WO2018051425A1 - Beam extraction method and circular accelerator using same - Google Patents

Beam extraction method and circular accelerator using same Download PDF

Info

Publication number
WO2018051425A1
WO2018051425A1 PCT/JP2016/077070 JP2016077070W WO2018051425A1 WO 2018051425 A1 WO2018051425 A1 WO 2018051425A1 JP 2016077070 W JP2016077070 W JP 2016077070W WO 2018051425 A1 WO2018051425 A1 WO 2018051425A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerator
energy
ion
magnetic field
extraction
Prior art date
Application number
PCT/JP2016/077070
Other languages
French (fr)
Japanese (ja)
Inventor
孝道 青木
重充 原
風太郎 えび名
孝義 関
隆光 羽江
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/077070 priority Critical patent/WO2018051425A1/en
Publication of WO2018051425A1 publication Critical patent/WO2018051425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits

Definitions

  • the present invention relates to an accelerator for accelerating heavy ions such as protons or carbon ions, and more particularly to a method for extracting a beam from the accelerator.
  • Accelerators are used to generate high-energy charged particles, especially nuclear beams, in particle beam therapy and physical experiments.
  • Examples of the accelerator that obtains a beam having a kinetic energy per nucleon of around 200 MeV include the cyclotron described in Patent Document 1 and Patent Document 2, and the synchrotron described in Patent Document 3.
  • a feature of the cyclotron is that a beam circulating in a static magnetic field is accelerated by a high-frequency electric field. As the beam is accelerated, the beam moves to an outer orbit and is extracted after reaching the maximum energy. Therefore, basically, the energy of the extracted beam is fixed.
  • Patent Document 4 also describes an accelerator capable of controlling the extraction energy.
  • JP 2014-160613 A JP 2014-020800 A JP 2014-186939 A JP2016-507949A
  • a particle beam irradiation apparatus using a synchrotron can generate a plurality of ion beams having different energies in the synchrotron, and can change the energy of the ion beam emitted from the synchrotron.
  • the synchrotron cannot be downsized to some extent. Further, in the synchrotron, the extraction of the ion beam becomes like a pulse, and the extraction amount of the ion beam is reduced.
  • a particle beam irradiation apparatus using a cyclotron that can be made smaller than a synchrotron can continuously extract an ion beam and has a large amount of ion beam extraction.
  • the energy of the ion beam generated in the cyclotron is constant, and it is impossible to extract an ion beam having a low maximum energy energy.
  • a degrader provided in the beam transport system is used so that the ion beam reaches the layer. It is necessary to adjust the energy of the ion beam.
  • problems such as an increase in the beam size of the ion beam due to the degrader and a decrease in the number of ions transmitted through the metal plate of the degrader occur.
  • the beam detaching device detaches ion beams having different energies from the beam orbit at a plurality of positions in the radial direction of the annular coil, but the energy that circulates on the inner circumference side of the annular coil is low.
  • a large electric field or magnetic field is required locally in the beam detachment apparatus.
  • a feature of the present invention that achieves the above-described object is a beam extraction method in which ions are accelerated by a high-frequency electric field of a circular accelerator and extracted as a beam to the outside.
  • the ions are determined for each ion energy in the circular accelerator.
  • the beam being circulated is kicked by a beam detaching device and placed on the orbit on the take-out path.
  • the beam is circulated a plurality of times until it takes the extraction path.
  • each ion beam having different energy can be efficiently emitted from the accelerator.
  • the inventors have made various studies in order to realize an accelerator that can continuously extract an ion beam like a cyclotron and can extract an ion beam with different energy like a synchrotron.
  • the inventors first focused on widening the mutual spacing of the beam orbits of the ion beam that circulates in the vacuum vessel of the cyclotron (the spacing between the beam orbits in the radial direction of the vacuum vessel). Increasing the interval between the beam orbits, that is, increasing the interval between the beam orbits (turn separation) increases the diameter of the vacuum vessel and enlarges the cyclotron. This goes against the downsizing of the accelerator.
  • concentric beam orbits are drawn in a vacuum vessel, and it is difficult to ensure high-energy turn separation, so it is difficult to efficiently emit ion beams with different energies. there were.
  • the cyclotron there is an approximately circular beam passage region, and an ion source is installed so that ions are incident near the center of this region.
  • the inventors move the incident point existing at the center of the beam passing region in the cyclotron to the beam extraction port side formed in the beam passing region, so that the ions from the ion source are not the center of the beam passing region but the beam. It was considered to enter the vacuum vessel at a position shifted to the take-out port side.
  • the distance between the beam orbits formed in the vacuum vessel is close between the ion incident position where the ions are incident from the ion source and the beam extraction port, which is 180 ° opposite to the beam extraction port in the vacuum vessel.
  • the distance between the beam orbits formed in the vacuum vessel can be widened, contrary to the position between the ion incident position and the beam extraction port.
  • the inventors have created a new accelerator capable of efficiently emitting each ion beam having different energy by applying such a concept of the beam orbit.
  • the accelerator 1 of this embodiment is a variable energy continuous wave accelerator capable of continuously outputting a beam with variable energy.
  • the accelerator 1 is a circular accelerator that accelerates a charged particle beam that circulates in a constant magnetic field with a constant frequency (isochronous) by a high-frequency electric field.
  • the appearance is shown in FIG.
  • the accelerator 1 forms an outer shell by a magnet 11 that can be divided into upper and lower portions, and the inside is evacuated.
  • the magnet 11 has a plurality of through-holes.
  • the extraction beam through-hole 111 for extracting the accelerated beam, the extraction openings 112 and 113 for extracting the internal coil to the outside, and the high-frequency power input through-hole 114 are the upper and lower magnetic poles. It is provided on the connection surface.
  • An ion source 12 is installed above the magnet 11, and a beam enters the accelerator 1 through the beam entrance through hole 115.
  • a cylindrical space 20 formed by a cylindrical inner wall, and an annular coil 13 is installed along the inner wall.
  • an annular coil 13 is installed along the inner wall.
  • the magnet 11 is magnetized, and a magnetic field is excited in the magnet 11 with a predetermined distribution.
  • Magnetic poles 121 to 124 are installed inside the coil 13, and a cylindrical return yoke 14 is provided outside the coil 13.
  • the beam circulates in the internal space 20 and accelerates.
  • the energy of the extraction beam is a minimum of 70 MeV to a maximum of 235 MeV, and the circular frequency of the beam is 19.82 MHz.
  • the magnetic poles 121 to 124 form four sets of irregularities along the beam trajectory, and the magnetic field acting on the beam is a low magnetic field in the concave portion and a high magnetic field in the convex portion. In this way, the strength of the magnetic field along the beam trajectory is added, and the average value of the magnetic field along the trajectory is made proportional to the relativistic ⁇ factor of the beam, while the orbiting time of the orbiting beam is made constant regardless of energy.
  • the betatron oscillation stably occurs in the beam orbital plane and in the direction perpendicular to the orbital plane.
  • the magnetic pole recess is provided with high-frequency cavities 31 and 32 for exciting a high-frequency electric field, an extraction septum electromagnet 40, and a coil 50 for generating a kicker magnetic field.
  • the kicker magnetic field adopts a massless septum method that applies a magnetic field only to a specific position as will be described later, and a current is passed through a coil installed symmetrically in a direction perpendicular to the trajectory plane with respect to the beam.
  • the beam is incident on the accelerator 1 in the form of low energy ions from the incident point 120.
  • the incident beam is accelerated every time it passes through the electric field gap by the high frequency electric field excited by the high frequency cavity.
  • the accelerator 1 determines the beam trajectory so that the beam trajectory center moves in one direction on the same plane according to the acceleration of the beam. Accordingly, the magnetic pole shape and the coil arrangement are mirror-symmetric with respect to the center plane so that the in-plane component of the magnetic field at the center plane is zero.
  • the magnetic poles 121 and 124 and 122 and 123 have symmetrical shapes.
  • Each magnetic pole is provided with a trim coil for fine adjustment of the magnetic field, and the trim coil current is adjusted before operation so as to ensure isochronism and stability of betatron oscillation.
  • the accelerator 1 has a control device 117, and the control device 117 accelerates the ion source 12, the coil 13, the high-frequency cavities 31 and 32, the extraction septum electromagnet 40, the kicker magnetic field generation coil 50, etc. , Control to exit from the accelerator.
  • the trajectory configuration which is a feature of this accelerator, will be described.
  • the trajectory of each energy is shown in FIG.
  • the trajectory of 50 energy types is shown by a solid line from the maximum energy of 235 MeV every magnetic rigidity of 0.04 Tm.
  • the dotted line is a line connecting the same circular phase of each orbit and is called an isochronous line. Isochronous lines are plotted for each orbital phase ⁇ / 18 from the aggregation region.
  • the acceleration gap is set along the isochronous line. In the low energy region below 50 MeV, the trajectory is centered around the incident point of the ion like the crafted tron.
  • the tracks are in a positional relationship apart from each other.
  • the points where the orbits are gathered densely will be referred to as an aggregation area, and the discrete areas will be referred to as an orbital discrete area.
  • the center position or the center of gravity position of the substantially circular orbit determined for each ion energy is in a different position along a straight line toward one direction in the orbital plane every time the energy changes.
  • the substantially circular orbit for each energy is formed so as to be eccentric in a certain direction as the energy increases.
  • the beam spreads over a wide region in the center plane according to the energy.
  • the beam of energy corresponding to the excitation position receives a kick.
  • the beam shifted from the predetermined equilibrium trajectory by this kick is incident on a septum electromagnet installed at an aggregation point downstream of the half circumference.
  • the septum magnet provides the beam with the deflection necessary to place the extracted beam on a defined design trajectory on the extraction path 140. Specifically, a magnetic field in a direction that cancels the main electromagnet magnetic field is excited, and the beam is guided to the extraction path 140.
  • the accelerator 1 of the present embodiment has a magnetic field distribution in which the minimum and maximum magnetic fields appear four times per revolution along the beam orbit.
  • FIG. 4 shows the magnetic field distribution along the trajectory.
  • FIG. 4 shows the magnetic field distribution along the trajectories of energy 235 MeV, 200 MeV, 150 MeV, 70 MeV, and 7.5 MeV, the horizontal axis is 0 in the trajectory aggregation region, and the trajectory direction distance with the trajectory discrete region 1 in the half circumference downstream, The vertical axis is the magnetic field.
  • FIG. 5 shows the magnetic field distribution on the center plane as an isomagnetic field diagram.
  • the maximum magnetic field of 2.2T and the minimum magnetic field of 0.86T are represented by isomagnetic lines in 32 steps.
  • the circles shown by broken lines in FIGS. 3, 2, and 5 are circles having a radius of 1494 mm, and the trajectory of all energy is included in the circle.
  • the evaluation result of the betatron frequency (tune) around the orbit is shown in FIG.
  • the tune was calculated based on the magnetic field gradient obtained from the magnetic field of the orbit and the energy of the front and back.
  • the tune in the orbital plane is almost 1, which increases with acceleration.
  • the tune in the direction perpendicular to the orbital plane is almost zero at low energy, and exists in the range of 0 to less than 0.5 in the entire energy region.
  • the massless septum 50 has a plurality of current paths formed of copper wires arranged in a direction substantially parallel to the beam trajectory.
  • the magnetic field on the right side (outer in the radial direction) as shown in FIG. 7 can be increased or decreased.
  • the magnetic field application region can be localized, a magnetic field can be applied to a beam having a specific energy, the beam can be shifted from a predetermined design trajectory, and the beam can be introduced into the extraction septum electromagnet.
  • the number of laps in which the beam circulates in the accelerator from when the beam is kicked by the massless septum 50 to the extraction septum electromagnet 40 differs depending on each energy. For example, when a 235 MeV beam is taken out, the beam goes around the accelerator half way from kicking the beam with a massless septum to reaching the septum electromagnet. On the other hand, the 70 MeV beam enters the septum electromagnet 40 after the beam has made the accelerator 1 10.5 rounds.
  • the necessary kick amount in the massless septum that is, the magnetic field generated by the massless septum can be lowered.
  • the number of laps is increased as the energy is lower, the local magnetic field generation performance required for the massless septum as a whole can be kept low, and there are also advantages in downsizing and ease of manufacture.
  • FIG. 8 shows the evaluation results of the magnetic field to be excited by the massless septum 50 in the case where the massless septum 50 circulates a plurality of times from the kick to the removal by the massless septum 50 according to the above principle.
  • FIG. 8 plots the required amount of massless septum magnetic field when the massless septum 50 is taken out from the kick a plurality of times.
  • a dotted line indicates a necessary excitation amount in the case of taking out from the massless septum 50 to the taking-out septum electromagnet in a half circle. From this result, when the massless septum 50 used in the present embodiment is taken out from the kick a plurality of times, the required amount of excitation can be reduced to 0.05 T or less.
  • the two iron cores that are installed to face each other and form a magnetic field therebetween, the electrode that accelerates the ion beam, and the beam emission that extracts the ion beam to the outside
  • a beam detachment device for detaching the ion beam from the beam orbit at a plurality of positions in the radial direction of the annular coil.
  • a plurality of annular beam circular orbits around which ion beams of different energies each circulate formed by a plurality of magnetic poles formed on each of the two iron cores are focused at the entrance of the beam extraction path. Since a plurality of beam orbits are focused at the entrance of the beam exit path, each ion beam having a different energy separated from each beam orbit is easily incident on the entrance of the beam exit path. An ion beam can be emitted efficiently.
  • the beam detachment device can detach ion beams having different energies from the beam orbit at a plurality of positions in the radial direction of the annular coil, and can efficiently emit each ion beam having different energies.
  • This beam detachment device gives a kick to the beam by a magnetic field. At this time, the kick with respect to the beam by the beam detaching device is applied over a plurality of turns up to the beam emission path, so that the beam can be efficiently extracted.
  • the massless septum is used as the orbit separation means for taking out.
  • the force source may be changed to an electric field, and the kick direction is also vertical. You may change the direction.
  • excitation according to a predetermined magnetic field distribution is realized by the magnetic pole shape and the trim coil current, but magnetic field excitation may be realized by either one.

Abstract

Provided is an accelerator capable of continuous and energy-variable beam delivery with highly efficient beam usage. In prior art cyclotrons, it had not been possible to change the energy of an extracted beam, and continuous delivery of a beam had been difficult with synchrotrons. The invention applies a beam extraction method of accelerating ions circling in an isochronous magnetic field by a high-frequency electric field and extracting the result as a beam to the exterior, wherein the accelerator is such that the center positions of each of the orbits defined for each energy of the ions are disposed in a straight line in the orbit plane, and in the process in which the beam is kicked by a beam separation device to be placed on an orbit laying on an extraction route, the beam is caused to circle a plurality of times in the accelerator between the kicking and the placement on the extraction route.

Description

ビーム取り出し方法およびそれを用いた円形加速器Beam extraction method and circular accelerator using the same
本発明は陽子または炭素イオン等の重イオンを加速する加速器、特に加速器からのビーム取り出し方法に関する。 The present invention relates to an accelerator for accelerating heavy ions such as protons or carbon ions, and more particularly to a method for extracting a beam from the accelerator.
 粒子線治療や物理実験などで高エネルギーの荷電粒子、特に原子核ビームを使用する際はその発生に加速器が用いられる。核子当たりの運動エネルギーが200MeV前後のビームを得る加速器には特許文献1や特許文献2に記載のサイクロトロンや特許文献3に記載のシンクロトロンが挙げられる。サイクロトロンの特徴は静磁場中を周回するビームを高周波電場で加速する点であり、加速されるにつれてビームは外側の軌道に移動し、最高エネルギーまで到達した後に取り出される。そのため基本的には取り出すビームのエネルギーは固定される。シンクロトロンはビームを偏向する電磁石の磁場と加速する高周波電場の周波数を時間的に変化させることでビームは一定の軌道を周回する。そのため、設計上の最大エネルギーに到達する前にビームを取り出すことも可能であり、取り出しエネルギーが制御可能である。また、特許文献4にも取出しエネルギーを制御可能な加速器について記載されている。 Accelerators are used to generate high-energy charged particles, especially nuclear beams, in particle beam therapy and physical experiments. Examples of the accelerator that obtains a beam having a kinetic energy per nucleon of around 200 MeV include the cyclotron described in Patent Document 1 and Patent Document 2, and the synchrotron described in Patent Document 3. A feature of the cyclotron is that a beam circulating in a static magnetic field is accelerated by a high-frequency electric field. As the beam is accelerated, the beam moves to an outer orbit and is extracted after reaching the maximum energy. Therefore, basically, the energy of the extracted beam is fixed. The synchrotron changes the frequency of the magnetic field of the electromagnet that deflects the beam and the frequency of the high-frequency electric field that accelerates the beam, so that the beam goes around a fixed orbit. Therefore, it is possible to extract the beam before reaching the design maximum energy, and the extraction energy can be controlled. Patent Document 4 also describes an accelerator capable of controlling the extraction energy.
特開2014-160613JP 2014-160613 A 特開2014-020800JP 2014-020800 A 特開2014-186939JP 2014-186939 A 特開2016-507949JP2016-507949A
 シンクロトロンを用いた粒子線照射装置は、シンクロトロンにおいてエネルギーが異なる複数のイオンビームを生成することができ、シンクロトロンから出射されるイオンビームのエネルギーを変えることができる。しかしながら、複数の偏向電磁石及び複数の四極電磁石が必要になるため、シンクロトロンは、ある程度以上の小型化が不可能である。また、シンクロトロンは、イオンビームの取り出しがパルス的になり、イオンビームの取り出し量が少なくなる。 A particle beam irradiation apparatus using a synchrotron can generate a plurality of ion beams having different energies in the synchrotron, and can change the energy of the ion beam emitted from the synchrotron. However, since a plurality of deflecting electromagnets and a plurality of quadrupole electromagnets are required, the synchrotron cannot be downsized to some extent. Further, in the synchrotron, the extraction of the ion beam becomes like a pulse, and the extraction amount of the ion beam is reduced.
 これに対して、シンクロトロンよりも小型化できるサイクロトロンを用いた粒子線照射装置は、イオンビームを連続的に取り出すことができ、イオンビームの取り出し量が多い。しかしながら、サイクロトロンにおいて生成されるイオンビームのエネルギーは一定であり、最大エネルギーのイオン日無寄りのエネルギーが低いイオンビームの取り出しは不可能である。このため、患部の或る一つの層にイオンビームを照射する場合のように、低いエネルギーのイオンビームが必要なときには、イオンビームがその層に到達するように、ビーム輸送系に設けたデグレーダによりイオンビームのエネルギーを調節する必要がある。イオンビームのエネルギー調節にデグレーダを使用すると、デグレーダによるイオンビームのビームサイズの増加、及びデグレーダの金属板を透過するイオン数の減少などの問題が生じる。 On the other hand, a particle beam irradiation apparatus using a cyclotron that can be made smaller than a synchrotron can continuously extract an ion beam and has a large amount of ion beam extraction. However, the energy of the ion beam generated in the cyclotron is constant, and it is impossible to extract an ion beam having a low maximum energy energy. For this reason, when a low-energy ion beam is required, such as when irradiating an ion beam to a certain layer of the affected area, a degrader provided in the beam transport system is used so that the ion beam reaches the layer. It is necessary to adjust the energy of the ion beam. When the degrader is used for adjusting the energy of the ion beam, problems such as an increase in the beam size of the ion beam due to the degrader and a decrease in the number of ions transmitted through the metal plate of the degrader occur.
 このため、異なるエネルギーを有するイオンビームの取出しを連続に実現でき、このイオンビームの取出し効率の向上できる陽子線治療装置が望まれている。 For this reason, there is a demand for a proton therapy apparatus that can continuously extract ion beams having different energies and improve the extraction efficiency of the ion beams.
 特許文献4に記載の加速器においては、ビーム離脱装置が環状コイルの半径方向の複数の位置で、エネルギーが異なるイオンビームをビーム周回軌道から離脱させるが、環状コイル内周側を周回するエネルギーの低いイオンビームを取出し軌道に乗せるには、ビーム離脱装置において局所的に大きな電場若しくは磁場が必要となる。
In the accelerator described in Patent Document 4, the beam detaching device detaches ion beams having different energies from the beam orbit at a plurality of positions in the radial direction of the annular coil, but the energy that circulates on the inner circumference side of the annular coil is low. In order to take out the ion beam and put it on the orbit, a large electric field or magnetic field is required locally in the beam detachment apparatus.
 上記した目的を達成する本発明の特徴は、イオンを円形加速器の高周波電場によって加速し、外部にビームとして取り出すビーム取り出し方法であって、前記イオンは前記円形加速器において、前記イオンのエネルギー毎に決まる複数の軌道の中心位置が軌道面内のある方向の異なる位置に配置されるように周回し、前記周回中のビームをビーム離脱装置によってキックし、取り出し経路上の軌道に乗せる過程において、前記キックから取り出し経路に乗るまでに複数回ビームを周回させることを特徴とする。 A feature of the present invention that achieves the above-described object is a beam extraction method in which ions are accelerated by a high-frequency electric field of a circular accelerator and extracted as a beam to the outside. The ions are determined for each ion energy in the circular accelerator. In a process in which the center positions of a plurality of orbits are circulated so that they are arranged at different positions in a certain direction in the orbital plane, the beam being circulated is kicked by a beam detaching device and placed on the orbit on the take-out path. The beam is circulated a plurality of times until it takes the extraction path.
 本発明によれば、加速器から、エネルギーが異なる各イオンビームを効率良く出射することができる。 According to the present invention, each ion beam having different energy can be efficiently emitted from the accelerator.
本実施例の加速器の全体概形である。It is the whole accelerator shape of a present Example. 本実施例の加速器の内部構造である。It is an internal structure of the accelerator of a present Example. 本実施例の加速器のマスレスセプタムが励磁する磁場分布である。It is magnetic field distribution which the massless septum of the accelerator of a present Example excites. 本実施例の加速器のビーム軌道に沿った磁場分布である。It is magnetic field distribution along the beam orbit of the accelerator of a present Example. 本実施例の加速器の設計軌道である。It is a design orbit of the accelerator of the present embodiment. 本実施例の加速器の軌道面内の磁場分布である。It is magnetic field distribution in the track surface of the accelerator of a present Example. 本実施例の加速器のチューンのビームエネルギーの依存性を示す図である。It is a figure which shows the dependence of the beam energy of the accelerator of the present Example tune. 本実施例の加速器のマスレスセプタムが励磁すべき磁場強度を示す図である。It is a figure which shows the magnetic field intensity which the massless septum of the accelerator of a present Example should excite.
 発明者らは、サイクロトロンのようにイオンビームを連続的に取り出すことができ、シンクロトロンのようにエネルギーが異なるイオンビームを取り出すことができる加速器を実現するために種々の検討を行った。 The inventors have made various studies in order to realize an accelerator that can continuously extract an ion beam like a cyclotron and can extract an ion beam with different energy like a synchrotron.
 発明者らがまず着目したのは、サイクロトロンの真空容器内を周回するイオンビームのビーム周回軌道の相互の間隔(真空容器の半径方向におけるビーム周回軌道相互の間隔)を広くすることである。このビーム周回軌道の間隔を広くする、すなわち、ビーム周回軌道相互間の間隔(ターンセパレーション)を大きくすることは、真空容器の直径が大きくなり、サイクロトロンが大型化する。これでは、加速器の小型化に反することになる。また、従来のサイクロトロンでは、真空容器内で同心円状のビーム周回軌道を描いており、高エネルギーでのターンセパレーションの確保が困難なため、エネルギーが異なる各イオンビームを効率良く出射することが困難であった。 The inventors first focused on widening the mutual spacing of the beam orbits of the ion beam that circulates in the vacuum vessel of the cyclotron (the spacing between the beam orbits in the radial direction of the vacuum vessel). Increasing the interval between the beam orbits, that is, increasing the interval between the beam orbits (turn separation) increases the diameter of the vacuum vessel and enlarges the cyclotron. This goes against the downsizing of the accelerator. In addition, in conventional cyclotrons, concentric beam orbits are drawn in a vacuum vessel, and it is difficult to ensure high-energy turn separation, so it is difficult to efficiently emit ion beams with different energies. there were.
 サイクロトロンでは、概円形のビーム通過領域が存在し、イオン源がこの領域の中心近くにイオンを入射するように設置されている。発明者らは、サイクロトロンにおいてビーム通過領域の中心に存在する入射点を、ビーム通過領域に形成されるビーム取り出し口側に移動させ、イオン源からのイオンを、ビーム通過領域の中心ではなく、ビーム取り出し口側にずれた位置で真空容器に入射させることを考えた。結果、イオン源からイオンが入射されるイオン入射位置とビーム取り出し口の間で真空容器内に形成されるビーム周回軌道相互の間隔が密になり、真空容器におけるビーム取り出し口と180°反対側の位置とそのイオン入射位置との間では、イオン入射位置とビーム取り出し口の間とは逆に真空容器内に形成されるビーム周回軌道相互後の間隔を広くすることができた。 In the cyclotron, there is an approximately circular beam passage region, and an ion source is installed so that ions are incident near the center of this region. The inventors move the incident point existing at the center of the beam passing region in the cyclotron to the beam extraction port side formed in the beam passing region, so that the ions from the ion source are not the center of the beam passing region but the beam. It was considered to enter the vacuum vessel at a position shifted to the take-out port side. As a result, the distance between the beam orbits formed in the vacuum vessel is close between the ion incident position where the ions are incident from the ion source and the beam extraction port, which is 180 ° opposite to the beam extraction port in the vacuum vessel. Between the position and the ion incident position, the distance between the beam orbits formed in the vacuum vessel can be widened, contrary to the position between the ion incident position and the beam extraction port.
 発明者らは、このようなビーム周回軌道の考え方を適用することによって、エネルギーが異なる各イオンビームを効率良く出射することができる新たな加速器を創成した。 The inventors have created a new accelerator capable of efficiently emitting each ion beam having different energy by applying such a concept of the beam orbit.
 以上に述べた発明者らが新たに創成した加速器を適用した本発明の各実施例を、図面を用いて以下に説明する。 Each embodiment of the present invention to which an accelerator newly created by the inventors described above is applied will be described below with reference to the drawings.
 本発明の好適な一実施例である実施例1の加速器を図1~図8を用いて以下に説明する。本実施例の加速器1はエネルギー可変かつ連続的にビーム出力可能なエネルギー可変連続波加速器である。この加速器1は時間的に一定の磁場中を一定の周波数(等時性)で周回する荷電粒子ビームを高周波電場によって加速する円形加速器である。その外観を図1に示す。加速器1は上下に分割可能な磁石11によってその外殻を形成し、内部は真空引きされている。磁石11には貫通口が複数あり、そのうち加速されたビームを取り出す取り出しビーム用貫通口111、内部のコイルを外部に引き出すための引き出し口112・113、高周波電力入力用貫通口114が上下磁極の接続面上に設けられている。また磁石11の上部にはイオン源12が設置されており、ビーム入射用貫通口115を通してビームが加速器1内部に入射される。 The accelerator according to the first embodiment, which is a preferred embodiment of the present invention, will be described below with reference to FIGS. The accelerator 1 of this embodiment is a variable energy continuous wave accelerator capable of continuously outputting a beam with variable energy. The accelerator 1 is a circular accelerator that accelerates a charged particle beam that circulates in a constant magnetic field with a constant frequency (isochronous) by a high-frequency electric field. The appearance is shown in FIG. The accelerator 1 forms an outer shell by a magnet 11 that can be divided into upper and lower portions, and the inside is evacuated. The magnet 11 has a plurality of through-holes. Among them, the extraction beam through-hole 111 for extracting the accelerated beam, the extraction openings 112 and 113 for extracting the internal coil to the outside, and the high-frequency power input through-hole 114 are the upper and lower magnetic poles. It is provided on the connection surface. An ion source 12 is installed above the magnet 11, and a beam enters the accelerator 1 through the beam entrance through hole 115.
 次に、加速器の内部構造について図2を用いて説明する。磁石11の内部は円筒状内壁で形成される円筒状の空間20があり、円環状のコイル13が内壁に沿って設置されている。コイル13に電流を流すことによって磁石11が磁化し、磁石11の内部に所定の分布で磁場を励起する。コイル13の内側には磁極121~124が設置されており、コイル13の外側は円筒状のリターンヨーク14を備える。内部空間20中をビームが周回し、加速する。取り出しビームのエネルギーは最小70MeVから最大235MeVであり、ビームの周回周波数は19.82MHzである。磁極121~124によってビームの軌道に沿って4組の凹凸が形成され、ビームに作用する磁場は凹部では低磁場、凸部では高磁場となる。このようにビーム軌道に沿って磁場の強弱をつけ、さらに軌道に沿った磁場の平均値をビームの相対論的γファクターに比例させることで、周回ビームの周回時間をエネルギーに依らず一定としつつ、ビームの軌道面内と軌道面に対して垂直な方向に対して安定にベータトロン振動する。磁極凹部には高周波電場を励起する高周波空胴31・32、取り出し用セプタム電磁石40、キッカ磁場発生用のコイル50が備えられている。キッカ磁場は後に説明するように特定の位置にのみ磁場を印加するマスレスセプタムの方式を採用し、ビームに対して軌道面に対し垂直な方向に対称に設置されたコイルに電流を流すことで磁場を励起する。ビームは入射点120から低エネルギーのイオンの状態で加速器1に入射される。入射されたビームは高周波空胴によって励起される高周波電場によって電場ギャップを通過する毎に加速される。この加速器1はビームの加速に従ってビームの軌道中心が同一面内上で一方向に移動するようにビーム軌道を定めている。従って、中心面において磁場は面内成分が0となるように、磁極形状とコイル配置は中心面に対して鏡面対称としている。また、磁場分布は中心面内の軸AA’に対して左右対称の分布とした結果、磁極121と124、122と123がそれぞれ左右対称の形状となっている。各磁極には磁場の微調整用のトリムコイルが設けられており、等時性とベータトロン振動の安定を確保するように運転前にトリムコイル電流が調整されている。 Next, the internal structure of the accelerator will be described with reference to FIG. Inside the magnet 11 is a cylindrical space 20 formed by a cylindrical inner wall, and an annular coil 13 is installed along the inner wall. By passing a current through the coil 13, the magnet 11 is magnetized, and a magnetic field is excited in the magnet 11 with a predetermined distribution. Magnetic poles 121 to 124 are installed inside the coil 13, and a cylindrical return yoke 14 is provided outside the coil 13. The beam circulates in the internal space 20 and accelerates. The energy of the extraction beam is a minimum of 70 MeV to a maximum of 235 MeV, and the circular frequency of the beam is 19.82 MHz. The magnetic poles 121 to 124 form four sets of irregularities along the beam trajectory, and the magnetic field acting on the beam is a low magnetic field in the concave portion and a high magnetic field in the convex portion. In this way, the strength of the magnetic field along the beam trajectory is added, and the average value of the magnetic field along the trajectory is made proportional to the relativistic γ factor of the beam, while the orbiting time of the orbiting beam is made constant regardless of energy. The betatron oscillation stably occurs in the beam orbital plane and in the direction perpendicular to the orbital plane. The magnetic pole recess is provided with high-frequency cavities 31 and 32 for exciting a high-frequency electric field, an extraction septum electromagnet 40, and a coil 50 for generating a kicker magnetic field. The kicker magnetic field adopts a massless septum method that applies a magnetic field only to a specific position as will be described later, and a current is passed through a coil installed symmetrically in a direction perpendicular to the trajectory plane with respect to the beam. Excites the magnetic field. The beam is incident on the accelerator 1 in the form of low energy ions from the incident point 120. The incident beam is accelerated every time it passes through the electric field gap by the high frequency electric field excited by the high frequency cavity. The accelerator 1 determines the beam trajectory so that the beam trajectory center moves in one direction on the same plane according to the acceleration of the beam. Accordingly, the magnetic pole shape and the coil arrangement are mirror-symmetric with respect to the center plane so that the in-plane component of the magnetic field at the center plane is zero. Further, as a result of the magnetic field distribution being symmetrical with respect to the axis AA 'in the center plane, the magnetic poles 121 and 124 and 122 and 123 have symmetrical shapes. Each magnetic pole is provided with a trim coil for fine adjustment of the magnetic field, and the trim coil current is adjusted before operation so as to ensure isochronism and stability of betatron oscillation.
 加速器1は制御装置117を有し、制御装置117はイオン源12、コイル13、高周波空洞31・32、取出し用セプタム電磁石40、キッカ磁場発生用のコイル50等を、イオンを入射し、加速し、加速器から出射するように制御する。 The accelerator 1 has a control device 117, and the control device 117 accelerates the ion source 12, the coil 13, the high-frequency cavities 31 and 32, the extraction septum electromagnet 40, the kicker magnetic field generation coil 50, etc. , Control to exit from the accelerator.
 次に、本加速器の特徴である軌道の構成について述べる。各エネルギーの軌道は図3に示す。周回軌道は最大エネルギー235MeVから磁気剛性率0.04Tmおきに50エネルギー種の軌道を実線で示している。点線は各軌道の同一の周回位相を結んだ線であり、等時性線と呼ぶ。等時性線は集約領域から周回位相π/18ごとにプロットしている。加速ギャップは等時性線に沿って設置される。50MeV以下の低エネルギー領域では細工トロン同様にイオンの入射点付近を中心とする軌道をとなるが、50MeVよりも大きなエネルギーの軌道は取り出し用セプタム電磁石の入射点近くで密に集まっており、逆にマスレスセプタム50が設置されている凹部では各軌道が互いに離れた位置関係にある。この軌道が密に集まっている点を集約領域、離散した領域を軌道離散領域と呼ぶこととする。 Next, the trajectory configuration, which is a feature of this accelerator, will be described. The trajectory of each energy is shown in FIG. As for the orbit, the trajectory of 50 energy types is shown by a solid line from the maximum energy of 235 MeV every magnetic rigidity of 0.04 Tm. The dotted line is a line connecting the same circular phase of each orbit and is called an isochronous line. Isochronous lines are plotted for each orbital phase π / 18 from the aggregation region. The acceleration gap is set along the isochronous line. In the low energy region below 50 MeV, the trajectory is centered around the incident point of the ion like the crafted tron. In the recess in which the massless septum 50 is installed, the tracks are in a positional relationship apart from each other. The points where the orbits are gathered densely will be referred to as an aggregation area, and the discrete areas will be referred to as an orbital discrete area.
 イオンのエネルギー毎に決まる略円形軌道の中心位置若しくは重心位置は、エネルギーが変わるごとに軌道面内のある一方の方向に向かって直線状に沿って異なる位置にある。言い換えると、エネルギー毎の略円形軌道はエネルギーが上昇するに従いある方向に偏心するように形成されている。 The center position or the center of gravity position of the substantially circular orbit determined for each ion energy is in a different position along a straight line toward one direction in the orbital plane every time the energy changes. In other words, the substantially circular orbit for each energy is formed so as to be eccentric in a certain direction as the energy increases.
 軌道離散領域においては中心面内の広い領域にエネルギーに応じてビームが広がっており、マスレスセプタムによる磁場の励磁位置を適当に定めることで、その励磁位置に対応するエネルギーのビームがキックを受ける。このキックによって所定の平衡軌道からずらされたビームは半周下流の集約点に設置されたセプタム電磁石に入射される。セプタム電磁石は取り出すビームを取り出し経路140上の定められた設計軌道に乗せるのに必要な偏向をビームに対して与える。具体的には主電磁石磁場を打ち消す方向の磁場を励起し、取り出し経路140にビームを導いている。 In the orbital discrete region, the beam spreads over a wide region in the center plane according to the energy. By appropriately determining the excitation position of the magnetic field by the massless septum, the beam of energy corresponding to the excitation position receives a kick. . The beam shifted from the predetermined equilibrium trajectory by this kick is incident on a septum electromagnet installed at an aggregation point downstream of the half circumference. The septum magnet provides the beam with the deflection necessary to place the extracted beam on a defined design trajectory on the extraction path 140. Specifically, a magnetic field in a direction that cancels the main electromagnet magnetic field is excited, and the beam is guided to the extraction path 140.
 上記のような軌道構成と軌道周辺での安定なベータトロン振動を生じさせるために、本実施例の加速器1においてはビームの軌道に沿って磁場の極小と極大が一周当たり4回現れる磁場分布を採用している。図4に軌道に沿った磁場分布を示す。図4にはエネルギー235MeV、200MeV,150MeV、70MeV,7.5MeVの軌道に沿った磁場分布であり、横軸は軌道集約領域において0で、半周下流の軌道離散領域を1とした軌道方向距離、縦軸は磁場である。このようにエネルギーにたいして平均的な磁場を上げつつ、振幅を適切に定めることで本加速器のような偏心した軌道配置においても等時性かつベータトロン振動する磁場分布を実現できる。また、中心面上の磁場分布を等磁場線図として図5に示す。図5は最大磁場2.2T、最小磁場0.86Tの間を32段階に分けて等磁場線で表現している。図3・図2および図5の破線で示した円は半径1494mmの円でありこの内部に全エネルギーの軌道が内包されている。 In order to generate the above-described orbit configuration and stable betatron oscillation around the orbit, the accelerator 1 of the present embodiment has a magnetic field distribution in which the minimum and maximum magnetic fields appear four times per revolution along the beam orbit. Adopted. FIG. 4 shows the magnetic field distribution along the trajectory. FIG. 4 shows the magnetic field distribution along the trajectories of energy 235 MeV, 200 MeV, 150 MeV, 70 MeV, and 7.5 MeV, the horizontal axis is 0 in the trajectory aggregation region, and the trajectory direction distance with the trajectory discrete region 1 in the half circumference downstream, The vertical axis is the magnetic field. In this way, by appropriately determining the amplitude while raising the average magnetic field with respect to energy, it is possible to realize a magnetic field distribution that is isochronous and oscillates in betatron even in an eccentric orbital arrangement like the present accelerator. FIG. 5 shows the magnetic field distribution on the center plane as an isomagnetic field diagram. In FIG. 5, the maximum magnetic field of 2.2T and the minimum magnetic field of 0.86T are represented by isomagnetic lines in 32 steps. The circles shown by broken lines in FIGS. 3, 2, and 5 are circles having a radius of 1494 mm, and the trajectory of all energy is included in the circle.
 以上の条件のもと、軌道周りのベータトロン振動数(チューン)の評価結果を図6に示す。軌道上の磁場と前後のエネルギーの磁場から得られる磁場勾配を元にチューンを計算した。低エネルギーにおいては軌道面内のチューンがほぼ1であり、加速とともにおおきくなっていく。また軌道面に垂直な方向のチューンは低エネルギーではほぼ0であり、全エネルギー領域で0以上0.5未満の範囲に存在する。 Under the above conditions, the evaluation result of the betatron frequency (tune) around the orbit is shown in FIG. The tune was calculated based on the magnetic field gradient obtained from the magnetic field of the orbit and the energy of the front and back. At low energy, the tune in the orbital plane is almost 1, which increases with acceleration. The tune in the direction perpendicular to the orbital plane is almost zero at low energy, and exists in the range of 0 to less than 0.5 in the entire energy region.
 マスレスセプタム50は図2に示すように銅線にて形成された複数の電流経路をビーム軌道に対してほぼ平行な方向に設置している。この複数の電流経路のうち特定の電流経路に対して電流を流すことで図7に示すようなビームの進行方向に対して右側(動径方向外側)の磁場を上げるもしくは下げることができる。これにより、磁場の印加領域を局在化し、特定のエネルギーのビームに磁場をかけ、所定の設計軌道からビームをずらし、取り出し用セプタム電磁石にビームを導入することができる。 As shown in FIG. 2, the massless septum 50 has a plurality of current paths formed of copper wires arranged in a direction substantially parallel to the beam trajectory. By supplying a current to a specific current path among the plurality of current paths, the magnetic field on the right side (outer in the radial direction) as shown in FIG. 7 can be increased or decreased. As a result, the magnetic field application region can be localized, a magnetic field can be applied to a beam having a specific energy, the beam can be shifted from a predetermined design trajectory, and the beam can be introduced into the extraction septum electromagnet.
 さて、本実施例の加速器1においては、ビームがマスレスセプタム50によってキックを受けてから、取り出し用セプタム電磁石40に至るまで加速器内を周回する周回数が各エネルギーにより互いに異なる。例えば235MeVのビームを取り出す場合、マスレスセプタムでビームをキックしてからセプタム電磁石に至るまでビームは加速器内を半周する。一方、70MeVのビームは場合の間にビームが加速器1を10.5周したのちセプタム電磁石40に入る。このように、ビームの取り出しに要するターン数をエネルギー毎に変えることでマスレスセプタムにおける必要なキック量、すなわちマスレスセプタムが発生する磁場を低くすることができる。また、周回数はエネルギーが低いほど多くすると、マスレスセプタム全体として求められる局所磁場発生性能を低く抑えられ、小型化、製作容易性のメリットもある。 Now, in the accelerator 1 of the present embodiment, the number of laps in which the beam circulates in the accelerator from when the beam is kicked by the massless septum 50 to the extraction septum electromagnet 40 differs depending on each energy. For example, when a 235 MeV beam is taken out, the beam goes around the accelerator half way from kicking the beam with a massless septum to reaching the septum electromagnet. On the other hand, the 70 MeV beam enters the septum electromagnet 40 after the beam has made the accelerator 1 10.5 rounds. Thus, by changing the number of turns required for beam extraction for each energy, the necessary kick amount in the massless septum, that is, the magnetic field generated by the massless septum can be lowered. Further, if the number of laps is increased as the energy is lower, the local magnetic field generation performance required for the massless septum as a whole can be kept low, and there are also advantages in downsizing and ease of manufacture.
 磁場を低減できる原理について説明する。低エネルギーでの軌道面内チューンは1に近いため、ある場所でキックを受けたのちに加速器内で半周すると、ベータトロン振動の位相もほぼ半周回る。よってキック位置から半周下流では位置のずれはほとんど生じない。しかし、チューンが1から微小(例えば0.02)ずれているため、周回数を重ねるに従って、半周下流の位置でもキックを起因とする位置のずれを大きくすることができる。本実施例の加速器では、取り出し用セプタム電磁石40の入り口に入射するために必要な軌道変位をマスレスセプタム50のキックによって生じさせている。以上の原理によってマスレスセプタム50によるキックから取り出しまで複数回周回する場合のマスレスセプタム50が励磁すべき磁場の評価結果を図8に示す。図8はマスレスセプタム50のキックから複数回周回して取り出す場合のマスレスセプタム磁場の必要量をプロットしている。比較のためマスレスセプタム50から取り出し用セプタム電磁石まで半周で取り出す場合の必要励磁量を点線で示している。本結果より、本実施例で用いるようなマスレスセプタム50のキックから複数回周回して取り出される場合、必要励磁量が0.05T以下に低減できる。一方、マスレスセプタムのキックから取り出し用セプタム電磁石まで半周で取り出す場合は最大で0.15Tほど必要となり、消費電力の面で複数回周回後に取り出す方が有利であることが分かる。 Explain the principle that can reduce the magnetic field. Since the in-plane tune at low energy is close to 1, when a half-turn is made in the accelerator after a kick is received at a certain location, the phase of the betatron oscillation also makes a half turn. Therefore, there is almost no displacement of the position half a round downstream from the kick position. However, since the tune is slightly deviated from 1 (for example, 0.02), as the number of laps is increased, the position shift caused by the kick can be increased even at the position downstream of the half circle. In the accelerator according to the present embodiment, the orbital displacement necessary to enter the entrance of the extraction septum electromagnet 40 is caused by the kick of the massless septum 50. FIG. 8 shows the evaluation results of the magnetic field to be excited by the massless septum 50 in the case where the massless septum 50 circulates a plurality of times from the kick to the removal by the massless septum 50 according to the above principle. FIG. 8 plots the required amount of massless septum magnetic field when the massless septum 50 is taken out from the kick a plurality of times. For comparison, a dotted line indicates a necessary excitation amount in the case of taking out from the massless septum 50 to the taking-out septum electromagnet in a half circle. From this result, when the massless septum 50 used in the present embodiment is taken out from the kick a plurality of times, the required amount of excitation can be reduced to 0.05 T or less. On the other hand, in the case of taking out from the massless septum kick to the taking-out septum electromagnet in a half turn, it takes about 0.15 T at maximum, and it can be seen that it is more advantageous to take out after a plurality of turns in terms of power consumption.
 以上により、本実施例の構成の加速器1に依れば、互いに対向して設置され、間に磁場を形成する2つの鉄心と、イオンビームを加速する電極と、イオンビームを外部に取り出すビーム出射経路とを有し、環状コイルの半径方向の複数の位置で、イオンビームをビーム周回軌道から離脱させるビーム離脱装置を備える。更に、2つの鉄心のそれぞれの鉄心に形成された複数の磁極によって形成される、異なるエネルギーのイオンビームがそれぞれ周回する環状の複数のビーム周回軌道が、ビーム出射経路の入口において集束している。複数のビーム周回軌道が、ビーム出射経路の入口において集束しているので、それぞれのビーム周回軌道から離脱されたエネルギーの異なる各イオンビームがビーム出射経路の入口に入射されやすくなり、エネルギーの異なる各イオンビームを効率良く出射することができる。 As described above, according to the accelerator 1 having the configuration of the present embodiment, the two iron cores that are installed to face each other and form a magnetic field therebetween, the electrode that accelerates the ion beam, and the beam emission that extracts the ion beam to the outside And a beam detachment device for detaching the ion beam from the beam orbit at a plurality of positions in the radial direction of the annular coil. Further, a plurality of annular beam circular orbits around which ion beams of different energies each circulate formed by a plurality of magnetic poles formed on each of the two iron cores are focused at the entrance of the beam extraction path. Since a plurality of beam orbits are focused at the entrance of the beam exit path, each ion beam having a different energy separated from each beam orbit is easily incident on the entrance of the beam exit path. An ion beam can be emitted efficiently.
 ビーム離脱装置は環状コイルの半径方向の複数の位置で、エネルギーが異なるイオンビームをビーム周回軌道から離脱させることができ、エネルギーが異なる各イオンビームを効率良く出射することができる。このビーム離脱装置はビームに対して磁場によりキックを与える。この際、ビーム離脱装置によるビームに対するキックはビーム出射経路に至るまでの複数ターンに渡って付与されることで、効率よくビームを取り出すことができる。 The beam detachment device can detach ion beams having different energies from the beam orbit at a plurality of positions in the radial direction of the annular coil, and can efficiently emit each ion beam having different energies. This beam detachment device gives a kick to the beam by a magnetic field. At this time, the kick with respect to the beam by the beam detaching device is applied over a plurality of turns up to the beam emission path, so that the beam can be efficiently extracted.
 以上の構成により、広い範囲のエネルギーのビームを高効率で取り出すことが可能な加速器を提供できる。本実施例においては取り出しのための軌道離脱手段としてマスレスセプタムを用いたが、軌道の離脱に十分なキック量が得られれば力の発生源を電場に変えてもよく、キックの方向も垂直方向に変えてもよい。また、本実施例では磁極形状とトリムコイル電流によって所定の磁場分布に従った励磁を実現しているが、どちらか一方にて磁場の励磁を実現してもよい。
 
With the above configuration, it is possible to provide an accelerator capable of extracting a beam with a wide range of energy with high efficiency. In this embodiment, the massless septum is used as the orbit separation means for taking out. However, if a kick amount sufficient for the orbit separation is obtained, the force source may be changed to an electric field, and the kick direction is also vertical. You may change the direction. In the present embodiment, excitation according to a predetermined magnetic field distribution is realized by the magnetic pole shape and the trim coil current, but magnetic field excitation may be realized by either one.

1 加速器
11 磁石
12 イオン源
13 コイル
14 リターンヨーク
20 内部空間
31~32 高周波空胴
40 取り出し用セプタム電磁石
50 マスレスセプタム用コイル
111 取り出しビーム用貫通口
112~113 コイル接続用貫通口
114 高周波入力用貫通口
115 ビーム入射用貫通口
121~124 磁極凸部
130 入射点
140 ビーム取り出し経路
DESCRIPTION OF SYMBOLS 1 Accelerator 11 Magnet 12 Ion source 13 Coil 14 Return yoke 20 Internal space 31-32 High frequency cavity 40 Extraction septum electromagnet 50 Massless septum coil 111 Extraction beam through-hole 112-113 Coil connection through-hole 114 For high-frequency input Through-hole 115 Through-holes 121 to 124 for beam incidence Magnetic pole protrusion 130 Incident point 140 Beam extraction path

Claims (6)

  1.  イオンを円形加速器の高周波電場によって加速し、外部にビームとして取り出すビーム取り出し方法であって、
     前記イオンは前記円形加速器において、前記イオンのエネルギー毎に決まる複数の軌道の中心位置が軌道面内のある方向の異なる位置に配置されるように周回し、
     前記周回中のビームをビーム離脱装置によってキックし、取り出し経路上の軌道に乗せる過程において、前記キックから取り出し経路に乗るまでに複数回ビームを周回させるビーム取り出し方法。
    A beam extraction method in which ions are accelerated by a high-frequency electric field of a circular accelerator and extracted outside as a beam,
    In the circular accelerator, the ions circulate so that the center positions of a plurality of orbits determined for each ion energy are arranged at different positions in a certain direction in the orbital plane,
    A beam extraction method in which the beam being circulated is kicked by a beam detaching device and placed on a trajectory on the extraction path, and the beam is circulated a plurality of times from the kick to the extraction path.
  2.  請求項1に記載のビーム取り出し方法において、前記キックから取り出し経路に乗るまでのビーム周回数が、取り出すビームのエネルギーによって異なることを特徴とするビーム取り出し方法。 2. The beam extraction method according to claim 1, wherein the number of beam circumferences from the kick to the extraction path varies depending on the energy of the extracted beam.
  3.  請求項1に記載のビーム取り出し方法において、前記ビーム離脱装置は磁場を印加することによりビームを軌道から離脱させ、前記印加する磁場の強度若しくは方向のいずれか少なくとも一方が取り出すビームのエネルギーによって異なることを特徴とするビーム取り出し方法。 2. The beam extraction method according to claim 1, wherein the beam detachment device detaches the beam from the orbit by applying a magnetic field, and at least one of the strength and direction of the applied magnetic field varies depending on the energy of the extracted beam. A beam extraction method characterized by the above.
  4.  請求項1に記載の取り出し方法を用いて少なくとも2つの異なるエネルギーのビームを取り出すことを特徴とする加速器 An accelerator characterized by extracting at least two beams having different energies using the extracting method according to claim 1.
  5.  互いに対向して設置され、間に磁場を形成する2つの鉄心と、
     イオンビームを加速する電極と、
     前記イオンビームを外部に取り出すビーム取出し経路と、
     前記イオンビーム軌道面の半径方向の複数の位置で、イオンビームをビーム周回軌道から離脱させるビーム離脱装置と、
     前記ビーム離脱装置を制御する制御装置とを備え、
     前記制御装置は、前記イオンビームを前記周回軌道から離脱させてから前記ビーム取り出し経路に入るまで複数回周回するように、前記イオンビーム軌道面半径方向の所定の位置で励磁させることを特徴とする加速器。
    Two iron cores installed opposite each other and forming a magnetic field between them,
    An electrode for accelerating the ion beam;
    A beam extraction path for extracting the ion beam to the outside;
    A beam detachment device for detaching the ion beam from the beam orbit at a plurality of radial positions of the ion beam orbital surface;
    A control device for controlling the beam detachment device,
    The control device excites the ion beam at a predetermined position in a radial direction of the ion beam trajectory surface so that the ion beam circulates a plurality of times until the ion beam is separated from the circular trajectory and enters the beam extraction path. Accelerator.
  6.  請求項5に記載の加速器であって、
     前記制御装置は、前記ビーム離脱装置が内周側で軌道を離脱させた後ビームが周回する回数より、外周側で軌道を離脱させた後ビームが周回する回数が少なくなるように、前記ビーム離脱装置を制御することを特徴とする加速器。
    The accelerator according to claim 5, wherein
    The control device may be configured to reduce the number of times the beam circulates after the beam is released after the orbit is released from the outer periphery than the number of times the beam circulates after the beam is released from the inner periphery. An accelerator characterized by controlling the device.
PCT/JP2016/077070 2016-09-14 2016-09-14 Beam extraction method and circular accelerator using same WO2018051425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077070 WO2018051425A1 (en) 2016-09-14 2016-09-14 Beam extraction method and circular accelerator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077070 WO2018051425A1 (en) 2016-09-14 2016-09-14 Beam extraction method and circular accelerator using same

Publications (1)

Publication Number Publication Date
WO2018051425A1 true WO2018051425A1 (en) 2018-03-22

Family

ID=61619930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077070 WO2018051425A1 (en) 2016-09-14 2016-09-14 Beam extraction method and circular accelerator using same

Country Status (1)

Country Link
WO (1) WO2018051425A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289100A (en) * 1988-05-17 1989-11-21 Nissin High Voltage Co Ltd Cyclotron
JP2010287419A (en) * 2009-06-11 2010-12-24 Sumitomo Heavy Ind Ltd Particle accelerating system
JP2014053194A (en) * 2012-09-07 2014-03-20 Sumitomo Heavy Ind Ltd Synchrotron
WO2016092621A1 (en) * 2014-12-08 2016-06-16 株式会社日立製作所 Accelerator and particle beam irradiation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289100A (en) * 1988-05-17 1989-11-21 Nissin High Voltage Co Ltd Cyclotron
JP2010287419A (en) * 2009-06-11 2010-12-24 Sumitomo Heavy Ind Ltd Particle accelerating system
JP2014053194A (en) * 2012-09-07 2014-03-20 Sumitomo Heavy Ind Ltd Synchrotron
WO2016092621A1 (en) * 2014-12-08 2016-06-16 株式会社日立製作所 Accelerator and particle beam irradiation device

Similar Documents

Publication Publication Date Title
JP6714146B2 (en) Circular accelerator
US8084965B2 (en) All-Ion accelerator and control method of the same
US10624201B2 (en) Circular accelerator
EP3024306B1 (en) High current cyclotron
JP7240262B2 (en) Accelerator, particle beam therapy system and ion extraction method
US11097126B2 (en) Accelerator and particle therapy system
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
JP2017220333A (en) Accelerator and particle beam irradiation device
JP6899754B2 (en) Circular accelerator and particle beam therapy system
JP2019096404A (en) Circular accelerator and particle therapy system
WO2018051425A1 (en) Beam extraction method and circular accelerator using same
Seidel Injection and extraction in cyclotrons
JP7399127B2 (en) Accelerator and particle therapy systems
WO2018096648A1 (en) Accelerator and particle beam irradiation device
WO2018092483A1 (en) Accelerator, particle beam irradiation device, and method for extracting beam
JP2022026175A (en) Accelerator and particle beam therapy equipment
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
WO2023013458A1 (en) Circular accelerator and particle beam treatment system
JP4296001B2 (en) Circular accelerator
JP2019080738A (en) Particle ray treatment system
WO2023162640A1 (en) Accelerator and particle beam treatment system comprising accelerator
WO2017208774A1 (en) Accelerator and particle beam irradiation apparatus
WO2024079992A1 (en) Accelerator and particle beam therapy device
JP2021141062A (en) Synchrocyclotron for extracting beam having various energy
JP2024057808A (en) Accelerators and particle beam therapy equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP