WO2018050075A1 - 太阳能集热器 - Google Patents

太阳能集热器 Download PDF

Info

Publication number
WO2018050075A1
WO2018050075A1 PCT/CN2017/101646 CN2017101646W WO2018050075A1 WO 2018050075 A1 WO2018050075 A1 WO 2018050075A1 CN 2017101646 W CN2017101646 W CN 2017101646W WO 2018050075 A1 WO2018050075 A1 WO 2018050075A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat collecting
heat
tube
unit
shunt
Prior art date
Application number
PCT/CN2017/101646
Other languages
English (en)
French (fr)
Inventor
曾智勇
陈武忠
黄贝
崔小敏
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2018050075A1 publication Critical patent/WO2018050075A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • F24S80/65Thermal insulation characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present disclosure relates to the field of solar thermal power generation technology, for example, to a solar thermal collector.
  • the liquid medium in the solar collector is heated, and then thermally converted with an external power generating device.
  • the solar collector designed in this way has low heat generation efficiency, poor heat preservation effect, liquid medium is easily consolidated due to daytime and night temperature difference, and heat collection in the collector
  • the tube is unevenly heated, and the heating area is small and many other problems.
  • the present disclosure provides a solar collector with good heat preservation effect and high heat conversion efficiency.
  • each set of the heat collecting tube unit comprises a first heat collecting tube unit and a second heat collecting tube unit;
  • the first heat collecting unit includes a plurality of first heat collecting tubes, and the plurality of first heat collecting tubes are arranged side by side to form an arched heat absorbing surface;
  • the second heat collecting unit comprises a plurality of second heat collecting tubes, wherein the plurality of second heat collecting tubes are arranged side by side and then smoothly connected with the arched heat absorbing surface to form a heat absorbing surface having a non-zero angle with respect to the horizontal mask.
  • the tube lengths and arc lengths of the plurality of heat collecting tubes of the first heat collecting tube unit are all set to be equal, and the tube lengths of the plurality of heat collecting tubes of the second heat collecting tube unit are sequentially set and the arc length is equal .
  • the first heat collecting tube unit and the second heat collecting tube unit are both provided with a curved top portion, two supporting portions that are connected to the two ends of the curved top portion, and are respectively connected to the two supporting portions.
  • Two load-bearing portions are connected, and the two load-bearing portions are respectively connected to the first and second shunt tubes.
  • the plurality of diverting units of the first shunt or the second shunt are respectively provided with a plurality of drain pipes.
  • the inlet pipe and the outlet pipe are respectively disposed at two ends of the first branch pipe or two ends of the second branch pipe.
  • the furnace body is provided with a vacuum heat insulation layer, a composite heat insulation layer, a heat insulation casing and an opening disposed at one end of the furnace body for the sunlight to enter from the inside to the outside.
  • the solar collector provided by the embodiment includes a heat absorbing device for irradiating sunlight, and a furnace body disposed at the periphery of the heat absorbing device to prevent heat loss, wherein the heat absorbing body
  • the device includes a first shunt tube and a second shunt tube that are erected in the furnace body, and a plurality of sets of heat collecting tube units arranged along the length direction of the first shunt tube and the second shunt tube for forming a sunlight irradiation surface.
  • an inlet pipe and an outlet pipe that are arranged to introduce the liquid working medium flowing sequentially along the plurality of the heat collecting tube units, wherein the inlet pipe and the outlet pipe respectively penetrate the furnace body.
  • the structural design is to sequentially connect the plurality of heat collecting tube units through the first shunt tube and the second shunt tube, thereby effectively increasing the irradiation area of the sunlight, improving the heat conversion efficiency of the liquid medium in the heat collecting tube, and passing
  • the setting of the outer furnace body effectively prevents heat loss and prevents the liquid medium from being disturbed by the temperature difference to block the heat collecting tube.
  • FIG. 1 is a perspective view of a solar collector heat absorbing device provided by this embodiment
  • Figure 2 is a perspective view of the first heat collecting unit of Figure 1;
  • FIG. 3 is a perspective view of the second heat collecting unit of Figure 1;
  • Figure 4 is an isometric view of the small heat collecting unit of Figure 2;
  • Figure 5 is a partial enlarged view of a portion A in Figure 4.
  • Figure 6 is a perspective view of the small heat collecting unit of Figure 3.
  • Figure 7 is a partial enlarged view of B in Figure 6;
  • Figure 8 is a perspective view of the first shunt tube and the second shunt tube of Figure 1 after installation;
  • Figure 9 is a partial enlarged view of E in Figure 8.
  • Figure 10 is a partial enlarged view of a portion C in Figure 8.
  • Figure 11 is a partial enlarged view of the portion D in Figure 8.
  • Figure 12 is a cross-sectional view of the furnace body of Figure 1;
  • Figure 13 is a perspective view of the furnace body of Figure 1.
  • the liquid working solar collector includes a heat absorbing device 1 for irradiating sunlight, and a furnace body 2 disposed on the periphery of the heat absorbing device 1 to prevent heat loss, wherein the suction
  • the heat device 1 includes a first shunt tube 11 and a second shunt tube 12 that are erected in the furnace body 2 in parallel; and a plurality of groups for forming a sun-illuminated surface are arranged side by side along the longitudinal direction of the first shunt tube 11 and the second shunt tube 12.
  • a heat collecting tube unit 13 a heat collecting tube unit 13; and a liquid working medium that is sequentially flowed along the plurality of sets of heat collecting tube units 13 is introduced into and out of the inlet tube 14 and the outflow tube 15, wherein the inlet tube 14 and the outlet tube 15 respectively penetrate the furnace body 2 and connected to an external heat exchange device.
  • the sunlight passes through the opening on one side wall of the furnace body and is irradiated to the sunlight irradiation surface in which the plurality of heat collecting tube units 13 are arranged side by side, the liquid working medium in the plurality of heat collecting tube units 13 is introduced through the inlet pipe.
  • the liquid working medium in the embodiment is configured to heat the molten salt
  • the external heat exchange device comprises a cryogenic liquid working medium tank, and the liquid for introducing the cryogenic liquid working medium in the cryogenic liquid working medium tank into the inlet pipe 14
  • the pump is connected to the outlet pipe 15 for storing a high temperature liquid working medium tank of a high temperature liquid working medium, and a steam turbine power generating device disposed between the low temperature liquid working medium tank and the high temperature liquid working medium tank.
  • the solar collectors described above receive as much sunlight as possible, are erected to a high place in practical applications, and then automatically track the sunlight through a solar lens group disposed on the ground, and set The heat absorbing device 1 in the furnace body 2 is irradiated, thereby effectively increasing the light intensity of the solar heat collector and improving the heat conversion efficiency.
  • each set of the heat collecting tube unit includes a first heat collecting tube unit 131 and a second heat collecting tube unit 132; wherein the first heat collecting tube unit 131 includes The plurality of heat collecting tubes are arranged side by side to form an arched heat absorbing surface; and the second heat collecting tube unit 132 includes a plurality of heat collecting tubes arranged side by side and then smoothly connected with the arched heat absorbing surface to form a non-zero angle with respect to the horizontal mask.
  • the heat absorption surface is 30 degrees to 60 degrees, for example, 45 degrees.
  • the solar collector is a fixed arc long arch cavity liquid working solar collector, as shown in FIG. 4 and FIG. 5, the tube length and the arc length of the plurality of heat collecting tubes of the first heat collecting unit 131
  • the tube lengths of the plurality of heat collecting tubes of the second heat collecting unit 132 are sequentially set and the arc lengths are equal; in this manner, the first heat collecting unit is conveniently arranged.
  • the combination of the 131 and the second heat collecting unit 132 forms a heat collecting cavity having a shape as shown in FIG. 1 , so that the sunlight irradiated from the bottom is not suitable to be emitted from the adjacent heat pipes, and the light receiving area can be effectively increased. Improve the heat conversion efficiency of the heat collecting tube unit.
  • the first heat collecting tube unit 131 and the second heat collecting tube unit 132 are both provided with a curved top portion 1311 and a through connection with both ends of the curved top portion 1311.
  • Two support portions 1312, two bearing portions 1313 respectively connected to the two support portions 1312, The two bearing portions 1313 are connected to the first shunt tube 11 and the second shunt tube 12, respectively.
  • the first heat collecting unit 131 and the second heat collecting unit 132 are combined by 8 heat collecting tubes 1314 side by side, and the combined first heat collecting unit 131 and the second collecting unit 132 of the second heat collecting unit 132 are A plurality of collector tubes are dispersed (ie, there is a gap between the plurality of collector tubes).
  • the eight heat collecting tubes with the same structure are bent and combined side by side into a small heat collecting unit of the first heat collecting tube unit as shown in FIG. 4 .
  • the support portion 1312 of the small heat collecting unit is welded integrally with the curved top portion in a tight side-by-side alignment structure, and then the heat collecting tubes of the bearing portion are dispersedly disposed and symmetrical with each other according to the bifurcation structure shown in FIG.
  • the arc lengths of the plurality of heat collecting tubes constituting the second heat collecting tube unit are fixed. And the length of the tube is successively decreased, and the support portion and the bearing portion are disposed in the same structure as the support portion and the bearing portion of the first heat collecting tube unit, and are sequentially aligned to make the nozzle of the bearing portion and the first shunt as shown in FIG. 8 respectively.
  • the tube and the circular hole on the second shunt tube are matched, and finally combined into a heat absorbing device 1 as shown in FIG.
  • the first shunt tube 11 and the second shunt tube 12 in this embodiment are respectively disposed with a plurality of shunting units 111 spaced along the length direction of the tube, and the plurality of shunting units 111 and the bearing unit 1313 are respectively The nozzles are connected to each other, and the plurality of flow dividing units 111 are sequentially disposed through the first heat collecting tube unit 131 and the second heat collecting tube unit 132 which are arranged side by side.
  • the arrangement of the plurality of flow dividing units 111 is designed by uniformly distributing the blocking piece 1112 on the shunt tube to prevent the liquid medium from flowing directly along the longitudinal direction of the shunt tube, that is, inserting the blocking piece 1112 radially into the opening of the shunt tube.
  • Inside the tank, making the blocking fluid The axial flow of the bulk medium, so that the liquid medium in the plurality of flow dividing units 111 of the first shunt tube 11 flows along one end of the heat collecting tube to the other end and flows into the plurality of splitting units of the second shunt tube 12, in order to make the phase
  • the adjacent shunting units can be connected in series. Alternatively, as shown in FIG.
  • the flow dividing unit 111 of the second branching pipe 12 is respectively provided with a plurality of sewage pipes 112. It is also possible to arrange the drain pipe to the flow dividing unit 111 of the first branch pipe 11.
  • the inlet pipe 14 and the outlet pipe 15 are respectively connected to the diverter unit at both ends of the first branch pipe 11, and the inlet pipe 14 is connected with the liquid pump in the external heat exchange device.
  • the connection and the liquid outlet are connected with a high-temperature liquid working tank for storing the high-temperature liquid working medium, thereby converting the heat absorbed by the high-temperature molten salt to generate electricity.
  • the furnace body 2 is provided with a vacuum heat insulating layer 21, a composite heat insulating layer 22, a heat insulating casing 23, and one end of the furnace body 2 for injecting sunlight light from the inside to the outside.
  • the opening 24 the composite thermal insulation layer 22 is designed by using an aluminum silicate cotton layer and covering the aluminum foil layer on both sides of the aluminum silicate cotton layer, and is effectively insulated by the vacuum insulation layer and the heat insulation shell to prevent heating.
  • the high-temperature molten salt is condensed by temperature fluctuations.
  • the embodiment provides a solar collector, which is designed to sequentially connect a plurality of sets of heat collecting tubes through the first shunt tube and the second shunt tube, thereby effectively increasing the irradiation area of the sunlight and improving the heat collecting tube.
  • the heat transfer efficiency of the liquid medium in the medium is effectively prevented from being lost by the arrangement of the peripheral furnace body, and the liquid medium is prevented from being disturbed by the temperature difference to block the heat collecting tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能集热器,包括用于太阳光照射的吸热装置(1),以及设置于吸热装置(1)外围防止热量流失的炉膛体(2);其中吸热装置(1)包括平行架设于炉膛体(2)内的第一分流管(11)和第二分流管(12);沿第一分流管(11)和第二分流管(12)长度方向并排设置用于形成太阳光照射面的多组集热管单元(13);以及设置为将沿多组集热管单元(13)依次流动的液体工质导入进流管(14)和将液体工质导出的出流管(15),其中进流管(14)和出流管(15)分别贯穿炉膛体(2)。

Description

太阳能集热器 技术领域
本公开涉及太阳能光热发电技术领域,例如涉及一种太阳能集热器。
背景技术
随着文明的发展,化石燃料的使用急剧增加,这导致了严重的环境污染问题和全球变暖,该问题已成为国际社会的热门话题,但是由于发达国家、发展中国家和欠发达国家之间的与本国利益相关的不同意见而正走向一个不期望的方向。相应地,做出了对开发新的可再生能源的多种尝试,以积极地应对全球变暖和环境问题。新的可再生能源是指通过转换传统的化石燃料进行利用或对包括阳光、水、地热和生物有机体等可再生能源而进行利用的能量。新的可再生能源特性是面向可持续能源供给系统的未来能源。由于油价不稳定和气候变化协议的限制等,新的可再生能源的重要性变大。可再生能源包括太阳热、太阳光、生物质能、风力、小水电、地热、海洋能和废弃物能源等,而新能源包括燃料电池、液化煤炭、气化煤炭和氢能。问题是,从新的可再生能源、特别是太阳光发电的成本未达到等于利用化石燃料的传统火力发电的成本的电网平价。但是,随着技术的发展进步,从新的可再生能源中的太阳热发电的太阳热发电在发电成本上持续降低,而在发电效率正在逐渐提高。
相关技术下有采用通过追踪太阳的同时以高效率的聚光器在短焦距内对太阳能进行聚集,进而对太阳能集热器中的液体介质进行加热,之后在与外部发电装置进行热转换,而采用此方式设计的太阳能集热器存在发热效率低、保温效果差、液体介质受白天和黑夜温差影响容易固结,且集热器中的集热 管受热不均,受热面积小等诸多问题。
发明内容
本公开提供一种太阳能集热器,保温效果好以及热转换效率高。
本实施例采用以下技术方案:
一种太阳能集热器,包括用于太阳光照射的吸热装置,以及设置于所述吸热装置外围防止热量流失的炉膛体;其中,所述吸热装置包括平行架设于所述炉膛体内的第一分流管和第二分流管;沿所述第一分流管和第二分流管长度方向并排设置用于形成太阳光照射面的多组集热管单元;以及设置为将沿多组所述集热管单元依次流动的液体工质导入的进流管和将所述液体工质导出的出流管,其中,所述进流管和出流管分别贯穿所述炉膛体。
可选的,每组所述集热管单元包括第一集热管单元和第二集热管单元;
其中,第一集热管单元包括多根第一集热管,所述多根第一集热管依次并排设置后形成拱形吸热面;
以及第二集热管单元包括多根第二集热管,所述多根第二集热管依次并排设置后与拱形吸热面平滑过渡连接形成相对与水平面具有一非零夹角的吸热面。
可选的,所述第一集热管单元的多根集热管的管长及弧长均设置为相等,所述第二集热管单元的多根集热管的管长呈依次递减设置且弧长相等。
可选的,所述第一集热管单元和所述第二集热管单元均设置有弧形顶部、与所述弧形顶部的两端贯通连接的两个支撑部、分别与两个支撑部贯通连接的两个承重部,两个所述承重部分别与所述第一分流管和第二分流管贯通连接。
可选的,所述第一集热管单元和所述第二集热管单元的承重部的多根集 热管之间设置有间隙。
可选的,所述第一分流管和第二分流管沿管长方向均间隔设置有多个分流单元,所述多个分流单元分别与所述承重部的管口相连通,且所述多个分流单元通过并排设置的第一集热管单元和第二集热管单元依次贯通设置。
可选的,所述第一分流管或第二分流管的多个分流单元分别对应设置有多个排污管。
可选的,所述进流管和出流管分别设置于所述第一分流管的两端或第二分流管的两端。
可选的,所述炉膛体由内到外依次设置有真空隔热层,复合保温层,保温壳体以及设置在所述炉膛体的一端供太阳光光线射入的开口。
本实施例提供的一种太阳能集热器,该太阳能集热器包括用于太阳光照射的吸热装置,以及设置于所述吸热装置外围防止热量流失的炉膛体,其中,所述吸热装置包括平行架设于所述炉膛体内的第一分流管和第二分流管、沿所述第一分流管和第二分流管长度方向并排设置用于形成太阳光照射面的多组集热管单元,以及设置为将沿多组所述集热管单元依次流动的液体工质导入导出的进流管和出流管,其中,所述进流管和出流管分别贯穿所述炉膛体。此结构设计,将多组集热管单元通过第一分流管和第二分流管进行依次贯通连接,有效的增加了太阳光的照射面积,提高了集热管中的液体介质的热转换效率,且通过外围炉膛体的设置,有效防止热量流失,防止液体介质受温差波动而堵塞集热管。
附图说明
图1是本实施例提供的一种太阳能集热器吸热装置的轴测图;
图2是图1中第一集热管单元的轴测图;
图3是图1中第二集热管单元的轴测图;
图4是图2中的小集热单元的轴测图;
图5是图4中A处的局部放大图;
图6是图3中的小集热单元的轴测图;
图7是图6中B处的局部放大图;
图8是图1中第一分流管和第二分流管安装后的轴测图;
图9是图8中E处的局部放大图;
图10是图8中C处的局部放大图;
图11是图8中D处的局部放大图;
图12是图1中炉膛体的截面图;以及
图13是图1中炉膛体的轴测图。
具体实施方式
下面结合附图并通过可选实施方式来说明本公开的技术方案。
如图1及图13所示,该液体工质太阳能集热器包括用于太阳光照射的吸热装置1,以及设置于吸热装置1外围防止热量流失的炉膛体2,其中,所述吸热装置1包括平行架设于炉膛体2内的第一分流管11和第二分流管12;沿第一分流管11和第二分流管12长度方向并排设置用于形成太阳光照射面的多组集热管单元13;以及设置为将沿多组集热管单元13依次流动的液体工质导入导出的进流管14和出流管15,其中,进流管14和出流管15分别贯穿炉膛体2且与外部热交换装置相连接。当太阳光穿过炉膛体一侧壁上的开口,照射到有多组集热管单元13并排组合而成的太阳光照射面时,通过进流管导入多组集热管单元13内的液体工质,在第一分流管和第二分流管的作用下沿多组集热管单元13依次流动时被加热为高温液体,加热后的高温液体 最终通过出流管15流入外部热交换装置。可选的,本实施例中的液体工质设置为加热熔盐,外部热交换装置包括低温液体工质罐,用于将低温液体工质罐中的低温液体工质导入进流管14的液体泵,与出流管15相连接用于储存高温液体工质的高温液体工质罐,以及设置在低温液体工质罐和高温液体工质罐之间的汽轮发电设备。
可选的,上述太阳能集热器为尽可能多的接受太阳光的照射,在实际应用中会被架设到高处,然后通过布置在地面上的太阳能透镜群通过自动追踪太阳光,并对设置在炉膛体2内的吸热装置1进行照射,从而有效增加太阳能集热器的光照强度,提高热量转换效率。
可选的,在本实施例中,如图2及图3所示,每组所述集热管单元包括第一集热管单元131和第二集热管单元132;其中,第一集热管单元131包括多根集热管依次并排设置后形成拱形吸热面;以及第二集热管单元132包括多根集热管依次并排设置后与拱形吸热面平滑过渡连接形成相对与水平面具有一非零夹角的吸热面。可选的,所述非零夹角为30度-60度,例如可以是45度。
可选的,该太阳能集热器是定弧长拱腔式液体工质太阳能集热器,如图4及图5所示,第一集热管单元131的多根集热管的管长及弧长均设置为相等,如图6及图7所示,第二集热管单元132的多根集热管的管长呈依次递减设置且弧长相等;依此方式进行设置,便于将第一集热管单元131与第二集热管单元132组合后形成如图1所示形状的集热腔体,进而便于从底部照射来的太阳光不宜从相邻热管之间射出,且能够有效的增大受光面积,提高集热管单元的热转换效率。
可选的,在本实施例中,如图1及图4所示,第一集热管单元131和第二集热管单元132均设置有弧形顶部1311、与弧形顶部1311的两端贯通连接的两个支撑部1312、分别与两个支撑部1312贯通连接的两个承重部1313, 两个承重部1313分别与第一分流管11和第二分流管12贯通连接。可选的,第一集热管单元131和第二集热管单元132均由8根集热管1314并排组合而成,组合后的第一集热管单元131和第二集热管单元132的承重部1313的多根集热管分散设置(即多根集热管之间有间隙)。
采用上述结构设计的集热管单元,以第一集热管单元为例,首先将结构相同的8根集热管折弯后并排组合成如图4所示的第一集热管单元的小集热单元,该小集热单元的支撑部1312与弧形顶部采用紧密并排对齐的结构焊接为一体,然后再将承重部的集热管采用如图4所示的分叉结构呈分散设置且左右对称,依此分散整个小集热单元的重量,为了使得承重部具有较好的承重效果,防止空心的集热管变形,在承重部的末端套设有套管,以此使得承重更加稳定可靠。
采用上述同样的原理和结构,第二集热管单元在并排设置时,为了使得在顶部形成一个倾斜面,有效防止太阳光流失,用于组成第二集热管单元的多根集热管的弧长固定且管长依次递减,支撑部和承重部均与第一集热管单元的支撑部和承重部设置为相同结构,并依次对齐后使得承重部的管口分别与如图8所示的第一分流管和第二分流管上的圆孔相配合,最终组合成如图1所示的吸热装置1。
如图8和图9所示,本实施例中的第一分流管11和第二分流管12沿管长方向均间隔设置有多个分流单元111,多个分流单元111分别与承重部1313的管口相连通,且多个分流单元111通过并排设置的第一集热管单元131和第二集热管单元132依次贯通设置。多个分流单元111的设置是采用在分流管上均布防止液体介质沿分流管长度方向直接流到的阻挡片1112的方式进行设计的,即将阻挡片1112径向插入开设于分流管上的开槽内,使得阻断液 体介质的轴向流动,依此使得第一分流管11的多个分流单元111内的液体介质沿集热管的一端流向另一端并流向第二分流管12的多个分流单元内,为了使得相邻的分流单元能够依次贯通连接,可选的,如图10所示,设置于第一分流管两端的分流单元上仅设置有8个分流口,剩余的分流单元及第二分流管上的分流单元上均设置于16个分流口122,以此方式使得第一分流管11上的分流单元与第二分流管12上的分流单元依次贯通。
如图11所示,为了防止加热熔盐在集热管中流动时阻塞或长期使用过程中需要集热管进行清洗排污,第二分流管12的分流单元111分别对应设置有多个排污管112。也可以将排污管设置到第一分流管11的分流单元111上。
本实施例中,如图8所示,进流管14和出流管15分别设置于第一分流管11的两端的分流单元相连接,进流管14与外部热交换装置中的液体泵相连接,出液口与外部用于储存高温液体工质的高温液体工质罐相连接,依此将高温熔盐吸收到的热量进行转换发电。
本实施例中,如图12所示,炉膛体2由内到外依次设置有真空隔热层21,复合保温层22,保温壳体23以及设置在炉膛体2的一端供太阳光光线射入的开口24。可选的,复合保温层22采用硅酸铝棉层及在硅酸铝棉层正反两面覆盖铝箔层的方式进行设计,并配合真空隔热层及保温壳体进行有效保温,以此防止加热后的高温熔盐受温度波动而凝结。
工业实用性
本实施例提供一种太阳能集热器,此结构设计,将多组集热管单元通过第一分流管和第二分流管进行依次贯通连接,有效的增加了太阳光的照射面积,提高了集热管中的液体介质的热转换效率,且通过外围炉膛体的设置,有效防止热量流失,防止液体介质受温差波动而堵塞集热管。

Claims (9)

  1. 一种太阳能集热器,包括用于太阳光照射的吸热装置,以及设置于所述吸热装置外围防止热量流失的炉膛体;
    其中,所述吸热装置包括平行架设于所述炉膛体内的第一分流管和第二分流管;沿所述第一分流管和第二分流管长度方向并排设置用于形成太阳光照射面的多组集热管单元;以及设置为将沿多组所述集热管单元依次流动的液体工质导入进流管和将所述液体工质导出的出流管,其中,所述进流管和出流管分别贯穿所述炉膛体。
  2. 根据权利要求1所述的一种太阳能集热器,其中,每组所述集热管单元包括第一集热管单元和第二集热管单元;
    其中,第一集热管单元包括多根第一集热管,所述多根第一集热管依次并排设置后形成拱形吸热面;
    以及第二集热管单元包括多根第二集热管,所述多根第二集热管依次并排设置后与拱形吸热面平滑过渡连接形成相对与水平面具有一非零夹角的吸热面。
  3. 根据权利要求2所述的一种太阳能集热器,其中,所述第一集热管单元的多根集热管的管长及弧长均设置为相等,所述第二集热管单元的多根集热管的管长呈依次递减设置且弧长相等。
  4. 根据权利要求2所述的一种太阳能集热器,其中,所述第一集热管单元和所述第二集热管单元均设置有弧形顶部、与所述弧形顶部的两端贯通连接的两个支撑部、分别与两个支撑部贯通连接的两个承重部,两个所述承重部分别与所述第一分流管和第二分流管贯通连接。
  5. 根据权利要求4所述的一种太阳能集热器,其中,所述第一集热管单元和所述第二集热管单元的承重部的多根集热管之间有间隙。
  6. 根据权利要求4所述的一种太阳能集热器,其中,所述第一分流管和第二分流管沿管长方向均间隔设置有多个分流单元,所述多个分流单元分别与所述承重部的管口相连通,且所述多个分流单元通过并排设置的第一集热管单元和第二集热管单元依次贯通设置。
  7. 根据权利要求6所述的一种太阳能集热器,其中,所述第一分流管或第二分流管的多个分流单元分别对应设置有多个排污管。
  8. 根据权利要求1所述的一种太阳能集热器,其中,所述进流管和出流管分别设置于所述第一分流管的两端或第二分流管的两端。
  9. 根据权利要求1所述的一种太阳能集热器,其中,所述炉膛体由内到外依次设置有真空隔热层,复合保温层,保温壳体以及设置在所述炉膛体的一端供太阳光光线射入的开口。
PCT/CN2017/101646 2016-09-14 2017-09-13 太阳能集热器 WO2018050075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610825734.2 2016-09-14
CN201610825734.2A CN106288451B (zh) 2016-09-14 2016-09-14 一种太阳能集热器

Publications (1)

Publication Number Publication Date
WO2018050075A1 true WO2018050075A1 (zh) 2018-03-22

Family

ID=57713087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101646 WO2018050075A1 (zh) 2016-09-14 2017-09-13 太阳能集热器

Country Status (2)

Country Link
CN (1) CN106288451B (zh)
WO (1) WO2018050075A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288451B (zh) * 2016-09-14 2019-04-12 深圳市爱能森科技有限公司 一种太阳能集热器
CN106152560B (zh) * 2016-09-14 2019-07-16 深圳市爱能森科技有限公司 一种用于太阳能集热器的集热装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2250422C2 (ru) * 2003-01-04 2005-04-20 Виноградов Владимир Сергеевич Гелиоустановка горячего водоснабжения и ее солнечный коллектор
CN201730779U (zh) * 2010-05-24 2011-02-02 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的系统
CN202452593U (zh) * 2012-01-16 2012-09-26 王林芝 一种太阳能集热到户的自动供热水系统
CN204438314U (zh) * 2015-02-04 2015-07-01 杨斯涵 基于分离式热管平板太阳能集热器耦合室内供暖系统
CN106152560A (zh) * 2016-09-14 2016-11-23 深圳市爱能森科技有限公司 一种用于太阳能集热器的集热装置
CN106288451A (zh) * 2016-09-14 2017-01-04 深圳市爱能森科技有限公司 一种太阳能集热器
CN206176780U (zh) * 2016-09-14 2017-05-17 深圳市爱能森科技有限公司 一种太阳能集热器
CN206361974U (zh) * 2016-09-14 2017-07-28 深圳市爱能森科技有限公司 一种用于太阳能集热器的集热装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2758657Y (zh) * 2004-11-30 2006-02-15 张耀明 腔式太阳能接收器
CN102155802A (zh) * 2011-04-29 2011-08-17 武汉中圣能源环保工程有限公司 非真空太阳能高温塔式集热器
US20140020675A1 (en) * 2012-07-18 2014-01-23 Chandrashekhar Sonwane Solar receiver
CN204060967U (zh) * 2014-09-16 2014-12-31 大连宏海新能源发展有限公司 太阳能斯特林发动机加热头换热器
CN204854005U (zh) * 2014-12-31 2015-12-09 深圳市爱能森科技有限公司 光伏、光热和介质储热联合供能系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2250422C2 (ru) * 2003-01-04 2005-04-20 Виноградов Владимир Сергеевич Гелиоустановка горячего водоснабжения и ее солнечный коллектор
CN201730779U (zh) * 2010-05-24 2011-02-02 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的系统
CN202452593U (zh) * 2012-01-16 2012-09-26 王林芝 一种太阳能集热到户的自动供热水系统
CN204438314U (zh) * 2015-02-04 2015-07-01 杨斯涵 基于分离式热管平板太阳能集热器耦合室内供暖系统
CN106152560A (zh) * 2016-09-14 2016-11-23 深圳市爱能森科技有限公司 一种用于太阳能集热器的集热装置
CN106288451A (zh) * 2016-09-14 2017-01-04 深圳市爱能森科技有限公司 一种太阳能集热器
CN206176780U (zh) * 2016-09-14 2017-05-17 深圳市爱能森科技有限公司 一种太阳能集热器
CN206361974U (zh) * 2016-09-14 2017-07-28 深圳市爱能森科技有限公司 一种用于太阳能集热器的集热装置

Also Published As

Publication number Publication date
CN106288451A (zh) 2017-01-04
CN106288451B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
US8544273B2 (en) Solar thermal power plant
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
JP6230344B2 (ja) 蒸気タービンプラント
CN107084102A (zh) 一种以二氧化碳为储热及做功工质的槽式太阳能光热发电系统
CN102734942B (zh) 分布式太阳能热电联供能源系统
CN102141301B (zh) 管腔一体化碟式太阳能热接收器
WO2018050075A1 (zh) 太阳能集热器
CN102661259B (zh) 一种集成式太阳能热发电系统
WO2018050076A1 (zh) 用于太阳能集热器的集热装置
CN106121942A (zh) 一种采用液态铅铋传热和储热的超临界太阳能电站
CN206176780U (zh) 一种太阳能集热器
WO2020029422A1 (zh) 一种碟式太阳能光热能源梯级利用系统
CN206361974U (zh) 一种用于太阳能集热器的集热装置
CN201973900U (zh) 一种管腔一体化碟式太阳能热接收器
CN105004073B (zh) 一种太阳能热发电集热储热系统
Yang et al. Review of studies on enhancing thermal energy grade in the open ocean
CN106225263B (zh) 一种盘管蜂窝腔式液体工质太阳能集热器
CN103161701A (zh) 太阳能热能多级发电系统
CN204477990U (zh) 一种太阳能直接蒸汽产生系统
CN206807399U (zh) 一种结合光伏和光热一体的综合发电装置
CN206176776U (zh) 一种盘管蜂窝腔式液体工质太阳能集热器
ES2279658A1 (es) Procedimiento de generacion de electricidad a partir de energia termica solar y biomasa.
CN110579024A (zh) 太阳能光伏光热与集热器串联的高温热-电联产系统
KR101284121B1 (ko) 축열식 보일러
CN204100616U (zh) 蓄热式平板太阳能集热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850277

Country of ref document: EP

Kind code of ref document: A1