WO2018047859A1 - 軸受装置の冷却構造 - Google Patents

軸受装置の冷却構造 Download PDF

Info

Publication number
WO2018047859A1
WO2018047859A1 PCT/JP2017/032099 JP2017032099W WO2018047859A1 WO 2018047859 A1 WO2018047859 A1 WO 2018047859A1 JP 2017032099 W JP2017032099 W JP 2017032099W WO 2018047859 A1 WO2018047859 A1 WO 2018047859A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
rotation
fixed
recess
rotating
Prior art date
Application number
PCT/JP2017/032099
Other languages
English (en)
French (fr)
Inventor
惠介 那須
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112017004530.4T priority Critical patent/DE112017004530T5/de
Priority to KR1020197008868A priority patent/KR102448407B1/ko
Publication of WO2018047859A1 publication Critical patent/WO2018047859A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6662Details of supply of the liquid to the bearing, e.g. passages or nozzles the liquid being carried by air or other gases, e.g. mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a cooling structure for a bearing device, for example, a main shaft of a machine tool and a cooling structure for a bearing incorporated in the main shaft.
  • the temperature rise of the bearing due to heat generation results in an increase in the preload, and we want to suppress it as much as possible considering the speed and accuracy of the spindle.
  • a method for suppressing the temperature rise of the main shaft device there is a method of cooling the shaft and the bearing by sending cooling air to the bearing (for example, Patent Documents 1 and 2).
  • cooling of the shaft and the bearing is performed by injecting cold air into the space between the two bearings at an angle in the rotational direction to form a swirling flow.
  • JP 2000-161375 A Japanese Patent Laying-Open No. 2015-183738
  • ⁇ Machine tools use compressed air for air seals to prevent foreign material from entering the spindle, air oil for bearing lubrication, oil mist, and the like. These compressed air is produced by a compressor. Usually, one compressor is used for one machine tool. When cooling a bearing, a shaft, or the like with compressed air, compressed air generated by the compressor is used as cooling air for cooling.
  • Patent Document 2 is a proposal made to solve the above problems. That is, as shown in FIG. 12, in a bearing device J in which an outer ring spacer 104 and an inner ring spacer 105 are provided between a pair of rolling bearings 101, 101, an annular recess 113 is formed on the inner peripheral surface of the outer ring spacer 104.
  • the compressed air A for cooling is blown toward the outer peripheral surface of the inner ring spacer 105 from the nozzle hole 115 provided in the outer ring spacer 104.
  • the compressed air A is discharged from the narrow nozzle hole 115 into the wide space 120 mainly composed of the recessed portion 113, so that the compressed air A is adiabatically expanded, and the temperature of the compressed air A is lowered and the flow velocity is increased. By blowing this compressed air A onto the inner ring spacer 105, the inner ring spacer 105 and the rolling bearing 101 are efficiently cooled.
  • An object of the present invention is to provide a cooling structure for a bearing device that can efficiently cool a bearing or the like even with a small amount of compressed air and can suppress the amount of compressed air used.
  • a cooling structure for a bearing device includes a stationary spacer and a rotating spacer adjacent to a stationary bearing ring and a rotating bearing ring facing the inside and outside of a rolling bearing, respectively.
  • the fixed side spacer is installed on a fixed member of a fixed member and a rotating member, and the rotating side race and the rotating side spacer are installed on a rotating member of the fixed member and the rotating member.
  • a cooling structure for a bearing device An annular fixed-side recess is provided on a peripheral surface of the fixed-side spacer facing the rotation-side spacer, and the fixed-side recess is formed on a peripheral surface of the rotation-side spacer facing the fixed-side spacer.
  • An annular rotation-side recess is provided at an axial position facing the nozzle, and a nozzle hole that discharges compressed air from the outlet opening at the bottom surface of the fixed-side recess to the bottom surface of the rotation-side recess has the rotation.
  • the side spacer is provided to be inclined forward in the rotational direction.
  • the stationary side race is an outer race
  • the rotation side race is an inner race.
  • the fixing member and the rotating member are, for example, a housing and a shaft, respectively.
  • the compressed air for cooling is discharged from the nozzle hole provided in the fixed side spacer toward the bottom surface of the rotation side recess provided in the rotation side spacer.
  • the compressed air is adiabatically expanded by being discharged from a narrow nozzle hole into a wide space mainly composed of the fixed side recess and the rotation side recess.
  • This adiabatic expansion increases the flow rate of the compressed air and decreases the temperature. Therefore, the rotating side spacer is efficiently cooled.
  • the recessed portion provided in the fixed spacer as in the prior art, but the recessed portion is also provided in the rotating spacer so that the space where compressed air is discharged is wider than in the conventional configuration. .
  • the adiabatic expansion of the compressed air is promoted, the flow rate of the compressed air is further increased, and the temperature is lowered, so that the cooling effect is further improved.
  • the compressed air discharged from the nozzle hole swirls along the peripheral surface of the rotation side spacer. However, it flows in the axial direction and is discharged to the outside of the bearing. Since the compressed air swirls, it takes a longer time for the compressed air to be in contact with the peripheral surface of the rotating side spacer than in the case where it flows straight in the axial direction, and the rotating side spacer can be cooled more efficiently.
  • the rotating side bearing ring and the rotating shaft of the rolling bearing can be effectively cooled via the rotating side spacer. For this reason, the usage-amount of compressed air can be suppressed.
  • the axial length of the rotation-side recess is at least twice the diameter of the nozzle hole.
  • the axial length of the rotation-side recess is smaller than twice the hole diameter of the nozzle hole, the compressed air does not flow well into the rotation-side recess, and the compressed air discharged from the nozzle hole can be sufficiently adiabatically expanded. Can not.
  • the radial depth of the rotation-side recess is in the range of 10% to 50% of the radial thickness of the rotation-side spacer.
  • the radial depth of the rotation-side recess is less than 10% of the radial thickness of the rotation-side spacer, the volume of the rotation-side recess is small and the volume of compressed air cannot be increased sufficiently.
  • it exceeds 50% the radial thickness of the rotating side spacer becomes too thin, and there is a risk that the rotating side spacer may be damaged by the axial load acting when the bearing is incorporated into the shaft or during operation. .
  • a cross-shaped or streak-shaped recess may be formed on the bottom surface of the rotation-side recess.
  • a plurality of circumferential grooves may be provided on the bottom surface of the rotation side recess.
  • the fixed side spacer includes a fixed side spacer body in which the nozzle hole is formed and a lubricating oil hole forming member in which a lubricating oil hole for supplying lubricating oil to the rolling bearing is formed.
  • the peripheral surface of the fixed side spacer body may be the bottom surface of the fixed side recess, and the side surface of the lubricating oil hole forming member may be the side wall surface of the fixed side recess.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1. It is explanatory drawing for comparing the width of the space where compressed air is discharged.
  • FIG. 1 is a cross-sectional view of a machine tool spindle device provided with a cooling structure for the bearing device. In this example, it is applied to a spindle device of a machine tool, but is not limited to the spindle device of a machine tool.
  • the bearing device J includes two rolling bearings 1 and 1 arranged in the axial direction, and an outer ring spacer 4 and an inner ring spacer 5 are respectively provided between the outer rings 2 and 2 and the inner rings 3 and 3 of the respective rolling bearings 1 and 1. Intervene.
  • the outer ring 2 and the outer ring spacer 4 are installed in the housing 6, and the inner ring 3 and the inner ring spacer 5 are fitted to the main shaft 7.
  • the rolling bearing 1 is an angular ball bearing, and a plurality of rolling elements 8 are interposed between the raceway surfaces of the outer ring 2 and the inner ring 3.
  • the rolling elements 8 are held at equal intervals in the circumferential direction by a cage 9.
  • the two rolling bearings 1 and 1 are arranged in a rear combination, and the initial preload of each rolling bearing 1 and 1 is set and used depending on the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5.
  • the rolling bearing 1 is used for inner ring rotation. Therefore, the outer ring 2 and the inner ring 3 are also called “fixed-side raceway” and “rotation-side raceway”, respectively, and the outer ring spacer 4 and the inner ring spacer 5 are respectively “fixed-side spacer” and “rotation-side spacer”. It is also called “za”.
  • the main shaft 7 is also referred to as a “rotating member”, and the housing 6 is also referred to as a “fixing member”. The same applies to other embodiments described later.
  • the outer rings 2, 2 and the outer ring spacer 4 are, for example, a clearance fit with respect to the housing 6, and are positioned in the axial direction by the step portion 6 a of the housing 6 and the end surface cover 40.
  • the inner rings 3 and 3 and the inner ring spacer 5 are, for example, an interference fit with respect to the main shaft 7 and are positioned in the axial direction by the positioning spacers 41 and 42 on both sides. Note that the positioning spacer 42 on the left side of the figure is fixed by a nut 43 screwed onto the main shaft 7.
  • the outer ring spacer 4 includes an outer ring spacer main body 11 that is a stationary side spacer main body, and ring-shaped lubricating oil hole forming members 12 and 12 that are separate members from the outer ring spacer main body 11. And have.
  • the outer ring spacer body 11 is formed in a substantially T-shaped cross section, and lubricating oil hole forming members 12 and 12 are fixed symmetrically on both sides in the axial direction of the outer ring spacer body 11.
  • FIG. 2 is a partially enlarged view of FIG. However, the cut surface of one rolling bearing 1 differs in FIG. 1 and FIG.
  • the inner diameter of the outer ring spacer body 11 is larger than the inner diameter of the lubricating oil hole forming members 12 and 12.
  • the fixed recess 13 formed by the inner peripheral surface of the outer ring spacer main body 11 and the side surfaces of the lubricating oil hole forming members 12 and 12 following the inner peripheral surface. Is formed.
  • the inner peripheral surface of the outer ring spacer body 11 is the bottom surface of the fixed-side recess portion 13, and the side surfaces of the lubricating oil hole forming members 12, 12 are side wall surfaces of the fixed-side recess portion 13.
  • the outer ring spacer body 11 and the side surfaces of the lubricating oil hole forming members 12, 12 are combined. Since only the fixed-side recess 13 is formed, the processing of the fixed-side recess 13 is unnecessary.
  • the fixed recess 13 is an annular groove having a substantially rectangular cross section.
  • the inner diameter end portions 12a and 12a on the side surfaces of the lubricating oil hole forming members 12 and 12 are notched obliquely so that the distance between both ends increases toward the inner diameter side.
  • the inner peripheral surface of the outer ring spacer 4 other than the fixed recess 13, that is, the inner peripheral surface of the lubricating oil hole forming members 12 and 12, and the outer peripheral surface of the inner ring spacer 5 are interposed via a minute radial clearance ⁇ a. Opposite.
  • annular rotation side recess 14 is provided so as to face the inner peripheral surface of the outer ring spacer main body 11.
  • the rotation side recess 14 is an annular groove having a rectangular cross section.
  • the axial width Y of the rotation-side recess 14 is the same as the inner peripheral surface of the outer ring spacer body 11. Further, the depth Z of the rotation-side recess 14 is in the range of 10% to 50% of the radial thickness T of the inner ring spacer 5.
  • the outer ring spacer body 11 is provided with a nozzle hole 15 for discharging compressed air A for cooling toward the bottom surface of the rotation-side recess 14 of the inner ring spacer 5.
  • the outlet 15 a of the nozzle hole 15 is open to the bottom surface of the rotation side recess 13 of the outer ring spacer 4.
  • a plurality of (for example, three) nozzle holes 15 are provided and are arranged at equal intervals in the circumferential direction.
  • each nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. That is, the position is offset from an arbitrary radial straight line L in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction orthogonal to the straight line L.
  • the reason why the nozzle hole 15 is offset is to improve the cooling effect by causing the compressed air A to act as a swirling flow in the rotation direction of the inner ring spacer 5.
  • the outer ring spacer 4 is indicated by a cross section passing through the center line of the nozzle hole 15.
  • An introduction groove 16 for introducing the compressed air A into the nozzle holes 15 from the outside of the bearing is formed on the outer peripheral surface of the outer ring spacer body 11.
  • the introduction groove 16 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4 and is formed in an arc shape communicating with each nozzle hole 15.
  • the introduction groove 16 is provided on the outer peripheral surface of the outer ring spacer main body 11 over an angular range ⁇ indicating most of the circumferential direction except a circumferential position where a lubricating oil supply path (not shown) described later is provided. Yes.
  • a compressed air introduction path 45 is provided in the housing 6, and the introduction groove 16 communicates with the compressed air introduction path 45.
  • An air supply device (not shown) for supplying the compressed air A to the compressed air introduction hole 45 is provided outside the housing 5.
  • the outer ring spacer 4 has the lubricating oil hole forming members 12 and 12 for supplying lubricating oil into the bearing.
  • air oil is used as the lubricating oil.
  • Each lubricating oil hole forming member 12 has a base 12a whose inner peripheral surface faces the inner ring spacer 5 via the radial clearance ⁇ a, and projects outward from the base 12a in the axial direction between the outer peripheral surface of the inner ring 3. And an eaves-shaped tip portion 30 which is opposed to each other through an annular clearance ⁇ b for air oil passage.
  • the distal end portion 30 of the lubricating oil hole forming member 12 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 3. Further, the tip end portion 30 of the lubricating oil hole forming member 12 is disposed radially inward from the inner peripheral surface of the cage 9.
  • the lubricating oil hole forming member 12 is provided with a lubricating oil hole 31 for supplying air oil to the annular clearance ⁇ b between the lubricating oil hole forming member 12 and the outer peripheral surface of the inner ring 3.
  • the lubricant hole 31 is inclined so as to reach the inner diameter side toward the bearing side, and an outlet is opened on the inner peripheral side of the tip portion 30.
  • Air oil is supplied to the lubricating oil hole 31 through a lubricating oil supply path (not shown) provided in the housing 6 and the outer ring spacer main body 11.
  • An annular recess 3 a is provided at a location on the extended line of the lubricating oil hole 31 on the outer peripheral surface of the inner ring 3.
  • the oil of the air oil discharged from the lubricating oil hole forming member 12 accumulates in the annular recess 3a, and this oil is centered on the bearing along the outer peripheral surface of the inner ring 3 which is an inclined surface by the centrifugal force accompanying the rotation of the inner ring 3. Guided to the side.
  • the bearing device J is provided with an exhaust passage 46 for exhausting compressed air for cooling and air oil for lubrication.
  • the exhaust passage 46 includes an exhaust groove 47 provided in a part of the outer ring spacer body 11 in the circumferential direction, a radial exhaust hole 48 provided in the housing 6 and communicating with the exhaust groove 47, and an axial exhaust hole 49.
  • the exhaust groove 47 of the outer ring spacer main body 11 is formed over a circumferential position facing a position where the lubricating oil supply path is provided.
  • the cooling structure of the bearing apparatus which consists of the said structure is demonstrated.
  • the compressed air A for cooling is blown toward the bottom surface of the rotation side recess 14 of the inner ring spacer 5.
  • the compressed air A is adiabatically expanded by being discharged from the narrow nozzle hole 15 into the wide space 20 mainly composed of the fixed side recess 13 and the rotation side recess 14.
  • the space 20 is a combination of the fixed recess 13, the rotation recess 14, and the width of the radial clearance ⁇ a interposed between the fixed recess 13 and the rotation recess 14. Size.
  • V1 is obtained from the equation of state of gas and the first law of thermodynamics. ⁇ V2, T1> T2. That is, in the space 20, the temperature of the compressed air A decreases and the volume increases. As the volume increases, the flow rate of the compressed air A increases. Thus, the inner ring spacer 5 is efficiently cooled by blowing the compressed air A at a low temperature and high speed onto the inner ring spacer 5.
  • the volume of the space 120 into which the compressed air A is discharged is approximately the size of the volume of the recess 113 (FIG. 4A).
  • the volume (FIG. 4B) of the space 20 into which the compressed air A is discharged is substantially the sum of the volume of the fixed recess 13 and the volume of the rotation recess 14. The size.
  • the space 20 in the cooling structure of the bearing device in FIG. 2 is more rotationally recessed than the space 120 in the cooling structure of the bearing device in FIG. 12. Larger by 14 volumes. For this reason, the cooling structure of the bearing device of FIG. 2 has a large expansion coefficient of the compressed air A discharged from the nozzle hole 15, further promotes the temperature drop and volume increase of the compressed air A, and increases the cooling effect.
  • the axial width Y of the rotation-side recess 14 is the same as the inner peripheral surface of the outer ring spacer body 11, but the axial width Y of the rotation-side recess 14 is the inner width of the outer ring spacer body 11.
  • the width may not be the same as the peripheral surface.
  • the reason why the radial depth Z of the rotation-side recess 14 is in the range of 10% to 50% of the radial thickness T of the rotation-side spacer 5 is as follows. That is, as shown in FIG. 10, if the radial depth Z is less than 10% of the wall thickness T, the volume of the rotation-side recess 14 is small, and the volume of the compressed air A cannot be increased sufficiently. Further, as shown in FIG. 11, when it exceeds 50%, the thickness (TZ) of the portion where the rotation side recess 14 is formed becomes thin, so that the rolling bearing 1 is incorporated into the main shaft 7 or during operation. There is a possibility that the rotation side spacer 5 may be damaged due to the axial load acting on the rotation.
  • the compressed air A discharged from the nozzle hole 15 flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 5. , And is discharged to the outside of the bearing through the exhaust passage 46. Since the compressed air A turns, it takes a longer time for the compressed air A to contact the outer peripheral surface of the inner ring spacer 5 than in the case where it flows straight in the axial direction, and the inner ring spacer 5 can be cooled more efficiently. it can.
  • the inner ring spacer 5 is efficiently cooled, so that the inner ring 3 and the main shaft 7 of the rolling bearing 1 can be effectively cooled via the inner ring spacer 5.
  • the cooling efficiency is obtained only by providing a structural ingenuity in which the outer ring spacer 4 and the inner ring spacer 5 are each provided with an annular fixed recess 13 and a rotation recess 14 and the nozzle hole 15 is inclined. Therefore, it is not necessary to increase the output of the air supply device that supplies the compressed air A, and power consumption can be suppressed.
  • the compressed air A discharged into the space 20 between the outer ring spacer 4 and the inner ring spacer 5 is discharged to the outside of the bearing through the radial clearance ⁇ a between the outer ring spacer 4 and the inner ring spacer 5. .
  • the radial clearance ⁇ a is narrower than the space 20
  • the flow velocity of the compressed air A flowing through the radial clearance ⁇ a in each circumferential portion is made uniform, and the flow velocity of the compressed air A flowing into the bearing becomes uniform. . Thereby, the collision sound between the compressed air A and the rotating rolling element 9 can be reduced.
  • the rotation-side recess 14 provided in the inner ring spacer 5 has a rectangular cross section, but the shape of the rotation-side recess 14 is not limited to this.
  • the corner portion 21 of the rotation-side recess 14 may be an inclined surface.
  • the bottom surface of the rotation-side depression 14 may have a circular arc shape in cross section.
  • a groove-like recess 22 is formed on the bottom surface of the rotation-side recess 14 by knurling or the like, or the fifth embodiment shown in FIG.
  • the surface area of the bottom surface may be increased by providing a plurality of circumferential grooves 23 on the bottom surface of the rotation-side depression 14 and making the bottom surface of the rotation-side depression 14 an uneven surface.
  • the rolling bearing 1 is used for inner ring rotation
  • the present invention can also be applied when used for outer ring rotation.
  • a shaft (not shown) fitted to the inner circumference of the inner ring 3 is a fixed member
  • a roller (not shown) fitted to the outer circumference of the outer ring 2 is a rotating member.

Abstract

転がり軸受(1)の内外に対向する固定側軌道輪(2)および回転側軌道輪(3)にそれぞれ隣り合って固定側間座(4)および回転側間座(5)が設けられ、固定側軌道輪(2)および固定側間座(3)が固定部材(6)に設置され、回転側軌道輪(3)および回転側間座(5)が回転部材(7)に設置される軸受装置(J)の冷却構造である。固定側間座(4)における回転側間座(5)に対向する周面に環状の固定側凹み部(13)が設けられ、かつ回転側間座(5)における固定側間座(4)に対向する周面において固定側凹み部(13)に対向する軸方向位置に環状の回転側凹み部(14)が設けられる。固定側凹み部(13)の底面に開口する出口(15a)から回転側凹み部(14)の底面に向けて圧縮エア(A)を吐出するノズル孔(15)が、回転側間座(5)の回転方向の前方へ傾斜して設けられる。

Description

軸受装置の冷却構造 関連出願
 本出願は、2016年9月9日出願の特願2016-176547の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 この発明は、軸受装置の冷却構造に関し、例えば、工作機械の主軸および主軸に組み込まれる軸受の冷却構造に関する。
 工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら最近の工作機械では、加工能率を向上させるため高速化の傾向にあり、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。
 発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。主軸装置の温度上昇を抑える方法として、冷却用の圧縮エアを軸受に送り、軸と軸受の冷却を行う方法がある(例えば、特許文献1、2)。特許文献1、2では、2つの軸受間の空間に冷風を、回転方向に角度を付けて噴射して旋回流とすることで、軸と軸受の冷却を行っている。
特開2000-161375号公報 特開2015-183738号公報
 工作機械は、主軸への異物侵入を防止するためのエアシール、軸受潤滑用のエアオイル、オイルミスト等に圧縮エアが使用される。これらの圧縮エアは、圧縮機で作り出される。通常、1台の工作機械に、1機の圧縮機が用いられる。軸受、軸等を圧縮エアで冷却する場合、そのための冷却用圧縮エアも、圧縮機で発生させた圧縮エアが使用される。
 特許文献1のような圧縮エアによる冷却では、圧縮エアの供給量を多くするほど冷却効果が増す。しかし、圧縮エアの供給量を多くするには、より大きな容量を持つ圧縮機を採用しなければならない。このため、冷却効果の向上を図ると、工作機械の大型化やエネルギー消費量の増加を招く。
 特許文献2は、上記課題を解決するためになされた提案である。すなわち、図12のように、一対の転がり軸受101,101間に外輪間座104および内輪間座105が設けられた軸受装置Jにおいて、外輪間座104の内周面に環状の凹み部113を設け、外輪間座104に設けたノズル孔115より、冷却用の圧縮エアAを内輪間座105の外周面に向けて吹き付ける。圧縮エアAが、狭いノズル孔115から、主に凹み部113からなる広い空間120に一気に吐出されることにより、圧縮エアAが断熱膨張して、圧縮エアAの温度が下がると共に流速が増す。この圧縮エアAが内輪間座105に吹き付けられることによって、内輪間座105および転がり軸受101が効率良く冷却される。
 このように、特許文献2の構成によると、冷却効果が高まるため、特許文献1のような構成よりも少ない圧縮エアで軸受等の温度上昇を抑えることが可能になる。しかし、さらに少ない圧縮エアで軸受等を効率良く冷却することが望まれる。
 この発明の目的は、少ない圧縮エアでも軸受等を効率良く冷却できて、圧縮エアの使用量を抑制することができる軸受装置の冷却構造を提供することである。
 この発明の軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および前記固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および前記回転側間座が、前記固定部材および前記回転部材のうちの回転部材に設置される軸受装置の冷却構造であって、
 前記固定側間座における前記回転側間座に対向する周面に環状の固定側凹み部が設けられ、かつ前記回転側間座における前記固定側間座に対向する周面において前記固定側凹み部に対向する軸方向位置に環状の回転側凹み部が設けられ、前記固定側凹み部の底面に開口する出口から前記回転側凹み部の底面に向けて圧縮エアを吐出するノズル孔が、前記回転側間座の回転方向の前方へ傾斜して設けられていることを特徴とする。
 例えば、前記固定側軌道輪は外輪であり、前記回転側軌道輪は内輪である。その場合、前記固定部材および回転部材は、例えばそれぞれハウジングおよび軸である。
 この構成によると、固定側間座に設けられたノズル孔から、冷却用の圧縮エアが、回転側間座に設けられた回転側凹み部の底面に向けて吐出される。圧縮エアが狭いノズル孔から主に固定側凹み部および回転側凹み部からなる広い空間に吐出されることにより、圧縮エアが断熱膨張する。この断熱膨張により、圧縮エアの流速が増すと共に、温度が下がる。そのため、回転側間座が効率良く冷却される。従来のように固定側間座に凹み部を設けるだけでなく、回転側間座にも凹み部を設けたことにより、従来の構成に比べて、圧縮エアが吐出される空間が広くなっている。これにより、圧縮エアの断熱膨張が促進されて、さらに圧縮エアの流速が増加し、かつ温度が低下するため、冷却効果がより一層向上する。
 また、固定側間座に設けられたノズル孔は回転側間座の回転方向の前方へ傾斜しているため、ノズル孔から吐出された圧縮エアは、回転側間座の周面に沿って旋回しながら軸方向に流れて軸受外部へ排出される。圧縮エアが旋回するため、軸方向にまっすぐ流れる場合と比べて、圧縮エアが回転側間座の周面と接している時間が長く、回転側間座をより一層効率良く冷却することができる。
 このように、回転側間座が効率良く冷却されることで、この回転側間座を介して転がり軸受の回転側軌道輪および回転軸を効果的に冷却することができる。このため、圧縮エアの使用量を抑制することができる。
 この発明において、前記回転側凹み部の軸方向長さが、前記ノズル孔の孔径の2倍以上であるのが良い。
 回転側凹み部の軸方向長さがノズル孔の孔径の2倍より小さいと、圧縮エアが回転側凹み部にうまく流入せず、ノズル孔から吐出される圧縮エアを十分に断熱膨張させることができない。
 この発明において、前記回転側凹み部の径方向深さが、前記回転側間座の径方向の肉厚の10%ないし50%の範囲内であるのが良い。
 回転側凹み部の径方向深さが回転側間座の径方向の肉厚の10%未満であると、回転側凹み部の容積が小さく、圧縮エアの体積を十分に増加させることができない。また、50%を超えると、回転側間座の径方向の肉厚が薄くなり過ぎ、軸受を軸に組み込む際や、運転中に作用するアキシアル荷重によって回転側間座の損傷が生じる恐れがある。
 この発明において、前記回転側凹み部の底面にクロス目または筋目の溝状の凹部が形成されていても良い。また、前記回転側凹み部の底面に複数の円周溝が設けられていても良い。
 これらの場合、回転側凹み部の底面が凹凸面となり底面の表面積が大きくなるため、回転側間座と圧縮エアとの熱交換が効率良く行われ、冷却効果がさらに高まる。
 この発明において、前記固定側間座が、前記ノズル孔が形成された固定側間座本体と、前記転がり軸受に潤滑油を供給する潤滑油孔が形成された潤滑油孔形成部材とを有する場合、前記固定側間座本体の周面が前記固定側凹み部の前記底面であり、かつ前記潤滑油孔形成部材の側面が前記固定側凹み部の側壁面であると良い。
 このように固定側間座本体の周面と潤滑油孔形成部材の側面とで固定側凹み部を構成すると、固定側間座本体と潤滑油孔形成部材を組み合わせるだけで固定側凹み部が形成されるので、固定側凹み部の加工が不要である。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の第1実施形態に係る軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。 同軸受装置の冷却構造の主要部の拡大断面図である。 図1のIII-III断面図である。 圧縮エアが吐出される空間の広さを比較するための説明図である。 圧縮エアが吐出される空間の広さを比較するための別の説明図である。 この発明の第2実施形態に係る軸受装置の冷却構造の主要部の断面図である。 この発明の第3実施形態に係る軸受装置の冷却構造の主要部の断面図である。 この発明の第4実施形態に係る軸受装置の冷却構造の主要部の断面図である。 この発明の第5実施形態に係る軸受装置の冷却構造の主要部の断面図である。 比較例としての軸受装置の冷却構造の主要部の断面図である。 異なる比較例としての軸受装置の冷却構造の主要部の断面図である。 さらに異なる比較例としての軸受装置の冷却構造の主要部の断面図である。 従来の軸受装置の冷却構造の主要部の断面図である。
 この発明の第1実施形態に係る軸受装置の冷却構造を図1ないし図4と共に説明する。
 図1は、この軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。この例では、工作機械の主軸装置に適用されているが、工作機械の主軸装置だけに限定されるものではない。
 軸受装置Jは、軸方向に並ぶ2つの転がり軸受1,1を備え、各転がり軸受1,1の外輪2,2間および内輪3,3間に、外輪間座4および内輪間座5がそれぞれ介在している。外輪2および外輪間座4がハウジング6に設置され、内輪3および内輪間座5が主軸7に嵌合している。転がり軸受1はアンギュラ玉軸受であり、外輪2および内輪3の各軌道面間に複数の転動体8が介在している。各転動体8は、保持器9により円周方向において等間隔に保持される。2つの転がり軸受1,1は背面組合せで配置されており、外輪間座4と内輪間座5の幅寸法差により、各転がり軸受1,1の初期予圧を設定して使用される。
 この実施形態では、転がり軸受1は内輪回転で使用される。よって、外輪2、内輪3が、それぞれ「固定側軌道輪」、「回転側軌道輪」とも呼ばれ、外輪間座4、内輪間座5が、それぞれ「固定側間座」、「回転側間座」とも呼ばれる。また、主軸7が「回転部材」とも呼ばれ、ハウジング6が「固定部材」とも呼ばれる。後で示す他の実施形態についても同様である。
 外輪2,2および外輪間座4は、例えばハウジング6に対してすきま嵌めとされ、ハウジング6の段部6aと端面蓋40とにより軸方向の位置決めがされる。また、内輪3,3および内輪間座5は、例えば主軸7に対して締まり嵌めとされ、両側の位置決め間座41,42により軸方向の位置決めがされる。なお、図の左側の位置決め間座42は、主軸7に螺着させたナット43により固定される。
 冷却構造について説明する。
 図2に示すように、外輪間座4は、固定側間座本体である外輪間座本体11と、この外輪間座本体11とは別部材からなるリング状の潤滑油孔形成部材12,12とを有する。外輪間座本体11は断面略T字形状に形成され、この外輪間座本体11の軸方向両側に潤滑油孔形成部材12,12が対称配置で固定されている。図2は図1の部分拡大図である。但し、図1と図2とで片方の転がり軸受1の切断面が異なっている。
 外輪間座本体11の内径寸法は、潤滑油孔形成部材12,12の内径寸法よりも大きい。これにより、外輪間座4の内周面に、外輪間座本体11の内周面と、この内周面に続く潤滑油孔形成部材12,12の側面とで構成される固定側凹み部13が形成されている。外輪間座本体11の内周面が固定側凹み部13の底面であり、かつ潤滑油孔形成部材12,12の側面が固定側凹み部13の側壁面である。このように外輪間座本体11の内周面と潤滑油孔形成部材12,12の側面とで固定側凹み部13を構成すると、外輪間座本体11と潤滑油孔形成部材12,12を組み合わせるだけで固定側凹み部13が形成されるので、固定側凹み部13の加工が不要である。
 前記固定側凹み部13は、断面略長方形の環状溝である。潤滑油孔形成部材12,12の側面の内径端部12a,12aは、内径側に行くに従い両者の間隔が広くなるように斜めに切り欠かれている。外輪間座4の固定側凹み部13以外の内周面、すなわち潤滑油孔形成部材12,12の内周面と、内輪間座5の外周面とは、微小な径方向すきまδaを介して対向している。
 内輪間座5の外周面には、外輪間座本体11の内周面と対向して環状の回転側凹み部14が設けられている。この回転側凹み部14は、断面長方形の環状溝である。回転側凹み部14の軸方向幅Yは、外輪間座本体11の内周面と同じ幅である。また、回転側凹み部14の深さZは、内輪間座5の径方向の肉厚Tの10%ないし50%の範囲内とされている。
 前記外輪間座本体11には、内輪間座5の回転側凹み部14の底面に向けて冷却用の圧縮エアAを吐出するノズル孔15が設けられている。ノズル孔15の出口15aは、外輪間座4の回転側凹み部13の底面に開口している。この例では、複数個(例えば3個)のノズル孔15が設けられており、円周方向において等間隔に配置されている。
 図3に示すように、各ノズル孔15は、内輪間座5の回転方向の前方へ傾斜している。つまり、外輪間座4の軸心に垂直な断面における任意の半径方向の直線Lから、この直線Lと直交する方向にオフセットした位置にある。ノズル孔15をオフセットさせる理由は、圧縮エアAを内輪間座5の回転方向に旋回流として作用させて、冷却効果を向上させるためである。なお、図1、図2では、外輪間座4を、ノズル孔15の中心線を通る断面で表示している。
 外輪間座本体11の外周面には、軸受外部から各ノズル孔15に圧縮エアAを導入するための導入溝16が形成されている。この導入溝16は、外輪間座4の外周面における軸方向中間部に設けられ、各ノズル孔15に連通する円弧状に形成されている。導入溝16は、外輪間座本体11の外周面において、後述の潤滑油供給経路(図示せず)が設けられる円周方向位置を除く円周方向の大部分を示す角度範囲αにわたって設けられている。図1のように、ハウジング6に圧縮エア導入経路45が設けられ、この圧縮エア導入経路45に導入溝16が連通するように構成されている。ハウジング5の外部には、圧縮エア導入孔45に圧縮エアAを供給するエア供給装置(図示せず)が設けられている。
 潤滑構造について説明する。
 図1に示すように、外輪間座4は、軸受内に潤滑油を供給する前記潤滑油孔形成部材12,12を有する。この例では、潤滑油としてエアオイルが用いられる。各潤滑油孔形成部材12は、内周面が内輪間座5に前記径方向すきまδaを介して対向する基部12aと、この基部12aから軸方向外側に突出して内輪3の外周面との間でエアオイル通過用の環状すきまδbを介して対向する鍔状の先端部30とからなる。換言すれば、潤滑油孔形成部材12の先端部30が、内輪3の外周面に被さるように軸受内に進入して配置される。また、潤滑油孔形成部材12の先端部30は、保持器9の内周面よりも半径方向の内方に配置されている。
 図2に示すように、潤滑油孔形成部材12には、この潤滑油孔形成部材12と内輪3の外周面間の前記環状すきまδbにエアオイルを供給する潤滑油孔31が設けられている。この潤滑油孔31は、軸受側に向かうに従い内径側に至るように傾斜し、先端部30の内周側に出口が開口している。潤滑油孔31には、ハウジング6および外輪間座本体11に設けられた潤滑油供給経路(図示せず)を通ってエアオイルが供給される。内輪3の外周面における潤滑油孔31の延長線上の箇所には、環状凹み部3aが設けられている。
 潤滑油孔形成部材12から吐出されたエアオイルの油が前記環状凹み部3aに溜り、この油が、内輪3の回転に伴う遠心力により、傾斜面である内輪3の外周面に沿って軸受中心側へと導かれる。
 排気構造について説明する。
 図1に示すように、この軸受装置Jには、冷却用の圧縮エアおよび潤滑用のエアオイルを排気する排気経路46が設けられている。排気経路46は、外輪間座本体11における円周方向の一部に設けられた排気溝47と、ハウジング6に設けられ前記排気溝47に連通する径方向排気孔48および軸方向排気孔49とを有する。前記外輪間座本体11の排気溝47は、潤滑油供給経路が設けられる位置に対向する円周方向位置にわたって形成されている。
 上記構成からなる軸受装置の冷却構造の作用について説明する。
 外輪間座4に設けられたノズル孔15より、冷却用の圧縮エアAが内輪間座5の回転側凹み部14の底面に向けて吹き付けられる。このとき、圧縮エアAが狭いノズル孔15内から、主に固定側凹み部13と回転側凹み部14とからなる広い空間20に吐出されることで、圧縮エアAが断熱膨張する。正確には、空間20は、固定側凹み部13と、回転側凹み部14と、これら固定側凹み部13および回転側凹み部14の間に介在する前記径方向すきまδa幅の空間とを合わせた大きさである。
 ノズル孔15内における圧縮エアAの体積をV1、温度をT1とし、空間20での圧縮エアの体積をV2、温度をT2とした場合、気体の状態方程式、熱力学の第1法則より、V1<V2、T1>T2となる。すなわち、空間20では、圧縮エアAの温度が下がると共に、体積が増加する。体積が増加することで、圧縮エアAの流速が増大する。このように、低温で高速の圧縮エアAを内輪間座5に吹き付けることで、内輪間座5を効率良く冷却する。
 図12に示す従来の軸受装置の冷却構造では、圧縮エアAが吐出される空間120の容積は、ほぼ凹み部113の容積(図4A)の大きさである。これに対し、図2の軸受装置の冷却構造では、圧縮エアAが吐出される空間20の容積(図4B)は、ほぼ固定側凹み部13の容積と回転側凹み部14の容積とを加算した大きさである。凹み部113の容積と固定側凹み部13の容積が同じである場合、図2の軸受装置の冷却構造の空間20は、図12の軸受装置の冷却構造の空間120よりも、回転側凹み部14の容積分だけ大きい。このため、図2の軸受装置の冷却構造は、ノズル孔15から吐出された圧縮エアAの膨張率が大きく、圧縮エアAの温度低下および体積増加がより一層促進され、冷却効果が高くなる。
 この実施形態では、回転側凹み部14の軸方向幅Yを外輪間座本体11の内周面と同じ幅としたが、回転側凹み部14の軸方向幅Yが外輪間座本体11の内周面と同じ幅でなくてもよい。しかし、その場合でも、回転側凹み部14の軸方向長さYは、ノズル孔15の孔径Dの2倍以上であるのが望ましい。仮に図9に示すように、回転側凹み部14の軸方向長さYがノズル孔15の孔径Dの2倍より小さいと、圧縮エアAが回転側凹み部14にうまく流入せず、ノズル孔15から吐出される圧縮エアAを十分に断熱膨張させることができない。
 回転側凹み部14の径方向深さZを回転側間座5の径方向の肉厚Tの10%ないし50%の範囲内としたのは、以下の理由による。すなわち、図10に示すように、径方向深さZが肉厚Tの10%未満であると、回転側凹み部14の容積が小さく、圧縮エアAの体積を十分に増加させることができない。また、図11に示すように、50%を超えると、回転側凹み部14が形成された部分の肉厚(T-Z)が薄くなり、転がり軸受1を主軸7に組み込む際や、運転中に作用するアキシアル荷重によって回転側間座5の損傷が生じる恐れがある。
 ノズル孔15が内輪間座5の回転方向の前方へ傾斜しているため、ノズル孔15から吐出された圧縮エアAは、内輪間座5の外周面に沿って旋回しながら軸方向に流れて、前記排気経路46を通って軸受外部へ排出される。圧縮エアAが旋回するため、軸方向に真っ直ぐ流れる場合と比べて、圧縮エアAが内輪間座5の外周面と接している時間が長く、内輪間座5をより一層効率良く冷却することができる。
 このように、内輪間座5が効率良く冷却されることで、この内輪間座5を介して転がり軸受1の内輪3および主軸7を効果的に冷却することができる。この冷却構造は、外輪間座4および内輪間座5に環状の固定側凹み部13および回転側凹み部14をそれぞれ設け、かつノズル孔15を傾斜させるという構造的な工夫を施すだけで冷却効率を向上させることができるため、圧縮エアAを供給するエア供給装置の出力を大きくしなくてもよく、消費電力を抑えることができる。
 加えて、固定側凹み部13および回転側凹み部14が設けられていると、次のような効果もある。すなわち、外輪間座4と内輪間座5の間の空間20に吐出された圧縮エアAは、外輪間座4と内輪間座5の間の径方向すきまδaを通って軸受外部へ排出される。その際、少なくとも一部の圧縮エアAは軸受内へ流入する。空間20よりも径方向すきまδaが狭まっているため、径方向すきまδaを流れる圧縮エアAの周方向の各部での流速が均一化され、軸受内に流入する圧縮エアAの流速が均一になる。それにより、圧縮エアAと回転中の転動体9との衝突音を小さくすることができる。
 図2に示す軸受装置Jは、内輪間座5に設けられる回転側凹み部14が断面長方形とされているが、回転側凹み部14の形状はこれに限定されない。例えば、図5に示す第2実施形態のように、回転側凹み部14のコーナー部21が傾斜面とされていてもよい。また、図6に示す第3実施形態のように、回転側凹み部14の底面が断面円弧形状であってもよい。
 さらに、図7に示す第4実施形態のように回転側凹み部14の底面にローレット加工等によりクロス目または筋目の溝状の凹部22を形成するか、または、図8に示す第5実施形態のように回転側凹み部14の底面に複数の円周溝23を設けて、回転側凹み部14の底面を凹凸面とすることで底面の表面積を大きくしても良い。このように回転側凹み部14の底面の表面積を大きくすることにより、内輪間座5と圧縮エアAとの熱交換が効率良く行われようになり、冷却効果がさらに高まる。
 以上の各実施形態では、転がり軸受1を内輪回転で使用する場合を示したが、外輪回転で使用する場合も、この発明を適用することができる。その場合、例えば内輪3の内周に嵌合する軸(図示せず)が固定部材、外輪2の外周に嵌合するローラ(図示せず)が回転部材である。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…転がり軸受
2…外輪(固定側軌道輪)
3…内輪(回転側軌道輪)
4…外輪間座(固定側間座)
5…内輪間座(回転側間座)
6…ハウジング(固定部材)
7…主軸(回転部材)
11…外輪間座本体(固定側間座本体)
12…潤滑油孔形成部材
31…潤滑油孔
13…固定側凹み部
14…回転側凹み部
15…ノズル孔
15a…出口
22…溝状の凹部
23…円周溝
A…圧縮エア
J…軸受装置

Claims (6)

  1.  転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および前記固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および前記回転側間座が、前記固定部材および前記回転部材のうちの回転部材に設置される軸受装置の冷却構造であって、
     前記固定側間座における前記回転側間座に対向する周面に環状の固定側凹み部が設けられ、かつ前記回転側間座における前記固定側間座に対向する周面において前記固定側凹み部に対向する軸方向位置に環状の回転側凹み部が設けられ、前記固定側凹み部の底面に開口する出口から前記回転側凹み部の底面に向けて圧縮エアを吐出するノズル孔が、前記回転側間座の回転方向の前方へ傾斜して設けられている軸受装置の冷却構造。
  2.  請求項1に記載の軸受装置の冷却構造において、前記回転側凹み部の軸方向長さが、前記ノズル孔の孔径の2倍以上である軸受装置の冷却構造。
  3.  請求項1または請求項2に記載の軸受装置の冷却構造において、前記回転側凹み部の径方向深さが、前記回転側間座の径方向の肉厚の10%ないし50%の範囲内である軸受装置の冷却構造。
  4.  請求項1ないし請求項3のいずれか1項に記載の軸受装置の冷却構造において、前記回転側凹み部の底面にクロス目または筋目の溝状の凹部が形成された軸受装置の冷却構造。
  5.  請求項1ないし請求項3のいずれか1項に記載の軸受装置の冷却構造において、前記回転側凹み部の底面に複数の円周溝が設けられた軸受装置の冷却構造。
  6.  請求項1ないし請求項5のいずれか1項に記載の軸受装置の冷却構造において、前記固定側間座は、前記ノズル孔が形成された固定側間座本体と、前記転がり軸受に潤滑油を供給する潤滑油孔が形成された潤滑油孔形成部材とを有し、前記固定側間座本体の周面が前記固定側凹み部の前記底面であり、かつ前記潤滑油孔形成部材の側面が前記固定側凹み部の側壁面である軸受装置の冷却構造。
PCT/JP2017/032099 2016-09-09 2017-09-06 軸受装置の冷却構造 WO2018047859A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017004530.4T DE112017004530T5 (de) 2016-09-09 2017-09-06 Kühlstruktur für eine Lagervorrichtung
KR1020197008868A KR102448407B1 (ko) 2016-09-09 2017-09-06 베어링 장치의 냉각 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176547A JP6740062B2 (ja) 2016-09-09 2016-09-09 軸受装置の冷却構造
JP2016-176547 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047859A1 true WO2018047859A1 (ja) 2018-03-15

Family

ID=61562314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032099 WO2018047859A1 (ja) 2016-09-09 2017-09-06 軸受装置の冷却構造

Country Status (4)

Country Link
JP (1) JP6740062B2 (ja)
KR (1) KR102448407B1 (ja)
DE (1) DE112017004530T5 (ja)
WO (1) WO2018047859A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365369A (zh) * 2018-12-25 2020-07-03 东芝三菱电机产业系统株式会社 轴承装置
CN112673186A (zh) * 2018-09-13 2021-04-16 Ntn株式会社 轴承装置的冷却构造及机床的主轴装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109707749B (zh) * 2018-12-07 2021-07-09 广州市昊志机电股份有限公司 一种轴承定向空气冷却装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062617A (ja) * 2012-09-24 2014-04-10 Ntn Corp 軸受装置の冷却構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161375A (ja) 1998-11-26 2000-06-13 Matsuura Machinery Corp 回転主軸冷却構造
JP6385089B2 (ja) 2014-03-22 2018-09-05 Ntn株式会社 軸受装置の冷却構造
JP2016176547A (ja) 2015-03-20 2016-10-06 Nok株式会社 ガスケット及び密封装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062617A (ja) * 2012-09-24 2014-04-10 Ntn Corp 軸受装置の冷却構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673186A (zh) * 2018-09-13 2021-04-16 Ntn株式会社 轴承装置的冷却构造及机床的主轴装置
CN111365369A (zh) * 2018-12-25 2020-07-03 东芝三菱电机产业系统株式会社 轴承装置
CN111365369B (zh) * 2018-12-25 2021-12-21 东芝三菱电机产业系统株式会社 轴承装置

Also Published As

Publication number Publication date
DE112017004530T5 (de) 2019-05-29
KR102448407B1 (ko) 2022-09-27
JP2018040469A (ja) 2018-03-15
JP6740062B2 (ja) 2020-08-12
KR20190044095A (ko) 2019-04-29

Similar Documents

Publication Publication Date Title
WO2015146569A1 (ja) 軸受装置の冷却構造
JP6144024B2 (ja) 軸受装置の冷却構造
JP6206616B2 (ja) スピンドル装置及び工作機械
WO2013002252A1 (ja) 転がり軸受
WO2018047859A1 (ja) 軸受装置の冷却構造
JP6013112B2 (ja) 軸受装置の冷却構造
JP6050072B2 (ja) 軸受装置の冷却構造
JP6385089B2 (ja) 軸受装置の冷却構造
JP2008002659A (ja) 高速回転用単列円筒ころ軸受
JP6609003B2 (ja) 軸受装置の冷却構造
JP6385090B2 (ja) 軸受装置の冷却構造
WO2018074375A1 (ja) 軸受装置の冷却構造
WO2018181032A1 (ja) 軸受装置の冷却構造
WO2019073911A1 (ja) 軸受装置の冷却構造
JP7011439B2 (ja) 軸受装置の冷却構造
JP6983029B2 (ja) 軸受装置の冷却構造
JP6138979B2 (ja) 転がり軸受
JP7033518B2 (ja) アンギュラ玉軸受およびその保持器
WO2018181033A1 (ja) 軸受装置の冷却構造
EP3851692B1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP2008082500A (ja) 転がり軸受の潤滑装置
JP2020041647A (ja) 軸受装置の冷却構造
JP2008082501A (ja) 転がり軸受の潤滑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008868

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848797

Country of ref document: EP

Kind code of ref document: A1