WO2018047609A1 - Method for processing developer waste liquid - Google Patents
Method for processing developer waste liquid Download PDFInfo
- Publication number
- WO2018047609A1 WO2018047609A1 PCT/JP2017/029665 JP2017029665W WO2018047609A1 WO 2018047609 A1 WO2018047609 A1 WO 2018047609A1 JP 2017029665 W JP2017029665 W JP 2017029665W WO 2018047609 A1 WO2018047609 A1 WO 2018047609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waste liquid
- processing
- meth
- coagulant
- treatment step
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
Definitions
- the present invention relates to a processing method for developing waste liquid, and more particularly, to a processing method for developing waste liquid obtained by developing a flexographic printing plate precursor using an aqueous developer.
- Various development methods for printing plates are known. For example, in a development method in which development is performed using an aqueous developer containing water as a main component, the printing plate is immersed in an aqueous developer, and a brush or the like. Development is carried out by washing out an uncured resin in an aqueous developer. Since the developing waste liquid contains uncured unwashed resin and the like, it is known to perform treatment using a flocculant called a flocculant.
- Patent Document 1 discloses that “a photosensitive film having a thin film layer containing at least one ionic hydrophilic group and an amphoteric metal represented by the following formulas (a), (b), (c), (d), and (e): A method for treating a waste liquid in which an uncured resin plate is washed and developed, and comprising mixing and adding a polymeric cationic floc agent, a cationic inorganic floc agent and an inorganic alkali metal salt to the waste liquid Waste liquid treatment method for conductive resin plates.
- an object of the present invention is to provide a processing method for developing waste liquid that is excellent in removing suspended substances.
- the present inventors have found that a first processing step of adding an inorganic coagulant and an organic coagulant to the development waste liquid is performed simultaneously with the first processing step or the first processing step.
- the present invention was completed by finding that it was excellent in removal of suspended solids by performing a treatment having a second treatment step of adding a flocculant after the treatment step. That is, it has been found that the above-described problem can be achieved by the following configuration.
- a first treatment step of adding an inorganic coagulant and an organic coagulant For development waste liquid containing uncured resin removed by development, A first treatment step of adding an inorganic coagulant and an organic coagulant; A second treatment step in which a flocculant is added simultaneously with the first treatment step or after the first treatment step; A processing method for a developing waste solution having [2] The method for processing a developing waste liquid according to [1], further including a third processing step of adding an adsorbent after the second processing step. [3] The method for processing a developing waste liquid according to [2], wherein the adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g.
- [4] The processing method of the development waste liquid according to [2] or [3], wherein the adsorbent is activated carbon.
- [5] The processing method of the developing waste liquid according to any one of [1] to [4], wherein the addition amount of the flocculant is 5 to 50% by mass of the addition amount of the organic coagulant.
- [6] The processing method of the developing waste liquid according to any one of [1] to [5], wherein the inorganic coagulant is a sulfuric acid band.
- [8] The processing method of the development waste liquid according to any one of [1] to [7], wherein the flocculant is a cationic flocculant.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- the developing waste liquid processing method of the present invention (hereinafter also referred to as “the waste liquid processing method of the present invention”) is an inorganic coagulant and an organic coagulant for developing waste liquid containing uncured resin removed by development.
- the first processing step of adding the coagulant and the second processing step of adding the flocculant at the same time as the first processing step or after the first processing step.
- the waste liquid processing method of this invention is a method which has the 4th process process which adds the 3rd process process and / or pH adjuster which add an adsorbent after a 2nd process process.
- the first treatment step for adding the inorganic coagulant and the organic coagulant and the second treatment step for adding the flocculant simultaneously with the first treatment step or after the first treatment step. It is excellent in removal of suspended solids. The reason for this is not clear in detail, but is estimated as follows. That is, by using an inorganic coagulant and an organic coagulant in the first treatment step, the surface charge of the suspended matter caused by the uncured resin contained in the development waste liquid is neutralized, and intermolecular force (Vandel) It is thought that it was condensed due to (Warls force).
- Vandel intermolecular force
- the use of the flocculant in the second treatment step allows the aggregated suspended substances to aggregate or crosslink to form a large aggregate (floc), thereby improving the removal of suspended substances.
- the developing waste liquid, the first processing step and the second processing step, and the optional third processing and fourth processing step will be described in detail below.
- the development waste liquid to be processed in the waste liquid treatment method of the present invention is not particularly limited as long as it is a development waste liquid containing an uncured resin removed by development, but is conventionally known for forming a general photosensitive resin layer.
- a developing waste liquid containing the photosensitive resin composition can be a processing target.
- the waste liquid treatment method of the present invention preferably treats the development waste liquid when developed by the LAM (Laser Ablation Masking) method, the uncured resin removed by the development is a photosensitive resin composition. It is preferable that it is the photosensitive resin contained.
- such a photosensitive resin composition includes, for example, a composition containing a polymerization initiator, a polymerizable compound, a polymerization inhibitor, and a plasticizer.
- the development waste liquid to be processed in the waste liquid processing method of the invention may contain a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer, and the like in addition to the uncured resin.
- Examples of the uncured resin contained in the developing waste liquid include a water-dispersible latex, a rubber component, a polymer component, and an uncrosslinked ethylenically unsaturated compound (polymer).
- Examples of the water dispersible latex include polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, Water-dispersed latex polymers such as vinylpyridine copolymer latex, butyl polymer latex, thiocol polymer latex, and acrylate polymer latex, and other components such as acrylic acid and methacrylic acid are co-polymerized.
- Examples thereof include a polymer obtained by polymerization.
- the rubber component include butadiene rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyurethane rubber, silicon rubber, butyl rubber, ethylene-propylene rubber, and epichlorohydrin rubber.
- the polymer component may be hydrophilic or hydrophobic, and specifically includes polyamide resin, unsaturated polyester resin, acrylic resin, polyurethane resin, polyester resin, polyvinyl alcohol resin, and the like.
- Examples of the ethylenically unsaturated compound (polymer) include a (meth) acryl-modified polymer having an ethylenically unsaturated bond in the molecule.
- Examples of the (meth) acryl-modified polymer include (meth) acryl-modified butadiene rubber and (meth) acryl-modified nitrile rubber.
- (meth) acryl is a notation representing acryl or methacryl
- “(meth) acrylate” described later is a notation representing acrylate or methacrylate.
- the concentration of the uncured resin contained in the developing waste liquid is not particularly limited, but is preferably 5% by mass or less, and more preferably 2.5% by mass or less.
- the polymerization initiator that may be contained in the developing waste liquid is preferably a photopolymerization initiator.
- the photopolymerization initiator include alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Among these, alkylphenones are preferable. .
- photopolymerization initiators of alkylphenones include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy And -2-methyl-1-phenyl-propan-1-one.
- the concentration of the polymerization initiator that may be contained in the developing waste liquid is not particularly limited, but is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
- Examples of the polymerizable compound that may be contained in the developing waste liquid include ethylenically unsaturated compounds corresponding to so-called monomer components other than the above-described ethylenically unsaturated compounds (polymers).
- the ethylenically unsaturated compound may be a compound having one ethylenically unsaturated bond or a compound having two or more ethylenically unsaturated bonds.
- Specific examples of the compound having one ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-chloro-2.
- -(Meth) acrylate having a hydroxyl group such as hydroxypropyl (meth) acrylate, ⁇ -hydroxy- ⁇ '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; cyclohexyl (meth) acrylate, etc.
- hydroxyl group such as hydroxypropyl (meth) acrylate, ⁇ -hydroxy- ⁇ '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acryl
- Cycloalkyl (meth) acrylate halogenated alkyl (meth) acrylates such as chloroethyl (meth) acrylate and chloropropyl (meth) acrylate; Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, etc.
- Alkoxyalkyl (meth) acrylates phenoxyalkyl (meth) acrylates such as phenoxyethyl acrylate and nonylphenoxyethyl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxydipropylene glycol ( Alkoxyalkylene glycol (meth) acrylates such as meth) acrylate; 2,2-dimethylaminoethyl (meth) acrylate DOO, 2,2-diethylaminoethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate.
- ethylenically unsaturated compound having two or more ethylenically unsaturated bonds include alkyldiol di (meth) acrylates such as 1,9-nonanediol di (meth) acrylate; diethylene glycol di (meth) acrylate Polyethylene glycol di (meth) acrylate such as; Polypropylene glycol di (meth) acrylate such as dipropylene glycol di (meth) acrylate; Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Compounds with ethylenically unsaturated bonds and active hydrogen, such as unsaturated carboxylic acids and unsaturated alcohols, to acrylate, glycerol tri (meth) acrylate, ethylene glycol diglycidyl ether Multivalent (meth) acrylate obtained by alkyl
- the concentration of the polymerizable compound that may be contained in the developing waste liquid is not particularly limited, but is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less.
- polymerization inhibitor examples include, for example, hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4 4,2'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, and the like.
- the concentration of the polymerization inhibitor that may be contained in the developing waste liquid is not particularly limited, but is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less.
- plasticizer examples include liquid rubber, oil, polyester, and phosphoric acid compounds.
- liquid rubber examples include liquid polybutadiene, liquid polyisoprene, and those modified with maleic acid or an epoxy group.
- oil examples include paraffin, naphthene and aroma.
- polyester examples include adipic acid-based polyester.
- phosphoric acid compounds include phosphate esters.
- the concentration of the plasticizer that may be contained in the developing waste liquid is not particularly limited, but is preferably 2% by mass or less, and more preferably 1% by mass or less.
- the developer contained in the developer waste solution is preferably an aqueous developer, and may be a solution composed only of water, or an aqueous solution containing 50% by mass or more of water and containing a water-soluble compound. It may be.
- water-soluble compounds include surfactants, acids, and alkalis.
- the surfactant examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
- an anionic surfactant is preferable.
- Specific examples of the anionic surfactant include aliphatic carboxylates such as sodium laurate and sodium oleate; higher alcohol sulfates such as sodium lauryl sulfate, sodium cetyl sulfate and sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate; polyoxyethylene alkyl allyl ether sulfate salts such as sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate; Alkyl sulfonates such as alkyl diphenyl ether disulfonate, sodium dodecyl sulfon
- nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether, and polyoxyethylene nonyl phenyl ether and polyoxyethylene octylphenyl ether.
- Ethylene alkyl phenyl ethers polyoxyethylene polyoxypropylene glycols, polyethylene glycol monostearate, polyethylene glycol monooleate, mono- and diesters of polyethylene glycol with fatty acids such as polyethylene glycol dilaurate, sorbitan monolaurate and sorbitan monooleate
- Fatty acids such as sorbitan esters, polyoxyethylene sorbitan monolaurate and reoxyethylene sorbita Esters of fatty acids and sorbitan polyoxyethylene adducts of sorbitan such as monocytearate and polyoxyethylene sorbitan trilaurate, esters of fatty acids and sorbitol such as sorbite monopartimitate and sorbit dilaurate, polyoxyethylene sorbite mono Esters of sorbite polyoxyethylene adducts such as stearate and polyoxyethylene sorbitdiolate with fatty acids, esters of fatty acids such as pentaery
- cationic surfactant examples include primary and secondary amine salts such as monostearyl ammonium chloride, distearyl ammonium chloride, and tristearyl ammonium chloride, stearyl trimethyl ammonium chloride, and distearyl dimethyl ammonium.
- Quaternary ammonium salts such as chloride, stearyldimethylbenzylammonium chloride, alkylpyridinium salts such as N-cetylpyridinium chloride and N-stearylpyridinium chloride, N, N dialkylmorpholinium salts, polyethylene polyamine fatty acid amide salts, aminoethylethanol Acetates of urea compounds of amides of stearic acid and 2-alkyl-1-hydroxyethylimidazolinium chloride Etc. The. These may be used alone or in combination of two or more.
- amphoteric surfactants include amino acid types such as sodium laurylamine propionate, carboxybetaine types such as lauryl dimethyl betaine and lauryl dihydroxyethyl betaine, and sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine.
- amino acid types such as sodium laurylamine propionate
- carboxybetaine types such as lauryl dimethyl betaine and lauryl dihydroxyethyl betaine
- sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine.
- betaine type imidazolinium betaine type, and restin. These may be used alone or in combination of two or more.
- the acid include inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid.
- the alkali include lithium hydroxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydrogen carbonate, calcium carbonate, and the like.
- the first processing step of the waste liquid treatment method of the present invention is a step of adding an inorganic coagulant and an organic coagulant to the above-described development waste liquid.
- the inorganic coagulant has an action of forming small aggregates (micro flocs) by floating intermolecular force (van der Waals force) from suspended substances contained in the development waste liquid.
- Organic coagulant is an organic coagulant that acts to form small aggregates (micro flocs) by floating intermolecular force (van der Waals force) caused by uncured resin contained in development waste liquid.
- This is a coagulant of the system, and is generally a polymer having a relatively low molecular weight with a molecular weight of 10,000 or more and less than one million.
- the order of addition of the inorganic coagulant and the organic coagulant in the first treatment step is not particularly limited, and the inorganic coagulant and the organic coagulant may be added simultaneously. You may add in order of an agent, and you may add in order of an organic type coagulant and an inorganic type coagulant.
- the inorganic coagulant include, for example, sulfate band (aluminum sulfate), polyaluminum chloride (PAC), ferrous sulfate, ferric sulfate, ferric chloride, aluminum sulfate, and sodium aluminate. , Activated silicic acid, aluminum hydroxide and the like, and these may be used alone or in combination of two or more.
- sulfate band aluminum sulfate
- PAC polyaluminum chloride
- ferrous sulfate ferric sulfate
- ferric chloride ferric chloride
- aluminum sulfate aluminum sulfate
- sodium aluminate sodium aluminate
- a sulfuric acid band is preferable because the amount of phosphorus discharged can be sufficiently reduced even when the development waste liquid contains a phosphoric acid compound derived from a plasticizer.
- aluminum phosphate is taken into micro flocs by the reaction shown by the following formula by using a sulfuric acid band.
- biochemical oxygen demand Biochemical Oxygen Demand: BOD
- chemical oxygen demand COD
- iodine consumption can also be reduced.
- the amount of the inorganic coagulant added is preferably 4000 to 6000 ppm, more preferably 4500 to 5500 ppm, and still more preferably 4000 to 5000 ppm with respect to 1% by mass of the plasticizer.
- Organic coagulant it is preferable to use a cationic coagulant among conventionally known organic coagulants.
- the cationic coagulant include polyamine, polyethyleneimine, polyvinylamine, polyetheramide, polyhydroxypropyldimethylammonium chloride, polydiallyldimethylammonium chloride, melamic acid colloid, and dicyandiamide. These may be used alone or in combination of two or more.
- the addition amount of the organic coagulant is preferably 500 to 1500 ppm, more preferably 750 to 1250 ppm, and still more preferably 900 to 1100 ppm with respect to 2.5% by mass of the uncured resin. .
- the amount of aggregate can be reduced by adding both an inorganic coagulant and an organic coagulant in the first treatment step. This is presumably because the organic coagulant has a higher coagulation ability than the inorganic coagulant, so that the coagulation reaction can be performed with a small addition amount.
- the first inorganic coagulant and the organic coagulant may be added in the form of powder or solution, but are preferably added in solution.
- the second treatment step of the waste liquid treatment method of the present invention is a step of adding a flocculant simultaneously with the first treatment step described above or after the first treatment step.
- “simultaneous with the first treatment step” means that the first treatment step and the second treatment step are simultaneous, that is, the inorganic coagulant, the organic coagulant and the coagulant are added simultaneously. That is, in the waste liquid treatment method of the present invention, the order of addition of the inorganic coagulant, the organic coagulant and the coagulant is not particularly limited. For example, the coagulant is more than the addition of the inorganic coagulant and the organic coagulant. Alternatively, it may be added before.
- the flocculant is a flocculant having an action of collecting small aggregates (micro flocs) condensed by intermolecular force to form large aggregates (floc), and generally has a molecular weight of 2 million or more 2 It is a polymer with a relatively large molecular weight of less than 10 million.
- the flocculant include nonionic flocculants such as polyacrylamide; anionic flocculants such as acrylamide / sodium acrylate copolymer and acrylamide / acrylamido-2-methylpropanesulfonic acid soda copolymer.
- a cationic flocculant such as alkylamino methacrylate quaternary salt polymer, alkylamino acrylate quaternary salt / acrylamide copolymer, polyamidine hydrochloride, acrylamide / acrylic acid / alkylamino (meth) acrylate quaternary salt copolymer; Is mentioned.
- a cationic flocculant is preferable because of its high dissolution rate in the waste liquid.
- the addition amount of the flocculant is preferably 5 to 50% by mass, more preferably 15 to 35% by mass of the addition amount of the organic coagulant described above, because of the excellent filterability of the floc formed. preferable.
- the amount of the flocculant added is preferably 10 to 100 ppm, more preferably 30 to 70 ppm, and still more preferably 40 to 60 ppm with respect to 2.5% by mass of the uncured resin. .
- the flocculant may be added in any form of powder or solution, but is preferably added in solution.
- the waste liquid treatment method of the present invention can also remove n-hexane extract substances derived from polymerization initiators (eg, alkylphenones) and phenols derived from polymerization inhibitors (eg, hydroquinones). For reasons, it is preferable to have a third treatment step of adding an adsorbent after the second treatment step.
- polymerization initiators eg, alkylphenones
- phenols derived from polymerization inhibitors eg, hydroquinones
- the adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g because the n-hexane extractant and phenols described above are easily adsorbed and the removal efficiency from the development waste liquid is improved. Is preferred.
- the “BET specific surface area” refers to a measured value measured using a BET method based on nitrogen adsorption in accordance with a test method defined in JIS K1477: 2007. Examples of such a porous material include activated carbon, carbon black, and carbon nanotube, among which activated carbon is preferable.
- the waste liquid treatment method of the present invention has a fourth treatment step of adding a pH adjuster after the second treatment step (after the third treatment step when the third treatment step is provided).
- a pH adjuster include, for example, acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid; water Lithium oxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium bicarbonate, calcium carbonate, sodium borate, sodium silicate, sodium metasilicate, sodium succinate, sodium acetate Alkalis such as can be used.
- Example 1 ⁇ Preparation of development waste liquid> Using a UV exposure machine Concept 302 ECDLF (manufactured by Glunz & Jensen) for the photosensitive resin original plate (FLENEX FW-L manufactured by FUJIFILM Global Graphic Systems Co., Ltd.), exposure is performed for 10 seconds at an energy of 80 W from the back side of the original plate. The back exposure was carried out. A developer comprising 0.5% of Finish Power & Pure Powder SP (manufactured by Rekit Benkieser Japan Co., Ltd.) and a washing machine SB-926 (manufactured by GSTR Co., Ltd.) is applied to the original exposed on the back side. The uncured resin was removed by washing (developing) with a brush for 12 minutes under the condition of 50 ° C. to prepare a development waste liquid (solid content concentration: 1% by mass) containing the uncured resin.
- ECDLF manufactured by Glunz & Jensen
- a powdered sulfuric acid band manufactured by Asada Chemical Industry Co., Ltd.
- polydiallyldimethylammonium chloride as an organic coagulant (FK Flock Z series, manufactured by Fuji Kasui Kogyo Co., Ltd.) in a 0.5% by mass aqueous solution is added to 20 g, so that the development waste solution 500 g
- the polydiallyldimethylammonium chloride concentration was 200 ppm and the mixture was stirred for 3 minutes (first treatment step).
- 12.5 g of an alkylamino acrylate quaternary salt / acrylamide copolymer (Sunfloc CE series, manufactured by Sanyo Chemical Industries, Ltd.) as a flocculant as a flocculant prepared in a 0.2 mass% aqueous solution.
- the concentration of the alkylaminoacrylate quaternary salt / acrylamide copolymer was adjusted to 50 ppm with respect to 500 g of the developing waste solution, and the mixture was stirred for 3 minutes (second processing step), and formation of aggregates was confirmed.
- 5000 ppm of powdered activated carbon active charcoal (registered trademark) ⁇ for water> KD-GW, BET specific surface area: 1329 m 2 / g, manufactured by UES Co., Ltd.
- an adsorbent was added. Stir for 10 minutes (third treatment step). Then, the filtrate, the aggregate, and activated carbon were isolate
- Example 2 and 3 The solid content concentration of the developing waste liquid used is changed to the value shown in Table 1 below, and the addition amount of polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer is changed to the amount shown in Table 1 below. Except for the above, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 1. The solid content concentration was adjusted by changing the number of developed images.
- Example 4 In the first treatment step and the second treatment step, the addition method is a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are added in this order, and the mixture is stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
- Example 5 In the first treatment step and the second treatment step, polydiallyldimethylammonium chloride, sulfate band and alkylaminoacrylate quaternary salt / acrylamide copolymer were added in this order, and the mixture was stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
- Example 6 In the first treatment step and the second treatment step, after adding sulfuric acid band and stirring for 3 minutes, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes. The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
- Example 7 In the first treatment step and the second treatment step, after adding polydiallyldimethylammonium chloride and stirring for 3 minutes in the first treatment step, a sulfuric acid band and an alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes.
- the filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
- Example 8 In the first treatment step and the second treatment step, except that the addition order was changed to a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer were added simultaneously and stirred for 10 minutes. The filtrate, aggregates and activated carbon were separated by the same method as in Example 3.
- Example 9 The filtrate and the aggregate were separated by the same method as in Example 3 except that the activated carbon was not added and the third treatment step was not performed.
- Example 10 In the first treatment step, the addition amount of the sulfuric acid band is changed to the amount shown in Table 1 below, and the pH adjusting agents shown in Table 1 and Table 2 below as the fourth treatment step are shown in Table 1 and Table 2 below.
- the filtrate was separated from the agglomerates and activated carbon by the same method as in Example 3 except that it was added in the same manner as in Example 3.
- Example 11 The filtrate and the aggregate were separated by the same method as in Example 10 except that the activated carbon was not added and the third treatment step was not performed.
- Example 12 The filtrate, the aggregate and activated carbon were separated by the same method as in Example 10 except that formic acid was used in place of citric acid as a pH adjuster.
- Example 13 The filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that polyaluminum chloride (PAC) was used as the inorganic coagulant instead of the sulfuric acid band.
- PAC polyaluminum chloride
- Example 14 The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that polyamine was used as the organic coagulant instead of polydiallyldimethylammonium chloride.
- Example 15 The filtrate, the agglomerate, and the activated carbon were obtained by the same method as in Example 3 except that an alkylamino methacrylate quaternary salt / acrylamide copolymer was used instead of the alkylamino acrylate quaternary salt / acrylamide copolymer. separated.
- Example 16 In the same manner as in Example 3, except that zero light (high silica zeolite HSZ-900, BET specific surface area: 590 m 2 / g, manufactured by Tosoh Corporation) was used as the adsorbent instead of activated carbon, Aggregates and zeolites were separated.
- zero light high silica zeolite HSZ-900, BET specific surface area: 590 m 2 / g, manufactured by Tosoh Corporation
- n-hexane extract (dynamic) The obtained filtrate was measured for the amount of n-hexane extractable substance (dynamic) according to S49 Ring No. 64, Appendix 4, and evaluated according to the following criteria. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that there is little quantity of N-hexane extract substance (dynamic). 3 points: n-hexane extract substance (dynamic) amount less than 15 mg / L 2 points: n-hexane extract substance (dynamic) amount 15 mg / L or more and less than 30 mg / L 1 point: n-hexane extract substance (dynamic) amount 30mg / L or more
- Example 3 and Examples 4 to 8 From the comparison between Example 3 and Examples 4 to 8, the addition order of the inorganic coagulant, the organic coagulant and the coagulant is the same as that of the inorganic coagulant and the organic coagulant. It was found that there was no effect on the removal of the excellent suspended solids except for the embodiment added to. In addition, from the comparison between Example 3 and Example 9, it was found that phenols and n-hexane extract material can also be removed by adding an adsorbent in the third treatment step. Furthermore, it was found from the comparison between Examples 3 and 9 and Examples 10 to 12 that the pH became more than 6.5 and less than 7.5 by adding a pH adjuster, resulting in better water quality.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
The present invention addresses the problem of providing a method for processing a developer waste liquid, which is excellent in terms of removal of floating materials. A method for processing a developer waste liquid according to the present invention comprises: a first processing step wherein an inorganic coagulating agent and an organic coagulating agent are added to a developer waste liquid that contains an uncured resin removed by development; and a second processing step wherein a flocculant is added simultaneously with or after the first processing step.
Description
本発明は、現像廃液の処理方法に関し、特に、水系現像液を用いてフレキソ印刷版原版を現像した現像廃液の処理方法に関する。
The present invention relates to a processing method for developing waste liquid, and more particularly, to a processing method for developing waste liquid obtained by developing a flexographic printing plate precursor using an aqueous developer.
印刷版の現像方法としては各種方法が知られているが、例えば、水を主成分とする水系現像液を用いて現像を行う現像方法では、水系現像液中に印刷版を浸漬し、ブラシなどで水系現像液中に未硬化樹脂などを洗い出すことにより現像が行われている。
現像廃液には、洗い出された未硬化樹脂などが含まれるため、フロック剤とも呼ばれる凝集剤を用いた処理を施すことが知られている。 Various development methods for printing plates are known. For example, in a development method in which development is performed using an aqueous developer containing water as a main component, the printing plate is immersed in an aqueous developer, and a brush or the like. Development is carried out by washing out an uncured resin in an aqueous developer.
Since the developing waste liquid contains uncured unwashed resin and the like, it is known to perform treatment using a flocculant called a flocculant.
現像廃液には、洗い出された未硬化樹脂などが含まれるため、フロック剤とも呼ばれる凝集剤を用いた処理を施すことが知られている。 Various development methods for printing plates are known. For example, in a development method in which development is performed using an aqueous developer containing water as a main component, the printing plate is immersed in an aqueous developer, and a brush or the like. Development is carried out by washing out an uncured resin in an aqueous developer.
Since the developing waste liquid contains uncured unwashed resin and the like, it is known to perform treatment using a flocculant called a flocculant.
例えば、特許文献1には、「下記式(a)、(b)、(c)、(d)、(e)で示される少なくとも一つのイオン性親水基および両性金属を含む薄膜層を有する感光性樹脂版の未硬化樹脂を洗出し現像した廃液の処理方法であって、廃液に高分子カチオン性フロック剤、カチオン性無機フロック剤および無機アルカリ金属塩を混合・添加することを特徴とする感光性樹脂版の廃液処理方法。
(a)-COOM
(b)-SO3M
(c)-SO4M
(d)-nPO(OM)n
(e)(O)3-nPO(OM)n
(Mは水素原子、周期表I、II、III族元素、アミン又はアンモニウム基を示し、nは1または2である。)」が記載されている([請求項1])。 For example, Patent Document 1 discloses that “a photosensitive film having a thin film layer containing at least one ionic hydrophilic group and an amphoteric metal represented by the following formulas (a), (b), (c), (d), and (e): A method for treating a waste liquid in which an uncured resin plate is washed and developed, and comprising mixing and adding a polymeric cationic floc agent, a cationic inorganic floc agent and an inorganic alkali metal salt to the waste liquid Waste liquid treatment method for conductive resin plates.
(A) -COOM
(B) -SO 3 M
(C) -SO 4 M
(D) -nPO (OM) n
(E) (O) 3 -nPO (OM) n
(M represents a hydrogen atom, periodic table I, II, group III element, amine, or ammonium group, and n is 1 or 2.) ([Claim 1]).
(a)-COOM
(b)-SO3M
(c)-SO4M
(d)-nPO(OM)n
(e)(O)3-nPO(OM)n
(Mは水素原子、周期表I、II、III族元素、アミン又はアンモニウム基を示し、nは1または2である。)」が記載されている([請求項1])。 For example, Patent Document 1 discloses that “a photosensitive film having a thin film layer containing at least one ionic hydrophilic group and an amphoteric metal represented by the following formulas (a), (b), (c), (d), and (e): A method for treating a waste liquid in which an uncured resin plate is washed and developed, and comprising mixing and adding a polymeric cationic floc agent, a cationic inorganic floc agent and an inorganic alkali metal salt to the waste liquid Waste liquid treatment method for conductive resin plates.
(A) -COOM
(B) -SO 3 M
(C) -SO 4 M
(D) -nPO (OM) n
(E) (O) 3 -nPO (OM) n
(M represents a hydrogen atom, periodic table I, II, group III element, amine, or ammonium group, and n is 1 or 2.) ([Claim 1]).
本発明者らは、特許文献1に記載された廃液処理方法について検討を行ったところ、浮遊物質(suspended solid:SS)の除去に改善の余地があることが分かった。
The present inventors have examined the waste liquid treatment method described in Patent Document 1, and found that there is room for improvement in removal of suspended solids (SS).
そこで、本発明は、浮遊物質の除去に優れる現像廃液の処理方法を提供することを課題とする。
Therefore, an object of the present invention is to provide a processing method for developing waste liquid that is excellent in removing suspended substances.
本発明者らは、上記課題を達成すべく鋭意検討した結果、現像廃液に対して、無機系凝結剤および有機系凝結剤を添加する第1処理工程と、第1処理工程と同時または第1処理工程の後に、凝集剤を添加する第2処理工程とを有する処理を施すことにより、浮遊物質の除去に優れることを見出し、本発明を完成させた。
すなわち、以下の構成により上記課題を達成することができることを見出した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a first processing step of adding an inorganic coagulant and an organic coagulant to the development waste liquid is performed simultaneously with the first processing step or the first processing step. The present invention was completed by finding that it was excellent in removal of suspended solids by performing a treatment having a second treatment step of adding a flocculant after the treatment step.
That is, it has been found that the above-described problem can be achieved by the following configuration.
すなわち、以下の構成により上記課題を達成することができることを見出した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a first processing step of adding an inorganic coagulant and an organic coagulant to the development waste liquid is performed simultaneously with the first processing step or the first processing step. The present invention was completed by finding that it was excellent in removal of suspended solids by performing a treatment having a second treatment step of adding a flocculant after the treatment step.
That is, it has been found that the above-described problem can be achieved by the following configuration.
[1] 現像により除去された未硬化樹脂を含む現像廃液に対して、
無機系凝結剤および有機系凝結剤を添加する第1処理工程と、
第1処理工程と同時または第1処理工程の後に、凝集剤を添加する第2処理工程と、
を有する現像廃液の処理方法。
[2] 第2処理工程の後に、吸着剤を添加する第3処理工程を有する、[1]に記載の現像廃液の処理方法。
[3] 吸着剤が、BET比表面積が500~3000m2/gの多孔質材料である、[2]に記載の現像廃液の処理方法。
[4] 吸着剤が、活性炭である、[2]または[3]に記載の現像廃液の処理方法。
[5] 凝集剤の添加量が、有機系凝結剤の添加量の5~50質量%である、[1]~[4]のいずれかに記載の現像廃液の処理方法。
[6] 無機系凝結剤が、硫酸バンドである、[1]~[5]のいずれかに記載の現像廃液の処理方法。
[7] 有機系凝結剤が、カチオン系凝結剤である、[1]~[6]のいずれかに記載の現像廃液の処理方法。
[8] 凝集剤が、カチオン系凝集剤である、[1]~[7]のいずれかに記載の現像廃液の処理方法。 [1] For development waste liquid containing uncured resin removed by development,
A first treatment step of adding an inorganic coagulant and an organic coagulant;
A second treatment step in which a flocculant is added simultaneously with the first treatment step or after the first treatment step;
A processing method for a developing waste solution having
[2] The method for processing a developing waste liquid according to [1], further including a third processing step of adding an adsorbent after the second processing step.
[3] The method for processing a developing waste liquid according to [2], wherein the adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g.
[4] The processing method of the development waste liquid according to [2] or [3], wherein the adsorbent is activated carbon.
[5] The processing method of the developing waste liquid according to any one of [1] to [4], wherein the addition amount of the flocculant is 5 to 50% by mass of the addition amount of the organic coagulant.
[6] The processing method of the developing waste liquid according to any one of [1] to [5], wherein the inorganic coagulant is a sulfuric acid band.
[7] The processing method of the developing waste liquid according to any one of [1] to [6], wherein the organic coagulant is a cationic coagulant.
[8] The processing method of the development waste liquid according to any one of [1] to [7], wherein the flocculant is a cationic flocculant.
無機系凝結剤および有機系凝結剤を添加する第1処理工程と、
第1処理工程と同時または第1処理工程の後に、凝集剤を添加する第2処理工程と、
を有する現像廃液の処理方法。
[2] 第2処理工程の後に、吸着剤を添加する第3処理工程を有する、[1]に記載の現像廃液の処理方法。
[3] 吸着剤が、BET比表面積が500~3000m2/gの多孔質材料である、[2]に記載の現像廃液の処理方法。
[4] 吸着剤が、活性炭である、[2]または[3]に記載の現像廃液の処理方法。
[5] 凝集剤の添加量が、有機系凝結剤の添加量の5~50質量%である、[1]~[4]のいずれかに記載の現像廃液の処理方法。
[6] 無機系凝結剤が、硫酸バンドである、[1]~[5]のいずれかに記載の現像廃液の処理方法。
[7] 有機系凝結剤が、カチオン系凝結剤である、[1]~[6]のいずれかに記載の現像廃液の処理方法。
[8] 凝集剤が、カチオン系凝集剤である、[1]~[7]のいずれかに記載の現像廃液の処理方法。 [1] For development waste liquid containing uncured resin removed by development,
A first treatment step of adding an inorganic coagulant and an organic coagulant;
A second treatment step in which a flocculant is added simultaneously with the first treatment step or after the first treatment step;
A processing method for a developing waste solution having
[2] The method for processing a developing waste liquid according to [1], further including a third processing step of adding an adsorbent after the second processing step.
[3] The method for processing a developing waste liquid according to [2], wherein the adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g.
[4] The processing method of the development waste liquid according to [2] or [3], wherein the adsorbent is activated carbon.
[5] The processing method of the developing waste liquid according to any one of [1] to [4], wherein the addition amount of the flocculant is 5 to 50% by mass of the addition amount of the organic coagulant.
[6] The processing method of the developing waste liquid according to any one of [1] to [5], wherein the inorganic coagulant is a sulfuric acid band.
[7] The processing method of the developing waste liquid according to any one of [1] to [6], wherein the organic coagulant is a cationic coagulant.
[8] The processing method of the development waste liquid according to any one of [1] to [7], wherein the flocculant is a cationic flocculant.
本発明によれば、浮遊物質の除去に優れる現像廃液の処理方法を提供することができる。
According to the present invention, it is possible to provide a processing method for developing waste liquid that is excellent in removing suspended substances.
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
本発明の現像廃液の処理方法(以下、「本発明の廃液処理方法」ともいう。)は、現像により除去された未硬化樹脂を含む現像廃液に対して、無機系凝結剤および有機系凝結剤を添加する第1処理工程と、第1処理工程と同時または第1処理工程の後に、凝集剤を添加する第2処理工程と、をこの順に有する方法である。
また、本発明の廃液処理方法は、第2処理工程の後に、吸着剤を添加する第3処理工程および/またはpH調整剤を添加する第4処理工程を有する方法であることが好ましい。 The developing waste liquid processing method of the present invention (hereinafter also referred to as “the waste liquid processing method of the present invention”) is an inorganic coagulant and an organic coagulant for developing waste liquid containing uncured resin removed by development. In this order, the first processing step of adding the coagulant and the second processing step of adding the flocculant at the same time as the first processing step or after the first processing step.
Moreover, it is preferable that the waste liquid processing method of this invention is a method which has the 4th process process which adds the 3rd process process and / or pH adjuster which add an adsorbent after a 2nd process process.
また、本発明の廃液処理方法は、第2処理工程の後に、吸着剤を添加する第3処理工程および/またはpH調整剤を添加する第4処理工程を有する方法であることが好ましい。 The developing waste liquid processing method of the present invention (hereinafter also referred to as “the waste liquid processing method of the present invention”) is an inorganic coagulant and an organic coagulant for developing waste liquid containing uncured resin removed by development. In this order, the first processing step of adding the coagulant and the second processing step of adding the flocculant at the same time as the first processing step or after the first processing step.
Moreover, it is preferable that the waste liquid processing method of this invention is a method which has the 4th process process which adds the 3rd process process and / or pH adjuster which add an adsorbent after a 2nd process process.
本発明においては、上述した通り、無機系凝結剤および有機系凝結剤を添加する第1処理工程と、第1処理工程と同時または第1処理工程の後に、凝集剤を添加する第2処理工程とを有することにより、浮遊物質の除去に優れる。
この理由は詳細には明らかではないが、およそ以下のとおりと推測される。
すなわち、第1処理工程において無機系凝結剤および有機系凝結剤を用いることにより、現像廃液に含まれている未硬化樹脂に起因する浮遊物質の表面電荷が中和され、分子間力(ファンデルワールス力)により凝結したと考えられる。また、第2処理工程において凝集剤を用いることにより、凝結した浮遊物質が凝集ないし架橋し、大きな集合体(フロック)を形成することが可能となり、浮遊物質の除去が良好になったと考えられる。
以下に、現像廃液、第1処理工程および第2処理工程、ならびに、任意の第3処理および第4処理工程について、詳述する。 In the present invention, as described above, the first treatment step for adding the inorganic coagulant and the organic coagulant, and the second treatment step for adding the flocculant simultaneously with the first treatment step or after the first treatment step. It is excellent in removal of suspended solids.
The reason for this is not clear in detail, but is estimated as follows.
That is, by using an inorganic coagulant and an organic coagulant in the first treatment step, the surface charge of the suspended matter caused by the uncured resin contained in the development waste liquid is neutralized, and intermolecular force (Vandel) It is thought that it was condensed due to (Warls force). In addition, it is considered that the use of the flocculant in the second treatment step allows the aggregated suspended substances to aggregate or crosslink to form a large aggregate (floc), thereby improving the removal of suspended substances.
The developing waste liquid, the first processing step and the second processing step, and the optional third processing and fourth processing step will be described in detail below.
この理由は詳細には明らかではないが、およそ以下のとおりと推測される。
すなわち、第1処理工程において無機系凝結剤および有機系凝結剤を用いることにより、現像廃液に含まれている未硬化樹脂に起因する浮遊物質の表面電荷が中和され、分子間力(ファンデルワールス力)により凝結したと考えられる。また、第2処理工程において凝集剤を用いることにより、凝結した浮遊物質が凝集ないし架橋し、大きな集合体(フロック)を形成することが可能となり、浮遊物質の除去が良好になったと考えられる。
以下に、現像廃液、第1処理工程および第2処理工程、ならびに、任意の第3処理および第4処理工程について、詳述する。 In the present invention, as described above, the first treatment step for adding the inorganic coagulant and the organic coagulant, and the second treatment step for adding the flocculant simultaneously with the first treatment step or after the first treatment step. It is excellent in removal of suspended solids.
The reason for this is not clear in detail, but is estimated as follows.
That is, by using an inorganic coagulant and an organic coagulant in the first treatment step, the surface charge of the suspended matter caused by the uncured resin contained in the development waste liquid is neutralized, and intermolecular force (Vandel) It is thought that it was condensed due to (Warls force). In addition, it is considered that the use of the flocculant in the second treatment step allows the aggregated suspended substances to aggregate or crosslink to form a large aggregate (floc), thereby improving the removal of suspended substances.
The developing waste liquid, the first processing step and the second processing step, and the optional third processing and fourth processing step will be described in detail below.
〔現像廃液〕
本発明の廃液処理方法の処理対象である現像廃液は、現像により除去された未硬化樹脂を含む現像廃液であれば特に限定されないが、一般的な感光性樹脂層を形成するための従来公知の感光性樹脂組成物を含む現像廃液を処理対象とすることができる。
また、本発明の廃液処理方法は、LAM(Laser Ablation Masking)方式で現像した際の現像廃液を処理対象とすることが好ましいため、現像により除去される未硬化樹脂は、感光性樹脂組成物に含まれる感光性樹脂であることが好ましい。
また、このような感光性樹脂組成物としては、感光性樹脂の他に、例えば、重合開始剤、重合性化合物、重合禁止剤、および、可塑剤などを含有する組成物が挙げられるため、本発明の廃液処理方法の処理対象である現像廃液は、未硬化樹脂の他に、重合開始剤、重合性化合物、重合禁止剤、および、可塑剤などを含有していてもよい。 [Development waste liquid]
The development waste liquid to be processed in the waste liquid treatment method of the present invention is not particularly limited as long as it is a development waste liquid containing an uncured resin removed by development, but is conventionally known for forming a general photosensitive resin layer. A developing waste liquid containing the photosensitive resin composition can be a processing target.
In addition, since the waste liquid treatment method of the present invention preferably treats the development waste liquid when developed by the LAM (Laser Ablation Masking) method, the uncured resin removed by the development is a photosensitive resin composition. It is preferable that it is the photosensitive resin contained.
In addition to the photosensitive resin, such a photosensitive resin composition includes, for example, a composition containing a polymerization initiator, a polymerizable compound, a polymerization inhibitor, and a plasticizer. The development waste liquid to be processed in the waste liquid processing method of the invention may contain a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer, and the like in addition to the uncured resin.
本発明の廃液処理方法の処理対象である現像廃液は、現像により除去された未硬化樹脂を含む現像廃液であれば特に限定されないが、一般的な感光性樹脂層を形成するための従来公知の感光性樹脂組成物を含む現像廃液を処理対象とすることができる。
また、本発明の廃液処理方法は、LAM(Laser Ablation Masking)方式で現像した際の現像廃液を処理対象とすることが好ましいため、現像により除去される未硬化樹脂は、感光性樹脂組成物に含まれる感光性樹脂であることが好ましい。
また、このような感光性樹脂組成物としては、感光性樹脂の他に、例えば、重合開始剤、重合性化合物、重合禁止剤、および、可塑剤などを含有する組成物が挙げられるため、本発明の廃液処理方法の処理対象である現像廃液は、未硬化樹脂の他に、重合開始剤、重合性化合物、重合禁止剤、および、可塑剤などを含有していてもよい。 [Development waste liquid]
The development waste liquid to be processed in the waste liquid treatment method of the present invention is not particularly limited as long as it is a development waste liquid containing an uncured resin removed by development, but is conventionally known for forming a general photosensitive resin layer. A developing waste liquid containing the photosensitive resin composition can be a processing target.
In addition, since the waste liquid treatment method of the present invention preferably treats the development waste liquid when developed by the LAM (Laser Ablation Masking) method, the uncured resin removed by the development is a photosensitive resin composition. It is preferable that it is the photosensitive resin contained.
In addition to the photosensitive resin, such a photosensitive resin composition includes, for example, a composition containing a polymerization initiator, a polymerizable compound, a polymerization inhibitor, and a plasticizer. The development waste liquid to be processed in the waste liquid processing method of the invention may contain a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer, and the like in addition to the uncured resin.
<未硬化樹脂>
現像廃液に含まれる未硬化樹脂としては、例えば、水分散性ラテックス、ゴム成分、ポリマー成分、および、未架橋のエチレン性不飽和化合物(重合体)などが挙げられる。
水分散性ラテックスとしては、ポリブタジエンラテックス、天然ゴムラテックス、スチレン-ブタジエン共重合体ラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、ポリクロロプレンラテックス、ポリイソプレンラテックス、ポリウレタンラテックス、メチルメタクリレート-ブタジエン共重合体ラテックス、ビニルピリジン共重合体ラテックス、ブチル重合体ラテックス、チオコール重合体ラテックス、アクリレート重合体ラテックスなどの水分散ラテックスなどの水分散ラテックス重合体やこれら重合体にアクリル酸やメタクリル酸などの他の成分を共重合して得られる重合体等が挙げられる。
ゴム成分としては、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリウレタンゴム、シリコンゴム、ブチルゴム、エチレン-プロピレンゴム、エピクロヒドリンゴム等が挙げられる。
ポリマー成分としては、親水性であっても、疎水性であってもよく、具体的には、ポリアミド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂等が挙げられる。 <Uncured resin>
Examples of the uncured resin contained in the developing waste liquid include a water-dispersible latex, a rubber component, a polymer component, and an uncrosslinked ethylenically unsaturated compound (polymer).
Examples of the water dispersible latex include polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, Water-dispersed latex polymers such as vinylpyridine copolymer latex, butyl polymer latex, thiocol polymer latex, and acrylate polymer latex, and other components such as acrylic acid and methacrylic acid are co-polymerized. Examples thereof include a polymer obtained by polymerization.
Examples of the rubber component include butadiene rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyurethane rubber, silicon rubber, butyl rubber, ethylene-propylene rubber, and epichlorohydrin rubber.
The polymer component may be hydrophilic or hydrophobic, and specifically includes polyamide resin, unsaturated polyester resin, acrylic resin, polyurethane resin, polyester resin, polyvinyl alcohol resin, and the like.
現像廃液に含まれる未硬化樹脂としては、例えば、水分散性ラテックス、ゴム成分、ポリマー成分、および、未架橋のエチレン性不飽和化合物(重合体)などが挙げられる。
水分散性ラテックスとしては、ポリブタジエンラテックス、天然ゴムラテックス、スチレン-ブタジエン共重合体ラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、ポリクロロプレンラテックス、ポリイソプレンラテックス、ポリウレタンラテックス、メチルメタクリレート-ブタジエン共重合体ラテックス、ビニルピリジン共重合体ラテックス、ブチル重合体ラテックス、チオコール重合体ラテックス、アクリレート重合体ラテックスなどの水分散ラテックスなどの水分散ラテックス重合体やこれら重合体にアクリル酸やメタクリル酸などの他の成分を共重合して得られる重合体等が挙げられる。
ゴム成分としては、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリウレタンゴム、シリコンゴム、ブチルゴム、エチレン-プロピレンゴム、エピクロヒドリンゴム等が挙げられる。
ポリマー成分としては、親水性であっても、疎水性であってもよく、具体的には、ポリアミド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂等が挙げられる。 <Uncured resin>
Examples of the uncured resin contained in the developing waste liquid include a water-dispersible latex, a rubber component, a polymer component, and an uncrosslinked ethylenically unsaturated compound (polymer).
Examples of the water dispersible latex include polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, Water-dispersed latex polymers such as vinylpyridine copolymer latex, butyl polymer latex, thiocol polymer latex, and acrylate polymer latex, and other components such as acrylic acid and methacrylic acid are co-polymerized. Examples thereof include a polymer obtained by polymerization.
Examples of the rubber component include butadiene rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyurethane rubber, silicon rubber, butyl rubber, ethylene-propylene rubber, and epichlorohydrin rubber.
The polymer component may be hydrophilic or hydrophobic, and specifically includes polyamide resin, unsaturated polyester resin, acrylic resin, polyurethane resin, polyester resin, polyvinyl alcohol resin, and the like.
エチレン性不飽和化合物(重合体)としては、例えば、エチレン性不飽和結合を分子中に有する(メタ)アクリル変性重合体などを挙げることができる。
(メタ)アクリル変性重合体としては、例えば、(メタ)アクリル変性ブタジエンゴム、(メタ)アクリル変性ニトリルゴムなどを挙げることができる。
本明細書において、「(メタ)アクリル」とは、アクリルまたはメタクリルを表す表記であり、後述する「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを表す表記である。 Examples of the ethylenically unsaturated compound (polymer) include a (meth) acryl-modified polymer having an ethylenically unsaturated bond in the molecule.
Examples of the (meth) acryl-modified polymer include (meth) acryl-modified butadiene rubber and (meth) acryl-modified nitrile rubber.
In this specification, “(meth) acryl” is a notation representing acryl or methacryl, and “(meth) acrylate” described later is a notation representing acrylate or methacrylate.
(メタ)アクリル変性重合体としては、例えば、(メタ)アクリル変性ブタジエンゴム、(メタ)アクリル変性ニトリルゴムなどを挙げることができる。
本明細書において、「(メタ)アクリル」とは、アクリルまたはメタクリルを表す表記であり、後述する「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを表す表記である。 Examples of the ethylenically unsaturated compound (polymer) include a (meth) acryl-modified polymer having an ethylenically unsaturated bond in the molecule.
Examples of the (meth) acryl-modified polymer include (meth) acryl-modified butadiene rubber and (meth) acryl-modified nitrile rubber.
In this specification, “(meth) acryl” is a notation representing acryl or methacryl, and “(meth) acrylate” described later is a notation representing acrylate or methacrylate.
現像廃液に含まれる未硬化樹脂の濃度は特に限定されないが、5質量%以下であることが好ましく、2.5質量%以下であることがより好ましい。
The concentration of the uncured resin contained in the developing waste liquid is not particularly limited, but is preferably 5% by mass or less, and more preferably 2.5% by mass or less.
<重合開始剤>
現像廃液に含んでいてもよい重合開始剤としては、光重合開始剤であることが好ましい。
上記光重合開始剤としては、例えば、アルキルフェノン類、アセトフェノン類、ベンゾインエーテル類、ベンゾフェノン類、チオキサントン類、アントラキノン類、ベンジル類、および、ビアセチル類などが挙げられ、なかでも、アルキルフェノン類が好ましい。
アルキルフェノン類の光重合開始剤としては、具体的には、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、および、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンなどが挙げられる。 <Polymerization initiator>
The polymerization initiator that may be contained in the developing waste liquid is preferably a photopolymerization initiator.
Examples of the photopolymerization initiator include alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Among these, alkylphenones are preferable. .
Specific examples of photopolymerization initiators of alkylphenones include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy And -2-methyl-1-phenyl-propan-1-one.
現像廃液に含んでいてもよい重合開始剤としては、光重合開始剤であることが好ましい。
上記光重合開始剤としては、例えば、アルキルフェノン類、アセトフェノン類、ベンゾインエーテル類、ベンゾフェノン類、チオキサントン類、アントラキノン類、ベンジル類、および、ビアセチル類などが挙げられ、なかでも、アルキルフェノン類が好ましい。
アルキルフェノン類の光重合開始剤としては、具体的には、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、および、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンなどが挙げられる。 <Polymerization initiator>
The polymerization initiator that may be contained in the developing waste liquid is preferably a photopolymerization initiator.
Examples of the photopolymerization initiator include alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Among these, alkylphenones are preferable. .
Specific examples of photopolymerization initiators of alkylphenones include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy And -2-methyl-1-phenyl-propan-1-one.
現像廃液に含んでいてもよい重合開始剤の濃度は特に限定されないが、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。
The concentration of the polymerization initiator that may be contained in the developing waste liquid is not particularly limited, but is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
<重合性化合物>
現像廃液に含んでいてもよい重合性化合物としては、例えば、上述したエチレン性不飽和化合物(重合体)以外のいわゆるモノマー成分に該当するエチレン性不飽和化合物などが挙げられる。 <Polymerizable compound>
Examples of the polymerizable compound that may be contained in the developing waste liquid include ethylenically unsaturated compounds corresponding to so-called monomer components other than the above-described ethylenically unsaturated compounds (polymers).
現像廃液に含んでいてもよい重合性化合物としては、例えば、上述したエチレン性不飽和化合物(重合体)以外のいわゆるモノマー成分に該当するエチレン性不飽和化合物などが挙げられる。 <Polymerizable compound>
Examples of the polymerizable compound that may be contained in the developing waste liquid include ethylenically unsaturated compounds corresponding to so-called monomer components other than the above-described ethylenically unsaturated compounds (polymers).
エチレン性不飽和化合物は、エチレン性不飽和結合を1つ有する化合物であってもよいし、エチレン性不飽和結合を2つ以上有する化合物であってもよい。
The ethylenically unsaturated compound may be a compound having one ethylenically unsaturated bond or a compound having two or more ethylenically unsaturated bonds.
エチレン性不飽和結合を1つ有する化合物としては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、β-ヒドロキシ-β’-(メタ)アクリロイルオキシエチルフタレート等の水酸基を有する(メタ)アクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;クロロエチル(メタ)アクリレート、クロロプロピル(メタ)アクリレート等のハロゲン化アルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;フェノキシエチルアクリレート、ノニルフェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレート;エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシジプロピレングレコール(メタ)アクリレート等のアルコキシアルキレングリコール(メタ)アクリレート;2、2-ジメチルアミノエチル(メタ)アクリレート、2,2-ジエチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等を挙げることができる。
Specific examples of the compound having one ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-chloro-2. -(Meth) acrylate having a hydroxyl group such as hydroxypropyl (meth) acrylate, β-hydroxy-β '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; cyclohexyl (meth) acrylate, etc. Cycloalkyl (meth) acrylate; Halogenated alkyl (meth) acrylates such as chloroethyl (meth) acrylate and chloropropyl (meth) acrylate; Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, etc. Alkoxyalkyl (meth) acrylates; phenoxyalkyl (meth) acrylates such as phenoxyethyl acrylate and nonylphenoxyethyl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxydipropylene glycol ( Alkoxyalkylene glycol (meth) acrylates such as meth) acrylate; 2,2-dimethylaminoethyl (meth) acrylate DOO, 2,2-diethylaminoethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate.
エチレン性不飽和結合を2つ以上有するエチレン性不飽和化合物としては、具体的には、1,9-ノナンジオールジ(メタ)アクリレートなどのアルキルジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレートなどのポリエチレングリコールジ(メタ)アクリレート;ジプロピレングリコールジ(メタ)アクリレートなどのポリプロピレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、エチレングリコールジグリシジルエーテルに不飽和カルボン酸や不飽和アルコール等のエチレン性不飽和結合と活性水素を持つ化合物を付加反応させて得られる多価(メタ)アクリレート;グリシジル(メタ)アクリレート等の不飽和エポキシ化合物とカルボン酸やアミンのような活性水素を有する化合物を付加反応させて得られる多価(メタ)アクリレート;メチレンビス(メタ)アクリルアミド等の多価(メタ)アクリルアミド;ジビニルベンゼン等の多価ビニル化合物;等を挙げることができる。
Specific examples of the ethylenically unsaturated compound having two or more ethylenically unsaturated bonds include alkyldiol di (meth) acrylates such as 1,9-nonanediol di (meth) acrylate; diethylene glycol di (meth) acrylate Polyethylene glycol di (meth) acrylate such as; Polypropylene glycol di (meth) acrylate such as dipropylene glycol di (meth) acrylate; Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Compounds with ethylenically unsaturated bonds and active hydrogen, such as unsaturated carboxylic acids and unsaturated alcohols, to acrylate, glycerol tri (meth) acrylate, ethylene glycol diglycidyl ether Multivalent (meth) acrylate obtained by addition reaction; Polyvalent (meth) acrylate obtained by addition reaction of unsaturated epoxy compound such as glycidyl (meth) acrylate and a compound having active hydrogen such as carboxylic acid and amine A polyvalent (meth) acrylamide such as methylenebis (meth) acrylamide; a polyvalent vinyl compound such as divinylbenzene; and the like.
現像廃液に含んでいてもよい重合性化合物の濃度は特に限定されないが、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。
The concentration of the polymerizable compound that may be contained in the developing waste liquid is not particularly limited, but is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less.
<重合禁止剤>
現像廃液に含んでいてもよい重合禁止剤としては、具体的には、例えば、ハイドロキノンモノメチルエーテル、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4´-チオビス(3-メチル-6-t-ブチルフェノール)、2,2´-メチレンビス(4-メチル-6-t―ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。 <Polymerization inhibitor>
Specific examples of the polymerization inhibitor that may be contained in the developing waste liquid include, for example, hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4 4,2'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, and the like.
現像廃液に含んでいてもよい重合禁止剤としては、具体的には、例えば、ハイドロキノンモノメチルエーテル、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4´-チオビス(3-メチル-6-t-ブチルフェノール)、2,2´-メチレンビス(4-メチル-6-t―ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。 <Polymerization inhibitor>
Specific examples of the polymerization inhibitor that may be contained in the developing waste liquid include, for example, hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4 4,2'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, and the like.
現像廃液に含んでいてもよい重合禁止剤の濃度は特に限定されないが、0.02質量%以下であることが好ましく、0.01質量%以下であることがより好ましい。
The concentration of the polymerization inhibitor that may be contained in the developing waste liquid is not particularly limited, but is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less.
<可塑剤>
現像廃液に含んでいてもよい可塑剤としては、例えば、液状ゴム、オイル、ポリエステル、および、リン酸系化合物などが挙げられる。
液状ゴムとしては、具体的には、例えば、液状のポリブタジエン、液状のポリイソプレン、および、これらをマレイン酸やエポキシ基により変性したものなどが挙げられる。
オイルとしては、具体的には、例えば、パラフィン、ナフテンおよびアロマなどが挙げられる。
ポリエステルとしては、具体的には、例えば、アジピン酸系ポリエステルなどが挙げられる。
リン酸系化合物としては、具体的には、例えば、リン酸エステルなどが挙げられる。 <Plasticizer>
Examples of the plasticizer that may be contained in the developing waste liquid include liquid rubber, oil, polyester, and phosphoric acid compounds.
Specific examples of the liquid rubber include liquid polybutadiene, liquid polyisoprene, and those modified with maleic acid or an epoxy group.
Specific examples of oil include paraffin, naphthene and aroma.
Specific examples of the polyester include adipic acid-based polyester.
Specific examples of phosphoric acid compounds include phosphate esters.
現像廃液に含んでいてもよい可塑剤としては、例えば、液状ゴム、オイル、ポリエステル、および、リン酸系化合物などが挙げられる。
液状ゴムとしては、具体的には、例えば、液状のポリブタジエン、液状のポリイソプレン、および、これらをマレイン酸やエポキシ基により変性したものなどが挙げられる。
オイルとしては、具体的には、例えば、パラフィン、ナフテンおよびアロマなどが挙げられる。
ポリエステルとしては、具体的には、例えば、アジピン酸系ポリエステルなどが挙げられる。
リン酸系化合物としては、具体的には、例えば、リン酸エステルなどが挙げられる。 <Plasticizer>
Examples of the plasticizer that may be contained in the developing waste liquid include liquid rubber, oil, polyester, and phosphoric acid compounds.
Specific examples of the liquid rubber include liquid polybutadiene, liquid polyisoprene, and those modified with maleic acid or an epoxy group.
Specific examples of oil include paraffin, naphthene and aroma.
Specific examples of the polyester include adipic acid-based polyester.
Specific examples of phosphoric acid compounds include phosphate esters.
現像廃液に含んでいてもよい可塑剤の濃度は特に限定されないが、2質量%以下であることが好ましく、1質量%以下であることがより好ましい。
The concentration of the plasticizer that may be contained in the developing waste liquid is not particularly limited, but is preferably 2% by mass or less, and more preferably 1% by mass or less.
<現像液>
現像廃液に含まれる現像液は、水系現像液であることが好ましく、水のみからなる液であってもよく、また、水を50質量%以上含有し、水に可溶な化合物を添加した水溶液であってもよい。
水に可溶な化合物としては、界面活性剤、酸、アルカリなどが挙げられる。 <Developer>
The developer contained in the developer waste solution is preferably an aqueous developer, and may be a solution composed only of water, or an aqueous solution containing 50% by mass or more of water and containing a water-soluble compound. It may be.
Examples of water-soluble compounds include surfactants, acids, and alkalis.
現像廃液に含まれる現像液は、水系現像液であることが好ましく、水のみからなる液であってもよく、また、水を50質量%以上含有し、水に可溶な化合物を添加した水溶液であってもよい。
水に可溶な化合物としては、界面活性剤、酸、アルカリなどが挙げられる。 <Developer>
The developer contained in the developer waste solution is preferably an aqueous developer, and may be a solution composed only of water, or an aqueous solution containing 50% by mass or more of water and containing a water-soluble compound. It may be.
Examples of water-soluble compounds include surfactants, acids, and alkalis.
界面活性剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、および、両性系界面活性剤が挙げられ、なかでも、アニオン系界面活性剤が好ましい。
アニオン性界面活性剤としては、具体的には、ラウリン酸ナトリウム、オレイン酸ナトリウム等の脂肪族カルボン酸塩;ラウリル硫酸エステルナトリウム、セチル硫酸エステルナトリウム、オレイル硫酸エステルナトリウム等の高級アルコール硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ポリオキシエチレンオクチルフェニルエーテル硫酸エステルナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルアリルエーテル硫酸エステル塩;アルキルジフェニルエーテルジスルホン酸塩、ドデシルスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のアルキルスルホン酸塩;アルキルジスルホン酸塩、ドデシルベンゼンスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウム、トリイソプロピルナフタレンスルホン酸ナトリウム等のアルキルアリルスルホン酸塩;ラウリルリン酸モノエステルジナトリウム、ラウリルリン酸ジエステルナトリウム等の高級アルコールリン酸エステル塩;ポリオキシエチレンラウリルエーテルリン酸モノエステルジナトリウム、ポリオキシエチレンラウリルエーテルリン酸ジエステルナトリウム等のポリオキシエチレンアルキルエーテルリン酸エステル塩;等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。なお、具体例としてナトリウム塩を挙げたが、特にナトリウム塩に限定されるものではなく、カルシウム塩、アンモニア塩などでも同様の効果を得ることができる。 Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. Among these, an anionic surfactant is preferable.
Specific examples of the anionic surfactant include aliphatic carboxylates such as sodium laurate and sodium oleate; higher alcohol sulfates such as sodium lauryl sulfate, sodium cetyl sulfate and sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate; polyoxyethylene alkyl allyl ether sulfate salts such as sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate; Alkyl sulfonates such as alkyl diphenyl ether disulfonate, sodium dodecyl sulfonate, sodium dialkyl sulfosuccinate; Alkyl sulfonates such as killed disulfonate, sodium dodecylbenzene sulfonate, sodium dibutyl naphthalene sulfonate, sodium triisopropyl naphthalene sulfonate; higher alcohol phosphates such as disodium lauryl phosphate monosodium lauryl phosphate and sodium lauryl phosphate Ester salts; polyoxyethylene lauryl ether phosphoric acid monoester disodium, polyoxyethylene alkyl ether phosphoric acid ester salts such as sodium polyoxyethylene lauryl ether phosphoric acid diester; and the like. These may be used alone or in combination of two or more. In addition, although the sodium salt was mentioned as a specific example, it is not specifically limited to a sodium salt, The same effect can be acquired also with calcium salt, ammonia salt, etc.
アニオン性界面活性剤としては、具体的には、ラウリン酸ナトリウム、オレイン酸ナトリウム等の脂肪族カルボン酸塩;ラウリル硫酸エステルナトリウム、セチル硫酸エステルナトリウム、オレイル硫酸エステルナトリウム等の高級アルコール硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ポリオキシエチレンオクチルフェニルエーテル硫酸エステルナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルアリルエーテル硫酸エステル塩;アルキルジフェニルエーテルジスルホン酸塩、ドデシルスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のアルキルスルホン酸塩;アルキルジスルホン酸塩、ドデシルベンゼンスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウム、トリイソプロピルナフタレンスルホン酸ナトリウム等のアルキルアリルスルホン酸塩;ラウリルリン酸モノエステルジナトリウム、ラウリルリン酸ジエステルナトリウム等の高級アルコールリン酸エステル塩;ポリオキシエチレンラウリルエーテルリン酸モノエステルジナトリウム、ポリオキシエチレンラウリルエーテルリン酸ジエステルナトリウム等のポリオキシエチレンアルキルエーテルリン酸エステル塩;等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。なお、具体例としてナトリウム塩を挙げたが、特にナトリウム塩に限定されるものではなく、カルシウム塩、アンモニア塩などでも同様の効果を得ることができる。 Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. Among these, an anionic surfactant is preferable.
Specific examples of the anionic surfactant include aliphatic carboxylates such as sodium laurate and sodium oleate; higher alcohol sulfates such as sodium lauryl sulfate, sodium cetyl sulfate and sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate; polyoxyethylene alkyl allyl ether sulfate salts such as sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate; Alkyl sulfonates such as alkyl diphenyl ether disulfonate, sodium dodecyl sulfonate, sodium dialkyl sulfosuccinate; Alkyl sulfonates such as killed disulfonate, sodium dodecylbenzene sulfonate, sodium dibutyl naphthalene sulfonate, sodium triisopropyl naphthalene sulfonate; higher alcohol phosphates such as disodium lauryl phosphate monosodium lauryl phosphate and sodium lauryl phosphate Ester salts; polyoxyethylene lauryl ether phosphoric acid monoester disodium, polyoxyethylene alkyl ether phosphoric acid ester salts such as sodium polyoxyethylene lauryl ether phosphoric acid diester; and the like. These may be used alone or in combination of two or more. In addition, although the sodium salt was mentioned as a specific example, it is not specifically limited to a sodium salt, The same effect can be acquired also with calcium salt, ammonia salt, etc.
ノニオン系界面活性剤としては、具体的には、ポリオキシエチレンオレイルエーテルやポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテルやポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル等、ポリオキシエチレンポリオキシプロピレングリコール類、ポリエチレングリコールモノステアレートやポリエチレングリコールモノオレートやポリエチレングリコールジラウレート等の脂肪酸とポリエチレングリコールとのモノおよびジエステル類、ソルビタンモノラウレートやソルビタンモノオレート等の脂肪酸とソルビタンのエステル類、ポリオキシエチレンソルビタンモノラウレートやリオキシエチレンソルビタンモノシテアレートやポリオキシエチレンソルビタントリラウレート等のソルビタンのポリオキシエチレン付加物と脂肪酸とのエステル類、ソルビットモノパルチミテートやソルビットジラウレート等の脂肪酸とソルビットとのエステル類、ポリオキシエチレンソルビットモノステアレートやポリオキシエチレンソルビットジオレート等のソルビットのポリオキシエチレン付加物と脂肪酸とのエステル類、ペンタエリスリトールモノステアレート等の脂肪酸とペンタエリスロトールとのエステル類,グリセリンモノラウレート等の脂肪酸とグリセリンとのエステル類、ラウリン酸ジエタノールアミドやラウリン酸モノエタノールアミド等の脂肪酸アルカノールアミド類、ラウリルジメチルアミンオキサイド等のアミンオキサイド類、ステアリルジエタノールアミン等の脂肪酸アルカノールアミン類、ポリオキシエチレンアルキルアミン類、トリエタノールアミン脂肪酸エステル類、リン酸塩、炭酸塩、ケイ酸塩等のアルカリ性を示す塩化合物が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。
Specific examples of nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether, and polyoxyethylene nonyl phenyl ether and polyoxyethylene octylphenyl ether. Ethylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene glycols, polyethylene glycol monostearate, polyethylene glycol monooleate, mono- and diesters of polyethylene glycol with fatty acids such as polyethylene glycol dilaurate, sorbitan monolaurate and sorbitan monooleate Fatty acids such as sorbitan esters, polyoxyethylene sorbitan monolaurate and reoxyethylene sorbita Esters of fatty acids and sorbitan polyoxyethylene adducts of sorbitan such as monocytearate and polyoxyethylene sorbitan trilaurate, esters of fatty acids and sorbitol such as sorbite monopartimitate and sorbit dilaurate, polyoxyethylene sorbite mono Esters of sorbite polyoxyethylene adducts such as stearate and polyoxyethylene sorbitdiolate with fatty acids, esters of fatty acids such as pentaerythritol monostearate with pentaerythritol, fatty acids such as glycerol monolaurate Esters with glycerin, fatty acid alkanolamides such as lauric acid diethanolamide and lauric acid monoethanolamide, amine oxides such as lauryldimethylamine oxide, stearyl Fatty acid alkanol amines such as ethanol amine, polyoxyethylene alkyl amines, triethanolamine fatty acid esters, phosphates, carbonates, salts compound showing alkalinity, such as silicate salts. These may be used alone or in combination of two or more.
カチオン系界面活性剤としては、具体的には、モノステアリルアンモニウムクロライド、ジステアリルアンモニウムクロライド、トリステアリルアンモニウムクロライド等の1級および2級および3級アミン塩類、ステアリルトリメチルアンモウムクロライド、ジステアリルジメチルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩類、N―セチルピリジニウムクロライドやN-ステアリルピリジニウムクロライド等のアルキルピリジニウム塩類、N,Nジアルキルモルホリニウム塩類、ポリエチレンポリアミンの脂肪酸アミド塩類、アミノエチルエタノールアミンとステアリン酸とのアミドの尿素化合物の酢酸塩類、2-アルキル-1-ヒドロキシエチルイミダゾリニウムクロライド等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。
Specific examples of the cationic surfactant include primary and secondary amine salts such as monostearyl ammonium chloride, distearyl ammonium chloride, and tristearyl ammonium chloride, stearyl trimethyl ammonium chloride, and distearyl dimethyl ammonium. Quaternary ammonium salts such as chloride, stearyldimethylbenzylammonium chloride, alkylpyridinium salts such as N-cetylpyridinium chloride and N-stearylpyridinium chloride, N, N dialkylmorpholinium salts, polyethylene polyamine fatty acid amide salts, aminoethylethanol Acetates of urea compounds of amides of stearic acid and 2-alkyl-1-hydroxyethylimidazolinium chloride Etc. The. These may be used alone or in combination of two or more.
両性系界面活性剤としては、具体的には、ラウリルアミンプロピオン酸ソーダなどのアミノ酸型、ラウリルジメチルベタインやラウリルジヒドキシエチルベタインなどのカルボキシベタイン型、ステアリルジメチルスルホエチレンアンモニウムエチレンアンモニウムベタインなどのスルホベタイン型、イミダゾリニウムベタイン型、レスチンなどが挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。
Specific examples of amphoteric surfactants include amino acid types such as sodium laurylamine propionate, carboxybetaine types such as lauryl dimethyl betaine and lauryl dihydroxyethyl betaine, and sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine. Examples include betaine type, imidazolinium betaine type, and restin. These may be used alone or in combination of two or more.
酸としては、具体的には、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、コハク酸、クエン酸、リンゴ酸、マレイン酸、パラトルエンスルホン酸などの無機酸や有機酸が挙げられる。
アルカリとしては、具体的には、例えば、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウムなどが挙げられる。 Specific examples of the acid include inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid. Is mentioned.
Specific examples of the alkali include lithium hydroxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydrogen carbonate, calcium carbonate, and the like.
アルカリとしては、具体的には、例えば、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウムなどが挙げられる。 Specific examples of the acid include inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid. Is mentioned.
Specific examples of the alkali include lithium hydroxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydrogen carbonate, calcium carbonate, and the like.
〔第1処理工程〕
本発明の廃液処理方法が有する第1処理工程は、上述した現像廃液に対して、無機系凝結剤および有機系凝結剤を添加する工程である。
ここで、無機系凝結剤とは、現像廃液に含まれている未硬化樹脂に起因する浮遊物質を分子間力(ファンデルワールス力)によって、小さな集合体(マイクロフロック)を形成する作用を有する無機系の凝結剤をいう。
また、有機系凝結剤とは、現像廃液に含まれている未硬化樹脂に起因する浮遊物質を分子間力(ファンデルワールス力)によって、小さな集合体(マイクロフロック)を形成する作用を有する有機系の凝結剤をいい、一般的に、分子量が1万以上百万未満の比較的分子量の小さい高分子である。
また、第1処理工程における無機系凝結剤および有機系凝結剤の添加順序は特に限定されず、無機系凝結剤および有機系凝結剤を同時添加してもよく、無機系凝結剤および有機系凝結剤の順に添加してもよく、有機系凝結剤および無機系凝結剤の順に添加してもよい。 [First treatment process]
The first processing step of the waste liquid treatment method of the present invention is a step of adding an inorganic coagulant and an organic coagulant to the above-described development waste liquid.
Here, the inorganic coagulant has an action of forming small aggregates (micro flocs) by floating intermolecular force (van der Waals force) from suspended substances contained in the development waste liquid. An inorganic coagulant.
Organic coagulant is an organic coagulant that acts to form small aggregates (micro flocs) by floating intermolecular force (van der Waals force) caused by uncured resin contained in development waste liquid. This is a coagulant of the system, and is generally a polymer having a relatively low molecular weight with a molecular weight of 10,000 or more and less than one million.
The order of addition of the inorganic coagulant and the organic coagulant in the first treatment step is not particularly limited, and the inorganic coagulant and the organic coagulant may be added simultaneously. You may add in order of an agent, and you may add in order of an organic type coagulant and an inorganic type coagulant.
本発明の廃液処理方法が有する第1処理工程は、上述した現像廃液に対して、無機系凝結剤および有機系凝結剤を添加する工程である。
ここで、無機系凝結剤とは、現像廃液に含まれている未硬化樹脂に起因する浮遊物質を分子間力(ファンデルワールス力)によって、小さな集合体(マイクロフロック)を形成する作用を有する無機系の凝結剤をいう。
また、有機系凝結剤とは、現像廃液に含まれている未硬化樹脂に起因する浮遊物質を分子間力(ファンデルワールス力)によって、小さな集合体(マイクロフロック)を形成する作用を有する有機系の凝結剤をいい、一般的に、分子量が1万以上百万未満の比較的分子量の小さい高分子である。
また、第1処理工程における無機系凝結剤および有機系凝結剤の添加順序は特に限定されず、無機系凝結剤および有機系凝結剤を同時添加してもよく、無機系凝結剤および有機系凝結剤の順に添加してもよく、有機系凝結剤および無機系凝結剤の順に添加してもよい。 [First treatment process]
The first processing step of the waste liquid treatment method of the present invention is a step of adding an inorganic coagulant and an organic coagulant to the above-described development waste liquid.
Here, the inorganic coagulant has an action of forming small aggregates (micro flocs) by floating intermolecular force (van der Waals force) from suspended substances contained in the development waste liquid. An inorganic coagulant.
Organic coagulant is an organic coagulant that acts to form small aggregates (micro flocs) by floating intermolecular force (van der Waals force) caused by uncured resin contained in development waste liquid. This is a coagulant of the system, and is generally a polymer having a relatively low molecular weight with a molecular weight of 10,000 or more and less than one million.
The order of addition of the inorganic coagulant and the organic coagulant in the first treatment step is not particularly limited, and the inorganic coagulant and the organic coagulant may be added simultaneously. You may add in order of an agent, and you may add in order of an organic type coagulant and an inorganic type coagulant.
<無機系凝結剤>
上記無機系凝結剤としては、具体的には、例えば、硫酸バンド(硫酸アルミニウム)、ポリ塩化アルミニウム(PAC)、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、硫酸アルミニウム、アルミン酸ソーダ、活性ケイ酸、および、水酸化アルミニウムなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Inorganic coagulant>
Specific examples of the inorganic coagulant include, for example, sulfate band (aluminum sulfate), polyaluminum chloride (PAC), ferrous sulfate, ferric sulfate, ferric chloride, aluminum sulfate, and sodium aluminate. , Activated silicic acid, aluminum hydroxide and the like, and these may be used alone or in combination of two or more.
上記無機系凝結剤としては、具体的には、例えば、硫酸バンド(硫酸アルミニウム)、ポリ塩化アルミニウム(PAC)、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、硫酸アルミニウム、アルミン酸ソーダ、活性ケイ酸、および、水酸化アルミニウムなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Inorganic coagulant>
Specific examples of the inorganic coagulant include, for example, sulfate band (aluminum sulfate), polyaluminum chloride (PAC), ferrous sulfate, ferric sulfate, ferric chloride, aluminum sulfate, and sodium aluminate. , Activated silicic acid, aluminum hydroxide and the like, and these may be used alone or in combination of two or more.
これらのうち、現像廃液に可塑剤に由来するリン酸系化合物を含む場合でも、リンの排出量を十分に低減できる理由から、硫酸バンドであることが好ましい。
これは、硫酸バンドを用いることにより、下記式で示す反応により、リン酸アルミニウムがマイクロフロックの中に取り込まれると考えられる。
(式) 2PO4 3- + Al2(SO4)3→ 2AlPO4(固体) + 3SO4 2-
また、硫酸バンドを用いることにより、生物化学的酸素要求量(Biochemical Oxygen Demand:BOD)および化学的酸素要求量(Chemical Oxygen Demand:COD)ならびにヨウ素消費量についても、低減することができる。 Among these, a sulfuric acid band is preferable because the amount of phosphorus discharged can be sufficiently reduced even when the development waste liquid contains a phosphoric acid compound derived from a plasticizer.
This is considered that aluminum phosphate is taken into micro flocs by the reaction shown by the following formula by using a sulfuric acid band.
(Formula) 2PO 4 3− + Al 2 (SO 4 ) 3 → 2AlPO 4 (solid) + 3SO 4 2−
Moreover, by using a sulfuric acid band, biochemical oxygen demand (Biochemical Oxygen Demand: BOD), chemical oxygen demand (Chemical Oxygen Demand: COD), and iodine consumption can also be reduced.
これは、硫酸バンドを用いることにより、下記式で示す反応により、リン酸アルミニウムがマイクロフロックの中に取り込まれると考えられる。
(式) 2PO4 3- + Al2(SO4)3→ 2AlPO4(固体) + 3SO4 2-
また、硫酸バンドを用いることにより、生物化学的酸素要求量(Biochemical Oxygen Demand:BOD)および化学的酸素要求量(Chemical Oxygen Demand:COD)ならびにヨウ素消費量についても、低減することができる。 Among these, a sulfuric acid band is preferable because the amount of phosphorus discharged can be sufficiently reduced even when the development waste liquid contains a phosphoric acid compound derived from a plasticizer.
This is considered that aluminum phosphate is taken into micro flocs by the reaction shown by the following formula by using a sulfuric acid band.
(Formula) 2PO 4 3− + Al 2 (SO 4 ) 3 → 2AlPO 4 (solid) + 3SO 4 2−
Moreover, by using a sulfuric acid band, biochemical oxygen demand (Biochemical Oxygen Demand: BOD), chemical oxygen demand (Chemical Oxygen Demand: COD), and iodine consumption can also be reduced.
上記無機系凝結剤の添加量は、可塑剤1質量%に対して、4000~6000ppmであることが好ましく、4500~5500ppmであることがより好ましく、4000~5000ppmであることが更に好ましい。
The amount of the inorganic coagulant added is preferably 4000 to 6000 ppm, more preferably 4500 to 5500 ppm, and still more preferably 4000 to 5000 ppm with respect to 1% by mass of the plasticizer.
<有機系凝結剤>
上記有機系凝結剤としては、従来公知の有機系凝結剤のうち、カチオン系凝結剤を用いることが好ましい。
カチオン系凝結剤としては、具体的には、例えば、ポリアミン、ポリエチレンイミン、ポリビニルアミン、ポリエーテルアミド、ポリヒドロキシプロピルジメチルアンモニウムクロリド、ポリジアリルジメチルアンモニウムクロリド、メラミン酸コロイド、および、ジシアンジアミドなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Organic coagulant>
As the organic coagulant, it is preferable to use a cationic coagulant among conventionally known organic coagulants.
Specific examples of the cationic coagulant include polyamine, polyethyleneimine, polyvinylamine, polyetheramide, polyhydroxypropyldimethylammonium chloride, polydiallyldimethylammonium chloride, melamic acid colloid, and dicyandiamide. These may be used alone or in combination of two or more.
上記有機系凝結剤としては、従来公知の有機系凝結剤のうち、カチオン系凝結剤を用いることが好ましい。
カチオン系凝結剤としては、具体的には、例えば、ポリアミン、ポリエチレンイミン、ポリビニルアミン、ポリエーテルアミド、ポリヒドロキシプロピルジメチルアンモニウムクロリド、ポリジアリルジメチルアンモニウムクロリド、メラミン酸コロイド、および、ジシアンジアミドなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Organic coagulant>
As the organic coagulant, it is preferable to use a cationic coagulant among conventionally known organic coagulants.
Specific examples of the cationic coagulant include polyamine, polyethyleneimine, polyvinylamine, polyetheramide, polyhydroxypropyldimethylammonium chloride, polydiallyldimethylammonium chloride, melamic acid colloid, and dicyandiamide. These may be used alone or in combination of two or more.
上記有機系凝結剤の添加量は、未硬化樹脂2.5質量%に対して、500~1500ppmであることが好ましく、750~1250ppmであることがより好ましく、900~1100ppmであることが更に好ましい。
The addition amount of the organic coagulant is preferably 500 to 1500 ppm, more preferably 750 to 1250 ppm, and still more preferably 900 to 1100 ppm with respect to 2.5% by mass of the uncured resin. .
本発明においては、第1処理工程において無機系凝結剤および有機系凝結剤をいずれも添加することにより、凝集物量を削減することができる。これは、有機系凝結剤が無機系凝結剤よりも凝結能が高いため、少ない添加量で凝結反応させることができためと考えられる。
なお、第1処理工程において、第無機系凝結剤および有機系凝結剤は、粉体または溶液のいずれの形態で添加してもよいが、溶液で添加することが好ましい。 In the present invention, the amount of aggregate can be reduced by adding both an inorganic coagulant and an organic coagulant in the first treatment step. This is presumably because the organic coagulant has a higher coagulation ability than the inorganic coagulant, so that the coagulation reaction can be performed with a small addition amount.
In the first treatment step, the first inorganic coagulant and the organic coagulant may be added in the form of powder or solution, but are preferably added in solution.
なお、第1処理工程において、第無機系凝結剤および有機系凝結剤は、粉体または溶液のいずれの形態で添加してもよいが、溶液で添加することが好ましい。 In the present invention, the amount of aggregate can be reduced by adding both an inorganic coagulant and an organic coagulant in the first treatment step. This is presumably because the organic coagulant has a higher coagulation ability than the inorganic coagulant, so that the coagulation reaction can be performed with a small addition amount.
In the first treatment step, the first inorganic coagulant and the organic coagulant may be added in the form of powder or solution, but are preferably added in solution.
〔第2処理工程〕
本発明の廃液処理方法が有する第2処理工程は、上述した第1処理工程と同時または第1処理工程の後に、凝集剤を添加する工程である。
ここで、第1処理工程と同時とは、第1処理工程と第2処理工程が同時であること、すなわち、無機系凝結剤および有機系凝結剤と凝集剤とを同時に添加することをいう。
すなわち、本発明の廃液処理方法においては、無機系凝結剤、有機系凝結剤および凝集剤の添加順序は特に限定されず、例えば、凝集剤が、無機系凝結剤および有機系凝結剤の添加よりも前に添加される態様であってもよい。
また、凝集剤とは、分子間力によって凝結した小さな集合体(マイクロフロック)を集めて大きな集合体(フロック)を形成する作用を有する凝集剤をいい、一般的に、分子量が百万以上2千万未満の比較的分子量の大きい高分子である。 [Second treatment step]
The second treatment step of the waste liquid treatment method of the present invention is a step of adding a flocculant simultaneously with the first treatment step described above or after the first treatment step.
Here, “simultaneous with the first treatment step” means that the first treatment step and the second treatment step are simultaneous, that is, the inorganic coagulant, the organic coagulant and the coagulant are added simultaneously.
That is, in the waste liquid treatment method of the present invention, the order of addition of the inorganic coagulant, the organic coagulant and the coagulant is not particularly limited. For example, the coagulant is more than the addition of the inorganic coagulant and the organic coagulant. Alternatively, it may be added before.
The flocculant is a flocculant having an action of collecting small aggregates (micro flocs) condensed by intermolecular force to form large aggregates (floc), and generally has a molecular weight of 2 million or more 2 It is a polymer with a relatively large molecular weight of less than 10 million.
本発明の廃液処理方法が有する第2処理工程は、上述した第1処理工程と同時または第1処理工程の後に、凝集剤を添加する工程である。
ここで、第1処理工程と同時とは、第1処理工程と第2処理工程が同時であること、すなわち、無機系凝結剤および有機系凝結剤と凝集剤とを同時に添加することをいう。
すなわち、本発明の廃液処理方法においては、無機系凝結剤、有機系凝結剤および凝集剤の添加順序は特に限定されず、例えば、凝集剤が、無機系凝結剤および有機系凝結剤の添加よりも前に添加される態様であってもよい。
また、凝集剤とは、分子間力によって凝結した小さな集合体(マイクロフロック)を集めて大きな集合体(フロック)を形成する作用を有する凝集剤をいい、一般的に、分子量が百万以上2千万未満の比較的分子量の大きい高分子である。 [Second treatment step]
The second treatment step of the waste liquid treatment method of the present invention is a step of adding a flocculant simultaneously with the first treatment step described above or after the first treatment step.
Here, “simultaneous with the first treatment step” means that the first treatment step and the second treatment step are simultaneous, that is, the inorganic coagulant, the organic coagulant and the coagulant are added simultaneously.
That is, in the waste liquid treatment method of the present invention, the order of addition of the inorganic coagulant, the organic coagulant and the coagulant is not particularly limited. For example, the coagulant is more than the addition of the inorganic coagulant and the organic coagulant. Alternatively, it may be added before.
The flocculant is a flocculant having an action of collecting small aggregates (micro flocs) condensed by intermolecular force to form large aggregates (floc), and generally has a molecular weight of 2 million or more 2 It is a polymer with a relatively large molecular weight of less than 10 million.
<凝集剤>
凝集剤としては、具体的には、例えば、ポリアクリルアミド等のノニオン系凝集剤;アクリルアミド・アクリル酸ソーダ共重合物、アクリルアミド・アクリルアミド-2-メチルプロパンスルホン酸ソーダ共重合物等のアニオン系凝集剤;アルキルアミノメタクリレート4級塩重合物、アルキルアミノアクリレート4級塩・アクリルアミド共重合物、ポリアミジン塩酸塩、アクリルアミド・アクリル酸・アルキルアミノ(メタ)アクリレート4級塩共重合物等のカチオン系凝集剤;が挙げられる。
これらのうち、廃液への溶解速度が速い理由から、カチオン系凝集剤であることが好ましい。 <Flocculant>
Specific examples of the flocculant include nonionic flocculants such as polyacrylamide; anionic flocculants such as acrylamide / sodium acrylate copolymer and acrylamide / acrylamido-2-methylpropanesulfonic acid soda copolymer. A cationic flocculant such as alkylamino methacrylate quaternary salt polymer, alkylamino acrylate quaternary salt / acrylamide copolymer, polyamidine hydrochloride, acrylamide / acrylic acid / alkylamino (meth) acrylate quaternary salt copolymer; Is mentioned.
Among these, a cationic flocculant is preferable because of its high dissolution rate in the waste liquid.
凝集剤としては、具体的には、例えば、ポリアクリルアミド等のノニオン系凝集剤;アクリルアミド・アクリル酸ソーダ共重合物、アクリルアミド・アクリルアミド-2-メチルプロパンスルホン酸ソーダ共重合物等のアニオン系凝集剤;アルキルアミノメタクリレート4級塩重合物、アルキルアミノアクリレート4級塩・アクリルアミド共重合物、ポリアミジン塩酸塩、アクリルアミド・アクリル酸・アルキルアミノ(メタ)アクリレート4級塩共重合物等のカチオン系凝集剤;が挙げられる。
これらのうち、廃液への溶解速度が速い理由から、カチオン系凝集剤であることが好ましい。 <Flocculant>
Specific examples of the flocculant include nonionic flocculants such as polyacrylamide; anionic flocculants such as acrylamide / sodium acrylate copolymer and acrylamide / acrylamido-2-methylpropanesulfonic acid soda copolymer. A cationic flocculant such as alkylamino methacrylate quaternary salt polymer, alkylamino acrylate quaternary salt / acrylamide copolymer, polyamidine hydrochloride, acrylamide / acrylic acid / alkylamino (meth) acrylate quaternary salt copolymer; Is mentioned.
Among these, a cationic flocculant is preferable because of its high dissolution rate in the waste liquid.
上記凝集剤の添加量は、形成したフロックのろ過性に優れる理由から、上述した有機系凝結剤の添加量の5~50質量%であることが好ましく、15~35質量%であることがより好ましい。
また、上記凝集剤の添加量は、未硬化樹脂2.5質量%に対して、10~100ppmであることが好ましく、30~70ppmであることがより好ましく、40~60ppmであることが更に好ましい。
なお、第2処理工程において、凝集剤は、粉体または溶液のいずれの形態で添加してもよいが、溶液で添加することが好ましい。 The addition amount of the flocculant is preferably 5 to 50% by mass, more preferably 15 to 35% by mass of the addition amount of the organic coagulant described above, because of the excellent filterability of the floc formed. preferable.
The amount of the flocculant added is preferably 10 to 100 ppm, more preferably 30 to 70 ppm, and still more preferably 40 to 60 ppm with respect to 2.5% by mass of the uncured resin. .
In the second treatment step, the flocculant may be added in any form of powder or solution, but is preferably added in solution.
また、上記凝集剤の添加量は、未硬化樹脂2.5質量%に対して、10~100ppmであることが好ましく、30~70ppmであることがより好ましく、40~60ppmであることが更に好ましい。
なお、第2処理工程において、凝集剤は、粉体または溶液のいずれの形態で添加してもよいが、溶液で添加することが好ましい。 The addition amount of the flocculant is preferably 5 to 50% by mass, more preferably 15 to 35% by mass of the addition amount of the organic coagulant described above, because of the excellent filterability of the floc formed. preferable.
The amount of the flocculant added is preferably 10 to 100 ppm, more preferably 30 to 70 ppm, and still more preferably 40 to 60 ppm with respect to 2.5% by mass of the uncured resin. .
In the second treatment step, the flocculant may be added in any form of powder or solution, but is preferably added in solution.
〔第3処理工程〕
本発明の廃液処理方法は、重合開始剤(例えば、アルキルフェノン類など)に由来するn-ヘキサン抽出物質や、重合禁止剤(例えば、ハイドロキノン類など)に由来するフェノール類も除去することができる理由から、第2処理工程の後に、吸着剤を添加する第3処理工程を有していることが好ましい。 [Third treatment step]
The waste liquid treatment method of the present invention can also remove n-hexane extract substances derived from polymerization initiators (eg, alkylphenones) and phenols derived from polymerization inhibitors (eg, hydroquinones). For reasons, it is preferable to have a third treatment step of adding an adsorbent after the second treatment step.
本発明の廃液処理方法は、重合開始剤(例えば、アルキルフェノン類など)に由来するn-ヘキサン抽出物質や、重合禁止剤(例えば、ハイドロキノン類など)に由来するフェノール類も除去することができる理由から、第2処理工程の後に、吸着剤を添加する第3処理工程を有していることが好ましい。 [Third treatment step]
The waste liquid treatment method of the present invention can also remove n-hexane extract substances derived from polymerization initiators (eg, alkylphenones) and phenols derived from polymerization inhibitors (eg, hydroquinones). For reasons, it is preferable to have a third treatment step of adding an adsorbent after the second treatment step.
上記吸着剤は、上述したn-ヘキサン抽出物質やフェノール類が吸着されやすくなり、現像廃液からの除去効率が向上する理由から、BET比表面積が500~3000m2/gの多孔質材料であることが好ましい。
ここで、「BET比表面積」とは、JIS K1477:2007で規定された試験方法に従い、窒素吸着によるBET法を用いて測定した測定値をいう。
このような多孔質材料としては、活性炭、カーボンブラックおよびカーボンナノチューブなどが挙げられ、中でも、活性炭が好ましい。 The adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g because the n-hexane extractant and phenols described above are easily adsorbed and the removal efficiency from the development waste liquid is improved. Is preferred.
Here, the “BET specific surface area” refers to a measured value measured using a BET method based on nitrogen adsorption in accordance with a test method defined in JIS K1477: 2007.
Examples of such a porous material include activated carbon, carbon black, and carbon nanotube, among which activated carbon is preferable.
ここで、「BET比表面積」とは、JIS K1477:2007で規定された試験方法に従い、窒素吸着によるBET法を用いて測定した測定値をいう。
このような多孔質材料としては、活性炭、カーボンブラックおよびカーボンナノチューブなどが挙げられ、中でも、活性炭が好ましい。 The adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g because the n-hexane extractant and phenols described above are easily adsorbed and the removal efficiency from the development waste liquid is improved. Is preferred.
Here, the “BET specific surface area” refers to a measured value measured using a BET method based on nitrogen adsorption in accordance with a test method defined in JIS K1477: 2007.
Examples of such a porous material include activated carbon, carbon black, and carbon nanotube, among which activated carbon is preferable.
〔第4処理工程〕
本発明の廃液処理方法は、第2処理工程の後(第3処理工程を有している場合は第3処理工程の後)に、pH調整剤を添加する第4処理工程を有していることが好ましい。
pH調整剤としては、具体的には、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、コハク酸、クエン酸、リンゴ酸、マレイン酸、パラトルエンスルホン酸などの酸;水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、ホウ酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、コハク酸ナトリウム、酢酸ナトリウムなどのアルカリ;を用いることができる。 [Fourth treatment step]
The waste liquid treatment method of the present invention has a fourth treatment step of adding a pH adjuster after the second treatment step (after the third treatment step when the third treatment step is provided). It is preferable.
Specific examples of the pH adjuster include, for example, acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid; water Lithium oxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium bicarbonate, calcium carbonate, sodium borate, sodium silicate, sodium metasilicate, sodium succinate, sodium acetate Alkalis such as can be used.
本発明の廃液処理方法は、第2処理工程の後(第3処理工程を有している場合は第3処理工程の後)に、pH調整剤を添加する第4処理工程を有していることが好ましい。
pH調整剤としては、具体的には、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、コハク酸、クエン酸、リンゴ酸、マレイン酸、パラトルエンスルホン酸などの酸;水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、ホウ酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、コハク酸ナトリウム、酢酸ナトリウムなどのアルカリ;を用いることができる。 [Fourth treatment step]
The waste liquid treatment method of the present invention has a fourth treatment step of adding a pH adjuster after the second treatment step (after the third treatment step when the third treatment step is provided). It is preferable.
Specific examples of the pH adjuster include, for example, acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid; water Lithium oxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium bicarbonate, calcium carbonate, sodium borate, sodium silicate, sodium metasilicate, sodium succinate, sodium acetate Alkalis such as can be used.
以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
〔実施例1〕
<現像廃液の調製>
感光性樹脂原版(富士フイルムグローバルグラフィックシステムズ(株)製のFLENEX FW-L)に対して、紫外線露光機Concept 302 ECDLF(Glunz&Jensen製)を用い、原版の裏面から80Wのエネルギーで10秒間露光することにより裏露光を実施した。
裏面を露光した原版に対し、フィニッシュパワー&ピュアパウダーSP(レキット・ベンキーザージャパン(株)製)0.5%からなる現像液と、洗い出し機SB-926(GSTR(株)製)とを用いて、50℃の条件で、12分間、ブラシを用いて洗い出し(現像)することにより未硬化樹脂を除去し、未硬化樹脂を含む現像廃液(固形分濃度:1質量%)を調製した。 [Example 1]
<Preparation of development waste liquid>
Using a UV exposure machine Concept 302 ECDLF (manufactured by Glunz & Jensen) for the photosensitive resin original plate (FLENEX FW-L manufactured by FUJIFILM Global Graphic Systems Co., Ltd.), exposure is performed for 10 seconds at an energy of 80 W from the back side of the original plate. The back exposure was carried out.
A developer comprising 0.5% of Finish Power & Pure Powder SP (manufactured by Rekit Benkieser Japan Co., Ltd.) and a washing machine SB-926 (manufactured by GSTR Co., Ltd.) is applied to the original exposed on the back side. The uncured resin was removed by washing (developing) with a brush for 12 minutes under the condition of 50 ° C. to prepare a development waste liquid (solid content concentration: 1% by mass) containing the uncured resin.
<現像廃液の調製>
感光性樹脂原版(富士フイルムグローバルグラフィックシステムズ(株)製のFLENEX FW-L)に対して、紫外線露光機Concept 302 ECDLF(Glunz&Jensen製)を用い、原版の裏面から80Wのエネルギーで10秒間露光することにより裏露光を実施した。
裏面を露光した原版に対し、フィニッシュパワー&ピュアパウダーSP(レキット・ベンキーザージャパン(株)製)0.5%からなる現像液と、洗い出し機SB-926(GSTR(株)製)とを用いて、50℃の条件で、12分間、ブラシを用いて洗い出し(現像)することにより未硬化樹脂を除去し、未硬化樹脂を含む現像廃液(固形分濃度:1質量%)を調製した。 [Example 1]
<Preparation of development waste liquid>
Using a UV exposure machine Concept 302 ECDLF (manufactured by Glunz & Jensen) for the photosensitive resin original plate (FLENEX FW-L manufactured by FUJIFILM Global Graphic Systems Co., Ltd.), exposure is performed for 10 seconds at an energy of 80 W from the back side of the original plate. The back exposure was carried out.
A developer comprising 0.5% of Finish Power & Pure Powder SP (manufactured by Rekit Benkieser Japan Co., Ltd.) and a washing machine SB-926 (manufactured by GSTR Co., Ltd.) is applied to the original exposed on the back side. The uncured resin was removed by washing (developing) with a brush for 12 minutes under the condition of 50 ° C. to prepare a development waste liquid (solid content concentration: 1% by mass) containing the uncured resin.
<第1処理工程~第3処理工程>
現像廃液500gをビーカーに移し、スリーワンモーター(新東科学(株)製)を用いて、回転数250rpmで攪拌を開始した。
次いで、無機系凝結剤として、粉末状の硫酸バンド(浅田化学工業(株)製)を5質量%水溶液に調製したものを50g添加することにより、現像廃液500gに対して硫酸バンドの濃度を5000ppmとした。
同時に、有機系凝結剤としてのポリジアリルジメチルアンモニウムクロリド(FKフロックZシリーズ、富士化水工業(株)製)を0.5質量%水溶液に調製したものを20g添加することにより、現像廃液500gに対してポリジアリルジメチルアンモニウムクロリドの濃度を200ppmとし、3分間攪拌した(第1処理工程)。
次いで、凝集剤としての凝集剤としてのアルキルアミノアクリレート4級塩・アクリルアミド共重合物(サンフロックCEシリーズ、三洋化成工業(株)製)を0.2質量%水溶液に調製したものを12.5g添加することにより、現像廃液500gに対してアルキルアミノアクリレート4級塩・アクリルアミド共重合物の濃度を50ppmとし、3分間攪拌し(第2処理工程)、凝集物の形成を確認した。
次いで、吸着剤として、粉末状の活性炭〔活力炭(登録商標)<水用>KD-GW、BET比表面積:1329m2/g、(株)ユー・イー・エス製〕を5000ppm添加し、さらに10分間攪拌した(第3処理工程)。
その後、ろ布(ワイプオールX60、日本製紙クレシア(株)製)を用いてろ過することにより、ろ液と凝集物および活性炭とを分離した。 <First processing step to third processing step>
500 g of developing waste liquid was transferred to a beaker, and stirring was started at a rotational speed of 250 rpm using a three-one motor (manufactured by Shinto Kagaku Co., Ltd.).
Next, as an inorganic coagulant, 50 g of a powdered sulfuric acid band (manufactured by Asada Chemical Industry Co., Ltd.) prepared in a 5% by mass aqueous solution is added, so that the concentration of the sulfuric acid band is 5000 ppm with respect to 500 g of the development waste solution. It was.
At the same time, polydiallyldimethylammonium chloride as an organic coagulant (FK Flock Z series, manufactured by Fuji Kasui Kogyo Co., Ltd.) in a 0.5% by mass aqueous solution is added to 20 g, so that the development waste solution 500 g On the other hand, the polydiallyldimethylammonium chloride concentration was 200 ppm and the mixture was stirred for 3 minutes (first treatment step).
Next, 12.5 g of an alkylamino acrylate quaternary salt / acrylamide copolymer (Sunfloc CE series, manufactured by Sanyo Chemical Industries, Ltd.) as a flocculant as a flocculant prepared in a 0.2 mass% aqueous solution. By adding, the concentration of the alkylaminoacrylate quaternary salt / acrylamide copolymer was adjusted to 50 ppm with respect to 500 g of the developing waste solution, and the mixture was stirred for 3 minutes (second processing step), and formation of aggregates was confirmed.
Next, 5000 ppm of powdered activated carbon (active charcoal (registered trademark) <for water> KD-GW, BET specific surface area: 1329 m 2 / g, manufactured by UES Co., Ltd.) as an adsorbent was added. Stir for 10 minutes (third treatment step).
Then, the filtrate, the aggregate, and activated carbon were isolate | separated by filtering using a filter cloth (Wipe All X60, Nippon Paper Crecia Co., Ltd. product).
現像廃液500gをビーカーに移し、スリーワンモーター(新東科学(株)製)を用いて、回転数250rpmで攪拌を開始した。
次いで、無機系凝結剤として、粉末状の硫酸バンド(浅田化学工業(株)製)を5質量%水溶液に調製したものを50g添加することにより、現像廃液500gに対して硫酸バンドの濃度を5000ppmとした。
同時に、有機系凝結剤としてのポリジアリルジメチルアンモニウムクロリド(FKフロックZシリーズ、富士化水工業(株)製)を0.5質量%水溶液に調製したものを20g添加することにより、現像廃液500gに対してポリジアリルジメチルアンモニウムクロリドの濃度を200ppmとし、3分間攪拌した(第1処理工程)。
次いで、凝集剤としての凝集剤としてのアルキルアミノアクリレート4級塩・アクリルアミド共重合物(サンフロックCEシリーズ、三洋化成工業(株)製)を0.2質量%水溶液に調製したものを12.5g添加することにより、現像廃液500gに対してアルキルアミノアクリレート4級塩・アクリルアミド共重合物の濃度を50ppmとし、3分間攪拌し(第2処理工程)、凝集物の形成を確認した。
次いで、吸着剤として、粉末状の活性炭〔活力炭(登録商標)<水用>KD-GW、BET比表面積:1329m2/g、(株)ユー・イー・エス製〕を5000ppm添加し、さらに10分間攪拌した(第3処理工程)。
その後、ろ布(ワイプオールX60、日本製紙クレシア(株)製)を用いてろ過することにより、ろ液と凝集物および活性炭とを分離した。 <First processing step to third processing step>
500 g of developing waste liquid was transferred to a beaker, and stirring was started at a rotational speed of 250 rpm using a three-one motor (manufactured by Shinto Kagaku Co., Ltd.).
Next, as an inorganic coagulant, 50 g of a powdered sulfuric acid band (manufactured by Asada Chemical Industry Co., Ltd.) prepared in a 5% by mass aqueous solution is added, so that the concentration of the sulfuric acid band is 5000 ppm with respect to 500 g of the development waste solution. It was.
At the same time, polydiallyldimethylammonium chloride as an organic coagulant (FK Flock Z series, manufactured by Fuji Kasui Kogyo Co., Ltd.) in a 0.5% by mass aqueous solution is added to 20 g, so that the development waste solution 500 g On the other hand, the polydiallyldimethylammonium chloride concentration was 200 ppm and the mixture was stirred for 3 minutes (first treatment step).
Next, 12.5 g of an alkylamino acrylate quaternary salt / acrylamide copolymer (Sunfloc CE series, manufactured by Sanyo Chemical Industries, Ltd.) as a flocculant as a flocculant prepared in a 0.2 mass% aqueous solution. By adding, the concentration of the alkylaminoacrylate quaternary salt / acrylamide copolymer was adjusted to 50 ppm with respect to 500 g of the developing waste solution, and the mixture was stirred for 3 minutes (second processing step), and formation of aggregates was confirmed.
Next, 5000 ppm of powdered activated carbon (active charcoal (registered trademark) <for water> KD-GW, BET specific surface area: 1329 m 2 / g, manufactured by UES Co., Ltd.) as an adsorbent was added. Stir for 10 minutes (third treatment step).
Then, the filtrate, the aggregate, and activated carbon were isolate | separated by filtering using a filter cloth (Wipe All X60, Nippon Paper Crecia Co., Ltd. product).
〔実施例2および3〕
使用する現像廃液の固形分濃度を下記表1に示す値に変更し、また、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物の添加量を下記表1に示す量に変更した以外は、実施例1と同様の方法により、ろ液と凝集物および活性炭とを分離した。なお、固形分濃度は、現像枚数を変更することによって調整した。 [Examples 2 and 3]
The solid content concentration of the developing waste liquid used is changed to the value shown in Table 1 below, and the addition amount of polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer is changed to the amount shown in Table 1 below. Except for the above, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 1. The solid content concentration was adjusted by changing the number of developed images.
使用する現像廃液の固形分濃度を下記表1に示す値に変更し、また、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物の添加量を下記表1に示す量に変更した以外は、実施例1と同様の方法により、ろ液と凝集物および活性炭とを分離した。なお、固形分濃度は、現像枚数を変更することによって調整した。 [Examples 2 and 3]
The solid content concentration of the developing waste liquid used is changed to the value shown in Table 1 below, and the addition amount of polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer is changed to the amount shown in Table 1 below. Except for the above, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 1. The solid content concentration was adjusted by changing the number of developed images.
〔実施例4〕
第1処理工程、第2処理工程において、添加方法を硫酸バンド、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物をこの順序に添加し、各添加後に3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 4
In the first treatment step and the second treatment step, the addition method is a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are added in this order, and the mixture is stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
第1処理工程、第2処理工程において、添加方法を硫酸バンド、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物をこの順序に添加し、各添加後に3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 4
In the first treatment step and the second treatment step, the addition method is a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are added in this order, and the mixture is stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
〔実施例5〕
第1処理工程、第2処理工程において、添加方法をポリジアリルジメチルアンモニウムクロリド、硫酸バンドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物をこの順序に添加し、各添加後に3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 5
In the first treatment step and the second treatment step, polydiallyldimethylammonium chloride, sulfate band and alkylaminoacrylate quaternary salt / acrylamide copolymer were added in this order, and the mixture was stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
第1処理工程、第2処理工程において、添加方法をポリジアリルジメチルアンモニウムクロリド、硫酸バンドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物をこの順序に添加し、各添加後に3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 5
In the first treatment step and the second treatment step, polydiallyldimethylammonium chloride, sulfate band and alkylaminoacrylate quaternary salt / acrylamide copolymer were added in this order, and the mixture was stirred for 3 minutes after each addition. Except for the change, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3.
〔実施例6〕
第1処理工程、第2処理工程において、添加方法を硫酸バンドを添加し3分間攪拌した後に、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 6
In the first treatment step and the second treatment step, after adding sulfuric acid band and stirring for 3 minutes, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes. The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
第1処理工程、第2処理工程において、添加方法を硫酸バンドを添加し3分間攪拌した後に、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 6
In the first treatment step and the second treatment step, after adding sulfuric acid band and stirring for 3 minutes, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes. The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
〔実施例7〕
第1処理工程、第2処理工程において、添加順序をポリジアリルジメチルアンモニウムクロリドを添加し3分間攪拌した後に、硫酸バンドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 7
In the first treatment step and the second treatment step, after adding polydiallyldimethylammonium chloride and stirring for 3 minutes in the first treatment step, a sulfuric acid band and an alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes. The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
第1処理工程、第2処理工程において、添加順序をポリジアリルジメチルアンモニウムクロリドを添加し3分間攪拌した後に、硫酸バンドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し3分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 7
In the first treatment step and the second treatment step, after adding polydiallyldimethylammonium chloride and stirring for 3 minutes in the first treatment step, a sulfuric acid band and an alkylaminoacrylate quaternary salt / acrylamide copolymer are simultaneously added and stirred for 3 minutes. The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that the method was changed.
〔実施例8〕
第1処理工程、第2処理工程において、添加順序を硫酸バンド、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し10分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 8
In the first treatment step and the second treatment step, except that the addition order was changed to a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer were added simultaneously and stirred for 10 minutes. The filtrate, aggregates and activated carbon were separated by the same method as in Example 3.
第1処理工程、第2処理工程において、添加順序を硫酸バンド、ポリジアリルジメチルアンモニウムクロリドおよびアルキルアミノアクリレート4級塩・アクリルアミド共重合物を同時に添加し10分間攪拌する方法に変更した以外は、実施例3と同様の方法によりろ液と凝集物および活性炭とを分離した。 Example 8
In the first treatment step and the second treatment step, except that the addition order was changed to a method in which sulfuric acid band, polydiallyldimethylammonium chloride and alkylaminoacrylate quaternary salt / acrylamide copolymer were added simultaneously and stirred for 10 minutes. The filtrate, aggregates and activated carbon were separated by the same method as in Example 3.
〔実施例9〕
活性炭を添加せず、第3処理工程を行わなかった以外は、実施例3と同様の方法により、ろ液と凝集物とを分離した。 Example 9
The filtrate and the aggregate were separated by the same method as in Example 3 except that the activated carbon was not added and the third treatment step was not performed.
活性炭を添加せず、第3処理工程を行わなかった以外は、実施例3と同様の方法により、ろ液と凝集物とを分離した。 Example 9
The filtrate and the aggregate were separated by the same method as in Example 3 except that the activated carbon was not added and the third treatment step was not performed.
〔実施例10〕
第1処理工程において、硫酸バンドの添加量を下記表1に示す量に変更し、また、第4処理工程として下記表1および表2に示すpH調整剤を下記表1および表2に示す量で添加した以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 10
In the first treatment step, the addition amount of the sulfuric acid band is changed to the amount shown in Table 1 below, and the pH adjusting agents shown in Table 1 and Table 2 below as the fourth treatment step are shown in Table 1 and Table 2 below. The filtrate was separated from the agglomerates and activated carbon by the same method as in Example 3 except that it was added in the same manner as in Example 3.
第1処理工程において、硫酸バンドの添加量を下記表1に示す量に変更し、また、第4処理工程として下記表1および表2に示すpH調整剤を下記表1および表2に示す量で添加した以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 10
In the first treatment step, the addition amount of the sulfuric acid band is changed to the amount shown in Table 1 below, and the pH adjusting agents shown in Table 1 and Table 2 below as the fourth treatment step are shown in Table 1 and Table 2 below. The filtrate was separated from the agglomerates and activated carbon by the same method as in Example 3 except that it was added in the same manner as in Example 3.
〔実施例11〕
活性炭を添加せず、第3処理工程を行わなかった以外は、実施例10と同様の方法により、ろ液と凝集物とを分離した。 Example 11
The filtrate and the aggregate were separated by the same method as in Example 10 except that the activated carbon was not added and the third treatment step was not performed.
活性炭を添加せず、第3処理工程を行わなかった以外は、実施例10と同様の方法により、ろ液と凝集物とを分離した。 Example 11
The filtrate and the aggregate were separated by the same method as in Example 10 except that the activated carbon was not added and the third treatment step was not performed.
〔実施例12〕
pH調整剤として、クエン酸に代えてギ酸を用いた以外は、実施例10と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 12
The filtrate, the aggregate and activated carbon were separated by the same method as in Example 10 except that formic acid was used in place of citric acid as a pH adjuster.
pH調整剤として、クエン酸に代えてギ酸を用いた以外は、実施例10と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 12
The filtrate, the aggregate and activated carbon were separated by the same method as in Example 10 except that formic acid was used in place of citric acid as a pH adjuster.
〔実施例13〕
無機系凝結剤として、硫酸バンドに代えてポリ塩化アルミニウム(PAC)を用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 13
The filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that polyaluminum chloride (PAC) was used as the inorganic coagulant instead of the sulfuric acid band.
無機系凝結剤として、硫酸バンドに代えてポリ塩化アルミニウム(PAC)を用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 13
The filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that polyaluminum chloride (PAC) was used as the inorganic coagulant instead of the sulfuric acid band.
〔実施例14〕
有機系凝結剤として、ポリジアリルジメチルアンモニウムクロリドに代えてポリアミンを用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 14
The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that polyamine was used as the organic coagulant instead of polydiallyldimethylammonium chloride.
有機系凝結剤として、ポリジアリルジメチルアンモニウムクロリドに代えてポリアミンを用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 14
The filtrate, the aggregate and activated carbon were separated by the same method as in Example 3 except that polyamine was used as the organic coagulant instead of polydiallyldimethylammonium chloride.
〔実施例15〕
凝集剤として、アルキルアミノアクリレート4級塩・アクリルアミド共重合物に代えてアルキルアミノメタクリレート4級塩重合物を用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 15
The filtrate, the agglomerate, and the activated carbon were obtained by the same method as in Example 3 except that an alkylamino methacrylate quaternary salt / acrylamide copolymer was used instead of the alkylamino acrylate quaternary salt / acrylamide copolymer. separated.
凝集剤として、アルキルアミノアクリレート4級塩・アクリルアミド共重合物に代えてアルキルアミノメタクリレート4級塩重合物を用いた以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 Example 15
The filtrate, the agglomerate, and the activated carbon were obtained by the same method as in Example 3 except that an alkylamino methacrylate quaternary salt / acrylamide copolymer was used instead of the alkylamino acrylate quaternary salt / acrylamide copolymer. separated.
〔実施例16〕
吸着剤として、活性炭に代えてゼロライト(ハイシリカゼオライト HSZ-900、BET比表面積:590m2/g、東ソー株式会社製)を用いた以外は、実施例3と同様の方法により、ろ液と凝集物およびゼオライトとを分離した。 Example 16
In the same manner as in Example 3, except that zero light (high silica zeolite HSZ-900, BET specific surface area: 590 m 2 / g, manufactured by Tosoh Corporation) was used as the adsorbent instead of activated carbon, Aggregates and zeolites were separated.
吸着剤として、活性炭に代えてゼロライト(ハイシリカゼオライト HSZ-900、BET比表面積:590m2/g、東ソー株式会社製)を用いた以外は、実施例3と同様の方法により、ろ液と凝集物およびゼオライトとを分離した。 Example 16
In the same manner as in Example 3, except that zero light (high silica zeolite HSZ-900, BET specific surface area: 590 m 2 / g, manufactured by Tosoh Corporation) was used as the adsorbent instead of activated carbon, Aggregates and zeolites were separated.
〔比較例1〕
第2処理工程において、有機系凝結剤を配合しなかった以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 1]
In the second treatment step, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that no organic coagulant was added.
第2処理工程において、有機系凝結剤を配合しなかった以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 1]
In the second treatment step, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that no organic coagulant was added.
〔比較例2〕
第2処理工程において、凝集剤を配合しなかった以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 2]
In the second treatment step, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that the flocculant was not blended.
第2処理工程において、凝集剤を配合しなかった以外は、実施例3と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 2]
In the second treatment step, the filtrate, the aggregate and the activated carbon were separated by the same method as in Example 3 except that the flocculant was not blended.
〔比較例3〕
第1処理工程において、硫酸バンドの添加量を下記表1に示す量に変更し、また、第4処理工程として下記表1および表2に示すpH調整剤を下記表1および表2に示す量で添加した以外は、比較例1と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 3]
In the first treatment step, the addition amount of the sulfuric acid band is changed to the amount shown in Table 1 below, and the pH adjusting agents shown in Table 1 and Table 2 below as the fourth treatment step are shown in Table 1 and Table 2 below. The filtrate was separated from the agglomerates and activated carbon by the same method as in Comparative Example 1 except that it was added in Step 1.
第1処理工程において、硫酸バンドの添加量を下記表1に示す量に変更し、また、第4処理工程として下記表1および表2に示すpH調整剤を下記表1および表2に示す量で添加した以外は、比較例1と同様の方法により、ろ液と凝集物および活性炭とを分離した。 [Comparative Example 3]
In the first treatment step, the addition amount of the sulfuric acid band is changed to the amount shown in Table 1 below, and the pH adjusting agents shown in Table 1 and Table 2 below as the fourth treatment step are shown in Table 1 and Table 2 below. The filtrate was separated from the agglomerates and activated carbon by the same method as in Comparative Example 1 except that it was added in Step 1.
〔評価〕
<浮遊物質(SS)の測定>
分離して回収したろ液について、S46環告第59号付表9に従い、網目2mmのふるいを通過した試料を孔径1μm程度のガラス繊維ろ紙(glass fiber filter paper:GFP)でろ過し、補足された物質を110℃で乾燥し、重量を測定することにより、以下の基準で浮遊物質(SS)の量を評価した。結果を下記表2に示す。なお、浮遊物質の量が少ないほど水質が良好であることを示す。
3点:SSが150mg/L未満
2点:SSが150mg/L以上300mg/L未満
1点:SSが300mg/L以上 [Evaluation]
<Measurement of suspended matter (SS)>
The filtrate collected after separation was supplemented by filtering the sample that passed through a 2 mm mesh sieve with glass fiber filter paper (GFP) having a pore diameter of about 1 μm according to S9 Circular No. 59, Appendix 9. The amount of suspended matter (SS) was evaluated according to the following criteria by drying the material at 110 ° C. and measuring the weight. The results are shown in Table 2 below. The smaller the amount of suspended matter, the better the water quality.
3 points: SS is less than 150 mg / L 2 points: SS is 150 mg / L or more and less than 300 mg / L 1 point: SS is 300 mg / L or more
<浮遊物質(SS)の測定>
分離して回収したろ液について、S46環告第59号付表9に従い、網目2mmのふるいを通過した試料を孔径1μm程度のガラス繊維ろ紙(glass fiber filter paper:GFP)でろ過し、補足された物質を110℃で乾燥し、重量を測定することにより、以下の基準で浮遊物質(SS)の量を評価した。結果を下記表2に示す。なお、浮遊物質の量が少ないほど水質が良好であることを示す。
3点:SSが150mg/L未満
2点:SSが150mg/L以上300mg/L未満
1点:SSが300mg/L以上 [Evaluation]
<Measurement of suspended matter (SS)>
The filtrate collected after separation was supplemented by filtering the sample that passed through a 2 mm mesh sieve with glass fiber filter paper (GFP) having a pore diameter of about 1 μm according to S9 Circular No. 59, Appendix 9. The amount of suspended matter (SS) was evaluated according to the following criteria by drying the material at 110 ° C. and measuring the weight. The results are shown in Table 2 below. The smaller the amount of suspended matter, the better the water quality.
3 points: SS is less than 150 mg / L 2 points: SS is 150 mg / L or more and less than 300 mg / L 1 point: SS is 300 mg / L or more
<pHの測定>
分離して回収したろ液について、ポータブルpH計(東亜ディーケーケー(株)製)を用いてpHを測定し、以下の基準で評価した。結果を下記表2に示す。なお、pHが7に近いほど水質が良好であることを示す。
3点:pHが、6.5超7.5未満
2点:pHが、5.7超6.5以下、または、7.5以上8.7未満
1点:pHが、5.7以下、または、8.7以上 <Measurement of pH>
About the filtrate which isolate | separated and collect | recovered, pH was measured using the portable pH meter (made by Toa DKK Corporation), and the following references | standards evaluated. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that pH is close to seven.
3 points: pH is more than 6.5 and less than 7.5 2 points: pH is more than 5.7 and less than 6.5, or 7.5 and less than 8.7 1 point: pH is 5.7 and less, Or 8.7 or higher
分離して回収したろ液について、ポータブルpH計(東亜ディーケーケー(株)製)を用いてpHを測定し、以下の基準で評価した。結果を下記表2に示す。なお、pHが7に近いほど水質が良好であることを示す。
3点:pHが、6.5超7.5未満
2点:pHが、5.7超6.5以下、または、7.5以上8.7未満
1点:pHが、5.7以下、または、8.7以上 <Measurement of pH>
About the filtrate which isolate | separated and collect | recovered, pH was measured using the portable pH meter (made by Toa DKK Corporation), and the following references | standards evaluated. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that pH is close to seven.
3 points: pH is more than 6.5 and less than 7.5 2 points: pH is more than 5.7 and less than 6.5, or 7.5 and less than 8.7 1 point: pH is 5.7 and less, Or 8.7 or higher
<全リン量の測定>
分離して回収したろ液について、JIS K 0102(2016)-46.3.3に従い全リン量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、全リン量が少ないほど水質が良好であることを示す。
3点:全リン量が8mg/L未満
2点:全リン量が8mg/L以上16mg/L未満
1点:全リン量が16mg/L以上 <Measurement of total phosphorus content>
For the filtrate collected by separation, the total phosphorus amount was measured in accordance with JIS K 0102 (2016) -46.3.3 and evaluated according to the following criteria. The results are shown in Table 2 below. The smaller the total phosphorus amount, the better the water quality.
3 points: total phosphorus amount is less than 8 mg / L 2 points: total phosphorus amount is 8 mg / L or more and less than 16 mg / L 1 point: total phosphorus amount is 16 mg / L or more
分離して回収したろ液について、JIS K 0102(2016)-46.3.3に従い全リン量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、全リン量が少ないほど水質が良好であることを示す。
3点:全リン量が8mg/L未満
2点:全リン量が8mg/L以上16mg/L未満
1点:全リン量が16mg/L以上 <Measurement of total phosphorus content>
For the filtrate collected by separation, the total phosphorus amount was measured in accordance with JIS K 0102 (2016) -46.3.3 and evaluated according to the following criteria. The results are shown in Table 2 below. The smaller the total phosphorus amount, the better the water quality.
3 points: total phosphorus amount is less than 8 mg / L 2 points: total phosphorus amount is 8 mg / L or more and less than 16 mg / L 1 point: total phosphorus amount is 16 mg / L or more
<フェノール類の測定>
分離して回収したろ液について、JIS K 0102(2016)-28.1.1及び28.1.2に従いフェノール類量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、フェノール類量が少ないほど水質が良好であることを示す。
3点:フェノール類量が2.5mg/L未満
2点:フェノール類量が2.5mg/L以上5.0mg/L未満
1点:フェノール類量が5.0mg/L以上 <Measurement of phenols>
The filtrate collected after separation was measured for the amount of phenols according to JIS K 0102 (2016) -28.1.1 and 28.1.2, and evaluated according to the following criteria. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that there are few amounts of phenols.
3 points: the amount of phenols is less than 2.5 mg / L 2 points: the amount of phenols is 2.5 mg / L or more and less than 5.0 mg / L 1 point: the amount of phenols is 5.0 mg / L or more
分離して回収したろ液について、JIS K 0102(2016)-28.1.1及び28.1.2に従いフェノール類量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、フェノール類量が少ないほど水質が良好であることを示す。
3点:フェノール類量が2.5mg/L未満
2点:フェノール類量が2.5mg/L以上5.0mg/L未満
1点:フェノール類量が5.0mg/L以上 <Measurement of phenols>
The filtrate collected after separation was measured for the amount of phenols according to JIS K 0102 (2016) -28.1.1 and 28.1.2, and evaluated according to the following criteria. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that there are few amounts of phenols.
3 points: the amount of phenols is less than 2.5 mg / L 2 points: the amount of phenols is 2.5 mg / L or more and less than 5.0 mg / L 1 point: the amount of phenols is 5.0 mg / L or more
<n-ヘキサン抽出物質(動)の測定>
得られたろ液について、S49環告第64号付表4に従いn-ヘキサン抽出物質(動)量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、N-ヘキサン抽出物質(動)量が少ないほど水質が良好であることを示す。
3点:n-ヘキサン抽出物質(動)量が15mg/L未満
2点:n-ヘキサン抽出物質(動)量が15mg/L以上30mg/L未満
1点:n-ヘキサン抽出物質(動)量が30mg/L以上 <Measurement of n-hexane extract (dynamic)>
The obtained filtrate was measured for the amount of n-hexane extractable substance (dynamic) according to S49 Ring No. 64, Appendix 4, and evaluated according to the following criteria. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that there is little quantity of N-hexane extract substance (dynamic).
3 points: n-hexane extract substance (dynamic) amount less than 15 mg / L 2 points: n-hexane extract substance (dynamic) amount 15 mg / L or more and less than 30 mg / L 1 point: n-hexane extract substance (dynamic) amount 30mg / L or more
得られたろ液について、S49環告第64号付表4に従いn-ヘキサン抽出物質(動)量を測定し、以下の基準で評価した。結果を下記表2に示す。なお、N-ヘキサン抽出物質(動)量が少ないほど水質が良好であることを示す。
3点:n-ヘキサン抽出物質(動)量が15mg/L未満
2点:n-ヘキサン抽出物質(動)量が15mg/L以上30mg/L未満
1点:n-ヘキサン抽出物質(動)量が30mg/L以上 <Measurement of n-hexane extract (dynamic)>
The obtained filtrate was measured for the amount of n-hexane extractable substance (dynamic) according to S49 Ring No. 64, Appendix 4, and evaluated according to the following criteria. The results are shown in Table 2 below. In addition, it shows that water quality is so favorable that there is little quantity of N-hexane extract substance (dynamic).
3 points: n-hexane extract substance (dynamic) amount less than 15 mg / L 2 points: n-hexane extract substance (dynamic) amount 15 mg / L or more and less than 30 mg / L 1 point: n-hexane extract substance (dynamic) amount 30mg / L or more
表1および表2に示す結果から、第1処理工程において有機系凝結剤を添加しない場合には、浮遊物質の除去が劣ることが分かった(比較例1)。また、第2処理工程において凝集剤を添加しない場合には、浮遊物質の除去が劣ることが分かった(比較例2)。更に、pH調整剤を添加した場合であっても、第1処理工程において有機系凝結剤を配合しない場合には、浮遊物質の除去が劣ることが分かった(比較例3)。
これに対し、第1処理工程において無機系凝結剤および有機系凝結剤をいずれも添加し、第2処理工程において凝集剤を添加した場合には、浮遊物質の除去に優れることが分かった(実施例1~16)。
また、実施例3と実施例4~8との対比から、無機系凝結剤、有機系凝結剤および凝集剤の添加順序は、凝集剤を無機系凝結剤および有機系凝結剤の添加よりも前に添加する態様以外では、優れた浮遊物質の除去に影響を与えないことが分かった。
また、実施例3と実施例9との対比から、第3処理工程で吸着剤を添加することにより、フェノール類およびn-ヘキサン抽出物質についても除去できることが分かった。
更に、実施例3および9と実施例10~12との対比から、pH調整剤を添加することにより、pHが6.5超7.5未満となり、より水質が良好となることが分かった。 From the results shown in Table 1 and Table 2, it was found that the removal of suspended solids was inferior when no organic coagulant was added in the first treatment step (Comparative Example 1). In addition, when no flocculant was added in the second treatment step, it was found that removal of suspended solids was inferior (Comparative Example 2). Furthermore, even when a pH adjuster was added, it was found that removal of suspended solids was inferior when no organic coagulant was blended in the first treatment step (Comparative Example 3).
In contrast, it was found that when both the inorganic coagulant and the organic coagulant were added in the first treatment step and the flocculant was added in the second treatment step, it was excellent in removing suspended solids (implementation) Examples 1-16).
From the comparison between Example 3 and Examples 4 to 8, the addition order of the inorganic coagulant, the organic coagulant and the coagulant is the same as that of the inorganic coagulant and the organic coagulant. It was found that there was no effect on the removal of the excellent suspended solids except for the embodiment added to.
In addition, from the comparison between Example 3 and Example 9, it was found that phenols and n-hexane extract material can also be removed by adding an adsorbent in the third treatment step.
Furthermore, it was found from the comparison between Examples 3 and 9 and Examples 10 to 12 that the pH became more than 6.5 and less than 7.5 by adding a pH adjuster, resulting in better water quality.
これに対し、第1処理工程において無機系凝結剤および有機系凝結剤をいずれも添加し、第2処理工程において凝集剤を添加した場合には、浮遊物質の除去に優れることが分かった(実施例1~16)。
また、実施例3と実施例4~8との対比から、無機系凝結剤、有機系凝結剤および凝集剤の添加順序は、凝集剤を無機系凝結剤および有機系凝結剤の添加よりも前に添加する態様以外では、優れた浮遊物質の除去に影響を与えないことが分かった。
また、実施例3と実施例9との対比から、第3処理工程で吸着剤を添加することにより、フェノール類およびn-ヘキサン抽出物質についても除去できることが分かった。
更に、実施例3および9と実施例10~12との対比から、pH調整剤を添加することにより、pHが6.5超7.5未満となり、より水質が良好となることが分かった。 From the results shown in Table 1 and Table 2, it was found that the removal of suspended solids was inferior when no organic coagulant was added in the first treatment step (Comparative Example 1). In addition, when no flocculant was added in the second treatment step, it was found that removal of suspended solids was inferior (Comparative Example 2). Furthermore, even when a pH adjuster was added, it was found that removal of suspended solids was inferior when no organic coagulant was blended in the first treatment step (Comparative Example 3).
In contrast, it was found that when both the inorganic coagulant and the organic coagulant were added in the first treatment step and the flocculant was added in the second treatment step, it was excellent in removing suspended solids (implementation) Examples 1-16).
From the comparison between Example 3 and Examples 4 to 8, the addition order of the inorganic coagulant, the organic coagulant and the coagulant is the same as that of the inorganic coagulant and the organic coagulant. It was found that there was no effect on the removal of the excellent suspended solids except for the embodiment added to.
In addition, from the comparison between Example 3 and Example 9, it was found that phenols and n-hexane extract material can also be removed by adding an adsorbent in the third treatment step.
Furthermore, it was found from the comparison between Examples 3 and 9 and Examples 10 to 12 that the pH became more than 6.5 and less than 7.5 by adding a pH adjuster, resulting in better water quality.
Claims (8)
- 現像により除去された未硬化樹脂を含む現像廃液に対して、
無機系凝結剤および有機系凝結剤を添加する第1処理工程と、
前記第1処理工程と同時または前記第1処理工程の後に、凝集剤を添加する第2処理工程と、を有する現像廃液の処理方法。 For development waste liquid containing uncured resin removed by development,
A first treatment step of adding an inorganic coagulant and an organic coagulant;
And a second processing step of adding a flocculant simultaneously with the first processing step or after the first processing step. - 前記第2処理工程の後に、吸着剤を添加する第3処理工程を有する、請求項1に記載の現像廃液の処理方法。 The processing method of the developing waste liquid according to claim 1, further comprising a third processing step of adding an adsorbent after the second processing step.
- 前記吸着剤が、BET比表面積が500~3000m2/gの多孔質材料である、請求項2に記載の現像廃液の処理方法。 The method for processing a developing waste liquid according to claim 2, wherein the adsorbent is a porous material having a BET specific surface area of 500 to 3000 m 2 / g.
- 前記吸着剤が、活性炭である、請求項2または3に記載の現像廃液の処理方法。 The method for processing a developing waste liquid according to claim 2 or 3, wherein the adsorbent is activated carbon.
- 前記凝集剤の添加量が、前記有機系凝結剤の添加量の5~50質量%である、請求項1~4のいずれか1項に記載の現像廃液の処理方法。 The processing method for a developing waste liquid according to any one of claims 1 to 4, wherein the addition amount of the flocculant is 5 to 50% by mass of the addition amount of the organic coagulant.
- 前記無機系凝結剤が、硫酸バンドである、請求項1~5のいずれか1項に記載の現像廃液の処理方法。 The method for processing a developing waste liquid according to any one of claims 1 to 5, wherein the inorganic coagulant is a sulfuric acid band.
- 前記有機系凝結剤が、カチオン系凝結剤である、請求項1~6のいずれか1項に記載の現像廃液の処理方法。 The method for processing a developing waste liquid according to any one of claims 1 to 6, wherein the organic coagulant is a cationic coagulant.
- 前記凝集剤が、カチオン系凝集剤である、請求項1~7のいずれか1項に記載の現像廃液の処理方法。 The method for processing a developing waste liquid according to any one of claims 1 to 7, wherein the flocculant is a cationic flocculant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016177006 | 2016-09-09 | ||
JP2016-177006 | 2016-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018047609A1 true WO2018047609A1 (en) | 2018-03-15 |
Family
ID=61562400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029665 WO2018047609A1 (en) | 2016-09-09 | 2017-08-18 | Method for processing developer waste liquid |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018047609A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04322784A (en) * | 1991-04-22 | 1992-11-12 | Konica Corp | Treatment of waste processing liquid for photosensitive material |
JPH0784341A (en) * | 1993-09-16 | 1995-03-31 | Konica Corp | Washing water recycling method and device in processing of non-silver salt photosensitive material |
JPH07136663A (en) * | 1993-11-22 | 1995-05-30 | Nippon Zeon Co Ltd | Waste fluid treatment method |
JP2003035959A (en) * | 2001-07-24 | 2003-02-07 | Mitsubishi Paper Mills Ltd | Method for treating waste developing solution of negative photosensitive planographic printing plate |
JP2004249182A (en) * | 2003-02-19 | 2004-09-09 | Yanmar Co Ltd | Waste liquid treatment method adapted at time of production of photosensitive resin plate |
JP2010110689A (en) * | 2008-11-06 | 2010-05-20 | Fuji Xerox Co Ltd | Apparatus and method for treating water |
JP2014235325A (en) * | 2013-06-03 | 2014-12-15 | 住友理工株式会社 | Treatment method for printing plate developer and treatment system for printing plate developer |
-
2017
- 2017-08-18 WO PCT/JP2017/029665 patent/WO2018047609A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04322784A (en) * | 1991-04-22 | 1992-11-12 | Konica Corp | Treatment of waste processing liquid for photosensitive material |
JPH0784341A (en) * | 1993-09-16 | 1995-03-31 | Konica Corp | Washing water recycling method and device in processing of non-silver salt photosensitive material |
JPH07136663A (en) * | 1993-11-22 | 1995-05-30 | Nippon Zeon Co Ltd | Waste fluid treatment method |
JP2003035959A (en) * | 2001-07-24 | 2003-02-07 | Mitsubishi Paper Mills Ltd | Method for treating waste developing solution of negative photosensitive planographic printing plate |
JP2004249182A (en) * | 2003-02-19 | 2004-09-09 | Yanmar Co Ltd | Waste liquid treatment method adapted at time of production of photosensitive resin plate |
JP2010110689A (en) * | 2008-11-06 | 2010-05-20 | Fuji Xerox Co Ltd | Apparatus and method for treating water |
JP2014235325A (en) * | 2013-06-03 | 2014-12-15 | 住友理工株式会社 | Treatment method for printing plate developer and treatment system for printing plate developer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016139130A (en) | Photosensitive resin composition, photosensitive resin laminate, and photosensitive resin printing plate precursor | |
JP2008152048A (en) | Method for processing waste cleaning water of developing device for photosensitive planographic printing forme, developing method, and developing device | |
WO2018047609A1 (en) | Method for processing developer waste liquid | |
JP2011036746A (en) | Flocculant, sewage clarifying method using the flocculant and water purifying device using the flocculant | |
WO2014196358A1 (en) | Method for treating printing plate developer liquid and treatment system for printing plate developer liquid | |
WO2018061958A1 (en) | Printing plate development method and development device | |
JP7022128B2 (en) | Developer for flexographic printing and usage | |
JP2017026930A (en) | Photosensitive resin composition, photosensitive resin laminate, and photosensitive resin printing plate precursor | |
JP2018141923A (en) | Method for measuring solid content concentration of exhausted developer, method for treating exhausted developer, and apparatus for treating exhausted developer | |
JPWO2003005129A1 (en) | Plate making method of photosensitive resin printing plate and developer processing apparatus | |
JPS59169590A (en) | Treatment of liquid waste from washing finish of printed board coated with washing finish photosensitive resin | |
JP4786786B2 (en) | Floor cleaning waste liquid treatment agent, floor cleaning waste liquid processing method, and reuse method of floor cleaning waste liquid | |
JPH11212275A (en) | Method for regenerating developer for photosensitive resin letterpress | |
JP2004249182A (en) | Waste liquid treatment method adapted at time of production of photosensitive resin plate | |
JP2005010252A (en) | Photosensitive resin composition, photosensitive flexographic printing original plate using same and flexographic printing plate | |
JP2001025776A (en) | Treatment of waste liquid of photosensitive resin plate | |
JP2022544684A (en) | Compositions and methods for treating and regenerating paint flush cleaning waste | |
JP2010274244A (en) | Method for clarifying treatment of steel production waste water | |
WO2019151006A1 (en) | Processing system and processing method | |
JP2005296772A (en) | Flocculant for digested sludge treatment | |
WO2019188899A1 (en) | Printing plate development method and development device | |
JPH10301298A (en) | Developer for photosensitive resin plate and developing method | |
JP2020002317A (en) | Washing liquid of automatic development machine | |
JP2018141977A (en) | Photosensitive resin laminate, and photosensitive resin printing plate precursor | |
JP2002143609A (en) | Method for treating waste solution of photosensitive resin printing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17848552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17848552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |