が70~180℃に加熱された状態で粘着シート積層体の成形を開始するのが好ましい。すなわち、粘着材層及び被覆部Iが積層されて一体となった状態の粘着シート積層体をそのまま成形するのが好ましい。このようにすれば、被覆部Iを成形すると同時に、当該被覆部Iを介して粘着材層も成形することができる。
(Molding / cooling process)
In this step, it is preferable to start forming the pressure-sensitive adhesive sheet laminate with the surface temperature of the covering portion I being heated to 70 to 180 ° C. as described above. That is, it is preferable to form the pressure-sensitive adhesive sheet laminate in a state where the pressure-sensitive adhesive layer and the covering portion I are laminated and integrated. If it does in this way, the adhesive material layer can also be shape | molded through the said coating | coated part I simultaneously with the shaping | molding part I being shape | molded.
 本工程では、加熱された粘着シート積層体を成形した後、冷却してもよいし、また、成形と同時に冷却してもよい。例えば冷却した金型でプレスすることにより、成形と冷却を同時に行い同時に終了することができる。これにより、後述するように、連続的に本製造方法2を実施することができる。 In this step, the heated pressure-sensitive adhesive sheet laminate may be molded and then cooled, or may be cooled simultaneously with the molding. For example, by pressing with a cooled mold, molding and cooling can be performed simultaneously and completed simultaneously. Thereby, this manufacturing method 2 can be implemented continuously so that it may mention later.
 成形方法としては、粘着シート積層体に対して一体的に凹凸形状を賦形することができれば、特に成形方法を限定するものではない。例えばプレス成形、真空成形、圧空成形、ロールによる賦形(ロールフォーミング成形)、圧縮成形、積層による賦形などを挙げることができる。中でも成形性及び加工性の観点から、プレス成形が特に好ましい。 The molding method is not particularly limited as long as the uneven shape can be integrally formed with the pressure-sensitive adhesive sheet laminate. For example, press molding, vacuum forming, pressure forming, shaping by roll (roll forming molding), compression molding, shaping by lamination and the like can be mentioned. Among these, press molding is particularly preferable from the viewpoints of moldability and workability.
 金型を用いて成形する場合、金型の材質は特に限定するものではない。例えばシリコーン樹脂やフッ素樹脂等の樹脂系材料、ステンレスやアルミなどの金属系材料等を挙げることができる。中でも被着体の凹凸賦形には高精度の成形性が求められることから、成形時の温度コントロールが可能な金属系の金型が特に好ましい。
 金型の冷却手段は、通常行われている冷却手段を採用することができる。例えば、水冷や圧縮エアーによる冷却手段を挙げることができる。
When molding using a mold, the material of the mold is not particularly limited. For example, resin-based materials such as silicone resin and fluororesin, and metal-based materials such as stainless steel and aluminum can be used. Among these, metal molds that can be controlled in temperature during molding are particularly preferred because high-precision moldability is required for forming irregularities on the adherend.
As the mold cooling means, a usual cooling means can be adopted. For example, cooling means by water cooling or compressed air can be mentioned.
 金型は、例えば図2に示すように、開閉する一対の金型のうちの少なくとも一方の金型の内壁面に所定の凹凸形状、例えば粘着材層を被着する被着体の貼り合わせ面(「貼合面」とも称する)における凹部又は凸部又は凹凸部と符合する凹凸形状を設けておくことで、当該金型を用いて粘着シート積層体をプレス成形、真空成形、圧空成形又はロール成形することによって、粘着シート積層体に前記凹凸形状を転写して賦形することができる。 For example, as shown in FIG. 2, the mold is a bonding surface of an adherend that adheres a predetermined uneven shape, for example, an adhesive material layer, to the inner wall surface of at least one of the pair of molds to be opened and closed. By providing a concave / convex shape coincident with the concave or convex portion or the concave / convex portion (also referred to as “bonding surface”), the pressure-sensitive adhesive sheet laminate is press-molded, vacuum-molded, compressed-air molded or rolled using the mold. By forming, the uneven shape can be transferred to the pressure-sensitive adhesive sheet laminate and shaped.
 上述したように、前記被覆部Iの表面温度が70~180℃である状態で成形を開始するのが好ましい。当該被覆部Iの表面温度が70℃以上であれば、粘着材層が十分に軟化し、且つ、被覆部Iを十分に変形可能とすることができ、180℃以下であれば、熱収縮によるシワの発生や、熱による粘着材層の分解等の弊害を抑制できることから好ましい。
 よって、被覆部Iの表面温度が70~180℃である状態で成形を開始するのが好ましく、中でも75℃以上或いは150℃以下、その中でも80℃以上或いは120℃以下となるようにするのがより一層好ましい。
As described above, the molding is preferably started in a state where the surface temperature of the covering portion I is 70 to 180 ° C. If the surface temperature of the covering portion I is 70 ° C. or higher, the adhesive layer is sufficiently softened and the covering portion I can be sufficiently deformed. This is preferable because generation of wrinkles and decomposition of the adhesive layer due to heat can be suppressed.
Therefore, it is preferable to start molding in a state where the surface temperature of the covering portion I is 70 to 180 ° C., and above all, 75 ° C. or more and 150 ° C. or less, and more preferably 80 ° C. or more and 120 ° C. or less. Even more preferred.
 他方、本工程では、前記被覆部Iの表面温度が60℃未満になった状態で成形を終了するのが好ましい。例えば、プレス成形の場合には表面温度が60℃未満になった状態で金型を型開きするのが好ましい。
 ここで、「成形を終了する」とは、粘着シート積層体に対して成形圧力を加えるのを終了することを意味し、金型成形であれば、金型を開くことを意味する。
On the other hand, in this step, it is preferable to finish the molding in a state where the surface temperature of the covering portion I is less than 60 ° C. For example, in the case of press molding, it is preferable to open the mold in a state where the surface temperature is less than 60 ° C.
Here, “finishing the molding” means ending the molding pressure on the pressure-sensitive adhesive sheet laminate, and means that the mold is opened if molding is performed.
 被覆部Iの表面温度が60℃未満であれば、成形終了後に成形体を取り出す際に変形したり、被覆部Iの熱収縮に伴う反りが発生したりするのを抑制することができるから好ましい。
 かかる観点から、被覆部Iの表面温度が60℃未満になった状態、中でも0℃以上或いは50℃以下になった状態、その中でも10℃以上或いは40℃以下になった状態で成形を終了するのが好ましい。
If the surface temperature of the covering portion I is less than 60 ° C., it is preferable that the covering portion I can be prevented from being deformed when the molded body is taken out after completion of molding, or warping due to thermal shrinkage of the covering portion I can be suppressed. .
From this point of view, the molding is finished in a state where the surface temperature of the covering portion I is less than 60 ° C., particularly in a state where the surface temperature is 0 ° C. or more or 50 ° C. or less, and in particular, in a state where the surface temperature is 10 ° C. or more or 40 ° C. or less. Is preferred.
 繰り返しになるが、本製造方法2では、金型でプレス成形し、型開き後に冷却してもよいし、金型を冷却しておき、プレス成形と同時に冷却するようにしてもよい。このように金型を冷却しておき、プレス成形と同時に冷却するようにすれば、成形と同時に冷却を終了することができる。よって、成形及び冷却を終了した後すぐに賦形粘着シート積層体を次工程に搬送することができるから、賦形粘着シート積層体を連続的に製造することができる。 Again, in this production method 2, the mold may be press-molded and cooled after the mold is opened, or the mold may be cooled and cooled at the same time as the press molding. If the mold is cooled in this way and cooled at the same time as the press molding, the cooling can be completed at the same time as the molding. Therefore, since the shaped pressure-sensitive adhesive sheet laminate can be conveyed to the next step immediately after the molding and cooling are completed, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
 金型成形と同時に冷却する場合、金型の表面温度は60℃未満であるのが好ましい。
 金型の表面温度が60℃未満であれば、短時間で粘着シート積層体の形状を固定することができ、得られる成形体が精度良く、且つ成形後の冷却過程における熱収縮に伴う反りを抑制できる観点から好ましい。
 よって、金型の表面温度は60℃未満であるのが好ましく、中でも0℃以上或いは50℃以下、その中でも10℃以上或いは40℃以下であるのがさらに好ましい。
When cooling at the same time as the mold forming, the surface temperature of the mold is preferably less than 60 ° C.
If the surface temperature of the mold is less than 60 ° C., the shape of the pressure-sensitive adhesive sheet laminate can be fixed in a short time, the resulting molded body is accurate, and warps due to thermal shrinkage in the cooling process after molding. It is preferable from the viewpoint of suppression.
Therefore, the surface temperature of the mold is preferably less than 60 ° C, more preferably 0 ° C or more or 50 ° C or less, and more preferably 10 ° C or more or 40 ° C or less.
 また、成形開始時と成形終了時の被覆部Iの表面温度の差は、10~100℃であることが好ましく、中でも20℃以上或いは90℃以下がさらに好ましい。前記被覆部Iの表面温度の差が10~100℃であることによって、例えば粘着シート積層体に前記凹凸形状を転写して賦形する際、成形及び冷却を終了した後すぐに賦形粘着シート積層体を次工程に搬送することができるから、賦形粘着シート積層体を連続的に製造することができる。 Further, the difference in surface temperature of the covering portion I at the start of molding and at the end of molding is preferably 10 to 100 ° C., more preferably 20 ° C. or more and 90 ° C. or less. When the surface temperature difference of the covering portion I is 10 to 100 ° C., for example, when the uneven shape is transferred to the pressure-sensitive adhesive sheet laminate and shaped, the shaped pressure-sensitive adhesive sheet is immediately after finishing the molding and cooling. Since the laminate can be conveyed to the next step, the shaped pressure-sensitive adhesive sheet laminate can be continuously produced.
 なお、プレス圧、プレス時間等のプレス成形にかかる条件は特に限定するものではなく、成形される寸法や形状、使用する材料等によって適宜調整すればよい。 In addition, conditions concerning press molding such as a press pressure and a press time are not particularly limited, and may be appropriately adjusted depending on a dimension and shape to be molded, a material to be used, and the like.
(その他)
 前記成形・冷却工程で得られた賦形粘着シート積層体は、そのまま巻き取ってもよいし、また、熱処理してもよいし、また、所定の大きさ及び形状に裁断してもよい。
 裁断する際には、例えばトムソン刃やロータリー刃等を用いて裁断する方法を挙げることができる。
(Other)
The shaped pressure-sensitive adhesive sheet laminate obtained in the molding / cooling step may be wound as it is, may be heat-treated, or may be cut into a predetermined size and shape.
When cutting, for example, a cutting method using a Thomson blade or a rotary blade can be used.
 本製造方法2では、連続して賦形粘着シート積層体を製造するのが好ましい。
 例えば粘着シート積層体を加熱ユニット例えばヒーターに搬送して、当該加熱ユニットでは、所定時間搬送を停止して加熱するか或いは搬送しながら加熱するかした後、加熱された粘着シート積層体を成形ユニット例えば成形金型に搬送して、該成形ユニットでは、例えば冷却された金型でプレスして成形と同時に冷却を行い、さらに必要に応じて次のユニットに搬送するようにして、連続的に賦形粘着シート積層体を製造することができる。
In this manufacturing method 2, it is preferable to manufacture a shaped adhesive sheet laminated body continuously.
For example, the pressure-sensitive adhesive sheet laminate is transported to a heating unit such as a heater, and the heating unit stops the transport for a predetermined time and heats it while heating or while transporting, and then heats the pressure-sensitive adhesive sheet laminate to a molding unit. For example, it is transferred to a molding die, and in the molding unit, for example, a cooled die is pressed and cooled at the same time as molding, and further transported to the next unit as necessary. A shaped pressure-sensitive adhesive sheet laminate can be produced.
<用途>
 ここで、本賦形粘着シート積層体1の利用用途の一例について説明する。
 近年、携帯電話やスマートフォン、タブレット端末などが汎用化されるに従い、使用者が誤って落下させる等によって画像表示部を破損する事例は多い。特に画像表示装置がタッチパネル方式である場合は、破損によって表示が見づらくなるばかりでなく、物理的障害や水の浸入等によってタッチパネル操作自体が不能となったり、故障の原因となったりする。そこで、画像表示部のみを交換するリペアすなわち修理が行われる場合がある。
 画像表示装置のリペアにおいて、新たな画像表示部を装填する際にも粘着シートは使用される。通常、リペアは修理作業者による手作業として行われる場合が多く、修理作業者の熟練が必要である。すなわち、熟練者でないと、粘着シートを介して画像表示部を装填する際に、内部に空気が入ってしまったり、粘着材が食み出したりしてしまう。
 これに対し、本賦形粘着シート積層体1を用いれば、予め精度の高い段差形状等を付与することができるため、例えば画像表示装置の機種に応じた段差形状を予め粘着材層に付与しておくことにより、リペア作業が大幅に簡便化され、修理作業者の熟練を要しなくても実施することが可能となる。このように、本発明の粘着シート積層体は、画像表示装置のリペア用として有用に用いることができる。
<Application>
Here, an example of the usage of the shaped adhesive sheet laminate 1 will be described.
In recent years, as mobile phones, smartphones, tablet terminals, and the like are generalized, there are many cases in which an image display unit is damaged by a user accidentally dropping it. In particular, when the image display device is a touch panel system, not only the display becomes difficult to see due to breakage, but also the touch panel operation itself becomes impossible or causes a failure due to a physical failure or water intrusion. Therefore, there is a case where repair, that is, repair, in which only the image display unit is replaced is performed.
In the repair of the image display device, the adhesive sheet is also used when a new image display unit is loaded. Usually, repair is often performed as a manual work by a repair worker, and skill of the repair worker is required. That is, if it is not an expert, when an image display part is loaded via an adhesive sheet, air will enter inside or an adhesive material will protrude.
On the other hand, if this shaped adhesive sheet laminate 1 is used, a highly accurate step shape or the like can be given in advance. For example, a step shape corresponding to the model of the image display device is given in advance to the adhesive material layer. By doing so, the repair work is greatly simplified and can be carried out without requiring the skill of a repair worker. Thus, the pressure-sensitive adhesive sheet laminate of the present invention can be usefully used for repairing image display devices.
<語句の説明> 
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
 本発明において、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。 In the present invention, the boundary between the sheet and the film is not clear, and it is not necessary to distinguish the two in terms of the wording in the present invention. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included. "Film" is also included.
 以下、実施例によって本発明を更に具体的に説明する。但し、本発明が実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[実施例・比較例の群1]
<被覆部1-I>
 実施例1-1~1-3及び比較例1-1(以下、総称して「実施例・比較例の群1」とも称する。)における粘着シート積層体の被覆部1-Iには、以下の被覆部1-A~被覆部1-Dを用いた。各々の貯蔵弾性率の値は表1に示す。
[Group 1 of Examples and Comparative Examples]
<Coating part 1-I>
The cover portion 1-I of the pressure-sensitive adhesive sheet laminate in Examples 1-1 to 1-3 and Comparative Example 1-1 (hereinafter collectively referred to as “Example / Comparative Group 1”) includes the following: The coating parts 1-A to 1-D were used. The value of each storage modulus is shown in Table 1.
・被覆部1-A:二軸延伸イソフタル酸共重合PETフィルム(厚さ:75μm)の片面にシリコーン系化合物からなる離型層(厚さ:2μm)を積層してなるフィルム。
・被覆部1-B:4-メチルペンテン-1からなる無延伸のポリオレフィンフィルム(厚さ:50μm)の片面に変性ポリオレフィンからなる離型層(厚さ:38μm)を積層してなるフィルム。
・被覆部1-C:無延伸ポリプロピレンからなるポリオレフィンフィルム(厚さ:70μm)からなるフィルム。
・被覆部1-D:二軸延伸ホモPETフィルム(厚さ:75μm)の片面にシリコーン系化合物からなる離型層(厚さ:2μm)を積層してなるフィルム。
Covering portion 1-A: a film obtained by laminating a release layer (thickness: 2 μm) made of a silicone compound on one side of a biaxially stretched isophthalic acid copolymerized PET film (thickness: 75 μm).
Covering part 1-B: a film obtained by laminating a release layer (thickness: 38 μm) made of modified polyolefin on one side of an unstretched polyolefin film (thickness: 50 μm) made of 4-methylpentene-1.
Covering portion 1-C: a film made of a polyolefin film (thickness: 70 μm) made of unstretched polypropylene.
Covering part 1-D: a film obtained by laminating a release layer (thickness: 2 μm) made of a silicone compound on one side of a biaxially stretched homo-PET film (thickness: 75 μm).
<実施例1-1>
(両面粘着シートの作製)
 (メタ)アクリル系共重合体(1-a)として、数平均分子量2400のポリメタクリル酸メチルマクロモノマー(Tg:105℃)15質量部(18mol%)とブチルアクリレート(Tg:-55℃)81質量部(75mol%)とアクリル酸(Tg:106℃)4質量部(7mol%)とがランダム共重合してなるアクリル系共重合体(1-a-1)(重量平均分子量23万)1kgと、架橋剤(1-b)として、グリセリンジメタクリレート(日油社製、製品名:GMR)(1-b-1)90gと、光重合開始剤(1-c)として、2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物(Lanberti社製、製品名:エザキュアTZT)(1-c-1)15gを均一混合し、粘着材層に用いる樹脂組成物1-1を作製した。得られた樹脂組成物のガラス転移温度は-5℃であった。
<Example 1-1>
(Production of double-sided PSA sheet)
As the (meth) acrylic copolymer (1-a), 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer having a number average molecular weight of 2400 (Tg: 105 ° C.) and butyl acrylate (Tg: −55 ° C.) 81 1 kg of acrylic copolymer (1-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.) As a cross-linking agent (1-b), 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (1-b-1), and 2, 4, as photopolymerization initiator (1-c) 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name: Ezacure TZT) (1-c-1) 15 g of resin mixture is uniformly mixed and used for the adhesive layer -1 were produced. The resulting resin composition had a glass transition temperature of −5 ° C.
 得られた樹脂組成物1-1を離形処理したPETフィルム(三菱樹脂社製、製品名:ダイアホイルMRV-V06、厚さ:100μm)と、被覆部1-Aとの2枚で挟み、ラミネータを用いて樹脂組成物1-1の厚さが100μmとなるようにシート状に賦形し、粘着シート積層体1-1を作製した。なお、被覆部1-Aの離型層側を樹脂組成物1-1に接するように配置した。 The obtained resin composition 1-1 was sandwiched between two sheets of PET film (Mitsubishi Resin Co., Ltd., product name: Diafoil MRV-V06, thickness: 100 μm) and covering portion 1-A, Using a laminator, the resin composition 1-1 was shaped into a sheet so that the thickness of the resin composition 1-1 was 100 μm, and the pressure-sensitive adhesive sheet laminate 1-1 was produced. The release layer side of the covering portion 1-A was disposed so as to be in contact with the resin composition 1-1.
 得られた粘着シート積層体1-1は、真空圧空成形機(第一実業社製、FKS-0632-20形)を用いて以下のプロセスで熱成形を行い、賦形粘着シート積層体1-1を作製した。
 すなわち、400℃に予熱したIRヒーターで、粘着シート積層体1-1の表面が100℃になるまで加熱し、続いて25℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、表面に凹凸賦形してなる賦形粘着シート積層体1-1を作製した。
The obtained pressure-sensitive adhesive sheet laminate 1-1 was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., model FKS-0632-20). 1 was produced.
That is, with the IR heater preheated to 400 ° C., the surface of the pressure-sensitive adhesive sheet laminate 1-1 was heated to 100 ° C. and then cooled to 25 ° C., and the mold clamping pressure was 8 MPa. Was subjected to press molding for 5 seconds to produce a shaped pressure-sensitive adhesive sheet laminate 1-1 having irregularities formed on the surface.
<実施例1-2>
 前記被覆部1-Aの代わりに被覆部1-Bを用いた以外は、実施例1-1と同様にして、粘着シート積層体1-2及び賦形粘着シート積層体1-2を作製した。
<Example 1-2>
A pressure-sensitive adhesive sheet laminated body 1-2 and a shaped pressure-sensitive adhesive sheet laminated body 1-2 were produced in the same manner as in Example 1-1 except that the coating part 1-B was used instead of the coating part 1-A. .
<実施例1-3>
 前記被覆部1-Aの代わりに被覆部1-Cを用いた以外は、実施例1-1と同様にして、粘着シート積層体1-3及び賦形粘着シート積層体1-3を作製した。
<Example 1-3>
A pressure-sensitive adhesive sheet laminate 1-3 and a shaped pressure-sensitive adhesive sheet laminate 1-3 were produced in the same manner as in Example 1-1 except that the coating portion 1-C was used instead of the coating portion 1-A. .
<比較例1-1>
 前記被覆部1-Aの代わりに被覆部1-Dを用いた以外は、実施例1-1と同様にして、粘着シート積層体1-4及び賦形粘着シート積層体1-4を作製した。
<Comparative Example 1-1>
A pressure-sensitive adhesive sheet laminate 1-4 and a shaped pressure-sensitive adhesive sheet laminate 1-4 were produced in the same manner as in Example 1-1 except that the coating portion 1-D was used instead of the coating portion 1-A. .
<測定及び評価方法>
 実施例1-1~1-3・比較例1-1で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
<Measurement and evaluation method>
Examples 1-1 to 1-3 / Methods for measuring and evaluating various physical properties of the samples obtained in Comparative Example 1-1 will be described.
(被覆部の弾性率)
 実施例・比較例の群1で用いた被覆部1-A~1-Dをそれぞれ、長さ50mm、幅4mmに切り出し、動的粘弾性装置(アイティー計測制御株式会社 DVA-200)を用いてチャック間距離は25mm、1%の歪みをかけて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。得られたデータの100℃における貯蔵弾性率の値をE’(MA)、30℃における貯蔵弾性率の値をE’(MB)とした。
(Elastic modulus of the coating)
Covering parts 1-A to 1-D used in Example 1 and Comparative Example 1 were cut into a length of 50 mm and a width of 4 mm, respectively, and a dynamic viscoelastic device (ITA Measurement Control Co., Ltd. DVA-200) was used. The distance between chucks was measured with a strain of 25 mm and 1%. The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min. The value of the storage elastic modulus at 100 ° C. of the obtained data was E ′ (MA), and the value of the storage elastic modulus at 30 ° C. was E ′ (MB).
(粘着材層の弾性率)
 実施例・比較例の群1で得られた粘着材層を重ねて1mmの厚さに積層させ、レオメータ(サーモフィッシャーサイエンティフィック社製 MARSII)を用いて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 得られたデータの100℃における貯蔵弾性率の値をG’(SA)、損失弾性率の値をG’’(SA)、30℃における貯蔵弾性率の値をG’(SB)、損失弾性率の値をG’’(SB)として、各温度条件下におけるG’’/G’の値をそれぞれの粘着材層の損失正接tanδ(SA,SB)とした。
(Elastic modulus of adhesive layer)
The pressure-sensitive adhesive layers obtained in Group 1 of Examples and Comparative Examples were overlapped and laminated to a thickness of 1 mm, and measured using a rheometer (MARSII manufactured by Thermo Fisher Scientific). The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
In the obtained data, the storage elastic modulus value at 100 ° C. is G ′ (SA), the loss elastic modulus value is G ″ (SA), the storage elastic modulus value at 30 ° C. is G ′ (SB), and the loss elastic modulus. The rate value was G ″ (SB), and the value of G ″ / G ′ under each temperature condition was the loss tangent tan δ (SA, SB) of each adhesive material layer.
(ゲル分率)
 粘着材層のゲル分率は、実施例・比較例の群1で得られた粘着材層をそれぞれ約0.05g分採取し、予め質量(X)を測定したSUSメッシュ(#200)で袋状に包み、袋の口を折って閉じて、この包みの質量(Y)を測定した後、100mlの酢酸エチルに浸漬させ23℃で24時間暗所保管した後、包みを取り出して70℃で4.5時間加熱し付着している酢酸エチルを蒸発させ、乾燥した包みの質量(Z)を測定し、求めた質量を下記式に代入して求めた。
 ゲル分率[%]=[(Z-X)/(Y-X)]×100
(Gel fraction)
The gel fraction of the pressure-sensitive adhesive layer was obtained by collecting about 0.05 g of each pressure-sensitive adhesive layer obtained in Group 1 of Examples and Comparative Examples, and measuring the mass (X) in advance with a SUS mesh (# 200). After wrapping the bag and closing the bag mouth, measuring the mass (Y) of the wrap, immersing it in 100 ml of ethyl acetate and storing it in the dark at 23 ° C. for 24 hours, then removing the wrap at 70 ° C. It was heated for 4.5 hours to evaporate the adhering ethyl acetate, the mass (Z) of the dried packet was measured, and the calculated mass was substituted into the following formula.
Gel fraction [%] = [(ZX) / (YX)] × 100
(成形性)
 成形性を確認するため、次に説明する金型を用いて実施例・比較例の群1の成形テストを実施した。すなわち、成形用の金型の上下一方の金型は、図5に示すように、長さ270mm、幅170mm、厚さ40mmの凸金型であり、上下他方の金型は、長さ270mm、幅170mm、厚さ40mmのアルミ平板であった。
 前記凸金型の成形面には、図5に示すように、縦187mm、横125mm、高さ1mmの凸部を中央に設け、さらにその凸部の成形面内に、深さが25μm、50μm、75μm、100μmの4つの平面視長方形状(縦89mm、横58mm)の成形凹部が設けられている。
(Formability)
In order to confirm the moldability, a molding test of Group 1 of Examples and Comparative Examples was performed using a mold described below. That is, as shown in FIG. 5, the upper and lower molds of the molding mold are convex molds having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm, The aluminum plate was 170 mm wide and 40 mm thick.
As shown in FIG. 5, a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold. , 75 μm and 100 μm, four rectangular concave portions (89 mm long and 58 mm wide) in plan view are provided.
 実施例・比較例の群1に記載の方法で得られた、凹凸を賦形した賦形粘着シート積層体の被覆部1-A~1-Dを剥離し、印刷段差に相当する凹部とディスプレイ面に相当する凸部との高さを、それぞれ走査型白色干渉顕微鏡を用いて非接触方式で計測した。
 金型の深さ100μmに対する成形体の凸部(凹部とのエッジ部)の高さhを計測し、下記計算式より導かれる転写率が50%以上のものを○、50%未満のものを×としてそれぞれ評価した。
  転写率(%)=h(成形体高さ)/100(金型深さ)×100
The covering portions 1-A to 1-D of the shaped pressure-sensitive adhesive sheet laminate formed with unevenness obtained by the method described in the group 1 of Examples / Comparative Examples are peeled off, and the concave portions corresponding to the printing steps and the display The height from the convex portion corresponding to the surface was measured in a non-contact manner using a scanning white interference microscope.
Measure the height h of the convex part (edge part with the concave part) of the molded body with respect to the depth of the mold of 100 μm, and the transfer rate derived from the following calculation formula is 50% or more: ○, less than 50% Each was evaluated as x.
Transfer rate (%) = h (molded body height) / 100 (mold depth) × 100
(剥離力)
 実施例・比較例の群1で作製した粘着シート積層体を長さ150mm、幅50mmに切り出し、被覆部1-A~1-Dと粘着材層との界面について、試験速度300mm/minで180°剥離試験を行った。
 30℃環境下での剥離力をF(C)、100℃で5分間加熱後、30℃まで自然冷却させた後における剥離力をF(D)として得られた値をそれぞれ被覆部1-A~1-Dの剥離力とした。
(Peeling force)
The pressure-sensitive adhesive sheet laminate produced in Group 1 of Examples and Comparative Examples was cut into a length of 150 mm and a width of 50 mm, and the interface between the coating portions 1-A to 1-D and the pressure-sensitive adhesive layer was 180 at a test speed of 300 mm / min. ° A peel test was performed.
The peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D). A peel force of 1 to D was used.
 実施例及び比較例で得られた粘着シート積層体1-1~1-4及び賦形粘着シート積層体1-1~1-4の評価結果を表1に示した。 The evaluation results of the pressure-sensitive adhesive sheet laminates 1-1 to 1-4 and the shaped pressure-sensitive adhesive sheet laminates 1-1 to 1-4 obtained in Examples and Comparative Examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図4の結果並びにこれまで行ってきた試験結果から、実施例1-1乃至実施例1-3に示すように、30℃における貯蔵弾性率E’(MB)が5.0×10~1.0×1010Paであり、且つ、100℃における貯蔵弾性率E’(MA)が1.0×10~2.0×10Paである被覆部を粘着材層に積層して成形を行うことで、粘着材層に精度高く凹凸形状を賦形することができることを確認した。
 一方、比較例1-1が示すように、離形フィルムとして一般に広く用いられる二軸延伸ホモPETフィルムを用いた場合、高温域においても被覆部の貯蔵弾性率が2.0×10Paを超えるため、熱成形をしても粘着材層に十分な凹凸を賦形することができなかった。
 以上のことから、30℃における貯蔵弾性率E’(MB)が5.0×10~1.0×1010Paであり、且つ、100℃における貯蔵弾性率E’(MA)が1.0×10~2.0×10Paである被覆部を粘着材層に積層して成形を行うことで、良好に凹凸賦形された賦形粘着シートを得ることができることが分かった。
From the results of Table 1 and FIG. 4 and the test results conducted so far, as shown in Examples 1-1 to 1-3, the storage elastic modulus E ′ (MB) at 30 ° C. is 5.0 × 10. A coating portion having a storage elastic modulus E ′ (MA) at 100 ° C. of 7 × 1.0 × 10 10 Pa and a storage modulus E ′ (MA) of 1.0 × 10 6 to 2.0 × 10 9 Pa is laminated on the adhesive layer. As a result, it was confirmed that the concavo-convex shape can be shaped with high accuracy in the adhesive material layer.
On the other hand, as shown in Comparative Example 1-1, when a biaxially stretched homo-PET film generally used widely as a release film is used, the storage elastic modulus of the covering portion is 2.0 × 10 9 Pa even in a high temperature range. For this reason, sufficient unevenness could not be formed on the adhesive layer even when thermoforming.
From the above, the storage elastic modulus E ′ (MB) at 30 ° C. is 5.0 × 10 7 to 1.0 × 10 10 Pa and the storage elastic modulus E ′ (MA) at 100 ° C. is 1. It was found that a shaped pressure-sensitive adhesive sheet with good irregularities can be obtained by laminating a covering portion of 0 × 10 6 to 2.0 × 10 9 Pa on the pressure-sensitive adhesive layer and performing molding.
 さらに好ましくは粘着材層の100℃における損失正接tanδ(A)が1.0以上の条件を満たし、且つ、粘着材層の30℃における損失正接tanδ(B)が1.0未満の条件を満たすような粘着シート積層体を用いることで、より高精度の賦形を達成することができることも分かった。 More preferably, the loss tangent tan δ (A) at 100 ° C. of the adhesive layer satisfies the condition of 1.0 or more, and the loss tangent tan δ (B) at 30 ° C. of the adhesive layer satisfies the condition of less than 1.0. It was also found that more accurate shaping can be achieved by using such a pressure-sensitive adhesive sheet laminate.
 よって、上記のような粘着シート積層体を用いて、被着体となる画像表示装置の印刷段差に相当する凹凸を精度良く賦形することで、被着体との間に隙間なく、且つ印刷部が狭額縁デザインのような被着体においても粘着材がオーバーフローすることなく良好に密着貼合することのできる画像表示装置用賦形粘着シート積層体が製造可能であることを確認することができた。 Therefore, by using the pressure-sensitive adhesive sheet laminate as described above, the irregularities corresponding to the printing steps of the image display device as the adherend are accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
 また、剥離力についてみると、剥離力F(D)を測定した際の加熱冷却条件、すなわち100℃で5分間加熱後、30℃まで自然冷却させる条件は、賦形粘着シート積層体を製造する際の典型的な加熱冷却条件である。上記実施例の何れも、剥離力F(C)と剥離力F(D)の差の絶対値は0.1N/cm以下であったから、賦形粘着シート積層体における被覆部1-A~1-Dの剥離力は、粘着シート積層体における被覆部1-A~1-Dの剥離力と変わらないことが確認された。 Moreover, when it sees about peeling force, the heating-cooling conditions at the time of measuring peeling force F (D), ie, the conditions which carry out natural cooling to 30 degreeC after heating for 5 minutes at 100 degreeC manufacture a shaped adhesive sheet laminated body. This is a typical heating / cooling condition. In any of the above examples, the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less. It was confirmed that the peel force of -D was not different from the peel force of the covering portions 1-A to 1-D in the pressure-sensitive adhesive sheet laminate.
[実施例・比較例の群2]
<被覆部2-I>
 実施例2-1~2-4及び比較例2-1(以下、総称して「実施例・比較例の群2」とも称する。)における粘着シート積層体の被覆部Iとして、二軸延伸イソフタル酸共重合PETフィルム(厚さ:75μm)の片面にシリコーン系化合物からなる離型層(厚さ:2μm)を積層してなるフィルムを用いた。各々の貯蔵弾性率の値は表2に示した。
[Group 2 of Examples and Comparative Examples]
<Coating part 2-I>
A biaxially stretched isophthalate is used as the covering portion I of the pressure-sensitive adhesive sheet laminate in Examples 2-1 to 2-4 and Comparative Example 2-1 (hereinafter collectively referred to as “Group 2 of Examples and Comparative Examples”). A film obtained by laminating a release layer (thickness: 2 μm) made of a silicone compound on one side of an acid copolymerized PET film (thickness: 75 μm) was used. Each storage modulus value is shown in Table 2.
<実施例2-1>
(両面粘着シートの作製)
 (メタ)アクリル系共重合体(2-a)として、数平均分子量2400のポリメタクリル酸メチルマクロモノマー(Tg:105℃)15質量部(18mol%)とブチルアクリレート(Tg:-55℃)81質量部(75mol%)とアクリル酸(Tg:106℃)4質量部(7mol%)とがランダム共重合してなるアクリル系共重合体(2-a-1)(重量平均分子量23万)1kgと、架橋剤(2-b)として、グリセリンジメタクリレート(日油社製、製品名:GMR)(2-b-1)90gと、光重合開始剤(2-c)として、2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物(Lanberti社製、製品名:エザキュアTZT)(2-c-1)15gを均一混合し、粘着材層に用いる樹脂組成物2-1を作製した。得られた樹脂組成物のガラス転移温度は-5℃であった。
<Example 2-1>
(Production of double-sided PSA sheet)
As the (meth) acrylic copolymer (2-a), 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer (Tg: 105 ° C.) having a number average molecular weight of 2400 and 81 of butyl acrylate (Tg: −55 ° C.) 1 kg of acrylic copolymer (2-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.) As a crosslinking agent (2-b), 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (2-b-1), and 2, 4, as photopolymerization initiator (2-c) 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name: Ezacure TZT) (2-c-1) 15 g of resin is uniformly mixed and used for the adhesive layer -1 were produced. The resulting resin composition had a glass transition temperature of −5 ° C.
 得られた樹脂組成物2-1を離形処理したPETフィルム(三菱樹脂社製、製品名:ダイアホイルMRV-V06、厚さ:100μm)と、被覆部2-Iとの2枚で挟み、ラミネータを用いて樹脂組成物2-1の厚さが100μmとなるようにシート状に賦形し、粘着シート積層体2-1を作製した。なお、被覆部2-Iの離型層側を樹脂組成物2-1に接するように配置した。 The obtained resin composition 2-1 was sandwiched between two sheets of a PET film (manufactured by Mitsubishi Plastics, product name: Diafoil MRV-V06, thickness: 100 μm) and a covering part 2-I. Using a laminator, the resin composition 2-1 was shaped into a sheet so that the thickness was 100 μm, and an adhesive sheet laminate 2-1 was produced. The release layer side of the covering portion 2-I was disposed so as to be in contact with the resin composition 2-1.
 得られた粘着シート積層体2-1は、真空圧空成形機(第一実業社製、FKS-0632-20形)及び成形用金型を用いて以下のプロセスで熱成形を行い、賦形粘着シート積層体2-1を作製した。
 成形用の金型は、上下一方の金型が、図5に示すように、長さ270mm、幅170mm、厚さ40mmの凸金型であり、上下他方の金型は、長さ270mm、幅170mm、厚さ40mmのアルミ平板であった。前記凸金型の成形面には、図5に示すように、縦187mm、横125mm、高さ1mmの凸部を中央に設け、さらにその凸部の成形面内に、深さが25μm、50μm、75μm、100μmの4つの平面視長方形状(縦89mm、横58mm)の成形凹部を設けた。
The obtained pressure-sensitive adhesive sheet laminate 2-1 was subjected to thermoforming by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., FKS-0632-20 type) and a molding die, and shaped adhesive. A sheet laminate 2-1 was produced.
As shown in FIG. 5, the mold for molding is a convex mold having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm and a width. The aluminum plate was 170 mm and 40 mm thick. As shown in FIG. 5, a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold, and the depth is 25 μm and 50 μm in the molding surface of the convex portion. , 75 μm and 100 μm, four rectangular recesses (89 mm long and 58 mm wide) in plan view were provided.
 400℃に予熱したIRヒーターで、粘着シート積層体2-1の被覆部2-Iの表面が100℃になるまで加熱して成形した。すなわち、被覆部2-Iの貯蔵弾性率E’(MS)が2.1×10Paであり、粘着材層の貯蔵弾性率G’(SS)が2.9×10Paである状態で、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、被覆部2-Iの貯蔵弾性率E’(MF)が2.8×10Paであり、粘着材層の貯蔵弾性率G’(SF)が6.1×10Paである状態で金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体2-1を作製した。 It was molded by heating with an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-1 reached 100 ° C. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 2.1 × 10 8 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 2.9 × 10 2 Pa. Then, press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 × a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 × 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-1 was produced.
 なお、前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)に対する前記成形開始時の被覆部2-Iの貯蔵弾性率E’(MS)の比率E’(MF)/E’(MS)は13.3であった。
 また、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)に対する前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)の比率E’(MF)/G’(SF)は4.6×10であった。
 また、成形開始時における粘着材層の損失正接tanδ(SS)は4.8であり、成形終了時における粘着材層の損失正接tanδ(SF)は0.6であった。
The ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 13.3.
Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 × 10 4 .
Further, the loss tangent tan δ (SS) of the adhesive layer at the start of molding was 4.8, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding was 0.6.
<実施例2-2>
 実施例2-1で用いた粘着シート積層体2-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体2-2の被覆部2-Iの表面が110℃になるまで加熱し成形した。すなわち、被覆部2-Iの貯蔵弾性率E’(MS)が1.3×10Paであり、粘着材層の貯蔵弾性率G’(SS)が9.6×10Paである状態で、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、被覆部2-Iの貯蔵弾性率E’(MF)が2.8×10Paであり、粘着材層の貯蔵弾性率G’(SF)が6.1×10Paである状態で金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体2-2を作製した。
<Example 2-2>
The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-2 reached 110 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 1.3 × 10 8 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 9.6 × 10 1 Pa. Then, press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 × a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 × 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-2 was produced.
<実施例2-3>
 実施例2-1で用いた粘着シート積層体2-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体2-3の被覆部2-Iの表面が90℃になるまで加熱し成形した。すなわち、被覆部2-Iの貯蔵弾性率E’(MS)が3.5×10Paであり、粘着材層の貯蔵弾性率G’(SS)が8.9×10Paである状態で、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、被覆部2-Iの貯蔵弾性率E’(MF)が2.8×10Paであり、粘着材層の貯蔵弾性率G’(SF)が6.1×10Paである状態で金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体2-3を作製した。
<Example 2-3>
The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-3 became 90 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 3.5 × 10 8 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 8.9 × 10 2 Pa. Then, press molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 × a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 × 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-3 was produced.
 なお、前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)に対する前記成形開始時の被覆部2-Iの貯蔵弾性率E’(MS)の比率E’(MF)/E’(MS)は8.0であった。
 また、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)に対する前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)の比率E’(MF)/G’(SF)は4.6×10であった。
 また、成形開始時における粘着材層の損失正接tanδ(SS)は2.7であり、成形終了時における粘着材層の損失正接tanδ(SF)は0.6であった。
The ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 8.0.
Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 × 10 4 .
Further, the loss tangent tan δ (SS) of the adhesive layer at the start of molding was 2.7, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding was 0.6.
<実施例2-4>
 実施例2-1で用いた粘着シート積層体2-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体2-4の被覆部2-Iの表面が70℃になるまで加熱し成形した。すなわち、被覆部2-Iの貯蔵弾性率E’(MS)が1.9×10Paであり、粘着材層の貯蔵弾性率G’(SS)が6.4×10Paである状態で、金型表面温度を25℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、被覆部2-Iの貯蔵弾性率E’(MF)が2.8×10Paであり、粘着材層の貯蔵弾性率G’(SF)が6.1×10Paである状態で金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体2-4を作製した。
<Example 2-4>
The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-4 reached 70 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 1.9 × 10 9 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 6.4 × 10 3 Pa. Then, press molding was performed for 5 seconds under a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 25 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 × a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 × 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-4 was produced.
 なお、前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)に対する前記成形開始時の被覆部2-Iの貯蔵弾性率E’(MS)の比率E’(MF)/E’(MS)は1.4であった。
 また、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)に対する前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)の比率E’(MF)/G’(SF)は4.6×10であった。
 また、成形開始時における粘着材層の損失正接tanδ(SS)は1.4であり、成形終了時における粘着材層の損失正接tanδ(SF)は0.6であった。
The ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 1.4.
Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 × 10 4 .
Further, the loss tangent tan δ (SS) of the adhesive layer at the start of molding was 1.4, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding was 0.6.
<比較例2-1>
 実施例2-1で用いた粘着シート積層体2-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体2-5の被覆部2-Iの表面が60℃になるまで加熱し成形した。すなわち、被覆部2-Iの貯蔵弾性率E’(MS)が2.4×10Paであり、粘着材層の貯蔵弾性率G’(SS)が1.3×10Paである状態で、金型表面温度を25℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、被覆部2-Iの貯蔵弾性率E’(MF)が2.8×10Paであり、粘着材層の貯蔵弾性率G’(SF)が6.1×10Paである状態で金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体2-5を作製した。
<Comparative Example 2-1>
The pressure-sensitive adhesive sheet laminate 2-1 used in Example 2-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 2-I of the pressure-sensitive adhesive sheet laminate 2-5 reached 60 ° C. And then molded. That is, the storage elastic modulus E ′ (MS) of the covering portion 2-I is 2.4 × 10 9 Pa, and the storage elastic modulus G ′ (SS) of the adhesive layer is 1.3 × 10 4 Pa. Then, press molding was performed for 5 seconds under a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 25 ° C., and the storage elastic modulus E ′ (MF) of the covering portion 2-I was 2 .8 × a 10 9 Pa, the storage modulus G of the adhesive material layer '(SF) is open the mold while it is 6.1 × 10 4 Pa, the shaped adhesive sheet formed by irregularities shaped into the surface A layered product 2-5 was produced.
 なお、前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)に対する前記成形開始時の被覆部2-Iの貯蔵弾性率E’(MS)の比率E’(MF)/E’(MS)は1.2であった。
 また、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)に対する前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)の比率E’(MF)/G’(SF)は4.6×10であった。
 また、成形開始時における粘着材層の損失正接tanδ(SS)は1.1であり、成形終了時における粘着材層の損失正接tanδ(SF)は0.6であった。
The ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 1.2.
Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 4.6 × 10 4 .
Further, the loss tangent tan δ (SS) of the adhesive layer at the start of molding was 1.1, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding was 0.6.
 なお、前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)に対する前記成形開始時の被覆部2-Iの貯蔵弾性率E’(MS)の比率E’(MF)/E’(MS)は8.0であった。
 また、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)に対する前記成形終了時の被覆部2-Iの貯蔵弾性率E’(MF)の比率E’(MF)/G’(SF)は9.7×10であった。
 また、成形開始時における粘着材層の損失正接tanδ(SS)は0.6であり、成形終了時における粘着材層の損失正接tanδ(SF)は0.6であった。
The ratio E ′ (MF) / E of the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding to the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of the forming. '(MS) was 8.0.
Further, the ratio E ′ (MF) / G ′ of the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding to the storage elastic modulus G ′ (SF) of the adhesive layer at the end of molding. SF) was 9.7 × 10 3 .
Further, the loss tangent tan δ (SS) of the adhesive layer at the start of molding was 0.6, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding was 0.6.
<測定及び評価方法>
 実施例2-1~2-4・比較例2-1で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
<Measurement and evaluation method>
The measurement methods and evaluation methods for various physical properties of the samples obtained in Examples 2-1 to 2-4 and Comparative Example 2-1 will be described.
(被覆部の弾性率)
 被覆部2-Iの貯蔵弾性率E’(MS)及びE’(MF)は、長さ50mm、幅4mmに切り出し、動的粘弾性装置(アイティー計測制御株式会社 DVA-200)を用いてチャック間距離は25mm、1%の歪みをかけて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 実施例及び比較例の各成形開始時温度における貯蔵弾性率の値をE’(MS)、各成形終了時温度における貯蔵弾性率の値をE’(MF)とした。
(Elastic modulus of the coating)
The storage elastic modulus E ′ (MS) and E ′ (MF) of the covering portion 2-I was cut into a length of 50 mm and a width of 4 mm, and a dynamic viscoelastic device (ITA Measurement Control Co., Ltd. DVA-200) was used. The distance between chucks was measured with a strain of 25 mm and 1%. The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
The value of the storage elastic modulus at each molding start temperature in Examples and Comparative Examples was E ′ (MS), and the value of the storage elastic modulus at each molding end temperature was E ′ (MF).
 なお、実施例2-1においては、成形開始時温度が100℃であるから、実施例2-1の貯蔵弾性率E’(MS)は、100℃における貯蔵弾性率E’(MA)である。
 また、実施例・比較例の群2の何れについても、成形終了時温度は30℃であったため、何れの実施例・比較例の群2についても、当該E’(MF)は30℃における貯蔵弾性率E’(MB)と同じである。
In Example 2-1, since the temperature at the start of molding is 100 ° C., the storage elastic modulus E ′ (MS) of Example 2-1 is the storage elastic modulus E ′ (MA) at 100 ° C. .
Moreover, since the temperature at the time of completion of molding was 30 ° C. for any of the group 2 of the example / comparative example, the E ′ (MF) was stored at 30 ° C. for the group 2 of any example / comparative example. It is the same as the elastic modulus E ′ (MB).
(粘着材層の弾性率)
 実施例・比較例の群2で得られた粘着材層を重ねて1mmの厚さに積層させ、レオメータ(サーモフィッシャーサイエンティフィック社製 MARSII)を用いて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 得られたデータにおいて、100℃における貯蔵弾性率の値をG’(SA)、損失弾性率の値をG’’(SA)、30℃における貯蔵弾性率の値をG’(SB)、損失弾性率の値をG’’(SB)として、各温度条件下におけるG’’/G’の値をそれぞれの粘着材層の損失正接tanδ(SA,SB)とした。
(Elastic modulus of adhesive layer)
The pressure-sensitive adhesive layers obtained in Group 2 of Examples / Comparative Examples were stacked to a thickness of 1 mm and measured using a rheometer (MARSII manufactured by Thermo Fisher Scientific Co.). The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
In the obtained data, the value of storage elastic modulus at 100 ° C. is G ′ (SA), the value of loss elastic modulus is G ″ (SA), the value of storage elastic modulus at 30 ° C. is G ′ (SB), the loss The value of elastic modulus was G ″ (SB), and the value of G ″ / G ′ under each temperature condition was the loss tangent tan δ (SA, SB) of each adhesive material layer.
 他方、粘着材層の貯蔵弾性率G’(SA)及びG’(SB)については、実施例・比較例の群2で得られた粘着材層を重ねて1mmの厚さに積層させ、レオメータ(サーモフィッシャーサイエンティフィック社製 MARSII)を用いて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 得られたデータにおいて、実施例・比較例の群2の各成形開始時温度における貯蔵弾性率の値をG’(SS)、損失弾性率の値をG’’(SS)とし、各成形終了時温度における貯蔵弾性率の値をG’(SF)、損失弾性率の値をG’’(SF)とし、さらに各温度条件下におけるG’’/G’の値をそれぞれの粘着材層の損失正接tanδ(SS,SF)とした。
On the other hand, for the storage elastic modulus G ′ (SA) and G ′ (SB) of the adhesive material layer, the adhesive material layers obtained in the group 2 of Examples and Comparative Examples were stacked and laminated to a thickness of 1 mm. It was measured using (Thermo Fisher Scientific MARSII). The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
In the obtained data, the storage elastic modulus value at each molding start temperature of Group 2 of Examples and Comparative Examples is G ′ (SS), the loss elastic modulus value is G ″ (SS), and each molding is completed. The storage elastic modulus value at hourly temperature is G ′ (SF), the loss elastic modulus value is G ″ (SF), and the G ″ / G ′ value under each temperature condition is The loss tangent tan δ (SS, SF) was used.
(ゲル分率)
 粘着材層のゲル分率については、実施例・比較例の群2で得られた粘着材層をそれぞれ約0.05g分採取し、予め質量(X)を測定したSUSメッシュ(#200)で袋状に包み、袋の口を折って閉じて、この包みの質量(Y)を測定した後、100mlの酢酸エチルに浸漬させ23℃で24時間暗所保管した後、包みを取り出して70℃で4.5時間加熱し付着している酢酸エチルを蒸発させ、乾燥した包みの質量(Z)を測定し、求めた質量を下記式に代入して求めた。
 ゲル分率[%]=[(Z-X)/(Y-X)]×100
(Gel fraction)
About the gel fraction of the adhesive material layer, about 0.05 g of each of the adhesive material layers obtained in Group 2 of Examples and Comparative Examples was sampled, and the mass (X) was measured in advance with a SUS mesh (# 200). Wrap it in a bag, close the bag by closing the mouth, measure the mass (Y) of the bag, immerse it in 100 ml of ethyl acetate and store it in the dark at 23 ° C. for 24 hours. Was heated for 4.5 hours to evaporate the adhering ethyl acetate, the mass (Z) of the dried packet was measured, and the obtained mass was substituted into the following formula.
Gel fraction [%] = [(ZX) / (YX)] × 100
(成形性)
 実施例・比較例の群2で得られた、凹凸を賦形した賦形粘着シート積層体の被覆部Iを剥離し、印刷段差に相当する凹部とディスプレイ面に相当する凸部との高さを、それぞれ走査型白色干渉顕微鏡を用いて非接触方式で計測した。
 金型の深さ100μmに対する成形体の凸部(凹部とのエッジ部)の高さhを計測し、下記計算式より導かれる転写率が50%以上のものを○、50%未満のものを×としてそれぞれ評価した。
 転写率(%)=h(成形体高さ)/100(金型深さ)×100
(Formability)
The height of the concave portion corresponding to the printing step and the convex portion corresponding to the display surface is peeled off from the covering portion I of the shaped pressure-sensitive adhesive sheet laminate obtained by the group 2 of Examples and Comparative Examples. Were measured in a non-contact manner using a scanning white interference microscope.
Measure the height h of the convex part (edge part with the concave part) of the molded body with respect to the depth of the mold of 100 μm, and the transfer rate derived from the following calculation formula is 50% or more: ○, less than 50% Each was evaluated as x.
Transfer rate (%) = h (molded body height) / 100 (mold depth) × 100
(剥離力)
 実施例・比較例の群2で作製した粘着シート積層体を長さ150mm、幅50mmに切り出し、被覆部2-Iと粘着材層との界面について、試験速度300mm/minで180°剥離試験を行った。
 30℃環境下での剥離力をF(C)、100℃で5分間加熱後、30℃まで自然冷却させた後における剥離力をF(D)として得られた値をそれぞれ被覆部2-Iの剥離力とした。
(Peeling force)
The pressure-sensitive adhesive sheet laminate produced in Example 2 and Comparative Example 2 was cut into a length of 150 mm and a width of 50 mm, and the 180 ° peel test was performed at a test speed of 300 mm / min on the interface between the covering part 2-I and the pressure-sensitive adhesive layer. went.
The peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D). It was set as the peeling force.
 実施例2-1~2-4及び比較例2-1で得られた賦形粘着シート積層体2-1~2-5の評価結果を表2に示した。 The evaluation results of the shaped adhesive sheet laminates 2-1 to 2-5 obtained in Examples 2-1 to 2-4 and Comparative Example 2-1 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図4の結果並びにこれまで行ってきた試験結果から、実施例2-1乃至実施例2-4に示すように、成形開始時における被覆部2-Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paであり、且つ、成形終了時における被覆部2-Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paとなるように調整して成形を行うことで、粘着材層に精度高く凹凸形状を賦形することができることを確認した。
 一方、比較例2-1が示すように、成形開始時における被覆部2-Iの貯蔵弾性率E’(MS)が2.0×10Paより大きい場合、熱成形をしても粘着材層に十分な凹凸を賦形することができなかった。
 以上のことから、成形開始時における被覆部2-Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paであり、且つ、成形終了時における被覆部2-Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paとなるように調整して成形を行うことで、良好に凹凸賦形された賦形粘着シートを得ることができることが分かった。
From the results of Table 2 and FIG. 4 and the test results conducted so far, as shown in Examples 2-1 to 2-4, the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding is shown. ) Is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus E ′ (MF) of the covering portion 2-I at the end of molding is 5.0 × 10 7 to 1.0. It was confirmed that the uneven shape can be shaped with high accuracy in the adhesive layer by performing the molding while adjusting to be × 10 10 Pa.
On the other hand, as shown in Comparative Example 2-1, when the storage elastic modulus E ′ (MS) of the covering portion 2-I at the start of molding is larger than 2.0 × 10 9 Pa, the adhesive material even if thermoforming is performed. Sufficient irregularities could not be formed on the layer.
From the above, the storage elastic modulus E ′ (MS) of the covering part 2-I at the start of molding is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the covering part 2 at the end of molding -I shaped storage pressure-sensitive adhesive sheet that is formed with good irregularities by adjusting the storage elastic modulus E '(MF) of I to 5.0 × 10 7 to 1.0 × 10 10 Pa. It turns out that can be obtained.
 さらに好ましくは成形開始時における粘着材層の損失正接tanδ(SS)が1.0以上の条件を満たし、且つ、成形終了時における粘着材層の損失正接tanδ(SF)が1.0未満の条件を満たすように調整して成形を行うことで、より高精度の賦形を達成することができることも分かった。 More preferably, the loss tangent tan δ (SS) of the adhesive layer at the start of molding satisfies the condition of 1.0 or more, and the loss tangent tan δ (SF) of the adhesive layer at the end of molding is less than 1.0. It was also found that more accurate shaping can be achieved by performing molding while adjusting so as to satisfy the above.
 よって、前記のような粘着シート積層体を用いて、被着体となる画像表示装置の印刷段差に相当する凹凸を精度良く賦形することで、被着体との間に隙間なく、且つ印刷部が狭額縁デザインのような被着体においても粘着材がオーバーフローすることなく良好に密着貼合することのできる画像表示装置用賦形粘着シート積層体が製造可能であることを確認することができた。 Therefore, by using the pressure-sensitive adhesive sheet laminate as described above, the unevenness corresponding to the printing steps of the image display device as the adherend is accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
 また、剥離力についてみると、剥離力F(D)を測定した際の加熱冷却条件、すなわち100℃で5分間加熱後、30℃まで自然冷却させる条件は、賦形粘着シート積層体を製造する際の典型的な加熱冷却条件である。前記実施例の何れも、剥離力F(C)と剥離力F(D)の差の絶対値は0.1N/cm以下であったことから剥離力が加熱前後においてほとんど変化がないことが確認された。 Moreover, when it sees about peeling force, the heating-cooling conditions at the time of measuring peeling force F (D), ie, the conditions which carry out natural cooling to 30 degreeC after heating for 5 minutes at 100 degreeC manufacture a shaped adhesive sheet laminated body. This is a typical heating / cooling condition. In all of the above examples, the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less, so it was confirmed that the peeling force hardly changed before and after heating. It was done.
 さらに、粘着シート積層体を加熱して、被覆部2-Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paである状態で成形を開始し、被覆部2-Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paである状態で成形を終了することにより、被着体表面の凹凸部と符合する凹凸形状を粘着材層表面に精度高く形成することができることが分かった。 Further, the pressure-sensitive adhesive sheet laminate was heated to start molding in a state where the storage elastic modulus E ′ (MS) of the covering portion 2-I was 1.0 × 10 6 to 2.0 × 10 9 Pa. When the molding is finished in a state where the storage elastic modulus E ′ (MF) of the part 2-I is 5.0 × 10 7 to 1.0 × 10 10 Pa, the unevenness coincident with the uneven portion on the adherend surface. It was found that the shape can be formed with high accuracy on the surface of the adhesive layer.
[実施例・比較例の群3]
<被覆部3-I>
 実施例3-1~3-3及び比較例3-1~3-2(以下、総称して「実施例・比較例の群3」とも称する。)における粘着シート積層体の被覆部3-Iとして、二軸延伸イソフタル酸共重合PETフィルム(厚さ:75μm)の片面にシリコーン系化合物からなる離型層(厚さ:2μm)を積層してなるフィルムを用いた。各々の貯蔵弾性率の値は表3に示した。
[Group 3 of Examples and Comparative Examples]
<Coating 3-I>
Covering portion 3-I of the pressure-sensitive adhesive sheet laminate in Examples 3-1 to 3-3 and Comparative Examples 3-1 to 3-2 (hereinafter collectively referred to as “Example / Comparative Group 3”) A film obtained by laminating a release layer (thickness: 2 μm) made of a silicone compound on one side of a biaxially stretched isophthalic acid copolymerized PET film (thickness: 75 μm) was used. Each storage modulus value is shown in Table 3.
<実施例3-1>
(両面粘着シートの作製)
 (メタ)アクリル系共重合体(3-a)として、数平均分子量2400のポリメタクリル酸メチルマクロモノマー(Tg:105℃)15質量部(18mol%)とブチルアクリレート(Tg:-55℃)81質量部(75mol%)とアクリル酸(Tg:106℃)4質量部(7mol%)とがランダム共重合してなるアクリル系共重合体(3-a-1)(重量平均分子量23万)1kgと、架橋剤(3-b)として、グリセリンジメタクリレート(日油社製、製品名:GMR)(3-b-1)90gと、光重合開始剤(3-c)として、2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物(Lanberti社製、製品名:エザキュアTZT)(3-c-1)15gを均一混合し、粘着材層に用いる樹脂組成物3-1を作製した。得られた樹脂組成物のガラス転移温度は-5℃であった。
<Example 3-1>
(Production of double-sided PSA sheet)
As the (meth) acrylic copolymer (3-a), 15 parts by mass (18 mol%) of a polymethyl methacrylate macromonomer (Tg: 105 ° C.) having a number average molecular weight of 2400 and 81 of butyl acrylate (Tg: −55 ° C.) 1 kg of acrylic copolymer (3-a-1) (weight average molecular weight 230,000) obtained by random copolymerization of 4 parts by mass (7 mol%) with 75 parts by mass (75 mol%) and acrylic acid (Tg: 106 ° C.) And 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (3-b-1) as the crosslinking agent (3-b), and 2, 4, as the photopolymerization initiator (3-c). 6-trimethylbenzophenone and 4-methylbenzophenone mixture (manufactured by Lanberti, product name: Ezacure TZT) (3-c-1) 15 g of resin is uniformly mixed and used for the adhesive layer -1 were produced. The resulting resin composition had a glass transition temperature of −5 ° C.
 得られた樹脂組成物3-1を離形処理したPETフィルム(三菱樹脂社製、製品名:ダイアホイルMRV-V06、厚さ:100μm)と、被覆部3-Iとの2枚で挟み、ラミネータを用いて樹脂組成物3-1の厚さが100μmとなるようにシート状に賦形し、粘着シート積層体3-1を作製した。なお、被覆部3-Iの離型層側を樹脂組成物3-1に接するように配置した。 The obtained resin composition 3-1 was sandwiched between two pieces of a PET film (Mitsubishi Resin, product name: Diafoil MRV-V06, thickness: 100 μm) and a covering portion 3-I, Using a laminator, the resin composition 3-1 was shaped into a sheet so that the thickness of the resin composition 3-1 was 100 μm, and an adhesive sheet laminate 3-1 was produced. The release layer side of the covering portion 3-I was disposed so as to be in contact with the resin composition 3-1.
 得られた粘着シート積層体3-1は、真空圧空成形機(第一実業社製、FKS-0632-20形)及び成形用金型を用いて以下のプロセスで熱成形を行い、賦形粘着シート積層体3-1を作製した。
 成形用の金型は、上下一方の金型が、図5に示すように、長さ270mm、幅170mm、厚さ40mmの凸金型であり、上下他方の金型は、長さ270mm、幅170mm、厚さ40mmのアルミ平板であった。前記凸金型の成形面には、図5に示すように、縦187mm、横125mm、高さ1mmの凸部を中央に設け、さらにその凸部の成形面内に、深さが25μm、50μm、75μm、100μmの4つの平面視長方形状(縦89mm、横58mm)の成形凹部を設けた。
The obtained pressure-sensitive adhesive sheet laminate 3-1 was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jitsugyo Co., Ltd., model FKS-0632-20) and a molding die, and shaped adhesive. A sheet laminate 3-1 was produced.
As shown in FIG. 5, the mold for molding is a convex mold having a length of 270 mm, a width of 170 mm, and a thickness of 40 mm, and the upper and lower molds have a length of 270 mm and a width. The aluminum plate was 170 mm and 40 mm thick. As shown in FIG. 5, a convex portion having a length of 187 mm, a width of 125 mm, and a height of 1 mm is provided in the center on the molding surface of the convex mold, and the depth is 25 μm and 50 μm in the molding surface of the convex portion. , 75 μm and 100 μm, four rectangular recesses (89 mm long and 58 mm wide) in plan view were provided.
 400℃に予熱したIRヒーターで、粘着シート積層体3-1の被覆部3-Iの表面が100℃になるまで加熱し、その加熱状態の粘着シート積層体3-1を、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行った後に金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体3-1を作製した。 With an IR heater preheated to 400 ° C., the surface of the covering portion 3-I of the pressure-sensitive adhesive sheet laminate 3-1 is heated to 100 ° C., and the heated pressure-sensitive adhesive sheet laminate 3-1 is heated to the mold surface temperature. Using a molding die cooled to 30 ° C., press-molding was performed for 5 seconds under the condition of a clamping pressure of 8 MPa, then the die was opened, and a shaped pressure-sensitive adhesive sheet laminate 3- 1 was produced.
<実施例3-2>
 実施例3-1で用いた粘着シート積層体3-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体3-2の被覆部3-Iの表面が70℃になるまで加熱し、その加熱状態の粘着シート積層体3-1を、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行った後に金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体3-2を作製した。
<Example 3-2>
The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the adhesive sheet laminate 3-2 reached 70 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-2 having a surface with irregularities was produced.
<実施例3-3>
 実施例3-1で用いた粘着シート積層体3-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体3-3の被覆部3-Iの表面が100℃になるまで加熱し、その加熱状態の粘着シート積層体3-1を、金型表面温度を50℃に調整した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行った後に金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体3-3を作製した。
<Example 3-3>
The pressure-sensitive adhesive sheet laminate 3-1 used in Example 3-1 is heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the pressure-sensitive adhesive sheet laminate 3-3 reaches 100 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was adjusted to 50 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-3 having a surface with irregularities was produced.
<比較例3-1>
 実施例3-1で用いた粘着シート積層体3-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体3-5の被覆部3-Iの表面が60℃になるまで加熱し、その加熱状態の粘着シート積層体3-1を、金型表面温度を30℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行った後に金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体3-4を作製した。
<Comparative Example 3-1>
The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the coating portion 3-I of the adhesive sheet laminate 3-5 reached 60 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was cooled to 30 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-4 formed by forming irregularities on the surface was produced.
<比較例3-2>
 実施例3-1で用いた粘着シート積層体3-1を、400℃に予熱したIRヒーターを用いて、粘着シート積層体3-5の被覆部3-Iの表面が100℃になるまで加熱し、その加熱状態の粘着シート積層体3-1を、金型表面温度を80℃に調整した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行った後に金型を開き、表面に凹凸賦形してなる賦形粘着シート積層体3-5を作製した。
<Comparative Example 3-2>
The adhesive sheet laminate 3-1 used in Example 3-1 was heated using an IR heater preheated to 400 ° C. until the surface of the covering portion 3-I of the adhesive sheet laminate 3-5 reached 100 ° C. Then, the pressure-sensitive adhesive sheet laminate 3-1 in the heated state was subjected to press molding for 5 seconds under the condition of a clamping pressure of 8 MPa using a molding die whose mold surface temperature was adjusted to 80 ° C. And a shaped pressure-sensitive adhesive sheet laminate 3-5 having a surface with irregularities was produced.
<測定及び評価方法>
 実施例3-1~3-3及び比較例3-1~3-2で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
<Measurement and evaluation method>
A method for measuring and evaluating various physical properties of the samples obtained in Examples 3-1 to 3-3 and Comparative Examples 3-1 to 3-2 will be described.
(被覆部の弾性率)
 被覆部3-Iの貯蔵弾性率は、長さ50mm、幅4mmに切り出し、動的粘弾性装置(アイティー計測制御株式会社 DVA-200)を用いてチャック間距離は25mm、1%の歪みをかけて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 得られたデータにおいて、30℃における被覆部3-Iの貯蔵弾性率の値をE’(MB)、100℃における被覆部3-Iの貯蔵弾性率の値をE’(MA)とした。
(Elastic modulus of the coating)
The storage elastic modulus of the covering part 3-I was cut into a length of 50 mm and a width of 4 mm, and the distance between chucks was 25 mm and a strain of 1% using a dynamic viscoelastic device (ITA Measurement Control Co., Ltd. DVA-200). Measured over time. The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
In the obtained data, the storage elastic modulus value of the covering portion 3-I at 30 ° C. was E ′ (MB), and the storage elastic modulus value of the covering portion 3-I at 100 ° C. was E ′ (MA).
(粘着材層の弾性率)
 実施例・比較例の群3で得られた粘着材層を重ねて1mmの厚さに積層させ、レオメータ(サーモフィッシャーサイエンティフィック社製 MARSII)を用いて測定した。測定温度範囲は-50℃~150℃、周波数は1Hz、昇温速度は3℃/minの条件で測定した。
 得られたデータにおいて、100℃における貯蔵弾性率の値をG’(SA)、損失弾性率の値をG’’(SA)、30℃における貯蔵弾性率の値をG’(SB)、損失弾性率の値をG’’(SB)として、各温度条件下におけるG’’/G’の値をそれぞれの粘着材層の損失正接tanδ(SA,SB)とした。
(Elastic modulus of adhesive layer)
The pressure-sensitive adhesive layers obtained in Group 3 of Examples / Comparative Examples were stacked to a thickness of 1 mm and measured using a rheometer (MARSII manufactured by Thermo Fisher Scientific). The measurement temperature range was −50 ° C. to 150 ° C., the frequency was 1 Hz, and the heating rate was 3 ° C./min.
In the obtained data, the value of storage elastic modulus at 100 ° C. is G ′ (SA), the value of loss elastic modulus is G ″ (SA), the value of storage elastic modulus at 30 ° C. is G ′ (SB), the loss The value of elastic modulus was G ″ (SB), and the value of G ″ / G ′ under each temperature condition was the loss tangent tan δ (SA, SB) of each adhesive material layer.
(成形性)
 実施例・比較例の群3で得られた、凹凸を賦形した賦形粘着シート積層体の被覆部Iを剥離し、印刷段差に相当する凹部とディスプレイ面に相当する凸部との高さを、それぞれ走査型白色干渉顕微鏡を用いて非接触方式で計測した。
 金型の深さ100μmに対する成形体の凸部(凹部とのエッジ部)の高さhを計測し、下記計算式より導かれる転写率が50%以上のものを「○」、50%未満のものを「×」とそれぞれ評価した。
 転写率(%)=h(成形体高さ)/100(金型深さ)×100
(Formability)
The covering portion I of the shaped pressure-sensitive adhesive sheet laminate formed with unevenness obtained in the group 3 of Examples / Comparative Examples is peeled off, and the height between the concave portion corresponding to the printing step and the convex portion corresponding to the display surface Were measured in a non-contact manner using a scanning white interference microscope.
The height h of the convex part (edge part with the concave part) of the molded body with respect to the mold depth of 100 μm is measured, and the transfer rate derived from the following formula is 50% or more. Each thing was evaluated as “x”.
Transfer rate (%) = h (molded body height) / 100 (mold depth) × 100
(反り・うねり)
 実施例・比較例の群3の各成形条件で作製した粘着シート積層体を長さ100mmの正方形に切出し、各頂点の高さを計測した。得られた4点の高さを平均してその値を反りとした。反りの高さが10mm未満のものを「○」、10mm以上のものを「×」とそれぞれ判定した。
(Warp / swell)
The pressure-sensitive adhesive sheet laminate produced under each molding condition of Example 3 and Comparative Example 3 was cut into a square having a length of 100 mm, and the height of each vertex was measured. The height of the obtained four points was averaged and the value was taken as a warp. Those having a warp height of less than 10 mm were judged as “◯”, and those having a warp height of 10 mm or more were judged as “x”.
(剥離力)
 実施例・比較例の群3で作製した粘着シート積層体を長さ150mm、幅50mmに切り出し、被覆部3-Iと粘着材層との界面について、試験速度300mm/minで180°剥離試験を行った。
 30℃環境下での剥離力をF(C)、100℃で5分間加熱後、30℃まで自然冷却させた後における剥離力をF(D)として得られた値をそれぞれ被覆部3-Iの剥離力とした。
(Peeling force)
The pressure-sensitive adhesive sheet laminate produced in Example 3 / Comparative Example 3 was cut into a length of 150 mm and a width of 50 mm, and the 180 ° peel test was performed at a test speed of 300 mm / min on the interface between the coating part 3-I and the pressure-sensitive adhesive layer. went.
The peeled force in an environment of 30 ° C. was F (C), and after heating at 100 ° C. for 5 minutes and then naturally cooling to 30 ° C., the peel strength was F (D). It was set as the peeling force.
 実施例3-1~3-3及び比較例3-1~3-2で得られた賦形粘着シート積層体3-1~3-5の評価結果を表3に示した。 Table 3 shows the evaluation results of the shaped adhesive sheet laminates 3-1 to 3-5 obtained in Examples 3-1 to 3-3 and Comparative examples 3-1 to 3-2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果並びにこれまで行ってきた試験結果から、実施例3-1乃至実施例3-3に示すように、被覆部3-Iの表面温度が70~180℃の状態で成形を開始し、被覆部3-Iの表面温度が60℃未満になった後で、成形を終了して金型から成形品を取り出すように成形することで、粘着材層に精度高く凹凸形状を賦形することができることを確認した。
 一方、比較例3-1が示すように、成形開始時における被覆部3-Iの温度が70℃未満であると、熱成形をしても粘着材層に十分な凹凸を賦形することができなかった。
 また、比較例3-2が示すように、成形を終了して金型から成形品を取り出す時に被覆部3-Iの表面温度が70℃以上であると、シートの熱収縮に伴い、成形品に反りやうねりが発生して好ましくないことが分かった。
 以上のことから、より精度高く凹凸賦形をするためには、被覆部3-Iの表面温度が70~180℃の状態で成形を開始し、被覆部3-Iの表面温度が60℃未満になった後で、成形を終了して金型から成形品を取り出すように成形を行うことが好ましいことが分かった。
From the results shown in Table 3 and the test results conducted so far, as shown in Examples 3-1 to 3-3, molding was started with the surface temperature of the covering portion 3-I being 70 to 180 ° C. Then, after the surface temperature of the covering portion 3-I becomes less than 60 ° C., the molding is finished and the molded product is taken out from the mold, so that the concavo-convex shape is accurately formed on the adhesive layer. Confirmed that it can.
On the other hand, as shown in Comparative Example 3-1, when the temperature of the covering portion 3-I at the start of molding is less than 70 ° C., sufficient unevenness can be formed in the adhesive layer even if thermoforming is performed. could not.
Further, as shown in Comparative Example 3-2, when the surface temperature of the covering portion 3-I is 70 ° C. or more when the molding is finished and the molded product is taken out from the mold, the molded product is caused by the thermal contraction of the sheet. It was found that warp and undulation occurred in the case.
In view of the above, in order to perform uneven shape shaping with higher accuracy, molding is started with the surface temperature of the covering portion 3-I being 70 to 180 ° C., and the surface temperature of the covering portion 3-I is less than 60 ° C. After that, it was found preferable to perform the molding so that the molding is finished and the molded product is taken out from the mold.
 よって、前記のような粘着シート積層体を用いて、被着体となる画像表示装置の印刷段差に相当する凹凸を精度良く賦形することで、被着体との間に隙間なく、且つ印刷部が狭額縁デザインのような被着体においても粘着材がオーバーフローすることなく良好に密着貼合することのできる画像表示装置用賦形粘着シート積層体が製造可能であることを確認することができた。 Therefore, by using the pressure-sensitive adhesive sheet laminate as described above, the unevenness corresponding to the printing steps of the image display device as the adherend is accurately shaped, so that there is no gap between the adherend and the printing. It is possible to confirm that a shaped pressure-sensitive adhesive sheet laminate for an image display device that can be satisfactorily bonded without causing the adhesive material to overflow even on an adherend having a narrow frame design can be manufactured. did it.
 また、剥離力についてみると、剥離力F(D)を測定した際の加熱冷却条件、すなわち100℃で5分間加熱後、30℃まで自然冷却させる条件は、賦形粘着シート積層体を製造する際の典型的な加熱冷却条件である。前記実施例の何れも、剥離力F(C)と剥離力F(D)の差の絶対値は0.1N/cm以下であったことから剥離力が加熱前後においてほとんど変化がないことが確認された。 Moreover, when it sees about peeling force, the heating-cooling conditions at the time of measuring peeling force F (D), ie, the conditions which carry out natural cooling to 30 degreeC after heating for 5 minutes at 100 degreeC manufacture a shaped adhesive sheet laminated body. This is a typical heating / cooling condition. In all of the above examples, the absolute value of the difference between the peeling force F (C) and the peeling force F (D) was 0.1 N / cm or less, so it was confirmed that the peeling force hardly changed before and after heating. It was done.
[実施例の群4]
 以下の実施例4-1~4-5(以下、総称して「実施例の群4」とも称する。)で使用したポリエステル原料の製造方法は次のとおりである。
[Example Group 4]
The polyester raw materials used in the following Examples 4-1 to 4-5 (hereinafter collectively referred to as “Example Group 4”) are as follows.
(ポリエステル4-Aの製造方法)
 ジメチルテレフタレート100部、エチレングリコール70部、および酢酸カルシウム一水塩0.07部を反応器にとり、加熱昇温すると共にメタノール留去させエステル交換反応を行い、反応開始後、約4時間半を要して230℃に昇温し、実質的にエステル交換反応を終了した。
 次に燐酸0.04部および三酸化アンチモン0.035部を添加し、常法に従って重合した。すなわち、反応温度を徐々に上げて、最終的に280℃とし、一方、圧力は徐々に減じて、最終的に0.05mmHgとした。4時間後、反応を終了し、常法に従い、チップ化してポリエステル4-Aを得た。得られたポリエステルチップの極限粘度IVは、0.70dl/gであった。
(Method for producing polyester 4-A)
Take 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.07 part of calcium acetate monohydrate in a reactor, heat up and evaporate methanol to conduct transesterification, and take about 4 and a half hours after starting the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction.
Next, 0.04 part of phosphoric acid and 0.035 part of antimony trioxide were added and polymerized in accordance with a conventional method. That is, the reaction temperature was gradually raised to finally 280 ° C., while the pressure was gradually reduced to finally 0.05 mmHg. After 4 hours, the reaction was completed, and chipped into polyester 4-A according to a conventional method. The intrinsic viscosity IV of the obtained polyester chip was 0.70 dl / g.
(ポリエステル4-Bの製造方法)
 上記ポリエステル4-Aの製造方法において、ジカルボン酸単位として、テレフタル酸を78mol%、イソフタル酸を22mol%とした以外は、ポリエステルAと同様な方法で製造しポリエステル4-Bを得た。得られたポリエステルチップの極限粘度IVは、0.70dl/gであった。
(Method for producing polyester 4-B)
Polyester 4-B was produced in the same manner as for polyester A except that in the production method of polyester 4-A, 78 mol% of terephthalic acid and 22 mol% of isophthalic acid were used as dicarboxylic acid units. The intrinsic viscosity IV of the obtained polyester chip was 0.70 dl / g.
(ポリエステル4-Cの製造方法)
 上記ポリエステル4-Aを製造する際、平均粒径3μmの非晶質シリカを6000ppm添加し、ポリエステル4-Cを作成した。
(Method for producing polyester 4-C)
When the polyester 4-A was produced, 6000 ppm of amorphous silica having an average particle size of 3 μm was added to prepare polyester 4-C.
(ポリエステル4-Dの製造方法)
 上記ポリエステル4-Aを製造する際、平均粒径4μmの非晶質シリカを6000ppm添加し、ポリエステル4-Dを作成した。
(Method for producing polyester 4-D)
When the polyester 4-A was produced, 6000 ppm of amorphous silica having an average particle diameter of 4 μm was added to prepare polyester 4-D.
[実施例4-1]
 上記ポリエステル4-B、4-A、および4-Dをそれぞれ65重量%、30重量%、5重量%の割合で混合した原料を、溶融押出機により溶融押出して単層の無定形シートを得た。
 次いで、冷却したキャスティングドラム上に、シートを共押出し冷却固化させて無配向シートを得た。次いで、機械方向(縦方向)に80℃で3.4倍延伸した後、さらにテンター内で予熱工程を経て機械方向と垂直方向(横方向)に80℃で3.9倍延伸した。二軸延伸をした後は、185℃で3秒間の熱処理を行い、その後に幅方向に6.4%の弛緩処理を行い、厚み50μmのポリエステルフィルムを得た。評価結果を下記表4に示す。
[Example 4-1]
The raw materials in which the polyesters 4-B, 4-A, and 4-D are mixed at a ratio of 65% by weight, 30% by weight, and 5% by weight are melt-extruded by a melt extruder to obtain a single layer amorphous sheet. It was.
Next, the sheet was coextruded on a cooled casting drum and solidified by cooling to obtain a non-oriented sheet. Next, the film was stretched 3.4 times at 80 ° C. in the machine direction (longitudinal direction), and further stretched 3.9 times at 80 ° C. in the direction perpendicular to the machine direction (lateral direction) through a preheating process in a tenter. After biaxial stretching, a heat treatment was performed at 185 ° C. for 3 seconds, and then a 6.4% relaxation treatment was performed in the width direction to obtain a polyester film having a thickness of 50 μm. The evaluation results are shown in Table 4 below.
[実施例4-2]、[実施例4-3]
 下記表4に示す条件に変更した以外は、実施例4-1と同様にしてポリエステルフィルムを得た。評価結果は下記表4に示す。
[Example 4-2], [Example 4-3]
A polyester film was obtained in the same manner as in Example 4-1, except that the conditions were changed to those shown in Table 4 below. The evaluation results are shown in Table 4 below.
[実施例4-4]
 上記ポリエステル4-Aおよび4-Cを、86重量%、14重量%の割合でそれぞれ混合した原料を表層用の原料とし、ポリエステル4-Bおよび4-Aを、45重量%、55重量%の割合でそれぞれ混合した原料を中間層用の原料とした。それぞれ異なる溶融押出機により溶融押出して、2種3層積層(表層/中間層/表層)の無定形シートを得た。
 次いで、冷却したキャスティングドラム上にシートを共押出して、冷却固化させることで無配向シートを得た。次いで、機械方向(MD)に82℃で3.4倍延伸した後、さらにテンター内で予熱工程を経て機械方向と垂直方向(幅方向、TD)に110℃で3.9倍延伸した。二軸延伸をした後は、210℃で3秒間の熱処理を行い、その後に幅方向に2.4%の弛緩処理を行い、厚み50μmのポリエステルフィルムを得た。評価結果は下記表4に示す。
[Example 4-4]
The raw materials obtained by mixing the polyesters 4-A and 4-C in proportions of 86% by weight and 14% by weight are used as raw materials for the surface layer, and the polyesters 4-B and 4-A are 45% by weight and 55% by weight, respectively. The raw materials mixed in proportion were used as intermediate layer raw materials. Two types and three layers (surface layer / intermediate layer / surface layer) of amorphous sheets were obtained by melt extrusion using different melt extruders.
Next, the sheet was coextruded on a cooled casting drum, and cooled and solidified to obtain a non-oriented sheet. Next, the film was stretched 3.4 times in the machine direction (MD) at 82 ° C., and further subjected to a preheating process in the tenter and stretched 3.9 times in the direction perpendicular to the machine direction (width direction, TD) at 110 ° C. After biaxial stretching, a heat treatment was performed at 210 ° C. for 3 seconds, and then a 2.4% relaxation treatment was performed in the width direction to obtain a polyester film having a thickness of 50 μm. The evaluation results are shown in Table 4 below.
[実施例4-5]
 下記表4に示す条件に変更した以外は、実施例4-4と同様にしてポリエステルフィルムを得た。評価結果は下記表4に示す。
[Example 4-5]
A polyester film was obtained in the same manner as in Example 4-4 except that the conditions shown in Table 4 were changed. The evaluation results are shown in Table 4 below.
<測定及び評価方法>
 実施例の群4で得たサンプルの各種物性値の測定方法及び評価方法について説明する。
<Measurement and evaluation method>
The measurement method and evaluation method of various physical property values of the samples obtained in Group 4 of the examples will be described.
(1)貯蔵弾性率(E’) 
 実施例の群4で得られたフィルムについて、長手方向が機械方向となるように、長手方向30mm×幅方向5mmのサンプルを採取した。次いで動的粘弾性装置(アイティー計測制御社製「DVA-220」)を用い、間隔を20mmにセットしたチャックにサンプルを挟んで固定した後、昇温速度が10℃/minにて常温~200℃まで、周波数が10Hzにて貯蔵弾性率を測定した。得られたデータより、100℃での貯蔵弾性率を読み取った。
(1) Storage elastic modulus (E ')
About the film obtained by the group 4 of the Example, the sample of 30 mm of longitudinal directions x 5 mm of width directions was extract | collected so that a longitudinal direction might turn into a machine direction. Next, using a dynamic viscoelastic device (“DVA-220” manufactured by IT Measurement & Control Co., Ltd.), the sample was sandwiched and fixed on a chuck set at an interval of 20 mm, and then the temperature was increased from room temperature to 10 ° C./min. The storage elastic modulus was measured up to 200 ° C. at a frequency of 10 Hz. The storage elastic modulus at 100 ° C. was read from the obtained data.
(2)加熱収縮率
 実施例の群4で得られたフィルムの幅方向中央位置から、サンプル長手方向が測定方向となるように短冊状(15mm幅×150mm長)にサンプルを切り出し、無張力状態、120℃雰囲気下で5分間熱処理し、熱処理前後のサンプルの長さを測定して、下記式にてフィルムの熱収縮率(%)を計算した。なお、下記式におけるaは熱処理前のサンプル長、bは熱処理後のサンプル長である。
  加熱収縮率(%)=[(a-b)/a]×100
(2) Heat shrinkage rate A sample was cut out in a strip shape (15 mm width × 150 mm length) from the center position in the width direction of the film obtained in the group 4 of the example so that the longitudinal direction of the sample was the measurement direction, and in a no-tension state The film was heat-treated in an atmosphere at 120 ° C. for 5 minutes, the length of the sample before and after the heat treatment was measured, and the thermal contraction rate (%) of the film was calculated by the following formula. In the following formula, a is the sample length before the heat treatment, and b is the sample length after the heat treatment.
Heat shrinkage rate (%) = [(ab) / a] × 100
(3)加熱処理後のフィルム表面オリゴマー量
 実施例の群4で得られたフィルムを、窒素雰囲気下、180℃の熱風循環オーブンにてポリエステルフィルムを10分間処理した。熱処理後のポリエステルフィルムの表面をDMF(ジメチルホルムアミド)と3分間接触させ、表面に析出したオリゴマーを溶解させた。かかる操作は、例えばポリオレフィン等合成樹脂製食品容器包装等に関する自主基準において、溶出試験の中の片面溶出法に用いる溶出用器具に記載されている方法が採用できる。
 次いで得られたDMFを必要に応じて希釈等の方法で濃度を調整し、液体クロマトグラフィー(島津LC-2010)に供給してDMF中のオリゴマー量を求め、この値を、DMFを接触させたフィルム面積で割って、フィルム表面オリゴマー量(mg/cm2)とした。
 DMF中のオリゴマー量は、標準試料ピーク面積と測定試料ピーク面積のピーク面積比より求めた(絶対検量線法)。
 標準試料の作成は、予め分取したオリゴマー(環状三量体)を正確に秤量し、正確に秤量したDMFに溶解して作成した。標準試料の濃度は、0.001~0.01mg/mlの範囲が好ましい。
(3) Film Surface Oligomer Amount after Heat Treatment The polyester film was treated for 10 minutes in a hot air circulation oven at 180 ° C. in a nitrogen atmosphere with the film obtained in Group 4 of the example. The surface of the polyester film after the heat treatment was brought into contact with DMF (dimethylformamide) for 3 minutes to dissolve the oligomer deposited on the surface. For this operation, for example, the method described in the elution apparatus used for the single-side elution method in the elution test can be adopted in the voluntary standard for food containers and packaging made of synthetic resin such as polyolefin.
Next, the concentration of the obtained DMF was adjusted by a method such as dilution if necessary, and supplied to liquid chromatography (Shimadzu LC-2010) to determine the amount of oligomer in DMF. This value was brought into contact with DMF. Dividing by the film area, the amount of oligomer on the film surface (mg / cm2) was obtained.
The amount of oligomer in DMF was determined from the peak area ratio between the standard sample peak area and the measured sample peak area (absolute calibration curve method).
The standard sample was prepared by accurately weighing an oligomer (cyclic trimer) collected in advance and dissolving it in accurately measured DMF. The concentration of the standard sample is preferably in the range of 0.001 to 0.01 mg / ml.
(4)成型加工適性
 (メタ)アクリル系共重合体として、数平均分子量2400のポリメタクリル酸メチルマクロモノマー(Tg:105℃)15質量部(18mol%)とブチルアクリレート(Tg:-55℃)81質量部(75mol%)とアクリル酸(Tg:106℃)4質量部(7mol%)とがランダム共重合してなるアクリル系共重合体(重量平均分子量23万)1kgと、架橋剤として、グリセリンジメタクリレート(日油社製、製品名:GMR)(b-1)90gと、光重合開始剤として、2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物(Lanberti社製、製品名:エザキュアTZT)15gを均一混合し、粘着シートに用いる樹脂組成物を作製した。
 得られた樹脂組成物を、実施例の群4に示すポリエステルフィルから得られる離型フィルムを2枚で上下から挟み(上下の組み合わせは同じ離型フィルム同士で挟むものとする。)、ラミネータを用いて樹脂組成物の厚みが100μmとなるようにシート状に賦形し、粘着シート積層体を作製した。なお、ポリエステルフィルムの離型層側を樹脂組成物に接するように配置した。
 得られた粘着シート積層体は、真空圧空成形機(第一実業社製、FKS-0632-20形)を用いて以下のプロセスで熱成形を行い、賦形粘着シート積層体を作製した。すなわち、400℃に予熱したIRヒーターで、粘着シート積層体の表面が100℃になるまで加熱し、続いて25℃に冷却した成形用金型を用いて、型締圧8MPaの条件で5秒間プレス成形を行い、表面に凹凸賦形してなる賦形粘着シート積層体を作製した。
 凹凸を賦形した賦形粘着シート積層体のポリエステルフィルムを剥離し、賦形粘着シートの凹部と凸部との高さを、それぞれ走査型白色干渉顕微鏡を用いて非接触方式で計測し、成形体の高さをhとした。
 金型の深さ100μmに対する成形体の凸部の高さhを計測し、下記計算式より導かれる転写率が70%以上のものを○、50%以上70%未満のものを△、50%未満のものを×としてそれぞれ評価した。
  転写率(%)=h(成形体高さ)/100(金型深さ)×100
(4) Molding suitability As a (meth) acrylic copolymer, 15 parts by mass (18 g%) of polymethyl methacrylate macromonomer (Tg: 105 ° C.) having a number average molecular weight of 2400 and butyl acrylate (Tg: −55 ° C.) As a crosslinking agent, 1 kg of an acrylic copolymer (weight average molecular weight 230,000) obtained by random copolymerization of 81 parts by mass (75 mol%) and 4 parts by mass (7 mol%) of acrylic acid (Tg: 106 ° C.) 90 g of glycerin dimethacrylate (manufactured by NOF Corporation, product name: GMR) (b-1) and a mixture of 2,4,6-trimethylbenzophenone and 4-methylbenzophenone as a photopolymerization initiator (manufactured by Lanberti, product name) : Ezacure TZT) 15 g was uniformly mixed to prepare a resin composition used for the pressure-sensitive adhesive sheet.
The obtained resin composition is sandwiched from above and below with two release films obtained from the polyester fill shown in Group 4 of the Examples (the upper and lower combinations are sandwiched between the same release films), and a laminator is used. The resin composition was shaped into a sheet shape so that the thickness was 100 μm, and an adhesive sheet laminate was produced. In addition, it arrange | positioned so that the mold release layer side of a polyester film may contact | connect a resin composition.
The obtained pressure-sensitive adhesive sheet laminate was thermoformed by the following process using a vacuum / pressure forming machine (Daiichi Jigyo Co., Ltd., model FKS-0632-20) to produce a shaped pressure-sensitive adhesive sheet laminate. That is, with an IR heater preheated to 400 ° C., the surface of the pressure-sensitive adhesive sheet laminate was heated to 100 ° C., and then cooled to 25 ° C. for 5 seconds under a clamping pressure of 8 MPa. Press-molding was performed to produce a shaped pressure-sensitive adhesive sheet laminate having irregularities formed on the surface.
The polyester film of the shaped pressure-sensitive adhesive sheet laminate with irregularities is peeled off, and the heights of the concave and convex parts of the shaped pressure-sensitive adhesive sheet are measured by a non-contact method using a scanning white interference microscope, respectively, and molded The height of the body was h.
The height h of the convex part of the molded body with respect to the depth of the mold of 100 μm is measured. The transfer rate derived from the following formula is 70% or more, ○, 50% or more and less than 70%, Δ, 50% Those less than were evaluated as x.
Transfer rate (%) = h (molded body height) / 100 (mold depth) × 100
(5)粘着層外観(シワ)
 (4)に記載する方法で得られた、プレス成型前の粘着層積層体の外観を以下に示す評価方法でそれぞれ評価した。
<評価方法>
  ○:シワ無くラミネートされていて、良好な外観を保てている。
  ×:フィルムにシワが発生し粘着層にシワが転写して、製品として使えない状態である。
(5) Adhesive layer appearance (wrinkles)
The appearances of the pressure-sensitive adhesive layer laminates obtained by the method described in (4) before press molding were evaluated by the evaluation methods shown below.
<Evaluation method>
○: Laminated without wrinkles, maintaining good appearance.
X: Wrinkles are generated on the film, and the wrinkles are transferred to the adhesive layer, so that the product cannot be used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の賦形粘着シート積層体は、例えばパーソナルコンピュータ、モバイル端末(PDA)、ゲーム機、テレビ(TV)、カーナビゲーションシステム、タッチパネル、ペンタブレットなどのような画像表示装置を形成する際に好適に用いることができる。
 また、本発明の粘着シート積層体や塗布フィルムは、このような賦形粘着シート積層体を形成する際に好適に用いることができる。
The shaped adhesive sheet laminate of the present invention is suitable for forming an image display device such as a personal computer, a mobile terminal (PDA), a game machine, a television (TV), a car navigation system, a touch panel, and a pen tablet. Can be used.
The pressure-sensitive adhesive sheet laminate and the coated film of the present invention can be suitably used when forming such a shaped pressure-sensitive adhesive sheet laminate.

Claims (30)

  1.  粘着材層と、当該粘着材層の片面に剥離可能に積層してなる被覆部Iとを備えた粘着シート積層体において、
     前記被覆部Iの100℃における貯蔵弾性率E’(MA)が1.0×10~2.0×10Paであり、且つ、前記被覆部Iの30℃における貯蔵弾性率E’(MB)が5.0×10~1.0×1010Paであることを特徴とする粘着シート積層体。
    In the pressure-sensitive adhesive sheet laminate comprising the pressure-sensitive adhesive layer and the covering portion I laminated in a peelable manner on one side of the pressure-sensitive adhesive layer,
    The storage elastic modulus E ′ (MA) of the covering portion I at 100 ° C. is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus E ′ of the covering portion I at 30 ° C. ( MB) is 5.0 × 10 7 to 1.0 × 10 10 Pa, A pressure-sensitive adhesive sheet laminate.
  2.  前記貯蔵弾性率E’(MA)と前記貯蔵弾性率E’(MB)とが以下の関係式(1)を満たすことを特徴とする請求項1に記載の粘着シート積層体。
    (1)E’(MB)/E’(MA)≧2.0
    The pressure-sensitive adhesive sheet laminate according to claim 1, wherein the storage elastic modulus E '(MA) and the storage elastic modulus E' (MB) satisfy the following relational expression (1).
    (1) E ′ (MB) / E ′ (MA) ≧ 2.0
  3.  前記粘着材層の100℃における損失正接tanδ(SA)が1.0以上であり、且つ、前記粘着材層の30℃における損失正接tanδ(SB)が1.0未満であることを特徴とする請求項1又は2に記載の粘着シート積層体。 The loss tangent tan δ (SA) at 100 ° C. of the pressure-sensitive adhesive layer is 1.0 or more, and the loss tangent tan δ (SB) at 30 ° C. of the pressure-sensitive adhesive layer is less than 1.0. The pressure-sensitive adhesive sheet laminate according to claim 1 or 2.
  4.  前記粘着材層の100℃における貯蔵弾性率G’(SA)が1.0×10Pa未満であり、且つ、前記粘着材層の30℃における貯蔵弾性率G’(SB)が1.0×10Pa以上であることを特徴とする請求項1~3の何れかに記載の粘着シート積層体。 The adhesive modulus G ′ (SA) at 100 ° C. of the adhesive layer is less than 1.0 × 10 4 Pa, and the storage modulus G ′ (SB) at 30 ° C. of the adhesive layer is 1.0. The pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 3, wherein the pressure-sensitive adhesive sheet laminate is 10 4 Pa or more.
  5.  前記被覆部Iの100℃における貯蔵弾性率E’(MA)と、前記粘着材層の100℃における貯蔵弾性率G’(SA)とが以下の関係式(2)を満たすことを特徴とする請求項1~4の何れかに記載の粘着シート積層体。
    (2)1.0×10≦E’(MA)/G’(SA)≦1.0×10
    The storage elastic modulus E ′ (MA) at 100 ° C. of the covering portion I and the storage elastic modulus G ′ (SA) at 100 ° C. of the pressure-sensitive adhesive layer satisfy the following relational expression (2). The pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 4.
    (2) 1.0 × 10 3 ≦ E ′ (MA) / G ′ (SA) ≦ 1.0 × 10 7
  6.  前記被覆部Iは、被覆基材層と離形層とを備えており、
     当該被覆基材層が、ポリエステル、共重合ポリエステル、ポリオレフィンおよび共重合ポリオレフィンからなる群から選択される1種の樹脂又は2種以上の樹脂を主成分とする延伸又は無延伸の層を有することを特徴とする請求項1~5の何れかに記載の粘着シート積層体。
    The covering portion I includes a covering base material layer and a release layer,
    The covering base material layer has a stretched or non-stretched layer mainly composed of one kind of resin or two or more kinds of resins selected from the group consisting of polyester, copolymerized polyester, polyolefin and copolymerized polyolefin. The pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 5, wherein
  7.  前記粘着材層と前記被覆部Iが以下の条件(I)~(III)を満たすことを特徴とする請求項1~6の何れかに記載の粘着シート積層体。
    (I)30℃雰囲気下において前記粘着材層から前記被覆部Iを剥離する際の剥離力F(C)が0.2N/cm以下である。
    (II)粘着シート積層体を100℃で5分間加熱後30℃まで冷却させ、30℃雰囲気下において前記粘着材層から前記被覆部Iを剥離する際の剥離力F(D)が0.2N/cm以下である。
    (III)剥離力F(C)と剥離力F(D)の差の絶対値が0.1N/cm以下である。
    The pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 6, wherein the pressure-sensitive adhesive layer and the covering portion I satisfy the following conditions (I) to (III).
    (I) The peeling force F (C) at the time of peeling the said coating | coated part I from the said adhesive material layer in 30 degreeC atmosphere is 0.2 N / cm or less.
    (II) The pressure-sensitive adhesive sheet laminate is heated to 100 ° C. for 5 minutes and then cooled to 30 ° C., and the peeling force F (D) when peeling the covering portion I from the pressure-sensitive adhesive layer in a 30 ° C. atmosphere is 0.2N. / Cm or less.
    (III) The absolute value of the difference between the peeling force F (C) and the peeling force F (D) is 0.1 N / cm or less.
  8.  前記粘着材層は、(メタ)アクリル系共重合体(a)、架橋剤(b)及び光重合開始剤(c)を含有する樹脂組成物から形成されるものであることを特徴とする請求項1~7の何れかに記載の粘着シート積層体。 The pressure-sensitive adhesive layer is formed from a resin composition containing a (meth) acrylic copolymer (a), a crosslinking agent (b), and a photopolymerization initiator (c). Item 8. The pressure-sensitive adhesive sheet laminate according to any one of Items 1 to 7.
  9.  請求項1~8の何れかに記載の粘着シート積層体を用いた賦形粘着シート積層体であって、
     前記粘着材層は、表裏一側表面に凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)を備え、且つ、
     前記被覆部Iは、前記粘着材層の表裏一側表面に密着し、表裏一側表面に凹部又は凸部又は凹凸部(「被覆部表面凹凸部」と称する)を備え、且つ、前記表裏一側とは反対側の表裏他側表面に前記粘着材層表面凹凸部に符合する凹凸をなした凸部又は凹部又は凸凹部(「被覆部裏面凸凹部」と称する)を備えた賦形粘着シート積層体。
    A shaped pressure-sensitive adhesive sheet laminate using the pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 8,
    The pressure-sensitive adhesive layer includes a concave portion, a convex portion, or an uneven portion (referred to as an “adhesive material layer surface uneven portion”) on the front and back side surfaces, and
    The covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and has a concave portion, a convex portion, or an uneven portion (referred to as a “cover portion surface uneven portion”) on the front and back side surface, A shaped pressure-sensitive adhesive sheet comprising a convex part or a concave part or a convex concave part (referred to as a "covered part rear surface convex concave part") that has irregularities that coincide with the concave and convex parts on the surface of the adhesive material layer on the front and back other side surfaces opposite to the side Laminated body.
  10.  前記粘着材層は、2つの被着体を貼り合わせるための両面粘着シートであり、
     前記粘着材層表面凹凸部は、前記何れかの被着体の被着面における凹部又は凸部又は凹凸部(「被着体表面凹凸部」と称する)と符合するものであることを特徴とする請求項9に記載の賦形粘着シート積層体。
    The pressure-sensitive adhesive layer is a double-sided pressure-sensitive adhesive sheet for bonding two adherends,
    The pressure-sensitive adhesive layer surface unevenness portion corresponds to a concave portion, a convex portion, or an uneven portion (referred to as an “adherent surface unevenness portion”) on the adherend surface of any one of the adherends. The shaped pressure-sensitive adhesive sheet laminate according to claim 9.
  11.  前記何れかの被着体は、表面保護パネル、タッチパネル及び画像表示パネルからなる群から選択される何れかであることを特徴とする請求項10に記載の賦形粘着シート積層体。 11. The shaped adhesive sheet laminate according to claim 10, wherein any one of the adherends is selected from the group consisting of a surface protection panel, a touch panel and an image display panel.
  12.  請求項1~8の何れかに記載の粘着シート積層体を加熱し、プレス成形、真空成形、圧空成形又はロール成形によって前記粘着シートの少なくとも片面に凹凸形状を賦形することを特徴とする賦形粘着シート積層体の製造方法。 9. The pressure-sensitive adhesive sheet laminate according to claim 1, wherein the pressure-sensitive adhesive sheet laminate is heated, and an uneven shape is formed on at least one side of the pressure-sensitive adhesive sheet by press molding, vacuum forming, pressure forming or roll forming. A method for producing a shaped adhesive sheet laminate.
  13.  請求項1~8の何れかに記載の粘着シート積層体の被覆部Iを構成する塗布フィルムであって、
    共重合ポリエステルフィルムの少なくとも片面に塗布層を設けた塗布フィルムであって、100℃での貯蔵弾性率E’が1.5×10Pa以下であり、かつ、120℃で5分間加熱後の収縮率が3.0%以下であることを特徴とする塗布フィルム。
    A coating film constituting the covering portion I of the pressure-sensitive adhesive sheet laminate according to any one of claims 1 to 8,
    A coated film having a coated layer on at least one side of a copolymerized polyester film, having a storage elastic modulus E ′ at 100 ° C. of 1.5 × 10 9 Pa or less, and after heating at 120 ° C. for 5 minutes A coated film having a shrinkage rate of 3.0% or less.
  14.  100℃の貯蔵弾性率E’が、1.0×10Pa以上である請求項13に記載の塗布フィルム。 The coated film according to claim 13, wherein the storage elastic modulus E ′ at 100 ° C. is 1.0 × 10 8 Pa or more.
  15.  180℃で10分間加熱後の表面オリゴマー量が1.0×10-3mg/cm以下である請求項13又は14に記載の塗布フィルム。 The coated film according to claim 13 or 14, wherein the surface oligomer amount after heating at 180 ° C for 10 minutes is 1.0 x 10 -3 mg / cm 2 or less.
  16.  前記塗布層が硬化型シリコーン樹脂を含有する離型層である、請求項13~15の何れかに記載の塗布フィルム。 The coated film according to any one of claims 13 to 15, wherein the coated layer is a release layer containing a curable silicone resin.
  17.  粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え、当該粘着材の一面には凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)が賦形されてなる構成を備えた賦形粘着シート積層体の製造方法において、
     粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え粘着シート積層体を加熱し、加熱された粘着シート積層体を成形すると共に冷却して賦形粘着シート積層体を製造する製造方法であって、
     粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paである状態で成形を開始し、被覆部Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paである状態で成形を終了することを特徴とする賦形粘着シート積層体の製造方法。
    An adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion ("adhesive material layer surface uneven portion"). In the manufacturing method of a shaped pressure-sensitive adhesive sheet laminate having a configuration formed by
    The pressure-sensitive adhesive layer is provided with an adhesive material layer and a covering portion I that is detachably laminated on one surface of the pressure-sensitive adhesive material layer, and the heated pressure-sensitive adhesive sheet laminate is formed and cooled to form pressure-sensitive adhesive. A manufacturing method for manufacturing a sheet laminate,
    The pressure-sensitive adhesive sheet laminate is heated and molding is started in a state where the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the covering portion I is stored. A method for producing a shaped pressure-sensitive adhesive sheet laminate, characterized in that the molding is terminated in a state where the elastic modulus E ′ (MF) is 5.0 × 10 7 to 1.0 × 10 10 Pa.
  18.  粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備えた粘着シート積層体を加熱し、加熱された粘着シート積層体を、冷却した金型を用いて成形することを特徴とする請求項17に記載の賦形粘着シート積層体の製造方法。 Heating the pressure-sensitive adhesive sheet laminate including the pressure-sensitive adhesive layer and the covering portion I laminated to be peelable on one surface of the pressure-sensitive adhesive layer, and using the cooled mold, the heated pressure-sensitive adhesive sheet laminate The method for producing a shaped pressure-sensitive adhesive sheet laminate according to claim 17, wherein the molding is performed.
  19.  前記成形開始時の被覆部Iの貯蔵弾性率E’(MS)と前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)とが以下の関係式(1)を満たすことを特徴とする請求項17又は18に記載の賦形粘着シート積層体の製造方法。
    (1)・・E’(MF)/E’(MS)≧1.3
    The storage elastic modulus E ′ (MS) of the covering portion I at the start of molding and the storage elastic modulus E ′ (MF) of the covering portion I at the end of forming satisfy the following relational expression (1): The manufacturing method of the shaped adhesive sheet laminated body of Claim 17 or 18.
    (1) E '(MF) / E' (MS) ≧ 1.3
  20.  粘着シート積層体を加熱して、被覆部Iの貯蔵弾性率E’(MS)が1.0×10~2.0×10Paであり、且つ、粘着材層の貯蔵弾性率G’(SS)が1.0×10Pa未満である状態で成形を開始し、
     被覆部Iの貯蔵弾性率E’(MF)が5.0×10~1.0×1010Paであり、且つ粘着材層の貯蔵弾性率G’(SF)が1.0×10Pa以上である状態で成形を終了することを特徴とする請求項17~19の何れかに記載の賦形粘着シート積層体の製造方法。
    By heating the pressure-sensitive adhesive sheet laminate, the storage elastic modulus E ′ (MS) of the covering portion I is 1.0 × 10 6 to 2.0 × 10 9 Pa, and the storage elastic modulus G ′ of the pressure-sensitive adhesive layer is Molding is started in a state where (SS) is less than 1.0 × 10 4 Pa,
    The storage elastic modulus E ′ (MF) of the covering portion I is 5.0 × 10 7 to 1.0 × 10 10 Pa, and the storage elastic modulus G ′ (SF) of the adhesive layer is 1.0 × 10 4. The method for producing a shaped pressure-sensitive adhesive sheet laminate according to any one of claims 17 to 19, wherein the molding is completed in a state of Pa or higher.
  21.  前記成形終了時の被覆部Iの貯蔵弾性率E’(MF)と、前記成形終了時の粘着材層の貯蔵弾性率G’(SF)とが以下の関係式(2)を満たすことを特徴とする請求項17~20の何れかに記載の賦形粘着シート積層体の製造方法。
    (2)E’(MF)/G’(SF)≦1.0×10
    The storage elastic modulus E ′ (MF) of the covering portion I at the end of the molding and the storage elastic modulus G ′ (SF) of the pressure-sensitive adhesive layer at the end of the molding satisfy the following relational expression (2). The method for producing a shaped pressure-sensitive adhesive sheet laminate according to any one of claims 17 to 20.
    (2) E ′ (MF) / G ′ (SF) ≦ 1.0 × 10 7
  22.  粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備え、当該粘着材の一面には凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)が賦形されてなる構成を備えた賦形粘着シート積層体の製造方法において、
     粘着材層と、当該粘着材層の一面に剥離可能に積層してなる被覆部Iとを備えた粘着シート積層体を加熱し、加熱された粘着シート積層体を金型により成形して賦形粘着シート積層体を製造する製造方法であって、
     粘着シート積層体を加熱して、被覆部Iの表面温度が70~180℃の状態で成形を開始し、被覆部Iの表面温度が60℃未満になった後に金型から賦形粘着シート積層体を取り出すことを特徴とする賦形粘着シート積層体の製造方法。
    An adhesive material layer and a covering portion I that is detachably laminated on one surface of the adhesive material layer, and one surface of the adhesive material has a concave portion, a convex portion, or an uneven portion ("adhesive material layer surface uneven portion"). In the manufacturing method of a shaped pressure-sensitive adhesive sheet laminate having a configuration formed by
    Heating the pressure-sensitive adhesive sheet laminate including the pressure-sensitive adhesive layer and the covering portion I laminated on one surface of the pressure-sensitive adhesive layer, and shaping the heated pressure-sensitive adhesive sheet laminate with a mold A manufacturing method for manufacturing an adhesive sheet laminate,
    The pressure-sensitive adhesive sheet laminate is heated to start molding in a state where the surface temperature of the covering part I is 70 to 180 ° C., and after the surface temperature of the covering part I becomes less than 60 ° C., the shaped pressure-sensitive adhesive sheet is laminated from the mold. A method for producing a shaped pressure-sensitive adhesive sheet laminate, wherein the body is taken out.
  23.  プレス成形、真空成形、圧空成形、ロールフォーミング成形及び圧縮成形のうちの何れかの成形方法によって成形することを特徴とする請求項22に記載の賦形粘着シート積層体の製造方法。 23. The method for producing a shaped pressure-sensitive adhesive sheet laminate according to claim 22, wherein the forming is performed by any one of press forming, vacuum forming, pressure forming, roll forming, and compression forming.
  24.  前記成形方法を用いて連続して製造することを特徴とする請求項22又は23に記載の賦形粘着シート積層体の製造方法。 24. The method for producing a shaped pressure-sensitive adhesive sheet laminate according to claim 22 or 23, which is continuously produced using the molding method.
  25.  前記被覆部Iは、被覆基材層と離形層とを備えており、
     当該被覆基材層が、無延伸ポリエステル、延伸ポリエステル、共重合ポリエステル、無延伸ポリオレフィン、延伸ポリオレフィンおよび共重合ポリオレフィンからなる群から選択される1種の樹脂又は2種以上の樹脂を主成分とする層を有することを特徴とする請求項17~24の何れかに記載の賦形粘着シート積層体の製造方法。
    The covering portion I includes a covering base material layer and a release layer,
    The coating substrate layer is mainly composed of one type of resin or two or more types of resins selected from the group consisting of non-stretched polyester, stretched polyester, copolymerized polyester, unstretched polyolefin, stretched polyolefin and copolymerized polyolefin. The method for producing a shaped pressure-sensitive adhesive sheet laminate according to any one of claims 17 to 24, comprising a layer.
  26.  前記粘着材層は、(メタ)アクリル系共重合体(a)、架橋剤(b)及び光重合開始剤(c)を含有する樹脂組成物から形成されるものであることを特徴とする請求項17~25の何れかに記載の賦形粘着シート積層体の製造方法。 The pressure-sensitive adhesive layer is formed from a resin composition containing a (meth) acrylic copolymer (a), a crosslinking agent (b), and a photopolymerization initiator (c). Item 26. A method for producing a shaped pressure-sensitive adhesive sheet laminate according to any one of Items 17 to 25.
  27.  前記賦形粘着シート積層体において、前記粘着材層は、表裏一側表面に凹部又は凸部又は凹凸部(「粘着材層表面凹凸部」と称する)を備え、且つ、
     前記被覆部Iは、前記粘着材層の表裏一側表面に密着し、表裏一側表面に凹部又は凸部又は凹凸部(「被覆部表面凹凸部」と称する)を備え、且つ、前記表裏一側とは反対側の表裏他側表面に前記被覆部表面凹凸部に対応して凹凸をなした凸部又は凹部又は凸凹部(「被覆部裏面凸凹部」と称する)を備えていることを特徴とする請求項17~26の何れかに記載の賦形粘着シート積層体の製造方法。
    In the shaped pressure-sensitive adhesive sheet laminate, the pressure-sensitive adhesive layer includes a concave portion, a convex portion, or a concave-convex portion (referred to as “pressure-sensitive adhesive layer surface concave-convex portion”) on the front and back side surfaces, and
    The covering portion I is in close contact with the front and back side surfaces of the pressure-sensitive adhesive layer, and has a concave portion, a convex portion, or an uneven portion (referred to as a “cover portion surface uneven portion”) on the front and back side surface, It is provided with a convex portion or a concave portion or a convex concave portion (referred to as a “covered portion back surface convex concave portion”) corresponding to the surface irregularity portion of the covering portion on the front and back other surface opposite to the side. The method for producing a shaped pressure-sensitive adhesive sheet laminate according to any one of claims 17 to 26.
  28.  前記粘着材層は、2つの被着体を貼り合わせるための両面粘着シートであり、
     前記粘着材層表面凹凸部は、前記何れかの被着体の被着面における凹部又は凸部又は凹凸部(「被着体表面凹凸部」と称する)と符合するものであることを特徴とする請求項27に記載の賦形粘着シート積層体の製造方法。
    The pressure-sensitive adhesive layer is a double-sided pressure-sensitive adhesive sheet for bonding two adherends,
    The pressure-sensitive adhesive layer surface unevenness portion corresponds to a concave portion, a convex portion, or an uneven portion (referred to as an “adherent surface unevenness portion”) on the adherend surface of any one of the adherends. The manufacturing method of the shaped adhesive sheet laminated body of Claim 27 to do.
  29.  前記何れかの被着体は、表面保護パネル、タッチパネル及び画像表示パネルからなる群から選択される何れかであることを特徴とする請求項28に記載の賦形粘着シート積層体の製造方法。 The method for producing a shaped pressure-sensitive adhesive sheet laminate according to claim 28, wherein any one of the adherends is selected from the group consisting of a surface protection panel, a touch panel, and an image display panel.
  30.  粘着シート積層体を加熱し、プレス成形、真空成形、圧空成形又はロール成形によって前記粘着シートの少なくとも片面に凹凸形状を賦形することを特徴とする請求項17~29の何れかに記載の賦形粘着シート積層体の製造方法。 The pressure-sensitive adhesive laminate is heated, and an uneven shape is formed on at least one surface of the pressure-sensitive adhesive sheet by press forming, vacuum forming, pressure forming or roll forming. A method for producing a shaped adhesive sheet laminate.
PCT/JP2017/032047 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same WO2018051857A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780056747.0A CN109715753B (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same
KR1020227004951A KR20220025254A (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same
KR1020227004946A KR102457647B1 (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same
KR1020227004949A KR20220025253A (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same
KR1020197010663A KR102426469B1 (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016180131 2016-09-15
JP2016-180131 2016-09-15
JP2017007721 2017-01-19
JP2017-007721 2017-01-19
JP2017-007720 2017-01-19
JP2017007720 2017-01-19
JP2017042839A JP6880839B2 (en) 2017-03-07 2017-03-07 Coating film and adhesive sheet laminate
JP2017-042839 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018051857A1 true WO2018051857A1 (en) 2018-03-22

Family

ID=61618737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032047 WO2018051857A1 (en) 2016-09-15 2017-09-06 Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same

Country Status (4)

Country Link
KR (4) KR102426469B1 (en)
CN (4) CN109715753B (en)
TW (2) TWI798747B (en)
WO (1) WO2018051857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825609A (en) * 2019-05-24 2021-12-21 Dic株式会社 Adhesive sheet, article, and method for producing article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020262321A1 (en) * 2019-06-26 2020-12-30
CN113400654B (en) * 2021-06-03 2023-03-10 芜湖骏宇新材料科技有限公司 Multifunctional thermal diaphragm machine for processing plastic products
EP4101635A1 (en) * 2021-06-11 2022-12-14 Whitestone Co., Ltd. Display protector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174392A1 (en) * 2014-05-13 2015-11-19 三菱樹脂株式会社 Method for manufacturing double-sided adhesive sheet for image display device
WO2016088697A1 (en) * 2014-12-03 2016-06-09 三菱樹脂株式会社 Pressure-sensitive adhesive sheet laminate and constituent member laminate of image display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529072B2 (en) * 2003-09-02 2010-08-25 東洋紡績株式会社 Polyester film for molding and molded member formed by molding the same
JP2006169467A (en) * 2004-12-20 2006-06-29 Mitsubishi Polyester Film Copp Polyester film for optical use
JP5236315B2 (en) * 2008-03-03 2013-07-17 三菱樹脂株式会社 Polyester film for simultaneous transfer of molding
JP2010072471A (en) * 2008-09-19 2010-04-02 Three M Innovative Properties Co Transparent adhesive sheet, image display apparatus comprising the same, and method for producing the image display apparatus
JP5832452B2 (en) * 2011-01-11 2015-12-16 三井化学東セロ株式会社 Release film
JP2012192614A (en) * 2011-03-16 2012-10-11 Dainippon Printing Co Ltd In-molding transfer foil
JP2013120804A (en) * 2011-12-06 2013-06-17 Daicel Corp Sheet-like covering agent, and method for covering or method for manufacturing electronic device
KR102214626B1 (en) 2012-11-09 2021-02-10 미쯔비시 케미컬 주식회사 Double-sided adhesive sheet for image display device, double-sided adhesive sheet with release film for image display device and image display device using same
KR101821257B1 (en) * 2012-11-22 2018-01-23 미쯔비시 케미컬 주식회사 Substrate-less double-sided adhesive sheet
KR20150097470A (en) * 2012-12-17 2015-08-26 미쓰비시 쥬시 가부시끼가이샤 Base-less double-sided adhesive sheet
KR102202907B1 (en) * 2013-04-24 2021-01-14 유니띠까 가부시키가이샤 Mold release film for led production
JP6239302B2 (en) * 2013-07-31 2017-11-29 日東電工株式会社 Adhesive sheet and optical member
US20160200007A1 (en) * 2013-09-10 2016-07-14 Asahi Kasei Chemicals Corporation Release film, method for manufacturing molded article, semiconductor component, and reflector component
CN106104658B (en) * 2014-03-10 2019-11-29 三菱化学株式会社 Image display device constitutes the manufacturing method for using laminated body
JP5786996B1 (en) * 2014-03-25 2015-09-30 住友ベークライト株式会社 Release film
JP2015201602A (en) * 2014-04-10 2015-11-12 昭和電工株式会社 Laminate sheet, heat sink, and method for manufacturing laminate sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174392A1 (en) * 2014-05-13 2015-11-19 三菱樹脂株式会社 Method for manufacturing double-sided adhesive sheet for image display device
WO2016088697A1 (en) * 2014-12-03 2016-06-09 三菱樹脂株式会社 Pressure-sensitive adhesive sheet laminate and constituent member laminate of image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825609A (en) * 2019-05-24 2021-12-21 Dic株式会社 Adhesive sheet, article, and method for producing article
CN113825609B (en) * 2019-05-24 2024-04-26 Dic株式会社 Adhesive sheet, article, and method for producing article

Also Published As

Publication number Publication date
CN113462311A (en) 2021-10-01
CN109715753A (en) 2019-05-03
TWI798747B (en) 2023-04-11
TW201819185A (en) 2018-06-01
CN113444459A (en) 2021-09-28
TWI761369B (en) 2022-04-21
TW202138195A (en) 2021-10-16
CN109715753B (en) 2021-12-07
KR20220025253A (en) 2022-03-03
KR20220025254A (en) 2022-03-03
KR20190055822A (en) 2019-05-23
KR102426469B1 (en) 2022-07-29
KR102457647B1 (en) 2022-10-24
KR20220025251A (en) 2022-03-03
CN113462310A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2018051857A1 (en) Adhesive sheet laminate, shaped adhesive sheet laminate, and method for producing same
JP6642550B2 (en) Adhesive sheet and image display device using the same
JP6772837B2 (en) Adhesive sheet laminate and image display device component laminate
TW201334975A (en) Abrasion-resistant resin laminate, material for front cover of display, and image display device
TWI606932B (en) High hardness film
JP7318674B2 (en) Method for producing photocurable adhesive sheet
JP2016222914A (en) Photosetting adhesive sheet, adhesive sheet and image display device
KR20130049154A (en) Active energy ray-curable resin, active energy ray-curable resin composition, active energy ray-curable hard coating agent, cured film using them, decoration film laminated with the cured film and plastic injection-molded product using the decoration film
KR20160108702A (en) Adhesive material for vacuum thermoforming and decoration sheet applide the same
JP6984250B2 (en) Manufacturing method of excipient adhesive sheet laminate
JP6984249B2 (en) Adhesive sheet laminate, excipient adhesive sheet laminate and its manufacturing method
JP2005343055A (en) Decorative film for glass
JP7006044B2 (en) Manufacturing method of excipient adhesive sheet laminate
JP6880839B2 (en) Coating film and adhesive sheet laminate
WO2021140875A1 (en) Coating material for forming b-stage coating film, b-stage coating film, and method for producing b-stage coating film
JP5226411B2 (en) Laminated polyester film for skin material and composite molded body with improved tactile sensation using the same
TW202132439A (en) Manufacturing method of b-stage coat, manufacturing method of three-dimensional molded body
JP7130967B2 (en) laminated film
JP6888315B2 (en) Transparent double-sided adhesive sheet
CN113242792A (en) Substrate for forming transparent conductive layer, transparent conductive film, touch panel, and method for producing substrate for forming transparent conductive layer
JP7355099B2 (en) Transfer film for three-dimensional molding and method for manufacturing resin molded products
JP2013253181A (en) Base-less double-sided pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010663

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17850760

Country of ref document: EP

Kind code of ref document: A1