WO2018050035A1 - 指纹光电流检测单元、指纹识别器、驱动方法和显示装置 - Google Patents

指纹光电流检测单元、指纹识别器、驱动方法和显示装置 Download PDF

Info

Publication number
WO2018050035A1
WO2018050035A1 PCT/CN2017/101222 CN2017101222W WO2018050035A1 WO 2018050035 A1 WO2018050035 A1 WO 2018050035A1 CN 2017101222 W CN2017101222 W CN 2017101222W WO 2018050035 A1 WO2018050035 A1 WO 2018050035A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
node
photocurrent
module
potential
Prior art date
Application number
PCT/CN2017/101222
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
吕敬
王海生
吴俊纬
刘英明
刘伟
王鹏鹏
韩艳玲
曹学友
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/768,218 priority Critical patent/US10318787B2/en
Publication of WO2018050035A1 publication Critical patent/WO2018050035A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor

Definitions

  • the present disclosure relates to the field of fingerprint photocurrent identification technologies, and in particular, to a fingerprint photocurrent detecting unit, a fingerprint recognizer, a driving method, and a display device.
  • each fingerprint sensor is composed of a photodiode and a switching transistor.
  • the light source will produce different reflections when it is irradiated onto the finger, so that the light intensity reaching the photodiode device changes, resulting in different photocurrent differences, in the control of the switching transistor.
  • the current difference of each photodiode device is sequentially read, and the detection of the fingerprint valley can be realized.
  • the fingerprint photocurrent detecting method in the related art directly detects the fingerprint photocurrent, has low signal intensity, and is easily interfered by noise.
  • the main purpose of the present disclosure is to provide a fingerprint photocurrent detecting unit, a fingerprint recognizing device, a driving method, and a display device.
  • the method for detecting a fingerprint photocurrent in the related art is to directly detect a fingerprint photocurrent, which has low signal intensity and is easily interfered by noise. The problem.
  • a fingerprint photocurrent detecting unit including:
  • a conversion circuit connected to the fingerprint photocurrent reading line for reading the fingerprint photocurrent reading line
  • the fingerprint photocurrent is converted into a square wave signal
  • a detection circuit connected to the conversion circuit for detecting the square wave signal and obtaining fingerprint photocurrent information by using a frequency of the square wave signal.
  • the conversion circuit includes a detection control module, a first switch module, a second switch module, an inversion module, and a storage module, where
  • the first switch module is connected to the detection control module, the first end is connected to the high level line, the second end is connected to the control end of the second switch module, and the control of the first switch module is The terminal is connected to the first node; the first switch module is configured to be turned on when the potential of the first node is at a first level, and turned off when a potential of the first node is at a second level;
  • the storage module has a first end connected to the second end of the first switch module, and a second end connected to the low level line;
  • the control end of the second switch module is further connected to the fingerprint photocurrent reading line, the first end is connected to the output end of the inverting module, and the second end is connected to the input end of the inverting module.
  • the control end of the second switch module is connected to the second node; the second switch module is configured to be turned on when the potential of the second node is low, and when the potential of the second node is high
  • the output end of the inverting module is connected to the third node; the inverting module is configured to perform an inversion operation on the level of the input terminal to be output;
  • the detection control module is respectively connected to the output ends of the first node and the inverting module, for when starting detection and when a signal output by an output of the inverting module is at a rising edge or a falling edge Controlling the potential of the first node to a first level, and controlling the potential of the first node to change to a second level after the potential of the first node is maintained at the first level for a predetermined time, and Controlling the potential of the third node to be a high level or a low level when starting the detection;
  • the detecting circuit is connected to the output end of the inverting module and/or the first node, specifically for detecting the frequency of the waveform of the potential of the output end of the inverting module and/or the potential of the first node.
  • the frequency of the waveform, and the fingerprint photocurrent information is obtained by the frequency of the waveform of the potential of the output of the inverting module and/or the frequency of the waveform of the potential of the first node.
  • the first switch module includes: a first switching transistor, a gate connected to the detection control module, a first pole connected to a high level line, and a second pole connected to the second node; a gate of a switching transistor is connected to the first node;
  • the second switch module includes: a second switching transistor, a gate connected to the fingerprint photocurrent reading line, a first pole connected to an output end of the inverting module, and a second pole and the inverting module An input terminal is connected; a gate of the second switching transistor is connected to the second node;
  • the storage module includes: a storage capacitor, the first end is connected to the second node, and the second end is connected to the low level line;
  • the inverting module includes A inverters connected in series with each other, A is an odd number and A is a positive integer;
  • the output end of the a-th inverter is connected to the input end of the a+1th inverter, and a is an integer greater than or equal to 1 and less than A;
  • the input end of the first inverter is an input end of the inverting module
  • the output end of the third inverter is an output end of the inverting module
  • the first switching transistor is an n-type transistor and the second switching transistor is a p-type transistor
  • the first level is a high level
  • the second level is a low level
  • the first switching transistor and the second switching transistor are both p-type transistors, the first level is a low level and the second level is a high level.
  • the detection control module includes an edge trigger and a signal controller, wherein:
  • An edge trigger end of the edge trigger is connected to an output end of the inverting module, and an output end of the edge trigger is connected to the first node;
  • the edge trigger is configured to control a potential of the third node to be a high level or a low level when starting detection, and to control when a signal output by an output end of the inverting module is at a rising edge or a falling edge
  • the potential of the first node is a first level
  • the signal controller is connected to the first node, configured to control a potential of the first node to be a first level when starting detection, and to maintain a first level for a predetermined time when a potential of the first node is maintained Thereafter, the potential of the first node is controlled to jump to a second level.
  • the present disclosure also provides a driving method of a fingerprint photocurrent detecting unit, which is applied to the above-mentioned fingerprint photocurrent detecting unit, and the driving method includes:
  • the detection control module controls the potential of the first node to be the first level and controls the potential of the third node to be a high level or a low level, and the first switching module controls the conduction of the high level line and the second node.
  • the storage module begins to charge, and the potential of the second node rises to a high level;
  • the detection control module controls the potential jump of the first node to become the second level
  • the first switch module controls disconnection between the high-level line and the second node, and controls the fingerprint photocurrent to flow from the second node through the fingerprint photocurrent reading line to the fingerprint touch unit.
  • a photodiode is disposed such that the potential of the second node gradually decreases until the second switching module is turned on, and the inverting module controls the potential of the third node to jump to a low level or a high level, and the detection control module controls The potential of the first node is reset to a first level, and the detecting circuit obtains corresponding fingerprint photocurrent information according to the frequency of the waveform of the potential of the output end of the inverting module and/or the frequency of the waveform of the potential of the first node.
  • the present disclosure also provides a fingerprint identifier, including a fingerprint photocurrent reading line, and further comprising the above-mentioned fingerprint photocurrent detecting unit;
  • the fingerprint photocurrent detecting unit includes a conversion circuit connected to the fingerprint photocurrent reading line.
  • the fingerprint photocurrent reading line is m columns
  • the fingerprint identifier further comprises n rows and m columns of fingerprint sensing units, wherein n and m are both positive integers;
  • Each of the fingerprint sensing units includes a read control transistor and a photodiode; an anode of the photodiode is coupled to a low level output, and a cathode of the photodiode is coupled to a first pole of the read control transistor;
  • Each row of the fingerprint sensing unit includes a gate of the read control transistor connected to a corresponding row of gate lines; each column of the fingerprint sensing unit includes a second electrode of the read control transistor and a corresponding column of fingerprint photocurrent reading Wire connection.
  • the fingerprint identifier of the present disclosure further includes a multiplexer
  • An input end of the multiplexer is connected to the m-column fingerprint photocurrent reading line, and an output end of the multiplexer and a control end of the second switch module included in the fingerprint photocurrent detecting unit connection;
  • the control end of the multiplexer is connected to the multiplexing control line
  • the multiplexer is configured to control the m-column fingerprint photocurrent reading line time division to be connected to the control end of the second switch module under the control of the multiplex control signal output by the multiplex control line.
  • the present disclosure also provides a method for driving a fingerprint identifier for driving the fingerprint identifier described above, the driving method comprising:
  • the multiplexer controls the m-column fingerprint photocurrent reading line time division to be connected to the control end of the second switching module;
  • the fingerprint photocurrent detecting unit detects the fingerprint photocurrent information outputted by the fingerprint photocurrent reading line connected thereto.
  • the present disclosure also provides a display device including a display substrate and the above-described fingerprint recognizer disposed on the display substrate.
  • the display substrate is a low temperature polysilicon LTPS display substrate
  • the fingerprint identifier is disposed on the display substrate based on an LTPS process.
  • the display device of the present disclosure further includes N sets of fingerprint photocurrent reading lines disposed in an effective display area of the display substrate; each set of the fingerprint photocurrent reading lines includes m columns of photocurrent reading Take the line; m and N are both positive integers;
  • the number of the fingerprint identifiers is N;
  • Each of the fingerprint identifiers is respectively connected to the m-column fingerprint photocurrent reading line.
  • FIG. 1 is a schematic structural diagram of a fingerprint photocurrent detecting unit according to an embodiment of the present disclosure
  • FIG. 2 is a structural block diagram of a conversion circuit included in a fingerprint photocurrent detecting unit according to an embodiment of the present disclosure
  • 3A is a circuit diagram of a specific embodiment of a conversion circuit included in a fingerprint photocurrent detecting unit according to an embodiment of the present disclosure
  • Figure 3B is a structural diagram of a specific embodiment of the inverter of Figure 3A;
  • FIG. 4 is a timing chart of the conversion circuit shown in FIG. 3A of the present disclosure during operation
  • FIG. 5 is a flowchart of a driving method of a fingerprint photocurrent detecting unit according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a fingerprint identifier according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a fingerprint identifier according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for driving a fingerprint recognizer according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 10 is a circuit diagram of a specific embodiment of a conversion circuit included in the fingerprint photocurrent detecting unit according to the embodiment of the present disclosure.
  • the fingerprint photocurrent detecting unit of the embodiment of the present disclosure includes:
  • the conversion circuit 11 is connected to the fingerprint photocurrent reading line RL for converting the fingerprint photocurrent read by the fingerprint photocurrent reading line RL into a corresponding square wave signal;
  • the detecting circuit 12 is connected to the conversion circuit for detecting the square wave signal and obtaining fingerprint photocurrent information by the frequency of the square wave signal.
  • the fingerprint photocurrent detecting unit converts the fingerprint photocurrent read by the fingerprint photocurrent reading line into a corresponding square wave signal through the conversion circuit, that is, the process of converting the optical fingerprint detection from the electrical physical quantity to the frequency detection
  • the frequency detection method has high signal intensity and is not easily disturbed by noise.
  • the conversion circuit may include a detection control module 21 , a first switch module 22 , a second switch module 23 , an inversion module 24 , and a storage module 25 .
  • the control end of the first switch module 22 is connected to the detection control module 21, and the first end of the first switch module 22 is connected to a high level line outputting a high level Vdd, the first switch
  • the second end of the module 22 is coupled to the control end of the second switch module 23.
  • the control end of the first switch module 22 is connected to the first node G1.
  • the first switch module 22 is configured to be turned on when the potential of the first node G1 is at a first level, and turned off when a potential of the first node G1 is at a second level.
  • the first end of the storage module 25 is connected to the second end of the first switch module 22, and the second end of the storage module 25 is connected to a low level line that outputs a low level Vss.
  • the control end of the second switch module 23 is further connected to the fingerprint photocurrent reading line RL, and the first end of the second switch module 23 is connected to the output end of the inverting module 24, the second The second end of the switch module 23 is coupled to the input of the inverting module 24.
  • the control end of the second switch module 23 is also connected to the second node G2.
  • the second switch module 23 is configured to be turned on when the potential of the second node G2 is at a low level, and turned off when the potential of the second node G2 is at a high level.
  • the output end of the inverting module 24 is connected to the third node G3; the inverting module 24 is used The level of the input terminal is inverted and output.
  • the detection control module 21 is connected to the output ends of the first node G1 and the inversion module 24, respectively, for starting detection and when the signal output by the output of the inverting module 24 is on a rising edge Or a falling edge, controlling the potential of the first node G1 to be a first level, and controlling the potential jump of the first node G1 after the potential of the first node G1 is maintained at the first level for a predetermined time It is at the second level, and controls the potential of the third node G3 to be a high level or a low level at the start of detection.
  • the detection circuit 12 is connected to the output end of the inverting module 24 and/or the first node G1, specifically for detecting the frequency of the waveform of the potential of the output end of the inverting module 24 and/or the The frequency of the waveform of the potential of a node G1, and the fingerprint photocurrent information is obtained by the information of the waveform.
  • the predetermined time may be set according to actual conditions, and the value thereof is not limited.
  • each fingerprint sensing unit may include a read control transistor and a photodiode.
  • the anode of the photodiode is connected to a low level output terminal, and the cathode of the photodiode is read.
  • a gate of the read control transistor is connected to a corresponding one row of gate lines; the fingerprint sensing unit includes a second pole of the read control transistor and the fingerprint photocurrent reading Wire connection.
  • the detection control module 21 controls the potential of the first node G1 to be the first level and controls the potential of the third node G3 to be a high level or a low level, and the first switching module 22 controls the conduction of the high level line and The connection between the second node G2, the storage module 25 starts charging, and the potential of the second node G2 rises to a high level;
  • the detection control module 21 controls the potential jump of the first node G1 to become the second level, and the first switching module 22 controls the connection between the high-level line and the second node G2 to be controlled.
  • the fingerprint photocurrent flows from the second node G2 through the fingerprint photocurrent reading line RL to the reverse biased photodiode included in the fingerprint sensing unit (as shown in FIG. 6 or FIG.
  • the inverting module 24 controls The potential of the third node G3 jumps to a low level or a high level, and the detection control module 21 controls to reset the potential of the first node G1 to a first level, and the detection circuit 12 according to the potential of the output end of the inverting module
  • the frequency of the waveform and/or the frequency of the waveform of the potential of the first node results in corresponding fingerprint photocurrent information.
  • the first switch module may include: a first switching transistor, a gate connected to the detection control module, a first pole connected to a high level line, and a second pole connected to the second node; The gate of the first switching transistor is connected to the first node.
  • the second switch module may include: a second switching transistor, a gate connected to the fingerprint photocurrent reading line, a first pole connected to an output end of the inverting module, a second pole and the inverting module The input terminal is connected; the gate of the second switching transistor is connected to the second node.
  • the storage module may include: a storage capacitor, the first end is connected to the second node, and the second end is connected to the low level line.
  • the inverting module may include A inverters connected in series with each other, A is an odd number and A is a positive integer.
  • the output of the a-th inverter is connected to the input of the a+1th inverter, and a is an integer greater than or equal to 1 and less than A.
  • the input end of the first inverter is an input end of the inverting module
  • the output end of the third inverter is an output end of the inverting module
  • the first switching transistor when the first switching transistor is an n-type transistor and the second switching transistor is a p-type transistor, the first level is a high level, and the second level is a low level.
  • the first switching transistor and the second switching transistor are p-type transistors, the first level is a low level and the second level is a high level.
  • the transistors employed in all embodiments of the present disclosure may each be a thin film transistor or a field effect transistor or other device having the same characteristics.
  • one of the poles is referred to as a first pole, and the other pole is referred to as a second pole; when the first pole is a source, the The second extreme drain; the second extreme source when the first extreme drain.
  • the detection control module may include an edge trigger and a signal controller.
  • the edge trigger end of the edge trigger is connected to the output end of the inverting module, and the output end of the edge trigger is connected to the first node, and the edge trigger is used when When the signal outputted by the output terminal of the inverting module is at a rising edge or a falling edge, the potential of the first node is controlled to be a first level.
  • the signal controller is connected to the first node, configured to control a potential of the first node to be a first level and control a potential of the third node to be a high level or a low level when starting detection, And after the potential of the first node is maintained at the first level for a predetermined time, the potential jump of the first node is controlled to become the second level.
  • the edge trigger and the signal controller may be arranged in an integrated circuit (IC) or as an integrated circuit.
  • the conversion circuit included in the fingerprint photocurrent detecting unit of the present disclosure will be described below by way of a specific embodiment.
  • a specific embodiment of the conversion circuit in the fingerprint photocurrent detecting unit of the present disclosure includes a detection control module, a first switching module, a second switching module, an inverting module 31, and a storage module.
  • the first switch module includes: a first switching transistor T1, a gate connected to an output end of the edge trigger 32 included in the detection control module, and a drain connected to a high level line outputting a high level Vdd, the source Connected to the second node G2; the gate of the first switching transistor T1 is connected to the first node G1.
  • the first switching transistor T1 is an n-type transistor.
  • the second switch module includes: a second switching transistor T2, a gate connected to the fingerprint photocurrent reading line RL, a source connected to an input end of the inverting module 31, a drain and the inverting module The output of 31 is connected.
  • the gate of the second switching transistor T2 is connected to the second node G2.
  • the second switching transistor T2 is a p-type transistor.
  • the storage module includes: a storage capacitor Cst, the first end is connected to the second node G2, and the second end is connected to a low level line outputting a low level Vss.
  • the inverting module 31 includes A inverters connected in series with each other, A is an odd number and A is a positive integer.
  • the output of the a-th inverter is connected to the input of the a+1th inverter, and a is an integer greater than or equal to 1 and less than A.
  • An input end of the first inverter F1 is an input end of the inverting module 31, and an output end of the A-inverter FA is an output end of the inverting module 31.
  • the detection control module includes an edge trigger 32 and a signal controller 33 (shown in FIG. 10).
  • the edge trigger end of the edge flip-flop 32 is connected to the output end of the inverting module 31, and the output end of the edge flip-flop 32 is connected to the first node G1.
  • the edge trigger 32 is configured to control the potential of the third node G3 to be a high level when starting the detection (in the actual operation, the node of the G3 can also be controlled to be a low level), and when by the inverting module When the signal output from the output terminal of 31 is at a rising edge or a falling edge, the potential of the first node G1 is controlled to be a high level.
  • the signal controller is connected to the first node G1 for controlling the potential of the first node G1 to be at a high level when starting detection, and maintaining a high level of the first node G1 for a predetermined time Thereafter, the potential of the first node G1 is controlled to jump to a low level.
  • the first inverter is denoted by F1
  • the second inverter is denoted by F2
  • the first inverter is denoted by FA.
  • the conversion circuit shown in FIG. 3A of the present disclosure corresponds to a ring oscillator.
  • the ring oscillator can be set by using a LTPS (Low Temperature Poly-silicon) process, and the ring oscillator can be disposed in an effective display area of the display substrate (AA area, as shown in FIG. 9). Outside.
  • LTPS Low Temperature Poly-silicon
  • each of the inverters in Fig. 3A can be as shown in Fig. 3B.
  • the label TF1 is the first inverting transistor
  • the label TF2 is the second inverting transistor
  • Vdd is high level
  • Vss is low level
  • VIN is the input voltage
  • VOUT is the output voltage.
  • the first inverting transistor TF1 is a PMOS (P-Metal-Oxide-Semiconductor, P-type metal-oxide-semiconductor) transistor
  • the second inverting transistor TF2 is an NMOS (N-Metal-Oxide-Semiconductor, N-type metal-oxidation) (semiconductor) transistor.
  • each cycle is divided into four phases.
  • the following is an example of the first cycle: in the first cycle,
  • the signal controller controls to pull the potential of G1 high, T1 is turned on, Cst is charged, the potential of G2 rises to Vdd, and the edge flip-flop 32 supplies G3 to excite the high level. (provided only in the first cycle); the signal controller controls to maintain the potential of G1 high for a predetermined time t0 and then to the second phase;
  • the signal controller controls the potential of G1 to be low, T1 is turned off, at this time, since the photodiode connected to the RL through the read transistor is in a reverse bias state (the photocurrent flowing through the photodiode when the photodiode is in a reverse bias state (ie, the fingerprint photocurrent)
  • the direction is that the cathode of the photodiode flows to the anode of the photodiode, and the fingerprint photocurrent is nonlinearly related to the reverse bias voltage of the photodiode, and within a certain reverse bias voltage range, the reverse bias
  • the change in the voltage does not cause a change in the reverse current of the photodiode (ie, the fingerprint photocurrent).
  • the potential of G2 gradually decreases until the potential of G2 drops to the threshold voltage Vth of T2.
  • T2 is turned on, and the high level of G3 is transmitted to the input end of the inverting module 31 through the turned-on T2, thereby pulling the potential of G3 low to the low level, and entering the third stage;
  • the edge flip-flop 32 In the third phase t3, at the beginning of the third phase t3, since the potential of the edge trigger terminal (ie, G3) of the edge flip-flop 32 is at the falling edge, the edge flip-flop 32 outputs a high level value G1, and T1 is turned on again. Cst is charged, the potential of G2 rises to Vdd, and the signal controller controls to maintain the potential of G1 to a high level for a predetermined time t0 and then to the fourth stage;
  • the signal controller controls the potential of G1 to be low level.
  • the potential of G2 is gradually decreased due to the influence of the fingerprint photocurrent.
  • T2 is turned on, and the low level of G3 is transmitted to the input terminal of the inverting module 31 through the turned-on T2, thereby pulling the potential of G3 high, So far the first cycle is completed and the first phase of the next display cycle is entered;
  • the potential of G3 is square wave as shown in Fig. 4; the fingerprint photocurrent with fingerprint information is different, which will lead to the length of time of the second stage t2 and the length of time of the fourth stage t4.
  • the difference is finally reflected by the difference in the frequency of the waveform of the potential of G3 or the frequency of the waveform of the potential of G1, by measuring the frequency of the waveform of the potential of G3 and/or the frequency of the waveform of the potential of G1. Fingerprint information is available.
  • the driving method of the fingerprint photocurrent detecting unit according to the embodiment of the present disclosure includes:
  • the detection control module controls the potential of the first node to be the first level and controls the potential of the third node to be a high level or a low level, and the first switch module controls the conduction of the high level line and the second a connection between the nodes, the storage module starts to charge, and the potential of the second node rises to a high level;
  • the detection control module controls the potential jump of the first node to change to a second level
  • the first switch module controls disconnection between the high-level line and the second node to control the fingerprint light.
  • a current flows from the second node through the fingerprint photocurrent reading line to the reverse biased photodiode included in the fingerprint sensing unit such that the potential of the second node gradually decreases until the second switching module is turned on.
  • the inverting module controls the potential of the third node to jump to a low level or a high level
  • the detection control module controls to reset the potential of the first node to a first level
  • the detection circuit is based on the potential of the output end of the inverting module
  • the frequency of the waveform and/or the frequency of the waveform of the potential of the first node results in corresponding fingerprint photocurrent information.
  • the fingerprint identifier includes a fingerprint photocurrent reading line, and further includes the above-mentioned fingerprint photocurrent detecting unit.
  • the fingerprint photocurrent detecting unit includes a conversion circuit connected to the fingerprint photocurrent reading line.
  • the fingerprint photocurrent reading line may be m columns, and the fingerprint identifier further includes n rows and m columns of fingerprint sensing units, wherein n and m are both positive integers.
  • Each of the fingerprint sensing units includes a read control transistor and a photodiode; an anode of the photodiode is coupled to a low level output, and a cathode of the photodiode is coupled to a first pole of the read control transistor.
  • Each row of the fingerprint sensing unit includes a gate of the read control transistor connected to a corresponding row of gate lines; each column of the fingerprint sensing unit includes a second electrode of the read control transistor and a corresponding column of fingerprint photocurrent reading Wire connection.
  • the fingerprint photocurrent reading line RL is in the order of m columns, and the fingerprint identifier according to the embodiment of the present disclosure further includes n rows and m columns of fingerprints disposed in the effective display area of the display substrate.
  • the sensing unit, n and m are both positive integers.
  • Each of the fingerprint sensing units includes a read control transistor and a photodiode; the anode of the photodiode is coupled to a low level output VSS, and a cathode of the photodiode is coupled to a source of the read control transistor.
  • Each row of the fingerprint sensing unit includes a gate of the read control transistor connected to a corresponding row of gate lines; each column of the fingerprint sensing unit includes a drain of the read control transistor and a corresponding column of fingerprint photocurrent reading lines connection.
  • a gate line, labeled GATEn is the nth row of gate lines
  • the label RL1 is the first column fingerprint photocurrent reading line
  • the label RL2 is the second column fingerprint photocurrent reading line
  • the label RLm is the mth column fingerprint photocurrent reading line
  • the label TD11 is a read control transistor included in the first row of the first column fingerprint sensing unit
  • Marked as SD11 is a photodiode included in the first row of the first column fingerprint sensing unit
  • the label TD12 is a read control transistor included in the fingerprint control unit of the first row and the second column;
  • Marked as SD12 is a photodiode included in the first row and second column fingerprint sensing unit
  • the label TD1m is a read control transistor included in the fingerprint sensor unit of the first row and the mth column;
  • Labeled by SD1m is a photodiode included in the fingerprint sensor unit of the first row and the mth column;
  • the label TD21 is a read control transistor included in the second row first column fingerprint sensing unit
  • Marked as SD21 is a photodiode included in the second row first column fingerprint sensing unit
  • the label TD22 is a read control transistor included in the second row and second column fingerprint sensing unit
  • Marked as SD22 is a photodiode included in the second row and second column fingerprint sensing unit
  • the label TD2m is a read control transistor included in the second row and mth column fingerprint sensing unit;
  • Marked as SD2m is a photodiode included in the second row and mth column fingerprint sensing unit;
  • the label TDn1 is the read control transistor included in the first column fingerprint sensing unit of the nth row;
  • the photodiode included in the first column of the fingerprint sensing unit of the nth row is labeled as SDn1;
  • the label TDn2 is a read control transistor included in the nth row and second column fingerprint sensing unit;
  • Labeled as SDn2 is a photodiode included in the nth row and second column fingerprint sensing unit;
  • the TDnm is a read control transistor included in the nth row and mth column of the fingerprint sensing unit;
  • Labeled as SDnm is the photodiode included in the nth row and mth column fingerprint sensing unit.
  • the fingerprint identifier of the embodiment of the present disclosure further includes a multiplexer
  • An input end of the multiplexer is connected to the m-column fingerprint photocurrent reading line, and an output end of the multiplexer and a control end of the second switch module included in the fingerprint photocurrent detecting unit connection;
  • the control end of the multiplexer is connected to the multiplexing control line
  • the multiplexer is configured to control the m-column fingerprint photocurrent reading line time division to be connected to the control end of the second switch module under the control of the multiplex control signal output by the multiplex control line.
  • the fingerprint identifier according to the embodiment of the present disclosure further includes Multiplexer Mux;
  • the input ends of the multiplexer Mux are respectively connected to the m-column fingerprint photocurrent reading line, and the output terminal Muxout of the multiplexer and the conversion circuit shown in FIG. 3A, that is, the ring shape in FIG.
  • the oscillator 30 is connected.
  • the output terminal Muxout of the multiplexer can be connected to the second node G2 in FIG. 3A.
  • a control end of the multiplexer Mux is respectively connected to a plurality of multiplexed control lines; the multiplexer Mux is configured to control the multiplexed control signal outputted by the multiplexed control line
  • the m-column fingerprint photocurrent reading line is time-divisionally connected to the ring oscillator 30.
  • the reference number SW1 is the first multiplexed control line
  • the label SW2 is the second multiplexed control line
  • the label SWn is the nth multiplexed control line.
  • a method for driving a fingerprint identifier is used to drive the fingerprint identifier, and the driving method includes:
  • step S81 under the control of the multiplexing control signal, the multiplexer controls the m column fingerprint photocurrent reading line time division to be connected to the control end of the second switch module;
  • Fingerprint photocurrent detecting step S82 The fingerprint photocurrent detecting unit detects the fingerprint photocurrent information outputted by the fingerprint photocurrent reading line connected thereto.
  • a display device includes a display substrate and the above-described fingerprint recognizer disposed on the display substrate.
  • the display substrate may be an LTPS display substrate
  • the fingerprint identifier is disposed on the display substrate based on an LTPS process.
  • the display device further includes N sets of fingerprint photocurrent reading lines disposed in an effective display area of the display substrate; each set of the fingerprint photocurrent reading lines includes m columns Photocurrent reading line; m and N are both positive integers;
  • the number of the fingerprint recognizers is N.
  • Each of the fingerprint identifiers is respectively connected to the m-column fingerprint photocurrent reading line.
  • N ring oscillators disposed outside the effective display area (AA area) of the display substrate by the LTPS process, and N multiplexers corresponding thereto, according to the fingerprint light.
  • the number of current reading lines can be divided into N groups, each group of m fingerprint light current reading lines are connected to a multiplexer, and the multiplexer switches the strobing fingerprint photocurrent reading line. Every The multiplexers are connected to a ring oscillator.
  • the number of M depends on the space design of the display substrate (the more space, the more the ring oscillator can be set), the detection time (the smaller the M, the less the detection time) and the number of fingerprint photocurrent reading lines.
  • the display device may include four ring oscillators disposed outside the AA area of the display substrate 90 by using an LTPS process: a first ring oscillator 911, a second ring oscillator 912, The third ring oscillator 913 and the fourth ring oscillator 914.
  • the embodiment of the display device shown in FIG. 9 places the four ring oscillators on four sides outside the AA area of the display substrate 90, respectively.
  • the first ring oscillator 911 is a fan-out area
  • a GOA (Gate On Array) circuit is disposed between the second ring oscillator 912 and the AA area.
  • a GOA circuit is also provided between the four ring oscillator 914 and the AA area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种指纹光电流检测单元、指纹识别器、驱动方法和显示装置。所述指纹光电流检测单元包括:转换电路(11),与指纹光电流读取线(RL)连接,用于将所述指纹光电流读取线(RL)读取的指纹光电流转换为方波信号;以及,检测电路(12),与所述转换电路(11)连接,用于检测所述方波信号,并通过所述方波信号的频率得到指纹光电流信息。

Description

指纹光电流检测单元、指纹识别器、驱动方法和显示装置
相关申请的交叉引用
本申请主张在2016年9月18日在中国提交的中国专利申请号No.201610829135.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及指纹光电流识别技术领域,尤其涉及一种指纹光电流检测单元、指纹识别器、驱动方法和显示装置。
背景技术
近年来,随着技术的高速发展,具有生物识别功能的移动产品逐渐进入人们的生活工作中,指纹技术凭借着其唯一身份特性,备受人们重视。基于硅基工艺的按压式与滑动式指纹识别技术已经整合入移动产品中,未来人们关注的核心是显示区域内的指纹识别技术。
在相关技术中的指纹电流识别电路中,每个指纹传感器由一个光敏二极管和一个开关晶体管组成。在进行指纹扫描时,由于指纹谷脊间的差异,光源照射到手指上会产生不同的反射,从而使得到达光敏二极管器件处的光强出现变化,产生不同的光电流差异,在开关晶体管的控制下,依次读取出各个光敏二极管器件的电流差异,即可实现对指纹谷脊的检测。但是相关技术中的指纹光电流检测方法是直接检测指纹光电流,信号强度低,容易被噪声干扰。
发明内容
本公开的主要目的在于提供一种指纹光电流检测单元、指纹识别器、驱动方法和显示装置,解决相关技术中的指纹光电流检测方法是直接检测指纹光电流,信号强度低,容易被噪声干扰的问题。
为了达到上述目的,本公开提供了一种指纹光电流检测单元,包括:
转换电路,与指纹光电流读取线连接,用于将所述指纹光电流读取线读 取的指纹光电流转换为方波信号;以及,
检测电路,与所述转换电路连接,用于检测所述方波信号,并通过所述方波信号的频率得到指纹光电流信息。
实施时,所述转换电路包括检测控制模块、第一开关模块、第二开关模块、反相模块以及存储模块,其中,
所述第一开关模块,控制端与所述检测控制模块连接,第一端与高电平线连接,第二端与所述第二开关模块的控制端连接,所述第一开关模块的控制端与所述第一节点连接;所述第一开关模块用于当第一节点的电位为第一电平时导通,当所述第一节点的电位为第二电平时断开;
所述存储模块,第一端与所述第一开关模块的第二端连接,第二端与低电平线连接;
所述第二开关模块的控制端还与所述指纹光电流读取线连接,第一端与所述反相模块的输出端连接,第二端与所述反相模块的输入端连接,所述第二开关模块的控制端与所述第二节点连接;所述第二开关模块用于当第二节点的电位为低电平时导通,当所述第二节点的电位为高电平时断开;所述反相模块的输出端与第三节点连接;所述反相模块用于对其输入端接入的电平进行反相操作后输出;
所述检测控制模块分别与所述第一节点和所述反相模块的输出端连接,用于在开始检测时以及当由所述反相模块的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点的电位为第一电平,并当所述第一节点的电位维持第一电平预定时间后,控制所述第一节点的电位跳变为第二电平,并在开始检测时控制所述第三节点的电位为高电平或低电平;
所述检测电路与所述反相模块的输出端和/或所述第一节点连接,具体用于检测所述反相模块的输出端的电位的波形的频率和/或所述第一节点的电位的波形的频率,并通过所述反相模块的输出端的电位的波形的频率和/或所述第一节点的电位的波形的频率得到指纹光电流信息。
实施时,所述第一开关模块包括:第一开关晶体管,栅极与所述检测控制模块连接,第一极与高电平线连接,第二极与所述第二节点连接;所述第一开关晶体管的栅极与所述第一节点连接;
所述第二开关模块包括:第二开关晶体管,栅极与所述指纹光电流读取线连接,第一极与所述反相模块的输出端连接,第二极与所述反相模块的输入端连接;所述第二开关晶体管的栅极与所述第二节点连接;
所述存储模块包括:存储电容,第一端与所述第二节点连接,第二端与所述低电平线连接;
所述反相模块包括相互串联的A个反相器,A为奇数并A为正整数;
第a反相器的输出端与第a+1反相器的输入端连接,a为大于等于1而小于A的整数;
第一反相器的输入端为所述反相模块的输入端,第A反相器的输出端为所述反相模块的输出端。
实施时,当所述第一开关晶体管为n型晶体管,所述第二开关晶体管为p型晶体管时,所述第一电平为高电平,所述第二电平为低电平;或者,
当所述第一开关晶体管和所述第二开关晶体管都为p型晶体管时,所述第一电平为低电平,所述第二电平为高电平。
实施时,所述检测控制模块包括边沿触发器和信号控制器,其中:
所述边沿触发器的边沿触发端与所述反相模块的输出端连接,所述边沿触发器的输出端与所述第一节点连接;
所述边沿触发器用于在开始检测时控制所述第三节点的电位为高电平或低电平,并当由所述反相模块的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点的电位为第一电平;以及,
所述信号控制器,与所述第一节点连接,用于在开始检测时控制所述第一节点的电位为第一电平,并当所述第一节点的电位维持第一电平预定时间后,控制所述第一节点的电位跳变为第二电平。
本公开还提供了一种指纹光电流检测单元的驱动方法,应用于上述的指纹光电流检测单元,所述驱动方法包括:
在充电阶段,检测控制模块控制第一节点的电位为第一电平并控制第三节点的电位为高电平或低电平,第一开关模块控制导通高电平线与第二节点之间的连接,存储模块开始充电,所述第二节点的电位升至高电平;
在放电阶段,检测控制模块控制所述第一节点的电位跳变为第二电平, 第一开关模块控制断开高电平线与所述第二节点之间的连接,控制指纹光电流从所述第二节点经过指纹光电流读取线流向指纹触控单元包括的处于反向偏置的光敏二极管,以使得所述第二节点的电位逐渐下降,直至第二开关模块导通,反相模块控制第三节点的电位跳变为低电平或高电平,检测控制模块控制将所述第一节点的电位重置为第一电平,检测电路根据反相模块的输出端的电位的波形的频率和/或所述第一节点的电位的波形的频率得到相应的指纹光电流信息。
本公开还提供了一种指纹识别器,包括指纹光电流读取线,还包括上述的指纹光电流检测单元;
所述指纹光电流检测单元包括的转换电路与所述指纹光电流读取线连接。
实施时,所述指纹光电流读取线为m列,所述指纹识别器还包括n行m列指纹传感单元,n和m都为正整数;
每一所述指纹传感单元包括一读取控制晶体管和一光敏二极管;该光敏二极管的阳极与低电平输出端连接,该光敏二极管的阴极与该读取控制晶体管的第一极连接;
每一行指纹传感单元包括的读取控制晶体管的栅极都与相应的一行栅线连接;每一列指纹传感单元包括的读取控制晶体管的第二极都与相应的一列指纹光电流读取线连接。
实施时,本公开所述的指纹识别器还包括多路复用器;
所述多路复用器的输入端与所述m列指纹光电流读取线连接,所述多路复用器的输出端与所述指纹光电流检测单元包括的第二开关模块的控制端连接;
所述多路复用器的控制端与复用控制线连接;
所述多路复用器用于在所述复用控制线输出的复用控制信号的控制下控制所述m列指纹光电流读取线分时与所述第二开关模块的控制端连接。
本公开还提供了一种指纹识别器的驱动方法,用于驱动上述的指纹识别器,所述驱动方法包括:
导通步骤:在复用控制信号的控制下,多路复用器控制m列指纹光电流读取线分时与所述第二开关模块的控制端连接;
指纹光电流检测步骤:指纹光电流检测单元检测与其连接的指纹光电流读取线输出的指纹光电流信息。
本公开还提供了一种显示装置,包括显示基板和设置于所述显示基板上的上述的指纹识别器。
实施时,所述显示基板为低温多晶硅LTPS显示基板;
所述指纹识别器基于LTPS工艺设置于所述显示基板上。
实施时,本公开所述的显示装置,还包括设置于显示基板的有效显示区的N组指纹光电流读取线;每一组所述指纹光电流读取线都包括m列纹光电流读取线;m和N都为正整数;
所述指纹识别器的个数为N个;
每个所述指纹识别器都分别与m列指纹光电流读取线连接。
附图说明
图1是本公开实施例所述的指纹光电流检测单元的结构示意图;
图2是本公开实施例所述的指纹光电流检测单元包括的转换电路的结构框图;
图3A是本公开实施例所述的指纹光电流检测单元包括的转换电路的一具体实施例的电路图;
图3B是图3A中的反相器的一具体实施例的结构图;
图4是本公开图3A所示的转换电路在工作时的时序图;
图5是本公开实施例所述的指纹光电流检测单元的驱动方法的流程图;
图6是本公开实施例所述的指纹识别器的结构示意图图;
图7是本公开另一实施例所述的指纹识别器的结构示意图图;
图8是本公开实施例所述的指纹识别器的驱动方法的流程图;
图9是本公开实施例所述的显示装置的结构示意图;
图10是本公开实施例所述的指纹光电流检测单元包括的转换电路的一具体实施例的电路图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开实施例所述的指纹光电流检测单元包括:
转换电路11,与指纹光电流读取线RL连接,用于将所述指纹光电流读取线RL读取的指纹光电流转换为相应的方波信号;以及,
检测电路12,与所述转换电路连接,用于检测所述方波信号,并通过所述方波信号的频率得到指纹光电流信息。
本公开实施例所述的指纹光电流检测单元通过转换电路将指纹光电流读取线读取的指纹光电流转换为相应的方波信号,即实现光学指纹检测从电学物理量向频率检测转换的过程,采用频率检测的方式,信号强度高,不易被噪声干扰。
具体的,如图2所示,所述转换电路可以包括检测控制模块21、第一开关模块22、第二开关模块23、反相模块24以及存储模块25。
其中,所述第一开关模块22的控制端与所述检测控制模块21连接,所述第一开关模块22的第一端与输出高电平Vdd的高电平线连接,所述第一开关模块22的第二端与所述第二开关模块23的控制端连接。所述第一开关模块22的控制端与所述第一节点G1连接。所述第一开关模块22用于当第一节点G1的电位为第一电平时导通,当所述第一节点G1的电位为第二电平时断开。
所述存储模块25的第一端与所述第一开关模块22的第二端连接,所述存储模块25的第二端与输出低电平Vss的低电平线连接。
所述第二开关模块23的控制端还与所述指纹光电流读取线RL连接,所述第二开关模块23的第一端与所述反相模块24的输出端连接,所述第二开关模块23的第二端与所述反相模块24的输入端连接。所述第二开关模块23的控制端还与所述第二节点G2连接。所述第二开关模块23用于当第二节点G2的电位为低电平时导通,当所述第二节点G2的电位为高电平时断开。
所述反相模块24的输出端与第三节点G3连接;所述反相模块24用于 对其输入端接入的电平进行反相操作后输出。
所述检测控制模块21分别与所述第一节点G1和所述反相模块24的输出端连接,用于在开始检测时以及当由所述反相模块24的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点G1的电位为第一电平,并当所述第一节点G1的电位维持第一电平预定时间后,控制所述第一节点G1的电位跳变为第二电平,并在开始检测时控制所述第三节点G3的电位为高电平或低电平。
所述检测电路12与所述反相模块24的输出端和/或所述第一节点G1连接,具体用于检测所述反相模块24的输出端的电位的波形的频率和/或所述第一节点G1的电位的波形的频率,并通过所述波形的信息得到指纹光电流信息。
在实际操作时,所述预定时间可以根据实际情况设定,其取值不作限定。
在具体实施时,所述指纹光电流读取线RL分别与多个指纹传感单元连接,分时读取所述多个指纹传感单元传感得到的指纹光电流;根据一种具体实施方式,例如如图6或图7所示,每一指纹传感单元可以包括一读取控制晶体管和一光敏二极管,该光敏二极管的阳极与低电平输出端连接,该光敏二极管的阴极与该读取控制晶体管的第一极连接;所述读取控制晶体管的栅极与相应的一行栅线连接;所述指纹传感单元包括的读取控制晶体管的第二极与所述指纹光电流读取线连接。
本公开如图2所示的指纹光电流检测单元在工作时,
在充电阶段,检测控制模块21控制第一节点G1的电位为第一电平并控制第三节点G3的电位为高电平或低电平,第一开关模块22控制导通高电平线与第二节点G2之间的连接,存储模块25开始充电,所述第二节点G2的电位升至高电平;
在放电阶段,检测控制模块21控制所述第一节点G1的电位跳变为第二电平,第一开关模块22控制断开高电平线与所述第二节点G2之间的连接,控制指纹光电流从所述第二节点G2经过指纹光电流读取线RL流向指纹传感单元包括的处于反向偏置的光敏二极管(如图6或图7所示,以使得所述第二节点G2的电位逐渐下降,直至第二开关模块23导通,反相模块24控制 第三节点G3的电位跳变为低电平或高电平,检测控制模块21控制将所述第一节点G1的电位重置为第一电平,检测电路12根据反相模块的输出端的电位的波形的频率和/或所述第一节点的电位的波形的频率得到相应的指纹光电流信息。
在实际操作时,所述第一开关模块可以包括:第一开关晶体管,栅极与所述检测控制模块连接,第一极与高电平线连接,第二极与所述第二节点连接;所述第一开关晶体管的栅极与所述第一节点连接。
所述第二开关模块可以包括:第二开关晶体管,栅极与所述指纹光电流读取线连接,第一极与所述反相模块的输出端连接,第二极与所述反相模块的输入端连接;所述第二开关晶体管的栅极与所述第二节点连接。
所述存储模块可以包括:存储电容,第一端与所述第二节点连接,第二端与所述低电平线连接。
所述反相模块可以包括相互串联的A个反相器,A为奇数并且A为正整数。
第a反相器的输出端与第a+1反相器的输入端连接,a为大于等于1而小于A的整数。
第一反相器的输入端为所述反相模块的输入端,第A反相器的输出端为所述反相模块的输出端。
具体的,当所述第一开关晶体管为n型晶体管,所述第二开关晶体管为p型晶体管时,所述第一电平为高电平,所述第二电平为低电平。或者,当所述第一开关晶体管和所述第二开关晶体管都为p型晶体管时,所述第一电平为低电平,所述第二电平为高电平。
本公开所有实施例中采用的晶体管均可以为薄膜晶体管或场效应管或其他特性相同的器件。在本公开实施例中,为区分晶体管除栅极之外的两极,将其中一极称为第一极,另一极称为第二极;当所述第一极为源极时,所述第二极为漏极;当所述第一极为漏极时,所述第二极为源极。
具体的,所述检测控制模块可以包括边沿触发器和信号控制器。
其中,所述边沿触发器的边沿触发端与所述反相模块的输出端连接,所述边沿触发器的输出端与所述第一节点连接,所述边沿触发器用于当由所述 反相模块的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点的电位为第一电平。
所述信号控制器与所述第一节点连接,用于在开始检测时控制所述第一节点的电位为第一电平并控制所述第三节点的电位为高电平或低电平,并当所述第一节点的电位维持第一电平预定时间后,控制所述第一节点的电位跳变为第二电平。
在一实施例中,边沿触发器和信号控制器可以以集成电路(IC)的方式设置,或者体现为集成电路。
下面通过一具体实施例来说明本公开所述的指纹光电流检测单元包括的转换电路。
如图3A所示,本公开所述的指纹光电流检测单元中的转换电路的一具体实施例包括检测控制模块、第一开关模块、第二开关模块、反相模块31以及存储模块。
所述第一开关模块包括:第一开关晶体管T1,栅极与所述检测控制模块包括的边沿触发器32的输出端连接,漏极与输出高电平Vdd的高电平线连接,源极与第二节点G2连接;所述第一开关晶体管T1的栅极与所述第一节点G1连接。其中,第一开关晶体管T1为n型晶体管。
所述第二开关模块包括:第二开关晶体管T2,栅极与所述指纹光电流读取线RL连接,源极与所述反相模块31的输入端连接,漏极与所述反相模块31的输出端连接。所述第二开关晶体管T2的栅极与所述第二节点G2连接。其中,第二开关晶体管T2为p型晶体管。
所述存储模块包括:存储电容Cst,第一端与所述第二节点G2连接,第二端与输出低电平Vss的低电平线连接。
所述反相模块31包括相互串联的A个反相器,A为奇数并且A为正整数。第a反相器的输出端与第a+1反相器的输入端连接,a为大于等于1而小于A的整数。
第一反相器F1的输入端为所述反相模块31的输入端,第A反相器FA的输出端为所述反相模块31的输出端。
所述检测控制模块包括边沿触发器32和信号控制器33(如图10所示)。 所述边沿触发器32的边沿触发端与所述反相模块31的输出端连接,所述边沿触发器32的输出端与所述第一节点G1连接。
所述边沿触发器32用于在开始检测时控制所述第三节点G3的电位为高电平(在实际操作时也可以控制G3的节点为低电平),并当由所述反相模块31的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点G1的电位为高电平。
所述信号控制器与所述第一节点G1连接,用于在开始检测时控制所述第一节点G1的电位为高电平,并当所述第一节点G1的电位维持高电平预定时间后,控制所述第一节点G1的电位跳变为低电平。
在图3A中,标号为F1的为第一反相器,标号为F2的为第二反相器,标号为FA的为第A反相器。
本公开如图3A所示的转换电路相当于一个环形振荡器。在实际操作时,可以利用LTPS(Low Temperature Poly-silicon,低温多晶硅技术)工艺设置环形振荡器,并且所述环形振荡器可以设置于显示基板的有效显示区(AA区,如图9所示)之外。
图3A中的每一所述反相器的结构可以如图3B所示。在图3B中,标号为TF1的为第一反相晶体管,标号为TF2的为第二反相晶体管,Vdd为高电平,Vss为低电平,VIN为输入电压,VOUT为输出电压。第一反相晶体管TF1为PMOS(P-Metal-Oxide-Semiconductor,P型金属-氧化物-半导体)晶体管,第二反相晶体管TF2为NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)晶体管。
本公开如图3A所示的转换电路在工作时,
如图4所示,每个周期分为4个阶段,下面以第一个周期为例说明:在第一个周期,
在第一阶段t1,信号控制器(如图10所示)控制将G1的电位拉高,T1导通,Cst被充电,G2的电位升至Vdd,边沿触发器32供给G3以激励高电平(只在第一周期提供);信号控制器控制维持G1的电位为高电平预定时间t0之后转至第二阶段;
在第二阶段t2,信号控制器(如图10所示)控制G1的电位为低电平, T1断开,此时由于与RL通过读取晶体管连接的光敏二极管处于反向偏置状态(当所述光敏二极管处于反向偏置状态时,流经所述光敏二极管的电流(即指纹光电流)的方向是由光敏二极管的阴极流向光敏二极管的阳极,并所述指纹光电流与所述光敏二极管的反向偏置电压成非线性关系,在一定反向偏置电压范围内,反向偏置电压的变化并不会引起光敏二极管的反向电流(即指纹光电流)的变化),由于指纹光电流的影响,G2的电位逐步下降,直至G2的电位下降至T2的阈值电压Vth时,T2导通,G3的高电平通过导通的T2传输至反相模块31的输入端,从而将G3的电位拉低为低电平,进入第三阶段;
在第三阶段t3,在第三阶段t3开始时,由于边沿触发器32的边沿触发端(即G3)的电位处于下降沿,因此边沿触发器32输出高电平值G1,T1再次导通,Cst被充电,G2的电位升至Vdd,信号控制器控制维持G1的电位为高电平预定时间t0之后转至第四阶段;
在第四阶段t4,信号控制器控制G1的电位为低电平,此时由于与RL通过读取晶体管连接的光敏二极管处于反向偏置状态,由于指纹光电流的影响,G2的电位逐步下降,直至G2的电位下降至T2的阈值电压Vth时,T2导通,G3的低电平通过导通的T2传输至反相模块31的输入端,从而将G3的电位拉高为高电平,至此完成第一个周期,进入下一个显示周期的第一阶段;
通过不断的显示周期重复,G3的电位如图4中所示,为方波;带有指纹信息的指纹光电流不同,会导致第二阶段t2维持的时间长短以及第四阶段t4维持的时间长短不同,最后反映出来就是G3的电位的波形的频率的差异或G1的电位的波形的频率的差异,通过对G3的电位的波形的频率的测量和/或G1的电位的波形的频率的测量即可得到指纹信息。
本公开实施例所述的指纹光电流检测单元的驱动方法,应用于上述的指纹光电流检测单元,如图5所示,本公开实施例所述的指纹光电流检测单元的驱动方法包括:
S1:在充电阶段,检测控制模块控制第一节点的电位为第一电平并控制第三节点的电位为高电平或低电平,第一开关模块控制导通高电平线与第二节点之间的连接,存储模块开始充电,所述第二节点的电位升至高电平;
S2:在放电阶段,检测控制模块控制所述第一节点的电位跳变为第二电平,第一开关模块控制断开高电平线与所述第二节点之间的连接,控制指纹光电流从所述第二节点经过指纹光电流读取线流向指纹传感单元包括的处于反向偏置的光敏二极管,以使得所述第二节点的电位逐渐下降,直至第二开关模块导通,反相模块控制第三节点的电位跳变为低电平或高电平,检测控制模块控制将所述第一节点的电位重置为第一电平,检测电路根据反相模块的输出端的电位的波形的频率和/或所述第一节点的电位的波形的频率得到相应的指纹光电流信息。
本公开实施例所述的指纹识别器,包括指纹光电流读取线,还包括上述的指纹光电流检测单元。所述指纹光电流检测单元包括的转换电路与所述指纹光电流读取线连接。
可选的,所述指纹光电流读取线可以为m列,所述指纹识别器还包括n行m列指纹传感单元,n和m都为正整数。
每一所述指纹传感单元包括一读取控制晶体管和一光敏二极管;该光敏二极管的阳极与低电平输出端连接,该光敏二极管的阴极与该读取控制晶体管的第一极连接。
每一行指纹传感单元包括的读取控制晶体管的栅极都与相应的一行栅线连接;每一列指纹传感单元包括的读取控制晶体管的第二极都与相应的一列指纹光电流读取线连接。
在实际操作时,如图6所示,所述指纹光电流读取线RL为m列,本公开实施例所述的指纹识别器还包括设置于显示基板的有效显示区的n行m列指纹传感单元,n和m都为正整数。
每一所述指纹传感单元包括一读取控制晶体管和一光敏二极管;该光敏二极管的阳极与低电平输出端VSS连接,该光敏二极管的阴极与该读取控制晶体管的源极连接。
每一行指纹传感单元包括的读取控制晶体管的栅极都与相应的一行栅线连接;每一列指纹传感单元包括的读取控制晶体管的漏极都与相应的一列指纹光电流读取线连接。
在图6中,标号为GATE1的为第一行栅线,标号为GATE2的为第二行 栅线,标号为GATEn的为第n行栅线;
标号为RL1的为第一列指纹光电流读取线,标号为RL2的为第二列指纹光电流读取线,标号为RLm的为第m列指纹光电流读取线;
标号为TD11的为第一行第一列指纹传感单元包括的读取控制晶体管;
标号为SD11的为第一行第一列指纹传感单元包括的光敏二极管;
标号为TD12的为第一行第二列指纹传感单元包括的读取控制晶体管;
标号为SD12的为第一行第二列指纹传感单元包括的光敏二极管;
标号为TD1m的为第一行第m列指纹传感单元包括的读取控制晶体管;
标号为SD1m的为第一行第m列指纹传感单元包括的光敏二极管;
标号为TD21的为第二行第一列指纹传感单元包括的读取控制晶体管;
标号为SD21的为第二行第一列指纹传感单元包括的光敏二极管;
标号为TD22的为第二行第二列指纹传感单元包括的读取控制晶体管;
标号为SD22的为第二行第二列指纹传感单元包括的光敏二极管;
标号为TD2m的为第二行第m列指纹传感单元包括的读取控制晶体管;
标号为SD2m的为第二行第m列指纹传感单元包括的光敏二极管;
标号为TDn1的为第n行第一列指纹传感单元包括的读取控制晶体管;
标号为SDn1的为第n行第一列指纹传感单元包括的光敏二极管;
标号为TDn2的为第n行第二列指纹传感单元包括的读取控制晶体管;
标号为SDn2的为第n行第二列指纹传感单元包括的光敏二极管;
标号为TDnm的为第n行第m列指纹传感单元包括的读取控制晶体管;
标号为SDnm的为第n行第m列指纹传感单元包括的光敏二极管。
可选的,本公开实施例所述的指纹识别器还包括多路复用器;
所述多路复用器的输入端与所述m列指纹光电流读取线连接,所述多路复用器的输出端与所述指纹光电流检测单元包括的第二开关模块的控制端连接;
所述多路复用器的控制端与复用控制线连接;
所述多路复用器用于在所述复用控制线输出的复用控制信号的控制下控制所述m列指纹光电流读取线分时与所述第二开关模块的控制端连接。
如图7所示,在图6的基础上,本公开实施例所述的指纹识别器还包括 多路复用器Mux;
所述多路复用器Mux的输入端分别与所述m列指纹光电流读取线连接,所述多路复用器的输出端Muxout与图3A所示转换电路也即图7中的环形振荡器30连接。
具体的,所述多路复用器的输出端Muxout可以与图3A中的第二节点G2连接。所述多路复用器Mux的控制端分别与多条复用控制线连接;所述多路复用器Mux用于在所述复用控制线输出的复用控制信号的控制下控制所述m列指纹光电流读取线分时与所述环形振荡器30连接。
在图7中标号为SW1的为第一复用控制线,标号为SW2的为第二复用控制线,标号为SWn的为第n复用控制线。
如图8所示,本公开实施例所述的指纹识别器的驱动方法,用于驱动上述的指纹识别器,所述驱动方法包括:
导通步骤S81:在复用控制信号的控制下,多路复用器控制m列指纹光电流读取线分时与所述第二开关模块的控制端连接;
指纹光电流检测步骤S82:指纹光电流检测单元检测与其连接的指纹光电流读取线输出的指纹光电流信息。
本公开实施例所述的显示装置包括显示基板和设置于所述显示基板上的上述的指纹识别器。
具体的,所述显示基板可以为LTPS显示基板;
所述指纹识别器基于LTPS工艺设置于所述显示基板上。
在实际操作时,本公开实施例所述的显示装置还包括设置于显示基板的有效显示区的N组指纹光电流读取线;每一组所述指纹光电流读取线都包括m列纹光电流读取线;m和N都为正整数;
所述指纹识别器的个数为N个。
每个所述指纹识别器都分别与m列指纹光电流读取线连接。
也即,在具体实施例时,通过LTPS工艺设置于显示基板的有效显示区(AA区)之外的环形振荡器可以有N个,多路复用器也应该相应有N个,根据指纹光电流读取线的个数可以将其分为N组,每组m条指纹光电流读取线都接入一个多路复用器,多路复用器进行切换选通指纹光电流读取线,每 个多路复用器连接一个环形振荡器。M的个数取决于显示基板的空间设计(空间越多,环形振荡器可以设置的越多)、检测时间(M越小,检测时间越少)以及指纹光电流读取线的个数。
如图9所示,本公开实施例所述的显示装置可以包括利用LTPS工艺设置于显示基板90的AA区外的四个环形振荡器:第一环形振荡器911、第二环形振荡器912、第三环形振荡器913以及第四环形振荡器914。
图9所示的显示装置的实施例将该四个环形振荡器分别设置于显示基板90的AA区外的四边。
在图9所示的实施例中,第一环形振荡器911下面为扇出区域,第二环形振荡器912与AA区之间设置有GOA(Gate On Array,阵列基板行驱动)电路,在第四环形振荡器914与AA区之间也设置有GOA电路。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (14)

  1. 一种指纹光电流检测单元,包括:
    转换电路,与指纹光电流读取线连接,用于将所述指纹光电流读取线读取的指纹光电流转换为方波信号;以及,
    检测电路,与所述转换电路连接,用于检测所述方波信号,并通过所述方波信号的频率得到指纹光电流信息。
  2. 如权利要求1所述的指纹光电流检测单元,其中,所述转换电路包括检测控制模块、第一开关模块、第二开关模块、反相模块以及存储模块,其中,
    所述第一开关模块的控制端与所述检测控制模块连接,所述第一开关模块的第一端与高电平线连接,所述第一开关模块的第二端与所述第二开关模块的控制端连接,所述第一开关模块的控制端还与第一节点连接;所述第一开关模块用于当所述第一节点的电位为第一电平时导通,当所述第一节点的电位为第二电平时断开;
    所述存储模块的第一端与所述第一开关模块的第二端连接,所述存储模块的第二端与低电平线连接;
    所述第二开关模块的控制端还与所述指纹光电流读取线连接,所述第二开关模块的第一端与所述反相模块的输出端连接,所述第二开关模块的第二端与所述反相模块的输入端连接,所述第二开关模块的控制端还与第二节点连接;所述第二开关模块用于当所述第二节点的电位为低电平时导通,当所述第二节点的电位为高电平时断开;
    所述反相模块的输出端与第三节点连接;所述反相模块用于对所述反相模块的输入端接入的电平进行反相操作后输出;
    所述检测控制模块分别与所述第一节点和所述反相模块的输出端连接,用于在开始检测时以及当由所述反相模块的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点的电位为第一电平,并当所述第一节点的电位维持第一电平一段时间后,控制所述第一节点的电位跳变为第二电平,并在开始检测时控制所述第三节点的电位为高电平或低电平;
    所述检测电路与所述反相模块的输出端和所述第一节点中的至少一个连接,具体用于检测所述反相模块的输出端的电位的波形的频率和所述第一节点的电位的波形的频率中的至少一个,并通过所述反相模块的输出端的电位的波形的频率和所述第一节点的电位的波形的频率中的至少一个得到指纹光电流信息。
  3. 如权利要求2所述的指纹光电流检测单元,其中,所述第一开关模块包括:第一开关晶体管;所述第一开关晶体管的栅极与所述检测控制模块连接,所述第一开关晶体管的第一极与高电平线连接,所述第一开关晶体管的第二极与所述第二节点连接;所述第一开关晶体管的栅极与所述第一节点连接;
    所述第二开关模块包括:第二开关晶体管;所述第二开关晶体的栅极与所述指纹光电流读取线连接,所述第二开关晶体的第一极与所述反相模块的输出端连接,所述第二开关晶体的第二极与所述反相模块的输入端连接;所述第二开关晶体管的栅极与所述第二节点连接;
    所述存储模块包括:存储电容;所述存储电容的第一端与所述第二节点连接,所述存储电容的第二端与所述低电平线连接;
    所述反相模块包括相互串联的A个反相器,A为奇数并A为正整数;
    第a反相器的输出端与第a+1反相器的输入端连接,a为大于等于1而小于A的整数;
    第一反相器的输入端为所述反相模块的输入端,第A反相器的输出端为所述反相模块的输出端。
  4. 如权利要求3所述的指纹光电流检测单元,其中,所述第一开关晶体管为n型晶体管,所述第二开关晶体管为p型晶体管,所述第一电平为高电平,所述第二电平为低电平。
  5. 如权利要求3所述的指纹光电流检测单元,其中,所述第一开关晶体管和所述第二开关晶体管都为p型晶体管,所述第一电平为低电平,所述第二电平为高电平。
  6. 如权利要求3所述的指纹光电流检测单元,其中,所述检测控制模块包括边沿触发器和信号控制器,其中:
    所述边沿触发器的边沿触发端与所述反相模块的输出端连接,所述边沿触发器的输出端与所述第一节点连接;
    所述边沿触发器用于在开始检测时控制所述第三节点的电位为高电平或低电平,并当由所述反相模块的输出端输出的信号处于上升沿或下降沿时,控制所述第一节点的电位为第一电平;以及,
    所述信号控制器与所述第一节点连接,用于在开始检测时控制所述第一节点的电位为第一电平,并当所述第一节点的电位维持第一电平一段时间后,控制所述第一节点的电位跳变为第二电平。
  7. 一种指纹光电流检测单元的驱动方法,应用于如权利要求2至6中任一权利要求所述的指纹光电流检测单元,所述驱动方法包括:
    在充电阶段,检测控制模块控制第一节点的电位为第一电平并控制第三节点的电位为高电平或低电平,第一开关模块控制导通高电平线与第二节点之间的连接,存储模块开始充电,所述第二节点的电位升至高电平;
    在放电阶段,检测控制模块控制所述第一节点的电位跳变为第二电平,第一开关模块控制断开高电平线与所述第二节点之间的连接,控制指纹光电流从所述第二节点经过指纹光电流读取线流向指纹传感单元包括的处于反向偏置的光敏二极管,以使得所述第二节点的电位逐渐下降,直至第二开关模块导通,反相模块控制第三节点的电位跳变为低电平或高电平,检测控制模块控制将所述第一节点的电位重置为第一电平,检测电路根据反相模块的输出端的电位的波形的频率和所述第一节点的电位的波形的频率中的至少一个得到相应的指纹光电流信息。
  8. 一种指纹识别器,包括指纹光电流读取线,以及如权利要求1至6中任一权利要求所述的指纹光电流检测单元;
    所述指纹光电流检测单元包括的转换电路与所述指纹光电流读取线连接。
  9. 如权利要求8所述的指纹识别器,其中,所述指纹光电流读取线为m列,所述指纹识别器还包括n行m列指纹传感单元,n和m都为正整数;
    每一所述指纹传感单元包括一读取控制晶体管和一光敏二极管;该光敏二极管的阳极与低电平输出端连接,该光敏二极管的阴极与该读取控制晶体管的第一极连接;
    每一行指纹传感单元包括的读取控制晶体管的栅极都与相应的一行栅线连接;每一列指纹传感单元包括的读取控制晶体管的第二极都与相应的一列指纹光电流读取线连接。
  10. 如权利要求9所述的指纹识别器,还包括多路复用器;
    所述多路复用器的输入端与所述m列指纹光电流读取线连接,所述多路复用器的输出端与所述指纹光电流检测单元包括的第二开关模块的控制端连接;
    所述多路复用器的控制端与复用控制线连接;
    所述多路复用器用于在所述复用控制线输出的复用控制信号的控制下控制所述m列指纹光电流读取线分时与所述第二开关模块的控制端连接。
  11. 一种指纹识别器的驱动方法,用于驱动如权利要求10所述的指纹识别器,所述驱动方法包括:
    导通步骤:在复用控制信号的控制下,多路复用器控制m列指纹光电流读取线分时与所述第二开关模块的控制端连接;
    指纹光电流检测步骤:指纹光电流检测单元检测与所述指纹光电流检测单元检测连接的指纹光电流读取线输出的指纹光电流信息。
  12. 一种显示装置,包括显示基板和设置于所述显示基板上的如权利要求8至10中任一权利要求所述的指纹识别器。
  13. 如权利要求12所述的显示装置,其中,所述显示基板为低温多晶硅LTPS显示基板;
    所述指纹识别器基于LTPS工艺设置于所述显示基板上。
  14. 如权利要求12或13所述的显示装置,还包括设置于显示基板的有效显示区的N组指纹光电流读取线;每一组所述指纹光电流读取线都包括m列纹光电流读取线;m和N都为正整数;
    所述指纹识别器的个数为N个;
    每个所述指纹识别器都分别与m列指纹光电流读取线连接。
PCT/CN2017/101222 2016-09-18 2017-09-11 指纹光电流检测单元、指纹识别器、驱动方法和显示装置 WO2018050035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/768,218 US10318787B2 (en) 2016-09-18 2017-09-11 Fingerprint photocurrent detection unit, fingerprint identifier, driving method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610829135.8 2016-09-18
CN201610829135.8A CN106469303B (zh) 2016-09-18 2016-09-18 指纹光电流检测单元、指纹识别器、驱动方法和显示装置

Publications (1)

Publication Number Publication Date
WO2018050035A1 true WO2018050035A1 (zh) 2018-03-22

Family

ID=58230212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101222 WO2018050035A1 (zh) 2016-09-18 2017-09-11 指纹光电流检测单元、指纹识别器、驱动方法和显示装置

Country Status (3)

Country Link
US (1) US10318787B2 (zh)
CN (1) CN106469303B (zh)
WO (1) WO2018050035A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111160287A (zh) * 2019-12-31 2020-05-15 厦门天马微电子有限公司 显示面板及其指纹识别方法、显示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469303B (zh) * 2016-09-18 2019-07-09 京东方科技集团股份有限公司 指纹光电流检测单元、指纹识别器、驱动方法和显示装置
CN108416247A (zh) * 2017-02-09 2018-08-17 上海箩箕技术有限公司 光学指纹传感器模组
CN107480650B (zh) 2017-08-24 2020-03-27 京东方科技集团股份有限公司 指纹检测单元、指纹检测电路及其驱动方法、显示装置
WO2019076332A1 (zh) * 2017-10-20 2019-04-25 华为技术有限公司 一种指纹信息的获取方法及指纹识别装置
CN109697402B (zh) 2017-10-20 2020-10-16 华为技术有限公司 一种指纹信息的获取方法及指纹识别装置
CN108073912B (zh) * 2018-01-03 2021-01-26 京东方科技集团股份有限公司 指纹识别装置和指纹识别设备
CN108304803B (zh) * 2018-01-31 2021-04-23 京东方科技集团股份有限公司 光检测电路、光检测方法和显示装置
CN110716115B (zh) * 2018-06-27 2021-01-22 京东方科技集团股份有限公司 超声波信号检测电路、超声波信号检测方法、显示面板
CN111626278B (zh) * 2019-02-28 2024-04-16 京东方科技集团股份有限公司 纹路识别装置以及纹路识别装置的操作方法
CN109979367B (zh) * 2019-05-13 2023-08-04 京东方科技集团股份有限公司 光电检测电路及其驱动方法、感光装置及显示装置
US11232278B2 (en) * 2019-10-16 2022-01-25 Boe Technology Group Co., Ltd. Fingerprint identification and detection circuit, method and display device
CN110715792B (zh) * 2019-10-30 2021-11-19 厦门天马微电子有限公司 一种显示面板及其测试方法、治具和显示装置
CN112599060A (zh) * 2020-12-31 2021-04-02 厦门天马微电子有限公司 Vt测试电路、系统、方法、显示面板及显示装置
CN112699853B (zh) * 2021-01-28 2024-02-02 合肥维信诺科技有限公司 指纹识别电路及其驱动方法、指纹识别设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104516716A (zh) * 2015-01-13 2015-04-15 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN104573649A (zh) * 2014-12-30 2015-04-29 深圳市汇顶科技股份有限公司 指纹识别传感器和终端设备
US20150254491A1 (en) * 2014-03-07 2015-09-10 Focaltech Systems, Ltd. Display device, driving circuit, method for driving display device, and electronic apparatus
CN105426865A (zh) * 2015-12-07 2016-03-23 湖南融创微电子有限公司 指纹检测电路、指纹传感器以及指纹检测方法
CN106469303A (zh) * 2016-09-18 2017-03-01 京东方科技集团股份有限公司 指纹光电流检测单元、指纹识别器、驱动方法和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794260A (en) * 1984-12-27 1988-12-27 Kawasaki Steel Corporation Method for detecting fingerprints using a laser and an apparatus therefor
CN101520837B (zh) * 2008-02-25 2010-12-08 奇景光电股份有限公司 电容式指纹感应器及其面板
US9740343B2 (en) * 2012-04-13 2017-08-22 Apple Inc. Capacitive sensing array modulation
CN103761002B (zh) * 2013-12-31 2017-05-10 北京大学深圳研究生院 一种触控电路及其单元和触控显示面板及其装置
KR20170024664A (ko) * 2015-08-26 2017-03-08 삼성전기주식회사 접촉 감지 장치
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN105930827B (zh) * 2016-05-16 2019-03-01 京东方科技集团股份有限公司 一种阵列基板、显示装置及其驱动方法
CN105913055B (zh) * 2016-07-04 2019-09-27 京东方科技集团股份有限公司 指纹检测单元及其驱动方法、显示器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150254491A1 (en) * 2014-03-07 2015-09-10 Focaltech Systems, Ltd. Display device, driving circuit, method for driving display device, and electronic apparatus
CN104573649A (zh) * 2014-12-30 2015-04-29 深圳市汇顶科技股份有限公司 指纹识别传感器和终端设备
CN104516716A (zh) * 2015-01-13 2015-04-15 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN105426865A (zh) * 2015-12-07 2016-03-23 湖南融创微电子有限公司 指纹检测电路、指纹传感器以及指纹检测方法
CN106469303A (zh) * 2016-09-18 2017-03-01 京东方科技集团股份有限公司 指纹光电流检测单元、指纹识别器、驱动方法和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111160287A (zh) * 2019-12-31 2020-05-15 厦门天马微电子有限公司 显示面板及其指纹识别方法、显示装置
CN111160287B (zh) * 2019-12-31 2022-10-21 厦门天马微电子有限公司 显示面板及其指纹识别方法、显示装置

Also Published As

Publication number Publication date
US10318787B2 (en) 2019-06-11
CN106469303B (zh) 2019-07-09
US20180314872A1 (en) 2018-11-01
CN106469303A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2018050035A1 (zh) 指纹光电流检测单元、指纹识别器、驱动方法和显示装置
US10997387B2 (en) Fingerprint recognition circuit and method for driving the same, display panel
US10210373B2 (en) Fingerprint recognition sensor capable of sensing fingerprint using optical and capacitive method
KR100697873B1 (ko) 전하 검출회로 및 그것을 이용한 지문센서
US8766651B2 (en) Capacitive fingerprint sensor
US8810705B2 (en) Solid-state image sensing apparatus
JP2008542706A (ja) 光子計数装置
KR20170104585A (ko) 지문감지 회로 및 지문인식 시스템
CN104091107A (zh) 身份辨识装置及身份辨识装置的操作方法
CN111179834A (zh) 一种光感驱动电路及其驱动方法、光感显示装置
TW200907474A (en) Display devices and electronic devices
CN108171192B (zh) 指纹识别检测电路及其驱动方法、显示装置
US7259611B2 (en) Step-up / step-down circuit
CN113158737A (zh) 超声波指纹检测传感器及模组
US20180144678A1 (en) Photoelectric sensor and display panel
US10714650B2 (en) Optical detection circuit, optical detection method and optical detection device
TWI466098B (zh) 顯示器驅動方法以及驅動電路
JP2022521169A (ja) 奇偶影響を下げるマトリクス検出器
CN106354345B (zh) 触控单元、触控模组、内嵌式触控屏和显示装置
US11393241B2 (en) Imaging backplane, driving method thereof and fingerprint identification panel
US7062075B2 (en) Surface shape recognition sensor device
TWI691906B (zh) 任意位置指紋檢測電路及電子裝置
US10275635B2 (en) Fingerprint detection circuit and driving method thereof, and display device
US12020501B2 (en) Sensing circuit, detection control method, fingerprint identification module and display apparatus
US20240203154A1 (en) Fingerprint identification driving circuit, fingerprint identification circuit and driving method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15768218

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17850237

Country of ref document: EP

Kind code of ref document: A1