WO2018048154A1 - Semiconductor light emitting device comprising light emitting structure - Google Patents

Semiconductor light emitting device comprising light emitting structure Download PDF

Info

Publication number
WO2018048154A1
WO2018048154A1 PCT/KR2017/009649 KR2017009649W WO2018048154A1 WO 2018048154 A1 WO2018048154 A1 WO 2018048154A1 KR 2017009649 W KR2017009649 W KR 2017009649W WO 2018048154 A1 WO2018048154 A1 WO 2018048154A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
conductive pattern
light emitting
semiconductor layer
Prior art date
Application number
PCT/KR2017/009649
Other languages
French (fr)
Korean (ko)
Inventor
장종민
김창연
배선민
임재희
김재헌
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160117137A external-priority patent/KR20180029358A/en
Priority claimed from KR1020160157200A external-priority patent/KR20180058357A/en
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Publication of WO2018048154A1 publication Critical patent/WO2018048154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to an electronic device, and more particularly, to a semiconductor light emitting device including a light emitting structure.
  • a semiconductor light emitting diode (Light Emitting Diode) is a semiconductor device that converts electrical energy into light energy, and is composed of a compound semiconductor that emits light of a specific wavelength according to the energy band gap.
  • Such semiconductor light emitting diodes have a number of advantages, such as long life, low power, and excellent initial driving characteristics, compared to filament-based light sources. For example, semiconductor light emitting diodes are being used in displays, backlight units for liquid crystal displays, lighting, and the like, and their use is expanding to various areas.
  • the application of the gallium nitride-based light emitting diode is proceeding to a large sized and high output product as well as small portable products, a light source suitable for the characteristics required for the product is required.
  • the present application is to provide a semiconductor light emitting device having an improved driving efficiency.
  • the present application is to provide a semiconductor light emitting device having improved characteristics while having a low forward voltage.
  • a semiconductor light emitting device including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially stacked; A first conductive pattern in ohmic contact with one surface of the second conductive semiconductor layer; And a second conductive pattern having ohmic contact to the one surface of the second conductive semiconductor layer and having a material different from that of the first conductive pattern.
  • the first conductive pattern contacts a portion of the second conductive pattern.
  • the second conductive pattern may surround the first conductive pattern.
  • the one surface of the second conductivity-type semiconductor layer is divided into a first portion and a second portion, the second conductive pattern is disposed on the first portion, and the second conductive pattern is the second conductive.
  • the first conductive pattern may be adjacent to an edge of the type semiconductor layer and spaced apart from the edge than the second conductive pattern.
  • the first conductive pattern may contact at least some of side surfaces of the second conductive pattern.
  • the second conductive pattern may include a lower surface contacting the one surface of the second conductive semiconductor layer and an upper surface opposite to the lower surface, and the first conductive pattern may be one of the upper surfaces of the second conductive pattern. At least a portion of the first conductive layer may be in contact with a side surface of the second conductive pattern.
  • the width of the second conductive pattern may be shorter than the width of the first conductive pattern.
  • the thickness of the second conductive pattern may be thinner than the thickness of the first conductive pattern.
  • portions adjacent to the second conductive pattern of the first conductive pattern may have a slop.
  • the portion of the first conductive pattern that is adjacent to the second conductive pattern may be thinner as it is closer to the second conductive pattern.
  • the portion adjacent to the second conductive pattern of the first conductive pattern is divided into a first region and a second region between the first region and the second conductive pattern, and the first region is The closer to the second conductive pattern, the thinner it is, and the closer to the second conductive pattern, the thicker the second region.
  • the first conductive pattern may include a reflective material
  • the second conductive pattern may include a transparent material
  • the first conductive pattern may include a reflective metal
  • the second conductive pattern may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), Gallium Indium Oxide (GIO), Zinc Tin Oxide (ZTO), Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), and Transparent (TCO) Conductive Oxide) may include at least one material selected from.
  • the first conductive pattern may include a reflective metal layer; And a cover metal layer covering the reflective metal layer, wherein the cover metal layer contacts the second conductive pattern, and the reflective metal layer is spaced apart from the second conductive pattern.
  • the second conductive pattern may include a side surface facing the reflective metal layer, and the cover metal layer may contact at least a portion of the side surface of the second conductive pattern.
  • the second conductive pattern may include a lower surface contacting the second conductive semiconductor layer and an upper surface opposite to the lower surface, and the cover metal layer may be formed with at least a portion of the upper surface of the second conductive pattern. You can contact more.
  • a semiconductor light emitting device may be disposed on the first and second conductive patterns and the light emitting structure, and may include a first opening exposing a portion of the first conductive semiconductor layer, and the first and second conductive layers.
  • a first passivation layer having a second opening exposing a portion of at least one of the patterns;
  • An electrode layer disposed on the first passivation layer and in contact with the first conductive semiconductor layer through the first opening;
  • a first electrode pad contacting the electrode layer through the third opening; And a second electrode pad contacting at least one of the first and second conductive patterns through the fourth opening.
  • the first conductive semiconductor layer may be an n-type semiconductor layer
  • the second conductive semiconductor layer may be a p-type semiconductor layer
  • a semiconductor light emitting device the first conductive semiconductor layer; An active layer disposed on the first conductivity type semiconductor layer; A second conductivity type semiconductor layer disposed on the active layer; A first electrode layer contacting the first conductive semiconductor layer; And a second electrode layer contacting the second conductive semiconductor layer, wherein the second electrode layer contacts the second conductive semiconductor layer, the first conductive pattern, and the second conductive semiconductor layer. It may include a second conductive pattern surrounding at least a portion of the first conductive pattern.
  • a semiconductor light emitting device including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially stacked on a substrate; A first contact electrode layer disposed on the light emitting structure and contacting the first conductive semiconductor layer in a non-light emitting region; And a second contact electrode layer disposed on the light emitting structure, the second contact electrode layer contacting the second conductive semiconductor layer in a light emitting region, wherein the first contact electrode layer contacts the first conductive semiconductor layer. Is equal to or greater than 1.8% of the sum of the non-emission area and the emission area.
  • the first contact area may be in the range of 1.8% to 4.5% of the sum.
  • the first contact area may be 2.5% of the sum.
  • the substrate may be a conductive substrate including GaN.
  • a first portion of the portions in which the first contact electrode layer contacts the first conductive semiconductor layer may be positioned at the center of the emission area.
  • a second portion of the portions in which the first contact electrode layer contacts the first conductive semiconductor layer may be positioned at an edge of the emission area.
  • the first conductive semiconductor layer may be an n-type semiconductor layer
  • the second conductive semiconductor layer may be a p-type semiconductor layer
  • the second contact electrode layer may include: a reflective metal having ohmic contact with the second conductivity type semiconductor layer; And a conductive pattern having ohmic contact with the second conductive semiconductor layer and having a material different from that of the reflective metal, wherein the conductive pattern may contact at least a portion of the reflective metal.
  • the conductive pattern may surround the reflective metal on the second conductive semiconductor layer.
  • the light emitting structure may be divided into a mesa region and an etching region, wherein the first conductivity type semiconductor layer is positioned in the mesa region and the etching region, and the active layer and the second conductivity type semiconductor layer are in the mesa region.
  • the light emitting region may be disposed on the first conductive semiconductor layer, and the emission region may correspond to a region where the active layer is located.
  • the semiconductor light emitting device may further include a first passivation layer disposed on the light emitting structure and the second contact electrode layer and having a first opening exposing a portion of the first conductivity type semiconductor layer in the non-light emitting region. It may include.
  • the first contact electrode layer may be disposed on the first passivation layer and contact the first conductive semiconductor layer through the first opening, and the first opening may be positioned at the center of the emission area.
  • the first passivation layer may have a second opening exposing a portion of the second contact electrode layer.
  • the semiconductor light emitting device may include a connection electrode layer disposed on the first passivation layer and contacting the second contact electrode layer through the second opening; A second passivation layer disposed on the first contact electrode layer and the connection electrode layer and having a third opening exposing a portion of the first contact electrode layer and a fourth opening exposing a portion of the connection electrode layer; A first electrode pad contacting the first contact electrode layer through the third opening; And a second electrode pad contacting the connection electrode layer through the fourth opening.
  • a semiconductor light emitting device is a substrate; A light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially stacked on the substrate, the light emitting structure being divided into a mesa region and an etching region; A first contact electrode layer disposed on the light emitting structure and contacting the first conductivity type semiconductor layer in the etching region; And a second contact electrode layer disposed on the light emitting structure and contacting the second conductive semiconductor layer in the mesa region.
  • the first contact area where the first contact electrode layer contacts the first conductive semiconductor layer is equal to or greater than 1.8% of the sum of the mesa region and the etching region.
  • the first contact area may be in the range of 1.8% to 4.5% of the sum.
  • a semiconductor light emitting device having an improved driving efficiency is provided.
  • a semiconductor light emitting device having improved characteristics while having a low forward voltage is provided.
  • FIG. 1 is a perspective view showing a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
  • FIG. 3 is a perspective view illustrating a substrate, a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, and first and second conductive patterns of the semiconductor light emitting device of FIG. 1.
  • FIG. 4 is a view illustrating a region A of FIG. 2.
  • FIG. 5 is a cross-sectional view illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
  • 6, 7, 8, 9, 10, and 11 are diagrams for describing a method of manufacturing the semiconductor light emitting device of FIG. 5.
  • FIG. 12 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • 15A and 15B are plan views illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
  • FIGS. 15A and 15B are cross-sectional views taken along the line II-II 'of FIGS. 15A and 15B.
  • FIG. 17 is a plan view illustrating a modified embodiment of the semiconductor light emitting device described with reference to FIGS. 15A and 15B.
  • FIG. 18 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 19 is a cross-sectional view illustrating an application example of the semiconductor light emitting device of FIG. 18.
  • FIG. 20 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 21 is a cross-sectional view illustrating an application example of the semiconductor light emitting device of FIG. 20.
  • FIG. 22 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • FIG. 23 is an exploded perspective view illustrating a modified example of the semiconductor light emitting package of FIG. 22.
  • 24 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • 25 is a plan view of a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 26 is a diagram illustrating an embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
  • 27 is an experimental graph showing the relationship between the area of the light emitting area and the light intensity.
  • 28 is an experimental graph illustrating a relationship between an area of first contact regions and a forward voltage of a semiconductor light emitting device.
  • FIG. 29 is a diagram illustrating another embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
  • FIG. 30 is an enlarged view illustrating region A of FIG. 29.
  • FIG. 31 is an experimental graph illustrating a relationship between an area of first contact regions and a forward voltage of a semiconductor light emitting device according to the exemplary embodiment of FIG. 30.
  • 32, 33A, 33B, 34A, 34B, 35A, 35B, 36A, 36B, 37A, and 37B illustrate a method of manufacturing a semiconductor light emitting device according to the embodiment of FIG. 29. admit.
  • FIG. 38 is a plan view of a semiconductor light emitting device according to another embodiment of the present invention.
  • 39 is a plan view of a semiconductor light emitting device according to still another embodiment of the present invention.
  • FIG. 40 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • FIG. 41 is an exploded perspective view illustrating a modification of the semiconductor light emitting package of FIG. 40.
  • FIG. 42 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • first, second, etc. may be used to describe various elements, elements, regions, layers, and / or sections, but such elements, elements, regions, layers, and / or the like. Or sections are not limited to these terms. These terms are used to distinguish one element, element, region, layer, and / or section from another element, element, region, layer, and / or section. Thus, the first element, element, region, layer, and / or section in one embodiment may be referred to as the second element, element, region, layer, and / or section in another embodiment.
  • FIG. 1 is a perspective view illustrating a semiconductor light emitting device 100 according to an exemplary embodiment of the present invention.
  • the semiconductor light emitting device 100 may include a substrate 110, a semiconductor structure SS, and first and second electrode pads EP1 and EP2.
  • the substrate 110 may be an insulating or conductive substrate.
  • the substrate 110 may include GaN, sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , and the like.
  • the semiconductor structure SS is disposed on the substrate 110.
  • the semiconductor structure SS may include at least one groove GRV.
  • the circular groove GRV shown in FIG. 1 is exemplary, and it will be understood that its position, size, and shape may be variously changed according to embodiments.
  • the semiconductor structure SS is described in more detail with reference to FIG. 2.
  • First and second electrode pads EP1 and EP2 are disposed on the semiconductor structure SS.
  • the first electrode pad EP1 is electrically connected to the first conductive semiconductor layer 120 through the semiconductor structure SS.
  • the first electrode pad EP1 may be connected to the first electrode layer in the semiconductor structure SS.
  • the first electrode layer may contact the first conductivity type semiconductor layer 120 in a region corresponding to the groove GRV.
  • the second electrode pad EP2 is electrically connected to the second conductive semiconductor layer included in the semiconductor structure SS. Voltage or current may be applied to the first conductive semiconductor layer 120 and the second conductive semiconductor layer through the first and second electrode pads EP1 and EP2.
  • the semiconductor light emitting device 100 may be a gallium nitride-based semiconductor light emitting device.
  • FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
  • the semiconductor structure SS of FIG. 1 may include a first conductive semiconductor layer 120, an active layer 130, a second conductive semiconductor layer 140, and first and second conductive patterns 150. 160, a first passivation layer 170, a first electrode layer 180, and a second passivation layer 190.
  • the first conductive semiconductor layer 120 is a nitride semiconductor containing an n-type impurity.
  • the composition Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) can be satisfied.
  • the first conductivity type semiconductor layer 120 may include GaN, AlGaN, InGaN, AlInGaN, or the like.
  • the n-type impurity may be Si.
  • the impurity concentration of the first conductive semiconductor layer 120 may be higher than that of the substrate.
  • the substrate 110 may function as a current path together with the first conductivity-type semiconductor layer 120. Current transmitted to the first electrode layer 180 through the second conductive semiconductor layer 140, the active layer 130, and the first conductive semiconductor layer 120 may flow more smoothly by the substrate 110. .
  • the active layer 130 is disposed on the first conductivity type semiconductor layer 120.
  • the active layer 130 may have a multi quantum well (MQW) structure in which a quantum well layer and a quantum barrier layer are alternately stacked.
  • MQW multi quantum well
  • each of the quantum well layer and the quantum barrier layer includes materials having different compositions, and the formula In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) may be satisfied.
  • the quantum well layer may include a highly volatile element such as indium (In).
  • the quantum well layer may include In x Ga 1-x N (0 ⁇ x ⁇ 1), and the quantum barrier layer may include GaN or AlGaN.
  • the active layer 130 may have a single quantum well (SQW) structure.
  • the second conductivity type semiconductor layer 140 is disposed on the active layer 130.
  • the second conductivity-type semiconductor layer 140 is a p-type nitride semiconductor, which satisfies the compositional formula Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Can be.
  • the second conductivity type semiconductor layer 140 may include AlGaN, GaN, or the like.
  • the p-type impurity may be Mg.
  • the second conductivity-type semiconductor layer 140 may have a single layer structure or a multilayer structure.
  • the second conductivity-type semiconductor layer 140 includes a p-type AlGaN layer, a low concentration p-type GaN layer, and a high concentration p-type GaN layer serving as an electron blocking layer. It may include.
  • the active layer 130 and the second conductive semiconductor layer 140 may be patterned to expose the first conductive semiconductor layer 120 in a region corresponding to the groove GRV (see FIG. 1). It will be appreciated that the position, size, and shape of the opening exposing the first conductivity type semiconductor layer 120 may be changed in various ways.
  • the exposed portion of the first conductivity type semiconductor layer 120 may be etched to have a thickness thinner than that of the other portions of the first conductivity type semiconductor layer 120.
  • the first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor layer 140 may form a light emitting structure (ES).
  • ES light emitting structure
  • the first and second conductive patterns 150 and 160 including different materials are disposed on the second conductive semiconductor layer 140.
  • the first and second conductive patterns 150 and 160 extend at the same height h from the surface of the substrate 110 in the surface direction (ie, the X direction and the Y direction) of the substrate 110.
  • the first and second conductive patterns 150 and 160 may function as the second electrode layer 165 contacting the second conductive semiconductor layer 140.
  • the first conductive pattern 150 may include a reflective metal.
  • the reflective metal will reflect light emitted from the active layer 130.
  • the semiconductor light emitting device 100 will emit light in a direction including a vector component in a direction opposite to the Z direction or in a direction opposite to the Z direction. For example, light generated in the active layer 130 may be emitted toward the substrate 110.
  • the second conductive pattern 160 contacts the second conductive semiconductor layer 140 as well as the first conductive pattern 150.
  • the second conductive pattern 160 is formed in an area adjacent to an edge of the upper surface of the second conductive semiconductor layer 140, and the first conductive pattern 150 is second conductive than the second conductive pattern 160. It may be spaced apart from the edge of the upper surface of the type semiconductor layer 140.
  • the width W1 of the second conductive pattern 160 may be shorter than the width W2 of the first conductive pattern 150.
  • the second conductive pattern 160 includes a material different from the first conductive pattern 150.
  • the second conductive pattern may include a transparent material.
  • the second conductive pattern 160 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc (ZTO) TinOxide, Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), Transparent Conductive Oxide (TCO), etc. Can be.
  • the first and second conductive patterns 150 and 160 may have ohmic contacts with the second conductive semiconductor layer 140.
  • the first passivation layer 170 is disposed on the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer 140, and the first and second conductive patterns 150 and 160. do.
  • the first passivation layer 170 has a first opening OP1 exposing the first conductivity type semiconductor layer 120 in a region corresponding to the groove GRV.
  • the first passivation layer 170 has a second opening OP2 exposing at least one of the first and second conductive patterns 150 and 160.
  • the second opening OP2 is illustrated as exposing the first conductive pattern 150.
  • the first electrode layer 180 is disposed on the first passivation layer 170 and the first conductivity type semiconductor layer 120.
  • the first passivation layer 170 allows the first electrode layer 180 to contact the active layer 130, the second conductivity type semiconductor layer 140, and the first and second conductive patterns 150 and 160. Is blocked.
  • the first electrode layer 180 may contact the first conductive semiconductor layer 120 through the first opening OP1.
  • the first electrode layer 180 may have an ohmic contact with the first conductive semiconductor layer 120 exposed by the first opening OP1.
  • the first electrode layer 180 may include at least one of materials such as Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, and alloys thereof.
  • the second passivation layer 190 is disposed on the first electrode layer 180.
  • the second passivation layer 190 includes a third opening OP3 exposing the first electrode layer 180.
  • the second passivation layer 190 may include a fourth opening OP4 exposing a portion of the first conductive pattern 150 exposed by the second opening OP2.
  • the fourth opening OP4 may cover a portion of the second opening OP2.
  • each of the first and second passivation layers 170 and 190 may include SiO 2 , SiN, SiO x N y , TiO 2 , Si 3 N 4 , Al 2 O 3 , TiN, AlN, ZrO 2 , TiAlN, It may be formed of an insulating material such as TiSiN.
  • the first and second passivation layers 170 and 190 may be formed as a distributed Bragg reflector (DBR) in which a low refractive material layer and a high refractive material layer of the insulating material are alternately stacked.
  • the first and second passivation layers 170 and 180 may be a multilayer structure including insulating reflecting layers having high reflectivity formed by stacking layers such as SiO 2 / TiO 2 or SiO 2 / Nb 2 O 5 . have.
  • the first and second electrode pads EP1 and EP2 are disposed on the second passivation layer 190.
  • the first electrode pad EP1 may contact the first electrode layer 180 through the third opening OP3.
  • the first electrode pad EP1 may be electrically connected to the first conductive semiconductor layer 120 through the first electrode layer 180.
  • the second electrode pad EP2 may contact the first conductive pattern 150 through the fourth opening OP4. Since the first conductive pattern 150 contacts not only the second conductive semiconductor layer 140 but also the second conductive pattern 160, the second electrode pad EP2 contacts the first and second conductive patterns 150 and 160. ) May be electrically connected to the second conductivity-type semiconductor layer 140.
  • plan view along the X direction and the Y direction of the semiconductor light emitting device 100 may be variously modified.
  • the position, size, and shape of the semiconductor structure SS (see FIG. 1) and the grooves GRV (see FIG. 1) may be changed.
  • the position, size, and shape of the first and second electrode pads EP1 and EP2 may be changed.
  • FIG. 3 illustrates a substrate 110, a first conductive semiconductor layer 120, an active layer 130, a second conductive semiconductor layer 140, and first and second conductive layers of the semiconductor light emitting device 100 of FIG. 1.
  • a perspective view showing the patterns 150 and 160. 4 is a view illustrating a region A of FIG. 2.
  • first and second conductive patterns 150 and 160 are stacked on an upper surface of the second conductive semiconductor layer 140.
  • the first and second conductive patterns 150 and 160 have openings in a region corresponding to the groove GRV of FIG. 1.
  • the second conductive pattern 160 is adjacent to the edge EG of the upper surface of the second conductive semiconductor layer 140, and the first conductive pattern 150 is the second conductive semiconductor layer than the second conductive pattern 160. It may be spaced apart from the edge EG of the upper surface of 140.
  • the first and second conductive patterns 150 and 160 constitute the second electrode layer 165.
  • the second conductive pattern 160 may extend along the edge of the second electrode layer 165, and the first conductive pattern 150 may be surrounded by the second conductive pattern 160. Accordingly, the upper surface of the second conductivity type semiconductor layer 140 may contact the second electrode layer 165 in a large area.
  • the current from the power source is efficiently diffused by the second conductive pattern 160, and the concentration of the current density in the first conductive pattern 150 is prevented.
  • the semiconductor light emitting device 100 having improved driving performance and driving efficiency is provided.
  • current from a power source may include a first conductive pattern 150, a second conductive semiconductor layer 140, an active layer 130, a first conductive semiconductor layer 120, and a first electrode layer 180. ) May flow through the first current path CP1.
  • the first conductive pattern 150 and the second conductive pattern 160 contact the second conductive semiconductor layer 140.
  • the current from the power source is not only the first current path CP1 but also the second conductive pattern 160, the second conductive semiconductor layer 140, the active layer 130, the first conductive semiconductor layer 120, and the first conductive path 160. It may flow through the second current path CP2 formed by the first electrode layer 180. Accordingly, the current from the power source can flow smoothly through the first and second current paths CP1 and CP2.
  • the distance between the second conductive pattern 160 and the first electrode layer 180 is shorter than the distance between the first conductive pattern 150 and the first electrode layer 180. This may mean that the second current path CP2 transfers the current more smoothly.
  • driving performance and driving efficiency of the semiconductor light emitting device 100 may be further improved.
  • FIG. 5 is a cross-sectional view illustrating a semiconductor light emitting device 200 according to another embodiment of the present invention.
  • the semiconductor light emitting device 200 may include a substrate 210, a first conductive semiconductor layer 220, an active layer 230, a second conductive semiconductor layer 240, and first and second conductive patterns. Fields 250 and 260, a first passivation layer 270, a first electrode layer 280, a second passivation layer 290, and first and second electrode patterns EP1 and EP2.
  • the substrate 210, the first conductive semiconductor layer 220, the active layer 230, the second conductive semiconductor layer 240, the first passivation layer 270, the first electrode layer 280, and the second passivation layer ( 290, and the first and second electrode patterns EP1 and EP2 may include the substrate 110, the first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor described with reference to FIG. 2.
  • the same as the layer 140, the first passivation layer 170, the first electrode layer 180, the second passivation layer 190, and the first and second electrode patterns EP1 and EP2 are described. In the following, redundant description is omitted.
  • the second conductive pattern 260 of the second electrode layer 265 may have a thickness thinner than that of the first conductive pattern 250.
  • the thickness THC2 of the second conductive pattern 260 When the thickness THC2 of the second conductive pattern 260 is relatively thick, light generated from the active layer 230 may be absorbed by the second conductive pattern 260 to reduce the light efficiency of the semiconductor light emitting device 200. have. When the thickness THC2 of the second conductive pattern 260 is thin, the amount of light absorbed by the second conductive pattern 260 may be reduced, thereby improving light efficiency of the semiconductor light emitting device 200. According to an embodiment of the present disclosure, the thickness THC2 of the second conductive pattern 260 may be thinner than at least the thickness THC1 of the first conductive pattern 250.
  • the first and second conductive patterns 250 and 260 may have appropriate thicknesses THC1 and THC2 so that the first and second conductive patterns 250 and 260 have appropriate resistance values to efficiently transfer voltage or current. Can be adopted.
  • the thickness THC1 of the first conductive pattern 250 may be about 1 to 1.5 microns
  • the thickness THC2 of the second conductive pattern 260 may be about 1000 angstroms. .
  • a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 may have a slop (x, slop).
  • a portion of the first conductive pattern 250 that is adjacent to the second conductive pattern 260 may become thinner as it is adjacent to the second conductive pattern 260.
  • a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 is divided into a first region and a second region between the first region and the second conductive pattern 260.
  • the first region may be thinner as it is adjacent to the second conductive pattern 260, and the second region may be thicker as it is adjacent to the second conductive pattern 260.
  • the first conductive pattern 250 may be deposited by a sputtering process.
  • various shapes in which a portion adjacent to the second conductive pattern 260 of the first conductive pattern 250 may have a slope may be adopted.
  • first and second conductive patterns 250 and 260 may contact each other, cracks may occur in the layers disposed on the first and second conductive patterns 250 and 260.
  • the portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 has a slop, so that the layers disposed on the first and second conductive patterns 250 and 260 are disposed. No cracks will occur. Accordingly, the reliability of the layers disposed on the first and second conductive patterns 250 and 260 is improved.
  • 6 to 11 are diagrams for describing a method of manufacturing the semiconductor light emitting device 200 of FIG. 5.
  • a first conductive semiconductor layer 220, an active layer 230_1, a second conductive semiconductor layer 240_1, and a second conductive layer 260_1 are formed on the substrate 210.
  • the substrate 210 may be provided as a substrate for growing a semiconductor, and may include at least one selected from GaN, sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , and the like.
  • a plurality of irregularities may be formed on the growth surface of the substrate 210. Such irregularities may be provided selectively. By these irregularities, the crystallinity and the light emission efficiency of the semiconductor layers on the growth surface can be improved.
  • the irregularities may be formed in various shapes such as a dome shape, a rectangle, and a triangle.
  • the first conductive semiconductor layer 220 and the second conductive semiconductor layer 240_1 may be n-type semiconductor layers and p-type semiconductor layers, respectively.
  • the second conductive layer 260_1 may lower the resistance of the interface between the second conductive semiconductor layer 240_1 and the second conductive layer 260_1 according to rapid thermal annealing.
  • the second conductive layer 260_1 may have an ohmic contact with the second conductive semiconductor layer 240_1.
  • the second conductive layer 260_1 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc (ZTO) TinOxide, Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), or Transparent Conductive Oxide (TCO) .
  • ITO indium tin oxide
  • ZITO zinc-doped indium tin oxide
  • ZIO zinc indium oxide
  • GIO gallium indium oxide
  • ZTO zinc
  • TinOxide Zinc Oxide
  • ZnO Zinc Oxide
  • GZO Gallium-doped Zinc Oxide
  • AZO Aluminum-doped Zinc Oxide
  • TCO Transparent Conductive Oxide
  • a portion of the first conductive semiconductor layer 220, the active layer 230_1, the second conductive semiconductor layer 240_1, and the second conductive layer 260_1 may be etched to form at least one etching region ( At least one mesa region M defined by E) and the etching region E is defined. Accordingly, the active layer 230, the second conductive semiconductor layer 240, and the second conductive layer 260_2 are disposed in the mesa region M.
  • the photoresist pattern PR is formed in a portion of the mesa region M and the etching region E.
  • forming the photoresist pattern PR may coat the photoresist, selectively remove the photoresist in accordance with exposure and development to form the photoresist pattern PR, and then use a plasma to form a conductive layer ( 260_2) may further include removing the remaining photoresist.
  • the angle y formed between the inside of the photoresist pattern PR and the top surface of the second conductive layer 260_2 may be an obtuse angle.
  • the photoresist pattern PR may have an inverse taper shape.
  • the first conductive pattern 250 is formed in a region corresponding to the opening of the photoresist pattern PR.
  • a first material corresponding to the first conductive pattern 250 is deposited by, for example, a sputtering process, and is left on the photoresist pattern PR and the photoresist pattern PR according to a lift-off process. The material corresponding to the conductive pattern 250 may be removed.
  • a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 may have a slop x.
  • the first conductive pattern 250 may have a taper shape.
  • first passivation layer 270 an electrode layer 280, and a second passivation layer 290 are formed. Thereafter, first and second electrode patterns EP1 and EP2 (see FIG. 5) are formed.
  • FIG. 12 is a cross-sectional view illustrating a semiconductor light emitting device 300 according to another embodiment of the present invention.
  • the semiconductor light emitting device 300 may include a substrate 310, a first conductive semiconductor layer 320, an active layer 330, a second conductive semiconductor layer 340, and first and second conductive patterns. Fields 350 and 360, a first passivation layer 370, a first electrode layer 380, a second passivation layer 390, and first and second electrode patterns EP1 and EP2.
  • the first conductive pattern 350 may have a multilayer structure including a reflective metal layer 351 and a cover metal layer 352.
  • the cover metal layer 352 may prevent deformation of characteristics of the reflective metal layer 351 during the manufacturing process of the semiconductor light emitting device 100.
  • the cover metal layer 352 may function as a barrier layer to prevent the material of the reflective metal layer 351, for example, Ag or Al, from being diffused to another layer by high heat during the manufacturing process.
  • the cover metal layer 352 may prevent the material of the reflective metal layer 351 from being diffused into the first electrode layer 380 to short-circuit the reflective metal layer 351 and the first electrode layer 380. can do.
  • the reflective metal may include Ag and Al
  • the cover metal may include Ni, Ti, Au, Cr, Pt, W, and TiW.
  • the reflective metal layer 351 is spaced apart from the second conductive pattern 360 by a first distance D1.
  • the cover metal layer 352 covers the reflective metal layer 351 and extends to the second conductive pattern 360. That is, the cover metal layer 352 contacts the second conductive pattern 360. In an embodiment, as shown in FIG. 12, the cover metal layer 352 may contact at least a portion of the side surfaces 360a of the second conductive pattern 360.
  • the reflective metal layer 351 may have a thickness greater than that of the second conductive pattern 360.
  • FIG. 13 is a cross-sectional view illustrating a semiconductor light emitting device 400 according to another exemplary embodiment of the present disclosure.
  • the semiconductor light emitting device 400 may include a substrate 410, a first conductive semiconductor layer 420, an active layer 430, a second conductive semiconductor layer 440, and first and second conductive patterns. Fields 450 and 460, a first passivation layer 470, a first electrode layer 480, a second passivation layer 490, and first and second electrode patterns EP1 and EP2.
  • the first conductive pattern 450 includes a reflective metal layer 451 and a cover metal layer 452.
  • the reflective metal layer 451 is spaced apart from the second conductive pattern layer 460 by a second distance D2.
  • the cover metal layer 452 covers the reflective metal layer 451 and extends to the second conductive pattern 360.
  • the cover metal layer 452 contacts at least part of the upper surface 460b as well as the side surface 460a of the second conductive pattern 460.
  • the first conductive pattern 450 may contact the second conductive pattern 460 in a larger area. Accordingly, the current applied to the first conductive pattern 450 may be efficiently distributed to the second conductive pattern 460.
  • FIG. 14 is a cross-sectional view illustrating a semiconductor light emitting device 500 according to another embodiment of the present invention.
  • the semiconductor light emitting device 500 may include a substrate 510, a first conductive semiconductor layer 520, an active layer 530, a second conductive semiconductor layer 540, and first and second conductive patterns. Fields 550 and 560, a first passivation layer 570, a first electrode layer 580, a second passivation layer 590, and first and second electrode patterns EP1 and EP2.
  • the substrate 510, the first conductive semiconductor layer 520, the active layer 530, the second conductive semiconductor layer 540, and the first and second conductive patterns 550 and 560 are described with reference to FIG. 2.
  • the substrate 110, the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer 140, and the first and second conductive patterns 150 and 160 are described in the same manner. . In the following, redundant description is omitted.
  • the first passivation layer 570 is disposed on the first conductive semiconductor layer 520, the active layer 530, the second conductive semiconductor layer 540, and the first and second conductive patterns 550 and 560. do.
  • the first passivation layer 570 includes a fifth opening OP5 exposing the first conductivity type semiconductor layer 520 and a sixth opening OP6 exposing the first conductive pattern 550.
  • the first electrode layer 580 is disposed on the first passivation layer 570 and the first conductivity type semiconductor layer 520.
  • the first electrode layer 580 contacts the first conductive semiconductor layer 520 through the fifth opening OP5.
  • a contact metal layer 585 is further provided.
  • the contact metal layer 585 is disposed on the first passivation layer 570 and contacts the first conductive pattern 550 through the sixth opening OP6.
  • the first conductive pattern 550 may be efficiently connected to the second electrode pad EP2.
  • the contact metal layer 585 is electrically separated from the first electrode layer 580.
  • the contact metal layer 585 may be formed by the same process as the first electrode layer 580.
  • the contact metal layer 585 may include at least one of materials such as Al, Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, and alloys thereof, similarly to the first electrode layer 580. It may include.
  • the second passivation layer 590 is disposed on the first passivation layer 570, the first electrode layer 580, and the contact metal layer 585.
  • the second passivation layer 590 includes a seventh opening OP7 exposing the first electrode layer 580 and an eighth opening OP8 exposing the contact metal layer 585.
  • the first electrode pad EP1 contacts the first electrode layer 580 through the seventh opening OP7, and the second electrode pad EP2 contacts the contact metal layer 585 through the eighth opening OP8. do.
  • 15A and 15B are plan views illustrating a semiconductor light emitting device 600 according to another exemplary embodiment of the present invention.
  • 16 is a cross-sectional view taken along the line II-II 'of FIGS. 15A and 15B.
  • the active layer 630, the second conductivity type semiconductor layer 640, the first and second conductive patterns 650 and 660, and the first passivation layer 670 of FIG. 15A may be used for ease of recognition. It is shown as a dotted line.
  • the first conductive semiconductor layer 620, the active layer 630, and the second conductive semiconductor layer 640 are sequentially stacked on the substrate 610.
  • the first conductive semiconductor layer 620, the active layer 630, and the second conductive semiconductor layer 640 constitute a light emitting structure ES.
  • Mesa region M provided with the active layer 630 and the second conductivity type semiconductor layer 640, and an etching region E, which is a region other than the mesa region M, are defined.
  • the shape of the mesa region M and the etching region E may be changed in various ways.
  • the mesa region M may be disposed in the central region CNTR, and the etching region E may be disposed in the central portion CNTR and the peripheral region PRR.
  • the etching region E in the central portion CNTR may be defined by the ninth opening OP9.
  • the active layer 630 and the second conductive semiconductor layer 640 have at least one ninth opening OP9 that exposes the first conductive semiconductor layer 620 in the center portion CNTR.
  • the ninth opening OP9 may extend from the central portion CNTR to the peripheral portion PRR.
  • First and second conductive patterns 650 and 660 including different materials are disposed on the second conductive semiconductor layer 640.
  • the first and second conductive patterns 650 and 660 are provided as the second electrode layer 665 contacting the second conductive semiconductor layer 640.
  • the second conductive pattern 660 may surround the first conductive pattern 650.
  • the first passivation layer 670 is disposed on the first conductive semiconductor layer 620, the active layer 630, the second conductive semiconductor layer 640, and the first and second conductive patterns 650 and 660. do.
  • the first passivation layer 670 covers a portion of the ninth opening OP9 but exposes the tenth opening OP10 exposing the first conductive semiconductor layer 620 and the first conductive pattern 650. It has 11 openings OP11.
  • a first electrode layer 680 and a contact metal layer 685 are disposed on the first passivation layer 670.
  • the first electrode layer 680 contacts the first conductive semiconductor layer 620 through the tenth opening OP10.
  • the contact metal layer 685 contacts the first conductive pattern 650 through the eleventh openings OP11.
  • the contact metal layer 685 will be separated from the first electrode layer 680.
  • the contact metal layer 685 may be formed through the same process as the first electrode layer 680.
  • the second passivation layer 690 is disposed on the first passivation layer 690, the first electrode layer 680, and the contact metal layer 685.
  • the second passivation layer 690 has a twelfth opening OP12 exposing the first electrode layer 680 and a thirteenth opening OP13 exposing the contact metal layer 685.
  • the first electrode pad EP1 contacts the first electrode layer 680 through the twelfth opening OP12, and the second electrode pad EP2 contacts the contact metal layer 685 through the thirteenth opening OP13. do.
  • the first and second conductive patterns 650 and 660 are shown to have the same thickness. However, this is for convenience of recognition and the technical spirit of the present invention is not limited thereto.
  • the second conductive pattern 660 may have a lower thickness than the first conductive pattern 650 as described with reference to FIG. 5.
  • the first conductive pattern 650 may have a slop in an area adjacent to the second conductive pattern 660.
  • FIG. 17 is a plan view illustrating a modified embodiment of the semiconductor light emitting device 600 described with reference to FIGS. 15A and 15B.
  • the second conductive pattern 660 ′ may partially surround the first conductive pattern 650 on the top surface of the second conductive semiconductor layer 640.
  • the central portion CNTR of the semiconductor light emitting device may be divided into a first portion RG1 and a second portion RG2.
  • the second conductive pattern 660 ′ is disposed on the second conductive semiconductor layer 640 of the first portion RG1, and is not provided on the second conductive semiconductor layer 640 of the second portion RG2. You may not.
  • the second conductive pattern 660 ′ may be disposed in an area adjacent to an edge of the top surface of the second conductive semiconductor layer 640 than the first conductive pattern 650.
  • the first portion RG1 and the second portion RG2 may be partitioned in various ways.
  • a portion of the first conductive semiconductor layer 620 exposed by the first passivation layer 670 having a low area may be defined as the first portion RG1.
  • a portion of the first conductive semiconductor layer 620 exposed by the first passivation layer 670 having a high proportion may be defined as the second portion RG2.
  • the current flowing through the second electrode layer 665 ′ of the first portion RG1 may not be diffused and transferred smoothly due to, for example, a distance from the first conductive semiconductor layer 620. have.
  • the second conductive pattern 660 ′ is provided in at least the first portion RG1, so that not only the first current path CP1 (see FIG. 4) but also the second current path in the first portion RG1. (CP2, see FIG. 4) can be formed.
  • FIG. 18 is a cross-sectional view illustrating a semiconductor light emitting device 700 according to another exemplary embodiment of the present invention.
  • the semiconductor light emitting device 700 may include a substrate 710, a first conductive semiconductor layer 720, an active layer 730, a second conductive semiconductor layer 740, and first and second conductive patterns. Fields 750, 760, and electrode layer 780.
  • the light emitting structure including the first conductivity type semiconductor layer 720, the active layer 730, and the second conductivity type semiconductor layer 740 is, for example, the active layer 730 and the second conductivity type semiconductor layer by mesa etching. As the partial region of 740 is removed, the first conductivity-type semiconductor layer 720 may be partially exposed. In the exposed region, the first conductivity-type semiconductor layer 720 may contact the electrode layer 780.
  • the electrode layer 780 may include a material such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, or the like, and may have a single layer or two or more layers.
  • the electrode layer 780 may have an ohmic contact with the first conductivity type semiconductor layer 720.
  • First and second conductive patterns 750 and 760 may be stacked on the second conductive semiconductor layer 740.
  • the first and second conductive patterns 750 and 760 may include different materials, and the second conductive pattern 760 may surround the first conductive pattern 750.
  • the first and second conductive patterns 750 and 760 are shown to have the same thickness.
  • the technical idea of the present invention is not limited thereto.
  • the second conductive pattern 760 may have a lower thickness than the first conductive pattern 750.
  • the first conductive pattern 750 may have a slop in an area adjacent to the second conductive pattern 760.
  • FIG. 19 is a cross-sectional view illustrating an application example of the semiconductor light emitting device 700 of FIG. 18.
  • a first bump 701 disposed in a partially exposed region of the first conductive semiconductor layer 720 and contacted with the electrode layer 780, and a first electrode connected to the first bump 701 may be used.
  • Pad 703 may be provided.
  • a second bump 702 contacted to at least one of the first and second conductive patterns 750 and 760, and a second electrode pad 704 connected to the second bump 702 may be provided.
  • the first electrode pad 703 and the second electrode pad 704 are mounted on the support 705.
  • the first and second bumps 701 and 702 may have an appropriate shape, width, and the like, so that the contact resistance of the first and second bumps 701 and 702 employed in the present embodiment is lowered.
  • the reflective metal When the first conductive pattern 750 is formed of a reflective metal, the reflective metal will reflect light generated from the active layer 730. Light generated from the active layer 730 will be emitted in a direction including a vector component in the direction of the substrate 710.
  • the structure for electrically connecting the first and second conductive patterns 750 and 760 to the electrode pad and the structure for electrically connecting the electrode layer 780 to the other electrode pad may be variously changed.
  • the first conductive semiconductor layer 720, the active layer 730, the second conductive semiconductor layer 740, and the first and second conductive patterns A plurality of layers (see 170, 180 and 190 of FIG. 2) may be stacked on 750 and 760, and electrode pads (see EP1 and EP2 of FIG. 2) may be stacked.
  • the electrode layer 780 will be formed like the first electrode layer 180 of FIG. 2.
  • FIG. 20 is a cross-sectional view illustrating a semiconductor light emitting device 800 according to another embodiment of the present invention.
  • the semiconductor light emitting device 800 may include a substrate 810, a bonding electrode 815, a first conductive semiconductor layer 820, an active layer 830, a second conductive semiconductor layer 840, and a second conductive semiconductor layer 840.
  • the bonding electrode 815 is disposed on the substrate 810.
  • the bonding electrode 815 has conductivity and adhesion, and fixes the second conductivity type semiconductor layer 840 to the substrate 810.
  • the substrate 810 supports the other components 815, 820, 830, 840, 850, 860, and 880, and at the same time serves as an electrode for applying a voltage or current to the second conductivity-type semiconductor layer 840. Can be.
  • First and second conductive patterns 850 and 860 are disposed on the bonding electrode 815. That is, the first and second conductive patterns 850 and 860 are disposed between the substrate 810 and the second conductive semiconductor layer 840.
  • the second conductive pattern 860 is formed of a different material from the first conductive pattern 850 and may surround the first conductive pattern 850.
  • the reflective metal When the first conductive pattern 850 is formed of a reflective metal, the reflective metal will reflect light generated from the active layer 830. Light generated from the active layer 830 may be emitted in a direction including a vector component in a direction of the first conductivity type semiconductor layer 820.
  • the electrode layer 880 is disposed on the first conductivity type semiconductor layer 820.
  • the electrode layer 880 may be provided as a transparent electrode.
  • the electrode layer 880 may employ ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, TCO, or the like.
  • the second conductive pattern 860 may have the same thickness as the first conductive pattern 850. In another embodiment, the second conductive pattern 860 may have a lower thickness than the first conductive pattern 850.
  • 21 is a cross-sectional view illustrating an application example of the semiconductor light emitting device 800 of FIG. 20.
  • At least one wire 802 contacted to the electrode layer 880, a first electrode pad 803 connected to the electrode layer 880 through the wire 802, and the substrate 810 are contacted.
  • the second electrode pad 804 may be provided.
  • the first and second electrode pads 803 and 804 may be mounted on the support 805.
  • the method of connecting the electrode layer 880 to the first electrode pad 803 and the method of connecting the first and second conductive patterns 850 and 860 to the second electrode pad 803 may be variously changed.
  • the wire 802 connects the electrode layer 880 and the first electrode pad 803, but may be replaced by a vertical electrode extending vertically.
  • FIG. 22 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package 1000 including a semiconductor light emitting device.
  • the semiconductor light emitting package 1000 may include a semiconductor light emitting device 1100, a reflective structure 1200, a support frame 1300, and a wavelength conversion film 1400.
  • the semiconductor light emitting device 1100 is configured similarly to any one of the semiconductor light emitting devices described with reference to FIGS. 1, 5, 12, 13, 14, 15b, 17, 19, and 21. . In the following, redundant description is omitted.
  • the reflective structure 1200 may be disposed to surround the semiconductor light emitting device 1100.
  • the reflective structure 1200 may have reflection on light and high heat resistance.
  • the support frame 1300 is configured to support the semiconductor light emitting device 1100 and the reflective structure 1200.
  • the support frame 1300 includes first and second upper electrodes 1310 and 1320, and first and second lower electrodes 1330 and 1340.
  • the first and second upper electrodes 1310 and 1320 are disposed on an upper surface of the support frame 1300.
  • the first upper electrode 1310 contacts the first electrode pad EP1 (see FIG. 1) of the semiconductor light emitting device 1100
  • the second upper electrode 1320 is a second electrode pad of the semiconductor light emitting device 1100 ( EP2, see FIG. 1).
  • the semiconductor light emitting device 1100 may receive power through the first upper electrode 1310 and the second upper electrode 1320.
  • the first and second lower electrodes 1330 and 1340 are disposed on the bottom surface of the support frame 1300.
  • the first lower electrode 1330 may be connected to the first upper electrode 1310 through conductive vias in the support frame 1300.
  • the second lower electrode 1340 may be connected to the second upper electrode 1320 through another conductive via
  • the support frame 1300 may further include a heat sink 1350.
  • the heat sink 1350 is disposed on the bottom surface of the support frame 1300 and is configured to discharge heat generated from the semiconductor light emitting device 1100.
  • the support frame 1300 may perform a function of a heat sink.
  • the wavelength converter 1400 may be coupled to the reflective structure 1300 to cover the semiconductor light emitting device 1100.
  • the wavelength converter 1400 may have a shape of a film covering the top surface of the semiconductor light emitting device 1100.
  • the wavelength converter 1400 may have a shape covering not only an upper surface of the semiconductor light emitting device 1100 but also a side surface thereof.
  • the wavelength conversion materials in the wavelength converter 1400 may convert light emitted from the semiconductor light emitting device 1100 into light having a different wavelength. Light from the semiconductor light emitting device 1100 may pass through the wavelength converter 1400 and be emitted as white light.
  • the wavelength conversion layer in the semiconductor light emitting device 1100 may be selectively removed.
  • the semiconductor light emitting package 1000 may further include an electrostatic discharge protection circuit (not shown).
  • the electrostatic discharge protection circuit may be mounted on the support frame 1300 or may be provided as a component of the semiconductor light emitting device 1100.
  • the electrostatic discharge protection circuit may be connected to the first upper electrode 1310 and the second upper electrode 1320.
  • the semiconductor light emitting package 1000 may further include a transparent cover (not shown) that is mounted on the reflective structure 1200 to protect the semiconductor light emitting device 1100 and the wavelength converter 1400.
  • FIG. 23 is an exploded perspective view illustrating a modification 2000 of the semiconductor light emitting package 1000 of FIG. 22.
  • the semiconductor light emitting package 2000 includes two or more semiconductor light emitting devices 2110 and 2120, a reflective structure 2200, a support frame 2300, and a wavelength converter 2400.
  • the semiconductor light emitting package 2000 may include, for example, two semiconductor light emitting devices 2110 and 2120.
  • the reflective structure 2200 may be disposed to surround the first and second semiconductor light emitting devices 2110 and 2120.
  • the support frame 2300 is configured to support the first and second semiconductor light emitting devices 2110 and 2120 and the reflective structure 2200.
  • the support frame 2300 includes first upper electrodes 2310_1 and 2310_2, second upper electrodes 2320, first and second lower electrodes 2330 and 2340, and a heat sink 2350.
  • the first upper electrode 2310_1 is connected to the first electrode pad EP1 of the first semiconductor light emitting device 2110 (see FIG. 1)
  • the second upper electrode 2320 is formed of the first semiconductor light emitting device 2110. It is connected to the second electrode pad EP2 (see FIG. 1) and the second electrode pad EP2 of the second semiconductor light emitting device 2120, and the first upper electrode 2310_2 is connected to the first of the second semiconductor light emitting device 2120.
  • the first upper electrodes 2310_1 and 2310_2 may be connected to each other.
  • the first lower electrode 2330 is connected to the first upper electrodes 2310_1 and 2310_2.
  • the second lower electrode 2340 is connected to the second upper electrode 2320.
  • the first and second semiconductor light emitting devices 2110 and 2120 may receive power.
  • the first and second semiconductor light emitting devices 2110 and 2120 may be connected in parallel with a power source. However, it will be appreciated that the electrical connection relationship between the first and second semiconductor light emitting devices 2110 and 2120 and the power source may be changed as appropriate.
  • 24 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package 3000 including a semiconductor light emitting device.
  • the semiconductor light emitting package 3000 includes at least one semiconductor light emitting device 3110 and 3120, a printed circuit board 3200, and a support frame 3300.
  • the first and second semiconductor light emitting devices 3110 and 3120 are disposed on the printed circuit board 3200.
  • Each of the first and second semiconductor light emitting devices 3110 and 3120 may be a semiconductor light emitting device described with reference to FIGS. 1, 5, 12, 13, 14, 15b, 17, 19, and 21. It is configured like any one of the elements. In the following, redundant description is omitted.
  • First and second wavelength conversion layers 3111 and 3121 are stacked on the first and second semiconductor light emitting devices 3110 and 3120, respectively.
  • the wavelength conversion materials included in each wavelength conversion layer may convert light emitted from the semiconductor light emitting device into light having a different wavelength. Light from the semiconductor light emitting element may pass through the wavelength conversion layer and be emitted as white light.
  • the wavelength converting layer may be formed in a sheet shape having a substantially constant thickness, and may be formed in a semi-curable material which is semi-cured at room temperature and flows upon heating, for example, wavelength converting materials such as phosphors. It may be a dispersed film.
  • the wavelength conversion layer may have a structure in which one layer is stacked, or may be formed of multiple layers. When the wavelength conversion layer is formed of multiple layers, each layer may include different kinds of phosphors.
  • the printed circuit board 3200 is supported by the support frame 3300.
  • the printed circuit board 3200 interfaces the semiconductor light emitting devices 3110 and 3120 and the lower electrodes 3310 to 3340 of the support frame 3300.
  • the printed circuit board 3200 may include first upper electrodes (not shown) and second electrodes respectively connected to the first and second electrode pads EP1 and EP2 of the first semiconductor light emitting device 3110. Second upper electrodes (not shown) connected to the first and second electrode pads EP1 and EP2 of the semiconductor light emitting device 3120 may be included.
  • the first upper electrodes may be connected to the first lower electrodes 3310 and 3320 on the bottom surface of the support frame 3300.
  • the second upper electrodes may be connected to the second lower electrodes 3330 and 3340 on the bottom surface of the support frame 3300. The number and shapes of the first upper electrodes and the second upper electrodes can be changed as appropriate.
  • the support frame 3300 may further include a heat sink 3350 for dissipating heat generated from the semiconductor light emitting devices 3110 and 3120.
  • the semiconductor light emitting package 3000 may include at least one electrostatic discharge protection circuit connected to electrodes on the printed circuit board 3200, and a transparent cover for protecting the printed circuit board 3200 and the semiconductor light emitting devices 3110 and 3120. It may further include.
  • 25 is a plan view of a semiconductor light emitting device 5100 according to an embodiment of the present invention.
  • the semiconductor light emitting device 5100 may include a semiconductor structure SS disposed on a substrate, and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. .
  • the substrate extends in the first direction X + and the second direction Y +, and the semiconductor structure SS is disposed on the substrate in the third direction Z +.
  • the first and second electrode pads EP1 and EP2 are disposed on the semiconductor structure SS in the third direction Z +.
  • the semiconductor structure SS includes a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first and second conductive semiconductor layers. Light is generated by recombination of electrons and holes in the active layer by the current flowing through the first and second conductivity-type semiconductor layers.
  • the semiconductor light emitting device 5100 may be a gallium nitride (GaN) -based semiconductor light emitting device.
  • the semiconductor structure SS further includes a first electrode layer ELCT1 and a second electrode layer ELCT2.
  • the first electrode layer ELCT1 is electrically connected to the first conductivity type semiconductor layer and may be exposed by the first opening OP1 on the semiconductor structure SS.
  • the exposed first electrode layer ELCT1 contacts the first electrode pad EP1.
  • the second electrode layer ELCT2 is electrically connected to the second conductivity type semiconductor layer and may be exposed by the second opening OP2 on the semiconductor structure SS.
  • the exposed second electrode layer ELCT2 contacts the second electrode pad EP2.
  • the voltage and current applied through the first electrode pad EP1 are transferred to the first conductive semiconductor layer through the first electrode layer ELCT1 and the voltage and current applied through the second electrode pad EP2. Is transferred to the second conductivity type semiconductor layer through the second electrode layer ELCT2.
  • each of the first and second electrode layers ELCT1 and ELCT2 may be directly connected to a corresponding conductive semiconductor layer.
  • each of the first and second electrode layers ELCT1 and ELCT2 may be connected to the corresponding conductive semiconductor layer through at least one component.
  • the first electrode layer ELCT1 contacts the first conductivity-type semiconductor layer in the first contact regions CP1 on the semiconductor structure SS.
  • the first contact regions CP1 may be located in the non-light emitting region of the semiconductor light emitting device 5100.
  • the non-light emitting area may correspond to the remaining area other than the area where the active layer of the semiconductor structure SS is located.
  • the second electrode layer ELCT2 contacts the second conductivity type semiconductor layer in the second contact region CP2 on the semiconductor structure SS.
  • the second contact region CP2 may be located in the light emitting region of the semiconductor light emitting device 5100.
  • the emission region may correspond to an area of the active layer of the semiconductor structure SS.
  • first contact regions CP1 may be located at the center of the emission area. Accordingly, the current flowing between the first contact regions CP1 and the second contact region CP2 may be efficiently spread. In an embodiment, the remaining of the first contact regions CP1 may be located at an edge of the emission region. In FIG. 25, nine first contact regions CP1 and one second contact region CP2 are illustrated. However, it will be understood that the technical spirit of the present invention is not limited thereto. The number and shape of the first contact regions CP1 and the second contact region CP2 may be variously changed.
  • an area of the first contact regions CP1 is equal to or greater than 1.8% of the sum of the non-light emitting region and the light emitting region. In an embodiment, the areas of the first contact regions CP1 may be within 1.8% to 4.5% of the sum of the non-light emitting area and the light emitting area. Accordingly, the semiconductor light emitting device 5100 may be designed to have an improved light intensity while having a low forward voltage.
  • FIG. 26 is a diagram illustrating an embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
  • the semiconductor light emitting device 5100 may include a substrate 5110, a first conductive semiconductor layer 5120, an active layer 5130, a second conductive semiconductor layer 5140, and contact electrode layers ( 5150 and 5170, passivation layers 5160 and 5180, and electrode pads EP1 and EP2.
  • the first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 are sequentially stacked on the substrate 5110.
  • the substrate 5110 may be a GaN substrate.
  • the substrate 5110 may function as a current path together with the first conductivity type semiconductor layer 5120.
  • the current transferred to the first contact electrode layer 5170 through the second conductive semiconductor layer 5140, the active layer 5130, and the first conductive semiconductor layer 5120 may be distributed by the substrate 5110.
  • the first conductive semiconductor layer 5120 is a nitride semiconductor containing n-type impurities and may satisfy the compositional formula Al x In y Ga 1-x N y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Can be.
  • the first conductivity type semiconductor layer 5120 may include GaN, AlGaN, InGaN, AlInGaN, or the like.
  • the first conductive semiconductor layer 5120 may include an n-type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the active layer 5130 is disposed on the first conductivity type semiconductor layer 5120.
  • the active layer 5130 may have a single quantum well (SQW) structure or a multi quantum well (MQW) structure.
  • the quantum well layer and the quantum barrier layer each include materials having different compositions, and the composition formula InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) Can be satisfied.
  • the quantum well layer may have an energy band gap lower than the energy band gap of the quantum barrier layer.
  • the second conductivity type semiconductor layer 5140 is disposed on the active layer 5130.
  • the second conductivity-type semiconductor layer 5140 is a nitride semiconductor containing p-type impurities, and satisfies the compositional formula AlxInyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Can be.
  • the second conductivity-type semiconductor layer 5140 may include AlGaN, GaN, or the like.
  • the second conductive semiconductor layer 5140 may include p-type dopants such as Mg, Zn, Ca, Sr, and Ba.
  • the second conductivity-type semiconductor layer 5140 may have a single layer structure or a multilayer structure. When the second conductive semiconductor layer 5140 has a multilayer structure, the second conductive semiconductor layer 5140 may include an AlGaN layer, a low concentration p-type GaN layer, a high concentration p-type GaN layer, and the like.
  • each of the first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 may include at least epitaxial deposition, MBE, such as a metal organic chemical vapor deposition (MOCVD). (Molecular Beam Epitaxy), or another epitaxial growth technique suitable for GaN growth.
  • MBE metal organic chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • MOCVD Molecular Beam Epitaxy
  • the emission region EMP of the semiconductor light emitting device 5100 may correspond to a region where the active layer 5130 is located.
  • the first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 are disposed.
  • the non-light emitting area NEMP of the semiconductor light emitting device 5100 may correspond to a region where the active layer 5130 is not located. At least a portion of the non-light emitting area NEMP includes an exposed area in which the first conductivity type semiconductor layer 5120 may contact the electrode.
  • the second contact electrode layer 5150 is disposed on the second conductivity type semiconductor layer 5140. The second contact electrode layer 5150 is positioned in the emission area EMP. The second contact electrode layer 5150 may have an ohmic contact with the second conductive semiconductor layer 5140.
  • the second contact electrode layer 5150 may include a reflective metal. The reflective metal reflects light emitted by the active layer 5130 toward the substrate.
  • an insulating layer 5501 may be further provided on the second conductive semiconductor layer 5140 and on the second contact electrode layer 5150. The insulating layer 5151 may be formed on the outside to protect the second contact electrode layer 5150.
  • the first passivation layer 5160 is disposed on the first conductive semiconductor layer 5120, the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150.
  • the first passivation layer 5160 spaces the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150 and the first contact electrode layer 5170. Accordingly, the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150 are electrically insulated from the first contact electrode layer 5170.
  • the first passivation layer 5160 may include third and fourth openings OP3 and OP4 exposing the first conductive semiconductor layer 5120, and a fifth opening OP5 exposing the second contact electrode layer 5150.
  • the first contact electrode layer 5170 is disposed on the first passivation layer 5160 and the first conductivity type semiconductor layer 5120.
  • the first contact electrode layer 5170 may contact the first conductivity type semiconductor layer 5120 in the first contact regions CP1 of the non-light emitting region through the third and fourth openings OP3 and OP4.
  • the first contact regions CP1 are positioned in the non-light emitting region NEMP of the semiconductor light emitting device 5100.
  • the first contact electrode layer 5170 may have an ohmic contact with the first conductivity type semiconductor layer 5120.
  • the connection electrode layer 5175 is formed on the second contact electrode layer 5150 and is disposed on the first passivation layer 5160.
  • the connection electrode layer 5175 may contact the second contact electrode layer 5150 through the fifth opening OP5.
  • the first contact electrode layer 5170 and the connection electrode layer 5175 may be formed at the same time during the manufacturing process.
  • the first contact electrode layer 5170 and the connection electrode layer 5175 may include the same material.
  • the first contact electrode layer 5170 and the connection electrode layer 5175 may include at least one of materials such as Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, Al, and alloys thereof. It may include.
  • connection electrode layer 5175 may be omitted.
  • the second contact electrode 5150 may directly contact the second electrode pad EP2 through the fifth opening OP5.
  • the second passivation layer 5180 is disposed on the first contact electrode layer 5170 and the connection electrode layer 5175.
  • the second passivation layer 5180 includes a first opening OP1 exposing the first contact electrode layer 5170 and a second opening OP2 exposing the connection electrode layer 5175.
  • each of the first and second passivation layers 5160 and 5180 may be formed of an insulating material such as SiO 2, SiN, SiO x N y, TiO 2, Si 3 N 4, Al 2 O 3, TiN, AlN, ZrO 2, TiAlN, TiSiN, Nb 2 O 5, and MgF 2.
  • the first and second passivation layers 5160 and 5180 may be formed as a distributed Bragg reflector (DBR) in which a low refractive material layer and a high refractive material layer of the insulating materials listed above are alternately stacked.
  • DBR distributed Bragg reflector
  • the first electrode pad EP1 contacts the first contact electrode layer 5170 through the first opening OP1. Therefore, the first electrode pad EP1 is electrically connected to the first conductivity type semiconductor layer 5120 through the first contact electrode layer 5170.
  • the second electrode pad EP2 contacts the connection electrode layer 5175 through the second opening OP2. Therefore, the second electrode pad EP2 is electrically connected to the second conductivity type semiconductor layer 5140 through the connection electrode layer 5175 and the second contact electrode layer 5150.
  • the first contact electrode layer 5170 contacts the first electrode pad EP1 through the first opening OP1 and contacts the first conductive semiconductor layer 5120 in the first contact regions CP1. Accordingly, the first contact electrode layer 5170 may function as the first electrode layer ELCT1 of FIG. 25.
  • the connection electrode layer 5175 contacts the second electrode pad EP2 through the second opening OP2, and the second conductivity-type semiconductor layer 5140 in the second contact region CP2 through the second contact electrode layer 5150. ). Accordingly, the connection electrode layer 5175 may function as the second electrode layer ELCT2 of FIG. 25.
  • FIG. 27 is an experimental graph showing the relationship between the area of the light emitting area EMP and the light intensity.
  • the horizontal axis represents the ratio between the area of the light emitting region EMP and the total area of the semiconductor light emitting element 5100, and the vertical axis represents the light intensity.
  • the light intensity of the semiconductor light emitting device 5100 may increase.
  • Increasing the area of the emission area EMP means that the area of the active layer 5130 is increased.
  • the light intensity may increase.
  • regions CP1 in which the first contact electrode layer 5170 contacts the first conductive semiconductor layer 5120 are positioned in the non-light emitting region EMP.
  • the area of the non-light emitting area NEMP decreases as the area of the light emitting area EMP increases. Therefore, as the area of the emission area EMP increases, the areas of the first contact areas CP1 may decrease.
  • the current applied to the first electrode pad EP1 may not be smoothly transferred to the first conductive semiconductor layer 5120.
  • the resistance component of the semiconductor light emitting device 5100 is increased and the forward voltage at both ends of the semiconductor light emitting device 5100 (that is, EP1 and EP2 of FIG. 26) may increase.
  • the forward voltage increases, the power consumption of the semiconductor light emitting device 5100 increases.
  • the area of the light emitting area EMP increases, the light intensity of the semiconductor light emitting device 5100 may increase, and power consumption of the semiconductor light emitting device 5100 may also increase.
  • FIG. 28 is an experimental graph illustrating a relationship between an area of the first contact regions CP1 and a forward voltage Vf of the semiconductor light emitting device 5100.
  • the horizontal axis represents the ratio between the areas of the first contact regions CP1 and the entire area of the semiconductor light emitting device 5100
  • the vertical axis represents the forward voltage Vf of the semiconductor light emitting device 5100.
  • the total area of the semiconductor light emitting device 5100 may be understood as the total area of the light emitting area EMP and the non-light emitting area NEMP as the unit chip area.
  • the forward voltage Vf of the semiconductor light emitting device 5100 decreases rapidly until the area of the first contact regions CP1 increases to reach 1.8%. In this area section, power consumption of the semiconductor light emitting device 5100 may decrease. For example, when the area of the first contact regions CP1 is 1%, the forward voltage Vf of the semiconductor light emitting device 5100 may be 5.3V. When the area of the first contact regions CP is 1.8%, the forward voltage Vf of the semiconductor light emitting device 5100 may be 3.9V. On the other hand, when the area of the first contact regions CP1 is larger than 1.8%, the forward voltage Vf of the semiconductor light emitting device 5100 decreases slowly.
  • the semiconductor light emitting device 5100 maintains a forward voltage (Vf) within the range of 3.8 to 3.9 V.
  • Vf forward voltage
  • the power consumption of the semiconductor light emitting device 5100 may be substantially maintained when the area of the first contact regions is 1.8% or more. This may be understood that the area of the first contact regions CP1 has a critical significance at 1.8%.
  • a current transmitted to the first contact electrode layer 5170 through the second conductive semiconductor layer 5140, the active layer 5130, and the first conductive semiconductor layer 5120 may be a GaN substrate as the substrate 5110. By being used, it can flow more smoothly.
  • the substrate 5110 is a GaN substrate
  • the forward voltage Vf of the semiconductor light emitting device 5100 is relatively low.
  • the area of the first contact regions CP1 may have a critical meaning at 1.8%.
  • the area of the first contact regions CP1 may be selected as 2.5% due to the process error of the semiconductor light emitting device 5100.
  • the first contact regions CP1 are disposed in the non-light emitting region NEMP.
  • the areas of the first contact areas CP1 increase, the areas of the emission area EMP decrease.
  • the light intensity of the semiconductor light emitting device 5100 may decrease.
  • the area of the first contact regions CP1 may be designed not to exceed 4.5%.
  • the area of the first contact regions CP1 may be within 1.8% to 4.5%.
  • an area of the second contact region CP2 may be designed. It will be appreciated that the area of the second contact region CP2 can be changed according to the number and shape of each of the first contact regions CP1 and the second contact region CP2. For example, when the area of the first contact regions CP1 is 1.8%, the area of the second contact region CP2 may be 80%. When the area of the first contact regions CP1 is 2.5%, the area of the second contact region CP2 may be 79.3%. When the area of the first contact regions CP1 is 3.5%, the area of the second contact region CP2 may be 78.3%. When the area of the first contact regions CP1 is 4.5%, the area of the second contact region CP2 may be 77.3%.
  • the area of the first contact regions CP1 may be designed in a range of 8% or less.
  • FIG. 29 is a diagram illustrating another embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
  • the semiconductor light emitting device 5100 may include a substrate 5210, a first conductive semiconductor layer 5220, an active layer 5230, a second conductive semiconductor layer 5240, and contact electrodes 5250 and 5270. ), A conductive pattern 5252, a connection electrode layer 5175, passivation layers 5260 and 5280, and electrode pads EP1 and EP2.
  • the substrate 5210, the first conductive semiconductor layer 5220, the active layer 5230, the second conductive semiconductor layer 5240, the contact electrodes 5250 and 5270, the connection electrode layer 5175, the passivation layers 5260, and the like. 5280, the electrode pads EP1 and EP2 include the substrate 5110 described with reference to FIG. 26, the first conductive semiconductor layer 5120, the active layer 5130, the second conductive semiconductor layer 5140, and the contacts.
  • the electrodes 5150 and 5170, the connection electrode layer 5175, the passivation layers 5160 and 5180, and the electrode pads EP1 and EP2 are configured. In the following, redundant description is omitted.
  • the conductive pattern 5252 may replace the insulating layer 5501 of FIG. 26.
  • the conductive pattern 5252 is in contact with at least a portion of the second contact electrode layer 5250 and is disposed on the second conductive semiconductor layer 5240.
  • the conductive pattern 5252 is formed in an area adjacent to an edge of the upper surface of the second conductive semiconductor layer 5240, and the second contact electrode layer 5250 is formed of the second conductive semiconductor layer ( 5240 may be spaced apart from the edge of the top surface.
  • the conductive pattern 5252 may be formed to surround at least a portion of the second contact electrode layer 5250 on the second conductive semiconductor layer 5240 (see FIG. 35A).
  • the conductive pattern 5252 may contact the second conductive semiconductor layer 5240 together with the second contact electrode layer 5250.
  • the conductive pattern 5252 may have an ohmic contact with the second conductive semiconductor layer 5240.
  • FIG. 30 is an enlarged view illustrating region A of FIG. 29.
  • current from a power source may include a second contact electrode layer 5250, a second conductive semiconductor layer 5240, an active layer 5230, a first conductive semiconductor layer 5220, and a first contact electrode layer ( It may flow through the first current path IP1 defined by 5270. Furthermore, the current from the power source is not only the first current path IP1 but also the conductive pattern 5252, the second conductive semiconductor layer 5240, the active layer 5230, the first conductive semiconductor layer 5220, and the first current path IP1. It may flow through the second current path IP2 formed by the first contact electrode layer 5270. Accordingly, the current from the power supply can flow smoothly through the first and second current paths IP1 and IP2.
  • the distance between the conductive pattern 5252 and the first contact electrode layer 5270 is shorter than the distance between the second contact electrode layer 5250 and the first contact electrode layer 5270. This may mean that the second current path IP2 transfers the current more smoothly.
  • driving performance and driving efficiency of the semiconductor light emitting device 5100 may be further improved.
  • FIG. 31 is an experimental graph illustrating a relationship between an area of the first contact regions CP1 and a forward voltage of the semiconductor light emitting device 5100 of FIG. 30.
  • the horizontal axis represents the ratio between the areas of the first contact regions CP1 and the total area of the semiconductor light emitting device 5100
  • the vertical axis represents the voltage drop Vf of the semiconductor light emitting device 5100.
  • the first voltage drop Vf1 represents the voltage drop of the semiconductor light emitting device 5100 of FIG. 26.
  • the second voltage drop Vf2 represents the voltage drop of the semiconductor light emitting device 5100 according to the exemplary embodiment of FIG. 29.
  • the voltage drop of the semiconductor light emitting device 5100 decreases rapidly until the area of the first contact regions CP1 increases to reach 1.8%.
  • the area of the first contact regions CP1 is larger than 1.8%, the voltage drop of the semiconductor light emitting device 5100 decreases gently.
  • the area of the first contact areas CP1 according to the embodiment of FIG. 29 has a critical meaning at 1.8%.
  • the semiconductor light emitting device 5100 may further include a conductive pattern 5252 so that a current may flow through the second current path IP2 as well as the first current path IP1. Therefore, the second voltage drop Vf2 may be lower than the first voltage drop Vf2 in the entire horizontal axis. Accordingly, power consumption of the semiconductor light emitting device 5100 may be further reduced.
  • 32, 33A, 33B, 34A, 34B, 35A, 35B, 36A, 36B, 37A, and 37B illustrate a method of manufacturing the semiconductor light emitting device 5100 of FIG. 29. Figures showing.
  • a first conductive semiconductor layer 5220, an active layer 5230_1, a second conductive semiconductor layer 5240_1, and a conductive layer 5252_1 are formed on a substrate 5210.
  • the substrate 5210 may be provided as a substrate for growing a semiconductor, and may be a conductive substrate including GaN.
  • the first conductive semiconductor layer 5220 and the second conductive semiconductor layer 5240_1 may be n-type semiconductor layers and p-type semiconductor layers, respectively.
  • the conductive layer 5252_1 may lower the resistance of the interface between the second conductive semiconductor layer 5240_1 and the conductive layer 5252_1 according to rapid thermal annealing.
  • the conductive layer 5252_1 may have an ohmic contact with the second conductive semiconductor layer 5240_1.
  • the conductive layer 5252_1 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc tin oxide (ZTO). It may be formed of at least one selected from Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), and Transparent Conductive Oxide (TCO).
  • the first conductive semiconductor layer 5220, the active layer 5230_1, the second conductive semiconductor layer 5240_1, and the conductive layer 5252_1 are etched by at least one etching region E and the etching region E.
  • FIG. The partitioned at least one mesa region M is defined. 33A and 33B, a first conductive semiconductor layer 5220, an active layer 5230, a second conductive semiconductor layer 5240, and a conductive layer 5252_2 are disposed in the mesa region M.
  • the first conductivity type semiconductor layer 5220 is disposed in the etching region E.
  • FIG. At least a portion of the etching region E is located at the center of the mesa region M.
  • the other part of the etching region E is located at the edge of the mesa region M.
  • a second contact electrode layer 5250 and a conductive pattern 5252 are formed on the second conductive semiconductor layer 5240.
  • the second contact electrode layer 5250 and the conductive pattern 5252 may correspond to the second contact region CP2.
  • the second contact region CP2 is located in the mesa region M.
  • a photoresist pattern for forming the conductive pattern 5252 is formed by etching the conductive layer 5252_2, plasma is irradiated to further remove remaining photoresist, and the photoresist pattern is used as a mask to conduct the The conductive pattern 5252 may be formed by etching the layer 5252_2. Subsequently, the second contact electrode layer 5250 may be formed using the photoresist pattern as a mask, and the photoresist pattern may be removed.
  • the conductive pattern 5252 may include a material different from that of the second contact electrode layer 5250.
  • the conductive pattern 5252 may include a transparent material.
  • the conductive pattern 5252 may include a material resistant to plasma.
  • the conductive pattern 5252 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc tin oxide (ZTO).
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • GZO gallium-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • TCO transparent conductive oxide
  • a first passivation layer 5260 is formed.
  • the first passivation layer 5260 has sixth openings OP6 exposing the first conductive semiconductor layer 5220 and seventh openings OP7 exposing the second contact electrode layer 5250.
  • the sixth openings OP6 are formed in the etching region E.
  • the seventh openings OP7 are formed in the mesa region M.
  • a first contact electrode layer 5270 and a connection electrode layer 5175 are formed.
  • the first contact electrode layer 5270 contacts the first conductive semiconductor layer 5220 through the sixth openings OP6 (see FIG. 35B).
  • the first contact regions CP1 may be located in the etching region E.
  • FIG. The connection electrode layer 5175 may contact the second contact electrode layer 5250.
  • a second passivation layer 5280 is formed.
  • the second passivation layer 5280 covers components other than a portion of the first contact electrode layer 5270 and a portion of the connection electrode layer 5175.
  • the second passivation layer 5280 includes an eighth opening OP8 exposing the first contact electrode layer 5270 and a ninth opening OP9 exposing the connection electrode layer 5175.
  • the eighth and ninth openings OP8 and OP9 correspond to the first and second openings OP1 and OP2 of FIG. 25, respectively.
  • the first and second electrode pads ELCT1 and ELCT2 will be disposed on the exposed first contact electrode layer 5270 and the exposed connection electrode layer 5175, respectively. .
  • 38 is a plan view of a semiconductor light emitting device 5500 according to another exemplary embodiment.
  • the semiconductor light emitting device 5500 includes a semiconductor structure SS disposed on a substrate and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. . Except for the first contact regions CP1, the semiconductor light emitting device 5500 may be configured similarly to the semiconductor light emitting device 5100 of FIG. 25. The first contact regions CP1 at the edge of the second contact region CP2 may be disposed at corners of the second contact region CP2.
  • 39 is a plan view of a semiconductor light emitting device 5600 according to still another embodiment of the present invention.
  • the semiconductor light emitting device 5600 may include a semiconductor structure SS disposed on a substrate, and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. . Except for the first contact region CP1, the semiconductor light emitting device 5600 is configured similarly to the semiconductor light emitting device 5100 of FIG. 25.
  • the first contact region CP1 may be provided at the center of the second contact region CP2 and may not be provided at the edge of the second contact region CP2.
  • FIG. 40 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • the semiconductor light emitting package 6000 may include a semiconductor light emitting device 6100, a reflective structure 6200, a support frame 6300, and a wavelength conversion film 6400.
  • the semiconductor light emitting element 6100 is configured similarly to the semiconductor light emitting element 5100 described with reference to FIG. 25. In the following, redundant description is omitted.
  • the reflective structure 6200 may be disposed to surround the semiconductor light emitting device 6100.
  • the reflective structure 6200 may have reflection on light and high heat resistance.
  • the support frame 6300 is configured to support the semiconductor light emitting element 6100 and the reflective structure 6200.
  • the support frame 6300 includes first and second upper electrodes 6310 and 6320, and first and second lower electrodes 6330 and 6340.
  • the first and second upper electrodes 6310 and 6320 are disposed on an upper surface of the support frame 6300.
  • the first upper electrode 6310 contacts the first electrode pad EP1 (see FIG. 25) of the semiconductor light emitting element 6100
  • the second upper electrode 6320 is a second electrode pad of the semiconductor light emitting element 6100 ( EP2, see FIG. 25).
  • the semiconductor light emitting device 6100 may receive power through the first upper electrode 6310 and the second upper electrode 6320.
  • the first and second lower electrodes 6330 and 6340 are disposed on the bottom surface of the support frame 6300.
  • the first lower electrode 6330 may be connected to the first upper electrode 6310 through conductive vias in the support frame 6300.
  • the second lower electrode 6340 may be connected to the second upper electrode 6320 through another conductive
  • the support frame 6300 may further include a heat sink 6350.
  • the heat sink 6350 is disposed on the bottom surface of the support frame 6300 and configured to discharge heat generated from the semiconductor light emitting element 6100.
  • the support frame 6300 may perform a function of a heat sink.
  • the wavelength converter 6400 may be coupled to the reflective structure 6200 to cover the semiconductor light emitting device 6100.
  • the wavelength converter 6400 may have a shape of a film or glass covering an upper surface of the semiconductor light emitting device 6100.
  • the wavelength converter 6400 may have a shape covering not only an upper surface of the semiconductor light emitting device 6100 but also a side surface thereof.
  • Wavelength converting materials in the wavelength converter 6400 may convert light emitted from the semiconductor light emitting device 6100 into light having a different wavelength. Light from the semiconductor light emitting device 6100 may pass through the wavelength converter 6400 and be emitted as white light.
  • the wavelength conversion layer in the semiconductor light emitting device 6100 may be selectively removed.
  • the semiconductor light emitting package 6000 may further include an electrostatic discharge protection circuit (not shown).
  • the electrostatic discharge protection circuit may be mounted on the support frame 6300 or provided as a component of the semiconductor light emitting device 6100.
  • the electrostatic discharge protection circuit may be connected to the first upper electrode 6310 and the second upper electrode 6320.
  • the semiconductor light emitting package 6000 may further include a transparent cover (not shown) mounted on the reflective structure 6200 to protect the semiconductor light emitting device 6100 and the wavelength converter 6400.
  • FIG. 41 is an exploded perspective view illustrating a modification of the semiconductor light emitting package of FIG. 40.
  • the semiconductor light emitting package 7000 includes two or more semiconductor light emitting devices 7110 and 7120, a reflective structure 7200, a support frame 7300, and a wavelength converter 7400.
  • the semiconductor light emitting package 7000 may include, for example, two semiconductor light emitting devices 7110 and 7120.
  • the reflective structure 7200 may be disposed to surround the first and second semiconductor light emitting devices 7110 and 7120.
  • the support frame 7300 is configured to support the first and second semiconductor light emitting devices 7110 and 7120 and the reflective structure 7200.
  • the support frame 7300 may include first upper electrodes 7310_1 and 7310_2, second upper electrodes 7320, first and second lower electrodes 7330 and 7340, and a heat sink 7350.
  • the first upper electrode 7310_1 is connected to the first electrode pad EP1 (see FIG. 25) of the first semiconductor light emitting element 7110, and the second upper electrode 7320 is formed of the first semiconductor light emitting element 7110. It is connected to the second electrode pad EP2 (see FIG. 25) and the second electrode pad EP2 of the second semiconductor light emitting device 7120, and the first upper electrode 7310_2 is connected to the first electrode of the second semiconductor light emitting device 7120.
  • the first upper electrodes 7310_1 and 7310_2 may be connected to each other.
  • the first lower electrode 7330 is connected to the first upper electrodes 7310_1 and 7310_2.
  • the second lower electrode 7340 is connected to the second upper electrode 7320.
  • the first and second semiconductor light emitting devices 7110 and 7120 may receive power through the first upper electrodes 7310_1 and 7310_2 and the second upper electrode 7320.
  • the first and second semiconductor light emitting devices 7110 and 7120 may be connected to a power source in parallel.
  • the electrical connection relationship between the first and second semiconductor light emitting devices 7110 and 7120 and the power source may be changed as appropriate.
  • FIG. 42 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
  • the semiconductor light emitting package 8000 may include at least one semiconductor light emitting device 8210 and 8120, a printed circuit board 8200, and a support frame 8300.
  • the first and second semiconductor light emitting devices 8210 and 8120 are disposed on the printed circuit board 8200. Each of the first and second semiconductor light emitting devices 8210 and 8120 is configured similarly to the semiconductor light emitting device 5100 described with reference to FIG. 25. In the following, redundant description is omitted.
  • First and second wavelength conversion layers 8111 and 8121 are stacked on the first and second semiconductor light emitting devices 8210 and 8120, respectively.
  • the wavelength conversion materials included in each wavelength conversion layer may convert light emitted from the semiconductor light emitting device into light having a different wavelength. Light from the semiconductor light emitting element may pass through the wavelength conversion layer and be emitted as white light.
  • the wavelength converting layer may be formed in a sheet shape having a substantially constant thickness, and may be formed in a semi-curable material which is semi-cured at room temperature and flows upon heating, for example, wavelength converting materials such as phosphors. It may be a dispersed film.
  • the wavelength conversion layer may include glass and phosphor glass having phosphors dispersed in the glass (Phosphor In Glass, PIG).
  • the wavelength conversion layer may have a structure in which one layer is stacked, or may be formed of multiple layers. When the wavelength conversion layer is formed of multiple layers, each layer may include different kinds of phosphors.
  • the printed circuit board 8200 is supported by the support frame 8300.
  • the printed circuit board 8200 interfaces the semiconductor light emitting devices 8210 and 8120 and the lower electrodes 8310 to 8340 of the support frame 8300.
  • the printed circuit board 8200 may include first upper electrodes (not shown) connected to the first and second electrode pads EP1, EP2 (see FIG. 25) of the first semiconductor light emitting device 8210, and a second, respectively.
  • Second upper electrodes (not shown) connected to the first and second electrode pads EP1 and EP2 of the semiconductor light emitting device 8120 may be included.
  • the first upper electrodes may be connected to the first lower electrodes 8310 and 8320 on the bottom surface of the support frame 8300.
  • the second upper electrodes may be connected to the second lower electrodes 8330 and 8340 on the lower surface of the support frame 8300.
  • the number and shapes of the first upper electrodes and the second upper electrodes can be changed as appropriate.
  • the support frame 8300 may further include a heat sink 8350 for dissipating heat generated from the semiconductor light emitting devices 8210 and 8120.
  • the semiconductor light emitting package 8000 includes at least one electrostatic discharge protection circuit connected to electrodes on the printed circuit board 8200, and a transparent cover for protecting the printed circuit board 8200 and the semiconductor light emitting devices 8210 and 8120. It may further include.
  • the first conductive pattern and the second conductive pattern contact the second conductive semiconductor layer.
  • the current from the power supply can flow not only through the first current path but also through the second current path formed by the second conductive pattern, the second conductive semiconductor layer, the active layer, the first conductive semiconductor layer, and the first electrode layer. .
  • current from the power source can flow smoothly through the first and second current paths.
  • the semiconductor light emitting device includes first contact regions having an area of 1.8% or more of the sum of the emission area and the non-emission area. Therefore, the semiconductor light emitting device may have an improved light intensity while having a low voltage drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A semiconductor light emitting device according to an embodiment of the present invention comprises: a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, which are sequentially stacked; a first conductive pattern making ohmic contact with one surface of the second conductive semiconductor layer; and a second conductive pattern making ohmic contact with the one surface of the second conductive semiconductor layer and having a material different from that of the first conductive pattern, wherein the first conductive pattern makes contact with a portion of the second conductive pattern.

Description

발광 구조물을 포함하는 반도체 발광 소자Semiconductor light emitting device comprising a light emitting structure
본 출원은 전자 장치에 관한 것으로, 좀 더 구체적으로는 발광 구조물을 포함하는 반도체 발광 소자에 관한 것이다.The present application relates to an electronic device, and more particularly, to a semiconductor light emitting device including a light emitting structure.
반도체 발광 다이오드(Light Emitting Diode)는 전기 에너지를 광 에너지로 변환하는 반도체 소자로서, 에너지 밴드 갭에 따라 특정한 파장의 빛을 내는 화합물 반도체로 구성된다. 이러한 반도체 발광 다이오드는 필라멘트에 기초한 광원에 비해 긴 수명, 낮은 전원, 우수한 초기 구동 특성 등의 여러 장점을 갖기 때문에 그 수요가 지속적으로 증가하고 있다. 예를 들면, 반도체 발광 다이오드는 디스플레이, 액정 표시 장치(Liquid Crystal Display)용 백라이트 유닛(Back Light Unit), 조명 등에 사용되고 있으며, 그 활용이 다양한 영역으로 확대되고 있는 추세에 있다. A semiconductor light emitting diode (Light Emitting Diode) is a semiconductor device that converts electrical energy into light energy, and is composed of a compound semiconductor that emits light of a specific wavelength according to the energy band gap. Such semiconductor light emitting diodes have a number of advantages, such as long life, low power, and excellent initial driving characteristics, compared to filament-based light sources. For example, semiconductor light emitting diodes are being used in displays, backlight units for liquid crystal displays, lighting, and the like, and their use is expanding to various areas.
특히, 질화갈륨계 발광다이오드의 적용은 소형 휴대제품 뿐만 아니라 대형화 및 고출력화된 제품으로 진행되어, 해당 제품에 요구되는 특성에 적합한 광원이 요구된다.In particular, the application of the gallium nitride-based light emitting diode is proceeding to a large sized and high output product as well as small portable products, a light source suitable for the characteristics required for the product is required.
본 출원은 향상된 구동 효율을 갖는 반도체 발광 소자를 제공하기 위한 것이다.The present application is to provide a semiconductor light emitting device having an improved driving efficiency.
본 출원은 낮은 순방향 전압을 가지면서도 향상된 특성을 갖는 반도체 발광 소자를 제공하기 위한 것이다.The present application is to provide a semiconductor light emitting device having improved characteristics while having a low forward voltage.
본 발명의 실시 예에 따른 반도체 발광 소자는, 순차적으로 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하는 발광 구조물; 상기 제 2 도전형 반도체층의 일면에 오믹 컨택하는 제 1 도전 패턴; 및 상기 제 2 도전형 반도체층의 상기 일면에 오믹 컨택하고 상기 제 1 도전 패턴과 상이한 물질을 갖는 제 2 도전 패턴을 포함한다. 상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 일부에 컨택한다.A semiconductor light emitting device according to an embodiment of the present invention, a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially stacked; A first conductive pattern in ohmic contact with one surface of the second conductive semiconductor layer; And a second conductive pattern having ohmic contact to the one surface of the second conductive semiconductor layer and having a material different from that of the first conductive pattern. The first conductive pattern contacts a portion of the second conductive pattern.
실시 예로서, 상기 제 2 도전형 반도체층의 상기 일면에서, 상기 제 2 도전 패턴은 상기 제 1 도전 패턴을 둘러쌀 수 있다.In at least one example embodiment, the second conductive pattern may surround the first conductive pattern.
실시 예로서, 상기 제 2 도전형 반도체층의 상기 일면은 제 1 부분 및 제 2 부분으로 구분되고, 상기 제 2 도전 패턴은 상기 제 1 부분에 배치되며, 상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층의 가장자리와 인접하고 상기 제 1 도전 패턴은 상기 제 2 도전 패턴보다 상기 가장자리로부터 이격될 수 있다.In an embodiment, the one surface of the second conductivity-type semiconductor layer is divided into a first portion and a second portion, the second conductive pattern is disposed on the first portion, and the second conductive pattern is the second conductive. The first conductive pattern may be adjacent to an edge of the type semiconductor layer and spaced apart from the edge than the second conductive pattern.
실시 예로서, 상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 측면 중 적어도 일부에 컨택할 수 있다.In example embodiments, the first conductive pattern may contact at least some of side surfaces of the second conductive pattern.
실시 예로서, 상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층의 상기 일면과 컨택하는 하면 및 상기 하면에 반대되는 상면을 포함하고, 상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 상기 상면 중 적어도 일부, 그리고 상기 제 2 도전 패턴의 측면에 컨택할 수 있다.In example embodiments, the second conductive pattern may include a lower surface contacting the one surface of the second conductive semiconductor layer and an upper surface opposite to the lower surface, and the first conductive pattern may be one of the upper surfaces of the second conductive pattern. At least a portion of the first conductive layer may be in contact with a side surface of the second conductive pattern.
실시 예로서, 상기 제 2 도전형 반도체층의 상기 일면에서, 상기 제 2 도전 패턴의 너비는 상기 제 1 도전 패턴의 너비보다 짧을 수 있다.In an embodiment, in one surface of the second conductive semiconductor layer, the width of the second conductive pattern may be shorter than the width of the first conductive pattern.
실시 예로서, 상기 제 2 도전 패턴의 두께는 상기 제 1 도전 패턴의 두께보다 얇을 수 있다.In an embodiment, the thickness of the second conductive pattern may be thinner than the thickness of the first conductive pattern.
실시 예로서, 상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 부분 중 적어도 일부는 슬롭을 가질 수 있다.In at least some of the portions adjacent to the second conductive pattern of the first conductive pattern may have a slop.
실시 예로서, 상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 상기 부분은 상기 제 2 도전 패턴과 인접할수록 얇아질 수 있다.In an embodiment, the portion of the first conductive pattern that is adjacent to the second conductive pattern may be thinner as it is closer to the second conductive pattern.
실시 예로서, 상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 상기 부분은 제 1 영역, 그리고 상기 제 1 영역 및 상기 제 2 도전 패턴 사이의 제 2 영역으로 구분되고, 상기 제 1 영역은 상기 제 2 도전 패턴과 인접할수록 얇아지고, 상기 제 2 영역은 상기 제 1 도전 패턴과 인접할수록 두꺼워질 수 있다.In an embodiment, the portion adjacent to the second conductive pattern of the first conductive pattern is divided into a first region and a second region between the first region and the second conductive pattern, and the first region is The closer to the second conductive pattern, the thinner it is, and the closer to the second conductive pattern, the thicker the second region.
실시 예로서, 상기 제 1 도전 패턴은 반사성 물질을 포함하고, 상기 제 2 도전 패턴은 투명성 물질을 포함할 수 있다.In example embodiments, the first conductive pattern may include a reflective material, and the second conductive pattern may include a transparent material.
실시 예로서, 상기 제 1 도전 패턴은 반사성 메탈을 포함하고, 상기 제 2 도전 패턴은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), 및 TCO(Transparent Conductive Oxide)으로부터 선택되는 적어도 하나의 물질을 포함할 수 있다.In example embodiments, the first conductive pattern may include a reflective metal, and the second conductive pattern may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), Gallium Indium Oxide (GIO), Zinc Tin Oxide (ZTO), Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), and Transparent (TCO) Conductive Oxide) may include at least one material selected from.
실시 예로서, 상기 제 1 도전 패턴은, 반사성 메탈층; 및 상기 반사성 메탈층을 커버하는 커버 메탈층을 포함하며, 상기 커버 메탈층은 상기 제 2 도전 패턴에 컨택하고, 상기 반사성 메탈층은 상기 제 2 도전 패턴과 이격될 수 있다.In an embodiment, the first conductive pattern may include a reflective metal layer; And a cover metal layer covering the reflective metal layer, wherein the cover metal layer contacts the second conductive pattern, and the reflective metal layer is spaced apart from the second conductive pattern.
실시 예로서, 상기 제 2 도전 패턴은 상기 반사성 메탈층과 대향하는 측면을 포함하고, 상기 커버 메탈층은 상기 제 2 도전 패턴의 측면 중 적어도 일부에 컨택할 수 있다.In example embodiments, the second conductive pattern may include a side surface facing the reflective metal layer, and the cover metal layer may contact at least a portion of the side surface of the second conductive pattern.
실시 예로서, 상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층과 컨택하는 하면, 그리고 상기 하면에 반대되는 상면을 포함하고, 상기 커버 메탈층은 상기 제 2 도전 패턴의 상기 상면 중 적어도 일부와 더 컨택할 수 있다.In example embodiments, the second conductive pattern may include a lower surface contacting the second conductive semiconductor layer and an upper surface opposite to the lower surface, and the cover metal layer may be formed with at least a portion of the upper surface of the second conductive pattern. You can contact more.
실시 예로서, 반도체 발광 소자는 상기 제 1 및 제 2 도전 패턴들 및 상기 발광 구조물 상에 배치되며, 상기 제 1 도전형 반도체층의 일부를 노출하는 제 1 개구부, 그리고 상기 제 1 및 제 2 도전 패턴들 중 적어도 하나의 일부를 노출하는 제 2 개구부를 갖는 제 1 패시베이션 층; 상기 제 1 패시베이션 층 상에 배치되며, 상기 제 1 개구부를 통해 상기 제 1 도전형 반도체층과 컨택하는 전극층; 상기 전극층 상에 배치되며, 상기 전극층의 일부를 노출하는 제 3 개구부, 그리고 상기 제 2 개구부에 의해 노출된 부분의 적어도 일부를 노출하는 제 4 개구부를 갖는 제 2 패시베이션 층; 상기 제 3 개구부를 통해 상기 전극층에 컨택하는 제 1 전극 패드; 및 상기 제 4 개구부를 통해 상기 제 1 및 제 2 도전 패턴들 중 적어도 하나에 컨택하는 제 2 전극 패드를 더 포함할 수 있다.In example embodiments, a semiconductor light emitting device may be disposed on the first and second conductive patterns and the light emitting structure, and may include a first opening exposing a portion of the first conductive semiconductor layer, and the first and second conductive layers. A first passivation layer having a second opening exposing a portion of at least one of the patterns; An electrode layer disposed on the first passivation layer and in contact with the first conductive semiconductor layer through the first opening; A second passivation layer disposed on the electrode layer, the second passivation layer having a third opening exposing a portion of the electrode layer and a fourth opening exposing at least a portion of the portion exposed by the second opening; A first electrode pad contacting the electrode layer through the third opening; And a second electrode pad contacting at least one of the first and second conductive patterns through the fourth opening.
실시 예로서, 상기 제 1 도전형 반도체층은 n형 반도체층이고, 상기 제 2 도전형 반도체층은 p형 반도체층일 수 있다.In example embodiments, the first conductive semiconductor layer may be an n-type semiconductor layer, and the second conductive semiconductor layer may be a p-type semiconductor layer.
본 발명의 다른 실시 예에 따른 반도체 발광 소자는, 제 1 도전형 반도체층; 상기 제 1 도전형 반도체층 상에 배치되는 활성층; 상기 활성층 상에 배치되는 제 2 도전형 반도체층; 상기 제 1 도전형 반도체층에 컨택하는 제 1 전극층; 및 상기 제 2 도전형 반도체층에 컨택하는 제 2 전극층을 포함하되, 상기 제 2 전극층은 상기 제 2 도전형 반도체층에 컨택하는 제 1 도전 패턴, 그리고 상기 제 2 도전형 반도체층에 컨택하며 상기 제 1 도전 패턴의 적어도 일부를 둘러싸는 제 2 도전 패턴을 포함할 수 있다.A semiconductor light emitting device according to another embodiment of the present invention, the first conductive semiconductor layer; An active layer disposed on the first conductivity type semiconductor layer; A second conductivity type semiconductor layer disposed on the active layer; A first electrode layer contacting the first conductive semiconductor layer; And a second electrode layer contacting the second conductive semiconductor layer, wherein the second electrode layer contacts the second conductive semiconductor layer, the first conductive pattern, and the second conductive semiconductor layer. It may include a second conductive pattern surrounding at least a portion of the first conductive pattern.
본 발명의 실시 예에 따른 반도체 발광 소자는, 기판 상에 순차적으로 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하는 발광 구조물; 상기 발광 구조물 상에 배치되며, 비발광 영역에서 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 전극층; 및 상기 발광 구조물 상에 배치되며, 발광 영역에서 상기 제 2 도전형 반도체층과 컨택하는 제 2 컨택 전극층을 포함하되, 상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 면적은 상기 비발광 영역 및 상기 발광 영역의 합의 1.8% 이상이다.A semiconductor light emitting device according to an embodiment of the present invention, a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially stacked on a substrate; A first contact electrode layer disposed on the light emitting structure and contacting the first conductive semiconductor layer in a non-light emitting region; And a second contact electrode layer disposed on the light emitting structure, the second contact electrode layer contacting the second conductive semiconductor layer in a light emitting region, wherein the first contact electrode layer contacts the first conductive semiconductor layer. Is equal to or greater than 1.8% of the sum of the non-emission area and the emission area.
실시 예로서, 상기 제 1 컨택 면적은 상기 합의 1.8%~4.5%의 범위에 속할 수 있다.In an embodiment, the first contact area may be in the range of 1.8% to 4.5% of the sum.
실시 예로서, 상기 제 1 컨택 면적은 상기 합의 2.5%일 수 있다.In an embodiment, the first contact area may be 2.5% of the sum.
실시 예로서, 상기 기판은 GaN을 포함하는 도전성 기판일 수 있다.In an embodiment, the substrate may be a conductive substrate including GaN.
실시 예로서, 상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 부분들 중 제 1 부분은 상기 발광 영역의 중심에 위치할 수 있다.In example embodiments, a first portion of the portions in which the first contact electrode layer contacts the first conductive semiconductor layer may be positioned at the center of the emission area.
실시 예로서, 상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 상기 부분들 중 제 2 부분은 상기 발광 영역의 가장자리에 위치할 수 있다.In example embodiments, a second portion of the portions in which the first contact electrode layer contacts the first conductive semiconductor layer may be positioned at an edge of the emission area.
실시 예로서, 상기 제 1 도전형 반도체층은 n형 반도체층이고, 상기 제 2 도전형 반도체층은 p형 반도체층일 수 있다.In example embodiments, the first conductive semiconductor layer may be an n-type semiconductor layer, and the second conductive semiconductor layer may be a p-type semiconductor layer.
실시 예로서, 상기 제 2 컨택 전극층은, 상기 제 2 도전형 반도체층에 오믹 컨택하는 반사성 메탈; 및 상기 제 2 도전형 반도체층에 오믹 컨택하되 상기 반사성 메탈과 상이한 물질을 갖는 도전 패턴을 포함하되, 상기 도전 패턴은 상기 반사성 메탈의 적어도 일부에 컨택할 수 있다.In example embodiments, the second contact electrode layer may include: a reflective metal having ohmic contact with the second conductivity type semiconductor layer; And a conductive pattern having ohmic contact with the second conductive semiconductor layer and having a material different from that of the reflective metal, wherein the conductive pattern may contact at least a portion of the reflective metal.
실시 예로서, 상기 도전 패턴은 상기 제 2 도전형 반도체층 상에서 상기 반사 메탈을 감쌀 수 있다.In example embodiments, the conductive pattern may surround the reflective metal on the second conductive semiconductor layer.
실시 예로서, 상기 발광 구조물은 메사 영역과 에칭 영역으로 구획되며, 상기 제 1 도전형 반도체층은 상기 메사 영역 및 상기 에칭 영역에 위치하며, 상기 활성층 및 상기 제 2 도전형 반도체층은 상기 메사 영역에서 상기 제 1 도전형 반도체 층 위에 배치되며, 상기 발광 영역은 상기 활성층이 위치하는 영역에 대응할 수 있다.In example embodiments, the light emitting structure may be divided into a mesa region and an etching region, wherein the first conductivity type semiconductor layer is positioned in the mesa region and the etching region, and the active layer and the second conductivity type semiconductor layer are in the mesa region. The light emitting region may be disposed on the first conductive semiconductor layer, and the emission region may correspond to a region where the active layer is located.
실시 예로서, 상기 반도체 발광 소자는 상기 발광 구조물 및 상기 제 2 컨택 전극층 상에 배치되며 상기 비발광 영역에서 상기 제 1 도전형 반도체층의 일부를 노출하는 제 1 개구부를 갖는 제 1 패시베이션 층을 더 포함할 수 있다. 이때, 상기 제 1 컨택 전극층은 상기 제 1 패시베이션 층 상에 배치되며 상기 제 1 개구부를 통해 상기 제 1 도전형 반도체층과 컨택하고, 상기 제 1 개구부는 상기 발광 영역의 중심에 위치할 수 있다.In example embodiments, the semiconductor light emitting device may further include a first passivation layer disposed on the light emitting structure and the second contact electrode layer and having a first opening exposing a portion of the first conductivity type semiconductor layer in the non-light emitting region. It may include. In this case, the first contact electrode layer may be disposed on the first passivation layer and contact the first conductive semiconductor layer through the first opening, and the first opening may be positioned at the center of the emission area.
실시 예로서, 상기 제 1 패시베이션 층은 상기 제 2 컨택 전극층의 일부를 노출하는 제 2 개구부를 가질 수 있다. 이때, 상기 반도체 발광 소자는 상기 제 1 패시베이션 층 상에 배치되며 상기 제 2 개구부를 통해 상기 제 2 컨택 전극층에 컨택하는 연결 전극층; 상기 제 1 컨택 전극층 및 상기 연결 전극층 상에 배치되며, 상기 제 1 컨택 전극층의 일부를 노출하는 제 3 개구부 및 상기 연결 전극층의 일부를 노출하는 제 4 개구부를 갖는 제 2 패시베이션 층; 상기 제 3 개구부를 통해 상기 제 1 컨택 전극층에 컨택하는 제 1 전극 패드; 및 상기 제 4 개구부를 통해 상기 연결 전극층에 컨택하는 제 2 전극 패드를 더 포함할 수 있다.In example embodiments, the first passivation layer may have a second opening exposing a portion of the second contact electrode layer. The semiconductor light emitting device may include a connection electrode layer disposed on the first passivation layer and contacting the second contact electrode layer through the second opening; A second passivation layer disposed on the first contact electrode layer and the connection electrode layer and having a third opening exposing a portion of the first contact electrode layer and a fourth opening exposing a portion of the connection electrode layer; A first electrode pad contacting the first contact electrode layer through the third opening; And a second electrode pad contacting the connection electrode layer through the fourth opening.
본 발명의 다른 실시 예에 따른 반도체 발광 소자는 기판; 상기 기판 상에 순차적으로 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하되, 메사 영역과 에칭 영역으로 구획되는 발광 구조물; 상기 발광 구조물 상에 배치되며, 상기 에칭 영역에서 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 전극층; 및 상기 발광 구조물 상에 배치되며, 상기 메사 영역에서 상기 제 2 도전형 반도체층과 컨택하는 제 2 컨택 전극층을 포함한다. 상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 면적은 상기 메사 영역 및 상기 에칭 영역의 합의 1.8% 이상이다.A semiconductor light emitting device according to another embodiment of the present invention is a substrate; A light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially stacked on the substrate, the light emitting structure being divided into a mesa region and an etching region; A first contact electrode layer disposed on the light emitting structure and contacting the first conductivity type semiconductor layer in the etching region; And a second contact electrode layer disposed on the light emitting structure and contacting the second conductive semiconductor layer in the mesa region. The first contact area where the first contact electrode layer contacts the first conductive semiconductor layer is equal to or greater than 1.8% of the sum of the mesa region and the etching region.
실시 예로서, 상기 제 1 컨택 면적은 상기 합의 1.8%~4.5%의 범위에 속할 수 있다.In an embodiment, the first contact area may be in the range of 1.8% to 4.5% of the sum.
본 출원에 따르면, 향상된 구동 효율을 갖는 반도체 발광 소자가 제공된다.According to the present application, a semiconductor light emitting device having an improved driving efficiency is provided.
본 출원에 따르면, 낮은 순방향 전압을 가지면서도 향상된 특성을 갖는 반도체 발광 소자가 제공된다.According to the present application, a semiconductor light emitting device having improved characteristics while having a low forward voltage is provided.
도 1은 본 발명의 실시 예에 따른 반도체 발광 소자를 보여주는 사시도이다.1 is a perspective view showing a semiconductor light emitting device according to an embodiment of the present invention.
도 2는 도 1의 I-I'선에 따른 단면도이다.FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
도 3은 도 1의 반도체 발광 소자의 기판, 제 1 도전형 반도체층, 활성층, 제 2 도전형 반도체층, 그리고 제 1 및 제 2 도전 패턴들을 보여주는 사시도이다.3 is a perspective view illustrating a substrate, a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, and first and second conductive patterns of the semiconductor light emitting device of FIG. 1.
도 4는 도 2의 영역 A를 보여주는 도면이다.4 is a view illustrating a region A of FIG. 2.
도 5은 본 발명의 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.5 is a cross-sectional view illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
도 6, 도 7, 도 8, 도 9, 도 10, 및 도 11은 도 5의 반도체 발광 소자의 제조 방법을 설명하기 위한 도면들이다.6, 7, 8, 9, 10, and 11 are diagrams for describing a method of manufacturing the semiconductor light emitting device of FIG. 5.
도 12는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.12 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
도 13은 본 발명의 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.13 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
도 14는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.14 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
도 15a 및 도 15b는 본 발명의 다른 실시 예에 따른 반도체 발광 소자를 보여주는 평면도들이다.15A and 15B are plan views illustrating a semiconductor light emitting device according to another exemplary embodiment of the present invention.
도 16은 도 15a 및 도 15b의 II-II' 선에 따른 단면도이다.16 is a cross-sectional view taken along the line II-II 'of FIGS. 15A and 15B.
도 17은 도 15a 및 도 15b를 참조하여 설명된 반도체 발광 소자의 변형 실시 예를 보여주는 평면도이다.17 is a plan view illustrating a modified embodiment of the semiconductor light emitting device described with reference to FIGS. 15A and 15B.
도 18은 본 발명의 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.18 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
도 19는 도 18의 반도체 발광 소자의 적용 례를 보여주는 단면도이다.19 is a cross-sectional view illustrating an application example of the semiconductor light emitting device of FIG. 18.
도 20은 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자를 보여주는 단면도이다.20 is a cross-sectional view illustrating a semiconductor light emitting device according to another embodiment of the present invention.
도 21은 도 20의 반도체 발광 소자의 적용 례를 보여주는 단면도이다.21 is a cross-sectional view illustrating an application example of the semiconductor light emitting device of FIG. 20.
도 22는 반도체 발광 소자를 포함하는 반도체 발광 패키지의 실시 예를 보여주는 분해 사시도이다.22 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
도 23은 도 22의 반도체 발광 패키지의 변형 례를 보여주는 분해 사시도이다.FIG. 23 is an exploded perspective view illustrating a modified example of the semiconductor light emitting package of FIG. 22.
도 24는 반도체 발광 소자를 포함하는 반도체 발광 패키지의 다른 실시 예를 보여주는 분해 사시도이다.24 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
도 25는 본 발명의 실시 예에 따른 반도체 발광 소자의 평면도이다.25 is a plan view of a semiconductor light emitting device according to an embodiment of the present invention.
도 26은 도 25의 라인 I-I'에 따른 단면도의 실시 예를 보여주는 도면이다.FIG. 26 is a diagram illustrating an embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
도 27은 발광 영역의 면적과 광세기 사이의 관계를 보여주는 실험 그래프이다.27 is an experimental graph showing the relationship between the area of the light emitting area and the light intensity.
도 28은 제 1 컨택 영역들의 면적과 반도체 발광 소자의 순방향 전압 사이의 관계를 보여주는 실험 그래프이다.28 is an experimental graph illustrating a relationship between an area of first contact regions and a forward voltage of a semiconductor light emitting device.
도 29는 도 25의 라인 I-I'에 따른 단면도의 다른 실시 예를 보여주는 도면이다.FIG. 29 is a diagram illustrating another embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
도 30은 도 29의 영역 A를 보여주는 확대도이다.FIG. 30 is an enlarged view illustrating region A of FIG. 29.
도 31은 제 1 컨택 영역들의 면적과 도 30의 실시 예에 따른 반도체 발광 소자의 순방향 전압 사이의 관계를 보여주는 실험 그래프이다.FIG. 31 is an experimental graph illustrating a relationship between an area of first contact regions and a forward voltage of a semiconductor light emitting device according to the exemplary embodiment of FIG. 30.
도 32, 도 33a, 도 33b, 도 34a, 도 34b, 도 35a, 도 35b, 도 36a, 도 36b, 도 37a, 및 도 37b는 도 29의 실시 예에 따른 반도체 발광 소자의 제조 방법을 보여주는 도면들이다.32, 33A, 33B, 34A, 34B, 35A, 35B, 36A, 36B, 37A, and 37B illustrate a method of manufacturing a semiconductor light emitting device according to the embodiment of FIG. 29. admit.
도 38은 본 발명의 다른 실시 예에 따른 반도체 발광 소자의 평면도이다.38 is a plan view of a semiconductor light emitting device according to another embodiment of the present invention.
도 39는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자의 평면도이다.39 is a plan view of a semiconductor light emitting device according to still another embodiment of the present invention.
도 40은 반도체 발광 소자를 포함하는 반도체 발광 패키지의 실시 예를 보여주는 분해 사시도이다.40 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
도 41은 도 40의 반도체 발광 패키지의 변형 례를 보여주는 분해 사시도이다.41 is an exploded perspective view illustrating a modification of the semiconductor light emitting package of FIG. 40.
도 42는 반도체 발광 소자를 포함하는 반도체 발광 패키지의 다른 실시 예를 보여주는 분해 사시도이다.42 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
위 발명의 배경이 되는 기술 란에 기재된 내용은 오직 본 발명의 기술적 사상에 대한 배경 기술의 이해를 돕기 위한 것이며, 따라서 그것은 본 발명의 기술 분야의 당업자에게 알려진 선행 기술에 해당하는 내용으로 이해될 수 없다.The description in the background of the technical field of the present invention is only for the purpose of understanding the background art of the technical idea of the present invention, and thus it can be understood as the content corresponding to the prior art known to those skilled in the art. none.
아래의 서술에서, 설명의 목적으로, 다양한 실시예들의 이해를 돕기 위해 많은 구체적인 세부 내용들이 제시된다. 그러나, 다양한 실시예들이 이러한 구체적인 세부 내용들 없이 또는 하나 이상의 동등한 방식으로 실시될 수 있다는 것은 명백하다. 다른 예시들에서, 잘 알려진 구조들과 장치들은 장치는 다양한 실시예들을 불필요하게 이해하기 어렵게 하는 것을 피하기 위해 블록도로 표시된다.In the following description, for purposes of explanation, numerous specific details are set forth in order to assist in understanding the various embodiments. It may be evident, however, that various embodiments may be practiced without these specific details or in one or more equivalent ways. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the various embodiments.
도면에서, 레이어들, 필름들, 패널들, 영역들 등의 크기 또는 상대적인 크기는 명확한 설명을 위해 과장될 수 있다. 또한, 동일한 참조 번호는 동일한 구성 요소를 나타낸다.In the drawings, the size or relative size of layers, films, panels, regions, etc. may be exaggerated for clarity. Like reference numerals denote like elements.
명세서 전체에서, 어떤 소자 또는 레이어가 다른 소자 또는 레이어와 "연결되어 있다"고 서술되어 있으면, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 소자나 레이어를 사이에 두고 간접적으로 연결되어 있는 경우도 포함한다. 그러나, 만약 어떤 부분이 다른 부분과 "직접적으로 연결되어 있다"고 서술되어 있으면, 이는 해당 부분과 다른 부분 사이에 다른 소자가 없음을 의미할 것이다. "X, Y, 및 Z 중 적어도 어느 하나", 그리고 "X, Y, 및 Z로 구성된 그룹으로부터 선택된 적어도 어느 하나"는 X 하나, Y 하나, Z 하나, 또는 X, Y, 및 Z 중 둘 또는 그 이상의 어떤 조합 (예를 들면, XYZ, XYY, YZ, ZZ) 으로 이해될 것이다. 여기에서, "및/또는"은 해당 구성들 중 하나 또는 그 이상의 모든 조합을 포함한다.Throughout the specification, when an element or layer is described as "connected" to another element or layer, it is not only directly connected, but also indirectly connected between other elements or layers in between. It also includes the case. However, if a part is described as "directly connected" to another part, it will mean that there is no other element between that part and the other part. "At least one of X, Y, and Z" and "at least one selected from the group consisting of X, Y, and Z" is X one, Y one, Z one, or two of X, Y, and Z or Any combination of the above will be understood (e.g., XYZ, XYY, YZ, ZZ). Here, "and / or" includes all combinations of one or more of the configurations.
여기에서, 첫번째, 두번째 등과 같은 용어가 다양한 소자들, 요소들, 지역들, 레이어들, 및/또는 섹션들을 설명하기 위해 사용될 수 있지만, 이러한 소자들, 요소들, 지역들, 레이어들, 및/또는 섹션들은 이러한 용어들에 한정되지 않는다. 이러한 용어들은 하나의 소자, 요소, 지역, 레이어, 및/또는 섹션을 다른 소자, 요소, 지역, 레이어, 및 또는 섹션과 구별하기 위해 사용된다. 따라서, 일 실시예에서의 첫번째 소자, 요소, 지역, 레이어, 및/또는 섹션은 다른 실시예에서 두번째 소자, 요소, 지역, 레이어, 및/또는 섹션이라 칭할 수 있다.Herein, terms such as first, second, etc. may be used to describe various elements, elements, regions, layers, and / or sections, but such elements, elements, regions, layers, and / or the like. Or sections are not limited to these terms. These terms are used to distinguish one element, element, region, layer, and / or section from another element, element, region, layer, and / or section. Thus, the first element, element, region, layer, and / or section in one embodiment may be referred to as the second element, element, region, layer, and / or section in another embodiment.
"아래", "위" 등과 같은 공간적으로 상대적인 용어가 설명의 목적으로 사용될 수 있으며, 그렇게 함으로써 도면에서 도시된 대로 하나의 소자 또는 특징과 다른 소자(들) 또는 특징(들)과의 관계를 설명한다. 이는 도면 상에서 하나의 구성 요소의 다른 구성 요소에 대한 관계를 나타내는 데에 사용될 뿐, 절대적인 위치를 의미하는 것은 아니다. 예를 들어, 도면에 도시된 장치가 뒤집히면, 다른 소자들 또는 특징들의 "아래"에 위치하는 것으로 묘사된 소자들은 다른 소자들 또는 특징들의 "위"의 방향에 위치한다. 따라서, 일 실시예에서 "아래" 라는 용어는 위와 아래의 양방향을 포함할 수 있다. 뿐만 아니라, 장치는 그 외의 다른 방향일 수 있다 (예를 들어, 90도 회전된 혹은 다른 방향에서), 그리고, 여기에서 사용되는 그런 공간적으로 상대적인 용어들은 그에 따라 해석된다.Spatially relative terms such as "below", "above", and the like may be used for illustrative purposes, thereby describing the relationship of one device or feature to another device (s) or feature (s) as shown in the figures. do. This is only used to indicate the relationship of one component to another component in the drawings, but does not mean an absolute position. For example, when the device shown in the figures is inverted, elements depicted as being "below" of other elements or features are located in the direction of "above" other elements or features. Thus, in one embodiment the term "below" may include both up and down. In addition, the device may be in other directions (eg, rotated 90 degrees or in other directions), and such spatially relative terms used herein are interpreted accordingly.
여기에서 사용된 용어는 특정한 실시예들을 설명하는 목적이고 제한하기 위한 목적이 아니다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함한다" 고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 다른 정의가 없는 한, 여기에 사용된 용어들은 본 발명이 속하는 분야에서 통상적인 지식을 가진 자에게 일반적으로 이해되는 것과 같은 의미를 갖는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. Throughout the specification, when a portion "contains" a certain component, it means that it may further include other components, except to exclude other components unless specifically stated otherwise. Unless otherwise defined, terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
도 1은 본 발명의 실시 예에 따른 반도체 발광 소자(100, Semiconductor Light Emitting Device)를 보여주는 사시도이다.1 is a perspective view illustrating a semiconductor light emitting device 100 according to an exemplary embodiment of the present invention.
도 1을 참조하면, 반도체 발광 소자(100)는 기판(110), 반도체 구조물(SS), 그리고 제 1 및 제 2 전극 패드들(EP1, EP2)을 포함한다.Referring to FIG. 1, the semiconductor light emitting device 100 may include a substrate 110, a semiconductor structure SS, and first and second electrode pads EP1 and EP2.
기판(110)은 절연성 또는 도전성 기판일 수 있다. 예를 들면, 기판(110)은 GaN, 사파이어, SiC, Si, MgAl2O4, MgO, LiAlO2, LiGaO2, 그와 유사한 것을 포함할 수 있다.The substrate 110 may be an insulating or conductive substrate. For example, the substrate 110 may include GaN, sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , and the like.
기판(110) 상에 반도체 구조물(SS)이 배치된다. 반도체 구조물(SS)은 적어도 하나의 그루브(GRV)를 포함할 수 있다. 도 1에 도시된 원형의 그루브(GRV)는 예시적인 것으로, 그것의 위치, 크기, 및 형상은 실시 예들에 따라 다양하게 변경될 수 있음이 이해될 것이다. 반도체 구조물(SS)은 도 2를 참조하여 더 상세히 설명된다.The semiconductor structure SS is disposed on the substrate 110. The semiconductor structure SS may include at least one groove GRV. The circular groove GRV shown in FIG. 1 is exemplary, and it will be understood that its position, size, and shape may be variously changed according to embodiments. The semiconductor structure SS is described in more detail with reference to FIG. 2.
반도체 구조물(SS) 상에 제 1 및 제 2 전극 패드들(EP1, EP2)이 배치된다. 제 1 전극 패드(EP1)는 반도체 구조물(SS)을 통해 제 1 도전형 반도체층(120)에 전기적으로 연결된다. 제 1 전극 패드(EP1)는 반도체 구조물(SS) 내 제 1 전극층과 연결될 수 있다. 제 1 전극층은 그루브(GRV)에 대응하는 영역에서 제 1 도전형 반도체층(120)에 컨택할 수 있다. 제 2 전극 패드(EP2)는 반도체 구조물(SS)에 포함된 제 2 도전형 반도체층에 전기적으로 연결된다. 제 1 및 제 2 전극 패드들(EP1, EP2)을 통해, 제 1 도전형 반도체층(120) 및 제 2 도전형 반도체층에 전압 또는 전류가 인가될 것이다.First and second electrode pads EP1 and EP2 are disposed on the semiconductor structure SS. The first electrode pad EP1 is electrically connected to the first conductive semiconductor layer 120 through the semiconductor structure SS. The first electrode pad EP1 may be connected to the first electrode layer in the semiconductor structure SS. The first electrode layer may contact the first conductivity type semiconductor layer 120 in a region corresponding to the groove GRV. The second electrode pad EP2 is electrically connected to the second conductive semiconductor layer included in the semiconductor structure SS. Voltage or current may be applied to the first conductive semiconductor layer 120 and the second conductive semiconductor layer through the first and second electrode pads EP1 and EP2.
실시 예로서, 반도체 발광 소자(100)는 질화 갈륨계(gallium nitride-based) 반도체 발광 소자일 수 있다.In an embodiment, the semiconductor light emitting device 100 may be a gallium nitride-based semiconductor light emitting device.
도 2는 도 1의 I-I'선에 따른 단면도이다.FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
도 2를 참조하면, 도 1의 반도체 구조물(SS)은 제 1 도전형 반도체층(120), 활성층(130), 제 2 도전형 반도체층(140), 제 1 및 제 2 도전 패턴들(150, 160), 제 1 패시베이션 층(170), 제 1 전극층(180), 및 제 2 패시베이션 층(190)을 포함한다.Referring to FIG. 2, the semiconductor structure SS of FIG. 1 may include a first conductive semiconductor layer 120, an active layer 130, a second conductive semiconductor layer 140, and first and second conductive patterns 150. 160, a first passivation layer 170, a first electrode layer 180, and a second passivation layer 190.
제 1 도전형 반도체층(120)은 n형의 불순물이 포함된 질화물 반도체로서, 조성식 AlxInyGa1-x-yN (0≤x<1, 0≤y<1, 0≤x+y<1)을 만족할 수 있다. 예를 들면, 제 1 도전형 반도체층(120)은 GaN, AlGaN, InGaN, AlInGaN 등을 포함할 수 있다. 예를 들면, n형 불순물은 Si일 수 있다. The first conductive semiconductor layer 120 is a nitride semiconductor containing an n-type impurity. The composition Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ y <1, 0 ≦ x + y < 1) can be satisfied. For example, the first conductivity type semiconductor layer 120 may include GaN, AlGaN, InGaN, AlInGaN, or the like. For example, the n-type impurity may be Si.
실시 예로서, 기판(110)이 GaN을 포함하는 도전성 기판일 때, 제 1 도전형 반도체층(120)의 불순물 농도는 기판의 불순물 농도보다 높을 수 있다. 이때, 기판(110)은 제 1 도전형 반도체층(120)과 함께 전류 통로로서 기능할 수 있다. 제 2 도전형 반도체층(140), 활성층(130), 및 제 1 도전형 반도체층(120)을 통해 제 1 전극층(180)으로 전달되는 전류는 기판(110)에 의해 더 원활하게 흐를 수 있다.In an embodiment, when the substrate 110 is a conductive substrate including GaN, the impurity concentration of the first conductive semiconductor layer 120 may be higher than that of the substrate. In this case, the substrate 110 may function as a current path together with the first conductivity-type semiconductor layer 120. Current transmitted to the first electrode layer 180 through the second conductive semiconductor layer 140, the active layer 130, and the first conductive semiconductor layer 120 may flow more smoothly by the substrate 110. .
활성층(130)은 제 1 도전형 반도체층(120) 상에 배치된다. 실시 예로서, 활성층(130)은 양자우물층과 양자장벽층이 교대로 적층된 다중 양자우물(Multi Quantum Well, MQW) 구조를 가질 수 있다. 예를 들면, 양자우물층과 양자장벽층 각각은 서로 다른 조성을 갖는 물질들을 포함하며, 조성식 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 만족할 수 있다. 양자우물층은 인듐(In)과 같이 휘발성이 강한 원소를 포함할 수 있다. 예를 들면, 양자우물층은 InxGa1-xN (0<x≤1)을 포함하며, 양자장벽층은 GaN 또는 AlGaN을 포함할 수 있다. 실시 예로서, 활성층(130)은 단일 양자우물(Single Quantum Well, SQW) 구조를 가질 수 있다. The active layer 130 is disposed on the first conductivity type semiconductor layer 120. In an embodiment, the active layer 130 may have a multi quantum well (MQW) structure in which a quantum well layer and a quantum barrier layer are alternately stacked. For example, each of the quantum well layer and the quantum barrier layer includes materials having different compositions, and the formula In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≤1) may be satisfied. The quantum well layer may include a highly volatile element such as indium (In). For example, the quantum well layer may include In x Ga 1-x N (0 <x ≦ 1), and the quantum barrier layer may include GaN or AlGaN. In an embodiment, the active layer 130 may have a single quantum well (SQW) structure.
제 2 도전형 반도체층(140)은 활성층(130) 상에 배치된다. 제 2 도전형 반도체층(140)은 p형의 질화물 반도체로서, 조성식 AlxInyGa1-x-yN (0≤x<1, 0≤y<1, 0≤x+y<1)을 만족할 수 있다. 예를 들면, 제 2 도전형 반도체층(140)은 AlGaN, GaN 등을 포함할 수 있다. 예를 들면, p형 불순물은 Mg일 수 있다. 실시 예로서, 제 2 도전형 반도체층(140)은 단층 구조 또는 다층 구조를 가질 수 있다. 제 2 도전형 반도체층(140)이 다층 구조를 갖는 경우, 제 2 도전형 반도체층(140)은 전자 차단층으로 기능하는 p형 AlGaN층, 저농도 p형 GaN층, 그리고 고농도 p형 GaN층을 포함할 수 있다.The second conductivity type semiconductor layer 140 is disposed on the active layer 130. The second conductivity-type semiconductor layer 140 is a p-type nitride semiconductor, which satisfies the compositional formula Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ y <1, 0 ≦ x + y <1). Can be. For example, the second conductivity type semiconductor layer 140 may include AlGaN, GaN, or the like. For example, the p-type impurity may be Mg. In an embodiment, the second conductivity-type semiconductor layer 140 may have a single layer structure or a multilayer structure. When the second conductivity-type semiconductor layer 140 has a multilayer structure, the second conductivity-type semiconductor layer 140 includes a p-type AlGaN layer, a low concentration p-type GaN layer, and a high concentration p-type GaN layer serving as an electron blocking layer. It may include.
활성층(130) 및 제 2 도전형 반도체층(140)은 그루브(GRV, 도 1 참조)에 대응하는 영역에서 제 1 도전형 반도체층(120)을 노출하도록 패터닝될 수 있다. 제 1 도전형 반도체층(120)을 노출하는 개구부의 위치, 크기, 및 형상은 다양하게 변경될 수 있음이 이해될 것이다.The active layer 130 and the second conductive semiconductor layer 140 may be patterned to expose the first conductive semiconductor layer 120 in a region corresponding to the groove GRV (see FIG. 1). It will be appreciated that the position, size, and shape of the opening exposing the first conductivity type semiconductor layer 120 may be changed in various ways.
실시 예로서, 제 1 도전형 반도체층(120)의 노출된 부분은 제 1 도전형 반도체층(120)의 다른 부분보다 얇은 두께를 갖도록 식각될 수 있다.In an embodiment, the exposed portion of the first conductivity type semiconductor layer 120 may be etched to have a thickness thinner than that of the other portions of the first conductivity type semiconductor layer 120.
제 1 도전형 반도체층(120), 활성층(130), 및 제 2 도전형 반도체층(140)은 발광 구조물(ES, light emitting structure)을 구성할 수 있다. 제 1 및 제 2 도전형 반도체층들(120, 140)을 통해 발광 구조물(ES)에 전압 또는 전류가 인가될 때, 활성층(130)은 발광할 것이다.The first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor layer 140 may form a light emitting structure (ES). When a voltage or current is applied to the light emitting structure ES through the first and second conductivity-type semiconductor layers 120 and 140, the active layer 130 will emit light.
본 발명의 실시 예에 따르면, 서로 다른 물질들을 포함하는 제 1 및 제 2 도전 패턴들(150, 160)이 제 2 도전형 반도체층(140) 상에 배치된다. 제 1 및 제 2 도전 패턴들(150, 160)은 기판(110)의 표면으로부터 동일한 높이(h)에서, 기판(110)의 표면 방향(즉, X 방향 및 Y 방향)으로 연장된다. 제 1 및 제 2 도전 패턴들(150, 160)은 제 2 도전형 반도체층(140)에 컨택하는 제 2 전극층(165)으로서 기능할 수 있다.According to an embodiment of the present invention, the first and second conductive patterns 150 and 160 including different materials are disposed on the second conductive semiconductor layer 140. The first and second conductive patterns 150 and 160 extend at the same height h from the surface of the substrate 110 in the surface direction (ie, the X direction and the Y direction) of the substrate 110. The first and second conductive patterns 150 and 160 may function as the second electrode layer 165 contacting the second conductive semiconductor layer 140.
실시 예로서, 제 1 도전 패턴(150)은 반사성 메탈(reflective metal)을 포함할 수 있다. 반사성 메탈은 활성층(130)으로부터 발광되는 빛을 반사할 것이다. 반사성 메탈이 제공됨으로써, 반도체 발광 소자(100)는 Z 방향과 반대 방향 혹은 Z 방향과 반대 방향의 벡터 성분을 포함하는 방향으로 빛을 발광할 것이다. 예를 들면, 활성층(130)에서 발생되는 빛은 기판(110) 방향으로 방출될 것이다.In an embodiment, the first conductive pattern 150 may include a reflective metal. The reflective metal will reflect light emitted from the active layer 130. By providing the reflective metal, the semiconductor light emitting device 100 will emit light in a direction including a vector component in a direction opposite to the Z direction or in a direction opposite to the Z direction. For example, light generated in the active layer 130 may be emitted toward the substrate 110.
제 2 도전 패턴(160)은 제 1 도전 패턴(150) 뿐만 아니라 제 2 도전형 반도체층(140)에 컨택한다. 제 2 도전 패턴(160)은 제 2 도전형 반도체층(140)의 상면의 가장자리(edge)와 인접한 영역에 형성되고, 제 1 도전 패턴(150)은 제 2 도전 패턴(160)보다 제 2 도전형 반도체층(140)의 상면의 가장자리로부터 이격될 수 있다. 제 2 도전형 반도체층(140)의 상면 상에서, 제 2 도전 패턴(160)의 너비(W1)는 제 1 도전 패턴(150)의 너비(W2)보다 짧을 수 있다.The second conductive pattern 160 contacts the second conductive semiconductor layer 140 as well as the first conductive pattern 150. The second conductive pattern 160 is formed in an area adjacent to an edge of the upper surface of the second conductive semiconductor layer 140, and the first conductive pattern 150 is second conductive than the second conductive pattern 160. It may be spaced apart from the edge of the upper surface of the type semiconductor layer 140. On the top surface of the second conductive semiconductor layer 140, the width W1 of the second conductive pattern 160 may be shorter than the width W2 of the first conductive pattern 150.
제 2 도전 패턴(160)은 제 1 도전 패턴(150)과 다른 물질을 포함한다. 제 2 도전 패턴은 투명성 물질을 포함할 수 있다. 예를 들면, 제 2 도전 패턴(160)은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), TCO(Transparent Conductive Oxide) 등으로부터 선택된 적어도 하나를 포함할 수 있다.The second conductive pattern 160 includes a material different from the first conductive pattern 150. The second conductive pattern may include a transparent material. For example, the second conductive pattern 160 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc (ZTO) TinOxide, Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), Transparent Conductive Oxide (TCO), etc. Can be.
실시 예로서, 제 1 및 제 2 도전 패턴들(150, 160)은 제 2 도전형 반도체층(140)과의 오믹 컨택을 가질 수 있다.In some example embodiments, the first and second conductive patterns 150 and 160 may have ohmic contacts with the second conductive semiconductor layer 140.
제 1 패시베이션 층(170)은 제 1 도전형 반도체층(120), 활성층(130), 제 2 도전형 반도체층(140), 그리고 제 1 및 제 2 도전 패턴들(150, 160) 상에 배치된다. 제 1 패시베이션 층(170)은 그루브(GRV)에 대응하는 영역에서 제 1 도전형 반도체층(120)를 노출하는 제 1 개구부(OP1)를 갖는다. 그리고, 제 1 패시베이션 층(170)은 제 1 및 제 2 도전 패턴들(150, 160) 중 적어도 하나를 노출하는 제 2 개구부(OP2)를 갖는다. 이하, 제 2 개구부(OP2)는 제 1 도전 패턴(150)을 노출하는 것으로 예시된다.The first passivation layer 170 is disposed on the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer 140, and the first and second conductive patterns 150 and 160. do. The first passivation layer 170 has a first opening OP1 exposing the first conductivity type semiconductor layer 120 in a region corresponding to the groove GRV. The first passivation layer 170 has a second opening OP2 exposing at least one of the first and second conductive patterns 150 and 160. Hereinafter, the second opening OP2 is illustrated as exposing the first conductive pattern 150.
제 1 전극층(180)은 제 1 패시베이션 층(170) 및 제 1 도전형 반도체층(120) 상에 배치된다. 제 1 패시베이션 층(170)에 의해, 제 1 전극층(180)이 활성층(130), 제 2 도전형 반도체층(140), 그리고 제 1 및 제 2 도전 패턴들(150, 160)과 컨택하는 것이 차단된다. 제 1 전극층(180)은 제 1 개구부(OP1)를 통해 제 1 도전형 반도체층(120)과 컨택할 수 있다. 예를 들면, 제 1 전극층(180)은 제 1 개구부(OP1)에 의해 노출된 제 1 도전형 반도체층(120)과 오믹 컨택을 가질 수 있다.The first electrode layer 180 is disposed on the first passivation layer 170 and the first conductivity type semiconductor layer 120. The first passivation layer 170 allows the first electrode layer 180 to contact the active layer 130, the second conductivity type semiconductor layer 140, and the first and second conductive patterns 150 and 160. Is blocked. The first electrode layer 180 may contact the first conductive semiconductor layer 120 through the first opening OP1. For example, the first electrode layer 180 may have an ohmic contact with the first conductive semiconductor layer 120 exposed by the first opening OP1.
실시 예로서, 제 1 전극층(180)은 Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr 등의 물질 및 그것들의 합금 중 적어도 하나를 포함할 수 있다.In an embodiment, the first electrode layer 180 may include at least one of materials such as Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, and alloys thereof.
제 2 패시베이션 층(190)은 제 1 전극층(180) 상에 배치된다. 제 2 패시베이션 층(190)은 제 1 전극층(180)을 노출하는 제 3 개구부(OP3)를 포함한다. 그리고, 제 2 패시베이션 층(190)은 제 2 개구부(OP2)에 의해 노출된 제 1 도전 패턴(150)의 부분을 노출하는 제 4 개구부(OP4)를 포함한다. 제 4 개구부(OP4)는 제 2 개구부(OP2)의 일부를 커버할 수 있다.The second passivation layer 190 is disposed on the first electrode layer 180. The second passivation layer 190 includes a third opening OP3 exposing the first electrode layer 180. In addition, the second passivation layer 190 may include a fourth opening OP4 exposing a portion of the first conductive pattern 150 exposed by the second opening OP2. The fourth opening OP4 may cover a portion of the second opening OP2.
실시 예로서, 제 1 및 제 2 패시베이션 층들(170, 190) 각각은 SiO2, SiN, SiOxNy, TiO2, Si3N4, Al2O3, TiN, AlN, ZrO2, TiAlN, TiSiN 등의 절연성 물질로 형성될 수 있다. 실시 예로서, 제 1 및 제 2 패시베이션 층들(170, 190)은 절연성 물질 중 저 굴절 물질층과 고 굴절 물질층이 교대로 적층된 분포 브래그 반사기(Distributed Bragg Reflector, DBR)로서 형성될 수 있다. 예를 들면, 제 1 및 제 2 패시베이션 층들(170, 180)은 SiO2/TiO2나 SiO2/Nb2O5 등의 층들을 적층함으로써 형성된 높은 반사율을 갖는 절연 반사층들을 포함하는 다층 구조일 수 있다.In some example embodiments, each of the first and second passivation layers 170 and 190 may include SiO 2 , SiN, SiO x N y , TiO 2 , Si 3 N 4 , Al 2 O 3 , TiN, AlN, ZrO 2 , TiAlN, It may be formed of an insulating material such as TiSiN. In an embodiment, the first and second passivation layers 170 and 190 may be formed as a distributed Bragg reflector (DBR) in which a low refractive material layer and a high refractive material layer of the insulating material are alternately stacked. For example, the first and second passivation layers 170 and 180 may be a multilayer structure including insulating reflecting layers having high reflectivity formed by stacking layers such as SiO 2 / TiO 2 or SiO 2 / Nb 2 O 5 . have.
제 1 및 제 2 전극 패드들(EP1, EP2)은 제 2 패시베이션 층(190) 상에 배치된다. 제 1 전극 패드(EP1)는 제 3 개구부(OP3)를 통해 제 1 전극층(180)과 컨택할 것이다. 제 1 전극 패드(EP1)는 제 1 전극층(180)을 통해 제 1 도전형 반도체층(120)에 전기적으로 연결될 것이다. 제 2 전극 패드(EP2)는 제 4 개구부(OP4)를 통해 제 1 도전 패턴(150)과 컨택할 것이다. 제 1 도전 패턴(150)은 제 2 도전형 반도체층(140) 뿐만 아니라 제 2 도전 패턴(160)과도 컨택하므로, 제 2 전극 패드(EP2)는 제 1 및 제 2 도전 패턴들(150, 160)을 통해 제 2 도전형 반도체층(140)에 전기적으로 연결될 수 있다.The first and second electrode pads EP1 and EP2 are disposed on the second passivation layer 190. The first electrode pad EP1 may contact the first electrode layer 180 through the third opening OP3. The first electrode pad EP1 may be electrically connected to the first conductive semiconductor layer 120 through the first electrode layer 180. The second electrode pad EP2 may contact the first conductive pattern 150 through the fourth opening OP4. Since the first conductive pattern 150 contacts not only the second conductive semiconductor layer 140 but also the second conductive pattern 160, the second electrode pad EP2 contacts the first and second conductive patterns 150 and 160. ) May be electrically connected to the second conductivity-type semiconductor layer 140.
본 발명의 실시 예가 채용되는 범위 내에서, 반도체 발광 소자(100)의 X 방향 및 Y 방향에 따른 평면도는 다양하게 변형될 수 있음이 이해될 것이다. 예를 들면, 반도체 구조물(SS, 도 1 참조) 및 그루브(GRV, 도 1 참조)의 위치, 크기, 및 형상은 변경될 수 있다. 예를 들면, 제 1 및 제 2 전극 패드들(EP1, EP2)의 위치, 크기, 및 형상은 변경될 수 있다.Within the range in which the embodiment of the present invention is employed, it will be understood that the plan view along the X direction and the Y direction of the semiconductor light emitting device 100 may be variously modified. For example, the position, size, and shape of the semiconductor structure SS (see FIG. 1) and the grooves GRV (see FIG. 1) may be changed. For example, the position, size, and shape of the first and second electrode pads EP1 and EP2 may be changed.
도 3은 도 1의 반도체 발광 소자(100)의 기판(110), 제 1 도전형 반도체층(120), 활성층(130), 제 2 도전형 반도체층(140), 그리고 제 1 및 제 2 도전 패턴들(150, 160)을 보여주는 사시도이다. 도 4는 도 2의 영역 A를 보여주는 도면이다.3 illustrates a substrate 110, a first conductive semiconductor layer 120, an active layer 130, a second conductive semiconductor layer 140, and first and second conductive layers of the semiconductor light emitting device 100 of FIG. 1. A perspective view showing the patterns 150 and 160. 4 is a view illustrating a region A of FIG. 2.
도 3을 참조하면, 제 1 및 제 2 도전 패턴들(150, 160)이 제 2 도전형 반도체층(140)의 상면에 적층된다. 제 1 및 제 2 도전 패턴들(150, 160)은 도 1의 그루브(GRV)에 해당하는 영역에서 개구부를 갖는다.Referring to FIG. 3, first and second conductive patterns 150 and 160 are stacked on an upper surface of the second conductive semiconductor layer 140. The first and second conductive patterns 150 and 160 have openings in a region corresponding to the groove GRV of FIG. 1.
제 2 도전 패턴(160)은 제 2 도전형 반도체층(140)의 상면의 가장자리(EG)와 인접하고, 제 1 도전 패턴(150)은 제 2 도전 패턴(160)보다 제 2 도전형 반도체층(140)의 상면의 가장자리(EG)로부터 이격될 수 있다.The second conductive pattern 160 is adjacent to the edge EG of the upper surface of the second conductive semiconductor layer 140, and the first conductive pattern 150 is the second conductive semiconductor layer than the second conductive pattern 160. It may be spaced apart from the edge EG of the upper surface of 140.
제 1 및 제 2 도전 패턴들(150, 160)은 제 2 전극층(165)을 구성한다. 제 2 도전 패턴(160)은 제 2 전극층(165)의 가장자리를 따라 연장되고, 제 1 도전 패턴(150)은 제 2 도전 패턴(160)에 의해 둘러싸일 수 있다. 이에 따라, 제 2 도전형 반도체층(140)의 상면은 넓은 면적에서 제 2 전극층(165)과 컨택할 수 있다. 전원으로부터의 전류는 제 2 도전 패턴(160)에 의해 효율적으로 확산되며, 제 1 도전 패턴(150)에 전류 밀도가 집중되는 것은 방지된다. 따라서, 향상된 구동 성능 및 구동 효율을 갖는 반도체 발광 소자(100)가 제공된다.The first and second conductive patterns 150 and 160 constitute the second electrode layer 165. The second conductive pattern 160 may extend along the edge of the second electrode layer 165, and the first conductive pattern 150 may be surrounded by the second conductive pattern 160. Accordingly, the upper surface of the second conductivity type semiconductor layer 140 may contact the second electrode layer 165 in a large area. The current from the power source is efficiently diffused by the second conductive pattern 160, and the concentration of the current density in the first conductive pattern 150 is prevented. Thus, the semiconductor light emitting device 100 having improved driving performance and driving efficiency is provided.
제 2 도전 패턴(160)이 제거되거나, 제 2 도전 패턴(160)이 SiO2 또는 SiNx와 같은 절연 물질로 대체된다고 가정한다. 도 4를 참조하면, 전원으로부터의 전류는 제 1 도전 패턴(150), 제 2 도전형 반도체층(140), 활성층(130), 제 1 도전형 반도체층(120), 및 제 1 전극층(180)에 의해 형성되는 제 1 전류 경로(CP1)를 통해 흐를 수 있다.It is assumed that the second conductive pattern 160 is removed or the second conductive pattern 160 is replaced with an insulating material such as SiO 2 or SiN x . Referring to FIG. 4, current from a power source may include a first conductive pattern 150, a second conductive semiconductor layer 140, an active layer 130, a first conductive semiconductor layer 120, and a first electrode layer 180. ) May flow through the first current path CP1.
본 발명의 실시 예에 따르면, 제 1 도전 패턴(150) 및 제 2 도전 패턴(160)이 제 2 도전형 반도체층(140)에 컨택한다. 전원으로부터의 전류는 제 1 전류 경로(CP1) 뿐만 아니라, 제 2 도전 패턴(160), 제 2 도전형 반도체층(140), 활성층(130), 제 1 도전형 반도체층(120), 및 제 1 전극층(180)에 의해 형성되는 제 2 전류 경로(CP2)를 통해 흐를 수 있다. 이에 따라, 전원으로부터의 전류는 제 1 및 제 2 전류 경로들(CP1, CP2)을 통해 원활하게 흐를 수 있다.According to an embodiment of the present invention, the first conductive pattern 150 and the second conductive pattern 160 contact the second conductive semiconductor layer 140. The current from the power source is not only the first current path CP1 but also the second conductive pattern 160, the second conductive semiconductor layer 140, the active layer 130, the first conductive semiconductor layer 120, and the first conductive path 160. It may flow through the second current path CP2 formed by the first electrode layer 180. Accordingly, the current from the power source can flow smoothly through the first and second current paths CP1 and CP2.
제 2 도전 패턴(160)과 제 1 전극층(180) 사이의 거리는 제 1 도전 패턴(150)과 제 1 전극층(180) 사이의 거리보다 짧다. 이는 제 2 전류 경로(CP2)가 전류를 더 원활하게 전달함을 의미할 수 있다. 제 1 전류 경로(CP1) 뿐만 아니라 제 2 전류 경로(CP2)가 제공됨으로써, 반도체 발광 소자(100)의 구동 성능 및 구동 효율이 더욱 향상될 수 있다.The distance between the second conductive pattern 160 and the first electrode layer 180 is shorter than the distance between the first conductive pattern 150 and the first electrode layer 180. This may mean that the second current path CP2 transfers the current more smoothly. By providing the second current path CP2 as well as the first current path CP1, driving performance and driving efficiency of the semiconductor light emitting device 100 may be further improved.
도 5은 본 발명의 다른 실시 예에 따른 반도체 발광 소자(200)를 보여주는 단면도이다.5 is a cross-sectional view illustrating a semiconductor light emitting device 200 according to another embodiment of the present invention.
도 5를 참조하면, 반도체 발광 소자(200)는 기판(210), 제 1 도전형 반도체층(220), 활성층(230), 제 2 도전형 반도체층(240), 제 1 및 제 2 도전 패턴들(250, 260), 제 1 패시베이션 층(270), 제 1 전극층(280), 제 2 패시베이션 층(290), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)을 포함한다.Referring to FIG. 5, the semiconductor light emitting device 200 may include a substrate 210, a first conductive semiconductor layer 220, an active layer 230, a second conductive semiconductor layer 240, and first and second conductive patterns. Fields 250 and 260, a first passivation layer 270, a first electrode layer 280, a second passivation layer 290, and first and second electrode patterns EP1 and EP2.
기판(210), 제 1 도전형 반도체층(220), 활성층(230), 제 2 도전형 반도체층(240), 제 1 패시베이션 층(270), 제 1 전극층(280), 제 2 패시베이션 층(290), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)은 도 2를 참조하여 설명된 기판(110), 제 1 도전형 반도체층(120), 활성층(130), 제 2 도전형 반도체층(140), 제 1 패시베이션 층(170), 제 1 전극층(180), 제 2 패시베이션 층(190), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)과 마찬가지로 설명된다. 이하, 중복되는 설명은 생략된다.The substrate 210, the first conductive semiconductor layer 220, the active layer 230, the second conductive semiconductor layer 240, the first passivation layer 270, the first electrode layer 280, and the second passivation layer ( 290, and the first and second electrode patterns EP1 and EP2 may include the substrate 110, the first conductive semiconductor layer 120, the active layer 130, and the second conductive semiconductor described with reference to FIG. 2. The same as the layer 140, the first passivation layer 170, the first electrode layer 180, the second passivation layer 190, and the first and second electrode patterns EP1 and EP2 are described. In the following, redundant description is omitted.
제 2 전극층(265) 중 제 2 도전 패턴(260)은 제 1 도전 패턴(250)보다 얇은 두께를 가질 수 있다.The second conductive pattern 260 of the second electrode layer 265 may have a thickness thinner than that of the first conductive pattern 250.
제 2 도전 패턴(260)의 두께(THC2)가 상대적으로 두꺼울 때, 활성층(230)으로부터 발생되는 빛이 제 2 도전 패턴(260)에 흡수되어 반도체 발광 소자(200)의 광 효율이 저하될 수 있다. 제 2 도전 패턴(260)의 두께(THC2)가 얇아질 때, 제 2 도전 패턴(260)에 의해 흡수되는 빛의 양이 감소하여 반도체 발광 소자(200)의 광 효율이 향상될 수 있다. 본 발명의 실시 예에 따르면, 제 2 도전 패턴(260)의 두께(THC2)는 적어도 제 1 도전 패턴(250)의 두께(THC1)보다 얇을 수 있다.When the thickness THC2 of the second conductive pattern 260 is relatively thick, light generated from the active layer 230 may be absorbed by the second conductive pattern 260 to reduce the light efficiency of the semiconductor light emitting device 200. have. When the thickness THC2 of the second conductive pattern 260 is thin, the amount of light absorbed by the second conductive pattern 260 may be reduced, thereby improving light efficiency of the semiconductor light emitting device 200. According to an embodiment of the present disclosure, the thickness THC2 of the second conductive pattern 260 may be thinner than at least the thickness THC1 of the first conductive pattern 250.
제 1 및 제 2 도전 패턴들(250, 260)이 적절한 저항 값들을 가져 전압 또는 전류를 효율적으로 전달할 수 있도록, 제 1 및 2 도전 패턴들(250, 260)은 적절한 두께들(THC1, THC2)을 채용할 수 있다. 예를 들면, 제 1 도전 패턴(250)의 두께(THC1)는 약 1~1.5 마이크로미터(micron)이고, 제 2 도전 패턴(260)의 두께(THC2)는 약 1000 옹스트롬(angstrom)일 수 있다.The first and second conductive patterns 250 and 260 may have appropriate thicknesses THC1 and THC2 so that the first and second conductive patterns 250 and 260 have appropriate resistance values to efficiently transfer voltage or current. Can be adopted. For example, the thickness THC1 of the first conductive pattern 250 may be about 1 to 1.5 microns, and the thickness THC2 of the second conductive pattern 260 may be about 1000 angstroms. .
실시 예로서, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접하는 부분은 슬롭(x, slop)을 가질 수 있다. 예를 들면, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접하는 부분은 제 2 도전 패턴(260)과 인접할수록 얇아질 수 있다. 예를 들면, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접하는 부분은 제 1 영역, 그리고 제 1 영역 및 제 2 도전 패턴(260) 사이의 제 2 영역으로 구분되고, 제 1 영역은 제 2 도전 패턴(260)과 인접할수록 얇아지고, 제 2 영역은 제 2 도전 패턴(260)과 인접할수록 두꺼워질 수 있다. 이를 위해, 제 1 도전 패턴(250)은 스퍼터링 공정에 따라 증착될 수 있다. 이 밖에도, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접하는 부분이 슬롭을 가질 수 있는 다양한 형상들을 채용할 수 있음이 이해될 것이다.In an embodiment, a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 may have a slop (x, slop). For example, a portion of the first conductive pattern 250 that is adjacent to the second conductive pattern 260 may become thinner as it is adjacent to the second conductive pattern 260. For example, a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 is divided into a first region and a second region between the first region and the second conductive pattern 260. The first region may be thinner as it is adjacent to the second conductive pattern 260, and the second region may be thicker as it is adjacent to the second conductive pattern 260. To this end, the first conductive pattern 250 may be deposited by a sputtering process. In addition, it will be understood that various shapes in which a portion adjacent to the second conductive pattern 260 of the first conductive pattern 250 may have a slope may be adopted.
만약 제 1 및 제 2 도전 패턴들(250, 260)이 접하는 영역에서 급격한 단차가 존재한다면, 제 1 및 제 2 도전 패턴들(250, 260) 상에 배치되는 층들에 크랙이 발생될 수 있다. 본 발명의 실시 예에 따르면, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접한 부분은 슬롭을 가짐으로써, 제 1 및 제 2 도전 패턴들(250, 260) 상에 배치되는 층들에 크랙은 발생되지 않을 것이다. 이에 따라, 제 1 및 제 2 도전 패턴들(250, 260) 상에 배치되는 층들의 신뢰성은 향상된다.If a sharp step exists in a region where the first and second conductive patterns 250 and 260 contact each other, cracks may occur in the layers disposed on the first and second conductive patterns 250 and 260. According to an embodiment of the present invention, the portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 has a slop, so that the layers disposed on the first and second conductive patterns 250 and 260 are disposed. No cracks will occur. Accordingly, the reliability of the layers disposed on the first and second conductive patterns 250 and 260 is improved.
도 6 내지 도 11은 도 5의 반도체 발광 소자(200)의 제조 방법을 설명하기 위한 도면들이다.6 to 11 are diagrams for describing a method of manufacturing the semiconductor light emitting device 200 of FIG. 5.
도 6을 참조하면, 기판(210) 위에, 제 1 도전형 반도체층(220), 활성층(230_1), 제 2 도전형 반도체층(240_1), 제 2 도전층(260_1)이 형성된다.Referring to FIG. 6, a first conductive semiconductor layer 220, an active layer 230_1, a second conductive semiconductor layer 240_1, and a second conductive layer 260_1 are formed on the substrate 210.
기판(210)은 반도체 성장용 기판으로 제공될 수 있으며, GaN, 사파이어, SiC, Si, MgAl2O4, MgO, LiAlO2, LiGaO2, 그와 유사한 것으로부터 선택된 적어도 하나를 포함할 수 있다. 실시 예로서, 기판(210)의 성장면에는 다수의 요철들이 형성될 수 있다. 이러한 요철들은 선택적으로 제공될 수 있다. 이러한 요철들에 의해, 성장면 상 반도체층들의 결정성 및 광 방출 효율 등이 향상될 수 있다. 요철들은 돔 형상, 사각형, 삼각형 등 다양한 형태로 형성될 수 있다.The substrate 210 may be provided as a substrate for growing a semiconductor, and may include at least one selected from GaN, sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , and the like. In an embodiment, a plurality of irregularities may be formed on the growth surface of the substrate 210. Such irregularities may be provided selectively. By these irregularities, the crystallinity and the light emission efficiency of the semiconductor layers on the growth surface can be improved. The irregularities may be formed in various shapes such as a dome shape, a rectangle, and a triangle.
제 1 도전형 반도체층(220)과 제 2 도전형 반도체층(240_1)은 각각 n형 반도체층 및 p형 반도체층일 수 있다.The first conductive semiconductor layer 220 and the second conductive semiconductor layer 240_1 may be n-type semiconductor layers and p-type semiconductor layers, respectively.
제 2 도전층(260_1)은 급속 열처리(Rapid Thermal Annealing)에 따라 제 2 도전형 반도체층(240_1)과 제 2 도전층(260_1) 사이의 계면의 저항을 낮출 수 있다. 예를 들면, 제 2 도전층(260_1)은 제 2 도전형 반도체층(240_1)과 오믹 컨택을 가질 수 있다.The second conductive layer 260_1 may lower the resistance of the interface between the second conductive semiconductor layer 240_1 and the second conductive layer 260_1 according to rapid thermal annealing. For example, the second conductive layer 260_1 may have an ohmic contact with the second conductive semiconductor layer 240_1.
실시 예로서, 제 2 도전층(260_1)은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), TCO(Transparent Conductive Oxide)으로부터 선택된 적어도 하나로 형성될 수 있다.In an embodiment, the second conductive layer 260_1 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc (ZTO) TinOxide, Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), or Transparent Conductive Oxide (TCO) .
도 7을 참조하면, 제 1 도전형 반도체층(220), 활성층(230_1), 제 2 도전형 반도체층(240_1), 및 제 2 도전층(260_1)의 일부가 식각되어 적어도 하나의 식각 영역(E)과 식각 영역(E)에 의해 구획된 적어도 하나의 메사 영역(M)을 정의한다. 이에 따라 활성층(230), 제 2 도전형 반도체층(240), 및 제 2 도전층(260_2)이 메사 영역(M) 내에 배치된다.Referring to FIG. 7, a portion of the first conductive semiconductor layer 220, the active layer 230_1, the second conductive semiconductor layer 240_1, and the second conductive layer 260_1 may be etched to form at least one etching region ( At least one mesa region M defined by E) and the etching region E is defined. Accordingly, the active layer 230, the second conductive semiconductor layer 240, and the second conductive layer 260_2 are disposed in the mesa region M. FIG.
도 8을 참조하면, 메사 영역(M)의 일부 및 식각 영역(E)에 포토 레지스트 패턴(PR)이 형성된다. 예를 들면, 포토 레지스트 패턴(PR)을 형성하는 것은, 포토 레지스트를 코팅하고, 노광 및 현상에 따라 포토 레지스트를 선택적으로 제거하여 포토 레지스트 패턴(PR)을 형성하고, 이후 플라즈마를 이용해 도전층(260_2) 상 잔존하는 포토 레지스트를 더 제거하는 것을 포함할 수 있다.Referring to FIG. 8, the photoresist pattern PR is formed in a portion of the mesa region M and the etching region E. Referring to FIG. For example, forming the photoresist pattern PR may coat the photoresist, selectively remove the photoresist in accordance with exposure and development to form the photoresist pattern PR, and then use a plasma to form a conductive layer ( 260_2) may further include removing the remaining photoresist.
실시 예로서, 포토 레지스트 패턴(PR)의 내측과 제 2 도전층(260_2)의 상면이 이루는 각(y)은 둔각일 수 있다. 예를 들면, 포토 레지스터 패턴(PR)은 역 테이퍼 형상을 가질 수 있다.In an embodiment, the angle y formed between the inside of the photoresist pattern PR and the top surface of the second conductive layer 260_2 may be an obtuse angle. For example, the photoresist pattern PR may have an inverse taper shape.
도 9를 참조하면, 제 2 도전층(260_2) 중 포토 레지스터 패턴(PR)의 개구부에 해당하는 부분이 식각되어 제 2 도전 패턴(260)이 형성된다.9, a portion of the second conductive layer 260_2 corresponding to the opening of the photoresist pattern PR is etched to form a second conductive pattern 260.
이어서 도 10을 참조하면, 포토 레지스터 패턴(PR)의 개구부에 해당하는 영역에 제 1 도전 패턴(250)이 형성된다. 제 1 도전 패턴(250)에 대응하는 물질이 예를 들면 스퍼터링 공정에 따라 증착되고, 리프트 오프(lift-off) 공정에 따라 포토 레지스터 패턴(PR) 및 포토 레지스터 패턴(PR) 상에 남은 제 1 도전 패턴(250)에 대응하는 물질이 제거될 수 있다.Next, referring to FIG. 10, the first conductive pattern 250 is formed in a region corresponding to the opening of the photoresist pattern PR. A first material corresponding to the first conductive pattern 250 is deposited by, for example, a sputtering process, and is left on the photoresist pattern PR and the photoresist pattern PR according to a lift-off process. The material corresponding to the conductive pattern 250 may be removed.
포토 레지스터 패턴(PR)이 갖는 각(y, 도 8 참조)에 의해, 제 1 도전 패턴(250) 중 제 2 도전 패턴(260)과 인접한 부분은 슬롭(x)을 가질 수 있다. 예를 들면, 제 1 도전 패턴(250)은 테이퍼 형상(taper-shaped)을 가질 수 있다.According to an angle y of the photoresist pattern PR (refer to FIG. 8), a portion of the first conductive pattern 250 adjacent to the second conductive pattern 260 may have a slop x. For example, the first conductive pattern 250 may have a taper shape.
도 8 내지 도 10을 참조하여 설명된 공정들 외에도, 제 1 도전 패턴(250)이 슬롭(x)을 갖게 하기 위한 다양한 방식들이 사용될 수 있음이 이해될 것이다.In addition to the processes described with reference to FIGS. 8 through 10, it will be appreciated that various ways for causing the first conductive pattern 250 to have a slope x may be used.
도 11을 참조하면, 제 1 패시베이션 층(270), 전극층(280), 및 제 2 패시베이션 층(290)이 형성된다. 이후, 제 1 및 제 2 전극 패턴들(EP1, EP2, 도 5 참조)이 형성된다.Referring to FIG. 11, a first passivation layer 270, an electrode layer 280, and a second passivation layer 290 are formed. Thereafter, first and second electrode patterns EP1 and EP2 (see FIG. 5) are formed.
도 12는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자(300)를 보여주는 단면도이다.12 is a cross-sectional view illustrating a semiconductor light emitting device 300 according to another embodiment of the present invention.
도 12를 참조하면, 반도체 발광 소자(300)는 기판(310), 제 1 도전형 반도체층(320), 활성층(330), 제 2 도전형 반도체층(340), 제 1 및 제 2 도전 패턴들(350, 360), 제 1 패시베이션 층(370), 제 1 전극층(380), 제 2 패시베이션 층(390), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)을 포함한다.Referring to FIG. 12, the semiconductor light emitting device 300 may include a substrate 310, a first conductive semiconductor layer 320, an active layer 330, a second conductive semiconductor layer 340, and first and second conductive patterns. Fields 350 and 360, a first passivation layer 370, a first electrode layer 380, a second passivation layer 390, and first and second electrode patterns EP1 and EP2.
제 1 도전 패턴(350)은 반사성 메탈층(351) 및 커버 메탈층(352)을 포함하는 다층 구조를 가질 수 있다. 커버 메탈층(352)은 반도체 발광 소자(100)의 제조 공정 시 반사성 메탈층(351)의 특성이 변형되는 것을 방지할 수 있다. 커버 메탈층(352)은, 제조 공정 시 높은 열에 의해 반사성 메탈층(351)의 물질, 예를 들면 Ag 또는 Al이 다른 층으로 확산되는 것을 방지하는 장벽층으로서 기능할 수 있다. 예를 들면, 커버 메탈층(352)은 반사성 메탈층(351)의 물질이 제 1 전극층(380)으로 확산되어 반사성 메탈층(351) 및 제 1 전극층(380)이 단락(short)되는 것을 방지할 수 있다. 실시 예로서, 반사성 메탈은 Ag 및 Al를 포함하며, 커버 메탈은 Ni, Ti, Au, Cr, Pt, W, 및 TiW를 포함할 수 있다.The first conductive pattern 350 may have a multilayer structure including a reflective metal layer 351 and a cover metal layer 352. The cover metal layer 352 may prevent deformation of characteristics of the reflective metal layer 351 during the manufacturing process of the semiconductor light emitting device 100. The cover metal layer 352 may function as a barrier layer to prevent the material of the reflective metal layer 351, for example, Ag or Al, from being diffused to another layer by high heat during the manufacturing process. For example, the cover metal layer 352 may prevent the material of the reflective metal layer 351 from being diffused into the first electrode layer 380 to short-circuit the reflective metal layer 351 and the first electrode layer 380. can do. In an embodiment, the reflective metal may include Ag and Al, and the cover metal may include Ni, Ti, Au, Cr, Pt, W, and TiW.
반사성 메탈층(351)은 제 2 도전 패턴(360)으로부터 제 1 거리(D1)만큼 이격된다. 커버 메탈층(352)은 반사성 메탈층(351)을 커버하되 제 2 도전 패턴(360)까지 연장된다. 즉, 커버 메탈층(352)은 제 2 도전 패턴(360)과 컨택한다. 실시 예로서, 도 12에 도시된 바와 같이, 커버 메탈층(352)은 제 2 도전 패턴(360)의 측면(360a) 중 적어도 일부에 컨택할 수 있다. 반사성 메탈층(351)의 두께는 제 2 도전 패턴(360)보다 두꺼울 수 있다.The reflective metal layer 351 is spaced apart from the second conductive pattern 360 by a first distance D1. The cover metal layer 352 covers the reflective metal layer 351 and extends to the second conductive pattern 360. That is, the cover metal layer 352 contacts the second conductive pattern 360. In an embodiment, as shown in FIG. 12, the cover metal layer 352 may contact at least a portion of the side surfaces 360a of the second conductive pattern 360. The reflective metal layer 351 may have a thickness greater than that of the second conductive pattern 360.
도 13은 본 발명의 다른 실시 예에 따른 반도체 발광 소자(400)를 보여주는 단면도이다.13 is a cross-sectional view illustrating a semiconductor light emitting device 400 according to another exemplary embodiment of the present disclosure.
도 13을 참조하면, 반도체 발광 소자(400)는 기판(410), 제 1 도전형 반도체층(420), 활성층(430), 제 2 도전형 반도체층(440), 제 1 및 제 2 도전 패턴들(450, 460), 제 1 패시베이션 층(470), 제 1 전극층(480), 제 2 패시베이션 층(490), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)을 포함한다.Referring to FIG. 13, the semiconductor light emitting device 400 may include a substrate 410, a first conductive semiconductor layer 420, an active layer 430, a second conductive semiconductor layer 440, and first and second conductive patterns. Fields 450 and 460, a first passivation layer 470, a first electrode layer 480, a second passivation layer 490, and first and second electrode patterns EP1 and EP2.
제 1 도전 패턴(450)은 반사성 메탈층(451) 및 커버 메탈층(452)을 포함한다. 반사성 메탈층(451)은 제 2 도전 패턴층(460)으로부터 제 2 거리(D2)만큼 이격된다. 커버 메탈층(452)은 반사성 메탈층(451)을 커버하되 제 2 도전 패턴(360)까지 연장된다. 본 실시 예에 따르면, 커버 메탈층(452)은 제 2 도전 패턴(460)의 측면(460a) 뿐만 아니라 상면(460b) 중 적어도 일부와 컨택한다. 제 1 도전 패턴(450)은 더 넓은 면적에서 제 2 도전 패턴(460)과 컨택할 수 있다. 이에 따라, 제 1 도전 패턴(450)에 인가되는 전류는 제 2 도전 패턴(460)에 효율적으로 분산될 수 있다.The first conductive pattern 450 includes a reflective metal layer 451 and a cover metal layer 452. The reflective metal layer 451 is spaced apart from the second conductive pattern layer 460 by a second distance D2. The cover metal layer 452 covers the reflective metal layer 451 and extends to the second conductive pattern 360. According to the present exemplary embodiment, the cover metal layer 452 contacts at least part of the upper surface 460b as well as the side surface 460a of the second conductive pattern 460. The first conductive pattern 450 may contact the second conductive pattern 460 in a larger area. Accordingly, the current applied to the first conductive pattern 450 may be efficiently distributed to the second conductive pattern 460.
도 14는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자(500)를 보여주는 단면도이다.14 is a cross-sectional view illustrating a semiconductor light emitting device 500 according to another embodiment of the present invention.
도 14를 참조하면, 반도체 발광 소자(500)는 기판(510), 제 1 도전형 반도체층(520), 활성층(530), 제 2 도전형 반도체층(540), 제 1 및 제 2 도전 패턴들(550, 560), 제 1 패시베이션 층(570), 제 1 전극층(580), 제 2 패시베이션 층(590), 그리고 제 1 및 제 2 전극 패턴들(EP1, EP2)을 포함한다.Referring to FIG. 14, the semiconductor light emitting device 500 may include a substrate 510, a first conductive semiconductor layer 520, an active layer 530, a second conductive semiconductor layer 540, and first and second conductive patterns. Fields 550 and 560, a first passivation layer 570, a first electrode layer 580, a second passivation layer 590, and first and second electrode patterns EP1 and EP2.
기판(510), 제 1 도전형 반도체층(520), 활성층(530), 제 2 도전형 반도체층(540), 그리고 제 1 및 제 2 도전 패턴들(550, 560)은 도 2를 참조하여 설명된 기판(110), 제 1 도전형 반도체층(120), 활성층(130), 제 2 도전형 반도체층(140), 그리고 제 1 및 제 2 도전 패턴들(150, 160)과 마찬가지로 설명된다. 이하, 중복되는 설명은 생략된다.The substrate 510, the first conductive semiconductor layer 520, the active layer 530, the second conductive semiconductor layer 540, and the first and second conductive patterns 550 and 560 are described with reference to FIG. 2. The substrate 110, the first conductive semiconductor layer 120, the active layer 130, the second conductive semiconductor layer 140, and the first and second conductive patterns 150 and 160 are described in the same manner. . In the following, redundant description is omitted.
제 1 패시베이션 층(570)은 제 1 도전형 반도체층(520), 활성층(530), 제 2 도전형 반도체층(540), 그리고 제 1 및 제 2 도전 패턴들(550, 560) 상에 배치된다. 제 1 패시베이션 층(570)은 제 1 도전형 반도체층(520)을 노출하는 제 5 개구부(OP5), 그리고 제 1 도전 패턴(550)을 노출하는 제 6 개구부(OP6)를 포함한다.The first passivation layer 570 is disposed on the first conductive semiconductor layer 520, the active layer 530, the second conductive semiconductor layer 540, and the first and second conductive patterns 550 and 560. do. The first passivation layer 570 includes a fifth opening OP5 exposing the first conductivity type semiconductor layer 520 and a sixth opening OP6 exposing the first conductive pattern 550.
제 1 전극층(580)이 제 1 패시베이션 층(570) 및 제 1 도전형 반도체층(520) 상에 배치된다. 제 1 전극층(580)은 제 5 개구부(OP5)를 통해 제 1 도전형 반도체층(520)과 컨택한다.The first electrode layer 580 is disposed on the first passivation layer 570 and the first conductivity type semiconductor layer 520. The first electrode layer 580 contacts the first conductive semiconductor layer 520 through the fifth opening OP5.
본 실시 예에 따르면, 컨택 메탈층(585)이 더 제공된다. 컨택 메탈층(585)은 제 1 패시베이션 층(570) 상에 배치되고, 제 6 개구부(OP6)를 통해 제 1 도전 패턴(550)과 컨택한다. 컨택 메탈층(585)이 이용됨으로써, 제 1 도전 패턴(550)을 제 2 전극 패드(EP2)와 효율적으로 연결할 수 있다.According to the present embodiment, a contact metal layer 585 is further provided. The contact metal layer 585 is disposed on the first passivation layer 570 and contacts the first conductive pattern 550 through the sixth opening OP6. By using the contact metal layer 585, the first conductive pattern 550 may be efficiently connected to the second electrode pad EP2.
컨택 메탈층(585)은 제 1 전극층(580)과 전기적으로 분리된다. 반도체 발광 소자(500)의 제조 공정에서, 컨택 메탈층(585)은 제 1 전극층(580)과 동일한 공정으로 형성될 수 있다. 예를 들면, 컨택 메탈층(585)은 제 1 전극층(580)과 마찬가지로 Al, Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr 등의 물질 및 그것들의 합금 중 적어도 하나를 포함할 수 있다.The contact metal layer 585 is electrically separated from the first electrode layer 580. In the process of manufacturing the semiconductor light emitting device 500, the contact metal layer 585 may be formed by the same process as the first electrode layer 580. For example, the contact metal layer 585 may include at least one of materials such as Al, Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, and alloys thereof, similarly to the first electrode layer 580. It may include.
제 2 패시베이션 층(590)은 제 1 패시베이션 층(570), 제 1 전극층(580), 및 컨택 메탈층(585) 상에 배치된다. 제 2 패시베이션 층(590)은 제 1 전극층(580)을 노출하는 제 7 개구부(OP7), 그리고 컨택 메탈층(585)을 노출하는 제 8 개구부(OP8)를 포함한다.The second passivation layer 590 is disposed on the first passivation layer 570, the first electrode layer 580, and the contact metal layer 585. The second passivation layer 590 includes a seventh opening OP7 exposing the first electrode layer 580 and an eighth opening OP8 exposing the contact metal layer 585.
제 1 전극 패드(EP1)는 제 7 개구부(OP7)를 통해 제 1 전극층(580)과 컨택하고, 제 2 전극 패드(EP2)는 제 8 개구부(OP8)를 통해 컨택 메탈층(585)와 컨택한다.The first electrode pad EP1 contacts the first electrode layer 580 through the seventh opening OP7, and the second electrode pad EP2 contacts the contact metal layer 585 through the eighth opening OP8. do.
도 15a 및 도 15b는 본 발명의 다른 실시 예에 따른 반도체 발광 소자(600)를 보여주는 평면도들이다. 도 16은 도 15a 및 도 15b의 II-II' 선에 따른 단면도이다. 도 15b에서, 인식의 용이함을 위해 도 15a의 활성층(630), 제 2 도전형 반도체층(640), 제 1 및 제 2 도전 패턴들(650, 660), 그리고 제 1 패시베이션 층(670)은 점선으로서 표시된다.15A and 15B are plan views illustrating a semiconductor light emitting device 600 according to another exemplary embodiment of the present invention. 16 is a cross-sectional view taken along the line II-II 'of FIGS. 15A and 15B. In FIG. 15B, the active layer 630, the second conductivity type semiconductor layer 640, the first and second conductive patterns 650 and 660, and the first passivation layer 670 of FIG. 15A may be used for ease of recognition. It is shown as a dotted line.
먼저 도 15a 및 도 16을 참조하면, 기판(610) 상에 제 1 도전형 반도체층(620), 활성층(630), 및 제 2 도전형 반도체층(640)이 순차적으로 적층된다. 제 1 도전형 반도체층(620), 활성층(630), 및 제 2 도전형 반도체층(640)은 발광 구조물(ES)을 구성한다.First, referring to FIGS. 15A and 16, the first conductive semiconductor layer 620, the active layer 630, and the second conductive semiconductor layer 640 are sequentially stacked on the substrate 610. The first conductive semiconductor layer 620, the active layer 630, and the second conductive semiconductor layer 640 constitute a light emitting structure ES.
활성층(630) 및 제 2 도전형 반도체층(640)이 제공된 메사 영역(M), 그리고 메사 영역(M)을 제외한 나머지 영역인 식각 영역(E)이 정의된다.Mesa region M provided with the active layer 630 and the second conductivity type semiconductor layer 640, and an etching region E, which is a region other than the mesa region M, are defined.
메사 영역(M) 및 식각 영역(E)의 형상은 다양하게 변경될 수 있다. 메사 영역(M)은 중심 부분(CNTR, central region) 내에 배치되고, 식각 영역(E)은 중심 부분(CNTR) 및 주변 부분(PRR, peripheral region)에 배치될 수 있다. 중심 부분(CNTR) 내에서의 식각 영역(E)은 제 9 개구부(OP9)에 의해 정의될 수 있다. 실시 예로서, 활성층(630) 및 제 2 도전형 반도체층(640)은 중심 부분(CNTR) 내에서 제 1 도전형 반도체층(620)을 노출하는 적어도 하나의 제 9 개구부(OP9)를 갖되, 제 9 개구부(OP9)는 중심 부분(CNTR)으로부터 주변 부분(PRR)까지 연장될 수 있다.The shape of the mesa region M and the etching region E may be changed in various ways. The mesa region M may be disposed in the central region CNTR, and the etching region E may be disposed in the central portion CNTR and the peripheral region PRR. The etching region E in the central portion CNTR may be defined by the ninth opening OP9. In an embodiment, the active layer 630 and the second conductive semiconductor layer 640 have at least one ninth opening OP9 that exposes the first conductive semiconductor layer 620 in the center portion CNTR. The ninth opening OP9 may extend from the central portion CNTR to the peripheral portion PRR.
제 2 도전형 반도체층(640) 상에 서로 다른 물질들을 포함하는 제 1 및 제 2 도전 패턴들(650, 660)이 배치된다. 제 1 및 제 2 도전 패턴들(650, 660)은 제 2 도전형 반도체층(640)에 컨택하는 제 2 전극층(665)으로서 제공된다. 제 2 도전 패턴(660)은 제 1 도전 패턴(650)을 둘러쌀 수 있다.First and second conductive patterns 650 and 660 including different materials are disposed on the second conductive semiconductor layer 640. The first and second conductive patterns 650 and 660 are provided as the second electrode layer 665 contacting the second conductive semiconductor layer 640. The second conductive pattern 660 may surround the first conductive pattern 650.
제 1 패시베이션 층(670)은 제 1 도전형 반도체층(620), 활성층(630), 제 2 도전형 반도체층(640), 그리고 제 1 및 제 2 도전 패턴들(650, 660) 상에 배치된다. 제 1 패시베이션 층(670)은 제 9 개구부(OP9)의 일부를 커버하되 제 1 도전형 반도체층(620)을 노출하는 제 10 개구부(OP10), 그리고 제 1 도전 패턴(650)을 노출하는 제 11 개구부들(OP11)을 갖는다.The first passivation layer 670 is disposed on the first conductive semiconductor layer 620, the active layer 630, the second conductive semiconductor layer 640, and the first and second conductive patterns 650 and 660. do. The first passivation layer 670 covers a portion of the ninth opening OP9 but exposes the tenth opening OP10 exposing the first conductive semiconductor layer 620 and the first conductive pattern 650. It has 11 openings OP11.
이어서 도 15b 및 도 16을 참조하면, 제 1 패시베이션 층(670) 상에 제 1 전극층(680) 및 컨택 메탈층(685)이 배치된다. 제 1 전극층(680)은 제 10 개구부(OP10)를 통해 제 1 도전형 반도체층(620)과 컨택한다. 컨택 메탈층(685)은 제 11 개구부들(OP11)을 통해 제 1 도전 패턴(650)과 컨택한다. 컨택 메탈층(685)은 제 1 전극층(680)과 분리될 것이다. 컨택 메탈층(685)은 제 1 전극층(680)과 동일한 공정을 통해 형성될 수 있다.15B and 16, a first electrode layer 680 and a contact metal layer 685 are disposed on the first passivation layer 670. The first electrode layer 680 contacts the first conductive semiconductor layer 620 through the tenth opening OP10. The contact metal layer 685 contacts the first conductive pattern 650 through the eleventh openings OP11. The contact metal layer 685 will be separated from the first electrode layer 680. The contact metal layer 685 may be formed through the same process as the first electrode layer 680.
제 2 패시베이션 층(690)은 제 1 패시베이션 층(690), 제 1 전극층(680), 및 컨택 메탈층(685) 상에 배치된다. 제 2 패시베이션 층(690)은 제 1 전극층(680)을 노출하는 제 12 개구부(OP12), 그리고 컨택 메탈층(685)을 노출하는 제 13 개구부(OP13)를 갖는다.The second passivation layer 690 is disposed on the first passivation layer 690, the first electrode layer 680, and the contact metal layer 685. The second passivation layer 690 has a twelfth opening OP12 exposing the first electrode layer 680 and a thirteenth opening OP13 exposing the contact metal layer 685.
제 1 전극 패드(EP1)는 제 12 개구부(OP12)를 통해 제 1 전극층(680)과 컨택하고, 제 2 전극 패드(EP2)는 제 13 개구부(OP13)를 통해 컨택 메탈층(685)과 컨택한다.The first electrode pad EP1 contacts the first electrode layer 680 through the twelfth opening OP12, and the second electrode pad EP2 contacts the contact metal layer 685 through the thirteenth opening OP13. do.
도 16에서, 제 1 및 제 2 도전 패턴들(650, 660)은 동일한 두께를 갖는 것으로 도시된다. 그러나, 이는 인식의 편의를 위한 것으로 본 발명의 기술적 사상은 여기에 한정되지 않는다. 예를 들면, 제 2 도전 패턴(660)은 도 5를 참조하여 설명된 바와 같이 제 1 도전 패턴(650)보다 낮은 두께를 가질 수 있다. 이러한 경우, 제 1 도전 패턴(650)은 제 2 도전 패턴(660)과 인접한 영역에서 슬롭을 가질 수 있다.In FIG. 16, the first and second conductive patterns 650 and 660 are shown to have the same thickness. However, this is for convenience of recognition and the technical spirit of the present invention is not limited thereto. For example, the second conductive pattern 660 may have a lower thickness than the first conductive pattern 650 as described with reference to FIG. 5. In this case, the first conductive pattern 650 may have a slop in an area adjacent to the second conductive pattern 660.
도 17은 도 15a 및 도 15b를 참조하여 설명된 반도체 발광 소자(600)의 변형 실시 예를 보여주는 평면도이다. 도 17에서, 설명의 편의를 위해, 제 1 도전형 반도체층(620), 활성층(630), 제 2 도전형 반도체층(640), 제 1 및 제 2 도전 패턴들(650, 660'), 그리고 제 1 패시베이션 층(670)만 도시되어 있다.17 is a plan view illustrating a modified embodiment of the semiconductor light emitting device 600 described with reference to FIGS. 15A and 15B. In FIG. 17, for convenience of description, the first conductive semiconductor layer 620, the active layer 630, the second conductive semiconductor layer 640, the first and second conductive patterns 650 and 660 ′, And only the first passivation layer 670 is shown.
도 17을 참조하면, 제 2 도전 패턴(660')은 제 2 도전형 반도체층(640)의 상면에서 제 1 도전 패턴(650)을 부분적으로 둘러쌀 수 있다. 반도체 발광 소자의 중심 부분(CNTR)은 제 1 부분(RG1)과 제 2 부분(RG2)으로 구분될 수 있다. 제 2 도전 패턴(660')은 제 1 부분(RG1)의 제 2 도전형 반도체층(640) 상에 배치되며, 제 2 부분(RG2)의 제 2 도전형 반도체층(640) 상에 제공되지 않을 수 있다. 제 1 부분(RG1) 내에서, 제 2 도전 패턴(660')은 제 1 도전 패턴(650)보다 제 2 도전형 반도체층(640) 상면의 가장자리와 인접한 영역에 배치될 것이다.Referring to FIG. 17, the second conductive pattern 660 ′ may partially surround the first conductive pattern 650 on the top surface of the second conductive semiconductor layer 640. The central portion CNTR of the semiconductor light emitting device may be divided into a first portion RG1 and a second portion RG2. The second conductive pattern 660 ′ is disposed on the second conductive semiconductor layer 640 of the first portion RG1, and is not provided on the second conductive semiconductor layer 640 of the second portion RG2. You may not. In the first portion RG1, the second conductive pattern 660 ′ may be disposed in an area adjacent to an edge of the top surface of the second conductive semiconductor layer 640 than the first conductive pattern 650.
제 1 부분(RG1) 및 제 2 부분(RG2)은 다양한 방식들에 따라 구획될 수 있다. 중심 부분(CNTR) 내에서, 제 1 패시베이션 층(670)에 의해 노출된 제 1 도전형 반도체층(620)의 면적이 낮은 비율을 차지하는 부분은 제 1 부분(RG1)으로 정의될 수 있다. 중심 부분(CNTR) 내에서, 제 1 패시베이션 층(670)에 의해 노출된 제 1 도전형 반도체층(620)의 면적이 높은 비율을 차지하는 부분은 제 2 부분(RG2)으로 정의될 수 있다. 이러한 경우, 제 1 부분(RG1)의 제 2 전극층(665')을 통해 유입되는 전류는, 예를 들면 제 1 도전형 반도체층(620)과의 거리에 기인하여, 원활히 확산 및 전달되지 못할 수 있다. 본 실시 예에 따르면, 적어도 제 1 부분(RG1)에 제 2 도전 패턴(660')이 제공됨으로써, 제 1 부분(RG1)에 제 1 전류 경로(CP1, 도 4 참조) 뿐만 아니라 제 2 전류 경로(CP2, 도 4 참조)가 형성할 수 있다.The first portion RG1 and the second portion RG2 may be partitioned in various ways. In the center portion CNTR, a portion of the first conductive semiconductor layer 620 exposed by the first passivation layer 670 having a low area may be defined as the first portion RG1. In the center portion CNTR, a portion of the first conductive semiconductor layer 620 exposed by the first passivation layer 670 having a high proportion may be defined as the second portion RG2. In this case, the current flowing through the second electrode layer 665 ′ of the first portion RG1 may not be diffused and transferred smoothly due to, for example, a distance from the first conductive semiconductor layer 620. have. According to the present exemplary embodiment, the second conductive pattern 660 ′ is provided in at least the first portion RG1, so that not only the first current path CP1 (see FIG. 4) but also the second current path in the first portion RG1. (CP2, see FIG. 4) can be formed.
도 18은 본 발명의 다른 실시 예에 따른 반도체 발광 소자(700)를 보여주는 단면도이다.18 is a cross-sectional view illustrating a semiconductor light emitting device 700 according to another exemplary embodiment of the present invention.
도 18을 참조하면, 반도체 발광 소자(700)는 기판(710), 제 1 도전형 반도체층(720), 활성층(730), 제 2 도전형 반도체층(740), 제 1 및 제 2 도전 패턴들(750, 760), 및 전극층(780)을 포함한다.Referring to FIG. 18, the semiconductor light emitting device 700 may include a substrate 710, a first conductive semiconductor layer 720, an active layer 730, a second conductive semiconductor layer 740, and first and second conductive patterns. Fields 750, 760, and electrode layer 780.
제 1 도전형 반도체층(720), 활성층(730), 및 제 2 도전형 반도체층(740)을 포함하는 발광 구조물은, 예를 들면 메사 에칭에 의해 활성층(730)과 제 2 도전형 반도체층(740)의 일부 영역이 제거됨으로써 제 1 도전형 반도체층(720)이 부분적으로 노출될 수 있다. 노출된 영역에서 제 1 도전형 반도체층(720)은 전극층(780)과 컨택할 수 있다.The light emitting structure including the first conductivity type semiconductor layer 720, the active layer 730, and the second conductivity type semiconductor layer 740 is, for example, the active layer 730 and the second conductivity type semiconductor layer by mesa etching. As the partial region of 740 is removed, the first conductivity-type semiconductor layer 720 may be partially exposed. In the exposed region, the first conductivity-type semiconductor layer 720 may contact the electrode layer 780.
전극층(780)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있으며, 단일층 또는 2층 이상의 구조를 채용할 수 있다. 전극층(780)은 제 1 도전형 반도체층(720)과의 오믹 컨택을 가질 수 있다.The electrode layer 780 may include a material such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, or the like, and may have a single layer or two or more layers. The electrode layer 780 may have an ohmic contact with the first conductivity type semiconductor layer 720.
제 2 도전형 반도체층(740) 위에 제 1 및 제 2 도전 패턴들(750, 760)이 적층될 것이다. 제 1 및 제 2 도전 패턴들(750, 760)은 서로 다른 물질들을 포함하며, 제 2 도전 패턴(760)은 제 1 도전 패턴(750)을 둘러쌀 수 있다. First and second conductive patterns 750 and 760 may be stacked on the second conductive semiconductor layer 740. The first and second conductive patterns 750 and 760 may include different materials, and the second conductive pattern 760 may surround the first conductive pattern 750.
도 18에서, 제 1 및 제 2 도전 패턴들(750, 760)은 동일한 두께를 갖는 것으로 도시된다. 그러나, 본 발명의 기술적 사상은 여기에 한정되지 않는다. 예를 들면, 제 2 도전 패턴(760)은 제 1 도전 패턴(750)보다 낮은 두께를 가질 수 있다. 이러한 경우, 제 1 도전 패턴(750)은 제 2 도전 패턴(760)과 인접한 영역에서 슬롭을 가질 수 있다.In FIG. 18, the first and second conductive patterns 750 and 760 are shown to have the same thickness. However, the technical idea of the present invention is not limited thereto. For example, the second conductive pattern 760 may have a lower thickness than the first conductive pattern 750. In this case, the first conductive pattern 750 may have a slop in an area adjacent to the second conductive pattern 760.
도 19는 도 18의 반도체 발광 소자(700)의 적용 례를 보여주는 단면도이다.19 is a cross-sectional view illustrating an application example of the semiconductor light emitting device 700 of FIG. 18.
도 19를 참조하면, 제 1 도전형 반도체층(720)이 부분적으로 노출된 영역에 배치되고 전극층(780)에 컨택된 제 1 범프(701), 그리고 제 1 범프(701)에 연결된 제 1 전극 패드(703)가 제공될 수 있다. 또한, 제 1 및 제 2 도전 패턴들(750, 760) 중 적어도 하나에 컨택된 제 2 범프(702), 그리고 제 2 범프(702)에 연결된 제 2 전극 패드(704)가 제공될 수 있다. 제 1 전극 패드(703) 및 제 2 전극 패드(704)는 지지부(705)에 마운트된다.Referring to FIG. 19, a first bump 701 disposed in a partially exposed region of the first conductive semiconductor layer 720 and contacted with the electrode layer 780, and a first electrode connected to the first bump 701 may be used. Pad 703 may be provided. In addition, a second bump 702 contacted to at least one of the first and second conductive patterns 750 and 760, and a second electrode pad 704 connected to the second bump 702 may be provided. The first electrode pad 703 and the second electrode pad 704 are mounted on the support 705.
본 실시 예에 채용된 제 1 및 제 2 범프들(701, 702)의 컨택 저항이 낮아지도록, 제 1 및 제 2 범프들(701, 702)은 적절한 형상, 너비 등을 가질 수 있다.The first and second bumps 701 and 702 may have an appropriate shape, width, and the like, so that the contact resistance of the first and second bumps 701 and 702 employed in the present embodiment is lowered.
제 1 도전 패턴(750)이 반사성 메탈로 형성될 때, 반사성 메탈은 활성층(730)으로부터 발생되는 빛을 반사할 것이다. 활성층(730)으로부터 발생되는 빛은 기판(710) 방향의 벡터 성분을 포함하는 방향으로 방출될 것이다.When the first conductive pattern 750 is formed of a reflective metal, the reflective metal will reflect light generated from the active layer 730. Light generated from the active layer 730 will be emitted in a direction including a vector component in the direction of the substrate 710.
본 발명의 기술적 사상은 도 19의 실시 예에 한정되지 않는다. 제 1 및 제 2 도전 패턴들(750, 760)을 전극 패드와 전기적으로 연결하기 위한 구조, 그리고 전극층(780)을 다른 전극 패드와 전기적으로 연결하기 위한 구조는 다양하게 변경될 수 있음이 이해될 것이다. 예를 들면, 도 2를 참조하여 설명된 실시 예와 마찬가지로, 제 1 도전형 반도체층(720), 활성층(730), 제 2 도전형 반도체층(740), 제 1 및 제 2 도전 패턴들(750, 760)에 복수의 층들(도 2의 170, 180, 190 참조)이 적층되고, 전극 패드들(도 2의 EP1, EP2 참조)이 적층될 수 있다. 이때, 전극층(780)은 도 2의 제 1 전극층(180)과 같이 형성될 것이다.The technical spirit of the present invention is not limited to the embodiment of FIG. 19. It will be appreciated that the structure for electrically connecting the first and second conductive patterns 750 and 760 to the electrode pad and the structure for electrically connecting the electrode layer 780 to the other electrode pad may be variously changed. will be. For example, similar to the embodiment described with reference to FIG. 2, the first conductive semiconductor layer 720, the active layer 730, the second conductive semiconductor layer 740, and the first and second conductive patterns ( A plurality of layers (see 170, 180 and 190 of FIG. 2) may be stacked on 750 and 760, and electrode pads (see EP1 and EP2 of FIG. 2) may be stacked. In this case, the electrode layer 780 will be formed like the first electrode layer 180 of FIG. 2.
도 20은 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자(800)를 보여주는 단면도이다.20 is a cross-sectional view illustrating a semiconductor light emitting device 800 according to another embodiment of the present invention.
도 20을 참조하면, 반도체 발광 소자(800)는 기판(810), 본딩 전극(815), 제 1 도전형 반도체층(820), 활성층(830), 제 2 도전형 반도체층(840), 제 1 및 제 2 도전 패턴들(850, 860), 및 전극층(880)을 포함한다.Referring to FIG. 20, the semiconductor light emitting device 800 may include a substrate 810, a bonding electrode 815, a first conductive semiconductor layer 820, an active layer 830, a second conductive semiconductor layer 840, and a second conductive semiconductor layer 840. First and second conductive patterns 850 and 860, and an electrode layer 880.
본딩 전극(815)이 기판(810) 상에 배치된다. 본딩 전극(815)은 전도성 및 접착성을 가지며, 제 2 도전형 반도체층(840)을 기판(810)에 고정한다. 기판(810)은 다른 구성들(815, 820, 830, 840, 850, 860, 880)을 지지함과 동시에 제 2 도전형 반도체층(840)에 전압 또는 전류를 인가하는 전극의 기능을 수행할 수 있다.The bonding electrode 815 is disposed on the substrate 810. The bonding electrode 815 has conductivity and adhesion, and fixes the second conductivity type semiconductor layer 840 to the substrate 810. The substrate 810 supports the other components 815, 820, 830, 840, 850, 860, and 880, and at the same time serves as an electrode for applying a voltage or current to the second conductivity-type semiconductor layer 840. Can be.
제 1 및 제 2 도전 패턴들(850, 860)이 본딩 전극(815) 상에 배치된다. 즉, 제 1 및 제 2 도전 패턴들(850, 860)은 기판(810)과 제 2 도전형 반도체층(840) 사이에 배치된다. 제 2 도전 패턴(860)은 제 1 도전 패턴(850)과 다른 물질로 형성되며, 제 1 도전 패턴(850)을 둘러쌀 것이다.First and second conductive patterns 850 and 860 are disposed on the bonding electrode 815. That is, the first and second conductive patterns 850 and 860 are disposed between the substrate 810 and the second conductive semiconductor layer 840. The second conductive pattern 860 is formed of a different material from the first conductive pattern 850 and may surround the first conductive pattern 850.
제 1 도전 패턴(850)이 반사성 메탈로 형성될 때, 반사성 메탈은 활성층(830)으로부터 발생되는 빛을 반사할 것이다. 활성층(830)으로부터 발생되는 빛은 제 1 도전형 반도체층(820) 방향의 벡터 성분을 포함하는 방향으로 방출될 것이다.When the first conductive pattern 850 is formed of a reflective metal, the reflective metal will reflect light generated from the active layer 830. Light generated from the active layer 830 may be emitted in a direction including a vector component in a direction of the first conductivity type semiconductor layer 820.
전극층(880)은 제 1 도전형 반도체층(820) 상에 배치된다. 전극층(880)은 투명 전극으로서 제공될 수 있다. 예를 들면, 전극층(880)은 ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, TCO, 그와 유사한 것을 채용할 수 있다.The electrode layer 880 is disposed on the first conductivity type semiconductor layer 820. The electrode layer 880 may be provided as a transparent electrode. For example, the electrode layer 880 may employ ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, TCO, or the like.
실시 예로서, 제 2 도전 패턴(860)은 제 1 도전 패턴(850)과 동일한 두께를 가질 수 있다. 다른 실시 예로서, 제 2 도전 패턴(860)은 제 1 도전 패턴(850)보다 낮은 두께를 가질 수 있다.In an embodiment, the second conductive pattern 860 may have the same thickness as the first conductive pattern 850. In another embodiment, the second conductive pattern 860 may have a lower thickness than the first conductive pattern 850.
도 21은 도 20의 반도체 발광 소자(800)의 적용 례를 보여주는 단면도이다.21 is a cross-sectional view illustrating an application example of the semiconductor light emitting device 800 of FIG. 20.
도 21을 참조하면, 전극층(880)에 컨택된 적어도 하나의 와이어(802), 와이어(802)를 통해 전극층(880)에 연결되는 제 1 전극 패드(803), 그리고 기판(810)에 컨택된 제 2 전극 패드(804)가 제공될 수 있다. 제 1 및 제 2 전극 패드들(803, 804)은 지지부(805)에 마운트될 수 있다.Referring to FIG. 21, at least one wire 802 contacted to the electrode layer 880, a first electrode pad 803 connected to the electrode layer 880 through the wire 802, and the substrate 810 are contacted. The second electrode pad 804 may be provided. The first and second electrode pads 803 and 804 may be mounted on the support 805.
전극층(880)을 제 1 전극 패드(803)에 연결하는 방식, 그리고 제 1 및 제 2 도전 패턴들(850, 860)을 제 2 전극 패드(803)에 연결하는 방식은 다양하게 변경될 수 있다. 예를 들면, 와이어(802)는 전극층(880) 및 제 1 전극 패드(803)를 연결하되 수직으로 연장되는 수직 전극으로 대체될 수 있다.The method of connecting the electrode layer 880 to the first electrode pad 803 and the method of connecting the first and second conductive patterns 850 and 860 to the second electrode pad 803 may be variously changed. . For example, the wire 802 connects the electrode layer 880 and the first electrode pad 803, but may be replaced by a vertical electrode extending vertically.
도 22는 반도체 발광 소자를 포함하는 반도체 발광 패키지(1000)의 실시 예를 보여주는 분해 사시도이다.22 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package 1000 including a semiconductor light emitting device.
도 22를 참조하면, 반도체 발광 패키지(1000)는 반도체 발광 소자(1100), 반사성 구조물(reflective structure, 1200), 지지 프레임(1300), 및 파장 변환부(1400, wavelength conversion film)를 포함한다.Referring to FIG. 22, the semiconductor light emitting package 1000 may include a semiconductor light emitting device 1100, a reflective structure 1200, a support frame 1300, and a wavelength conversion film 1400.
반도체 발광 소자(1100)는 도 1, 도 5, 도 12, 도 13, 도 14, 도 15b, 도 17, 도 19, 및 도 21을 참조하여 설명된 반도체 발광 소자들 중 어느 하나와 마찬가지로 구성된다. 이하, 중복되는 설명은 생략된다.The semiconductor light emitting device 1100 is configured similarly to any one of the semiconductor light emitting devices described with reference to FIGS. 1, 5, 12, 13, 14, 15b, 17, 19, and 21. . In the following, redundant description is omitted.
반사성 구조물(1200)은 반도체 발광 소자(1100)를 둘러싸도록 배치될 수 있다. 반사성 구조물(1200)은 빛에 대한 반사성, 그리고 높은 내열성을 가질 수 있다.The reflective structure 1200 may be disposed to surround the semiconductor light emitting device 1100. The reflective structure 1200 may have reflection on light and high heat resistance.
지지 프레임(1300)은 반도체 발광 소자(1100) 및 반사성 구조물(1200)을 지지하도록 구성된다. 지지 프레임(1300)은 제 1 및 제 2 상부 전극들(1310, 1320), 그리고 제 1 및 제 2 하부 전극들(1330, 1340)을 포함한다. 제 1 및 제 2 상부 전극들(1310, 1320)은 지지 프레임(1300)의 상면에 배치된다. 제 1 상부 전극(1310)은 반도체 발광 소자(1100)의 제 1 전극 패드(EP1, 도 1 참조)에 컨택하며, 제 2 상부 전극(1320)은 반도체 발광 소자(1100)의 제 2 전극 패드(EP2, 도 1 참조)에 컨택한다. 반도체 발광 소자(1100)는 제 1 상부 전극(1310) 및 제 2 상부 전극(1320)을 통해 전원을 수신할 것이다. 제 1 및 제 2 하부 전극들(1330, 1340)은 지지 프레임(1300)의 하면에 배치된다. 제 1 하부 전극(1330)은 지지 프레임(1300) 내부의 도전성 비아를 통해 제 1 상부 전극(1310)에 연결될 것이다. 제 2 하부 전극(1340)은 지지 프레임(1300) 내부의 다른 도전성 비아를 통해 제 2 상부 전극(1320)에 연결될 것이다.The support frame 1300 is configured to support the semiconductor light emitting device 1100 and the reflective structure 1200. The support frame 1300 includes first and second upper electrodes 1310 and 1320, and first and second lower electrodes 1330 and 1340. The first and second upper electrodes 1310 and 1320 are disposed on an upper surface of the support frame 1300. The first upper electrode 1310 contacts the first electrode pad EP1 (see FIG. 1) of the semiconductor light emitting device 1100, and the second upper electrode 1320 is a second electrode pad of the semiconductor light emitting device 1100 ( EP2, see FIG. 1). The semiconductor light emitting device 1100 may receive power through the first upper electrode 1310 and the second upper electrode 1320. The first and second lower electrodes 1330 and 1340 are disposed on the bottom surface of the support frame 1300. The first lower electrode 1330 may be connected to the first upper electrode 1310 through conductive vias in the support frame 1300. The second lower electrode 1340 may be connected to the second upper electrode 1320 through another conductive via in the support frame 1300.
지지 프레임(1300)은 방열판(1350)을 추가적으로 포함할 수 있다. 방열판(1350)은 지지 프레임(1300)의 하면에 배치되어 반도체 발광 소자(1100)로부터 발생된 열을 방출하도록 구성된다. 예를 들면, 지지 프레임(1300)은 히트 싱크의 기능을 수행할 수 있다.The support frame 1300 may further include a heat sink 1350. The heat sink 1350 is disposed on the bottom surface of the support frame 1300 and is configured to discharge heat generated from the semiconductor light emitting device 1100. For example, the support frame 1300 may perform a function of a heat sink.
파장 변환부(1400)는 반사성 구조물(1300)에 결합되어 반도체 발광 소자(1100)를 커버할 수 있다. 실시 예로서, 파장 변환부(1400)는 반도체 발광 소자(1100)의 상면을 덮는 필름의 형상을 가질 수 있다. 실시 예로서, 파장 변환부(1400)는 반도체 발광 소자(1100)의 상면 뿐만 아니라 측면을 커버하는 형상을 가질 수 있다. 파장 변환부(1400)에 파장변환물질들은 반도체 발광 소자(1100)로부터 발광된 빛을 다른 파장의 빛으로 변환시킬 수 있다. 반도체 발광 소자(1100)로부터의 빛은 파장 변환부(1400)을 통과하여 백색광으로서 방출될 수 있다. 반도체 발광 패키지(1000)에 파장 변환부(1400)가 실장되는 경우, 반도체 발광 소자(1100) 내 파장 변환층은 선택적으로 제거될 수 있다.The wavelength converter 1400 may be coupled to the reflective structure 1300 to cover the semiconductor light emitting device 1100. In an embodiment, the wavelength converter 1400 may have a shape of a film covering the top surface of the semiconductor light emitting device 1100. In an embodiment, the wavelength converter 1400 may have a shape covering not only an upper surface of the semiconductor light emitting device 1100 but also a side surface thereof. The wavelength conversion materials in the wavelength converter 1400 may convert light emitted from the semiconductor light emitting device 1100 into light having a different wavelength. Light from the semiconductor light emitting device 1100 may pass through the wavelength converter 1400 and be emitted as white light. When the wavelength converter 1400 is mounted on the semiconductor light emitting package 1000, the wavelength conversion layer in the semiconductor light emitting device 1100 may be selectively removed.
반도체 발광 패키지(1000)는 정전기 방전 보호 회로(electrostatic discharge protection circuit, 미도시)를 추가적으로 포함할 수 있다. 정전기 방전 보호 회로는 지지 프레임(1300)에 실장되거나, 반도체 발광 소자(1100)의 구성 요소로서 제공될 수 있다. 정전기 방전 보호 회로는 제 1 상부 전극(1310) 및 제 2 상부 전극(1320)에 연결될 것이다.The semiconductor light emitting package 1000 may further include an electrostatic discharge protection circuit (not shown). The electrostatic discharge protection circuit may be mounted on the support frame 1300 or may be provided as a component of the semiconductor light emitting device 1100. The electrostatic discharge protection circuit may be connected to the first upper electrode 1310 and the second upper electrode 1320.
반도체 발광 패키지(1000)는 반사성 구조물(1200)에 실장되어 반도체 발광 소자(1100) 및 파장 변환부(1400)를 보호하는 투명 커버(미도시)를 더 포함할 수 있다.The semiconductor light emitting package 1000 may further include a transparent cover (not shown) that is mounted on the reflective structure 1200 to protect the semiconductor light emitting device 1100 and the wavelength converter 1400.
도 23은 도 22의 반도체 발광 패키지(1000)의 변형 례(2000)를 보여주는 분해 사시도이다.FIG. 23 is an exploded perspective view illustrating a modification 2000 of the semiconductor light emitting package 1000 of FIG. 22.
도 23을 참조하면, 반도체 발광 패키지(2000)는 2 이상의 반도체 발광 소자들(2110, 2120), 반사성 구조물(2200), 지지 프레임(2300), 및 파장 변환부(2400)를 포함한다.Referring to FIG. 23, the semiconductor light emitting package 2000 includes two or more semiconductor light emitting devices 2110 and 2120, a reflective structure 2200, a support frame 2300, and a wavelength converter 2400.
반도체 발광 패키지(2000)는, 예를 들면 2개의 반도체 발광 소자들(2110, 2120)을 포함할 수 있다. 반사성 구조물(2200)은 제 1 및 제 2 반도체 발광 소자들(2110, 2120)을 둘러싸도록 배치될 수 있다.The semiconductor light emitting package 2000 may include, for example, two semiconductor light emitting devices 2110 and 2120. The reflective structure 2200 may be disposed to surround the first and second semiconductor light emitting devices 2110 and 2120.
지지 프레임(2300)은 제 1 및 제 2 반도체 발광 소자들(2110, 2120) 및 반사성 구조물(2200)을 지지하도록 구성된다. 지지 프레임(2300)은 제 1 상부 전극들(2310_1, 2310_2), 제 2 상부 전극(2320), 제 1 및 제 2 하부 전극들(2330, 2340), 그리고 방열판(2350)을 포함한다. 제 1 상부 전극(2310_1)은 제 1 반도체 발광 소자(2110)의 제 1 전극 패드(EP1, 도 1 참조)에 연결되고, 제 2 상부 전극(2320)은 제 1 반도체 발광 소자(2110)의 제 2 전극 패드(EP2, 도 1 참조) 및 제 2 반도체 발광 소자(2120)의 제 2 전극 패드(EP2)에 연결되며, 제 1 상부 전극(2310_2)은 제 2 반도체 발광 소자(2120)의 제 1 전극 패드(EP1)에 연결된다. 제 1 상부 전극들(2310_1, 2310_2)은 서로 연결될 수 있다. 제 1 하부 전극(2330)은 제 1 상부 전극들(2310_1, 2310_2)과 연결된다. 제 2 하부 전극(2340)은 제 2 상부 전극(2320)과 연결된다.The support frame 2300 is configured to support the first and second semiconductor light emitting devices 2110 and 2120 and the reflective structure 2200. The support frame 2300 includes first upper electrodes 2310_1 and 2310_2, second upper electrodes 2320, first and second lower electrodes 2330 and 2340, and a heat sink 2350. The first upper electrode 2310_1 is connected to the first electrode pad EP1 of the first semiconductor light emitting device 2110 (see FIG. 1), and the second upper electrode 2320 is formed of the first semiconductor light emitting device 2110. It is connected to the second electrode pad EP2 (see FIG. 1) and the second electrode pad EP2 of the second semiconductor light emitting device 2120, and the first upper electrode 2310_2 is connected to the first of the second semiconductor light emitting device 2120. It is connected to the electrode pad EP1. The first upper electrodes 2310_1 and 2310_2 may be connected to each other. The first lower electrode 2330 is connected to the first upper electrodes 2310_1 and 2310_2. The second lower electrode 2340 is connected to the second upper electrode 2320.
제 1 상부 전극들(2310_1, 2310_2) 및 제 2 상부 전극(2320)을 통해, 제 1 및 제 2 반도체 발광 소자들(2110, 2120)은 전원을 수신할 것이다. 제 1 및 제 2 반도체 발광 소자들(2110, 2120)은 전원과 병렬 연결될 수 있다. 그러나, 제 1 및 제 2 반도체 발광 소자들(2110, 2120)과 전원 사이의 전기적 연결 관계는 적합하게 변경될 수 있음이 이해될 것이다.Through the first upper electrodes 2310_1 and 2310_2 and the second upper electrode 2320, the first and second semiconductor light emitting devices 2110 and 2120 may receive power. The first and second semiconductor light emitting devices 2110 and 2120 may be connected in parallel with a power source. However, it will be appreciated that the electrical connection relationship between the first and second semiconductor light emitting devices 2110 and 2120 and the power source may be changed as appropriate.
도 24는 반도체 발광 소자를 포함하는 반도체 발광 패키지(3000)의 다른 실시 예를 보여주는 분해 사시도이다.24 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package 3000 including a semiconductor light emitting device.
도 24를 참조하면, 반도체 발광 패키지(3000)는 적어도 하나의 반도체 발광 소자(3110, 3120), 인쇄 회로 기판(3200), 및 지지 프레임(3300)을 포함한다.Referring to FIG. 24, the semiconductor light emitting package 3000 includes at least one semiconductor light emitting device 3110 and 3120, a printed circuit board 3200, and a support frame 3300.
제 1 및 제 2 반도체 발광 소자들(3110, 3120)은 인쇄 회로 기판(3200) 상에 배치된다. 제 1 및 제 2 반도체 발광 소자들(3110, 3120) 각각은 도 1, 도 5, 도 12, 도 13, 도 14, 도 15b, 도 17, 도 19, 및 도 21을 참조하여 설명된 반도체 발광 소자들 중 어느 하나와 마찬가지로 구성된다. 이하, 중복되는 설명은 생략된다.The first and second semiconductor light emitting devices 3110 and 3120 are disposed on the printed circuit board 3200. Each of the first and second semiconductor light emitting devices 3110 and 3120 may be a semiconductor light emitting device described with reference to FIGS. 1, 5, 12, 13, 14, 15b, 17, 19, and 21. It is configured like any one of the elements. In the following, redundant description is omitted.
제 1 및 제 2 반도체 발광 소자들(3110, 3120)에 각각 제 1 및 제 2 파장 변환층들(3111, 3121)이 적층된다. 각 파장 변환층에 포함된 파장변환물질들은 해당 반도체 발광 소자로부터 발광된 빛을 다른 파장의 빛으로 변환시킬 수 있다. 반도체 발광 소자로부터의 빛은 파장 변환층을 통과하여 백색광으로서 방출될 수 있다. 파장 변환층은 실질적으로 일정한 두께를 가지는 시트(sheet) 형상으로 형성될 수 있으며, 상온에서 반경화 상태이고 가열시 유동 가능하도록 상 변화하는 반경화성 물질에, 예를 들면 형광체와 같은 파장변환물질들이 분산된 필름일 수 있다. 파장 변환층은 하나의 층이 적층된 구조일 수 있으나, 다층들으로 형성될 수도 있다. 파장 변환층을 다층들로 형성한 경우 각 층은 서로 다른 종류의 형광체를 포함할 수 있다.First and second wavelength conversion layers 3111 and 3121 are stacked on the first and second semiconductor light emitting devices 3110 and 3120, respectively. The wavelength conversion materials included in each wavelength conversion layer may convert light emitted from the semiconductor light emitting device into light having a different wavelength. Light from the semiconductor light emitting element may pass through the wavelength conversion layer and be emitted as white light. The wavelength converting layer may be formed in a sheet shape having a substantially constant thickness, and may be formed in a semi-curable material which is semi-cured at room temperature and flows upon heating, for example, wavelength converting materials such as phosphors. It may be a dispersed film. The wavelength conversion layer may have a structure in which one layer is stacked, or may be formed of multiple layers. When the wavelength conversion layer is formed of multiple layers, each layer may include different kinds of phosphors.
인쇄 회로 기판(3200)은 지지 프레임(3300)에 의해 지지된다. 인쇄 회로 기판(3200)은 반도체 발광 소자들(3110, 3120)과 지지 프레임(3300)의 하부 전극들(3310~3340)을 인터페이싱한다. 인쇄 회로 기판(3200)은 제 1 반도체 발광 소자(3110)의 제 1 및 제 2 전극 패드들(EP1, EP2, 도 1 참조)에 각각 연결되는 제 1 상부 전극들(미도시), 그리고 제 2 반도체 발광 소자(3120)의 제 1 및 제 2 전극 패드들(EP1, EP2)에 각각 연결되는 제 2 상부 전극들(미도시)을 포함할 것이다. 제 1 상부 전극들은 지지 프레임(3300) 하면의 제 1 하부 전극들(3310, 3320)에 연결될 것이다. 제 2 상부 전극들은 지지 프레임(3300) 하면의 제 2 하부 전극들(3330, 3340)에 연결될 것이다. 제 1 상부 전극들 및 제 2 상부 전극들의 개수 및 형상들은 적합하게 변경될 수 있다.The printed circuit board 3200 is supported by the support frame 3300. The printed circuit board 3200 interfaces the semiconductor light emitting devices 3110 and 3120 and the lower electrodes 3310 to 3340 of the support frame 3300. The printed circuit board 3200 may include first upper electrodes (not shown) and second electrodes respectively connected to the first and second electrode pads EP1 and EP2 of the first semiconductor light emitting device 3110. Second upper electrodes (not shown) connected to the first and second electrode pads EP1 and EP2 of the semiconductor light emitting device 3120 may be included. The first upper electrodes may be connected to the first lower electrodes 3310 and 3320 on the bottom surface of the support frame 3300. The second upper electrodes may be connected to the second lower electrodes 3330 and 3340 on the bottom surface of the support frame 3300. The number and shapes of the first upper electrodes and the second upper electrodes can be changed as appropriate.
지지 프레임(3300)은 반도체 발광 소자들(3110, 3120)로부터 발생된 열을 방출하기 위한 방열판(3350)을 더 포함할 수 있다. The support frame 3300 may further include a heat sink 3350 for dissipating heat generated from the semiconductor light emitting devices 3110 and 3120.
반도체 발광 패키지(3000)는 인쇄 회로 기판(3200) 상 전극들에 연결되는 적어도 하나의 정전기 방전 보호 회로, 그리고 인쇄 회로 기판(3200) 및 반도체 발광 소자들(3110, 3120)을 보호하기 위한 투명 커버를 더 포함할 수 있다.The semiconductor light emitting package 3000 may include at least one electrostatic discharge protection circuit connected to electrodes on the printed circuit board 3200, and a transparent cover for protecting the printed circuit board 3200 and the semiconductor light emitting devices 3110 and 3120. It may further include.
도 25는 본 발명의 실시 예에 따른 반도체 발광 소자(5100)의 평면도이다.25 is a plan view of a semiconductor light emitting device 5100 according to an embodiment of the present invention.
도 25를 참조하면, 반도체 발광 소자(5100)는 기판 상에 배치된 반도체 구조물(SS), 그리고 반도체 구조물(SS) 상에 배치된 제 1 및 제 2 전극 패드들(EP1, EP2)을 포함한다. 기판은 제 1 방향(X+) 및 제 2 방향(Y+)으로 연장되며, 반도체 구조물(SS)은 제 3 방향(Z+)으로 기판 위에 배치된다. 제 1 및 제 2 전극 패드들(EP1, EP2)은 제 3 방향(Z+)으로 반도체 구조물(SS) 위에 배치된다.Referring to FIG. 25, the semiconductor light emitting device 5100 may include a semiconductor structure SS disposed on a substrate, and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. . The substrate extends in the first direction X + and the second direction Y +, and the semiconductor structure SS is disposed on the substrate in the third direction Z +. The first and second electrode pads EP1 and EP2 are disposed on the semiconductor structure SS in the third direction Z +.
반도체 구조물(SS)은 제 1 도전형 반도체층 및 제 2 도전형 반도체층, 그리고 제 1 및 제 2 도전형 반도체층들 사이에 배치되는 활성층을 포함한다. 제 1 및 제 2 도전형 반도체층들을 통해 흐르는 전류에 의해 활성층의 전자와 정공이 재결합함으로써 빛이 발생된다. 실시 예로서, 반도체 발광 소자(5100)는 질화 갈륨(gallium nitride, GaN)계 반도체 발광 소자일 수 있다.The semiconductor structure SS includes a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first and second conductive semiconductor layers. Light is generated by recombination of electrons and holes in the active layer by the current flowing through the first and second conductivity-type semiconductor layers. In an embodiment, the semiconductor light emitting device 5100 may be a gallium nitride (GaN) -based semiconductor light emitting device.
반도체 구조물(SS)은 제 1 전극층(ELCT1) 및 제 2 전극층(ELCT2)을 더 포함한다. 제 1 전극층(ELCT1)은 제 1 도전형 반도체층에 전기적으로 연결되어 있고 반도체 구조물(SS) 상의 제 1 개구부(OP1)에 의해 노출될 수 있다. 노출된 제 1 전극층(ELCT1)은 제 1 전극 패드(EP1)와 컨택한다. 제 2 전극층(ELCT2)은 제 2 도전형 반도체층에 전기적으로 연결되어 있고, 반도체 구조물(SS) 상의 제 2 개구부(OP2)에 의해 노출될 수 있다. 노출된 제 2 전극층(ELCT2)은 제 2 전극 패드(EP2)와 컨택한다. 결과적으로, 제 1 전극 패드(EP1)를 통해 인가되는 전압 및 전류는 제 1 전극층(ELCT1)을 통해 제 1 도전형 반도체층에 전달되고, 제 2 전극 패드(EP2)를 통해 인가되는 전압 및 전류는 제 2 전극층(ELCT2)을 통해 제 2 도전형 반도체층에 전달된다.The semiconductor structure SS further includes a first electrode layer ELCT1 and a second electrode layer ELCT2. The first electrode layer ELCT1 is electrically connected to the first conductivity type semiconductor layer and may be exposed by the first opening OP1 on the semiconductor structure SS. The exposed first electrode layer ELCT1 contacts the first electrode pad EP1. The second electrode layer ELCT2 is electrically connected to the second conductivity type semiconductor layer and may be exposed by the second opening OP2 on the semiconductor structure SS. The exposed second electrode layer ELCT2 contacts the second electrode pad EP2. As a result, the voltage and current applied through the first electrode pad EP1 are transferred to the first conductive semiconductor layer through the first electrode layer ELCT1 and the voltage and current applied through the second electrode pad EP2. Is transferred to the second conductivity type semiconductor layer through the second electrode layer ELCT2.
본 발명의 기술적 사상은 전극층들(ELCT1, ELCT2)의 형상들, 전극층들(ELCT1, ELCT2)과 도전형 반도체층들 사이의 전기적 연결을 위한 구성 요소들, 및 그 구성 요소들의 형상들에 한정되지 않는다. 예를 들면, 제 1 및 제 2 전극층들(ELCT1, ELCT2) 각각은 직접적으로 해당 도전형 반도체층에 연결될 수 있다. 다른 예로서, 제 1 및 제 2 전극층들(ELCT1, ELCT2) 각각은 적어도 하나의 구성 요소를 통해 해당 도전형 반도체층에 연결될 수 있다.The technical idea of the present invention is not limited to the shapes of the electrode layers ELCT1 and ELCT2, the components for the electrical connection between the electrode layers ELCT1 and ELCT2 and the conductive semiconductor layers, and the shapes of the components. Do not. For example, each of the first and second electrode layers ELCT1 and ELCT2 may be directly connected to a corresponding conductive semiconductor layer. As another example, each of the first and second electrode layers ELCT1 and ELCT2 may be connected to the corresponding conductive semiconductor layer through at least one component.
제 1 전극층(ELCT1)은 반도체 구조물(SS) 상의 제 1 컨택 영역(region)들(CP1)에서 제 1 도전형 반도체층과 컨택한다. 제 1 컨택 영역들(CP1)은 반도체 발광 소자(5100)의 비발광 영역에 위치할 수 있다. 비발광 영역은 반도체 구조물(SS)의 활성층이 위치하는 영역 외 나머지 영역에 해당할 수 있다. 제 2 전극층(ELCT2)은 반도체 구조물(SS) 상의 제 2 컨택 영역(CP2)에서 제 2 도전형 반도체층과 컨택한다. 제 2 컨택 영역(CP2)은 반도체 발광 소자(5100)의 발광 영역에 위치할 수 있다. 발광 영역은 반도체 구조물(SS)의 활성층의 위치하는 영역에 해당할 수 있다.The first electrode layer ELCT1 contacts the first conductivity-type semiconductor layer in the first contact regions CP1 on the semiconductor structure SS. The first contact regions CP1 may be located in the non-light emitting region of the semiconductor light emitting device 5100. The non-light emitting area may correspond to the remaining area other than the area where the active layer of the semiconductor structure SS is located. The second electrode layer ELCT2 contacts the second conductivity type semiconductor layer in the second contact region CP2 on the semiconductor structure SS. The second contact region CP2 may be located in the light emitting region of the semiconductor light emitting device 5100. The emission region may correspond to an area of the active layer of the semiconductor structure SS.
제 1 컨택 영역들(CP1) 중 일부는 발광 영역의 중심부에 위치할 수 있다. 이에 따라, 제 1 컨택 영역들(CP1) 및 제 2 컨택 영역(CP2) 사이에서 흐르는 전류은 효율적으로 분산(spread)될 수 있다. 실시 예로서, 제 1 컨택 영역들(CP1) 중 나머지는 발광 영역의 가장자리에 위치할 수 있다. 도 25에는 9개의 제 1 컨택 영역들(CP1) 및 하나의 제 2 컨택 영역(CP2)이 도시되어 있다. 그러나, 본 발명의 기술적 사상은 여기에 한정되지 않음이 이해될 것이다. 제 1 컨택 영역들(CP1) 및 제 2 컨택 영역(CP2)의 개수 및 형상은 다양하게 변경될 수 있다.Some of the first contact regions CP1 may be located at the center of the emission area. Accordingly, the current flowing between the first contact regions CP1 and the second contact region CP2 may be efficiently spread. In an embodiment, the remaining of the first contact regions CP1 may be located at an edge of the emission region. In FIG. 25, nine first contact regions CP1 and one second contact region CP2 are illustrated. However, it will be understood that the technical spirit of the present invention is not limited thereto. The number and shape of the first contact regions CP1 and the second contact region CP2 may be variously changed.
본 발명의 실시 예에 따르면, 제 1 컨택 영역들(CP1)의 면적(area)은 비발광 영역 및 발광 영역의 합 면적의 1.8% 이상이다. 실시 예로서, 제 1 컨택 영역들(CP1)의 면적은 비발광 영역 및 발광 영역의 합 면적의 1.8%~4.5% 내일 수 있다. 이에 따라, 반도체 발광 소자(5100)는 낮은 순방향 전압을 가지면서도 향상된 광세기를 갖도록 디자인될 수 있다.According to an embodiment of the present invention, an area of the first contact regions CP1 is equal to or greater than 1.8% of the sum of the non-light emitting region and the light emitting region. In an embodiment, the areas of the first contact regions CP1 may be within 1.8% to 4.5% of the sum of the non-light emitting area and the light emitting area. Accordingly, the semiconductor light emitting device 5100 may be designed to have an improved light intensity while having a low forward voltage.
도 26은 도 25의 라인 I-I'에 따른 단면도의 실시 예를 보여주는 도면이다.FIG. 26 is a diagram illustrating an embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
도 25 및 도 26을 참조하면, 반도체 발광 소자(5100)는 기판(5110), 제 1 도전형 반도체층(5120), 활성층(5130), 제 2 도전형 반도체층(5140), 컨택 전극층들(5150, 5170), 패시베이션 층들(5160, 5180), 전극 패드들(EP1, EP2)을 포함한다.25 and 26, the semiconductor light emitting device 5100 may include a substrate 5110, a first conductive semiconductor layer 5120, an active layer 5130, a second conductive semiconductor layer 5140, and contact electrode layers ( 5150 and 5170, passivation layers 5160 and 5180, and electrode pads EP1 and EP2.
기판(5110) 상에 제 1 도전형 반도체층(5120), 활성층(5130), 제 2 도전형 반도체층(5140)이 순차적으로 적층된다.The first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 are sequentially stacked on the substrate 5110.
기판(5110)은 GaN 기판일 수 있다. 기판(5110)은 제 1 도전형 반도체층(5120)과 함께 전류 통로로서 기능할 수 있다. 제 2 도전형 반도체층(5140), 활성층(5130), 및 제 1 도전형 반도체층(5120)을 통해 제 1 컨택 전극층(5170)으로 전달되는 전류는 기판(5110)에 의해 분산될 수 있다.The substrate 5110 may be a GaN substrate. The substrate 5110 may function as a current path together with the first conductivity type semiconductor layer 5120. The current transferred to the first contact electrode layer 5170 through the second conductive semiconductor layer 5140, the active layer 5130, and the first conductive semiconductor layer 5120 may be distributed by the substrate 5110.
제 1 도전형 반도체층(5120)은 n형의 불순물이 포함된 질화물 반도체로서, 조성식 AlxInyGa1-x-yN (0≤x<1, 0≤y<1, 0≤x+y<1)을 만족할 수 있다. 예를 들면, 제 1 도전형 반도체층(5120)은 GaN, AlGaN, InGaN, AlInGaN 등을 포함할 수 있다. 제 1 도전형 반도체층(5120)은 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다.The first conductive semiconductor layer 5120 is a nitride semiconductor containing n-type impurities and may satisfy the compositional formula Al x In y Ga 1-x N y (0 ≦ x <1, 0 ≦ y <1, 0 ≦ x + y <1). Can be. For example, the first conductivity type semiconductor layer 5120 may include GaN, AlGaN, InGaN, AlInGaN, or the like. The first conductive semiconductor layer 5120 may include an n-type dopant such as Si, Ge, Sn, Se, Te, or the like.
활성층(5130)은 제 1 도전형 반도체층(5120) 상에 배치된다. 실시 예로서, 활성층(5130)은 단일 양자우물(Single Quantum Well, SQW) 구조 또는 다중양자우물(Multi Quantum Well, MQW) 구조를 가질 수 있다. 예를 들면, 양자우물층과 양자장벽층 각각은 서로 다른 조성을 갖는 물질들을 포함하며, 조성식 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 만족할 수 있다. 예를 들면, 양자우물층은 양자장벽층의 에너지 밴드 갭보다 낮은 에너지 밴드 갭을 가질 수 있다. The active layer 5130 is disposed on the first conductivity type semiconductor layer 5120. In an embodiment, the active layer 5130 may have a single quantum well (SQW) structure or a multi quantum well (MQW) structure. For example, the quantum well layer and the quantum barrier layer each include materials having different compositions, and the composition formula InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x + y≤1) Can be satisfied. For example, the quantum well layer may have an energy band gap lower than the energy band gap of the quantum barrier layer.
제 2 도전형 반도체층(5140)은 활성층(5130) 상에 배치된다. 제 2 도전형 반도체층(5140)은 p형의 불순물이 포함된 질화물 반도체로서, 조성식 AlxInyGa1-x-yN (0≤x<1, 0≤y<1, 0≤x+y<1)을 만족할 수 있다. 예를 들면, 제 2 도전형 반도체층(5140)은 AlGaN, GaN 등을 포함할 수 있다. 제 2 도전형 반도체층(5140)은 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트를 포함할 수 있다. 제 2 도전형 반도체층(5140)은 단층 구조 또는 다층 구조를 가질 수 있다. 제 2 도전형 반도체층(5140)이 다층 구조를 갖는 경우, 제 2 도전형 반도체층(5140)은 AlGaN층, 저농도 p형 GaN층, 및 고농도 p형 GaN층 등을 포함할 수 있다.The second conductivity type semiconductor layer 5140 is disposed on the active layer 5130. The second conductivity-type semiconductor layer 5140 is a nitride semiconductor containing p-type impurities, and satisfies the compositional formula AlxInyGa1-x-yN (0≤x <1, 0≤y <1, 0≤x + y <1). Can be. For example, the second conductivity-type semiconductor layer 5140 may include AlGaN, GaN, or the like. The second conductive semiconductor layer 5140 may include p-type dopants such as Mg, Zn, Ca, Sr, and Ba. The second conductivity-type semiconductor layer 5140 may have a single layer structure or a multilayer structure. When the second conductive semiconductor layer 5140 has a multilayer structure, the second conductive semiconductor layer 5140 may include an AlGaN layer, a low concentration p-type GaN layer, a high concentration p-type GaN layer, and the like.
실시 예로서, 제 1 도전형 반도체층(5120), 활성층(5130), 제 2 도전형 반도체층(5140) 각각은 적어도 MOCVD(Metal Organic Chemical Vapor Deposition)와 같은 에피택셜 증착(epitaxial deposition), MBE(Molecular Beam Epitaxy), 또는 GaN 성장(growth)에 적합한 또 다른 에피택셜 성장 기술들을 사용하여 형성될 수 있다.In an embodiment, each of the first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 may include at least epitaxial deposition, MBE, such as a metal organic chemical vapor deposition (MOCVD). (Molecular Beam Epitaxy), or another epitaxial growth technique suitable for GaN growth.
반도체 발광 소자(5100)의 발광 영역(EMP)은 활성층(5130)이 위치하는 영역에 해당할 수 있다. 발광 영역(EMP)에서, 제 1 도전형 반도체층(5120), 활성층(5130), 및 제 2 도전형 반도체층(5140)이 배치된다. The emission region EMP of the semiconductor light emitting device 5100 may correspond to a region where the active layer 5130 is located. In the emission region EMP, the first conductive semiconductor layer 5120, the active layer 5130, and the second conductive semiconductor layer 5140 are disposed.
반도체 발광 소자(5100)의 비발광 영역(NEMP)은 활성층(5130)이 위치하지 않는 영역에 해당할 수 있다. 비발광 영역(NEMP) 중 적어도 일부에는 제 1 도전형 반도체층(5120)이 전극과 컨택할 수 있는 노출영역을 포함한다. 제 2 컨택 전극층(5150)은 제 2 도전형 반도체층(5140) 위에 배치된다. 제 2 컨택 전극층(5150)은 발광 영역(EMP)에 위치한다. 제 2 컨택 전극층(5150)은 제 2 도전형 반도체층(5140)과 오믹 컨택을 가질 수 있다. 제 2 컨택 전극층(5150)은 반사성 메탈(reflective metal)을 포함 할 수 있다. 반사성 메탈은 활성층(5130)에 의해 발광되는 빛을 기판 방향으로 반사한다. 실시 예로서, 제 2 도전형 반도체층(5140) 위에 배치되며 제 2 컨택 전극층(5150)상에 절연층(5151)이 더 제공될 수 있다. 절연층(5151)은 제 2 컨택 전극층(5150)을 보호하기 위해 외부에 형성 될 수 있다.The non-light emitting area NEMP of the semiconductor light emitting device 5100 may correspond to a region where the active layer 5130 is not located. At least a portion of the non-light emitting area NEMP includes an exposed area in which the first conductivity type semiconductor layer 5120 may contact the electrode. The second contact electrode layer 5150 is disposed on the second conductivity type semiconductor layer 5140. The second contact electrode layer 5150 is positioned in the emission area EMP. The second contact electrode layer 5150 may have an ohmic contact with the second conductive semiconductor layer 5140. The second contact electrode layer 5150 may include a reflective metal. The reflective metal reflects light emitted by the active layer 5130 toward the substrate. In an embodiment, an insulating layer 5501 may be further provided on the second conductive semiconductor layer 5140 and on the second contact electrode layer 5150. The insulating layer 5151 may be formed on the outside to protect the second contact electrode layer 5150.
제 1 패시베이션 층(5160)은 제 1 도전형 반도체층(5120), 활성층(5130), 제 2 도전형 반도체층(5140), 그리고 제 2 컨택 전극층(5150) 상에 배치된다. 제 1 패시베이션 층(5160)은 활성층(5130), 제 2 도전형 반도체층(5140), 그리고 제 2 컨택 전극층(5150)과 제 1 컨택 전극층(5170)을 이격시킨다. 따라서, 활성층(5130), 제 2 도전형 반도체층(5140), 그리고 제 2 컨택 전극층(5150)은 제 1 컨택 전극층(5170)과 전기적으로 절연된다. 제 1 패시베이션 층(5160)은 제 1 도전형 반도체층(5120)을 노출하는 제 3 및 제 4 개구부들(OP3, OP4), 그리고 제 2 컨택 전극층(5150)을 노출하는 제 5 개구부(OP5)를 갖는다.The first passivation layer 5160 is disposed on the first conductive semiconductor layer 5120, the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150. The first passivation layer 5160 spaces the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150 and the first contact electrode layer 5170. Accordingly, the active layer 5130, the second conductive semiconductor layer 5140, and the second contact electrode layer 5150 are electrically insulated from the first contact electrode layer 5170. The first passivation layer 5160 may include third and fourth openings OP3 and OP4 exposing the first conductive semiconductor layer 5120, and a fifth opening OP5 exposing the second contact electrode layer 5150. Has
제 1 컨택 전극층(5170)은 제 1 패시베이션 층(5160) 및 제 1 도전형 반도체층(5120) 상에 배치된다. 제 1 컨택 전극층(5170)은 제 3 및 제 4 개구부들(OP3, OP4)을 통해 비발광 영역의 제 1 컨택 영역들(CP1)에서 제 1 도전형 반도체층(5120)과 컨택할 수 있다. 제 1 컨택 영역들(CP1)은 반도체 발광 소자(5100)의 비발광 영역(NEMP)에 위치하고 있다. 제 1 컨택 전극층(5170)은 제 1 도전형 반도체층(5120)과 오믹 컨택을 가질 수 있다.The first contact electrode layer 5170 is disposed on the first passivation layer 5160 and the first conductivity type semiconductor layer 5120. The first contact electrode layer 5170 may contact the first conductivity type semiconductor layer 5120 in the first contact regions CP1 of the non-light emitting region through the third and fourth openings OP3 and OP4. The first contact regions CP1 are positioned in the non-light emitting region NEMP of the semiconductor light emitting device 5100. The first contact electrode layer 5170 may have an ohmic contact with the first conductivity type semiconductor layer 5120.
연결 전극층(5175)은 제 2 컨택 전극층(5150) 상에 형성되며 제 1 패시베이션 층(5160) 위에 배치된다. 연결 전극층(5175)은 제 5 개구부(OP5)를 통해 제 2 컨택 전극층(5150)과 컨택할 수 있다. 실시 예로서, 제 1 컨택 전극층(5170) 및 연결 전극층(5175)은 제조 공정 시 동시에 형성될 수 있다. 제 1 컨택 전극층(5170) 및 연결 전극층(5175)은 동일한 물질을 포함할 수 있다. 예를 들면, 제 1 컨택 전극층(5170) 및 연결 전극층(5175)은 Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, Al 등의 물질 및 그것들의 합금 중 적어도 하나를 포함할 수 있다.The connection electrode layer 5175 is formed on the second contact electrode layer 5150 and is disposed on the first passivation layer 5160. The connection electrode layer 5175 may contact the second contact electrode layer 5150 through the fifth opening OP5. In an embodiment, the first contact electrode layer 5170 and the connection electrode layer 5175 may be formed at the same time during the manufacturing process. The first contact electrode layer 5170 and the connection electrode layer 5175 may include the same material. For example, the first contact electrode layer 5170 and the connection electrode layer 5175 may include at least one of materials such as Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, Cr, Al, and alloys thereof. It may include.
실시 예로서, 연결 전극층(5175)은 생략될 수 있다. 이러한 경우, 제 2 컨택 전극(5150)은 제 5 개구부(OP5)를 통해 제 2 전극 패드(EP2)에 직접 컨택할 수 있다.In an embodiment, the connection electrode layer 5175 may be omitted. In this case, the second contact electrode 5150 may directly contact the second electrode pad EP2 through the fifth opening OP5.
제 2 패시베이션 층(5180)은 제 1 컨택 전극층(5170) 및 연결 전극층(5175) 상에 배치된다. 제 2 패시베이션 층(5180)은 제 1 컨택 전극층(5170)을 노출하는 제 1 개구부(OP1), 그리고 연결 전극층(5175)을 노출하는 제 2 개구부(OP2)를 포함한다.The second passivation layer 5180 is disposed on the first contact electrode layer 5170 and the connection electrode layer 5175. The second passivation layer 5180 includes a first opening OP1 exposing the first contact electrode layer 5170 and a second opening OP2 exposing the connection electrode layer 5175.
실시 예로서, 제 1 및 제 2 패시베이션 층들(5160, 5180) 각각은 SiO2, SiN, SiOxNy, TiO2, Si3N4, Al2O3, TiN, AlN, ZrO2, TiAlN, TiSiN, Nb2O5, MgF2 등의 절연성 물질로 형성될 수 있다. 실시 예로서, 제 1 및 제 2 패시베이션 층들(5160, 5180)은 앞서 나열한 절연성 물질 중 저 굴절 물질층과 고 굴절 물질층이 교대로 적층된 분포 브래그 반사기(Distributed Bragg Reflector, DBR)로서 형성될 수 있다.In some embodiments, each of the first and second passivation layers 5160 and 5180 may be formed of an insulating material such as SiO 2, SiN, SiO x N y, TiO 2, Si 3 N 4, Al 2 O 3, TiN, AlN, ZrO 2, TiAlN, TiSiN, Nb 2 O 5, and MgF 2. Can be. In an embodiment, the first and second passivation layers 5160 and 5180 may be formed as a distributed Bragg reflector (DBR) in which a low refractive material layer and a high refractive material layer of the insulating materials listed above are alternately stacked. have.
제 1 전극 패드(EP1)는 제 1 개구부(OP1)를 통해 제 1 컨택 전극층(5170)과 컨택한다. 따라서, 제 1 전극 패드(EP1)는 제 1 컨택 전극층(5170)을 통해 제 1 도전형 반도체층(5120)에 전기적으로 연결된다. 제 2 전극 패드(EP2)는 제 2 개구부(OP2)를 통해 연결 전극층(5175)과 컨택한다. 따라서, 제 2 전극 패드(EP2)는 연결 전극층(5175) 및 제 2 컨택 전극층(5150)을 통해 제 2 도전형 반도체층(5140)에 전기적으로 연결된다.The first electrode pad EP1 contacts the first contact electrode layer 5170 through the first opening OP1. Therefore, the first electrode pad EP1 is electrically connected to the first conductivity type semiconductor layer 5120 through the first contact electrode layer 5170. The second electrode pad EP2 contacts the connection electrode layer 5175 through the second opening OP2. Therefore, the second electrode pad EP2 is electrically connected to the second conductivity type semiconductor layer 5140 through the connection electrode layer 5175 and the second contact electrode layer 5150.
제 1 컨택 전극층(5170)은 제 1 개구부(OP1)를 통해 제 1 전극 패드(EP1)에 컨택하며, 제 1 컨택 영역들(CP1)에서 제 1 도전형 반도체층(5120)과 컨택한다. 따라서 제 1 컨택 전극층(5170)은 도 25의 제 1 전극층(ELCT1)으로서 기능할 수 있다. 연결 전극층(5175)은 제 2 개구부(OP2)를 통해 제 2 전극 패드(EP2)에 컨택하며, 제 2 컨택 전극층(5150)을 통해 제 2 컨택 영역(CP2)에서 제 2 도전형 반도체층(5140)과 컨택한다. 따라서 연결 전극층(5175)은 도 25의 제 2 전극층(ELCT2)으로서 기능할 수 있다.The first contact electrode layer 5170 contacts the first electrode pad EP1 through the first opening OP1 and contacts the first conductive semiconductor layer 5120 in the first contact regions CP1. Accordingly, the first contact electrode layer 5170 may function as the first electrode layer ELCT1 of FIG. 25. The connection electrode layer 5175 contacts the second electrode pad EP2 through the second opening OP2, and the second conductivity-type semiconductor layer 5140 in the second contact region CP2 through the second contact electrode layer 5150. ). Accordingly, the connection electrode layer 5175 may function as the second electrode layer ELCT2 of FIG. 25.
도 27은 발광 영역(EMP)의 면적과 광세기 사이의 관계를 보여주는 실험 그래프이다. 도 27에서, 가로축은 발광 영역(EMP)의 면적과 반도체 발광 소자(5100)의 전체 면적 사이의 비율을 나타내고, 세로축은 광세기를 나타낸다.27 is an experimental graph showing the relationship between the area of the light emitting area EMP and the light intensity. In FIG. 27, the horizontal axis represents the ratio between the area of the light emitting region EMP and the total area of the semiconductor light emitting element 5100, and the vertical axis represents the light intensity.
도 26 및 도 27을 참조하면, 발광 영역(EMP)의 면적이 증가할수록 반도체 발광 소자(5100)의 광세기는 증가할 수 있다. 발광 영역(EMP)의 면적이 증가하는 것은 활성층(5130)의 면적이 증가하는 것을 의미한다. 활성층(5130)의 면적이 증가할수록 광세기는 증가할 수 있다.Referring to FIGS. 26 and 27, as the area of the emission area EMP increases, the light intensity of the semiconductor light emitting device 5100 may increase. Increasing the area of the emission area EMP means that the area of the active layer 5130 is increased. As the area of the active layer 5130 increases, the light intensity may increase.
한편, 도 25 및 도 26을 참조하여 설명된 바와 같이, 제 1 컨택 전극층(5170)이 제 1 도전형 반도체층(5120)과 컨택하는 영역들(CP1)은 비발광 영역(EMP)에 위치한다. 비발광 영역(NEMP)의 면적은 발광 영역(EMP)의 면적이 증가할수록 감소한다. 따라서, 발광 영역(EMP)의 면적이 증가할수록 제 1 컨택 영역들(CP1)의 면적은 감소할 수 있다.Meanwhile, as described with reference to FIGS. 25 and 26, regions CP1 in which the first contact electrode layer 5170 contacts the first conductive semiconductor layer 5120 are positioned in the non-light emitting region EMP. . The area of the non-light emitting area NEMP decreases as the area of the light emitting area EMP increases. Therefore, as the area of the emission area EMP increases, the areas of the first contact areas CP1 may decrease.
제 1 컨택 영역들(CP1)의 면적이 감소하면, 제 1 전극 패드(EP1)에 인가되는 전류는 제 1 도전형 반도체층(5120)에 원활하게 전달되지 않을 수 있다. 이는, 반도체 발광 소자(5100)의 저항 성분이 높아짐을 의미하며 반도체 발광 소자(5100) 양단(즉, 도 26의 EP1 및 EP2)에서의 순방향 전압(Forward voltage)는 증가할 수 있다. 순방향 전압이 증가할수록 반도체 발광 소자(5100)의 소비 전력은 증가한다. 결과적으로, 발광 영역(EMP)의 면적이 증가하면 반도체 발광 소자(5100)의 광세기가 증가하고 , 반도체 발광 소자(5100)의 소비 전력도 증가할 수 있다.When the areas of the first contact regions CP1 are reduced, the current applied to the first electrode pad EP1 may not be smoothly transferred to the first conductive semiconductor layer 5120. This means that the resistance component of the semiconductor light emitting device 5100 is increased and the forward voltage at both ends of the semiconductor light emitting device 5100 (that is, EP1 and EP2 of FIG. 26) may increase. As the forward voltage increases, the power consumption of the semiconductor light emitting device 5100 increases. As a result, when the area of the light emitting area EMP increases, the light intensity of the semiconductor light emitting device 5100 may increase, and power consumption of the semiconductor light emitting device 5100 may also increase.
도 28은 제 1 컨택 영역들(CP1)의 면적과 반도체 발광 소자(5100)의 순방향 전압(Vf) 사이의 관계를 보여주는 실험 그래프이다. 도 28에서, 가로축은 제 1 컨택 영역들(CP1)의 면적과 반도체 발광 소자(5100)의 전체 면적 사이의 비율을 나타내고 세로축은 반도체 발광 소자(5100)의 순방향 전압(Vf)를 나타낸다. 반도체 발광 소자(5100)의 전체 면적은 단위 칩 면적으로 발광 영역(EMP) 및 비발광 영역(NEMP)의 합 면적으로 이해될 수 있다.FIG. 28 is an experimental graph illustrating a relationship between an area of the first contact regions CP1 and a forward voltage Vf of the semiconductor light emitting device 5100. In FIG. 28, the horizontal axis represents the ratio between the areas of the first contact regions CP1 and the entire area of the semiconductor light emitting device 5100, and the vertical axis represents the forward voltage Vf of the semiconductor light emitting device 5100. The total area of the semiconductor light emitting device 5100 may be understood as the total area of the light emitting area EMP and the non-light emitting area NEMP as the unit chip area.
도 26 및 도 28을 참조하면, 제 1 컨택 영역들(CP1)의 면적이 증가하여 1.8%에 도달할 때까지, 반도체 발광 소자(5100)의 순방향 전압(Vf)은 급격하게 감소한다. 이 면적 구간에서, 반도체 발광 소자(5100)의 소비 전력은 감소할 수 있다. 예를 들면, 제 1 컨택 영역들(CP1)의 면적이 1%일 때, 반도체 발광 소자(5100)의 순방향 전압(Vf)은 5.3 V일 수 있다. 제 1 컨택 영역들(CP)의 면적이 1.8%일 때, 반도체 발광 소자(5100)의 순방향 전압(Vf)은 3.9 V일 수 있다. 반면, 제 1 컨택 영역들(CP1)의 면적이 1.8%보다 클 때, 반도체 발광 소자(5100)의 순방향 전압(Vf)은 완만하게 감소한다. 예를 들면, 제 1 컨택 영역들(CP1)의 면적이 1.8%, 2%, 3%, 4%, 5%, 6%, 7%, 8%로 점진적으로 증가할 때, 반도체 발광 소자(5100)는 3.8~3.9 V 범위 내의 순방향 전압(Vf)을 유지한다. 반도체 발광 소자(5100)의 소비 전력은 제 1 컨택영역들의 면적이 1.8% 이상일 때 실질적으로 유지될 수 있다. 이는, 제 1 컨택 영역들(CP1)의 면적이 1.8%에서 임계적 의의를 갖는 것으로 이해될 수 있다.26 and 28, the forward voltage Vf of the semiconductor light emitting device 5100 decreases rapidly until the area of the first contact regions CP1 increases to reach 1.8%. In this area section, power consumption of the semiconductor light emitting device 5100 may decrease. For example, when the area of the first contact regions CP1 is 1%, the forward voltage Vf of the semiconductor light emitting device 5100 may be 5.3V. When the area of the first contact regions CP is 1.8%, the forward voltage Vf of the semiconductor light emitting device 5100 may be 3.9V. On the other hand, when the area of the first contact regions CP1 is larger than 1.8%, the forward voltage Vf of the semiconductor light emitting device 5100 decreases slowly. For example, when the area of the first contact regions CP1 gradually increases to 1.8%, 2%, 3%, 4%, 5%, 6%, 7%, and 8%, the semiconductor light emitting device 5100 ) Maintains a forward voltage (Vf) within the range of 3.8 to 3.9 V. The power consumption of the semiconductor light emitting device 5100 may be substantially maintained when the area of the first contact regions is 1.8% or more. This may be understood that the area of the first contact regions CP1 has a critical significance at 1.8%.
한편, 제 2 도전형 반도체층(5140), 활성층(5130), 및 제 1 도전형 반도체층(5120)을 통해 제 1 컨택 전극층(5170)으로 전달되는 전류는, 기판(5110)으로서 GaN 기판이 사용됨으로써, 더 원활하게 흐를 수 있다. 기판(5110)이 GaN 기판일 때, 반도체 발광 소자(5100)의 순방향 전압(Vf)은 상대적으로 낮다. 실시 예로서, GaN 기판이 사용될 때, 제 1 컨택 영역들(CP1)의 면적은 1.8%에서 임계적 의의를 가질 수 있다.Meanwhile, a current transmitted to the first contact electrode layer 5170 through the second conductive semiconductor layer 5140, the active layer 5130, and the first conductive semiconductor layer 5120 may be a GaN substrate as the substrate 5110. By being used, it can flow more smoothly. When the substrate 5110 is a GaN substrate, the forward voltage Vf of the semiconductor light emitting device 5100 is relatively low. In an embodiment, when the GaN substrate is used, the area of the first contact regions CP1 may have a critical meaning at 1.8%.
실시 예로서, 반도체 발광 소자(5100)의 공정 오차가 고려되어 제 1 컨택 영역들(CP1)의 면적은 2.5%로서 선택될 수 있다.In an embodiment, the area of the first contact regions CP1 may be selected as 2.5% due to the process error of the semiconductor light emitting device 5100.
제 1 컨택 영역들(CP1)은 비발광 영역(NEMP) 내에 배치된다. 제 1 컨택 영역들(CP1)의 면적이 증가할 때 발광 영역(EMP)의 면적은 감소한다. 도 27을 참조하여 설명된 바와 같이, 발광 영역(EMP)의 면적이 감소할수록 반도체 발광 소자(5100)의 광세기는 감소할 수 있다. 반도체 발광 소자(5100)의 광세기가 고려되어 제 1 컨택 영역들(CP1)의 면적은 4.5%를 초과하지 않도록 설계될 수 있다. 예를 들면, 제 1 컨택 영역들(CP1)의 면적은 1.8%~4.5% 내일 수 있다.The first contact regions CP1 are disposed in the non-light emitting region NEMP. When the areas of the first contact areas CP1 increase, the areas of the emission area EMP decrease. As described with reference to FIG. 27, as the area of the emission area EMP decreases, the light intensity of the semiconductor light emitting device 5100 may decrease. Considering the light intensity of the semiconductor light emitting device 5100, the area of the first contact regions CP1 may be designed not to exceed 4.5%. For example, the area of the first contact regions CP1 may be within 1.8% to 4.5%.
선택된 제 1 컨택 영역들(CP1)의 면적에 따라, 제 2 컨택 영역(CP2)의 면적이 설계될 수 있다. 제 1 컨택 영역들(CP1) 및 제 2 컨택 영역(CP2) 각각의 개수 및 형상에 따라, 제 2 컨택 영역(CP2)의 면적은 변경될 수 있음이 이해될 것이다. 예를 들면, 제 1 컨택 영역들(CP1)의 면적이 1.8%일 때, 제 2 컨택 영역(CP2)의 면적은 80%일 수 있다. 제 1 컨택 영역들(CP1)의 면적이 2.5%일 때, 제 2 컨택 영역(CP2)의 면적은 79.3%일 수 있다. 제 1 컨택 영역들(CP1)의 면적이 3.5%일 때, 제 2 컨택 영역(CP2)의 면적은 78.3%일 수 있다. 제 1 컨택 영역들(CP1)의 면적이 4.5%일 때, 제 2 컨택 영역(CP2)의 면적은 77.3%일 수 있다.According to the areas of the selected first contact regions CP1, an area of the second contact region CP2 may be designed. It will be appreciated that the area of the second contact region CP2 can be changed according to the number and shape of each of the first contact regions CP1 and the second contact region CP2. For example, when the area of the first contact regions CP1 is 1.8%, the area of the second contact region CP2 may be 80%. When the area of the first contact regions CP1 is 2.5%, the area of the second contact region CP2 may be 79.3%. When the area of the first contact regions CP1 is 3.5%, the area of the second contact region CP2 may be 78.3%. When the area of the first contact regions CP1 is 4.5%, the area of the second contact region CP2 may be 77.3%.
실시 예로서, 기판(5110)이 사파이어를 포함하는 기판일 때, 제 1 컨택 영역들(CP1)의 면적은 8% 이하의 범위에서 설계될 수 있다.In an embodiment, when the substrate 5110 is a substrate including sapphire, the area of the first contact regions CP1 may be designed in a range of 8% or less.
도 29는 도 25의 라인 I-I'에 따른 단면도의 다른 실시 예를 보여주는 도면이다.FIG. 29 is a diagram illustrating another embodiment of a cross-sectional view taken along the line II ′ of FIG. 25.
도 29를 참조하면, 반도체 발광 소자(5100)는 기판(5210), 제 1 도전형 반도체층(5220), 활성층(5230), 제 2 도전형 반도체층(5240), 컨택 전극들(5250, 5270), 도전 패턴(5252), 연결 전극층(5275), 패시베이션 층들(5260, 5280), 전극 패드들(EP1, EP2)을 포함한다.Referring to FIG. 29, the semiconductor light emitting device 5100 may include a substrate 5210, a first conductive semiconductor layer 5220, an active layer 5230, a second conductive semiconductor layer 5240, and contact electrodes 5250 and 5270. ), A conductive pattern 5252, a connection electrode layer 5175, passivation layers 5260 and 5280, and electrode pads EP1 and EP2.
기판(5210), 제 1 도전형 반도체층(5220), 활성층(5230), 제 2 도전형 반도체층(5240), 컨택 전극들(5250, 5270), 연결 전극층(5275), 패시베이션 층들(5260, 5280), 전극 패드들(EP1, EP2)은 도 26을 참조하여 설명된 기판(5110), 제 1 도전형 반도체층(5120), 활성층(5130), 제 2 도전형 반도체층(5140), 컨택 전극들(5150, 5170), 연결 전극층(5175), 패시베이션 층들(5160, 5180), 전극 패드들(EP1, EP2)과 마찬가지로 구성된다. 이하, 중복되는 설명은 생략된다.The substrate 5210, the first conductive semiconductor layer 5220, the active layer 5230, the second conductive semiconductor layer 5240, the contact electrodes 5250 and 5270, the connection electrode layer 5175, the passivation layers 5260, and the like. 5280, the electrode pads EP1 and EP2 include the substrate 5110 described with reference to FIG. 26, the first conductive semiconductor layer 5120, the active layer 5130, the second conductive semiconductor layer 5140, and the contacts. The electrodes 5150 and 5170, the connection electrode layer 5175, the passivation layers 5160 and 5180, and the electrode pads EP1 and EP2 are configured. In the following, redundant description is omitted.
도전 패턴(5252)은 도 26의 절연층(5151)을 대체할 수 있다. 도전 패턴(5252)은 제 2 컨택 전극층(5250)의 적어도 일부에 컨택하며 제 2 도전형 반도체층(5240) 위에 배치된다.The conductive pattern 5252 may replace the insulating layer 5501 of FIG. 26. The conductive pattern 5252 is in contact with at least a portion of the second contact electrode layer 5250 and is disposed on the second conductive semiconductor layer 5240.
도전 패턴(5252)은 제 2 도전형 반도체층(5240)의 상면의 가장자리(edge)와 인접한 영역에 형성되고, 제 2 컨택 전극층(5250)은 도전 패턴(5252)보다 제 2 도전형 반도체층(5240)의 상면의 가장자리로부터 이격될 수 있다. 도전 패턴(5252)은 제 2 도전형 반도체층(5240) 상에서 제 2 컨택 전극층(5250)의 적어도 일부를 감싸도록 형성될 수 있다(도 35A 참조). 도전 패턴(5252)은 제 2 컨택 전극층(5250)과 함께 제 2 도전형 반도체층(5240)에 컨택할 수 있다. 실시 예로서, 도전 패턴(5252)은 제 2 도전형 반도체층(5240)과의 오믹 컨택을 가질 수 있다.The conductive pattern 5252 is formed in an area adjacent to an edge of the upper surface of the second conductive semiconductor layer 5240, and the second contact electrode layer 5250 is formed of the second conductive semiconductor layer ( 5240 may be spaced apart from the edge of the top surface. The conductive pattern 5252 may be formed to surround at least a portion of the second contact electrode layer 5250 on the second conductive semiconductor layer 5240 (see FIG. 35A). The conductive pattern 5252 may contact the second conductive semiconductor layer 5240 together with the second contact electrode layer 5250. In an embodiment, the conductive pattern 5252 may have an ohmic contact with the second conductive semiconductor layer 5240.
도 30은 도 29의 영역 A를 보여주는 확대도이다.FIG. 30 is an enlarged view illustrating region A of FIG. 29.
도 30을 참조하면, 전원으로부터의 전류는 제 2 컨택 전극층(5250), 제 2 도전형 반도체층(5240), 활성층(5230), 제 1 도전형 반도체층(5220), 및 제 1 컨택 전극층(5270)에 의해 형성되는 제 1 전류 경로(IP1)를 통해 흐를 수 있다. 나아가, 전원으로부터의 전류는 제 1 전류 경로(IP1) 뿐만 아니라, 도전 패턴(5252), 제 2 도전형 반도체층(5240), 활성층(5230), 제 1 도전형 반도체층(5220), 및 제 1 컨택 전극층(5270)에 의해 형성되는 제 2 전류 경로(IP2)를 통해 흐를 수 있다. 이에 따라, 전원으로부터의 전류는 제 1 및 제 2 전류 경로들(IP1, IP2)을 통해 원활하게 흐를 수 있다.Referring to FIG. 30, current from a power source may include a second contact electrode layer 5250, a second conductive semiconductor layer 5240, an active layer 5230, a first conductive semiconductor layer 5220, and a first contact electrode layer ( It may flow through the first current path IP1 defined by 5270. Furthermore, the current from the power source is not only the first current path IP1 but also the conductive pattern 5252, the second conductive semiconductor layer 5240, the active layer 5230, the first conductive semiconductor layer 5220, and the first current path IP1. It may flow through the second current path IP2 formed by the first contact electrode layer 5270. Accordingly, the current from the power supply can flow smoothly through the first and second current paths IP1 and IP2.
도전 패턴(5252)과 제 1 컨택 전극층(5270) 사이의 거리는 제 2 컨택 전극층(5250)과 제 1 컨택 전극층(5270) 사이의 거리보다 짧다. 이는 제 2 전류 경로(IP2)가 전류를 더 원활하게 전달함을 의미할 수 있다. 제 1 전류 경로(IP1) 뿐만 아니라 제 2 전류 경로(IP2)가 제공됨으로써, 반도체 발광 소자(5100)의 구동 성능 및 구동 효율이 더욱 향상될 수 있다.The distance between the conductive pattern 5252 and the first contact electrode layer 5270 is shorter than the distance between the second contact electrode layer 5250 and the first contact electrode layer 5270. This may mean that the second current path IP2 transfers the current more smoothly. By providing the second current path IP2 as well as the first current path IP1, driving performance and driving efficiency of the semiconductor light emitting device 5100 may be further improved.
도 31은 제 1 컨택 영역들(CP1)의 면적과 도 30의 실시 예에 따른 반도체 발광 소자(5100)의 순방향 전압 사이의 관계를 보여주는 실험 그래프이다. 도 31에서, 가로축은 제 1 컨택 영역들(CP1)의 면적과 반도체 발광 소자(5100)의 전체 면적 사이의 비율을 나타내고 세로축은 반도체 발광 소자(5100)의 전압 강하(Vf)를 나타낸다.FIG. 31 is an experimental graph illustrating a relationship between an area of the first contact regions CP1 and a forward voltage of the semiconductor light emitting device 5100 of FIG. 30. In FIG. 31, the horizontal axis represents the ratio between the areas of the first contact regions CP1 and the total area of the semiconductor light emitting device 5100, and the vertical axis represents the voltage drop Vf of the semiconductor light emitting device 5100.
도 31을 참조하면, 제 1 전압 강하(Vf1)는 도 26의 실시 예에 따른 반도체 발광 소자(5100)의 전압 강하를 나타낸다. 제 2 전압 강하(Vf2)는 도 29의 실시 예에 따른 반도체 발광 소자(5100)의 전압 강하를 나타낸다. 제 2 전압 강하(Vf2)에서, 제 1 컨택 영역들(CP1)의 면적이 증가하여 1.8%에 도달할 때까지, 반도체 발광 소자(5100)의 전압 강하는 급격하게 감소한다. 반면, 제 1 컨택 영역들(CP1)의 면적이 1.8%보다 클 때 반도체 발광 소자(5100)의 전압 강하는 완만하게 감소한다. 도 29의 실시 예에 따른 제 1 컨택 면적들(CP1)의 면적은 1.8%에서 임계적 의의를 갖는다. Referring to FIG. 31, the first voltage drop Vf1 represents the voltage drop of the semiconductor light emitting device 5100 of FIG. 26. The second voltage drop Vf2 represents the voltage drop of the semiconductor light emitting device 5100 according to the exemplary embodiment of FIG. 29. In the second voltage drop Vf2, the voltage drop of the semiconductor light emitting device 5100 decreases rapidly until the area of the first contact regions CP1 increases to reach 1.8%. On the other hand, when the area of the first contact regions CP1 is larger than 1.8%, the voltage drop of the semiconductor light emitting device 5100 decreases gently. The area of the first contact areas CP1 according to the embodiment of FIG. 29 has a critical meaning at 1.8%.
도 29의 실시 예에 따른 반도체 발광 소자(5100)는 도전 패턴(5252)을 더 포함함으로써 제 1 전류 경로(IP1) 뿐만 아니라 제 2 전류 경로(IP2)를 통해 전류가 흐를 수 있다. 따라서, 제 2 전압 강하(Vf2)는 가로축 전체 범위에서 제 1 전압 강하(Vf2)보다 더 낮을 수 있다. 이에 따라, 반도체 발광 소자(5100)의 소비 전력은 더 감소할 수 있다.The semiconductor light emitting device 5100 according to the exemplary embodiment of FIG. 29 may further include a conductive pattern 5252 so that a current may flow through the second current path IP2 as well as the first current path IP1. Therefore, the second voltage drop Vf2 may be lower than the first voltage drop Vf2 in the entire horizontal axis. Accordingly, power consumption of the semiconductor light emitting device 5100 may be further reduced.
도 32, 도 33a, 도 33b, 도 34a, 도 34b, 도 35a, 도 35b, 도 36a, 도 36b, 도 37a, 및 도 37b는 도 29의 실시 예에 따른 반도체 발광 소자(5100)의 제조 방법을 보여주는 도면들이다.32, 33A, 33B, 34A, 34B, 35A, 35B, 36A, 36B, 37A, and 37B illustrate a method of manufacturing the semiconductor light emitting device 5100 of FIG. 29. Figures showing.
먼저 도 32를 참조하면, 기판(5210) 위에, 제 1 도전형 반도체층(5220), 활성층(5230_1), 제 2 도전형 반도체층(5240_1), 도전층(5252_1)이 형성된다.First, referring to FIG. 32, a first conductive semiconductor layer 5220, an active layer 5230_1, a second conductive semiconductor layer 5240_1, and a conductive layer 5252_1 are formed on a substrate 5210.
기판(5210)은 반도체 성장용 기판으로 제공될 수 있으며, GaN을 포함하는 도전성 기판일 수 있다. 제 1 도전형 반도체층(5220)과 제 2 도전형 반도체층(5240_1)은 각각 n형 반도체층 및 p형 반도체층일 수 있다.The substrate 5210 may be provided as a substrate for growing a semiconductor, and may be a conductive substrate including GaN. The first conductive semiconductor layer 5220 and the second conductive semiconductor layer 5240_1 may be n-type semiconductor layers and p-type semiconductor layers, respectively.
도전층(5252_1)은 급속 열처리(Rapid Thermal Annealing)에 따라 제 2 도전형 반도체층(5240_1)과 도전층(5252_1) 사이의 계면의 저항을 낮출 수 있다. 예를 들면, 도전층(5252_1)은 제 2 도전형 반도체층(5240_1)과 오믹 컨택을 가질 수 있다.The conductive layer 5252_1 may lower the resistance of the interface between the second conductive semiconductor layer 5240_1 and the conductive layer 5252_1 according to rapid thermal annealing. For example, the conductive layer 5252_1 may have an ohmic contact with the second conductive semiconductor layer 5240_1.
실시 예로서, 도전층(5252_1)은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), TCO(Transparent Conductive Oxide)으로부터 선택된 적어도 하나로 형성될 수 있다.In an embodiment, the conductive layer 5252_1 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc tin oxide (ZTO). It may be formed of at least one selected from Fluorine-doped Tin Oxide (FTO), Zinc Oxide (ZnO), Gallium-doped Zinc Oxide (GZO), Aluminum-doped Zinc Oxide (AZO), and Transparent Conductive Oxide (TCO).
제 1 도전형 반도체층(5220), 활성층(5230_1), 제 2 도전형 반도체층(5240_1), 및 도전층(5252_1)이 식각되어 적어도 하나의 식각 영역(E)과 식각 영역(E)에 의해 구획된 적어도 하나의 메사 영역(M)을 정의한다. 도 33a 및 도 33b를 참조하면, 제 1 도전형 반도체층(5220), 활성층(5230), 제 2 도전형 반도체층(5240), 및 도전층(5252_2)이 메사 영역(M)에 배치된다. 제 1 도전형 반도체층(5220)이 식각 영역(E)에 배치된다. 식각 영역(E) 중 적어도 일부는 메사 영역(M)의 중심에 위치한다. 식각 영역(E) 중 나머지 일부는 메사 영역(M)의 가장자리에 위치한다.The first conductive semiconductor layer 5220, the active layer 5230_1, the second conductive semiconductor layer 5240_1, and the conductive layer 5252_1 are etched by at least one etching region E and the etching region E. FIG. The partitioned at least one mesa region M is defined. 33A and 33B, a first conductive semiconductor layer 5220, an active layer 5230, a second conductive semiconductor layer 5240, and a conductive layer 5252_2 are disposed in the mesa region M. Referring to FIGS. The first conductivity type semiconductor layer 5220 is disposed in the etching region E. FIG. At least a portion of the etching region E is located at the center of the mesa region M. The other part of the etching region E is located at the edge of the mesa region M.
도 34a 및 도 34b를 참조하면, 제 2 컨택 전극층(5250) 및 도전 패턴(5252)이 제 2 도전형 반도체층(5240) 상에 형성된다. 제 2 컨택 전극층(5250) 및 도전 패턴(5252)은 제 2 컨택 영역(CP2)에 대응할 수 있다. 제 2 컨택 영역(CP2)은 메사 영역(M)에 위치한다.34A and 34B, a second contact electrode layer 5250 and a conductive pattern 5252 are formed on the second conductive semiconductor layer 5240. The second contact electrode layer 5250 and the conductive pattern 5252 may correspond to the second contact region CP2. The second contact region CP2 is located in the mesa region M.
실시 예로서, 도전층(5252_2)을 식각하여 도전 패턴(5252)를 형성하기 위한 포토 레지스트 패턴이 형성되고, 플라즈마가 조사되어 잔존하는 포토 레지스트를 더 제거하고, 포토 레지스트 패턴을 마스크로서 이용하여 도전층(5252_2)을 식각함으로써 도전 패턴(5252)이 형성될 수 있다. 이어서, 포토 레지스트 패턴을 마스크로서 이용하여 제 2 컨택 전극층(5250)이 형성되고, 포토 레지스터 패턴이 제거될 수 있다.In an embodiment, a photoresist pattern for forming the conductive pattern 5252 is formed by etching the conductive layer 5252_2, plasma is irradiated to further remove remaining photoresist, and the photoresist pattern is used as a mask to conduct the The conductive pattern 5252 may be formed by etching the layer 5252_2. Subsequently, the second contact electrode layer 5250 may be formed using the photoresist pattern as a mask, and the photoresist pattern may be removed.
도전 패턴(5252)은 제 2 컨택 전극층(5250)과 다른 물질을 포함한다. 도전 패턴(5252)은 투명성 물질을 포함할 수 있다. 도전 패턴(5252)은 플라즈마에 강인한 물질을 포함할 수 있다. 예를 들면, 도전 패턴(5252)은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), TCO(Transparent Conductive Oxide) 등으로부터 선택된 적어도 하나를 포함할 수 있다.The conductive pattern 5252 may include a material different from that of the second contact electrode layer 5250. The conductive pattern 5252 may include a transparent material. The conductive pattern 5252 may include a material resistant to plasma. For example, the conductive pattern 5252 may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), and zinc tin oxide (ZTO). , At least one selected from a fluorine-doped tin oxide (FTO), a zinc oxide (ZnO), a gallium-doped zinc oxide (GZO), an aluminum-doped zinc oxide (AZO), a transparent conductive oxide (TCO), and the like. .
이어서 도 35a 및 도 35b를 참조하면, 제 1 패시베이션 층(5260)이 형성된다. 제 1 패시베이션 층(5260)은 제 1 도전형 반도체층(5220)을 노출하는 제 6 개구부들(OP6), 그리고 제 2 컨택 전극층(5250)을 노출하는 제 7 개구부들(OP7)을 갖는다. 제 6 개구부들(OP6)은 식각 영역(E)에 형성된다. 제 7 개구부들(OP7)은 메사 영역(M)에 형성된다.35A and 35B, a first passivation layer 5260 is formed. The first passivation layer 5260 has sixth openings OP6 exposing the first conductive semiconductor layer 5220 and seventh openings OP7 exposing the second contact electrode layer 5250. The sixth openings OP6 are formed in the etching region E. FIG. The seventh openings OP7 are formed in the mesa region M.
도 36a 및 도 36b를 참조하면, 제 1 컨택 전극층(5270) 및 연결 전극층(5275)이 형성된다. 제 1 컨택 전극층(5270)은 제 6 개구부들(OP6, 도 35B 참조)을 통해 제 1 도전형 반도체층(5220)에 컨택한다. 제 1 컨택 영역들(CP1)은 에칭 영역(E)에 위치할 것이다. 연결 전극층(5275)은 제 2 컨택 전극층(5250)에 컨택할 수 있다.36A and 36B, a first contact electrode layer 5270 and a connection electrode layer 5175 are formed. The first contact electrode layer 5270 contacts the first conductive semiconductor layer 5220 through the sixth openings OP6 (see FIG. 35B). The first contact regions CP1 may be located in the etching region E. FIG. The connection electrode layer 5175 may contact the second contact electrode layer 5250.
도 37a 및 도 37b를 참조하면, 제 2 패시베이션 층(5280)이 형성된다. 제 2 패시베이션 층(5280)은 제 1 컨택 전극층(5270) 중 일부, 그리고 연결 전극층(5275) 중 일부를 제외한 나머지 구성들을 커버한다. 제 2 패시베이션 층(5280)은 제 1 컨택 전극층(5270)을 노출하는 제 8 개구부(OP8) 및 연결 전극층(5275)을 노출하는 제 9 개구부(OP9)를 포함한다. 제 8 및 제 9 개구부들(OP8, OP9)은 각각 도 25의 제 1 및 제 2 개구부들(OP1, OP2)에 대응한다.37A and 37B, a second passivation layer 5280 is formed. The second passivation layer 5280 covers components other than a portion of the first contact electrode layer 5270 and a portion of the connection electrode layer 5175. The second passivation layer 5280 includes an eighth opening OP8 exposing the first contact electrode layer 5270 and a ninth opening OP9 exposing the connection electrode layer 5175. The eighth and ninth openings OP8 and OP9 correspond to the first and second openings OP1 and OP2 of FIG. 25, respectively.
이후, 도 25 및 도 26에 도시된 바와 같이, 제 1 및 제 2 전극 패드들(ELCT1, ELCT2)이 각각 노출된 제 1 컨택 전극층(5270) 및 노출된 연결 전극층(5275) 상에 배치될 것이다.Then, as shown in FIGS. 25 and 26, the first and second electrode pads ELCT1 and ELCT2 will be disposed on the exposed first contact electrode layer 5270 and the exposed connection electrode layer 5175, respectively. .
도 38은 본 발명의 다른 실시 예에 따른 반도체 발광 소자(5500)의 평면도이다.38 is a plan view of a semiconductor light emitting device 5500 according to another exemplary embodiment.
본 발명의 실시 예에 따른 반도체 발광 소자의 레이아웃(layout)은 다양하게 변경될 수 있다. 도 38을 참조하면, 반도체 발광 소자(5500)는 기판 상에 배치된 반도체 구조물(SS), 그리고 반도체 구조물(SS) 상에 배치된 제 1 및 제 2 전극 패드들(EP1, EP2)을 포함한다. 제 1 컨택 영역들(CP1)을 제외하면, 반도체 발광 소자(5500)는 도 25의 반도체 발광 소자(5100)와 마찬가지로 구성된다. 제 2 컨택 영역(CP2) 가장자리의 제 1 컨택 영역들(CP1)은 제 2 컨택 영역(CP2)의 코너들(corners)에 배치될 수 있다.The layout of the semiconductor light emitting device according to the embodiment may be variously changed. Referring to FIG. 38, the semiconductor light emitting device 5500 includes a semiconductor structure SS disposed on a substrate and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. . Except for the first contact regions CP1, the semiconductor light emitting device 5500 may be configured similarly to the semiconductor light emitting device 5100 of FIG. 25. The first contact regions CP1 at the edge of the second contact region CP2 may be disposed at corners of the second contact region CP2.
도 39는 본 발명의 또 다른 실시 예에 따른 반도체 발광 소자(5600)의 평면도이다.39 is a plan view of a semiconductor light emitting device 5600 according to still another embodiment of the present invention.
도 39를 참조하면, 반도체 발광 소자(5600)는 기판 상에 배치된 반도체 구조물(SS), 그리고 반도체 구조물(SS) 상에 배치된 제 1 및 제 2 전극 패드들(EP1, EP2)을 포함한다. 제 1 컨택 영역(CP1)을 제외하면, 반도체 발광 소자(5600)는 도 25의 반도체 발광 소자(5100)와 마찬가지로 구성된다. 제 1 컨택 영역(CP1)은 제 2 컨택 영역(CP2)의 중심부에 제공되고, 제 2 컨택 영역(CP2)의 가장자리에 제공되지 않을 수 있다.Referring to FIG. 39, the semiconductor light emitting device 5600 may include a semiconductor structure SS disposed on a substrate, and first and second electrode pads EP1 and EP2 disposed on the semiconductor structure SS. . Except for the first contact region CP1, the semiconductor light emitting device 5600 is configured similarly to the semiconductor light emitting device 5100 of FIG. 25. The first contact region CP1 may be provided at the center of the second contact region CP2 and may not be provided at the edge of the second contact region CP2.
도 40은 반도체 발광 소자를 포함하는 반도체 발광 패키지의 실시 예를 보여주는 분해 사시도이다.40 is an exploded perspective view illustrating an embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
도 40을 참조하면, 반도체 발광 패키지(6000)는 반도체 발광 소자(6100), 반사성 구조물(reflective structure, 6200), 지지 프레임(6300), 및 파장 변환부(6400, wavelength conversion film)를 포함한다.Referring to FIG. 40, the semiconductor light emitting package 6000 may include a semiconductor light emitting device 6100, a reflective structure 6200, a support frame 6300, and a wavelength conversion film 6400.
반도체 발광 소자(6100)는 도 25를 참조하여 설명된 반도체 발광 소자(5100)와 마찬가지로 구성된다. 이하, 중복되는 설명은 생략된다.The semiconductor light emitting element 6100 is configured similarly to the semiconductor light emitting element 5100 described with reference to FIG. 25. In the following, redundant description is omitted.
반사성 구조물(6200)은 반도체 발광 소자(6100)를 둘러싸도록 배치될 수 있다. 반사성 구조물(6200)은 빛에 대한 반사성, 그리고 높은 내열성을 가질 수 있다.The reflective structure 6200 may be disposed to surround the semiconductor light emitting device 6100. The reflective structure 6200 may have reflection on light and high heat resistance.
지지 프레임(6300)은 반도체 발광 소자(6100) 및 반사성 구조물(6200)을 지지하도록 구성된다. 지지 프레임(6300)은 제 1 및 제 2 상부 전극들(6310, 6320), 그리고 제 1 및 제 2 하부 전극들(6330, 6340)을 포함한다. 제 1 및 제 2 상부 전극들(6310, 6320)은 지지 프레임(6300)의 상면에 배치된다. 제 1 상부 전극(6310)은 반도체 발광 소자(6100)의 제 1 전극 패드(EP1, 도 25 참조)에 컨택하며, 제 2 상부 전극(6320)은 반도체 발광 소자(6100)의 제 2 전극 패드(EP2, 도 25 참조)에 컨택한다. 반도체 발광 소자(6100)는 제 1 상부 전극(6310) 및 제 2 상부 전극(6320)을 통해 전원을 수신할 것이다. 제 1 및 제 2 하부 전극들(6330, 6340)은 지지 프레임(6300)의 하면에 배치된다. 제 1 하부 전극(6330)은 지지 프레임(6300) 내부의 도전성 비아를 통해 제 1 상부 전극(6310)에 연결될 것이다. 제 2 하부 전극(6340)은 지지 프레임(6300) 내부의 다른 도전성 비아를 통해 제 2 상부 전극(6320)에 연결될 것이다.The support frame 6300 is configured to support the semiconductor light emitting element 6100 and the reflective structure 6200. The support frame 6300 includes first and second upper electrodes 6310 and 6320, and first and second lower electrodes 6330 and 6340. The first and second upper electrodes 6310 and 6320 are disposed on an upper surface of the support frame 6300. The first upper electrode 6310 contacts the first electrode pad EP1 (see FIG. 25) of the semiconductor light emitting element 6100, and the second upper electrode 6320 is a second electrode pad of the semiconductor light emitting element 6100 ( EP2, see FIG. 25). The semiconductor light emitting device 6100 may receive power through the first upper electrode 6310 and the second upper electrode 6320. The first and second lower electrodes 6330 and 6340 are disposed on the bottom surface of the support frame 6300. The first lower electrode 6330 may be connected to the first upper electrode 6310 through conductive vias in the support frame 6300. The second lower electrode 6340 may be connected to the second upper electrode 6320 through another conductive via in the support frame 6300.
지지 프레임(6300)은 방열판(6350)을 추가적으로 포함할 수 있다. 방열판(6350)은 지지 프레임(6300)의 하면에 배치되어 반도체 발광 소자(6100)로부터 발생된 열을 방출하도록 구성된다. 예를 들면, 지지 프레임(6300)은 히트 싱크의 기능을 수행할 수 있다.The support frame 6300 may further include a heat sink 6350. The heat sink 6350 is disposed on the bottom surface of the support frame 6300 and configured to discharge heat generated from the semiconductor light emitting element 6100. For example, the support frame 6300 may perform a function of a heat sink.
파장 변환부(6400)는 반사성 구조물(6200)에 결합되어 반도체 발광 소자(6100)를 커버할 수 있다. 실시 예로서, 파장 변환부(6400)는 반도체 발광 소자(6100)의 상면을 덮는 필름 또는 글래스의 형상을 가질 수 있다. 실시 예로서, 파장 변환부(6400)는 반도체 발광 소자(6100)의 상면 뿐만 아니라 측면을 커버하는 형상을 가질 수 있다. 파장 변환부(6400)에 파장변환물질들은 반도체 발광 소자(6100)로부터 발광된 빛을 다른 파장의 빛으로 변환시킬 수 있다. 반도체 발광 소자(6100)로부터의 빛은 파장 변환부(6400)을 통과하여 백색광으로서 방출될 수 있다. 반도체 발광 패키지(6000)에 파장 변환부(6400)가 실장되는 경우, 반도체 발광 소자(6100) 내 파장 변환층은 선택적으로 제거될 수 있다.The wavelength converter 6400 may be coupled to the reflective structure 6200 to cover the semiconductor light emitting device 6100. In an embodiment, the wavelength converter 6400 may have a shape of a film or glass covering an upper surface of the semiconductor light emitting device 6100. In an embodiment, the wavelength converter 6400 may have a shape covering not only an upper surface of the semiconductor light emitting device 6100 but also a side surface thereof. Wavelength converting materials in the wavelength converter 6400 may convert light emitted from the semiconductor light emitting device 6100 into light having a different wavelength. Light from the semiconductor light emitting device 6100 may pass through the wavelength converter 6400 and be emitted as white light. When the wavelength converter 6400 is mounted on the semiconductor light emitting package 6000, the wavelength conversion layer in the semiconductor light emitting device 6100 may be selectively removed.
반도체 발광 패키지(6000)는 정전기 방전 보호 회로(electrostatic discharge protection circuit, 미도시)를 추가적으로 포함할 수 있다. 정전기 방전 보호 회로는 지지 프레임(6300)에 실장되거나, 반도체 발광 소자(6100)의 구성 요소로서 제공될 수 있다. 정전기 방전 보호 회로는 제 1 상부 전극(6310) 및 제 2 상부 전극(6320)에 연결될 것이다.The semiconductor light emitting package 6000 may further include an electrostatic discharge protection circuit (not shown). The electrostatic discharge protection circuit may be mounted on the support frame 6300 or provided as a component of the semiconductor light emitting device 6100. The electrostatic discharge protection circuit may be connected to the first upper electrode 6310 and the second upper electrode 6320.
반도체 발광 패키지(6000)는 반사성 구조물(6200)에 실장되어 반도체 발광 소자(6100) 및 파장 변환부(6400)를 보호하는 투명 커버(미도시)를 더 포함할 수 있다.The semiconductor light emitting package 6000 may further include a transparent cover (not shown) mounted on the reflective structure 6200 to protect the semiconductor light emitting device 6100 and the wavelength converter 6400.
도 41은 도 40의 반도체 발광 패키지의 변형 례를 보여주는 분해 사시도이다.41 is an exploded perspective view illustrating a modification of the semiconductor light emitting package of FIG. 40.
도 41을 참조하면, 반도체 발광 패키지(7000)는 2 이상의 반도체 발광 소자들(7110, 7120), 반사성 구조물(7200), 지지 프레임(7300), 및 파장 변환부(7400)를 포함한다.Referring to FIG. 41, the semiconductor light emitting package 7000 includes two or more semiconductor light emitting devices 7110 and 7120, a reflective structure 7200, a support frame 7300, and a wavelength converter 7400.
반도체 발광 패키지(7000)는, 예를 들면 2개의 반도체 발광 소자들(7110, 7120)을 포함할 수 있다. 반사성 구조물(7200)은 제 1 및 제 2 반도체 발광 소자들(7110, 7120)을 둘러싸도록 배치될 수 있다.The semiconductor light emitting package 7000 may include, for example, two semiconductor light emitting devices 7110 and 7120. The reflective structure 7200 may be disposed to surround the first and second semiconductor light emitting devices 7110 and 7120.
지지 프레임(7300)은 제 1 및 제 2 반도체 발광 소자들(7110, 7120) 및 반사성 구조물(7200)을 지지하도록 구성된다. 지지 프레임(7300)은 제 1 상부 전극들(7310_1, 7310_2), 제 2 상부 전극(7320), 제 1 및 제 2 하부 전극들(7330, 7340), 그리고 방열판(7350)을 포함한다. 제 1 상부 전극(7310_1)은 제 1 반도체 발광 소자(7110)의 제 1 전극 패드(EP1, 도 25 참조)에 연결되고, 제 2 상부 전극(7320)은 제 1 반도체 발광 소자(7110)의 제 2 전극 패드(EP2, 도 25 참조) 및 제 2 반도체 발광 소자(7120)의 제 2 전극 패드(EP2)에 연결되며, 제 1 상부 전극(7310_2)은 제 2 반도체 발광 소자(7120)의 제 1 전극 패드(EP1)에 연결된다. 제 1 상부 전극들(7310_1, 7310_2)은 서로 연결될 수 있다. 제 1 하부 전극(7330)은 제 1 상부 전극들(7310_1, 7310_2)과 연결된다. 제 2 하부 전극(7340)은 제 2 상부 전극(7320)과 연결된다.The support frame 7300 is configured to support the first and second semiconductor light emitting devices 7110 and 7120 and the reflective structure 7200. The support frame 7300 may include first upper electrodes 7310_1 and 7310_2, second upper electrodes 7320, first and second lower electrodes 7330 and 7340, and a heat sink 7350. The first upper electrode 7310_1 is connected to the first electrode pad EP1 (see FIG. 25) of the first semiconductor light emitting element 7110, and the second upper electrode 7320 is formed of the first semiconductor light emitting element 7110. It is connected to the second electrode pad EP2 (see FIG. 25) and the second electrode pad EP2 of the second semiconductor light emitting device 7120, and the first upper electrode 7310_2 is connected to the first electrode of the second semiconductor light emitting device 7120. It is connected to the electrode pad EP1. The first upper electrodes 7310_1 and 7310_2 may be connected to each other. The first lower electrode 7330 is connected to the first upper electrodes 7310_1 and 7310_2. The second lower electrode 7340 is connected to the second upper electrode 7320.
제 1 상부 전극들(7310_1, 7310_2) 및 제 2 상부 전극(7320)을 통해, 제 1 및 제 2 반도체 발광 소자들(7110, 7120)은 전원을 수신할 것이다. 제 1 및 제 2 반도체 발광 소자들(7110, 7120)은 전원과 병렬 연결될 수 있다. 그러나, 제 1 및 제 2 반도체 발광 소자들(7110, 7120)과 전원 사이의 전기적 연결 관계는 적합하게 변경될 수 있음이 이해될 것이다.The first and second semiconductor light emitting devices 7110 and 7120 may receive power through the first upper electrodes 7310_1 and 7310_2 and the second upper electrode 7320. The first and second semiconductor light emitting devices 7110 and 7120 may be connected to a power source in parallel. However, it will be appreciated that the electrical connection relationship between the first and second semiconductor light emitting devices 7110 and 7120 and the power source may be changed as appropriate.
도 42는 반도체 발광 소자를 포함하는 반도체 발광 패키지의 다른 실시 예를 보여주는 분해 사시도이다.42 is an exploded perspective view illustrating another embodiment of a semiconductor light emitting package including a semiconductor light emitting device.
도 42를 참조하면, 반도체 발광 패키지(8000)는 적어도 하나의 반도체 발광 소자(8110, 8120), 인쇄 회로 기판(8200), 및 지지 프레임(8300)을 포함한다.Referring to FIG. 42, the semiconductor light emitting package 8000 may include at least one semiconductor light emitting device 8210 and 8120, a printed circuit board 8200, and a support frame 8300.
제 1 및 제 2 반도체 발광 소자들(8110, 8120)은 인쇄 회로 기판(8200) 상에 배치된다. 제 1 및 제 2 반도체 발광 소자들(8110, 8120) 각각은 도 25를 참조하여 설명된 반도체 발광 소자(5100)와 마찬가지로 구성된다. 이하, 중복되는 설명은 생략된다.The first and second semiconductor light emitting devices 8210 and 8120 are disposed on the printed circuit board 8200. Each of the first and second semiconductor light emitting devices 8210 and 8120 is configured similarly to the semiconductor light emitting device 5100 described with reference to FIG. 25. In the following, redundant description is omitted.
제 1 및 제 2 반도체 발광 소자들(8110, 8120)에 각각 제 1 및 제 2 파장 변환층들(8111, 8121)이 적층된다. 각 파장 변환층에 포함된 파장변환물질들은 해당 반도체 발광 소자로부터 발광된 빛을 다른 파장의 빛으로 변환시킬 수 있다. 반도체 발광 소자로부터의 빛은 파장 변환층을 통과하여 백색광으로서 방출될 수 있다. 파장 변환층은 실질적으로 일정한 두께를 가지는 시트(sheet) 형상으로 형성될 수 있으며, 상온에서 반경화 상태이고 가열시 유동 가능하도록 상 변화하는 반경화성 물질에, 예를 들면 형광체와 같은 파장변환물질들이 분산된 필름일 수 있다. 파장 변환층은 글라스 및 글라스 내에 분산된 형광체들을 갖는 형광체 글라스(Phosphor In Glass, PIG)를 포함할 수 있다. 파장 변환층은 하나의 층이 적층된 구조일 수 있으나, 다층들으로 형성될 수도 있다. 파장 변환층을 다층들로 형성한 경우 각 층은 서로 다른 종류의 형광체를 포함할 수 있다.First and second wavelength conversion layers 8111 and 8121 are stacked on the first and second semiconductor light emitting devices 8210 and 8120, respectively. The wavelength conversion materials included in each wavelength conversion layer may convert light emitted from the semiconductor light emitting device into light having a different wavelength. Light from the semiconductor light emitting element may pass through the wavelength conversion layer and be emitted as white light. The wavelength converting layer may be formed in a sheet shape having a substantially constant thickness, and may be formed in a semi-curable material which is semi-cured at room temperature and flows upon heating, for example, wavelength converting materials such as phosphors. It may be a dispersed film. The wavelength conversion layer may include glass and phosphor glass having phosphors dispersed in the glass (Phosphor In Glass, PIG). The wavelength conversion layer may have a structure in which one layer is stacked, or may be formed of multiple layers. When the wavelength conversion layer is formed of multiple layers, each layer may include different kinds of phosphors.
인쇄 회로 기판(8200)은 지지 프레임(8300)에 의해 지지된다. 인쇄 회로 기판(8200)은 반도체 발광 소자들(8110, 8120)과 지지 프레임(8300)의 하부 전극들(8310~8340)을 인터페이싱한다. 인쇄 회로 기판(8200)은 제 1 반도체 발광 소자(8110)의 제 1 및 제 2 전극 패드들(EP1, EP2, 도 25 참조)에 각각 연결되는 제 1 상부 전극들(미도시), 그리고 제 2 반도체 발광 소자(8120)의 제 1 및 제 2 전극 패드들(EP1, EP2)에 각각 연결되는 제 2 상부 전극들(미도시)을 포함할 것이다. 제 1 상부 전극들은 지지 프레임(8300) 하면의 제 1 하부 전극들(8310, 8320)에 연결될 것이다. 제 2 상부 전극들은 지지 프레임(8300) 하면의 제 2 하부 전극들(8330, 8340)에 연결될 것이다. 제 1 상부 전극들 및 제 2 상부 전극들의 개수 및 형상들은 적합하게 변경될 수 있다.The printed circuit board 8200 is supported by the support frame 8300. The printed circuit board 8200 interfaces the semiconductor light emitting devices 8210 and 8120 and the lower electrodes 8310 to 8340 of the support frame 8300. The printed circuit board 8200 may include first upper electrodes (not shown) connected to the first and second electrode pads EP1, EP2 (see FIG. 25) of the first semiconductor light emitting device 8210, and a second, respectively. Second upper electrodes (not shown) connected to the first and second electrode pads EP1 and EP2 of the semiconductor light emitting device 8120 may be included. The first upper electrodes may be connected to the first lower electrodes 8310 and 8320 on the bottom surface of the support frame 8300. The second upper electrodes may be connected to the second lower electrodes 8330 and 8340 on the lower surface of the support frame 8300. The number and shapes of the first upper electrodes and the second upper electrodes can be changed as appropriate.
지지 프레임(8300)은 반도체 발광 소자들(8110, 8120)로부터 발생된 열을 방출하기 위한 방열판(8350)을 더 포함할 수 있다. The support frame 8300 may further include a heat sink 8350 for dissipating heat generated from the semiconductor light emitting devices 8210 and 8120.
반도체 발광 패키지(8000)는 인쇄 회로 기판(8200) 상 전극들에 연결되는 적어도 하나의 정전기 방전 보호 회로, 그리고 인쇄 회로 기판(8200) 및 반도체 발광 소자들(8110, 8120)을 보호하기 위한 투명 커버를 더 포함할 수 있다.The semiconductor light emitting package 8000 includes at least one electrostatic discharge protection circuit connected to electrodes on the printed circuit board 8200, and a transparent cover for protecting the printed circuit board 8200 and the semiconductor light emitting devices 8210 and 8120. It may further include.
본 발명의 실시 예에 따르면, 제 1 도전 패턴 및 제 2 도전 패턴이 제 2 도전형 반도체층에 컨택한다. 전원으로부터의 전류는 제 1 전류 경로 뿐만 아니라, 제 2 도전 패턴, 제 2 도전형 반도체층, 활성층, 제 1 도전형 반도체층, 및 제 1 전극층에 의해 형성되는 제 2 전류 경로를 통해 흐를 수 있다. 이에 따라, 전원으로부터의 전류는 제 1 및 제 2 전류 경로들을 통해 원활하게 흐를 수 있다.According to an embodiment of the present invention, the first conductive pattern and the second conductive pattern contact the second conductive semiconductor layer. The current from the power supply can flow not only through the first current path but also through the second current path formed by the second conductive pattern, the second conductive semiconductor layer, the active layer, the first conductive semiconductor layer, and the first electrode layer. . Thus, current from the power source can flow smoothly through the first and second current paths.
본 발명의 실시 예에 따르면, 반도체 발광 소자는 발광 영역 및 비발광 면적의 합 면적의 1.8% 이상의 면적을 갖는 제 1 컨택 영역들을 포함한다. 따라서, 반도체 발광 소자는 낮은 전압 강하를 가지면서도 향상된 광세기를 가질 수 있다.According to an embodiment of the present invention, the semiconductor light emitting device includes first contact regions having an area of 1.8% or more of the sum of the emission area and the non-emission area. Therefore, the semiconductor light emitting device may have an improved light intensity while having a low voltage drop.

Claims (34)

  1. 순차적으로 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하는 발광 구조물;A light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer sequentially stacked;
    상기 제 2 도전형 반도체층의 일면에 오믹 컨택하는 제 1 도전 패턴; 및A first conductive pattern in ohmic contact with one surface of the second conductive semiconductor layer; And
    상기 제 2 도전형 반도체층의 상기 일면에 오믹 컨택하고 상기 제 1 도전 패턴과 상이한 물질을 갖는 제 2 도전 패턴을 포함하되,A second conductive pattern having ohmic contact to the one surface of the second conductive semiconductor layer and having a material different from that of the first conductive pattern,
    상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 일부에 컨택하는 반도체 발광 소자.And the first conductive pattern contacts a portion of the second conductive pattern.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 도전형 반도체층의 상기 일면에서, 상기 제 2 도전 패턴은 상기 제 1 도전 패턴을 둘러싸는(surround) 반도체 발광 소자.And the second conductive pattern surrounds the first conductive pattern on the one surface of the second conductive semiconductor layer.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 도전형 반도체층의 상기 일면은 제 1 부분 및 제 2 부분으로 구분되고,The one surface of the second conductivity type semiconductor layer is divided into a first portion and a second portion,
    상기 제 2 도전 패턴은 상기 제 1 부분에 배치되며,The second conductive pattern is disposed on the first portion,
    상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층의 가장자리(edge)와 인접하고 상기 제 1 도전 패턴은 상기 제 2 도전 패턴보다 상기 가장자리로부터 이격되는 반도체 발광 소자.And the second conductive pattern is adjacent to an edge of the second conductive semiconductor layer, and the first conductive pattern is spaced apart from the edge than the second conductive pattern.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 측면 중 적어도 일부에 컨택하는 반도체 발광 소자.And the first conductive pattern contacts at least a portion of side surfaces of the second conductive pattern.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층의 상기 일면과 컨택하는 하면 및 상기 하면에 반대되는 상면을 포함하고,The second conductive pattern may include a lower surface contacting the one surface of the second conductive semiconductor layer and an upper surface opposite to the lower surface,
    상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 상기 상면 중 적어도 일부, 그리고 상기 제 2 도전 패턴의 측면에 컨택하는 반도체 발광 소자.And the first conductive pattern contacts at least a portion of the upper surface of the second conductive pattern and a side surface of the second conductive pattern.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 도전형 반도체층의 상기 일면에서, 상기 제 2 도전 패턴의 너비는 상기 제 1 도전 패턴의 너비보다 짧은 반도체 발광 소자.The semiconductor light emitting device of claim 1, wherein the width of the second conductive pattern is shorter than the width of the first conductive pattern.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 도전 패턴의 두께는 상기 제 1 도전 패턴의 두께보다 얇은 반도체 발광 소자.The thickness of the second conductive pattern is thinner than the thickness of the first conductive pattern.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 부분 중 적어도 일부는 슬롭을 갖는 반도체 발광 소자.And at least a portion of the portion adjacent to the second conductive pattern of the first conductive pattern has a slope.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 상기 부분은 상기 제 2 도전 패턴과 인접할수록 얇아지는 반도체 발광 소자.And a portion of the first conductive pattern adjacent to the second conductive pattern becomes thinner as the second conductive pattern is adjacent to the second conductive pattern.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 도전 패턴의 상기 제 2 도전 패턴과 인접한 상기 부분은 제 1 영역, 그리고 상기 제 1 영역 및 상기 제 2 도전 패턴 사이의 제 2 영역으로 구분되고,The portion adjacent to the second conductive pattern of the first conductive pattern is divided into a first region and a second region between the first region and the second conductive pattern,
    상기 제 1 영역은 상기 제 2 도전 패턴과 인접할수록 얇아지고, 상기 제 2 영역은 상기 제 1 도전 패턴과 인접할수록 두꺼워지는 반도체 발광 소자.The first region is thinner the closer to the second conductive pattern, the thicker the second region is adjacent to the first conductive pattern.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 도전 패턴은 반사성 물질을 포함하고,The first conductive pattern includes a reflective material,
    상기 제 2 도전 패턴은 투명성 물질을 포함하는 반도체 발광 소자.The second conductive pattern includes a transparent material.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 도전 패턴은 반사성 메탈을 포함하고,The first conductive pattern includes a reflective metal,
    상기 제 2 도전 패턴은 Ni/Au, ITO(Indium Tin Oxide), ZITO(Zinc-doped Indium Tin Oxide), ZIO(Zinc Indium Oxide), GIO(Gallium Indium Oxide), ZTO(Zinc TinOxide), FTO(Fluorine-doped Tin Oxide), ZnO(Zinc Oxide), GZO(Gallium-doped Zinc Oxide), AZO(Aluminium-doped Zinc Oxide), 및 TCO(Transparent Conductive Oxide)으로부터 선택되는 적어도 하나의 물질을 포함하는 반도체 발광 소자.The second conductive pattern may include Ni / Au, indium tin oxide (ITO), zinc-doped indium tin oxide (ZITO), zinc indium oxide (ZIO), gallium indium oxide (GIO), zinc tin oxide (ZTO), and fluorine (FTO) A semiconductor light emitting device comprising at least one material selected from -doped tin oxide (ZnO), zinc oxide (ZnO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide (AZO), and transparent conductive oxide (TCO) .
  13. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 도전 패턴은,The first conductive pattern,
    반사성 메탈층; 및Reflective metal layer; And
    상기 반사성 메탈층을 커버하는 커버 메탈층을 포함하며,A cover metal layer covering the reflective metal layer,
    상기 커버 메탈층은 상기 제 2 도전 패턴에 컨택하고, 상기 반사성 메탈층은 상기 제 2 도전 패턴과 이격되는 반도체 발광 소자.The cover metal layer contacts the second conductive pattern, and the reflective metal layer is spaced apart from the second conductive pattern.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제 2 도전 패턴은 상기 반사성 메탈층과 대향하는 측면을 포함하고,The second conductive pattern includes a side facing the reflective metal layer,
    상기 커버 메탈층은 상기 제 2 도전 패턴의 측면 중 적어도 일부에 컨택하는 반도체 발광 소자.The cover metal layer contacts at least a portion of side surfaces of the second conductive pattern.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층과 컨택하는 하면, 그리고 상기 하면에 반대되는 상면을 포함하고,The second conductive pattern includes a lower surface contacting the second conductive semiconductor layer and an upper surface opposite to the lower surface,
    상기 커버 메탈층은 상기 제 2 도전 패턴의 상기 상면 중 적어도 일부와 더 컨택하는 반도체 발광 소자.The cover metal layer further contacts at least a portion of the upper surface of the second conductive pattern.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 및 제 2 도전 패턴들 및 상기 발광 구조물 상에 배치되며, 상기 제 1 도전형 반도체층의 일부를 노출하는 제 1 개구부, 그리고 상기 제 1 및 제 2 도전 패턴들 중 적어도 하나의 일부를 노출하는 제 2 개구부를 갖는 제 1 패시베이션 층;A first opening disposed on the first and second conductive patterns and the light emitting structure and exposing a portion of the first conductive semiconductor layer, and a part of at least one of the first and second conductive patterns; A first passivation layer having a second opening that exposes the first passivation layer;
    상기 제 1 패시베이션 층 상에 배치되며, 상기 제 1 개구부를 통해 상기 제 1 도전형 반도체층과 컨택하는 전극층;An electrode layer disposed on the first passivation layer and in contact with the first conductive semiconductor layer through the first opening;
    상기 전극층 상에 배치되며, 상기 전극층의 일부를 노출하는 제 3 개구부, 그리고 상기 제 2 개구부에 의해 노출된 부분의 적어도 일부를 노출하는 제 4 개구부를 갖는 제 2 패시베이션 층;A second passivation layer disposed on the electrode layer, the second passivation layer having a third opening exposing a portion of the electrode layer and a fourth opening exposing at least a portion of the portion exposed by the second opening;
    상기 제 3 개구부를 통해 상기 전극층에 컨택하는 제 1 전극 패드; 및A first electrode pad contacting the electrode layer through the third opening; And
    상기 제 4 개구부를 통해 상기 제 1 및 제 2 도전 패턴들 중 적어도 하나에 컨택하는 제 2 전극 패드를 더 포함하는 반도체 발광 소자.And a second electrode pad contacting at least one of the first and second conductive patterns through the fourth opening.
  17. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 도전형 반도체층은 n형 반도체층이고, 상기 제 2 도전형 반도체층은 p형 반도체층인 반도체 발광 소자.And the first conductive semiconductor layer is an n-type semiconductor layer, and the second conductive semiconductor layer is a p-type semiconductor layer.
  18. 제 1 도전형 반도체층;A first conductivity type semiconductor layer;
    상기 제 1 도전형 반도체층 상에 배치되는 활성층;An active layer disposed on the first conductivity type semiconductor layer;
    상기 활성층 상에 배치되는 제 2 도전형 반도체층;A second conductivity type semiconductor layer disposed on the active layer;
    상기 제 1 도전형 반도체층에 컨택하는 제 1 전극층; 및A first electrode layer contacting the first conductive semiconductor layer; And
    상기 제 2 도전형 반도체층에 컨택하는 제 2 전극층을 포함하되,And a second electrode layer contacting the second conductivity type semiconductor layer,
    상기 제 2 전극층은 상기 제 2 도전형 반도체층에 컨택하는 제 1 도전 패턴, 그리고 상기 제 2 도전형 반도체층에 컨택하며 상기 제 1 도전 패턴의 적어도 일부를 둘러싸는 제 2 도전 패턴을 포함하는 반도체 발광 소자.The second electrode layer includes a first conductive pattern that contacts the second conductive semiconductor layer, and a second conductive pattern that contacts the second conductive semiconductor layer and surrounds at least a portion of the first conductive pattern. Light emitting element.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 측면 중 적어도 일부에 컨택하는 반도체 발광 소자.And the first conductive pattern contacts at least a portion of side surfaces of the second conductive pattern.
  20. 제 18 항에 있어서,The method of claim 18,
    상기 제 2 도전 패턴은 상기 제 2 도전형 반도체층에 컨택하는 하면 및 상기 하면에 반대되는 상면을 포함하고,The second conductive pattern includes a lower surface contacting the second conductive semiconductor layer and an upper surface opposite to the lower surface,
    상기 제 1 도전 패턴은 상기 제 2 도전 패턴의 상기 상면 중 적어도 일부, 그리고 상기 제 2 도전 패턴의 측면에 컨택하는 반도체 발광 소자.And the first conductive pattern contacts at least a portion of the upper surface of the second conductive pattern and a side surface of the second conductive pattern.
  21. 기판 상에 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하는 발광 구조물;A light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on a substrate;
    상기 발광 구조물 상에 배치되며, 비발광 영역에서 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 전극층; 및A first contact electrode layer disposed on the light emitting structure and contacting the first conductive semiconductor layer in a non-light emitting region; And
    상기 발광 구조물 상에 배치되며, 발광 영역에서 상기 제 2 도전형 반도체층과 컨택하는 제 2 컨택 전극층을 포함하되,A second contact electrode layer disposed on the light emitting structure and contacting the second conductive semiconductor layer in a light emitting region;
    상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 면적은 상기 비발광 영역 및 상기 발광 영역의 합의 1.8% 이상인 반도체 발광 소자.And a first contact area in which the first contact electrode layer contacts the first conductive semiconductor layer is 1.8% or more of the sum of the non-light emitting region and the light emitting region.
  22. 제 21 항에 있어서,The method of claim 21,
    상기 제 1 컨택 면적은 상기 합의 1.8%~4.5%의 범위에 속하는 반도체 발광 소자.And the first contact area is in a range of 1.8% to 4.5% of the sum.
  23. 제 22 항에 있어서,The method of claim 22,
    상기 제 1 컨택 면적은 상기 합의 2.5%인 반도체 발광 소자.And the first contact area is 2.5% of the sum.
  24. 제 21 항에 있어서,The method of claim 21,
    상기 기판은 GaN을 포함하는 도전성 기판인 반도체 발광 소자.The substrate is a semiconductor light emitting device comprising a conductive substrate containing GaN.
  25. 제 21 항에 있어서,The method of claim 21,
    상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 부분들 중 제 1 부분은 상기 발광 영역의 중심에 위치하는 반도체 발광 소자.And a first portion of the portions in which the first contact electrode layer contacts the first conductive semiconductor layer is positioned at the center of the emission region.
  26. 제 25 항에 있어서,The method of claim 25,
    상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 상기 부분들 중 제 2 부분은 상기 발광 영역의 가장자리에 위치하는 반도체 발광 소자.And a second portion of the portions where the first contact electrode layer contacts the first conductivity type semiconductor layer is positioned at an edge of the emission region.
  27. 제 21 항에 있어서,The method of claim 21,
    상기 제 1 도전형 반도체층은 n형 반도체층이고, 상기 제 2 도전형 반도체층은 p형 반도체층인 반도체 발광 소자.And the first conductive semiconductor layer is an n-type semiconductor layer, and the second conductive semiconductor layer is a p-type semiconductor layer.
  28. 제 21 항에 있어서,The method of claim 21,
    상기 제 2 컨택 전극층은,The second contact electrode layer,
    상기 제 2 도전형 반도체층에 오믹 컨택하는 반사성 메탈; 및A reflective metal having ohmic contact with the second conductivity type semiconductor layer; And
    상기 제 2 도전형 반도체층에 오믹 컨택하되 상기 반사성 메탈과 상이한 물질을 갖는 도전 패턴을 포함하되,An ohmic contact with the second conductive semiconductor layer, the conductive pattern having a material different from that of the reflective metal,
    상기 도전 패턴은 상기 반사성 메탈의 적어도 일부에 컨택하는 반도체 발광 소자.And the conductive pattern contacts at least a portion of the reflective metal.
  29. 제 28 항에 있어서,The method of claim 28,
    상기 도전 패턴은 상기 제 2 도전형 반도체층 상에서 상기 반사 메탈을 감싸는 반도체 발광 소자.The conductive pattern surrounds the reflective metal on the second conductivity type semiconductor layer.
  30. 제 21 항에 있어서,The method of claim 21,
    상기 발광 구조물은 메사 영역과 에칭 영역으로 구획되며,The light emitting structure is partitioned into a mesa region and an etching region,
    상기 제 1 도전형 반도체층은 상기 메사 영역 및 상기 에칭 영역에 위치하며,The first conductivity type semiconductor layer is located in the mesa region and the etching region,
    상기 활성층 및 상기 제 2 도전형 반도체층은 상기 메사 영역에서 상기 제 1 도전형 반도체 층 위에 배치되며,The active layer and the second conductivity type semiconductor layer are disposed on the first conductivity type semiconductor layer in the mesa region,
    상기 발광 영역은 상기 활성층이 위치하는 영역에 대응하는 반도체 발광 소자.The light emitting region corresponds to a region where the active layer is located.
  31. 제 21 항에 있어서,The method of claim 21,
    상기 발광 구조물 및 상기 제 2 컨택 전극층 상에 배치되며 상기 비발광 영역에서 상기 제 1 도전형 반도체층의 일부를 노출하는 제 1 개구부를 갖는 제 1 패시베이션 층을 더 포함하되,A first passivation layer disposed on the light emitting structure and the second contact electrode layer and having a first opening exposing a portion of the first conductivity type semiconductor layer in the non-light emitting region,
    상기 제 1 컨택 전극층은 상기 제 1 패시베이션 층 상에 배치되며 상기 제 1 개구부를 통해 상기 제 1 도전형 반도체층과 컨택하고,The first contact electrode layer is disposed on the first passivation layer and contacts the first conductivity type semiconductor layer through the first opening,
    상기 제 1 개구부는 상기 발광 영역의 중심에 위치하는 반도체 발광 소자.And the first opening is positioned at the center of the light emitting area.
  32. 제 31 항에 있어서,The method of claim 31, wherein
    상기 제 1 패시베이션 층은 상기 제 2 컨택 전극층의 일부를 노출하는 제 2 개구부를 갖되,The first passivation layer has a second opening that exposes a portion of the second contact electrode layer,
    상기 제 1 패시베이션 층 상에 배치되며 상기 제 2 개구부를 통해 상기 제 2 컨택 전극층에 컨택하는 연결 전극층;A connection electrode layer disposed on the first passivation layer and contacting the second contact electrode layer through the second opening;
    상기 제 1 컨택 전극층 및 상기 연결 전극층 상에 배치되며, 상기 제 1 컨택 전극층의 일부를 노출하는 제 3 개구부 및 상기 연결 전극층의 일부를 노출하는 제 4 개구부를 갖는 제 2 패시베이션 층;A second passivation layer disposed on the first contact electrode layer and the connection electrode layer and having a third opening exposing a portion of the first contact electrode layer and a fourth opening exposing a portion of the connection electrode layer;
    상기 제 3 개구부를 통해 상기 제 1 컨택 전극층에 컨택하는 제 1 전극 패드; 및A first electrode pad contacting the first contact electrode layer through the third opening; And
    상기 제 4 개구부를 통해 상기 연결 전극층에 컨택하는 제 2 전극 패드를 더 포함하는 반도체 발광 소자.And a second electrode pad contacting the connection electrode layer through the fourth opening.
  33. 기판;Board;
    상기 기판 상에 순차적으로 적층되는 제 1 도전형 반도체층, 활성층, 및 제 2 도전형 반도체층을 포함하되, 메사 영역과 에칭 영역으로 구획되는 발광 구조물;A light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially stacked on the substrate, the light emitting structure being divided into a mesa region and an etching region;
    상기 발광 구조물 상에 배치되며, 상기 에칭 영역에서 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 전극층; 및A first contact electrode layer disposed on the light emitting structure and contacting the first conductivity type semiconductor layer in the etching region; And
    상기 발광 구조물 상에 배치되며, 상기 메사 영역에서 상기 제 2 도전형 반도체층과 컨택하는 제 2 컨택 전극층을 포함하되,A second contact electrode layer disposed on the light emitting structure and contacting the second conductive semiconductor layer in the mesa region;
    상기 제 1 컨택 전극층이 상기 제 1 도전형 반도체층과 컨택하는 제 1 컨택 면적은 상기 메사 영역 및 상기 에칭 영역의 합의 1.8% 이상인 반도체 발광 소자.And a first contact area where the first contact electrode layer contacts the first conductive semiconductor layer is 1.8% or more of the sum of the mesa region and the etching region.
  34. 제 33 항에 있어서,The method of claim 33, wherein
    상기 제 1 컨택 면적은 상기 합의 1.8%~4.5%의 범위에 속하는 반도체 발광 소자.And the first contact area is in a range of 1.8% to 4.5% of the sum.
PCT/KR2017/009649 2016-09-12 2017-09-04 Semiconductor light emitting device comprising light emitting structure WO2018048154A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0117137 2016-09-12
KR1020160117137A KR20180029358A (en) 2016-09-12 2016-09-12 Semiconductor light emitting device including light emitting structure
KR10-2016-0157200 2016-11-24
KR1020160157200A KR20180058357A (en) 2016-11-24 2016-11-24 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
WO2018048154A1 true WO2018048154A1 (en) 2018-03-15

Family

ID=61561400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009649 WO2018048154A1 (en) 2016-09-12 2017-09-04 Semiconductor light emitting device comprising light emitting structure

Country Status (1)

Country Link
WO (1) WO2018048154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430518A (en) * 2019-12-13 2020-07-17 深圳第三代半导体研究院 Micro-L ED chip and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258670A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device
KR20120036572A (en) * 2010-10-08 2012-04-18 삼성엘이디 주식회사 Semiconductor light emitting device and method for manufacturing the same
KR20140006428A (en) * 2012-07-05 2014-01-16 엘지이노텍 주식회사 Light emitting device
KR20160057100A (en) * 2014-11-13 2016-05-23 일진엘이디(주) Light emitting device having conductive oxide layer on edge area
KR20160100684A (en) * 2015-02-16 2016-08-24 서울바이오시스 주식회사 Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258670A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device
KR20120036572A (en) * 2010-10-08 2012-04-18 삼성엘이디 주식회사 Semiconductor light emitting device and method for manufacturing the same
KR20140006428A (en) * 2012-07-05 2014-01-16 엘지이노텍 주식회사 Light emitting device
KR20160057100A (en) * 2014-11-13 2016-05-23 일진엘이디(주) Light emitting device having conductive oxide layer on edge area
KR20160100684A (en) * 2015-02-16 2016-08-24 서울바이오시스 주식회사 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430518A (en) * 2019-12-13 2020-07-17 深圳第三代半导体研究院 Micro-L ED chip and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2017191923A1 (en) Light emitting diode
WO2016076637A1 (en) Light emitting device
WO2018117382A1 (en) Light emitting diode having high reliability
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2017065545A1 (en) Compact light emitting diode chip and light emitting device including the same
WO2017222279A1 (en) Semiconductor device
WO2017183944A1 (en) Light emitting device and display comprising same
WO2019054547A1 (en) Light emitting device package and lighting apparatus comprising same
WO2011083923A2 (en) Light emitting diode having electrode pads
WO2020159068A1 (en) Light-emitting diode
WO2016182248A1 (en) Light-emitting element
WO2015190817A1 (en) Semiconductor light-emitting element
WO2016129873A2 (en) Light-emitting element and light-emitting diode
WO2019124843A1 (en) Chip scale package light emitting diode
WO2019045167A1 (en) Light emitting device package and light source device having same
WO2018106030A1 (en) Light emitting device
WO2019004518A1 (en) Light emitting device package and light source apparatus
WO2017026753A1 (en) Light emitting diode and light emitting diode package
WO2018139770A1 (en) Semiconductor device and semiconductor device package
WO2017034356A1 (en) Light-emitting device and light-emitting device package comprising same
WO2018048275A1 (en) Semiconductor device
WO2019132490A1 (en) Semiconductor device
WO2019045166A1 (en) Light-emitting device package
WO2018143751A1 (en) Semiconductor device and display device including same
WO2019045513A1 (en) Light-emitting element package and lighting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17849038

Country of ref document: EP

Kind code of ref document: A1