WO2018051514A1 - 観察装置 - Google Patents
観察装置 Download PDFInfo
- Publication number
- WO2018051514A1 WO2018051514A1 PCT/JP2016/077571 JP2016077571W WO2018051514A1 WO 2018051514 A1 WO2018051514 A1 WO 2018051514A1 JP 2016077571 W JP2016077571 W JP 2016077571W WO 2018051514 A1 WO2018051514 A1 WO 2018051514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- illumination
- illumination light
- objective optical
- sample
- optical system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
Definitions
- the present invention relates to an observation apparatus, and more particularly to a line scanning observation apparatus.
- an image of a document is acquired by relatively moving the document and the line sensor in a direction crossing the longitudinal direction of the line sensor while detecting light reflected by the document or transmitted through the document by a line sensor.
- Image scanners are known (for example, see Patent Documents 1 and 2).
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an observation apparatus capable of observing an image with a contrast of a colorless and transparent phase object.
- One embodiment of the present invention includes a stage that supports a sample, an illumination unit that irradiates the sample supported by the stage with illumination light, a plurality of objective optical systems that collect the illumination light that has passed through the sample, and the An imaging unit having a line sensor for detecting the illumination light disposed on the image planes of a plurality of objective optical systems, and a scanning mechanism for relatively moving the stage and the imaging unit in a scanning direction intersecting the longitudinal direction of the line sensor
- the plurality of objective optical systems are arranged in a row so that optical axes are parallel to each other, each has an aperture stop that restricts the passage of the illumination light, and the line sensor includes the plurality of line sensors.
- the illumination unit is disposed on the image plane along a row of the objective optical system, and the illumination unit is relative to the optical axis in a plane parallel to the optical axis of the plurality of objective optical systems from the side opposite to the imaging unit.
- the illumination light is an observation apparatus in which a part of the plurality of the illumination light incident on each of the objective optical system has an angular distribution that is intercepted by the aperture stop.
- the illumination light when the illumination light is irradiated from the illumination unit to the sample supported by the stage, the illumination light transmitted through the sample is condensed by the plurality of objective optical systems of the imaging unit, and the image plane of the objective optical system A plurality of optical images arranged in a line are formed on the line sensor positioned at, and a line-shaped image of the sample is acquired by the line sensor. Therefore, a two-dimensional image of the sample can be acquired by acquiring the sample image line by line while moving the stage and the imaging unit in the scanning direction by the scanning mechanism.
- the illumination light applied to the sample obliquely with respect to the optical axis of the objective optical system is incident obliquely on each objective optical system. Therefore, the incident position of the illumination light in the aperture stop of each objective optical system is decentered from the optical axis, and part of the illumination light located on the optical axis side passes through the aperture stop and is located on the side away from the optical axis. Other parts of the light are blocked by the aperture stop. As a result, a shadowed three-dimensional sample optical image is formed on the image plane, so that a contrasted image can be observed even if the sample is a colorless and transparent phase object.
- the entrance pupil position of each of the plurality of objective optical systems is closest to the image side of the lens on the sample side, and the plurality of objectives when the sample image is projected onto the image plane.
- the absolute value of each projection magnification of the optical system may be 1 or less.
- the imaging unit is disposed below the stage
- the illumination unit is disposed below the stage and emits the illumination light obliquely upward, and above the stage.
- a reflecting member that reflects the illumination light obliquely downward.
- the reflecting member may be an upper plate of a container that accommodates the sample and is supported by the stage.
- the illumination optical system includes a line light source that emits the illumination light having a linear cross section having a longitudinal direction in the scanning direction and a direction perpendicular to the optical axis of the plurality of objective optical systems. May be. By doing in this way, an illumination optical system can be reduced in size.
- the illumination optical system includes a lens that transmits the illumination light emitted from the line light source, and the lens has a positive refractive power in a direction intersecting the longitudinal direction of the illumination light. And it does not need to have refractive power in the direction parallel to the longitudinal direction of the illumination light. By doing in this way, the illumination efficiency can be improved by converging the line-shaped illumination light emitted as a divergent light beam from the line light source in the direction intersecting the longitudinal direction.
- the illumination optical system may include a deflection element that deflects the illumination light upward. It is preferable that the deflecting element is disposed above the plurality of objective optical systems and at a position spaced from the optical axes of the plurality of objective optical systems in a direction intersecting the optical axes.
- the deflecting element is disposed above the plurality of objective optical systems and at a position spaced from the optical axes of the plurality of objective optical systems in a direction intersecting the optical axes.
- the deflecting element is easier to layout than the line light source, it is arranged near the optical axis of the objective optical system, and the illumination light from the line light source is directed obliquely upward from a position close to the optical axis of the objective optical system. Can be injected.
- FIG. 1 is an overall configuration diagram of an observation apparatus according to a first embodiment of the present invention. It is a block diagram which shows the illumination optical system in the observation apparatus of FIG. It is a side view which shows an example of the line light source in the illumination optical system of FIG. It is the front view which looked at the line light source of FIG. 3A in the optical axis direction. It is a figure which shows the other example of the line light source in the illumination optical system of FIG. It is a block diagram which shows the objective optical system group of the observation apparatus of FIG. It is a figure which shows the arrangement
- the observation apparatus 100 includes a stage 2 that supports a container 1 that contains a sample A, and an illumination unit 3 that irradiates the sample A supported by the stage 2 with illumination light.
- An imaging unit 4 that detects the illumination light transmitted through the sample A by the line sensor 13 to acquire an image of the sample A, a focus adjustment mechanism 5 that adjusts a focal position of the imaging unit 4 with respect to the sample A, and an imaging unit.
- a scanning mechanism 6 that moves 4 in a scanning direction orthogonal to the longitudinal direction of the line sensor 13.
- the direction along the optical axis of the imaging unit 4 is the Z direction
- the scanning direction of the imaging unit 4 by the scanning mechanism 6 is the X direction
- the longitudinal direction of the line sensor 13 is.
- An XYZ orthogonal coordinate system for the Y direction is used.
- the observation apparatus 100 is arranged so that the Z direction is a vertical direction and the X direction and the Y direction are horizontal directions.
- the container 1 is a hermetically sealed container formed of an optically transparent resin, such as a cell culture flask or dish, and has a top plate 1a and a bottom plate 1b facing each other.
- Sample A is, for example, a cell cultured in medium B.
- the inner surface of the upper plate 1a is a reflecting surface that reflects the Fresnel of the illumination light.
- the stage 2 includes a flat plate-like mounting table 2a arranged horizontally, and the container 1 is mounted on the mounting table 2a.
- the mounting table 2a is made of an optically transparent material such as glass so as to transmit illumination light.
- the illumination unit 3 includes an illumination optical system 7 that is disposed below the stage 2 and emits linear illumination light obliquely upward, and the illumination light is reflected obliquely downward on the upper plate (reflecting member) 1a.
- the sample A is irradiated with illumination light from obliquely above.
- the illumination optical system 7 includes a line light source 8 that is disposed on the side of the imaging unit 4 and emits illumination light toward the imaging unit 4 in the X direction, and the line light source 8.
- the line light source 8 are provided with a cylindrical lens (lens) 9 that converts the illumination light emitted from the light into a parallel light beam, and a prism (deflection element) 10 that deflects the illumination light emitted from the cylindrical lens 9 upward.
- the line light source 8 includes a light source body 81 having an exit surface for emitting light, and an illumination mask 82 provided on the exit surface of the light source body 81.
- the illumination mask 82 has a rectangular opening 82a having a short side extending in the Z direction and a long side extending in the Y direction and longer than the short side.
- illumination light having a linear cross section (cross section intersecting the optical axis of the illumination light) having a longitudinal direction in the Y direction is generated.
- the light source body 81 includes an LED array 81a composed of LEDs arranged in a line in the Y direction, and a diffusion plate 81b that diffuses light emitted from the LED array 81a. .
- the illumination mask 82 is provided on the exit side surface of the diffusion plate 81b.
- the light source main body 81 includes a light diffusing optical fiber 81c and a light source 81d such as an LED or a super luminescent diode (LSD) that supplies light to the optical fiber 81c.
- a light diffusing optical fiber 81c By using the light diffusing optical fiber 81c, the homogeneity of the light intensity of the illumination light can be improved as compared with the case where the LED array 81a is used.
- the cylindrical lens 9 has a curved surface extending in the Y direction and curved only in the Z direction on the side opposite to the line light source 8. Therefore, the cylindrical lens 9 has refractive power in the Z direction and does not have refractive power in the Y direction.
- the illumination mask 82 is located at or near the focal plane of the cylindrical lens 9. Thereby, the illumination light of the divergent light beam emitted from the opening 82a of the illumination mask 82 is bent only in the Z direction by the cylindrical lens 9 and converted into a light beam having a certain dimension in the Z direction (parallel light beam in the XZ plane). Is done.
- the prism 10 has a deflection surface 10 a that is inclined at 45 ° with respect to the optical axis of the cylindrical lens 9 and deflects the illumination light transmitted through the cylindrical lens 9 upward.
- the illumination light deflected on the deflection surface 10a is transmitted through the mounting table 2a and the bottom plate 1b of the container 1, reflected from the upper plate 1a to illuminate the sample A from above, and the illumination light transmitted through the sample A and the bottom plate 1b.
- the light enters the imaging unit 4.
- the imaging unit 4 includes an objective optical system group 12 having a plurality of objective optical systems 11 arranged in a line, and a line sensor 13 that captures an optical image of the sample A connected by the objective optical system group 12. Yes.
- each objective optical system 11 includes a first lens group G1, an aperture stop AS, and a second lens group G2 in order from the object side (sample A side).
- the plurality of objective optical systems 11 are arranged in the Y direction so that the optical axis is parallel to the Z direction, and forms an optical image on the same plane. Therefore, a plurality of optical images I arranged in a line in the Y direction are formed on the image plane (see FIG. 8).
- the aperture stops AS are also arranged in a line in the Y direction.
- the line sensor 13 has a plurality of light receiving elements arranged in the longitudinal direction, and acquires a linear one-dimensional image. As shown in FIG. 8, the line sensor 13 is arranged in the Y direction on the image planes of the plurality of objective optical systems 11. The line sensor 13 acquires a line-shaped one-dimensional image of the sample A by detecting the illumination light that connects the optical image I to the image plane.
- the objective optical system group 12 satisfies the following two conditions.
- the first condition is that, in each objective optical system 11, as shown in FIG. 5, the entrance pupil position is located closer to the image side than the first lens group G ⁇ b> 1 located closest to the sample A. This is realized by disposing the aperture stop AS closer to the object side than the image side focal point of the first lens group G1.
- the off-axis principal ray approaches the optical axis of the objective optical system 11 as it approaches the first lens group G1 from the focal plane, so that the real field F in the direction perpendicular to the scanning direction (Y direction). Is larger than the diameter ⁇ of the first lens group G1. Therefore, the fields of the two adjacent objective optical systems 11 overlap each other in the Y direction, and an optical image of the sample A having no missing field is formed on the image plane.
- the second condition is that the absolute value of the projection lateral magnification from the object plane to the image plane of each objective optical system 11 is 1 or less, as shown in FIG.
- the line sensor 13 can capture a plurality of optical images I obtained by the plurality of objective optical systems 11 spatially separated from each other.
- the projection lateral magnification is larger than 1, the two optical images I adjacent in the Y direction overlap each other on the image plane.
- the transmission range of the illumination light is regulated in the vicinity of the image plane in order to reliably prevent the light passing outside the real field F from overlapping the adjacent optical image. It is preferable to provide a field stop FS.
- Entrance pupil position (distance from the most object-side surface of the first lens group G1 to the entrance pupil) 20.1 mm
- Projection lateral magnification -0.756 times real field of view F 2.66 mm Lens diameter ⁇ 2.1mm of the first lens group G1 Lens interval d in the Y direction of the first lens group G1 2.3 mm
- the illumination unit 3 is configured to perform oblique illumination that irradiates the sample A with illumination light from an oblique direction with respect to the optical axis of the imaging unit 4.
- the illumination mask 82 is positioned at or near the focal plane of the cylindrical lens 9 as described above, and the center of the short side of the illumination mask 82 is the center of the cylindrical lens 9. It is eccentric downward by a distance ⁇ with respect to the optical axis. Thereby, illumination light is emitted from the prism 10 in a direction inclined with respect to the Z direction in the XZ plane.
- the illumination light reflected by the substantially horizontal upper plate 1a is incident on the sample surface (focal plane of the objective optical system 11) obliquely with respect to the Z direction in the XZ plane, and the illumination light transmitted through the sample A is Incidently enters the objective optical system 11.
- the illumination light converted into a parallel light beam by the cylindrical lens 9 has an angular distribution because the illumination mask 82 has a width in the short side direction.
- illumination light is incident on the objective optical system 11 obliquely, only a part located on the optical axis side reaches the image plane through the aperture stop AS, as indicated by a two-dot chain line in FIG. The other part located outside the optical axis is blocked by the outer edge of the aperture stop AS.
- FIG. 10 is a diagram for explaining the action of oblique illumination when observing a cell having a high refractive index as the sample A.
- the objective optical system 11 is moved from left to right.
- the incident angle of the illumination light is equal to the taking-in angle of the objective optical system 11
- the light rays a and e transmitted through the area where the cells do not exist and the light beam c incident substantially perpendicular to the cell surface are almost refracted. Instead, it passes near the edge of the entrance pupil and reaches the image plane.
- Such light rays a, c, e form an optical image having a medium brightness on the image plane.
- the light beam b transmitted through the left end of the cell is refracted to the outside, reaches the outside of the entrance pupil, and is vignetted by the aperture stop AS.
- Such a light ray c forms a dark optical image on the image plane.
- the light beam d that has passed through the right end of the cell is refracted inward and passes through the inside of the edge of the entrance pupil.
- Such a light beam d forms a brighter optical image on the image plane.
- FIG. 11 an image of a high-contrast cell A that is bright on one side and shaded on the other side and looks three-dimensional is acquired.
- the objective optical system 11 has an angular distribution such that a part of the illumination light passes through the aperture stop AS and the other part is blocked by the aperture stop AS. It is preferable that the incident angle with respect to the optical axis of the illumination light when entering the lens satisfies the following conditional expressions (1) and (2).
- ⁇ min is the minimum value of the incident angle of the illumination light with respect to the optical axis of the objective optical system 11 (incident angle of the light beam closest to the optical axis)
- ⁇ max is the incident angle of the illumination light with respect to the optical axis of the objective optical system 11.
- the maximum value (incident angle of a light beam positioned radially outward with respect to the optical axis)
- NA is the numerical aperture of the objective optical system 11.
- the deflection angle of the prism 10 (inclination angle of the deflection surface 10a with respect to the optical axis of the objective optical system 11) is 45 °
- the shift amount of the center position of the short side of the illumination mask 82 with respect to the optical axis of the cylindrical lens 9 ( The eccentric distance ( ⁇ ) preferably satisfies the following conditional expression (4).
- ⁇ NA / Fl (4)
- ⁇ NA / Fl (4)
- conditional expressions (1) to (4) By satisfying conditional expressions (1) to (4), an image with high contrast can be acquired even if the sample A is a phase object such as a cell. When the conditional expressions (1) to (4) are not satisfied, the contrast of the sample A is lowered.
- the focus adjustment mechanism 5 moves the illumination optical system 7 and the imaging unit 4 integrally in the Z direction by using a linear actuator (not shown), for example. Thereby, the position of the illumination optical system 7 and the imaging unit 4 in the Z direction with respect to the stationary stage 2 can be changed, and the objective optical system group 12 can be focused on the sample A.
- the scanning mechanism 6 moves the imaging unit 4 and the illumination optical system 7 in the X direction integrally with the focus adjustment mechanism 5 by, for example, a linear actuator that supports the focus adjustment mechanism 5.
- the scanning mechanism 6 may be configured to move the stage 2 in the X direction instead of the imaging unit 4 and the illumination optical system 7, and both the imaging unit 4, the illumination optical system 7, and the stage 2 may be configured. May be configured to be movable in the X direction.
- the linear illumination light emitted from the line light source 8 in the X direction is converted into a parallel light beam by the cylindrical lens 9, deflected upward by the prism 10, and emitted obliquely upward with respect to the optical axis.
- the illumination light passes through the mounting table 2a and the bottom plate 1b of the container 1, is reflected obliquely downward on the upper plate 1a, passes through the cells, the bottom plate 1b and the mounting table 2a, and is collected by the plurality of objective optical systems 11. Is done.
- Illumination light traveling obliquely inside each objective optical system 11 is partially vignetted at the aperture stop AS, and only part of the illumination light passes through the aperture stop AS, thereby connecting an optical image of the shaded cell to the image plane. .
- the optical image of the cell formed on the image plane is picked up by the line sensor 13 arranged on the image plane, and a one-dimensional image of the cell is acquired.
- the imaging unit 4 repeats acquisition of a one-dimensional image by the line sensor 13 while moving in the X direction by the operation of the scanning mechanism 6. Thereby, a two-dimensional image of the cells distributed on the bottom plate 1b is acquired.
- the image connected to the image plane by each objective optical system 11 is an inverted image. Therefore, for example, when a two-dimensional image of the sample A shown in FIG. 12A is acquired, the image is inverted in the partial image P corresponding to each objective optical system 11 as shown in FIG. 12B. In order to correct the inversion of the image, as shown in FIG. 12C, a process of inverting each partial image P in a direction perpendicular to the scanning direction is performed.
- the absolute value of the projection lateral magnification of the objective optical system 11 is larger than 1, the field of view of the edge of each partial image P overlaps the field of view of the edge of the adjacent partial image P. In such a case, as shown in FIG. 12C, a process of joining the partial images P so that the edges overlap each other is performed. When the projection lateral magnification of each objective optical system 11 is 1, such a joining process is not necessary.
- the line scanning observation apparatus 100 that acquires the two-dimensional image of the sample A by scanning the line sensor 13 with respect to the sample A, by using oblique illumination, the cell Even if it is a colorless and transparent phase object like this, there exists an advantage that the image with high contrast can be acquired. Further, by using the upper plate 1a of the container as a reflecting member, all of the illumination unit 3, the imaging unit 4, the focus adjustment mechanism 5 and the scanning mechanism 6 are integrated below the stage 2, thereby realizing a compact device. There is an advantage that can be.
- the prism 10 disposed in the vicinity of the objective optical system group 12 can also deal with the container 1 having a low upper plate 1a. That is, when the container 1 with the lower position of the upper plate 1a is used, in order to satisfy the conditional expressions (1) to (4), the emission position of the illumination light from the illumination unit 3 is set to the objective optical system group 12. Must be close to the optical axis. However, it is difficult to dispose the line light source 8 in the vicinity of the objective optical system group 12 because the lenses, frames, and the like of the objective optical system group 12 are in the way.
- the prism 10 is inserted between the mounting table 2a and the objective optical system group 12, and is slightly shifted in the radial direction from the upper portion of the objective optical system group 12 and the optical axis.
- the line light source 8 is arranged at a position away from the objective optical system group 12 in the horizontal direction. Thereby, illumination light can be emitted obliquely upward from the vicinity of the optical axis of the objective optical system group 12.
- the illumination light is oblique from a position away from the optical axis of the objective optical system group 12. Injected upward. Therefore, as shown in FIG. 13, the line light source 8 may be arranged such that the prism 10 is omitted and the illumination light is emitted obliquely upward from the line light source 8.
- the relative positional relationship between the sample surface, the reflecting surface of the reflecting member (upper plate 1a), and the illumination optical system 7 does not change.
- the irradiation angle of the illumination light to is constant. Therefore, in this case, the prism 10 and the cylindrical lens 9 may be omitted as shown in FIG.
- the upper plate 1a of the container 1 is used as a reflecting member for reflecting the illumination light. Instead, the illumination light is reflected by a reflecting member provided above the container 1. You may comprise as follows.
- the objective optical system group 121 further includes a relay optical system 14 on the image side of each objective optical system 11 as shown in FIG. A standing image is formed.
- Each objective optical system 11 includes, in order from the object side (sample A side), a first lens group G1, an aperture stop AS, a second lens group G2, and a third lens group G3.
- Each relay optical system 14 includes a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 in order from the object side, and is arranged on an intermediate image plane between the objective optical system 11 and the relay optical system 14. Relay the formed intermediate image to the image plane.
- Entrance pupil position 20.1mm Projection lateral magnification 1.00 times real field of view F 2.66 mm Lens diameter ⁇ 2.1mm Lens interval d in the Y direction of the first lens group G1 2.66 mm Field of view overlap width D 0 mm
- the objective optical system group 122 includes lenslet arrays 111 and 112 as shown in FIGS. 15A and 15B instead of the plurality of objective optical systems 11.
- the first lenslet array 111 has a plurality of lenslets constituting the first lens group G1.
- the second lenslet array 112 has a plurality of lenslets constituting the second lens group G2.
- Each lenslet array 111 and 112 is manufactured by molding a transparent substrate with a mold. By using a high-precision mold for molding the lenslet arrays 111 and 112, manufacturing variations for each lens can be reduced. Further, the manufacturing cost can be reduced as compared with the case where a plurality of objective optical systems 11 are used.
- a light shielding wall 15 for blocking light is placed between adjacent lenslets. It may be provided. By doing in this way, it can prevent that the light from an adjacent lenslet mixes with the light which injects into the line sensor 13 from each lenslet of the 2nd lenslet array 112.
- a transmissive illumination unit 31 is provided as shown in FIG. 16 in place of the reflective illumination unit 3 including a reflective member.
- the transmissive illumination unit 31 includes a line light source 8 and a cylindrical lens 91 disposed above the stage 2.
- the illumination mask 82 is disposed on the focal plane of the cylindrical lens 91 or in the vicinity thereof. The center of the short side of the opening 82 a of the illumination mask 82 is decentered with respect to the optical axis of the cylindrical lens 91. Thereby, illumination light is emitted from the cylindrical lens 91 in an oblique direction with respect to the optical axis of the imaging unit 4.
- the illumination unit 31 is stationary with respect to the stage 2, and the focus adjustment mechanism 5 and the scanning mechanism 6 move only the imaging unit 4. Therefore, the divergence angle of the light from the line light source 8 and the dimensions of the cylindrical lens 91 are designed so that the illumination light emitted from the cylindrical lens 91 is irradiated over a wide range, preferably the entire imaging range by the imaging unit 4.
- the fourth modification is a further modification of the third modification provided with the transmission type illumination unit 31, and as shown in FIG. 17, the scanning mechanism 6 replaces the imaging unit 4 with the stage 2. Is moved in the X direction. By scanning the sample A by the imaging unit 4 by moving the stage 2, the luminous flux of the illumination light can be made narrower in the X direction than in the third modification, and the illumination unit 32 can be further downsized. Can do.
- the center of the short side of the opening 82 a of the illumination mask 82 is decentered with respect to the optical axis of the cylindrical lens 92. Thereby, illumination light is emitted from the cylindrical lens 92 in an oblique direction with respect to the optical axis of the imaging unit 4.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
Abstract
観察装置(100)は、ステージ(2)に支持された試料(A)に照明光を照射する照明部(3)と、一列に配列され試料(A)を透過した照明光を集光する複数の対物光学系(11)および該複数の対物光学系(11)の像面上に光学像の列に沿って配置されたラインセンサ(13)を有する撮像部(4)と、ステージ(2)および撮像部(4)をラインセンサ(13)の長手方向に交差する方向に相対移動させる走査機構(6)とを備え、照明光は、対物光学系(11)の光軸に平行な平面内において該光軸に対して斜めに試料(A)に照射され、各対物光学系(11)に入射した照明光の一部が開口絞り(AS)によって遮られる角度分布を有する。
Description
本発明は、観察装置に関し、特にライン走査型の観察装置に関するものである。
従来、原稿によって反射された光または原稿を透過した光をラインセンサによって検出しながら、原稿およびラインセンサを該ラインセンサの長手方向に交差する方向に相対移動させることにより、原稿の画像を取得するイメージスキャナが知られている(例えば、特許文献1,2参照。)。
しかしながら、細胞のような無色透明な位相物体の像にはコントラストが付かないため、特許文献1および2のようなイメージスキャナでは無色透明な位相物体を観察することができないという問題がある。
本発明は、上述した事情に鑑みてなされたものであって、無色透明な位相物体のコントラストの付いた像を観察することができる観察装置を提供することを目的とする。
本発明は、上述した事情に鑑みてなされたものであって、無色透明な位相物体のコントラストの付いた像を観察することができる観察装置を提供することを目的とする。
上記目的を達成するため、本発明は以下の手段を提供する。
本発明の一態様は、試料を支持するステージと、該ステージによって支持された前記試料に照明光を照射する照明部と、前記試料を透過した照明光を集光する複数の対物光学系および該複数の対物光学系の像面上に配置され前記照明光を検出するラインセンサを有する撮像部と、前記ステージおよび前記撮像部を前記ラインセンサの長手方向に交差する走査方向に相対移動させる走査機構とを備え、前記複数の対物光学系は、光軸が互いに平行になるように一列に配列されるとともに、前記照明光の通過を制限する開口絞りを各々有し、前記ラインセンサが、前記複数の対物光学系の列に沿って前記像面上に配置され、前記照明部は、前記撮像部とは反対側から前記複数の対物光学系の光軸に平行な平面内において該光軸に対して斜めに前記照明光を前記試料に照射し、前記照明光は、前記複数の対物光学系の各々に入射した前記照明光の一部が前記開口絞りによって遮られる角度分布を有する観察装置である。
本発明の一態様は、試料を支持するステージと、該ステージによって支持された前記試料に照明光を照射する照明部と、前記試料を透過した照明光を集光する複数の対物光学系および該複数の対物光学系の像面上に配置され前記照明光を検出するラインセンサを有する撮像部と、前記ステージおよび前記撮像部を前記ラインセンサの長手方向に交差する走査方向に相対移動させる走査機構とを備え、前記複数の対物光学系は、光軸が互いに平行になるように一列に配列されるとともに、前記照明光の通過を制限する開口絞りを各々有し、前記ラインセンサが、前記複数の対物光学系の列に沿って前記像面上に配置され、前記照明部は、前記撮像部とは反対側から前記複数の対物光学系の光軸に平行な平面内において該光軸に対して斜めに前記照明光を前記試料に照射し、前記照明光は、前記複数の対物光学系の各々に入射した前記照明光の一部が前記開口絞りによって遮られる角度分布を有する観察装置である。
本態様によれば、ステージに支持された試料に照明部から照明光が照射されると、試料を透過した照明光が撮像部の複数の対物光学系によって集光され、対物光学系の像面に位置するラインセンサ上に一列に並ぶ複数の光学像が形成され、試料のライン状の画像がラインセンサによって取得される。したがって、ステージおよび撮像部を走査機構によって走査方向に移動させながら試料の画像を1ラインずつ取得することにより、試料の2次元画像を取得することができる。
この場合に、対物光学系の光軸に対して斜めに試料に照射された照明光は、各対物光学系に斜めに入射する。したがって、各対物光学系の開口絞りにおいて照明光の入射位置は光軸から偏心し、光軸側に位置する照明光の一部は開口絞りを通過し、光軸から離れた側に位置する照明光の他の部分は開口絞りによって遮られる。これにより、像面には、影の付いた立体的な試料の光学像が結ばれるので、試料が無色透明な位相物体であってもコントラストの付いた像を観察することができる。
上記態様においては、前記複数の対物光学系の各々の入射瞳位置が最も前記試料側のレンズよりも像側にあり、かつ、前記試料の像を前記像面に投影したときの前記複数の対物光学系の各々の投影倍率の絶対値が1倍以下であってもよい。
入射瞳位置を最も試料側のレンズよりも像側に配置することで、各対物光学系の実視野が最も試料側のレンズの直径よりも大きくなり、隣接する2つの対物光学系の視野が対物光学系の配列方向に互いに重複する。これにより、前記配列方向に切れ目のない試料の光学像を像面に形成し、視野の欠けが無い画像を取得することができる。また、投影倍率の絶対値を1倍以下にすることにより、像面において隣接する光学像が互いに重なり合うことを防止することができる。
入射瞳位置を最も試料側のレンズよりも像側に配置することで、各対物光学系の実視野が最も試料側のレンズの直径よりも大きくなり、隣接する2つの対物光学系の視野が対物光学系の配列方向に互いに重複する。これにより、前記配列方向に切れ目のない試料の光学像を像面に形成し、視野の欠けが無い画像を取得することができる。また、投影倍率の絶対値を1倍以下にすることにより、像面において隣接する光学像が互いに重なり合うことを防止することができる。
上記態様においては、前記撮像部が、前記ステージの下方に配置され、前記照明部が、前記ステージの下方に配置され斜め上方に向けて前記照明光を射出する照明光学系と、前記ステージの上方に配置され前記照明光を斜め下方に向けて反射する反射部材とを備えていてもよい。
このようにすることで、撮像部および照明部の両方をステージの下方に配置することによって、装置を小型化することができる。
このようにすることで、撮像部および照明部の両方をステージの下方に配置することによって、装置を小型化することができる。
上記態様においては、前記反射部材が、前記試料を収容し前記ステージによって支持される容器の上板であってもよい。
このようにすることで、反射部材を別途設ける必要が無いので、装置構成を簡便にすることができる。
このようにすることで、反射部材を別途設ける必要が無いので、装置構成を簡便にすることができる。
上記態様においては、前記照明光学系が、前記走査方向および前記複数の対物光学系の光軸に垂直な方向に長手方向を有するライン状の横断面を有する前記照明光を発するライン光源を備えていてもよい。
このようにすることで、照明光学系を小型化することができる。
このようにすることで、照明光学系を小型化することができる。
上記態様においては、前記照明光学系が、前記ライン光源から発せられた前記照明光を透過させるレンズを備え、該レンズが、前記照明光の前記長手方向に交差する方向に正の屈折力を有し、前記照明光の前記長手方向に平行な方向に屈折力を有しなくてもよい。
このようにすることで、ライン光源から発散光束として発せられるライン状の照明光が前記長手方向に交差する方向に収斂されることによって、照明効率を向上することができる。
このようにすることで、ライン光源から発散光束として発せられるライン状の照明光が前記長手方向に交差する方向に収斂されることによって、照明効率を向上することができる。
上記態様においては、前記照明光学系が、前記照明光を上方に偏向する偏向素子を備えていてもよい。前記偏向素子は、前記複数の対物光学系の上部、かつ、前記複数の対物光学系の光軸から該光軸に交差する方向に間隔をあけた位置に配置されていることが好ましい。
反射部材の位置が低い場合、反射部材によって反射されたライン状の照明光を対物光学系に入射させるためには、照明光を対物光学系の光軸に近い位置から斜め上方へ射出する必要がある。ただし、ライン光源を対物光学系のすぐ横に配置することは、対物光学系のレンズや枠等が邪魔となり難しい。偏向素子は、ライン光源に比べてレイアウトが容易であるので、対物光学系の光軸の近傍に配置し、ライン光源からの照明光を対物光学系の光軸に近い位置から斜め上方へ向けて射出することができる。
反射部材の位置が低い場合、反射部材によって反射されたライン状の照明光を対物光学系に入射させるためには、照明光を対物光学系の光軸に近い位置から斜め上方へ射出する必要がある。ただし、ライン光源を対物光学系のすぐ横に配置することは、対物光学系のレンズや枠等が邪魔となり難しい。偏向素子は、ライン光源に比べてレイアウトが容易であるので、対物光学系の光軸の近傍に配置し、ライン光源からの照明光を対物光学系の光軸に近い位置から斜め上方へ向けて射出することができる。
本発明によれば、透明な位相物体のコントラストの付いた像を観察することができるという効果を奏する。
本発明の一実施形態に係る観察装置100について図面を参照して説明する。
本実施形態に係る観察装置100は、図1に示されるように、試料Aを収容した容器1を支持するステージ2と、該ステージ2に支持された試料Aに照明光を照射する照明部3と、試料Aを透過した照明光をラインセンサ13により検出して試料Aの画像を取得する撮像部4と、試料Aに対する撮像部4の焦点の位置を調整するフォーカス調整機構5と、撮像部4をラインセンサ13の長手方向に直交する走査方向に移動させる走査機構6とを備えている。
本実施形態に係る観察装置100は、図1に示されるように、試料Aを収容した容器1を支持するステージ2と、該ステージ2に支持された試料Aに照明光を照射する照明部3と、試料Aを透過した照明光をラインセンサ13により検出して試料Aの画像を取得する撮像部4と、試料Aに対する撮像部4の焦点の位置を調整するフォーカス調整機構5と、撮像部4をラインセンサ13の長手方向に直交する走査方向に移動させる走査機構6とを備えている。
本実施形態の説明において、撮像部4の光軸(対物光学系11の光軸)に沿う方向をZ方向、走査機構6による撮像部4の走査方向をX方向、ラインセンサ13の長手方向をY方向とするXYZ直交座標系を用いる。図1に示されるように、Z方向が鉛直方向となり、X方向およびY方向が水平方向となるように、観察装置100は配置される。
容器1は、細胞培養用のフラスコまたはディッシュのような、全体的に光学的に透明な樹脂から形成された密閉容器であり、互いに対向する上板1aおよび底板1bを有している。試料Aは、例えば、培地B中で培養される細胞である。上板1aの内側の面は、照明光をフレネル反射する反射面となっている。
ステージ2は、水平に配置された平板状の載置台2aを備え、載置台2a上に容器1が載置される。載置台2aは、照明光を透過させるように光学的に透明な材質、例えばガラスからなる。
ステージ2は、水平に配置された平板状の載置台2aを備え、載置台2a上に容器1が載置される。載置台2aは、照明光を透過させるように光学的に透明な材質、例えばガラスからなる。
照明部3は、ステージ2の下方に配置され斜め上方に向けてライン状の照明光を射出する照明光学系7を備え、上板(反射部材)1aおいて照明光が斜め下方に反射されることにより、斜め上方から照明光を試料Aに照射するようになっている。
具体的には、照明光学系7は、図2に示されるように、撮像部4の側方に配置され照明光を撮像部4に向かってX方向に発するライン光源8と、該ライン光源8から発せられた照明光を平行光束に変換するシリンドリカルレンズ(レンズ)9と、シリンドリカルレンズ9から射出された照明光を上方へ偏向するプリズム(偏向素子)10とを備えている。
ライン光源8は、光を射出する射出面を有する光源本体81と、該光源本体81の射出面上に設けられた照明マスク82とを備えている。照明マスク82は、Z方向に延びる短辺と、Y方向に延び短辺よりも長い長辺とを有する長方形の開口部82aを有する。射出面から発せられた光が開口部82aのみを透過することによって、Y方向に長手方向を有するライン状の横断面(照明光の光軸に交差する断面)を有する照明光が生成される。
図3Aから図4は、ライン光源8の具体的な構成の一例を示している。
図3Aおよび図3Bのライン光源8において、光源本体81は、Y方向に一列に配列したLEDからなるLED列81aと、LED列81aから発せられた光を拡散する拡散板81bとを備えている。照明マスク82は、拡散板81bの射出側の面上に設けられている。
図3Aおよび図3Bのライン光源8において、光源本体81は、Y方向に一列に配列したLEDからなるLED列81aと、LED列81aから発せられた光を拡散する拡散板81bとを備えている。照明マスク82は、拡散板81bの射出側の面上に設けられている。
図4のライン光源8において、光源本体81は、光拡散性光ファイバ81cと、該光ファイバ81cに光を供給する、LEDまたはLSD(Superluminescent diode)のような光源81dとを備えている。光拡散性光ファイバ81cを用いることにより、LED列81aを用いた場合に比べて、照明光の光強度の均質性を高めることができる。
シリンドリカルレンズ9は、Y方向に延びZ方向のみに湾曲する曲面をライン光源8とは反対側に有する。したがって、シリンドリカルレンズ9は、Z方向に屈折力を有し、Y方向に屈折力を有しない。また、照明マスク82は、シリンドリカルレンズ9の焦点面または該焦点面の近傍に位置している。これにより、照明マスク82の開口部82aから射出された発散光束の照明光は、シリンドリカルレンズ9によってZ方向のみ曲げられて、Z方向に一定の寸法を有する光束(XZ平面において平行光束)に変換される。
プリズム10は、シリンドリカルレンズ9の光軸に対して45°で傾斜し、シリンドリカルレンズ9を透過した照明光を上方へ偏向する偏向面10aを有する。偏向面10aにおいて偏向された照明光は、載置台2aおよび容器1の底板1bを透過し、上板1aにおいて反射されて試料Aを上方から照明し、試料Aおよび底板1bを透過した照明光が撮像部4に入射するようになっている。
撮像部4は、一列に配列された複数の対物光学系11を有する対物光学系群12と、該対物光学系群12によって結ばれた試料Aの光学像を撮影するラインセンサ13とを備えている。
各対物光学系11は、図5に示されるように、物体側(試料A側)から順に、第1レンズ群G1、開口絞りAS、および第2レンズ群G2を備えている。複数の対物光学系11は、図6に示されるように、光軸がZ方向に平行になるようにY方向に配列され、同一面上に光学像を結ぶ。したがって、像面には、Y方向に一列に並ぶ複数の光学像Iが形成される(図8参照。)。開口絞りASも、図7に示されるように、Y方向に一列に配列する。
各対物光学系11は、図5に示されるように、物体側(試料A側)から順に、第1レンズ群G1、開口絞りAS、および第2レンズ群G2を備えている。複数の対物光学系11は、図6に示されるように、光軸がZ方向に平行になるようにY方向に配列され、同一面上に光学像を結ぶ。したがって、像面には、Y方向に一列に並ぶ複数の光学像Iが形成される(図8参照。)。開口絞りASも、図7に示されるように、Y方向に一列に配列する。
ラインセンサ13は、長手方向に配列された複数の受光素子を有し、ライン状の1次元画像を取得する。ラインセンサ13は、図8に示されるように、複数の対物光学系11の像面上にY方向に配置されている。ラインセンサ13は、像面に光学像Iを結んだ照明光を検出することによって、試料Aのライン状の1次元画像を取得する。
隣接する対物光学系11の間には隙間dが生じる。Y方向において試料Aの像に切れ目が無い画像を得るために、対物光学系群12は以下の2つの条件を満たす。
第1の条件は、各対物光学系11において、図5に示されるように、入射瞳位置が最も試料A側に位置する第1レンズ群G1よりも像側に位置することである。これは、開口絞りASを第1レンズ群G1の像側焦点よりも物体側に配置することで実現している。第1の条件を満たすことにより、焦点面から第1レンズ群G1に近付くにつれて軸外主光線が対物光学系11の光軸に近付くので、走査方向に垂直な方向(Y方向)の実視野Fが第1レンズ群G1の直径φよりも大きくなる。したがって、隣接する2つの対物光学系11の視野がY方向に互いに重なり合い、視野の欠けがない試料Aの光学像が像面に形成される。
第1の条件は、各対物光学系11において、図5に示されるように、入射瞳位置が最も試料A側に位置する第1レンズ群G1よりも像側に位置することである。これは、開口絞りASを第1レンズ群G1の像側焦点よりも物体側に配置することで実現している。第1の条件を満たすことにより、焦点面から第1レンズ群G1に近付くにつれて軸外主光線が対物光学系11の光軸に近付くので、走査方向に垂直な方向(Y方向)の実視野Fが第1レンズ群G1の直径φよりも大きくなる。したがって、隣接する2つの対物光学系11の視野がY方向に互いに重なり合い、視野の欠けがない試料Aの光学像が像面に形成される。
第2の条件は、図5に示されるように、各対物光学系11の物体面から像面への投影横倍率の絶対値が1倍以下であることである。第2の条件を満たすことにより、像面には、複数の対物光学系11によって結ばれた複数の光学像IがY方向に互いに重なり合うことなく配列する。したがって、ラインセンサ13は、複数の対物光学系11による複数の光学像Iを互いに空間的に分離して撮像することができる。投影横倍率が1倍よりも大きい場合、Y方向に隣接する2つの光学像Iが像面において互いに重なり合ってしまう。
第2の条件を満たす場合であっても、実視野Fよりも外側を通る光が隣接する光学像に重なることを確実に防止するために、像面の近傍に照明光の透過範囲を規制する視野絞りFSを設けることが好ましい。
対物光学系群12の一実施例を以下に示す。
入射瞳の位置(第1レンズ群G1の最も物体側の面から入射瞳までの距離) 20.1mm
投影横倍率 -0.756倍
実視野F 2.66mm
第1レンズ群G1のレンズ直径φ 2.1mm
第1レンズ群G1のY方向のレンズ間隔d 2.3mm
視野の重なり幅D 0.36mm(=2.66/2-(2.3-2.66/2))
入射瞳の位置(第1レンズ群G1の最も物体側の面から入射瞳までの距離) 20.1mm
投影横倍率 -0.756倍
実視野F 2.66mm
第1レンズ群G1のレンズ直径φ 2.1mm
第1レンズ群G1のY方向のレンズ間隔d 2.3mm
視野の重なり幅D 0.36mm(=2.66/2-(2.3-2.66/2))
ここで、照明部3は、撮像部4の光軸に対して斜め方向から試料Aに照明光を照射する偏斜照明を行うように構成されている。具体的には、図9に示されるように、照明マスク82は、上述したようにシリンドリカルレンズ9の焦点面またはその近傍に位置し、かつ、照明マスク82の短辺の中心はシリンドリカルレンズ9の光軸に対して距離Δだけ下側に偏心している。これにより、プリズム10からは、XZ平面内においてZ方向に対して傾斜する方向に照明光が射出される。そして、略水平な上板1aにおいて反射された照明光は、XZ平面内においてZ方向に対して斜めに試料面(対物光学系11の焦点面)に入射し、試料Aを透過した照明光は斜めに対物光学系11に入射する。
シリンドリカルレンズ9によって平行光束に変換された照明光は、照明マスク82が短辺方向に幅を有しているので、角度分布を有する。このような照明光が対物光学系11に斜めに入射すると、図7において二点鎖線で示されるように、光軸側に位置する一部のみが開口絞りASを通過して像面に到達し、光軸に対して外側に位置する他の部分は開口絞りASの外縁によって遮られる。
図10は、試料Aとして高い屈折率を有する細胞を観察する際の偏斜照明の作用を説明する図である。図10において対物光学系11を左から右へ移動させるものとする。照明光の入射角度が対物光学系11の取り込み角と同等である場合、細胞が存在しない領域を透過した光線a,eおよび細胞の表面に略垂直に入射した光線cは、ほとんど屈折されることなく、入射瞳の辺縁の近傍を通過し、像面に到達する。このような光線a,c,eは、像面において中くらいの明るさの光学像を結ぶ。図10において細胞の左端を透過した光線bは、外側に屈折され、入射瞳の外側に達し、開口絞りASによってケラレる。このような光線cは、像面において暗い光学像を結ぶ。図10において細胞の右端を透過した光線dは、内側に屈折され、入射瞳の辺縁よりも内側を通過する。このような光線dは、像面においてより明るい光学像を結ぶ。上記の結果、図11に示されるように、一方の側が明るく、他方の側に影が付き立体的に見える高コントラストの細胞Aの画像が取得される。
対物光学系11に斜めに入射した照明光のうち、一部が開口絞りASを通過し、他の部分が開口絞りASにおいて遮られるような角度分布を照明光を有するために、対物光学系11に入射する際の照明光の光軸に対する入射角度は、下記の条件式(1)および(2)を満たすことが好ましい。
θmin < 0.5NA (1)
θmax > 1.5NA (2)
θminは、対物光学系11の光軸に対する照明光の入射角度の最小値(最も光軸側に位置する光線の入射角度)、θmaxは、対物光学系11の光軸に対する照明光の入射角度の最大値(光軸に対して最も径方向外側に位置する光線の入射角度)、NAは対物光学系11の開口数である。
θmin < 0.5NA (1)
θmax > 1.5NA (2)
θminは、対物光学系11の光軸に対する照明光の入射角度の最小値(最も光軸側に位置する光線の入射角度)、θmaxは、対物光学系11の光軸に対する照明光の入射角度の最大値(光軸に対して最も径方向外側に位置する光線の入射角度)、NAは対物光学系11の開口数である。
本実施形態に係る観察装置による観察において条件式(1)および(2)を満たすときにコントラストの高い細胞の画像が取得されることが実験的に確認されている。条件式(1)および(2)を満たすためには、シリンドリカルレンズ9の焦点距離Flと照明マスク82の開口部82aの短辺の長さLが、下記の条件式(3)を満たすことが好ましい。
L > (θmax-θmin)Fl (3)
L > (θmax-θmin)Fl (3)
さらに、プリズム10の偏向角(対物光学系11の光軸に対する偏向面10aの傾斜角度)が45°である場合、シリンドリカルレンズ9の光軸に対する照明マスク82の短辺の中心位置のシフト量(偏心距離)Δは、下記の条件式(4)を満たすことが好ましい。
Δ=NA/Fl (4)
プリズムの偏向角が45°でない場合には、偏向角の45°からのずれ量に応じてΔが補正される。具体的には、偏向角が45°よりも大きい場合には、Δをより大きくし、偏向角が45°よりも小さい場合には、Δをより小さくする。
Δ=NA/Fl (4)
プリズムの偏向角が45°でない場合には、偏向角の45°からのずれ量に応じてΔが補正される。具体的には、偏向角が45°よりも大きい場合には、Δをより大きくし、偏向角が45°よりも小さい場合には、Δをより小さくする。
条件式(1)~(4)を満たすことによって、試料Aが細胞のような位相物体であっても高いコントラストの付いた画像を取得することができる。条件式(1)~(4)を満たさない場合には、試料Aのコントラストが低下する。
フォーカス調整機構5は、例えば図示しない直動アクチュエータによって、照明光学系7および撮像部4を一体的にZ方向に移動させる。これにより、静止したステージ2に対する照明光学系7および撮像部4のZ方向の位置を変更し、試料Aに対する対物光学系群12の焦点合わせを行うことができる。
走査機構6は、例えばフォーカス調整機構5を支持する直動アクチュエータによって、フォーカス調整機構5と一体的に撮像部4および照明光学系7をX方向に移動させる。
なお、走査機構6は、撮像部4および照明光学系7ではなく、ステージ2をX方向に移動させるように構成されていてもよく、撮像部4および照明光学系7と、ステージ2との両方をX方向に移動可能に構成されていてもよい。
なお、走査機構6は、撮像部4および照明光学系7ではなく、ステージ2をX方向に移動させるように構成されていてもよく、撮像部4および照明光学系7と、ステージ2との両方をX方向に移動可能に構成されていてもよい。
次に、このように構成された観察装置100の作用について、容器1内で培養中の細胞を観察する場合を例に挙げて説明する。
ライン光源8からX方向に発せられたライン状の照明光は、シリンドリカルレンズ9によって平行光束に変換され、プリズム10によって上方に偏向され、光軸に対して斜め上方に射出される。照明光は、載置台2aおよび容器1の底板1bを透過し、上板1aにおいて斜め下方に向けて反射され、細胞、底板1bおよび載置台2aを透過し、複数の対物光学系11によって集光される。各対物光学系11の内部を斜めに進む照明光は、開口絞りASにおいて部分的にケラレ、一部のみが開口絞りASを通過することにより、陰影の付いた細胞の光学像を像面に結ぶ。
ライン光源8からX方向に発せられたライン状の照明光は、シリンドリカルレンズ9によって平行光束に変換され、プリズム10によって上方に偏向され、光軸に対して斜め上方に射出される。照明光は、載置台2aおよび容器1の底板1bを透過し、上板1aにおいて斜め下方に向けて反射され、細胞、底板1bおよび載置台2aを透過し、複数の対物光学系11によって集光される。各対物光学系11の内部を斜めに進む照明光は、開口絞りASにおいて部分的にケラレ、一部のみが開口絞りASを通過することにより、陰影の付いた細胞の光学像を像面に結ぶ。
像面に形成された細胞の光学像は、像面に配置されたラインセンサ13によって撮像されて細胞の一次元画像が取得される。撮像部4は、走査機構6の作動によってX方向に移動しながら、ラインセンサ13による1次元画像の取得を繰り返す。これにより、底板1b上に分布する細胞の2次元画像が取得される。
ここで、各対物光学系11によって像面に結ばれる像は倒立像になる。したがって、例えば、図12Aに示される試料Aの2次元画像を取得した場合、図12Bに示されるように、各対物光学系11に対応する部分画像Pにおいて像が倒立する。この像の倒立を補正するために、図12Cに示されるように、各部分画像Pを走査方向に垂直な方向に反転する処理が行われる。
対物光学系11の投影横倍率の絶対値が1よりも大きい場合、各部分画像Pの縁部の視野は、隣接する部分画像Pの縁部の視野と重複する。このような場合には、図12Cに示されるように、縁部が互いに重なり合うように部分画像Pをつなぎ合わせる処理が行われる。各対物光学系11の投影横倍率が1倍である場合、このようなつなぎ合わせ処理は不要となる。
このように、本実施形態によれば、ラインセンサ13を試料Aに対して走査して試料Aの2次元画像を取得するライン走査型の観察装置100において、偏斜照明を用いることによって、細胞のような無色透明の位相物体であっても高いコントラストの付いた画像を取得することができるという利点がある。また、容器の上板1aを反射部材として利用し、照明部3、撮像部4、フォーカス調整機構5および走査機構6の全てをステージ2の下方に集約することによって、コンパクトな装置を実現することができるという利点がある。
また、対物光学系群12の近傍に配置されたプリズム10によって、上板1aの低い容器1にも対応することができる。
すなわち、上板1aの位置が低い容器1を使用する場合、上述した条件式(1)~(4)を満たすためには、照明部3からの照明光の射出位置を、対物光学系群12の光軸に近付ける必要がある。しかし、対物光学系群12のレンズや枠等が邪魔となり、対物光学系群12の近傍にライン光源8を配置することは難しい。
すなわち、上板1aの位置が低い容器1を使用する場合、上述した条件式(1)~(4)を満たすためには、照明部3からの照明光の射出位置を、対物光学系群12の光軸に近付ける必要がある。しかし、対物光学系群12のレンズや枠等が邪魔となり、対物光学系群12の近傍にライン光源8を配置することは難しい。
そこで、図9に示されるように、プリズム10を、載置台2aと対物光学系群12との間に挿入して、対物光学系群12の上部、かつ、光軸からわずかに径方向にずれた位置に配置し、ライン光源8を対物光学系群12から水平方向に離れた位置に配置する。これにより、対物光学系群12の光軸の近傍から斜め上方に向けて照明光を射出することができる。
上板1aの位置が高い容器1を使用する場合、偏斜照明によりコントラストの付いた試料Aの光学像を得るためには、対物光学系群12の光軸から離れた位置から照明光が斜め上方に射出される。したがって、図13に示されるように、プリズム10を省略して、ライン光源8から斜め上方に向けて照明光が射出されるように、ライン光源8を配置してもよい。
さらに、上板1aの高さが同一である容器1しか使用しない場合には、試料面、反射部材の反射面(上板1a)および照明光学系7の相対位置関係が変化しないので、試料Aへの照明光の照射角度は一定となる。したがって、この場合には、図13に示されるように、プリズム10とシリンドリカルレンズ9を省略してもよい。
本実施形態においては、照明光を反射するための反射部材として容器1の上板1aを利用することとしたが、これに代えて、容器1の上方に設けた反射部材によって照明光を反射するように構成してもよい。
次に、本実施形態の変形例について説明する。
(第1の変形例)
第1の変形例において、対物光学系群121が、図14に示されるように、各対物光学系11の像側にリレー光学系14をさらに備え、ラインセンサ13が配置される像面に正立像が形成されるように構成されている。各対物光学系11は、物体側(試料A側)から順に、第1レンズ群G1、開口絞りAS、第2レンズ群G2、および第3レンズ群G3を備えている。また、各リレー光学系14は、物体側から順に第4レンズ群G4、第5レンズ群G5および第6レンズ群G6からなり、対物光学系11とリレー光学系14との間の中間像面に形成された中間像を像面までリレーする。
このようにすることで、ラインセンサ13を走査して取得される2次元画像内の像は正立像となるので、画像の反転処理を不要にすることができる。
(第1の変形例)
第1の変形例において、対物光学系群121が、図14に示されるように、各対物光学系11の像側にリレー光学系14をさらに備え、ラインセンサ13が配置される像面に正立像が形成されるように構成されている。各対物光学系11は、物体側(試料A側)から順に、第1レンズ群G1、開口絞りAS、第2レンズ群G2、および第3レンズ群G3を備えている。また、各リレー光学系14は、物体側から順に第4レンズ群G4、第5レンズ群G5および第6レンズ群G6からなり、対物光学系11とリレー光学系14との間の中間像面に形成された中間像を像面までリレーする。
このようにすることで、ラインセンサ13を走査して取得される2次元画像内の像は正立像となるので、画像の反転処理を不要にすることができる。
図14の対物光学系群121の一実施例を以下に示す。
入射瞳の位置 20.1mm
投影横倍率 1.00倍
実視野F 2.66mm
レンズ直径φ 2.1mm
第1レンズ群G1のY方向のレンズ間隔d 2.66mm
視野の重なり幅D 0mm
入射瞳の位置 20.1mm
投影横倍率 1.00倍
実視野F 2.66mm
レンズ直径φ 2.1mm
第1レンズ群G1のY方向のレンズ間隔d 2.66mm
視野の重なり幅D 0mm
(第2の変形例)
第2の変形例において、対物光学系群122が、複数の対物光学系11に代えて、図15Aおよび図15Bに示されるように、レンズレットアレイ111,112を備える。第1のレンズレットアレイ111は、第1レンズ群G1を構成する複数のレンズレットを有する。第2のレンズレットアレイ112は、第2レンズ群G2を構成する複数のレンズレットを有する。各レンズレットアレイ111,112は、透明基板を型で成形することによって製造される。
レンズレットアレイ111,112の成形に高精度の型を用いることで、レンズ毎の製造ばらつきを低減することができる。また、複数の対物光学系11を用いた場合と比べて、製造コストを低減することができる。
第2の変形例において、対物光学系群122が、複数の対物光学系11に代えて、図15Aおよび図15Bに示されるように、レンズレットアレイ111,112を備える。第1のレンズレットアレイ111は、第1レンズ群G1を構成する複数のレンズレットを有する。第2のレンズレットアレイ112は、第2レンズ群G2を構成する複数のレンズレットを有する。各レンズレットアレイ111,112は、透明基板を型で成形することによって製造される。
レンズレットアレイ111,112の成形に高精度の型を用いることで、レンズ毎の製造ばらつきを低減することができる。また、複数の対物光学系11を用いた場合と比べて、製造コストを低減することができる。
本変形例において、レンズレットアレイ111,112が透明基板からなるため、迷光が混入し易い。したがって、図15Cに示されるように、第1のレンズレットアレイ111の物体側と第2のレンズレットアレイ112の像側において、光を遮断するための遮光壁15を隣接するレンズレットの間に設けてもよい。
このようにすることで、第2のレンズレットアレイ112の各レンズレットからラインセンサ13に入射する光に、隣接するレンズレットからの光が混入することを防止することができる。
このようにすることで、第2のレンズレットアレイ112の各レンズレットからラインセンサ13に入射する光に、隣接するレンズレットからの光が混入することを防止することができる。
(第3の変形例)
第3の変形例において、反射部材を備える反射型の照明部3に代えて、図16に示されるように、透過型の照明部31が設けられている。透過型の照明部31を用いることで、反射部材を不要にすることができる。
透過型の照明部31は、ステージ2の上方に配置されたライン光源8およびシリンドリカルレンズ91を備える。照明マスク82は、シリンドリカルレンズ91の焦点面またはその近傍に配置されている。また、照明マスク82の開口部82aの短辺の中心は、シリンドリカルレンズ91の光軸に対して偏心している。これにより、シリンドリカルレンズ91からは、撮像部4の光軸に対して斜め方向に照明光が射出される。
第3の変形例において、反射部材を備える反射型の照明部3に代えて、図16に示されるように、透過型の照明部31が設けられている。透過型の照明部31を用いることで、反射部材を不要にすることができる。
透過型の照明部31は、ステージ2の上方に配置されたライン光源8およびシリンドリカルレンズ91を備える。照明マスク82は、シリンドリカルレンズ91の焦点面またはその近傍に配置されている。また、照明マスク82の開口部82aの短辺の中心は、シリンドリカルレンズ91の光軸に対して偏心している。これにより、シリンドリカルレンズ91からは、撮像部4の光軸に対して斜め方向に照明光が射出される。
本変形例において、照明部31はステージ2に対して静止しており、フォーカス調整機構5および走査機構6は撮像部4のみを移動させる。したがって、シリンドリカルレンズ91から射出された照明光が広範囲、好ましくは撮像部4による撮像範囲の全体に照射されるように、ライン光源8からの光の発散角やシリンドリカルレンズ91の寸法等が設計される。
(第4の変形例)
第4の変形例は、透過型の照明部31を備える第3の変形例をさらに変形したものであり、図17に示されるように、走査機構6が、撮像部4に代えて、ステージ2をX方向に移動させる。撮像部4による試料Aの走査をステージ2の移動によって行うことで、第3の変形例に比べて、照明光の光束をX方向に細くすることができ、照明部32をより小型化することができる。
本変形例の照明部32において、照明マスク82の開口部82aの短辺の中心がシリンドリカルレンズ92の光軸に対して偏心している。これにより、シリンドリカルレンズ92からは、撮像部4の光軸に対して斜め方向に照明光が射出される。
第4の変形例は、透過型の照明部31を備える第3の変形例をさらに変形したものであり、図17に示されるように、走査機構6が、撮像部4に代えて、ステージ2をX方向に移動させる。撮像部4による試料Aの走査をステージ2の移動によって行うことで、第3の変形例に比べて、照明光の光束をX方向に細くすることができ、照明部32をより小型化することができる。
本変形例の照明部32において、照明マスク82の開口部82aの短辺の中心がシリンドリカルレンズ92の光軸に対して偏心している。これにより、シリンドリカルレンズ92からは、撮像部4の光軸に対して斜め方向に照明光が射出される。
1 容器
2 ステージ
3 照明部
4 撮像部
5 フォーカス調整機構
6 走査機構
7 照明光学系
8 ライン光源
81 光源本体
82 照明マスク
82a 開口部
9,91,92 シリンドリカルレンズ(レンズ)
10 プリズム(偏向素子)
11 対物光学系
12,121 対物光学系群
13 ラインセンサ
14 リレー光学系
15 遮光壁
100 観察装置
G1 第1レンズ群
G2 第2レンズ群
AS 開口絞り
FS 視野絞り
2 ステージ
3 照明部
4 撮像部
5 フォーカス調整機構
6 走査機構
7 照明光学系
8 ライン光源
81 光源本体
82 照明マスク
82a 開口部
9,91,92 シリンドリカルレンズ(レンズ)
10 プリズム(偏向素子)
11 対物光学系
12,121 対物光学系群
13 ラインセンサ
14 リレー光学系
15 遮光壁
100 観察装置
G1 第1レンズ群
G2 第2レンズ群
AS 開口絞り
FS 視野絞り
Claims (8)
- 試料を支持するステージと、
該ステージによって支持された前記試料に照明光を照射する照明部と、
前記試料を透過した照明光を集光する複数の対物光学系および該複数の対物光学系の像面上に配置され前記照明光を検出するラインセンサを有する撮像部と、
前記ステージおよび前記撮像部を前記ラインセンサの長手方向に交差する走査方向に相対移動させる走査機構とを備え、
前記複数の対物光学系は、光軸が互いに平行になるように一列に配列されるとともに、前記照明光の通過を制限する開口絞りを各々有し、
前記ラインセンサが、前記複数の対物光学系の列に沿って前記像面上に配置され、
前記照明部は、前記撮像部とは反対側から前記複数の対物光学系の光軸に平行な平面内において該光軸に対して斜めに前記照明光を前記試料に照射し、
前記照明光は、前記複数の対物光学系の各々に入射した前記照明光の一部が前記開口絞りによって遮られる角度分布を有する観察装置。 - 前記複数の対物光学系の各々の入射瞳位置が最も前記試料側のレンズよりも像側にあり、かつ、前記試料の像を前記像面に投影したときの前記複数の対物光学系の各々の投影倍率の絶対値が1倍以下である請求項1に記載の観察装置。
- 前記撮像部が、前記ステージの下方に配置され、
前記照明部が、前記ステージの下方に配置され斜め上方に向けて前記照明光を射出する照明光学系と、前記ステージの上方に配置され前記照明光を斜め下方に向けて反射する反射部材とを備える請求項1または請求項2に記載の観察装置。 - 前記反射部材が、前記試料を収容し前記ステージによって支持される容器の上板である請求項3に記載の観察装置。
- 前記照明光学系が、前記走査方向および前記複数の対物光学系の光軸に垂直な方向に長手方向を有するライン状の横断面を有する前記照明光を発するライン光源を備える請求項3または請求項4に記載の観察装置。
- 前記照明光学系が、前記ライン光源から発せられた前記照明光を透過させるレンズを備え、
該レンズが、前記照明光の前記長手方向に交差する方向に正の屈折力を有し、前記照明光の前記長手方向に平行な方向に屈折力を有しない請求項5に記載の観察装置。 - 前記照明光学系が、前記照明光を上方に偏向する偏向素子を備える請求項3から請求項6のいずれかに記載の観察装置。
- 前記偏向素子が、前記複数の対物光学系の上部、かつ、前記複数の対物光学系の光軸から該光軸に交差する方向に間隔をあけた位置に配置されている請求項7に記載の観察装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077571 WO2018051514A1 (ja) | 2016-09-16 | 2016-09-16 | 観察装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077571 WO2018051514A1 (ja) | 2016-09-16 | 2016-09-16 | 観察装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051514A1 true WO2018051514A1 (ja) | 2018-03-22 |
Family
ID=61618731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077571 WO2018051514A1 (ja) | 2016-09-16 | 2016-09-16 | 観察装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018051514A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176044A1 (ja) * | 2018-03-15 | 2019-09-19 | オリンパス株式会社 | 観察装置 |
US11815672B2 (en) | 2018-03-15 | 2023-11-14 | Evident Corporation | Observation device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012029817A1 (ja) * | 2010-08-30 | 2012-03-08 | 三洋電機株式会社 | 観察装置、観察プログラム及び観察システム |
JP2014006291A (ja) * | 2012-06-21 | 2014-01-16 | Olympus Corp | 顕微鏡、顕微鏡システム及び画像合成方法 |
WO2014178294A1 (ja) * | 2013-04-30 | 2014-11-06 | オリンパス株式会社 | 標本観察装置及び標本観察方法 |
-
2016
- 2016-09-16 WO PCT/JP2016/077571 patent/WO2018051514A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012029817A1 (ja) * | 2010-08-30 | 2012-03-08 | 三洋電機株式会社 | 観察装置、観察プログラム及び観察システム |
JP2014006291A (ja) * | 2012-06-21 | 2014-01-16 | Olympus Corp | 顕微鏡、顕微鏡システム及び画像合成方法 |
WO2014178294A1 (ja) * | 2013-04-30 | 2014-11-06 | オリンパス株式会社 | 標本観察装置及び標本観察方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176044A1 (ja) * | 2018-03-15 | 2019-09-19 | オリンパス株式会社 | 観察装置 |
US11815672B2 (en) | 2018-03-15 | 2023-11-14 | Evident Corporation | Observation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10018819B2 (en) | Light sheet illumination microscope which illuminates a sample from a direction substantially perpendicular to a detection axis, while reducing likelihood of creating shadows | |
US10877256B2 (en) | Observation device | |
US20180164569A1 (en) | Microplate and microscope system | |
US11150456B2 (en) | Observation apparatus | |
US9733462B2 (en) | Scanning apparatus, confocal observation apparatus and disk scanning apparatus | |
JP6619025B2 (ja) | 観察装置 | |
US20160363752A1 (en) | Sheet illumination microscope and illumination method for sheet illumination microscope | |
WO2018051514A1 (ja) | 観察装置 | |
WO2018047583A1 (ja) | 観察装置 | |
US20090296209A1 (en) | Microscope | |
WO2019176048A1 (ja) | 細胞画像処理装置 | |
US9958661B2 (en) | Apparatus for structured illumination of a specimen | |
WO2019176050A1 (ja) | 細胞画像処理装置 | |
JP6619026B2 (ja) | 観察装置 | |
JP6987965B2 (ja) | 観察装置 | |
JP5726656B2 (ja) | ディスク走査型共焦点観察装置 | |
CN105765438A (zh) | 用于使样本成像的光学布置 | |
WO2019176044A1 (ja) | 観察装置 | |
JP2011027804A (ja) | コンフォーカル顕微鏡 | |
US20220390729A1 (en) | Confocal scanner, confocal scanner system, and confocal microscope system | |
JP2011227317A (ja) | 光学素子及び焦点検出装置 | |
JP2010250182A (ja) | 輪帯光源装置、顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16916294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |