WO2019151006A1 - Processing system and processing method - Google Patents

Processing system and processing method Download PDF

Info

Publication number
WO2019151006A1
WO2019151006A1 PCT/JP2019/001608 JP2019001608W WO2019151006A1 WO 2019151006 A1 WO2019151006 A1 WO 2019151006A1 JP 2019001608 W JP2019001608 W JP 2019001608W WO 2019151006 A1 WO2019151006 A1 WO 2019151006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
developing
solution
washing
processing
Prior art date
Application number
PCT/JP2019/001608
Other languages
French (fr)
Japanese (ja)
Inventor
金子 修芳
年宏 渡辺
征人 白川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019569009A priority Critical patent/JPWO2019151006A1/en
Publication of WO2019151006A1 publication Critical patent/WO2019151006A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers

Definitions

  • a development fatigue solution containing solid matter generated by removing an unexposed portion of a flexographic printing plate precursor after imagewise exposure by a development process using a washing solution is reused as a washing solution.
  • the present invention relates to a processing system and a processing method, and more particularly, to a processing system and a processing method for reusing a clarified liquid obtained by removing bubbles after centrifuging a development fatigue liquid as a washing liquid.
  • Various methods are known for developing a printing plate using a flexographic printing plate precursor.
  • a development method in which development is performed using an aqueous developer containing water as a main component, the flexographic printing plate precursor after imagewise exposure is immersed in an aqueous developer and an unexposed portion is exposed in the aqueous developer with a brush or the like.
  • Development is performed by washing out uncured resin and the like.
  • the uncured resin or the like is dispersed in the developer. It has been proposed to remove a dispersed uncured resin and reuse it for a developing solution in which an uncured resin or the like is dispersed.
  • the flexographic printing plate precursor described above is also called a photosensitive resin plate, and the developer is also called a washing solution.
  • Patent Document 1 describes a method of treating a washing solution containing solid matter generated when developing a photosensitive resin plate after exposure by removing an unexposed portion while being immersed in the washing solution. ing.
  • solids having a specific gravity smaller than that of the washing liquid are separated and removed using a centrifugal sedimentation type centrifugal separation process having an inside disk, and the processed liquid obtained by separating and removing solids having a lower specific gravity than the washing liquid is obtained. Further, it is described that it is reused as a washing solution.
  • the processed liquid obtained by separating and removing solid matter having a specific gravity smaller than that of the wash-out liquid using the centrifugal separation process as described in Patent Document 1 may contain a lot of bubbles.
  • the processed liquid obtained by centrifugation in Patent Document 1 is washed out and reused as a liquid, the development of the flexographic printing plate precursor becomes insufficient, or when the processed liquid is transported, air bubbles are included, resulting in poor transport efficiency.
  • the liquid temperature is raised, there is a problem that the heat transfer efficiency is lowered and the temperature rise is slow because bubbles are included in the treated liquid.
  • the processed liquid containing bubbles is not suitable as a washing-out liquid used for developing the flexographic printing plate precursor.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to develop a development fatigue solution generated by developing a flexographic printing plate precursor using a washing solution into a developing process of a flexographic printing plate precursor. It is an object of the present invention to provide a processing system and a processing method for processing into a suitable washing solution.
  • the present invention provides a development fatigue including solid matter generated by removing an unexposed portion by washing out a flexographic printing plate precursor after imagewise exposure and developing it with a liquid.
  • the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution.
  • a processing system to be used in which a developing fatigue liquid is separated by centrifugation into a clarified liquid and a solid-containing residue, and the clarified liquid obtained by the processing section is continuously connected to the processing section. And a defoaming section for removing the bubbles, and a clarified liquid from which bubbles are removed is reused as a washing liquid.
  • the defoaming part is a part in which the clarification liquid is swirled in the container to flow and the bubbles are collected and removed in the central part of the container.
  • the defoaming part is preferably one that removes bubbles by performing vacuum degassing using a gas-liquid separation membrane. It has a developing section for washing and developing the flexographic printing plate precursor using a liquid, and a storage section for storing the development fatigue liquid generated in the developing section, and the development fatigue liquid stored in the storage section is supplied to the processing section. Thus, it is preferable to separate into a clarified liquid and a residue by centrifugation.
  • It has a development section that develops the flexographic printing plate precursor using a washing solution, and the development fatigue fluid generated by the development process in the development section is directly supplied to the processing section and separated into a clarified liquid and a residue by centrifugation. It is preferable.
  • the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution.
  • a processing method to be used the first step of separating the development fatigue solution into a clarified solution and a residue containing solids by centrifugation, a second step of removing bubbles in the clarified solution, And a third step of reusing the removed clarified liquid as a washing liquid.
  • the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution.
  • a processing method to be used the first step of separating the developing fatigue liquid into a clarified liquid and a residue containing solids by centrifugation, and removing bubbles in the clarified liquid following the first process. And a third process of reusing the clarified liquid from which bubbles have been removed as a washing liquid.
  • the second step of removing the bubbles in the clarified liquid is preferably a method in which the clarified liquid is swirled in the container to flow, and the bubbles are collected and removed in the central portion.
  • the second step of removing bubbles in the clarified liquid is preferably a method of removing bubbles by performing vacuum degassing using a gas-liquid separation membrane.
  • the first step it is preferred that after storing the development fatigue solution generated by washing out the flexographic printing plate precursor and developing it using the solution, the stored development fatigue solution is separated into a clarified solution and a residue by centrifugation. .
  • a processing system and a processing method for processing a development fatigue solution generated by developing a flexographic printing plate precursor using a washing solution into a washing solution suitable for developing the flexographic printing plate precursor can do.
  • FIG. 1 is a schematic diagram illustrating an example of a processing system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating an example of a developing unit used in the processing system according to an embodiment of the present invention.
  • the processing system 10 shown in FIG. 1 is a development fatigue solution containing a solid material generated by removing an unexposed portion by developing a flexographic printing plate precursor after imagewise exposure using a washing solution.
  • a washing solution suitable for development processing of a flexographic printing plate precursor is used.
  • a clarified liquid obtained by continuously removing bubbles after centrifuging a development fatigue liquid is reused as a washing liquid, but is not limited thereto.
  • the clarified liquid obtained by centrifugation is once stored in a container to remove bubbles in the clarified liquid and reused as a washing liquid.
  • the processing system 10 includes an exposure unit 12, a developing unit 14, a switching unit 15, a storage unit 16, a supply unit 18, a processing unit 20, a defoaming unit 22, and a control unit 24. The operation of each component of the processing system 10 is controlled by the control unit 24.
  • the developing fatigue liquid processing unit 25 is configured by the processing unit 20 and the defoaming unit 22.
  • the processing system 10 may be configured without the exposure unit 12.
  • the developing unit 14 is connected to the switching unit 15 through the connection pipe 30.
  • the switching unit 15 is connected to the storage unit 16 via the connection pipe 31.
  • the switching unit 15 is connected to the processing unit 20 via the connection pipe 34.
  • the developing unit 14 is connected to the supply unit 18 that supplies the washing liquid Q (see FIG. 2) via the connection pipe 32 and the connection pipe 33. Further, the developing unit 14 is connected to the storage unit 16 via a connecting pipe 32.
  • the connection pipe 32 is provided with the pump 40, the heater 26, and the valve 27 in the order described above from the side close to the storage unit 16.
  • the heater 26 is for adjusting the liquid temperature of the liquid supplied to the developing unit 14, and the configuration is not particularly limited as long as the liquid temperature can be adjusted to a preset temperature.
  • the heater 26 for example, an in-line type in which a heating element is provided inside the connection pipe 32 is used.
  • the heater 26 is not necessarily required, and may be configured without the heater 26.
  • the valve 27 switches the supply path of the liquid supplied to the developing unit 14.
  • the valve 27 supplies at least one of the washing solution and the clarification solution to the developing unit 14.
  • the valve 27 is connected to the control unit 24, and the opening and closing of the valve 27 is controlled to switch the supply path of the liquid supplied to the developing
  • the processing unit 20 and the defoaming unit 22 are connected via a connection pipe 35, and a pump 41 is provided in the connection pipe 35.
  • the storage tank or the like is not provided between the processing unit 20 and the defoaming unit 22, and the clarified liquid obtained in the processing unit 20 by the pump 41 is provided only by the connection pipe 35 and the pump 41. Is directly supplied to the defoaming section 22. In this way, a form in which there is no storage tank or the like between the processing unit 20 and the defoaming unit 22 is said to be continuously connected to the processing unit 20.
  • the defoaming part 22 and the storage part 16 are connected via a connecting pipe 36.
  • the bubbles in the clarified liquid are removed by the defoaming section 22 continuously from the clarified liquid obtained in the processing section 20, and the clarified liquid from which the bubbles are removed is stored in the storage section 16 via the connection pipe 36. Supplied.
  • the storage unit 16 and the processing unit 20 are connected via a connection pipe 37.
  • the connection pipe 37 is provided with a pump 42, and a liquid stored in the storage unit 16, for example, a developing fatigue liquid is supplied to the processing unit 20 by the pump 42.
  • a liquid stored in the storage unit 16 for example, a developing fatigue liquid is supplied to the processing unit 20 by the pump 42.
  • Any of the above-described pump 40, pump 41, and pump 42 is not particularly limited as long as a liquid such as a developing fatigue liquid can be moved to a target location, and the amount of liquid to be moved is not limited. In accordance with the head of the liquid to be moved and the like, it is appropriately used.
  • the operations of the above-described pump 40, pump 41, and pump 42 are controlled by the control unit 24.
  • the exposure unit 12 exposes the flexographic printing plate precursor.
  • the flexographic printing plate precursor after the imagewise exposure is the one in which the flexographic printing plate precursor is exposed by the exposure unit 12.
  • the configuration of the exposure unit 12 is not particularly limited as long as the flexographic printing plate precursor can be exposed.
  • the developing unit 14 develops the exposed flexographic printing plate precursor, and the flexographic printing plate precursor exposed by the exposing unit 12 is conveyed.
  • the developing unit 14 develops the flexographic printing plate precursor after image-wise exposure using, for example, an aqueous developer containing water as a main component as a washing solution.
  • the configuration of the developing unit 14 is not particularly limited as long as it can develop the flexographic printing plate precursor after imagewise exposure.
  • a known apparatus using an aqueous developer can be used as appropriate.
  • the developing unit 14 may have a configuration called a clamshell type that develops the flexographic printing plate precursor in a batch system, or may have a transport type configuration that performs development while transporting the flexographic printing plate precursor.
  • the form which immerses and develops the flexographic printing plate precursor after imagewise exposure may be sufficient.
  • the switching unit 15 changes the flow path of the development fatigue liquid Qw (see FIG. 2).
  • the switching portion 15 changes the flow path of the development fatigue liquid Qw (see FIG. 2), and the development fatigue liquid Qw (see FIG. 2) is moved to the storage section 16 or the processing section 20.
  • a three-way valve is used for the switching unit 15. Switching of the flow path of the switching unit 15 is performed by the control unit 24.
  • the switching unit 15 preferably has a flow meter for measuring the flow rates of the connection pipe 31 and the connection pipe 34 that are flow paths to the storage unit 16. Thereby, the flow volume of the developing fatigue liquid to the storage unit 16 and the processing unit 20 can be measured, and the supply amount of the washing liquid Q (see FIG. 2) and the clarified liquid necessary for the developing unit 14 can be grasped.
  • the storage part 16 is a place where at least the development fatigue liquid and the clear liquid from which bubbles are removed by the defoaming part 22 are stored.
  • a container (not shown) for storing the development fatigue liquid and the clear liquid are stored.
  • a container (not shown) for storing.
  • a pump for feeding a developing fatigue solution or a clarification solution can be installed in the middle of the pipe.
  • the storage unit 16 may be configured to store the development fatigue solution and the clarification solution in the same container.
  • the structure which has a container in which the washout liquid is stored may be sufficient as the storage part 16.
  • the developing fatigue liquid stored in the storage unit 16 is supplied to the processing unit 20 by the pump 42 through the connection pipe 37 as a flow path.
  • the clarified liquid stored in the storage unit 16 and from which bubbles are removed is supplied to the developing unit 14 by the pump 40 using the connection pipe 32 as a flow path.
  • the supply unit 18 includes, for example, a tank (not shown) in which the washout liquid is stored, a flowmeter (not shown) of the washout liquid, and a delivery unit (not shown) that sends out the washout liquid.
  • the delivery unit is configured by a pump, for example. When the pump has a function of measuring the delivery amount, a flow meter is not necessary.
  • the processing unit 20 separates the development fatigue liquid into a clarified liquid and a residue containing solid matter by centrifugation.
  • the solid material 29 removed from the development fatigue solution is collected by a receiving tray 28 provided below the processing unit 20.
  • the development fatigue liquid from which the solid material 29 has been removed that is, the above-described clarified liquid is supplied to the defoaming section 22 through the connection pipe 35 by the pump 41.
  • the development fatigue solution is a washing solution containing a solid material generated by removing an unexposed portion of the flexographic printing plate precursor after imagewise exposure.
  • the term “containing solid matter in the washing liquid containing solid matter” means a state in which the solid matter is dissolved or dispersed.
  • the clarified liquid is a liquid from which a part of solids contained in the development fatigue liquid has been removed.
  • the processing part 20 utilizes centrifugation, the structure will not be specifically limited, A well-known centrifuge can be utilized, for example, a basket type thing is used.
  • the processing unit 20 stores the developing fatigue liquid in a container, rotates the container, moves a solid substance having a large mass to the inner wall of the container, and separates the clarified liquid and the solid substance. The solid matter is taken out as a residue from the processing unit 20.
  • the defoaming part 22 removes bubbles in the clarified liquid continuously with respect to the clarified liquid obtained in the processing part 20.
  • the configuration of the defoaming unit 22 is not particularly limited as long as the bubbles in the clarified liquid can be removed, and a known device that removes the bubbles in the liquid can be used.
  • the defoaming part 22 what removes bubbles by performing vacuum degassing using a gas-liquid separation membrane (not shown) can be used, and what is called a membrane deaerator can be used. It is.
  • the processing portion 20 and the defoaming portion 22 can centrifuge the development fatigue solution and obtain a clear solution from which bubbles have been removed.
  • the development fatigue solution is converted into a washing solution suitable for the development processing of the flexographic printing plate precursor. Can be processed.
  • the development fatigue solution can be reused as a wash-out solution, so that the wash-out solution can be used effectively and the use efficiency of the wash-out solution can be increased.
  • the processing unit 20 and the defoaming unit 22 continuously remove the bubbles in the clarified liquid obtained by removing solids from the developing fatigue solution by centrifugation, and the storage unit 16 Supply clear liquid.
  • the processing time can be shortened and the productivity can be improved and the configuration of the processing system 10 can be simplified as compared with the case where the clarified solution is once stored in a container or the like. And the cost of the apparatus can be reduced.
  • it is not limited to arrange
  • the clarified liquid obtained by the processing unit 20 may be once received in a container, and the liquid taken out from the container may be defoamed by the defoaming unit 22 and returned to the original container. After returning to the original container, the defoamed clarified liquid is supplied to the storage unit 16.
  • the clarified liquid obtained by the processing unit 20 may be once received in a container, and the liquid taken out from the container may be defoamed by the defoaming unit 22 and supplied to the storage unit 16.
  • the developing unit 14 is not limited to that shown in FIG. Moreover, illustration of the control part 24 is abbreviate
  • the developing unit 14 shown in FIG. 2 has a configuration called a batch system.
  • the developing unit 14 includes a developing tank 50 and a brush 52.
  • the brush 52 is provided on the drive member 53.
  • the brush 52 is provided with a supply pipe 54.
  • the supply pipe 54 is connected to the supply unit 18.
  • the washout liquid Q is supplied from the brush 52 to the surface 60 a of the flexographic printing plate precursor 60 from the supply unit 18 through the connection pipe 33, the connection pipe 32, and the supply pipe 54.
  • the development fatigue liquid Qw includes a washing solution Q.
  • the developing tank 50 is connected to the connecting pipe 30, and the developing fatigue liquid Qw is sent from the connecting pipe 30 to the switching unit 15.
  • the washing liquid Q is supplied from the supply unit 18 to the flexographic printing plate precursor 60 through the connection pipe 33, the connection pipe 32, and the supply pipe 54.
  • the flexographic printing plate precursor 60 forms a flexographic printing plate used for flexographic printing, and its configuration is not particularly limited.
  • the flexographic printing plate precursor 60 is preferably one that can be developed with an aqueous developer containing water as a main component, or a water development type flexographic printing plate precursor.
  • As the flexographic printing plate precursor 60 a known flexographic printing plate precursor that can be developed with an aqueous developer can be used.
  • the flexographic printing plate precursor 60 may be a CTP (Computer-To-Plate) compatible flexographic printing plate having a black layer layer applied on the surface thereof.
  • CTP Computer-To-Plate
  • the exposure unit 12 exposes the surface 60a (see FIG. 2) of the flexographic printing plate precursor 60 (see FIG. 2) with a specific pattern, for example. Thereby, the flexographic printing plate precursor 60 (see FIG. 2) after imagewise exposure is obtained.
  • the flexographic printing plate precursor 60 (see FIG. 2) after the imagewise exposure is conveyed to the developing unit 14, and in the developing unit 14, the brush 52 (in the washing liquid Q in the developing tank 50 (see FIG. 2)). 2), the flexographic printing plate precursor 60 (see FIG. 2) is developed.
  • the development fatigue fluid Qw generated by the above development process is transferred to the switching unit 15 through the connection pipe 30.
  • the switching unit 15 is set so that the development fatigue solution is transferred to the storage unit 16, and the development fatigue solution is transferred to the storage unit 16 and stored in the storage unit 16.
  • the developing fatigue liquid in the storage unit 16 is supplied to the processing unit 20 through the connection pipe 37 by the pump 42.
  • the processing unit 20 the developing fatigue liquid is separated into a clarified liquid and a residue containing the solid material 29 by centrifugation, and the processing unit 20 discharges the solid material 29 to the tray 28.
  • the step of separating the development fatigue solution into a clarified solution and a residue containing the solid material 29 by centrifugation is the first step.
  • the clarified liquid is supplied to the defoaming unit 22 through the connection pipe 35 by the pump 41, and the bubbles in the clarified liquid are removed by the defoaming unit 22 continuously from the processing unit 20.
  • a clear liquid that can be reused as a washing liquid can be obtained.
  • the process of removing the bubble in the clarified liquid obtained by centrifugation is a 2nd process.
  • the first step and the second step may be performed in succession to the first step without entering another step in the middle, or the first step and the second step. Another process in the middle may be inserted between the processes. When another process enters, for example, after the first process, the clarified liquid obtained in the first process is once received in the container, and the second process is performed on the liquid.
  • the clarified liquid from which bubbles are removed is supplied from the defoaming section 22 to the storage section 16, and the clarified liquid is stored in the storage section 16.
  • the clarified liquid stored in the storage unit 16 is supplied to the developing unit 14 through a connection pipe 32 by a pump 40, for example, at a preset temperature by a heater 26 provided with a heating element in the connection pipe 32. Then, it is reused as a washout solution in the development processing of the flexographic printing plate precursor.
  • the valve 27 is open.
  • cleaning and reusing the clarified liquid from which the bubble was removed is a 3rd process.
  • the flexographic printing plate precursor When the clarified liquid is used as a washing liquid, the flexographic printing plate precursor may be developed by mixing the washing liquid with a preset amount of the clarified liquid. May be implemented.
  • the ratio of the clarification liquid with respect to the washing liquid is not particularly limited, and is appropriately determined according to the processing amount of the flexographic printing plate precursor.
  • processing the development fatigue solution to obtain a clear solution and washing the clear solution as a washout solution is not limited to one time, and may be performed a plurality of times.
  • the number of times of use is set in advance, or the solid matter concentration in the clarified liquid is set in advance as a guide for discontinuing use.
  • the solid concentration in the clarified liquid can be specified by measuring the refractive index of the clarified liquid, for example.
  • the storage unit 16 is provided with a measuring unit that measures the refractive index of the clarified liquid in order to measure the solid concentration of the clarified liquid.
  • a Brix value (%) can be used as the refractive index
  • a sensor capable of measuring the Brix value (%) can be used for measuring the refractive index.
  • the clear liquid is used as a washing liquid using the solid concentration of the clear liquid, the solid concentration of the clear liquid is measured. The use can be determined by comparing the concentration.
  • the flexographic printing plate precursor As in the processing method described above, by using the clarified liquid from which bubbles have been removed as a washing solution, the flexographic printing plate precursor is properly developed, and film formation due to bubbles on the plate surface of the flexographic printing plate precursor is suppressed, resulting in poor development. Is suppressed. Further, since there is no air bubble, the clarified liquid does not overflow from the storage unit 16. Moreover, since there is no bubble, when the clarified liquid is heated by the heater 26, a decrease in heat transfer efficiency or the like is suppressed, the temperature can be set to an appropriate temperature, and temperature management becomes easy. Moreover, since the air bubbles are not included in the clarified liquid, the conveying efficiency of the clarified liquid does not decrease.
  • the developing fatigue liquid stored in the storage unit 16 is supplied to the processing unit 20 using the pump 42, and the clarified liquid from which bubbles are removed is stored in the storage unit 16 as an example.
  • the present invention is not limited to this.
  • the development fatigue liquid generated by the development processing in the developing unit 14 is directly supplied from the switching unit 15 to the processing unit 20, and separated into a clarified liquid and a residue by centrifugation in the processing unit 20, Furthermore, it is good also as a structure which stores the clarified liquid from which the bubble was removed by the defoaming part 22 in the storage part 16.
  • the supply unit 18 and the storage unit 16 may be connected by a connecting pipe 38, the washout solution from the supply unit 18 may be supplied to the storage unit 16, and the washout solution may be stored in the storage unit 16.
  • the washing solution is not supplied from the supply unit 18 to the developing unit 14, and the washing solution is supplied from the storage unit 16 to the developing unit 14.
  • the connecting pipe 38 is not necessarily provided.
  • the storage unit 16 also serves as the supply unit 18.
  • the processing system 10 may have a configuration in which a separation membrane (not shown) is provided at a position closer to the developing unit 14 than the pump 40 in the clear liquid conveyance path.
  • the separation membrane separates solid matter generated by the development processing of the flexographic printing plate precursor using the washing liquid.
  • the separation membrane is not particularly limited as long as the solid matter contained in the development fatigue solution Qw can be separated, and is appropriately determined depending on the size of the solid matter to be separated. It is preferable to pass the clarified liquid through the separation membrane because the solid concentration of the clarified liquid supplied to the developing unit 14 can be further reduced and the clarified liquid can be repeatedly used as a washing liquid.
  • the separation membrane is preferably capable of separating a solid having a particle size of 1 ⁇ m or less.
  • a filter having a separation ability of 0.1 ⁇ m is used as the separation membrane.
  • the development fatigue solution which is the treatment target of the treatment system and the treatment method of the present invention is a washing solution containing solid matter generated by removing an unexposed portion by developing the flexographic printing plate precursor using the washing solution, that is, Any washing solution containing an uncured resin is not particularly limited.
  • a development fatigue liquid containing a conventionally known photosensitive resin composition for forming a general photosensitive resin layer can be used as a processing target.
  • exhaustion liquid at the time of developing by a LAM (Laser Ablation Masking) system as a processing target, the uncured resin removed by development processing is contained in the photosensitive resin composition.
  • a photosensitive resin is preferred.
  • such a photosensitive resin composition includes, for example, a composition containing a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer, and the like.
  • the development fatigue solution which is the treatment target of this treatment method may contain a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer and the like in addition to the uncured resin.
  • the uncured resin contained in the development fatigue liquid is a solid material generated by removing an unexposed portion.
  • Examples of the uncured resin contained in the development fatigue liquid include water-dispersible latex, rubber component, polymer component, and uncrosslinked ethylenically unsaturated compound (polymer).
  • water dispersible latex examples include polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, Water-dispersed latex polymers such as vinylpyridine copolymer latex, butyl polymer latex, thiocol polymer latex, and acrylate polymer latex, or other components such as acrylic acid or methacrylic acid. Examples thereof include a polymer obtained by copolymerization.
  • the rubber component examples include butadiene rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyurethane rubber, silicon rubber, butyl rubber, ethylene-propylene rubber, and epichlorohydrin rubber.
  • the polymer component may be hydrophilic or hydrophobic, and specifically includes polyamide resin, unsaturated polyester resin, acrylic resin, polyurethane resin, polyester resin, polyvinyl alcohol resin, and the like.
  • the solid material having a specific gravity smaller than that of the washing liquid is, for example, a photosensitive resin such as a rubber component and latex.
  • the solid matter having a specific gravity greater than that of the washing solution is a component of the overcoat layer such as carbon.
  • Examples of the ethylenically unsaturated compound (polymer) include a (meth) acryl-modified polymer having an ethylenically unsaturated bond in the molecule.
  • Examples of the (meth) acryl-modified polymer include (meth) acryl-modified butadiene rubber and (meth) acryl-modified nitrile rubber.
  • “(Meth) acryl” is a notation representing acryl or methacryl
  • “(meth) acrylate” described later is a notation representing acrylate or methacrylate.
  • the uncured resin contained in the development fatigue solution is not particularly limited, but is preferably 70% by mass or less, and more preferably 35% by mass or less.
  • the polymerization initiator that may be contained in the development fatigue liquid is preferably a photopolymerization initiator.
  • the photopolymerization initiator include alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Among them, alkylphenones are preferable. .
  • photopolymerization initiators for alkylphenones include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy- 2-methyl-1-phenyl-propan-1-one and the like.
  • the concentration of the polymerization initiator that may be contained in the development fatigue solution is not particularly limited, but is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less.
  • polymerizable compound examples include ethylenically unsaturated compounds corresponding to so-called monomer components other than the above-described ethylenically unsaturated compounds (polymers).
  • the ethylenically unsaturated compound may be a compound having one ethylenically unsaturated bond or a compound having two or more ethylenically unsaturated bonds.
  • Specific examples of the compound having one ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-chloro-2.
  • -(Meth) acrylate having a hydroxyl group such as hydroxypropyl (meth) acrylate, ⁇ -hydroxy- ⁇ '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; cyclohexyl (meth) acrylate, etc.
  • hydroxyl group such as hydroxypropyl (meth) acrylate, ⁇ -hydroxy- ⁇ '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acryl
  • Cycloalkyl (meth) acrylate halogenated alkyl (meth) acrylates such as chloroethyl (meth) acrylate and chloropropyl (meth) acrylate; Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, etc.
  • Alkoxyalkyl (meth) acrylates phenoxyalkyl (meth) acrylates such as phenoxyethyl acrylate and nonylphenoxyethyl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxydipropylene glycol ( Alkoxyalkylene glycol (meth) acrylates such as meth) acrylate; 2,2-dimethylaminoethyl (meth) acrylate DOO, 2,2-diethylaminoethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate.
  • the ethylenically unsaturated compound having two or more ethylenically unsaturated bonds include alkyldiol di (meth) acrylates such as 1,9-nonanediol di (meth) acrylate; diethylene glycol di (meth) acrylate Polyethylene glycol di (meth) acrylate such as polypropylene glycol di (meth) acrylate such as dipropylene glycol di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Acrylates, glycerol tri (meth) acrylates, ethylene glycol diglycidyl ethers with compounds with ethylenically unsaturated bonds and active hydrogen such as unsaturated carboxylic acids or unsaturated alcohols Polyvalent (meth) acrylate obtained by reaction; polyvalent (me
  • the concentration of the polymerizable compound that may be contained in the development fatigue solution is not particularly limited, but is preferably 30.0% by mass or less, and more preferably 15.0% by mass or less.
  • polymerization inhibitor examples include hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, etc.
  • the concentration of the polymerization inhibitor that may be contained in the development fatigue solution is not particularly limited, but is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less.
  • plasticizer examples include liquid rubber, oil, polyester, and phosphoric acid compounds.
  • liquid rubber examples include liquid polybutadiene, liquid polyisoprene, and those modified with maleic acid or an epoxy group.
  • oil examples include paraffin, naphthene and aroma.
  • polyester examples include adipic acid-based polyester.
  • phosphoric acid compounds include phosphate esters.
  • the concentration of the plasticizer that may be contained in the development fatigue solution is not particularly limited, but is preferably 30% by mass or less, and more preferably 15% by mass or less.
  • the wash-out solution contained in the development fatigue solution is preferably an aqueous wash-out solution, and may be a solution composed only of water, or contains 50% by mass or more of water, and a water-soluble compound is added.
  • An aqueous solution may be used.
  • water-soluble compounds include surfactants, acids, and alkalis.
  • the surfactant examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • an anionic surfactant is preferable.
  • Specific examples of the anionic surfactant include aliphatic carboxylates such as sodium laurate and sodium oleate; higher alcohol sulfates such as sodium lauryl sulfate, sodium cetyl sulfate and sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate; polyoxyethylene alkyl allyl ether sulfate salts such as sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate; Alkyl sulfonates such as alkyl diphenyl ether disulfonate, sodium dodecyl sulfon
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether or polyoxyethylene lauryl ether, and polyoxyethylene nonyl phenyl ether or polyoxyethylene octylphenyl ether.
  • Ethylene alkyl phenyl ethers polyoxyethylene polyoxypropylene glycols, polyethylene glycol monostearate or polyethylene glycol monooleate, mono- and diesters of polyethylene glycol with fatty acids such as polyethylene glycol dilaurate, sorbitan monolaurate or sorbitan monooleate
  • Fatty acid and sorbitan esters such as polyoxyethylene sorbitan monolaurate or Esters of sorbitan polyoxyethylene adducts such as oxyethylene sorbitan monocytearate or polyoxyethylene sorbitan trilaurate with fatty acids, esters of fatty acids such as sorbitol monopartimidate or sorbit dilaurate, sorbites, polyoxy Esters of sorbite polyoxyethylene adducts such as ethylene sorbite monostearate or polyoxyethylene sorbitdiolate with fatty acids, esters of fatty acids such as pentaerythritol monoste
  • fatty acid alkanolamides such as lauric acid diethanolamide or lauric acid monoethanolamide
  • lauryldimethylamine examples include amine compounds such as side, fatty acid alkanolamines such as stearyl diethanolamine, polyoxyethylene alkylamines, triethanolamine fatty acid esters, phosphates, carbonates, silicates, and other alkaline salt compounds. . These may be used alone or in combination of two or more.
  • cationic surfactant examples include primary and secondary amine salts such as monostearyl ammonium chloride, distearyl ammonium chloride, and tristearyl ammonium chloride, stearyl trimethyl ammonium chloride, and distearyl dimethyl ammonium.
  • Quaternary ammonium salts such as chloride, stearyldimethylbenzylammonium chloride, alkylpyridinium salts such as N-cetylpyridinium chloride or N-stearylpyridinium chloride, N, N dialkylmorpholinium salts, polyethylene polyamine fatty acid amide salts, aminoethylethanol Acetates of urea compounds of amides of stearic acid with amines, 2-alkyl-1-hydroxyethylimidazolinium chloride Ido, and the like. These may be used alone or in combination of two or more.
  • amphoteric surfactants include amino acid types such as sodium laurylamine propionate, carboxybetaine types such as lauryl dimethyl betaine or lauryl dihydroxyethyl betaine, and sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine.
  • amino acid types such as sodium laurylamine propionate
  • carboxybetaine types such as lauryl dimethyl betaine or lauryl dihydroxyethyl betaine
  • sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine.
  • betaine type imidazolinium betaine type, and restin. These may be used alone or in combination of two or more.
  • the acid include inorganic acids or organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid.
  • the alkali include lithium hydroxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium bicarbonate, calcium carbonate and the like.
  • the present invention is basically configured as described above.
  • the processing system and processing method of the present invention have been described in detail above.
  • the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. Of course.
  • Examples 1 to 4 and Comparative Examples 1 to 4 The above-mentioned flexographic printing plate precursor was subjected to back exposure by exposing it from the back surface of the flexographic printing plate precursor at an energy of 80 W for 10 seconds using the above-described ultraviolet exposure machine. Then, using the above-mentioned imaging machine, it imaged by ablating a mask layer, and main exposure was implemented by exposing at 80 W from the surface (back surface of the back surface) for 1000 seconds.
  • the flexographic printing plate precursor subjected to main exposure was used as the flexographic printing plate precursor after imagewise exposure.
  • the exposed unprinted portion of the flexographic printing plate precursor after imagewise exposure is developed using a brush at the temperature of 50 ° C. using the above washing solution and the washing machine SB-926. This was removed to obtain a developing fatigue solution.
  • ⁇ Measurement method of solid content concentration of development fatigue fluid 10 g of the development fatigue solution to be measured was placed in an aluminum container and dried in an oven PHH-201 (manufactured by ESPEC) at 95 ° C. for 12 hours. After drying, the mass of the residue was measured to determine the solid content concentration of the developing fatigue solution. The results are shown in the column of solid content concentration (mass%) of the developing fatigue solution in Table 1 below.
  • Examples 1 to 4 and Comparative Examples 1 to 4 the generation of bubbles in the storage unit, the liquid level in the storage unit, and the plate failure in the development process were evaluated.
  • the generation of bubbles in the storage part was visually observed, and was evaluated in three stages, “low”, “high”, and “very high” based on the observation results.
  • the liquid surface height of the storage part was evaluated by the difference between the liquid surface height after the treatment and the height at the time of standing. In addition, the height at the time of stationary is the height of the liquid level of the storage part in the state which does not perform a centrifugation process.
  • the plate failure in the development process was evaluated by visually observing the plate surface of the flexographic printing plate precursor after the development process. When the residue was attached to the printing plate, it was evaluated as “failure”, and when the residue was not attached to the printing plate, it was evaluated as “no failure”.
  • Example 1 and Comparative Example 2 provided with a heater, the film adhesion to the heater, the temperature rise time (minutes) of the liquid temperature in the storage part, and the liquid temperature in the storage part during development processing were measured.
  • the film adhesion to the heater was evaluated by visually observing the surface of the heating element after the treatment. The case where adhesion of the film was observed on the surface of the heater heating element was evaluated as “Yes”, and the case where adhesion of the film was not observed on the surface of the heater heating element was evaluated as “None”.
  • the temperature rise time of the liquid temperature in the storage part was measured by measuring the time required for the liquid temperature in the storage part to reach 50 ° C. from 25 ° C. In addition, the liquid temperature of the storage part was measured using the thermometer.
  • the liquid temperature of the storage unit during the development processing was measured using a thermometer for the liquid temperature of the storage unit during the development processing.
  • Example 1 In Example 1, the above-described development fatigue solution was processed using a processing unit and a defoaming unit. In Example 1, the above-mentioned centrifuge was used for the processing unit, and centrifugation was performed at a rotational speed of 2500 rpm (revolutions per minute). A super valve cutter M-60 manufactured by Sato Jushi Kogyo Co., Ltd. was used for the defoaming part. In Example 1, centrifugation was carried out, and bubbles in the clarified liquid were removed at the defoaming part continuously with the centrifugation. In Example 1, there was a heater, and the liquid temperature was controlled within an allowable range of 1 ° C.
  • the numerical values shown in the column of centrifuge flow rate (L / min) in Table 1 below indicate the flow rate at which the developer fatigue solution is sent to the centrifuge. In Example 1, it was set to “5 L / min”.
  • the “plate processing amount (m 2 ) from the start of processing” in Table 1 below indicates how many square meters (m 2 ) of the flexographic printing plate precursor was developed, and the flexographic printing plate precursor that was developed. Represents the total area (m 2 ). In Example 1, it is “20 m 2 ”.
  • the plate processing amount from the start of processing is simply referred to as processing amount.
  • Example 2 differs from Example 1 in that the centrifugation conditions, the amount of processing, and the heater are not provided, and the rest is the same as Example 1.
  • the configuration of the defoaming part of Example 2 was the same as that of Example 1, and in Example 2, the centrifugal separation process and the defoaming process were continuously performed.
  • the centrifuge flow rate was set to “10 L / min” and the throughput was set to “15 m 2 ” for the centrifuge conditions.
  • the column of “film adhesion to heater”, the column of “temperature rise time (minutes) of liquid temperature of storage unit”, and “liquid of storage unit during development processing” "-” Is written in the "Warm” column.
  • Example 3 is the same as Example 1 except that the amount of treatment, the configuration of the defoaming part, and the heater are not provided, as compared to Example 1. Also in Example 3, the centrifugal separation treatment and the defoaming treatment were performed continuously. In Example 3, the processing amount was set to “30 m 2 ”. In Example 3, a hollow fiber degassing module EF-002A (model) manufactured by DIC Corporation was used for the defoaming part. In Example 3, since no heater is provided, the column of “Attaching the film to the heater”, the column of “Temperature increase time of liquid temperature of storage unit (minutes)”, and “Liquid of storage unit during development processing” "-" Is written in the "Warm” column.
  • Example 4 differs from Example 1 in that centrifuge conditions, throughput, and heaters are not provided, and that centrifuge separation and defoaming are not performed continuously.
  • Example 4 the clarified liquid obtained by centrifugation was once stored in a container, and then bubbles in the clarified liquid were removed from the clarified liquid in the container at the defoaming section.
  • the centrifuge flow rate was set to “10 L / min” and the processing amount was set to “15 m 2 ” for the centrifuge conditions.
  • Comparative Example 1 (Comparative Example 1) Compared with Example 1, Comparative Example 1 was the same as Example 1 except that the centrifugation conditions, the amount of treatment, the defoaming part were not provided, and the heater was not provided.
  • the centrifuge flow rate was set to “5 L / min” and the treatment amount was set to “0 m 2 ” for the centrifuge conditions.
  • the development fatigue solution with a processing amount of 0 m 2 is a state in which the development treatment is not performed and is a washing solution.
  • the washout solution was centrifuged.
  • Comparative Example 2 Comparative Example 2 was different from Example 1 in that the centrifugal separation conditions and the defoaming part were not provided, and the rest was the same as Example 1.
  • the centrifuge flow rate was set to “5 L / min” for the centrifuge conditions.
  • Comparative Example 3 (Comparative Example 3) Compared to Example 1, Comparative Example 3 was the same as Example 1 except that the centrifugation conditions, the defoaming part were not provided, and the heater was not provided. In Comparative Example 3, the centrifuge flow rate was set to “5 L / min” for the centrifuge conditions. In Comparative Example 3, since no heater is provided, the column “Attachment of film to heater”, the column “Temperature rise time of liquid temperature in storage unit (min)”, and “Liquid in storage unit during development process” "-” Is written in the "Warm” column.
  • Comparative Example 4 was different from Example 3 in that the defoaming part was not provided, and the others were the same as Example 3.
  • Example 4 in which the centrifugal separation process and the defoaming process were not performed continuously is the same as the Examples 1 to 3 in which the centrifugal separation process and the defoaming process were performed in succession. There was little occurrence, the level of the liquid level in the storage section was low, and no plate failure occurred during the development process.
  • Comparative Examples 1 to 4 having no defoaming part many bubbles were generated in the storage part, and the liquid level of the storage part was high.
  • Comparative Examples 2 to 4 in particular, the clarified liquid overflowed from the storage section, and the plate surface failure of the developing process occurred.
  • the solid content concentration was higher than those in Comparative Examples 1 to 3, but no plate failure occurred in the development process.
  • Example 1 with a heater was compared with Comparative Example 2, the film was adhered to the heater in Comparative Example 2, and a long time was required for the temperature rise time (minutes) of the liquid temperature in the storage unit.
  • the liquid temperature was controlled within an allowable range of 1 ° C. with respect to 50 ° C., but Example 1 was within the allowable range, and Comparative Example 2 exceeded the allowable range. It was. From the above, the effect of the present invention is clear.

Abstract

Provided are a processing system and a processing method for processing an exhausted developer solution generated by a developing process for a flexographic printing plate original plate, the exhausted developer solution being processed into a washing liquid suitable for the developing process for the flexographic printing plate original plate. The processing system reuses, as a washing solution, the exhausted developer solution, which includes solids generated by the removal of unexposed portions due to the developing process for flexographic printing plate original plate in which a washing liquid is used, the developing process taking place after image exposure. The processing system has: a processing unit that separates, by centrifugal separation, the exhausted developer solution into a clarified solution and a residue that includes solids; and a bubble-removing unit that removes air bubbles in the clarified solution obtained by the processing unit. The clarified solution from which bubbles have been removed is reused as a washing liquid.

Description

処理システムおよび処理方法Processing system and processing method
 本発明は、洗い出し液を用いた現像処理によって、画像様露光後のフレキソ印刷版原版の未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、洗い出し液として再使用する処理システムおよび処理方法に関し、特に、現像疲労液を遠心分離した後、気泡を除去して得られる清澄液を洗い出し液として再使用する処理システムおよび処理方法に関する。 In the present invention, a development fatigue solution containing solid matter generated by removing an unexposed portion of a flexographic printing plate precursor after imagewise exposure by a development process using a washing solution is reused as a washing solution. The present invention relates to a processing system and a processing method, and more particularly, to a processing system and a processing method for reusing a clarified liquid obtained by removing bubbles after centrifuging a development fatigue liquid as a washing liquid.
 フレキソ印刷版原版を用いた印刷版の現像方法としては各種方法が知られている。例えば、水を主成分とする水系現像液を用いて現像を行う現像方法では、水系現像液中に画像様露光後のフレキソ印刷版原版を浸漬し、ブラシ等で水系現像液中に未露光部である未硬化樹脂等を洗い出すことにより現像が行われている。この場合、現像液中に未硬化樹脂等が分散した状態で存在する。未硬化樹脂等が分散した状態で存在する現像液について、分散された未硬化樹脂を除去し、再使用することが提案されている。なお、上述のフレキソ印刷版原版は、感光性樹脂版とも呼ばれ、現像液は洗い出し液とも呼ばれる。 Various methods are known for developing a printing plate using a flexographic printing plate precursor. For example, in a development method in which development is performed using an aqueous developer containing water as a main component, the flexographic printing plate precursor after imagewise exposure is immersed in an aqueous developer and an unexposed portion is exposed in the aqueous developer with a brush or the like. Development is performed by washing out uncured resin and the like. In this case, the uncured resin or the like is dispersed in the developer. It has been proposed to remove a dispersed uncured resin and reuse it for a developing solution in which an uncured resin or the like is dispersed. The flexographic printing plate precursor described above is also called a photosensitive resin plate, and the developer is also called a washing solution.
 例えば、特許文献1には、感光性樹脂版を露光後、洗い出し液中に浸漬しながら未露光部を除去して現像する際に発生する固形物を含んだ洗い出し液を処理する方法が記載されている。特許文献1では、洗い出し液より比重の小さい固形物を、インサイドディスクを有する遠心沈降型の遠心分離処理を用いて分離除去し、洗い出し液より比重の小さい固形物を分離除去した処理済液を、さらに洗い出し液として再使用することが記載されている。 For example, Patent Document 1 describes a method of treating a washing solution containing solid matter generated when developing a photosensitive resin plate after exposure by removing an unexposed portion while being immersed in the washing solution. ing. In Patent Document 1, solids having a specific gravity smaller than that of the washing liquid are separated and removed using a centrifugal sedimentation type centrifugal separation process having an inside disk, and the processed liquid obtained by separating and removing solids having a lower specific gravity than the washing liquid is obtained. Further, it is described that it is reused as a washing solution.
特開平7-328620号公報JP-A-7-328620
 上述の特許文献1のような遠心分離処理を用いて、洗い出し液より比重の小さい固形物を分離除去した処理済液には、気泡が多く含まれることがある。特許文献1の遠心分離による処理済液を洗い出し液として再使用した場合、フレキソ印刷版原版の現像が不十分になったり、処理済液を搬送する際、気泡が含まれるため搬送効率が悪くなったり、液温を上げる際、処理済液に気泡が含まれるため伝熱効率が低下し温度上昇が鈍くなるという問題点がある。このように、気泡が含まれる処理済液はフレキソ印刷版原版の現像処理に用いる洗い出し液としては適していない。 The processed liquid obtained by separating and removing solid matter having a specific gravity smaller than that of the wash-out liquid using the centrifugal separation process as described in Patent Document 1 may contain a lot of bubbles. When the processed liquid obtained by centrifugation in Patent Document 1 is washed out and reused as a liquid, the development of the flexographic printing plate precursor becomes insufficient, or when the processed liquid is transported, air bubbles are included, resulting in poor transport efficiency. When the liquid temperature is raised, there is a problem that the heat transfer efficiency is lowered and the temperature rise is slow because bubbles are included in the treated liquid. Thus, the processed liquid containing bubbles is not suitable as a washing-out liquid used for developing the flexographic printing plate precursor.
 本発明は、上述の課題を鑑みてなされたものであり、本発明の目的は、洗い出し液を用いたフレキソ印刷版原版の現像処理によって発生する現像疲労液を、フレキソ印刷版原版の現像処理に適した洗い出し液に処理する処理システムおよび処理方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to develop a development fatigue solution generated by developing a flexographic printing plate precursor using a washing solution into a developing process of a flexographic printing plate precursor. It is an object of the present invention to provide a processing system and a processing method for processing into a suitable washing solution.
 上述の目的を達成するために、本発明は、画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、洗い出し液として再使用する処理システムであって、遠心分離により現像疲労液を、清澄液と固形物を含む残渣とに分離する処理部と、処理部で得られた清澄液中の気泡を除去する脱泡部とを有し、気泡が除去された清澄液が洗い出し液として再使用される、処理システムを提供するものである。
 また、本発明は、画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、洗い出し液として再使用する処理システムであって、遠心分離により現像疲労液を、清澄液と固形物を含む残渣とに分離する処理部と、処理部に連続して接続され、処理部で得られた清澄液中の気泡を除去する脱泡部とを有し、気泡が除去された清澄液が洗い出し液として再使用される、処理システムを提供するものである。
In order to achieve the above-mentioned object, the present invention provides a development fatigue including solid matter generated by removing an unexposed portion by washing out a flexographic printing plate precursor after imagewise exposure and developing it with a liquid. A processing system for reusing a liquid as a washing liquid, a processing section that separates a development fatigue liquid into a clarified liquid and a solid-containing residue by centrifugation, and bubbles in the clarified liquid obtained in the processing section And a degassing part for removing the bubbles, and a clarified liquid from which bubbles have been removed is reused as a washing liquid.
In addition, the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution. A processing system to be used, in which a developing fatigue liquid is separated by centrifugation into a clarified liquid and a solid-containing residue, and the clarified liquid obtained by the processing section is continuously connected to the processing section. And a defoaming section for removing the bubbles, and a clarified liquid from which bubbles are removed is reused as a washing liquid.
 脱泡部は、清澄液を容器内で旋回させて流動し、気泡を容器の中央部に集めて除去するものであることが好ましい。
 脱泡部は、気液分離膜を使用した減圧脱気を行い気泡を除去するものであることが好ましい。
 フレキソ印刷版原版を洗い出し液を用いて現像処理する現像部と、現像部で発生した現像疲労液を貯留する貯蔵部とを有し、貯蔵部に貯留された現像疲労液が処理部に供給されて、遠心分離により清澄液と残渣に分離されることが好ましい。
 フレキソ印刷版原版を洗い出し液を用いて現像処理する現像部を有し、現像部で現像処理して発生した現像疲労液が処理部に直接供給されて、遠心分離により清澄液と残渣に分離されることが好ましい。
It is preferable that the defoaming part is a part in which the clarification liquid is swirled in the container to flow and the bubbles are collected and removed in the central part of the container.
The defoaming part is preferably one that removes bubbles by performing vacuum degassing using a gas-liquid separation membrane.
It has a developing section for washing and developing the flexographic printing plate precursor using a liquid, and a storage section for storing the development fatigue liquid generated in the developing section, and the development fatigue liquid stored in the storage section is supplied to the processing section. Thus, it is preferable to separate into a clarified liquid and a residue by centrifugation.
It has a development section that develops the flexographic printing plate precursor using a washing solution, and the development fatigue fluid generated by the development process in the development section is directly supplied to the processing section and separated into a clarified liquid and a residue by centrifugation. It is preferable.
 また、本発明は、画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、洗い出し液として再使用する処理方法であって、遠心分離により現像疲労液を、清澄液と固形物を含む残渣とに分離する第1の工程と、清澄液中の気泡を除去する第2の工程と、気泡が除去された清澄液を洗い出し液として再使用する第3の工程とを有する、処理方法を提供するものである。
 また、本発明は、画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、洗い出し液として再使用する処理方法であって、遠心分離により現像疲労液を、清澄液と固形物を含む残渣とに分離する第1の工程と、第1の工程に連続して、清澄液中の気泡を除去する第2の工程と、気泡が除去された清澄液を洗い出し液として再使用する第3の工程とを有する、処理方法を提供するものである。
In addition, the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution. A processing method to be used, the first step of separating the development fatigue solution into a clarified solution and a residue containing solids by centrifugation, a second step of removing bubbles in the clarified solution, And a third step of reusing the removed clarified liquid as a washing liquid.
In addition, the present invention re-uses a development fatigue solution containing solids generated by removing unexposed portions by developing a flexographic printing plate precursor after imagewise exposure as a wash-out solution. A processing method to be used, the first step of separating the developing fatigue liquid into a clarified liquid and a residue containing solids by centrifugation, and removing bubbles in the clarified liquid following the first process. And a third process of reusing the clarified liquid from which bubbles have been removed as a washing liquid.
 清澄液中の気泡を除去する第2の工程は、清澄液を容器内で旋回させて流動し、気泡を中央部に集めて除去する方法であることが好ましい。
 清澄液中の気泡を除去する第2の工程は、気液分離膜を使用した減圧脱気を行い気泡を除去する方法であることが好ましい。
 第1の工程は、フレキソ印刷版原版を洗い出し液を用いて現像処理して発生した現像疲労液を貯留した後に、貯留した現像疲労液を、遠心分離により清澄液と残渣に分離することが好ましい。
 第1の工程は、フレキソ印刷版原版を洗い出し液を用いて現像処理して発生した現像疲労液を、直接遠心分離により清澄液と残渣に分離することが好ましい。
The second step of removing the bubbles in the clarified liquid is preferably a method in which the clarified liquid is swirled in the container to flow, and the bubbles are collected and removed in the central portion.
The second step of removing bubbles in the clarified liquid is preferably a method of removing bubbles by performing vacuum degassing using a gas-liquid separation membrane.
In the first step, it is preferred that after storing the development fatigue solution generated by washing out the flexographic printing plate precursor and developing it using the solution, the stored development fatigue solution is separated into a clarified solution and a residue by centrifugation. .
In the first step, it is preferable to separate the development fatigue solution generated by washing out the flexographic printing plate precursor with a developing solution and separating it into a clarified solution and a residue by direct centrifugation.
 本発明によれば、洗い出し液を用いたフレキソ印刷版原版の現像処理によって発生する現像疲労液を、フレキソ印刷版原版の現像処理に適した洗い出し液に処理する処理システムおよび処理方法を提供することができる。 According to the present invention, there is provided a processing system and a processing method for processing a development fatigue solution generated by developing a flexographic printing plate precursor using a washing solution into a washing solution suitable for developing the flexographic printing plate precursor. Can do.
本発明の実施形態の処理システムの一例を示す模式図である。It is a mimetic diagram showing an example of a processing system of an embodiment of the present invention. 本発明の実施形態の処理システムに用いられる現像部の一例を示す模式図である。It is a schematic diagram which shows an example of the image development part used for the processing system of embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の処理システムおよび処理方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 また、具体的な数値で表された各種の値については、該当する技術分野で一般的に許容される誤差範囲を含む。
Hereinafter, based on a preferred embodiment shown in the accompanying drawings, a processing system and a processing method of the present invention will be described in detail.
In addition, the figure demonstrated below is an illustration for demonstrating this invention, and this invention is not limited to the figure shown below.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Further, various values represented by specific numerical values include an error range generally allowed in the corresponding technical field.
(処理システム)
 図1は本発明の実施形態の処理システムの一例を示す模式図であり、図2は本発明の実施形態の処理システムに用いられる現像部の一例を示す模式図である。
 図1に示す処理システム10は、洗い出し液を用いた、画像様露光後のフレキソ印刷版原版の現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、フレキソ印刷版原版の現像処理に適した洗い出し液に処理するものである。処理システム10では、例えば、現像疲労液を遠心分離した後、連続して気泡を除去して得られる清澄液を洗い出し液として再使用するものであるが、これに限定されるものではない。処理システム10では、現像疲労液を遠心分離した後、例えば、遠心分離で得られた清澄液を一度容器に溜めて、清澄液中の気泡を除去して洗い出し液として再使用することもできる。
(Processing system)
FIG. 1 is a schematic diagram illustrating an example of a processing system according to an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating an example of a developing unit used in the processing system according to an embodiment of the present invention.
The processing system 10 shown in FIG. 1 is a development fatigue solution containing a solid material generated by removing an unexposed portion by developing a flexographic printing plate precursor after imagewise exposure using a washing solution. A washing solution suitable for development processing of a flexographic printing plate precursor is used. In the processing system 10, for example, a clarified liquid obtained by continuously removing bubbles after centrifuging a development fatigue liquid is reused as a washing liquid, but is not limited thereto. In the processing system 10, after the development fatigue solution is centrifuged, for example, the clarified liquid obtained by centrifugation is once stored in a container to remove bubbles in the clarified liquid and reused as a washing liquid.
 処理システム10は、露光部12と、現像部14と、切換部15と、貯蔵部16と、供給部18と、処理部20と、脱泡部22と、制御部24とを有する。
 処理システム10の各構成部は、制御部24により動作等が制御される。処理部20と脱泡部22とで現像疲労液処理部25が構成される。
 なお、処理システム10としては、露光部12がない構成でもよい。
The processing system 10 includes an exposure unit 12, a developing unit 14, a switching unit 15, a storage unit 16, a supply unit 18, a processing unit 20, a defoaming unit 22, and a control unit 24.
The operation of each component of the processing system 10 is controlled by the control unit 24. The developing fatigue liquid processing unit 25 is configured by the processing unit 20 and the defoaming unit 22.
The processing system 10 may be configured without the exposure unit 12.
 現像部14は接続管30を介して切換部15に接続されている。切換部15は接続管31を介して貯蔵部16に接続されている。また、切換部15は接続管34を介して処理部20に接続されている。 The developing unit 14 is connected to the switching unit 15 through the connection pipe 30. The switching unit 15 is connected to the storage unit 16 via the connection pipe 31. In addition, the switching unit 15 is connected to the processing unit 20 via the connection pipe 34.
 現像部14は接続管32および接続管33を介して洗い出し液Q(図2参照)を供給する供給部18に接続されている。また、現像部14は接続管32を介して貯蔵部16に接続されている。接続管32には、ポンプ40とヒータ26とバルブ27とが貯蔵部16に近い側から、上述の順に設けられている。
 ヒータ26は、現像部14に供給する液体の液温を調整するためのものであり、液温を予め設定された温度に調整することができれば、その構成は特に限定されるものではない。ヒータ26としては、例えば、発熱体が接続管32の内部に設けられるインラインタイプのものが用いられる。なお、ヒータ26は、必ずしも必要ではなく、ヒータ26がない構成でもよい。
 バルブ27は、現像部14に供給される液体の供給経路を切り換えるものである。バルブ27により、洗い出し液および清澄液のうち、少なくとも一方が現像部14に供給される。バルブ27は制御部24に接続されており、バルブ27の開閉が制御され、現像部14に供給される液体の供給経路が切り換えられる。
The developing unit 14 is connected to the supply unit 18 that supplies the washing liquid Q (see FIG. 2) via the connection pipe 32 and the connection pipe 33. Further, the developing unit 14 is connected to the storage unit 16 via a connecting pipe 32. The connection pipe 32 is provided with the pump 40, the heater 26, and the valve 27 in the order described above from the side close to the storage unit 16.
The heater 26 is for adjusting the liquid temperature of the liquid supplied to the developing unit 14, and the configuration is not particularly limited as long as the liquid temperature can be adjusted to a preset temperature. As the heater 26, for example, an in-line type in which a heating element is provided inside the connection pipe 32 is used. In addition, the heater 26 is not necessarily required, and may be configured without the heater 26.
The valve 27 switches the supply path of the liquid supplied to the developing unit 14. The valve 27 supplies at least one of the washing solution and the clarification solution to the developing unit 14. The valve 27 is connected to the control unit 24, and the opening and closing of the valve 27 is controlled to switch the supply path of the liquid supplied to the developing unit 14.
 処理部20と脱泡部22とは接続管35を介して接続されており、接続管35にポンプ41が設けられている。処理部20と脱泡部22との間には貯蔵タンク等が設けられておらず、接続管35とポンプ41が設けられているだけで、ポンプ41により、処理部20で得られた清澄液が脱泡部22に直接供給される。このように、処理部20と脱泡部22との間に貯蔵タンク等がない形態を、脱泡部22が処理部20に連続して接続されているという。また、脱泡部22と貯蔵部16とは接続管36を介して接続されている。
 処理システム10では、処理部20で得られた清澄液に連続して脱泡部22で清澄液中の気泡を除去し、気泡が除去された清澄液が接続管36を介して貯蔵部16に供給される。
The processing unit 20 and the defoaming unit 22 are connected via a connection pipe 35, and a pump 41 is provided in the connection pipe 35. The storage tank or the like is not provided between the processing unit 20 and the defoaming unit 22, and the clarified liquid obtained in the processing unit 20 by the pump 41 is provided only by the connection pipe 35 and the pump 41. Is directly supplied to the defoaming section 22. In this way, a form in which there is no storage tank or the like between the processing unit 20 and the defoaming unit 22 is said to be continuously connected to the processing unit 20. Moreover, the defoaming part 22 and the storage part 16 are connected via a connecting pipe 36.
In the processing system 10, the bubbles in the clarified liquid are removed by the defoaming section 22 continuously from the clarified liquid obtained in the processing section 20, and the clarified liquid from which the bubbles are removed is stored in the storage section 16 via the connection pipe 36. Supplied.
 貯蔵部16と処理部20とは接続管37を介して接続されている。接続管37にはポンプ42が設けられており、ポンプ42により、貯蔵部16に貯留された液体、例えば、現像疲労液が処理部20に供給される。
 上述のポンプ40、ポンプ41およびポンプ42は、いずれも現像疲労液等の液体を、目的とする場所に移動させることができれば、その構成は、特に限定されるものではなく、移動させる液体の量、および移動させる液体の揚程等に応じたものが適宜用いられる。上述のポンプ40、ポンプ41およびポンプ42は、いずれも制御部24により動作が制御される。
The storage unit 16 and the processing unit 20 are connected via a connection pipe 37. The connection pipe 37 is provided with a pump 42, and a liquid stored in the storage unit 16, for example, a developing fatigue liquid is supplied to the processing unit 20 by the pump 42.
Any of the above-described pump 40, pump 41, and pump 42 is not particularly limited as long as a liquid such as a developing fatigue liquid can be moved to a target location, and the amount of liquid to be moved is not limited. In accordance with the head of the liquid to be moved and the like, it is appropriately used. The operations of the above-described pump 40, pump 41, and pump 42 are controlled by the control unit 24.
 露光部12は、フレキソ印刷版原版を露光するものである。露光部12によりフレキソ印刷版原版が露光されたものが、画像様露光後のフレキソ印刷版原版である。露光部12は、フレキソ印刷版原版を露光することができれば、その構成は特に限定されるものではない。露光部12には、フレキソ印刷版原版を露光可能な公知の装置を適宜利用可能である。 The exposure unit 12 exposes the flexographic printing plate precursor. The flexographic printing plate precursor after the imagewise exposure is the one in which the flexographic printing plate precursor is exposed by the exposure unit 12. The configuration of the exposure unit 12 is not particularly limited as long as the flexographic printing plate precursor can be exposed. As the exposure unit 12, a known apparatus capable of exposing the flexographic printing plate precursor can be appropriately used.
 現像部14は、露光されたフレキソ印刷版原版を現像するものであり、露光部12で露光された後のフレキソ印刷版原版が搬送される。
 現像部14は、例えば、水を主成分とする水系現像液を洗い出し液として用いて、画像様露光後のフレキソ印刷版原版を現像するものである。現像部14は、画像様露光後のフレキソ印刷版原版を現像することができれば、その構成は特に限定されるものではない。現像部14としては、水系現像液を用いた公知の装置が適宜利用可能である。現像部14は、バッチ方式でフレキソ印刷版原版の現像を行うクラムシェル型と呼ばれる構成でもよく、フレキソ印刷版原版を搬送しながら現像を行う搬送式の構成でもよい。また、画像様露光後のフレキソ印刷版原版を浸漬して現像する形態でもよい。
The developing unit 14 develops the exposed flexographic printing plate precursor, and the flexographic printing plate precursor exposed by the exposing unit 12 is conveyed.
The developing unit 14 develops the flexographic printing plate precursor after image-wise exposure using, for example, an aqueous developer containing water as a main component as a washing solution. The configuration of the developing unit 14 is not particularly limited as long as it can develop the flexographic printing plate precursor after imagewise exposure. As the developing unit 14, a known apparatus using an aqueous developer can be used as appropriate. The developing unit 14 may have a configuration called a clamshell type that develops the flexographic printing plate precursor in a batch system, or may have a transport type configuration that performs development while transporting the flexographic printing plate precursor. Moreover, the form which immerses and develops the flexographic printing plate precursor after imagewise exposure may be sufficient.
 切換部15は、現像疲労液Qw(図2参照)の流路を変更するものである。切換部15により、現像疲労液Qw(図2参照)の流路が変更され、貯蔵部16または処理部20に現像疲労液Qw(図2参照)が移動される。切換部15には、例えば、三方弁が用いられる。切換部15の流路の切換えは制御部24によりなされる。また、切換部15には、貯蔵部16への流路である接続管31および接続管34の流量を測定する流量計を有することが好ましい。これにより、現像疲労液の貯蔵部16および処理部20への流量が測定でき、現像部14に必要な洗い出し液Q(図2参照)、および清澄液の供給量を把握することができる。 The switching unit 15 changes the flow path of the development fatigue liquid Qw (see FIG. 2). The switching portion 15 changes the flow path of the development fatigue liquid Qw (see FIG. 2), and the development fatigue liquid Qw (see FIG. 2) is moved to the storage section 16 or the processing section 20. For example, a three-way valve is used for the switching unit 15. Switching of the flow path of the switching unit 15 is performed by the control unit 24. Further, the switching unit 15 preferably has a flow meter for measuring the flow rates of the connection pipe 31 and the connection pipe 34 that are flow paths to the storage unit 16. Thereby, the flow volume of the developing fatigue liquid to the storage unit 16 and the processing unit 20 can be measured, and the supply amount of the washing liquid Q (see FIG. 2) and the clarified liquid necessary for the developing unit 14 can be grasped.
 貯蔵部16は、少なくとも現像疲労液と、脱泡部22で気泡が除去された清澄液とが貯留されるところであり、例えば、現像疲労液を貯留する容器(図示せず)と、清澄液を貯留する容器(図示せず)とを有する。その場合、現像疲労液を貯留する容器と清澄液を貯留する容器を連絡する1つ以上の配管を設置してもよい。また、その配管の途中に現像疲労液または清澄液を送液するポンプを設置することもできる。
 貯蔵部16は、現像疲労液と清澄液を同一の容器に貯留する構成でもよい。
 また、貯蔵部16は、洗い出し液が貯留される容器を有する構成でもよい。
 貯蔵部16に貯留された現像疲労液は、ポンプ42により接続管37を流路として処理部20に供給される。
 貯蔵部16に貯留された、気泡が除去された清澄液は、ポンプ40により接続管32を流路として現像部14に供給される。
The storage part 16 is a place where at least the development fatigue liquid and the clear liquid from which bubbles are removed by the defoaming part 22 are stored. For example, a container (not shown) for storing the development fatigue liquid and the clear liquid are stored. And a container (not shown) for storing. In that case, you may install one or more piping which connects the container which stores a developing fatigue liquid, and the container which stores a clarification liquid. In addition, a pump for feeding a developing fatigue solution or a clarification solution can be installed in the middle of the pipe.
The storage unit 16 may be configured to store the development fatigue solution and the clarification solution in the same container.
Moreover, the structure which has a container in which the washout liquid is stored may be sufficient as the storage part 16. FIG.
The developing fatigue liquid stored in the storage unit 16 is supplied to the processing unit 20 by the pump 42 through the connection pipe 37 as a flow path.
The clarified liquid stored in the storage unit 16 and from which bubbles are removed is supplied to the developing unit 14 by the pump 40 using the connection pipe 32 as a flow path.
 供給部18は、例えば、洗い出し液が貯留されるタンク(図示せず)と、洗い出し液の流量計(図示せず)と、洗い出し液を送り出す送出部(図示せず)とを有する。送出部は、例えば、ポンプで構成される。ポンプが送出量を計測できる機能を有する場合、流量計は不要である。 The supply unit 18 includes, for example, a tank (not shown) in which the washout liquid is stored, a flowmeter (not shown) of the washout liquid, and a delivery unit (not shown) that sends out the washout liquid. The delivery unit is configured by a pump, for example. When the pump has a function of measuring the delivery amount, a flow meter is not necessary.
 処理部20は、遠心分離により、現像疲労液を、清澄液と、固形物を含む残渣とに分離するものである。
 処理部20において、現像疲労液中から除去された固形物29は、処理部20の下方に設けられた受皿28により回収される。
 一方、固形物29が除去された現像疲労液、すなわち、上述の清澄液は、ポンプ41により接続管35を流路して脱泡部22に供給される。
 現像疲労液は、上述のように、画像様露光後のフレキソ印刷版原版の未露光部が除去されることにより発生する固形物を含む洗い出し液である。なお、固形物を含む洗い出し液における固形物を含むとは、固形物が溶解または分散している状態のことをいう。
 清澄液とは、現像疲労液に含まれる固形物の一部が取り除かれたもののことである。
The processing unit 20 separates the development fatigue liquid into a clarified liquid and a residue containing solid matter by centrifugation.
In the processing unit 20, the solid material 29 removed from the development fatigue solution is collected by a receiving tray 28 provided below the processing unit 20.
On the other hand, the development fatigue liquid from which the solid material 29 has been removed, that is, the above-described clarified liquid is supplied to the defoaming section 22 through the connection pipe 35 by the pump 41.
As described above, the development fatigue solution is a washing solution containing a solid material generated by removing an unexposed portion of the flexographic printing plate precursor after imagewise exposure. The term “containing solid matter in the washing liquid containing solid matter” means a state in which the solid matter is dissolved or dispersed.
The clarified liquid is a liquid from which a part of solids contained in the development fatigue liquid has been removed.
 処理部20は、遠心分離を利用するものであれば、その構成は特に限定されるものではなく、公知の遠心分離機を利用することができ、例えば、バスケット方式のものが用いられる。処理部20は、例えば、現像疲労液を容器内に貯留し、この容器を回転させて、質量の大きい固形物を容器の内壁に移動させて清澄液と固形物とを分離する。固形物が残渣として、処理部20から外部に取り出される。 If the processing part 20 utilizes centrifugation, the structure will not be specifically limited, A well-known centrifuge can be utilized, for example, a basket type thing is used. For example, the processing unit 20 stores the developing fatigue liquid in a container, rotates the container, moves a solid substance having a large mass to the inner wall of the container, and separates the clarified liquid and the solid substance. The solid matter is taken out as a residue from the processing unit 20.
 脱泡部22は、処理部20で得られた清澄液に対して連続して、清澄液中の気泡を除去するものである。脱泡部22の構成は、清澄液中の気泡を除去することができれば、その構成は特に限定されるものではなく、液体中の気泡を除去する公知装置を利用することができる。
 脱泡部22としては、例えば、清澄液を容器(図示せず)内で旋回させて流動し、気泡を容器の中央部に集めて除去するものを利用することができ、サイクロン型気泡除去装置と呼ばれるものが利用可能である。
 また、脱泡部22としては、例えば、気液分離膜(図示せず)を使用した減圧脱気を行い気泡を除去するものを利用することができ、膜脱気装置と呼ばれるものが利用可能である。
The defoaming part 22 removes bubbles in the clarified liquid continuously with respect to the clarified liquid obtained in the processing part 20. The configuration of the defoaming unit 22 is not particularly limited as long as the bubbles in the clarified liquid can be removed, and a known device that removes the bubbles in the liquid can be used.
As the defoaming section 22, for example, it is possible to use a liquid that swirls and flows the clarified liquid in a container (not shown), and collects and removes bubbles in the center of the container. What is called is available.
Moreover, as the defoaming part 22, what removes bubbles by performing vacuum degassing using a gas-liquid separation membrane (not shown) can be used, and what is called a membrane deaerator can be used. It is.
 処理部20と脱泡部22とにより、現像疲労液を遠心分離して、かつ気泡を除去した清澄液を得ることができ、現像疲労液をフレキソ印刷版原版の現像処理に適した洗い出し液に処理することができる。これにより、現像疲労液を洗い出し液として再使用できるため、洗い出し液を有効利用でき、洗い出し液の利用効率を高めることができる。
 また、上述のように処理部20と脱泡部22とにより連続して、現像疲労液から遠心分離により固形物を除去して得られた清澄液中の気泡を除去して、貯蔵部16に清澄液を供給する。上述のように現像疲労液を連続して処理することにより、清澄液を一旦容器等に溜めた場合に比して、処理時間も短縮でき生産性が向上し、かつ処理システム10の構成を簡素化でき装置コストを下げることもできる。
 また、上述のように処理部20と脱泡部22とを連続に配置することに限定されるものではなく、処理部20と脱泡部22との間に、処理部20で得られた清澄液を貯留する容器(図示せず)を配置した構成とすることもできる。この場合、処理部20で得られた清澄液を一度容器に受け、そこから取り出した液を脱泡部22で脱泡して、元の容器に戻してもよい。元の容器に戻された後、脱泡された清澄液は貯蔵部16に供給される。また、処理部20で得られた清澄液を一度容器に受け、そこから取り出した液を脱泡部22で脱泡して貯蔵部16に供給してもよい。
The processing portion 20 and the defoaming portion 22 can centrifuge the development fatigue solution and obtain a clear solution from which bubbles have been removed. The development fatigue solution is converted into a washing solution suitable for the development processing of the flexographic printing plate precursor. Can be processed. As a result, the development fatigue solution can be reused as a wash-out solution, so that the wash-out solution can be used effectively and the use efficiency of the wash-out solution can be increased.
Further, as described above, the processing unit 20 and the defoaming unit 22 continuously remove the bubbles in the clarified liquid obtained by removing solids from the developing fatigue solution by centrifugation, and the storage unit 16 Supply clear liquid. By processing the development fatigue solution continuously as described above, the processing time can be shortened and the productivity can be improved and the configuration of the processing system 10 can be simplified as compared with the case where the clarified solution is once stored in a container or the like. And the cost of the apparatus can be reduced.
Moreover, it is not limited to arrange | positioning the process part 20 and the defoaming part 22 continuously as mentioned above, Between the process part 20 and the defoaming part 22, the clarification obtained by the process part 20 It can also be set as the structure which has arrange | positioned the container (not shown) which stores a liquid. In this case, the clarified liquid obtained by the processing unit 20 may be once received in a container, and the liquid taken out from the container may be defoamed by the defoaming unit 22 and returned to the original container. After returning to the original container, the defoamed clarified liquid is supplied to the storage unit 16. Alternatively, the clarified liquid obtained by the processing unit 20 may be once received in a container, and the liquid taken out from the container may be defoamed by the defoaming unit 22 and supplied to the storage unit 16.
 次に、現像部14について、図2を用いてより具体的に説明する。なお、現像部14は図2に示すものに限定されるものではない。また、図2では制御部24の図示を省略している。
 図2に示す現像部14はバッチ方式と呼ばれる構成のものである。現像部14は、例えば、図2に示すように、現像槽50と、ブラシ52とが設けられている。ブラシ52は駆動部材53に設けられている。また、ブラシ52には、供給管54が設けられている。供給管54は供給部18に接続されている。現像部14では、供給部18から接続管33、接続管32および供給管54を経て、ブラシ52から洗い出し液Qがフレキソ印刷版原版60の表面60aに供給される。
Next, the developing unit 14 will be described more specifically with reference to FIG. The developing unit 14 is not limited to that shown in FIG. Moreover, illustration of the control part 24 is abbreviate | omitted in FIG.
The developing unit 14 shown in FIG. 2 has a configuration called a batch system. For example, as illustrated in FIG. 2, the developing unit 14 includes a developing tank 50 and a brush 52. The brush 52 is provided on the drive member 53. The brush 52 is provided with a supply pipe 54. The supply pipe 54 is connected to the supply unit 18. In the developing unit 14, the washout liquid Q is supplied from the brush 52 to the surface 60 a of the flexographic printing plate precursor 60 from the supply unit 18 through the connection pipe 33, the connection pipe 32, and the supply pipe 54.
 現像の際には、洗い出し液Qをブラシ52からフレキソ印刷版原版60の表面60aに供給しながら、駆動部材53を図示しない駆動部により回転させて、ブラシ52により、画像様露光後のフレキソ印刷版原版60の表面60aが擦られる。これにより、露光後の未硬化部(図示せず)がフレキソ印刷版原版60の表面60aから除去されて洗い出し液Q中に排出される。露光後の未硬化部(図示せず)が洗い出し液Qに排出された状態のものを現像疲労液Qwという。現像疲労液Qwには洗い出し液Qも含まれる。
 現像槽50は接続管30が接続されており、接続管30から現像疲労液Qwが切換部15に送出される。一方、供給部18から接続管33、接続管32および供給管54を経てフレキソ印刷版原版60に洗い出し液Qが供給される。
At the time of development, while supplying the washing liquid Q from the brush 52 to the surface 60a of the flexographic printing plate precursor 60, the driving member 53 is rotated by a driving unit (not shown), and the flexographic printing after imagewise exposure is performed by the brush 52. The surface 60a of the plate precursor 60 is rubbed. Thereby, the uncured part (not shown) after the exposure is removed from the surface 60a of the flexographic printing plate precursor 60 and discharged into the washing liquid Q. A state where an uncured portion (not shown) after the exposure is washed out into the liquid Q is referred to as a development fatigue liquid Qw. The development fatigue solution Qw includes a washing solution Q.
The developing tank 50 is connected to the connecting pipe 30, and the developing fatigue liquid Qw is sent from the connecting pipe 30 to the switching unit 15. On the other hand, the washing liquid Q is supplied from the supply unit 18 to the flexographic printing plate precursor 60 through the connection pipe 33, the connection pipe 32, and the supply pipe 54.
 また、フレキソ印刷版原版60は、フレキソ印刷に使用されるフレキソ印刷版を形成するものであり、その構成は特に限定されるものではない。フレキソ印刷版原版60は、水を主成分とする水系現像液で現像可能なもの、水現像型のフレキソ印刷版原版と呼ばれるものであることが好ましい。フレキソ印刷版原版60には、水系現像液で現像可能な公知のフレキソ印刷版原版が利用可能である。なお、フレキソ印刷版原版60は、表面にブラックレイヤー層が塗布された、CTP(Computer To Plate)対応のフレキソ版材でもよい。 Further, the flexographic printing plate precursor 60 forms a flexographic printing plate used for flexographic printing, and its configuration is not particularly limited. The flexographic printing plate precursor 60 is preferably one that can be developed with an aqueous developer containing water as a main component, or a water development type flexographic printing plate precursor. As the flexographic printing plate precursor 60, a known flexographic printing plate precursor that can be developed with an aqueous developer can be used. The flexographic printing plate precursor 60 may be a CTP (Computer-To-Plate) compatible flexographic printing plate having a black layer layer applied on the surface thereof.
(処理方法)
 次に、処理方法について、処理システム10を用いて説明する。なお、処理方法は、処理システム10を用いることに限定されるものではない。
 処理システム10において、露光部12でフレキソ印刷版原版60(図2参照)の表面60a(図2参照)に、例えば、特定のパターンで露光する。これにより、画像様露光後のフレキソ印刷版原版60(図2参照)が得られる。
 次に、画像様露光後のフレキソ印刷版原版60(図2参照)が現像部14に搬送され、現像部14において、現像槽50(図2参照)内にて洗い出し液Q中でブラシ52(図2参照)を用いてフレキソ印刷版原版60(図2参照)が現像される。洗い出し液Qを用いた現像処理によって、画像様露光後のフレキソ印刷版原版60の未露光部が除去されることにより発生した固形物が洗い出し液Q(図2参照)中に分散する。これにより、固形物を含んだ現像疲労液Qw(図2参照)が発生する。
(Processing method)
Next, a processing method will be described using the processing system 10. Note that the processing method is not limited to using the processing system 10.
In the processing system 10, the exposure unit 12 exposes the surface 60a (see FIG. 2) of the flexographic printing plate precursor 60 (see FIG. 2) with a specific pattern, for example. Thereby, the flexographic printing plate precursor 60 (see FIG. 2) after imagewise exposure is obtained.
Next, the flexographic printing plate precursor 60 (see FIG. 2) after the imagewise exposure is conveyed to the developing unit 14, and in the developing unit 14, the brush 52 (in the washing liquid Q in the developing tank 50 (see FIG. 2)). 2), the flexographic printing plate precursor 60 (see FIG. 2) is developed. By the development process using the washing liquid Q, the solid matter generated by removing the unexposed portions of the flexographic printing plate precursor 60 after imagewise exposure is dispersed in the washing liquid Q (see FIG. 2). As a result, a development fatigue solution Qw (see FIG. 2) containing solids is generated.
 上述の現像処理により発生した現像疲労液Qwが接続管30を介して切換部15に移送される。切換部15は、現像疲労液が貯蔵部16に移送されるように設定されており、現像疲労液は貯蔵部16に移送されて、貯蔵部16に貯留する。
 貯蔵部16の現像疲労液は、ポンプ42により接続管37を経て処理部20に供給される。処理部20では、遠心分離により現像疲労液を清澄液と固形物29を含む残渣とに分離し、処理部20は固形物29を受皿28に排出する。なお、遠心分離により現像疲労液を清澄液と固形物29を含む残渣とに分離する工程が第1の工程である。
 一方、清澄液はポンプ41により接続管35を経て脱泡部22に供給され、処理部20に連続して脱泡部22で清澄液中の気泡を除去する。これにより、洗い出し液として再使用可能な清澄液を得ることができる。なお、遠心分離により得られた清澄液中の気泡を除去する工程が第2の工程である。第1の工程と第2の工程とは、途中の別の工程が入ることなく、第1の工程に連続して第2の工程を実施してもよいし、第1の工程と第2の工程との間に途中の別の工程が入ってもよい。別の工程が入る場合、例えば、第1の工程の後、第1の工程で得られた清澄液を一度容器に受け、その液に対し第2の工程を実施する。
The development fatigue fluid Qw generated by the above development process is transferred to the switching unit 15 through the connection pipe 30. The switching unit 15 is set so that the development fatigue solution is transferred to the storage unit 16, and the development fatigue solution is transferred to the storage unit 16 and stored in the storage unit 16.
The developing fatigue liquid in the storage unit 16 is supplied to the processing unit 20 through the connection pipe 37 by the pump 42. In the processing unit 20, the developing fatigue liquid is separated into a clarified liquid and a residue containing the solid material 29 by centrifugation, and the processing unit 20 discharges the solid material 29 to the tray 28. The step of separating the development fatigue solution into a clarified solution and a residue containing the solid material 29 by centrifugation is the first step.
On the other hand, the clarified liquid is supplied to the defoaming unit 22 through the connection pipe 35 by the pump 41, and the bubbles in the clarified liquid are removed by the defoaming unit 22 continuously from the processing unit 20. As a result, a clear liquid that can be reused as a washing liquid can be obtained. In addition, the process of removing the bubble in the clarified liquid obtained by centrifugation is a 2nd process. The first step and the second step may be performed in succession to the first step without entering another step in the middle, or the first step and the second step. Another process in the middle may be inserted between the processes. When another process enters, for example, after the first process, the clarified liquid obtained in the first process is once received in the container, and the second process is performed on the liquid.
 脱泡部22から貯蔵部16に気泡が除去された清澄液を供給し、清澄液が貯蔵部16に貯留される。貯蔵部16に貯留された清澄液は、ポンプ40により接続管32を経て、例えば、接続管32内に発熱体が設けられたヒータ26により、予め設定された温度にされて現像部14に供給され、洗い出し液としてフレキソ印刷版原版の現像処理に再使用される。この場合、バルブ27は開いている。なお、気泡が除去された清澄液を洗い出し液として再使用する工程が第3の工程である。 The clarified liquid from which bubbles are removed is supplied from the defoaming section 22 to the storage section 16, and the clarified liquid is stored in the storage section 16. The clarified liquid stored in the storage unit 16 is supplied to the developing unit 14 through a connection pipe 32 by a pump 40, for example, at a preset temperature by a heater 26 provided with a heating element in the connection pipe 32. Then, it is reused as a washout solution in the development processing of the flexographic printing plate precursor. In this case, the valve 27 is open. In addition, the process of washing | cleaning and reusing the clarified liquid from which the bubble was removed is a 3rd process.
 清澄液を洗い出し液として使用する場合、洗い出し液に、清澄液を予め設定した量を混合してフレキソ印刷版原版の現像処理を実施してもよく、フレキソ印刷版原版の現像処理を全て清澄液で実施してもよい。洗い出し液に対する清澄液の割合は、特に限定されるものではなく、フレキソ印刷版原版の処理量等に応じて適宜決定されるものである。
 また、現像疲労液を処理して清澄液を得て、清澄液を洗い出し液として利用するのは1回に限定されるものではなく、複数回でもよい。清澄液を洗い出し液として複数回再使用する場合、予め使用する回数を設定しておくか、または使用中止の目安に清澄液中の固形物濃度を予め設定する。清澄液中の固形物濃度は、例えば、清澄液の屈折率を測定することにより特定することができる。この場合、例えば、貯蔵部16に清澄液の固形物濃度を測定するために清澄液の屈折率を測定する測定部を設ける構成とする。屈折率は、例えば、Brix値(%)を用いることができ、屈折率の測定にはBrix値(%)が測定可能なセンサを用いることができる。
 清澄液の固形物濃度を利用して、清澄液を洗い出し液として使用する場合、清澄液の固形物濃度を測定して、例えば、制御部24で、予め設定した固形物濃度と測定した固形物濃度とを比較して、使用可否を決定することができる。
When the clarified liquid is used as a washing liquid, the flexographic printing plate precursor may be developed by mixing the washing liquid with a preset amount of the clarified liquid. May be implemented. The ratio of the clarification liquid with respect to the washing liquid is not particularly limited, and is appropriately determined according to the processing amount of the flexographic printing plate precursor.
Moreover, processing the development fatigue solution to obtain a clear solution and washing the clear solution as a washout solution is not limited to one time, and may be performed a plurality of times. When reusing the clarified liquid as a washing liquid a plurality of times, the number of times of use is set in advance, or the solid matter concentration in the clarified liquid is set in advance as a guide for discontinuing use. The solid concentration in the clarified liquid can be specified by measuring the refractive index of the clarified liquid, for example. In this case, for example, the storage unit 16 is provided with a measuring unit that measures the refractive index of the clarified liquid in order to measure the solid concentration of the clarified liquid. For example, a Brix value (%) can be used as the refractive index, and a sensor capable of measuring the Brix value (%) can be used for measuring the refractive index.
When the clear liquid is used as a washing liquid using the solid concentration of the clear liquid, the solid concentration of the clear liquid is measured. The use can be determined by comparing the concentration.
 上述の処理方法のように、気泡が除去された清澄液を洗い出し液に用いることにより、フレキソ印刷版原版の現像が適正になされ、フレキソ印刷版原版の版面の気泡による皮膜生成が抑制され現像不良の発生が抑制される。また、気泡がないため清澄液が貯蔵部16から溢れることもない。また、気泡がないため清澄液をヒータ26で加熱する際に伝熱効率の低下等が抑制され、適正な温度にすることができ、温度管理が容易となる。また、清澄液に気泡が含まれていないため、清澄液の搬送効率が低下することもない。 As in the processing method described above, by using the clarified liquid from which bubbles have been removed as a washing solution, the flexographic printing plate precursor is properly developed, and film formation due to bubbles on the plate surface of the flexographic printing plate precursor is suppressed, resulting in poor development. Is suppressed. Further, since there is no air bubble, the clarified liquid does not overflow from the storage unit 16. Moreover, since there is no bubble, when the clarified liquid is heated by the heater 26, a decrease in heat transfer efficiency or the like is suppressed, the temperature can be set to an appropriate temperature, and temperature management becomes easy. Moreover, since the air bubbles are not included in the clarified liquid, the conveying efficiency of the clarified liquid does not decrease.
 処理方法では、貯蔵部16に貯留された現像疲労液をポンプ42を用いて処理部20に供給して、気泡が除去された清澄液を、貯蔵部16に貯留する構成を例にして説明したが、これに限定されるものではない。例えば、第1の工程において、現像部14で現像処理して発生した現像疲労液を切換部15から処理部20に直接供給し、処理部20にて遠心分離により清澄液と残渣に分離し、さらに脱泡部22で気泡が除去された清澄液を、貯蔵部16に貯留する構成としてもよい。この場合、現像疲労液と、気泡が除去された清澄液とを分けて貯留する必要がなく、貯蔵部16の構成を簡素化できる。
 また、供給部18と貯蔵部16とを接続管38により接続し、供給部18の洗い出し液を貯蔵部16に供給し、貯蔵部16で洗い出し液を貯留するようにしてもよい。この場合、供給部18から現像部14へ洗い出し液を供給することがなく、貯蔵部16から洗い出し液が現像部14に供給される構成となる。なお、接続管38は必ずしも設ける必要はない。
 また、貯蔵部16に洗い出し液を貯留する構成とし、供給部18を設けない構成としてもよい。この場合、貯蔵部16が供給部18を兼ねる構成となる。
In the processing method, the developing fatigue liquid stored in the storage unit 16 is supplied to the processing unit 20 using the pump 42, and the clarified liquid from which bubbles are removed is stored in the storage unit 16 as an example. However, the present invention is not limited to this. For example, in the first step, the development fatigue liquid generated by the development processing in the developing unit 14 is directly supplied from the switching unit 15 to the processing unit 20, and separated into a clarified liquid and a residue by centrifugation in the processing unit 20, Furthermore, it is good also as a structure which stores the clarified liquid from which the bubble was removed by the defoaming part 22 in the storage part 16. FIG. In this case, it is not necessary to separately store the developing fatigue liquid and the clarified liquid from which bubbles are removed, and the configuration of the storage unit 16 can be simplified.
Alternatively, the supply unit 18 and the storage unit 16 may be connected by a connecting pipe 38, the washout solution from the supply unit 18 may be supplied to the storage unit 16, and the washout solution may be stored in the storage unit 16. In this case, the washing solution is not supplied from the supply unit 18 to the developing unit 14, and the washing solution is supplied from the storage unit 16 to the developing unit 14. The connecting pipe 38 is not necessarily provided.
Moreover, it is good also as a structure which stores the washing | cleaning liquid in the storage part 16, and does not provide the supply part 18. FIG. In this case, the storage unit 16 also serves as the supply unit 18.
 さらには、処理システム10では、清澄液の搬送路においてポンプ40よりも現像部14に近い位置に分離膜(図示せず)を設ける構成でもよい。
 分離膜は、洗い出し液を用いたフレキソ印刷版原版の現像処理により発生する固形物を分離するものである。このため、分離膜は、現像疲労液Qwに含まれる固形物を分離することができれば、特に限定されるものではなく、分離する固形物の大きさにより適宜決定される。
 清澄液は分離膜を通過させた方が、現像部14に供給される清澄液の固形物の濃度を、さらに低くすることができ、清澄液を洗い出し液として繰り返し使用することができるため好ましい。
 分離膜は、例えば、粒径が1μm以下の固形物を分離できるものであることが好ましい。例えば、分離膜として、分離能が0.1μmのフィルターが用いられる。
Further, the processing system 10 may have a configuration in which a separation membrane (not shown) is provided at a position closer to the developing unit 14 than the pump 40 in the clear liquid conveyance path.
The separation membrane separates solid matter generated by the development processing of the flexographic printing plate precursor using the washing liquid. For this reason, the separation membrane is not particularly limited as long as the solid matter contained in the development fatigue solution Qw can be separated, and is appropriately determined depending on the size of the solid matter to be separated.
It is preferable to pass the clarified liquid through the separation membrane because the solid concentration of the clarified liquid supplied to the developing unit 14 can be further reduced and the clarified liquid can be repeatedly used as a washing liquid.
For example, the separation membrane is preferably capable of separating a solid having a particle size of 1 μm or less. For example, a filter having a separation ability of 0.1 μm is used as the separation membrane.
 以下、現像疲労液について詳細に説明する。
 <現像疲労液>
 本発明の処理システムおよび処理方法の処理対象である現像疲労液は、洗い出し液を用いたフレキソ印刷版原版の現像処理によって未露光部が除去されることより発生する固形物を含む洗い出し液、すなわち、未硬化樹脂を含む洗い出し液であれば特に限定されるものではない。しかしながら、一般的な感光性樹脂層を形成するための従来公知の感光性樹脂組成物を含む現像疲労液を処理対象とすることができる。
 また、処理方法は、LAM(Laser Ablation Masking)方式で現像した際の現像疲労液を処理対象とすることが好ましいため、現像処理により除去される未硬化樹脂は、感光性樹脂組成物に含まれる感光性樹脂であることが好ましい。
 また、このような感光性樹脂組成物としては、感光性樹脂の他に、例えば、重合開始剤、重合性化合物、重合禁止剤、および可塑剤等を含有する組成物が挙げられるため、本発明の処理方法の処理対象である現像疲労液は、未硬化樹脂の他に、重合開始剤、重合性化合物、重合禁止剤、および可塑剤等を含有していてもよい。
Hereinafter, the development fatigue solution will be described in detail.
<Development fatigue solution>
The development fatigue solution which is the treatment target of the treatment system and the treatment method of the present invention is a washing solution containing solid matter generated by removing an unexposed portion by developing the flexographic printing plate precursor using the washing solution, that is, Any washing solution containing an uncured resin is not particularly limited. However, a development fatigue liquid containing a conventionally known photosensitive resin composition for forming a general photosensitive resin layer can be used as a processing target.
Moreover, since it is preferable to use the development fatigue | exhaustion liquid at the time of developing by a LAM (Laser Ablation Masking) system as a processing target, the uncured resin removed by development processing is contained in the photosensitive resin composition. A photosensitive resin is preferred.
In addition to the photosensitive resin, such a photosensitive resin composition includes, for example, a composition containing a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer, and the like. The development fatigue solution which is the treatment target of this treatment method may contain a polymerization initiator, a polymerizable compound, a polymerization inhibitor, a plasticizer and the like in addition to the uncured resin.
 <未硬化樹脂>
 現像疲労液に含まれる未硬化樹脂とは、未露光部が除去されることにより発生する固形物のことである。現像疲労液に含まれる未硬化樹脂としては、例えば、水分散性ラテックス、ゴム成分、ポリマー成分、および未架橋のエチレン性不飽和化合物(重合体)等が挙げられる。
 水分散性ラテックスとしては、ポリブタジエンラテックス、天然ゴムラテックス、スチレン-ブタジエン共重合体ラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、ポリクロロプレンラテックス、ポリイソプレンラテックス、ポリウレタンラテックス、メチルメタクリレート-ブタジエン共重合体ラテックス、ビニルピリジン共重合体ラテックス、ブチル重合体ラテックス、チオコール重合体ラテックス、アクリレート重合体ラテックス等の水分散ラテックス等の水分散ラテックス重合体、またはこれら重合体にアクリル酸もしくはメタクリル酸等の他の成分を共重合して得られる重合体等が挙げられる。
 ゴム成分としては、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリウレタンゴム、シリコンゴム、ブチルゴム、エチレン-プロピレンゴム、エピクロヒドリンゴム等が挙げられる。
 ポリマー成分としては、親水性であっても、疎水性であってもよく、具体的には、ポリアミド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリビニルアルコール樹脂等が挙げられる。
 洗い出し液より比重の小さい固形物は、例えば、ゴム成分およびラテックス等の感光性樹脂である。
 洗い出し液より比重の大きい固形物は、例えば、カーボン等のオーバーコート層の成分である。
<Uncured resin>
The uncured resin contained in the development fatigue liquid is a solid material generated by removing an unexposed portion. Examples of the uncured resin contained in the development fatigue liquid include water-dispersible latex, rubber component, polymer component, and uncrosslinked ethylenically unsaturated compound (polymer).
Examples of the water dispersible latex include polybutadiene latex, natural rubber latex, styrene-butadiene copolymer latex, acrylonitrile-butadiene copolymer latex, polychloroprene latex, polyisoprene latex, polyurethane latex, methyl methacrylate-butadiene copolymer latex, Water-dispersed latex polymers such as vinylpyridine copolymer latex, butyl polymer latex, thiocol polymer latex, and acrylate polymer latex, or other components such as acrylic acid or methacrylic acid. Examples thereof include a polymer obtained by copolymerization.
Examples of the rubber component include butadiene rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyurethane rubber, silicon rubber, butyl rubber, ethylene-propylene rubber, and epichlorohydrin rubber.
The polymer component may be hydrophilic or hydrophobic, and specifically includes polyamide resin, unsaturated polyester resin, acrylic resin, polyurethane resin, polyester resin, polyvinyl alcohol resin, and the like.
The solid material having a specific gravity smaller than that of the washing liquid is, for example, a photosensitive resin such as a rubber component and latex.
The solid matter having a specific gravity greater than that of the washing solution is a component of the overcoat layer such as carbon.
 エチレン性不飽和化合物(重合体)としては、例えば、エチレン性不飽和結合を分子中に有する(メタ)アクリル変性重合体等を挙げることができる。
 (メタ)アクリル変性重合体としては、例えば、(メタ)アクリル変性ブタジエンゴム、(メタ)アクリル変性ニトリルゴム等を挙げることができる。
 「(メタ)アクリル」とは、アクリルまたはメタクリルを表す表記であり、後述する「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを表す表記である。
Examples of the ethylenically unsaturated compound (polymer) include a (meth) acryl-modified polymer having an ethylenically unsaturated bond in the molecule.
Examples of the (meth) acryl-modified polymer include (meth) acryl-modified butadiene rubber and (meth) acryl-modified nitrile rubber.
“(Meth) acryl” is a notation representing acryl or methacryl, and “(meth) acrylate” described later is a notation representing acrylate or methacrylate.
 現像疲労液に含まれる未硬化樹脂は特に限定されないが、70質量%以下であることが好ましく、35質量%以下であることがより好ましい。 The uncured resin contained in the development fatigue solution is not particularly limited, but is preferably 70% by mass or less, and more preferably 35% by mass or less.
 <重合開始剤>
 現像疲労液に含んでいてもよい重合開始剤としては、光重合開始剤であることが好ましい。
 上述の光重合開始剤としては、例えば、アルキルフェノン類、アセトフェノン類、ベンゾインエーテル類、ベンゾフェノン類、チオキサントン類、アントラキノン類、ベンジル類、およびビアセチル類等が挙げられ、なかでも、アルキルフェノン類が好ましい。
 アルキルフェノン類の光重合開始剤としては、具体的には、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、および2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等が挙げられる。
<Polymerization initiator>
The polymerization initiator that may be contained in the development fatigue liquid is preferably a photopolymerization initiator.
Examples of the photopolymerization initiator include alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Among them, alkylphenones are preferable. .
Specific examples of photopolymerization initiators for alkylphenones include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy- 2-methyl-1-phenyl-propan-1-one and the like.
 現像疲労液に含んでいてもよい重合開始剤の濃度は特に限定されないが、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。 The concentration of the polymerization initiator that may be contained in the development fatigue solution is not particularly limited, but is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less.
 <重合性化合物>
 現像疲労液に含んでいてもよい重合性化合物としては、例えば、上述したエチレン性不飽和化合物(重合体)以外のいわゆるモノマー成分に該当するエチレン性不飽和化合物等が挙げられる。
<Polymerizable compound>
Examples of the polymerizable compound that may be contained in the development fatigue solution include ethylenically unsaturated compounds corresponding to so-called monomer components other than the above-described ethylenically unsaturated compounds (polymers).
 エチレン性不飽和化合物は、エチレン性不飽和結合を1つ有する化合物であってもよいし、エチレン性不飽和結合を2つ以上有する化合物であってもよい。 The ethylenically unsaturated compound may be a compound having one ethylenically unsaturated bond or a compound having two or more ethylenically unsaturated bonds.
 エチレン性不飽和結合を1つ有する化合物としては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、β-ヒドロキシ-β’-(メタ)アクリロイルオキシエチルフタレート等の水酸基を有する(メタ)アクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;クロロエチル(メタ)アクリレート、クロロプロピル(メタ)アクリレート等のハロゲン化アルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;フェノキシエチルアクリレート、ノニルフェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレート;エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシジプロピレングレコール(メタ)アクリレート等のアルコキシアルキレングリコール(メタ)アクリレート;2、2-ジメチルアミノエチル(メタ)アクリレート、2,2-ジエチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等を挙げることができる。 Specific examples of the compound having one ethylenically unsaturated bond include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-chloro-2. -(Meth) acrylate having a hydroxyl group such as hydroxypropyl (meth) acrylate, β-hydroxy-β '-(meth) acryloyloxyethyl phthalate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; cyclohexyl (meth) acrylate, etc. Cycloalkyl (meth) acrylate; Halogenated alkyl (meth) acrylates such as chloroethyl (meth) acrylate and chloropropyl (meth) acrylate; Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, etc. Alkoxyalkyl (meth) acrylates; phenoxyalkyl (meth) acrylates such as phenoxyethyl acrylate and nonylphenoxyethyl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxydipropylene glycol ( Alkoxyalkylene glycol (meth) acrylates such as meth) acrylate; 2,2-dimethylaminoethyl (meth) acrylate DOO, 2,2-diethylaminoethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate.
 エチレン性不飽和結合を2つ以上有するエチレン性不飽和化合物としては、具体的には、1,9-ノナンジオールジ(メタ)アクリレート等のアルキルジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート等のポリエチレングリコールジ(メタ)アクリレート;ジプロピレングリコールジ(メタ)アクリレート等のポリプロピレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、エチレングリコールジグリシジルエーテルに不飽和カルボン酸または不飽和アルコール等のエチレン性不飽和結合と活性水素を持つ化合物を付加反応させて得られる多価(メタ)アクリレート;グリシジル(メタ)アクリレート等の不飽和エポキシ化合物とカルボン酸またはアミンのような活性水素を有する化合物を付加反応させて得られる多価(メタ)アクリレート;メチレンビス(メタ)アクリルアミド等の多価(メタ)アクリルアミド;ジビニルベンゼン等の多価ビニル化合物;等を挙げることができる。 Specific examples of the ethylenically unsaturated compound having two or more ethylenically unsaturated bonds include alkyldiol di (meth) acrylates such as 1,9-nonanediol di (meth) acrylate; diethylene glycol di (meth) acrylate Polyethylene glycol di (meth) acrylate such as polypropylene glycol di (meth) acrylate such as dipropylene glycol di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Acrylates, glycerol tri (meth) acrylates, ethylene glycol diglycidyl ethers with compounds with ethylenically unsaturated bonds and active hydrogen such as unsaturated carboxylic acids or unsaturated alcohols Polyvalent (meth) acrylate obtained by reaction; polyvalent (meth) acrylate obtained by addition reaction of an unsaturated epoxy compound such as glycidyl (meth) acrylate and a compound having active hydrogen such as carboxylic acid or amine; Examples thereof include polyvalent (meth) acrylamides such as methylenebis (meth) acrylamide; polyvalent vinyl compounds such as divinylbenzene;
 現像疲労液に含んでいてもよい重合性化合物の濃度は特に限定されないが、30.0質量%以下であることが好ましく、15.0質量%以下であることがより好ましい。 The concentration of the polymerizable compound that may be contained in the development fatigue solution is not particularly limited, but is preferably 30.0% by mass or less, and more preferably 15.0% by mass or less.
 <重合禁止剤>
 現像疲労液に含んでいてもよい重合禁止剤としては、具体的には、例えば、ハイドロキノンモノメチルエーテル、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4´-チオビス(3-メチル-6-t-ブチルフェノール)、2,2´-メチレンビス(4-メチル-6-t―ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。
<Polymerization inhibitor>
Specific examples of the polymerization inhibitor that may be contained in the development fatigue solution include hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, etc. .
 現像疲労液に含んでいてもよい重合禁止剤の濃度は特に限定されないが、0.3質量%以下であることが好ましく、0.15質量%以下であることがより好ましい。 The concentration of the polymerization inhibitor that may be contained in the development fatigue solution is not particularly limited, but is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less.
 <可塑剤>
 現像疲労液に含んでいてもよい可塑剤としては、例えば、液状ゴム、オイル、ポリエステル、およびリン酸系化合物等が挙げられる。
 液状ゴムとしては、具体的には、例えば、液状のポリブタジエン、液状のポリイソプレン、およびこれらをマレイン酸またはエポキシ基により変性したもの等が挙げられる。
 オイルとしては、具体的には、例えば、パラフィン、ナフテンおよびアロマ等が挙げられる。
 ポリエステルとしては、具体的には、例えば、アジピン酸系ポリエステル等が挙げられる。
 リン酸系化合物としては、具体的には、例えば、リン酸エステル等が挙げられる。
<Plasticizer>
Examples of the plasticizer that may be contained in the development fatigue liquid include liquid rubber, oil, polyester, and phosphoric acid compounds.
Specific examples of the liquid rubber include liquid polybutadiene, liquid polyisoprene, and those modified with maleic acid or an epoxy group.
Specific examples of the oil include paraffin, naphthene and aroma.
Specific examples of the polyester include adipic acid-based polyester.
Specific examples of phosphoric acid compounds include phosphate esters.
 現像疲労液に含んでいてもよい可塑剤の濃度は特に限定されないが、30質量%以下であることが好ましく、15質量%以下であることがより好ましい。 The concentration of the plasticizer that may be contained in the development fatigue solution is not particularly limited, but is preferably 30% by mass or less, and more preferably 15% by mass or less.
 <洗い出し液>
 現像疲労液に含まれる洗い出し液は、水系の洗い出し液であることが好ましく、水のみからなる液であってもよく、また、水を50質量%以上含有し、水に可溶な化合物を添加した水溶液であってもよい。
 水に可溶な化合物としては、界面活性剤、酸、アルカリ等が挙げられる。
<Washing liquid>
The wash-out solution contained in the development fatigue solution is preferably an aqueous wash-out solution, and may be a solution composed only of water, or contains 50% by mass or more of water, and a water-soluble compound is added. An aqueous solution may be used.
Examples of water-soluble compounds include surfactants, acids, and alkalis.
 界面活性剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、および両性系界面活性剤が挙げられ、なかでも、アニオン系界面活性剤が好ましい。
 アニオン性界面活性剤としては、具体的には、ラウリン酸ナトリウム、オレイン酸ナトリウム等の脂肪族カルボン酸塩;ラウリル硫酸エステルナトリウム、セチル硫酸エステルナトリウム、オレイル硫酸エステルナトリウム等の高級アルコール硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ポリオキシエチレンオクチルフェニルエーテル硫酸エステルナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等のポリオキシエチレンアルキルアリルエーテル硫酸エステル塩;アルキルジフェニルエーテルジスルホン酸塩、ドデシルスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のアルキルスルホン酸塩;アルキルジスルホン酸塩、ドデシルベンゼンスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウム、トリイソプロピルナフタレンスルホン酸ナトリウム等のアルキルアリルスルホン酸塩;ラウリルリン酸モノエステルジナトリウム、ラウリルリン酸ジエステルナトリウム等の高級アルコールリン酸エステル塩;ポリオキシエチレンラウリルエーテルリン酸モノエステルジナトリウム、ポリオキシエチレンラウリルエーテルリン酸ジエステルナトリウム等のポリオキシエチレンアルキルエーテルリン酸エステル塩;等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。なお、具体例としてナトリウム塩を挙げたが、特にナトリウム塩に限定されるものではなく、カルシウム塩またはアンモニア塩等でも同様の効果を得ることができる。
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. Among these, an anionic surfactant is preferable.
Specific examples of the anionic surfactant include aliphatic carboxylates such as sodium laurate and sodium oleate; higher alcohol sulfates such as sodium lauryl sulfate, sodium cetyl sulfate and sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium polyoxyethylene lauryl ether sulfate; polyoxyethylene alkyl allyl ether sulfate salts such as sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate; Alkyl sulfonates such as alkyl diphenyl ether disulfonate, sodium dodecyl sulfonate, sodium dialkyl sulfosuccinate; Alkyl sulfonates such as kill disulfonate, sodium dodecylbenzene sulfonate, sodium dibutyl naphthalene sulfonate, sodium triisopropyl naphthalene sulfonate; higher alcohol phosphates such as disodium lauryl phosphate monosodium lauryl phosphate and sodium lauryl phosphate Ester salts; polyoxyethylene lauryl ether phosphoric acid monoester disodium, polyoxyethylene alkyl ether phosphoric acid ester salts such as sodium polyoxyethylene lauryl ether phosphoric acid diester; and the like. These may be used alone or in combination of two or more. In addition, although the sodium salt was mentioned as a specific example, it is not specifically limited to a sodium salt, The same effect can be acquired also with calcium salt or ammonia salt.
 ノニオン系界面活性剤としては、具体的には、ポリオキシエチレンオレイルエーテルまたはポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテルまたはポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル等、ポリオキシエチレンポリオキシプロピレングリコール類、ポリエチレングリコールモノステアレートまたはポリエチレングリコールモノオレートまたはポリエチレングリコールジラウレート等の脂肪酸とポリエチレングリコールとのモノおよびジエステル類、ソルビタンモノラウレートまたはソルビタンモノオレート等の脂肪酸とソルビタンのエステル類、ポリオキシエチレンソルビタンモノラウレートまたはリオキシエチレンソルビタンモノシテアレートまたはポリオキシエチレンソルビタントリラウレート等のソルビタンのポリオキシエチレン付加物と脂肪酸とのエステル類、ソルビットモノパルチミテートまたはソルビットジラウレート等の脂肪酸とソルビットとのエステル類、ポリオキシエチレンソルビットモノステアレートまたはポリオキシエチレンソルビットジオレート等のソルビットのポリオキシエチレン付加物と脂肪酸とのエステル類、ペンタエリスリトールモノステアレート等の脂肪酸とペンタエリスロトールとのエステル類,グリセリンモノラウレート等の脂肪酸とグリセリンとのエステル類、ラウリン酸ジエタノールアミドまたはラウリン酸モノエタノールアミド等の脂肪酸アルカノールアミド類、ラウリルジメチルアミンオキサイド等のアミンオキサイド類、ステアリルジエタノールアミン等の脂肪酸アルカノールアミン類、ポリオキシエチレンアルキルアミン類、トリエタノールアミン脂肪酸エステル類、リン酸塩、炭酸塩、ケイ酸塩等のアルカリ性を示す塩化合物が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。 Specific examples of nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether or polyoxyethylene lauryl ether, and polyoxyethylene nonyl phenyl ether or polyoxyethylene octylphenyl ether. Ethylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene glycols, polyethylene glycol monostearate or polyethylene glycol monooleate, mono- and diesters of polyethylene glycol with fatty acids such as polyethylene glycol dilaurate, sorbitan monolaurate or sorbitan monooleate Fatty acid and sorbitan esters such as polyoxyethylene sorbitan monolaurate or Esters of sorbitan polyoxyethylene adducts such as oxyethylene sorbitan monocytearate or polyoxyethylene sorbitan trilaurate with fatty acids, esters of fatty acids such as sorbitol monopartimidate or sorbit dilaurate, sorbites, polyoxy Esters of sorbite polyoxyethylene adducts such as ethylene sorbite monostearate or polyoxyethylene sorbitdiolate with fatty acids, esters of fatty acids such as pentaerythritol monostearate with pentaerythritol, glycerol monolaurate, etc. Esters of fatty acids and glycerol, fatty acid alkanolamides such as lauric acid diethanolamide or lauric acid monoethanolamide, lauryldimethylamine Examples include amine compounds such as side, fatty acid alkanolamines such as stearyl diethanolamine, polyoxyethylene alkylamines, triethanolamine fatty acid esters, phosphates, carbonates, silicates, and other alkaline salt compounds. . These may be used alone or in combination of two or more.
 カチオン系界面活性剤としては、具体的には、モノステアリルアンモニウムクロライド、ジステアリルアンモニウムクロライド、トリステアリルアンモニウムクロライド等の1級および2級および3級アミン塩類、ステアリルトリメチルアンモウムクロライド、ジステアリルジメチルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩類、N―セチルピリジニウムクロライドまたはN-ステアリルピリジニウムクロライド等のアルキルピリジニウム塩類、N,Nジアルキルモルホリニウム塩類、ポリエチレンポリアミンの脂肪酸アミド塩類、アミノエチルエタノールアミンとステアリン酸とのアミドの尿素化合物の酢酸塩類、2-アルキル-1-ヒドロキシエチルイミダゾリニウムクロライド等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。 Specific examples of the cationic surfactant include primary and secondary amine salts such as monostearyl ammonium chloride, distearyl ammonium chloride, and tristearyl ammonium chloride, stearyl trimethyl ammonium chloride, and distearyl dimethyl ammonium. Quaternary ammonium salts such as chloride, stearyldimethylbenzylammonium chloride, alkylpyridinium salts such as N-cetylpyridinium chloride or N-stearylpyridinium chloride, N, N dialkylmorpholinium salts, polyethylene polyamine fatty acid amide salts, aminoethylethanol Acetates of urea compounds of amides of stearic acid with amines, 2-alkyl-1-hydroxyethylimidazolinium chloride Ido, and the like. These may be used alone or in combination of two or more.
 両性系界面活性剤としては、具体的には、ラウリルアミンプロピオン酸ソーダ等のアミノ酸型、ラウリルジメチルベタインまたはラウリルジヒドキシエチルベタイン等のカルボキシベタイン型、ステアリルジメチルスルホエチレンアンモニウムエチレンアンモニウムベタイン等のスルホベタイン型、イミダゾリニウムベタイン型、レスチン等が挙げられる。これらは単独で用いてもよいし、2種以上を併合して用いてもよい。 Specific examples of amphoteric surfactants include amino acid types such as sodium laurylamine propionate, carboxybetaine types such as lauryl dimethyl betaine or lauryl dihydroxyethyl betaine, and sulfones such as stearyl dimethyl sulfoethylene ammonium ethylene ammonium betaine. Examples include betaine type, imidazolinium betaine type, and restin. These may be used alone or in combination of two or more.
 酸としては、具体的には、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、コハク酸、クエン酸、リンゴ酸、マレイン酸、パラトルエンスルホン酸等の無機酸または有機酸が挙げられる。
 アルカリとしては、具体的には、例えば、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム等が挙げられる。
Specific examples of the acid include inorganic acids or organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, succinic acid, citric acid, malic acid, maleic acid, and paratoluenesulfonic acid. Is mentioned.
Specific examples of the alkali include lithium hydroxide, sodium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, sodium carbonate, sodium bicarbonate, calcium carbonate and the like.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の処理システムおよび処理方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The processing system and processing method of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. Of course.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、および、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 本実施例では、以下に示す実施例1~4および比較例1~4の処理装置を用いて、下記表1に示す処理量の現像疲労液について処理を行った。なお、以下、現像疲労液の固形分濃度とは、洗い出し液の固形物濃度、または遠心処理後の現像疲労液の固形分濃度を表す。現像疲労液の固形分濃度を下記表1に示す。
The features of the present invention will be described more specifically with reference to the following examples. The materials, reagents, substance amounts and ratios thereof, and operations shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
In this example, using the processing apparatuses of Examples 1 to 4 and Comparative Examples 1 to 4 shown below, processing was performed on the development fatigue solutions having the processing amounts shown in Table 1 below. Hereinafter, the solid content concentration of the developing fatigue solution represents the solid matter concentration of the wash-out solution or the solid content concentration of the developing fatigue solution after centrifugation. The solid content concentration of the developing fatigue solution is shown in Table 1 below.
 実施例1~4および比較例1~4で処理される現像疲労液を得るために使用する装置および薬品を以下に示す。
<イメージング機>
・CDI Spark 4835 Inline(ESKO社製)
<露光機>
・紫外線露光機 Concept 302 ECDLF(製品名)(Glunz&Jensen社製)
<現像機>
・SB-926(GS Trading社製)
<フレキソ印刷版原版>
・FLENEX FW-L(富士フイルムグローバルグラフィックシステムズ社製)
<洗い出し液>
・フィニッシュパワー&ピュアパウダーSP(レキット・ベンキーザージャパン社製)の水溶液(濃度は0.5質量%)
<遠心分離機>
・UB-S1(株式会社アメロイド日本サービス社製)
The apparatus and chemicals used to obtain the development fatigue solutions processed in Examples 1 to 4 and Comparative Examples 1 to 4 are shown below.
<Imaging machine>
-CDI Spark 4835 Inline (manufactured by ESKO)
<Exposure machine>
・ Ultraviolet exposure machine Concept 302 ECDLF (product name) (Glunz & Jensen)
<Developer>
・ SB-926 (manufactured by GS Trading)
<Flexographic printing plate precursor>
・ FLENEX FW-L (manufactured by FUJIFILM Global Graphic Systems)
<Washing liquid>
-Aqueous solution of Finish Power & Pure Powder SP (manufactured by Rekit Benkieser Japan) (concentration is 0.5% by mass)
<Centrifuge>
・ UB-S1 (Ameloid Japan Service Co., Ltd.)
<現像疲労液の調製>(実施例1~4および比較例1~4)
 上述のフレキソ印刷版原版に対して、上述の紫外線露光機を用いて、フレキソ印刷版原版の裏面から80Wのエネルギーで10秒間露光することにより裏露光を実施した。その後、上述のイメージング機を用いて、マスク層をアブレーションすることでイメージングし、表面(裏面の裏面)から80Wで1000秒間露光することにより主露光を実施した。主露光を実施したフレキソ印刷版原版を画像様露光後のフレキソ印刷版原版とした。
 露光を実施した画像様露光後のフレキソ印刷版原版に対し、上述の洗い出し液と、洗出し機SB-926を用いて、50℃の条件で、ブラシを用いて現像することにより未露光部を除去し、現像疲労液を得た。
<Preparation of Development Fatigue Solution> (Examples 1 to 4 and Comparative Examples 1 to 4)
The above-mentioned flexographic printing plate precursor was subjected to back exposure by exposing it from the back surface of the flexographic printing plate precursor at an energy of 80 W for 10 seconds using the above-described ultraviolet exposure machine. Then, using the above-mentioned imaging machine, it imaged by ablating a mask layer, and main exposure was implemented by exposing at 80 W from the surface (back surface of the back surface) for 1000 seconds. The flexographic printing plate precursor subjected to main exposure was used as the flexographic printing plate precursor after imagewise exposure.
The exposed unprinted portion of the flexographic printing plate precursor after imagewise exposure is developed using a brush at the temperature of 50 ° C. using the above washing solution and the washing machine SB-926. This was removed to obtain a developing fatigue solution.
<現像疲労液の固形分濃度の測定方法>
 測定対象の現像疲労液をアルミニウム容器に10gとり、95℃で12時間、オーブンPHH-201(ESPEC社製)にて乾燥した。
 乾燥後に、残存物の質量を測定して、現像疲労液の固形分濃度を求めた。その結果を下記表1の現像疲労液の固形分濃度(質量%)の欄に記載した。
<Measurement method of solid content concentration of development fatigue fluid>
10 g of the development fatigue solution to be measured was placed in an aluminum container and dried in an oven PHH-201 (manufactured by ESPEC) at 95 ° C. for 12 hours.
After drying, the mass of the residue was measured to determine the solid content concentration of the developing fatigue solution. The results are shown in the column of solid content concentration (mass%) of the developing fatigue solution in Table 1 below.
 実施例1~4および比較例1~4について、貯蔵部での気泡の発生、貯蔵部の液面高さ、および現像処理の版面故障を評価した。
 貯蔵部での気泡の発生は、目視にて観察し、観察結果に基づき「少ない」、「多い」、および「非常に多い」の3段階で評価した。
 貯蔵部の液面高さは、処理後の液面の高さを静置時の高さとの差で評価した。
 なお、静置時の高さとは、遠心分離処理を行わない状態における貯留部の液面の高さのことである。
 現像処理の版面故障は、現像処理後のフレキソ印刷版原版の版面を目視にて観察して評価した。版面にカスが付着していた場合、「故障あり」と評価し、版面にカスが付着していない場合、「故障なし」と評価した。
For Examples 1 to 4 and Comparative Examples 1 to 4, the generation of bubbles in the storage unit, the liquid level in the storage unit, and the plate failure in the development process were evaluated.
The generation of bubbles in the storage part was visually observed, and was evaluated in three stages, “low”, “high”, and “very high” based on the observation results.
The liquid surface height of the storage part was evaluated by the difference between the liquid surface height after the treatment and the height at the time of standing.
In addition, the height at the time of stationary is the height of the liquid level of the storage part in the state which does not perform a centrifugation process.
The plate failure in the development process was evaluated by visually observing the plate surface of the flexographic printing plate precursor after the development process. When the residue was attached to the printing plate, it was evaluated as “failure”, and when the residue was not attached to the printing plate, it was evaluated as “no failure”.
 また、ヒータを設けた実施例1および比較例2は、ヒータへの皮膜付着、貯蔵部の液温の昇温時間(分)、および現像処理時の貯蔵部の液温を測定した。
 ヒータへの皮膜付着は、処理後のヒータの発熱体の表面を目視にて観察して評価した。ヒータの発熱体の表面に皮膜の付着が認められるものを「あり」と評価し、ヒータの発熱体の表面に皮膜の付着が認められないものを「なし」と評価した。
 貯蔵部の液温の昇温時間は、貯蔵部の液温が25℃から50℃に達する迄の時間を測定した。なお、貯蔵部の液温は温度計を用いて測定した。
 現像処理時の貯蔵部の液温は、現像処理時に貯蔵部の液温を温度計を用いて測定した。
In Example 1 and Comparative Example 2 provided with a heater, the film adhesion to the heater, the temperature rise time (minutes) of the liquid temperature in the storage part, and the liquid temperature in the storage part during development processing were measured.
The film adhesion to the heater was evaluated by visually observing the surface of the heating element after the treatment. The case where adhesion of the film was observed on the surface of the heater heating element was evaluated as “Yes”, and the case where adhesion of the film was not observed on the surface of the heater heating element was evaluated as “None”.
The temperature rise time of the liquid temperature in the storage part was measured by measuring the time required for the liquid temperature in the storage part to reach 50 ° C. from 25 ° C. In addition, the liquid temperature of the storage part was measured using the thermometer.
The liquid temperature of the storage unit during the development processing was measured using a thermometer for the liquid temperature of the storage unit during the development processing.
 次に、実施例1~4および比較例1~4について説明する。
 (実施例1)
 実施例1は、上述の現像疲労液を処理部および脱泡部を用いて処理した。
 実施例1では、処理部に上述の遠心分離機を用い、遠心分離を回転数2500rpm(revolutions per minute)で実施した。
 脱泡部に、佐藤樹脂工業株式会社製スーパーバルブカッターM-60を用いた。
 実施例1では、遠心分離を実施し、遠心分離に連続して脱泡部で清澄液中の気泡を除去した。
 また、実施例1では、ヒータがあり、液温を50℃に対して許容範囲1℃で制御した。このときの貯蔵部が液温25℃から50℃に達する迄の時間、および現像処理時の貯蔵部の温度を測定した。
 下記表1の遠心分離機流量(L/分)の欄に示す数値は、現像疲労液を遠心分離機に送る流量を示す。実施例1では「5L/分」とした。
 また、下記表1の「処理開始からの版処理量(m)」は、フレキソ印刷版原版を何平米(m)、現像処理したかを示すものであり、現像処理したフレキソ印刷版原版の総面積(m)を表すものである。実施例1では「20m」である。なお、以下、処理開始からの版処理量のことを単に、処理量という。
Next, Examples 1 to 4 and Comparative Examples 1 to 4 will be described.
(Example 1)
In Example 1, the above-described development fatigue solution was processed using a processing unit and a defoaming unit.
In Example 1, the above-mentioned centrifuge was used for the processing unit, and centrifugation was performed at a rotational speed of 2500 rpm (revolutions per minute).
A super valve cutter M-60 manufactured by Sato Jushi Kogyo Co., Ltd. was used for the defoaming part.
In Example 1, centrifugation was carried out, and bubbles in the clarified liquid were removed at the defoaming part continuously with the centrifugation.
In Example 1, there was a heater, and the liquid temperature was controlled within an allowable range of 1 ° C. with respect to 50 ° C. At this time, the time until the storage section reached from 25 ° C. to 50 ° C. and the temperature of the storage section during the development processing were measured.
The numerical values shown in the column of centrifuge flow rate (L / min) in Table 1 below indicate the flow rate at which the developer fatigue solution is sent to the centrifuge. In Example 1, it was set to “5 L / min”.
The “plate processing amount (m 2 ) from the start of processing” in Table 1 below indicates how many square meters (m 2 ) of the flexographic printing plate precursor was developed, and the flexographic printing plate precursor that was developed. Represents the total area (m 2 ). In Example 1, it is “20 m 2 ”. Hereinafter, the plate processing amount from the start of processing is simply referred to as processing amount.
 (実施例2)
 実施例2は、実施例1に比して、遠心分離条件、処理量、およびヒータを設けていない点が異なり、それ以外は実施例1と同じとした。実施例2の脱泡部の構成は実施例1と同じとし、実施例2でも遠心分離処理と脱泡処理とを連続して実施した。
 実施例2では、遠心分離条件について遠心分離機流量を「10L/分」とし、処理量を「15m」とした。
 なお、実施例2ではヒータを設けていないため、「ヒータへの皮膜付着」の欄、「貯蔵部の液温の昇温時間(分)」の欄、および「現像処理時の貯蔵部の液温」の欄に「-」と記した。
 (実施例3)
 実施例3は、実施例1に比して、処理量、脱泡部の構成およびヒータを設けていない点が異なり、それ以外は実施例1と同じとした。実施例3でも遠心分離処理と脱泡処理を連続して実施した。実施例3では、処理量を「30m」とした。
 実施例3は脱泡部にDIC株式会社製中空糸脱気モジュールEF-002A(型式)を用いた。
 なお、実施例3ではヒータを設けていないため、「ヒータへの皮膜付着」の欄、「貯蔵部の液温の昇温時間(分)」の欄、および「現像処理時の貯蔵部の液温」の欄に「-」と記した。
(Example 2)
Example 2 differs from Example 1 in that the centrifugation conditions, the amount of processing, and the heater are not provided, and the rest is the same as Example 1. The configuration of the defoaming part of Example 2 was the same as that of Example 1, and in Example 2, the centrifugal separation process and the defoaming process were continuously performed.
In Example 2, the centrifuge flow rate was set to “10 L / min” and the throughput was set to “15 m 2 ” for the centrifuge conditions.
In Example 2, since no heater is provided, the column of “film adhesion to heater”, the column of “temperature rise time (minutes) of liquid temperature of storage unit”, and “liquid of storage unit during development processing” "-" Is written in the "Warm" column.
Example 3
Example 3 is the same as Example 1 except that the amount of treatment, the configuration of the defoaming part, and the heater are not provided, as compared to Example 1. Also in Example 3, the centrifugal separation treatment and the defoaming treatment were performed continuously. In Example 3, the processing amount was set to “30 m 2 ”.
In Example 3, a hollow fiber degassing module EF-002A (model) manufactured by DIC Corporation was used for the defoaming part.
In Example 3, since no heater is provided, the column of “Attaching the film to the heater”, the column of “Temperature increase time of liquid temperature of storage unit (minutes)”, and “Liquid of storage unit during development processing” "-" Is written in the "Warm" column.
 (実施例4)
 実施例4は、実施例1に比して、遠心分離条件、処理量、およびヒータを設けていない点、ならびに遠心分離処理と脱泡処理を連続して実施していない点が異なり、それ以外は実施例1と同じとした。
 実施例4では、遠心分離して得られた清澄液を、一度容器に溜めた後、容器内の清澄液に対して脱泡部で清澄液中の気泡を除去した。
 また、実施例4では、遠心分離条件について遠心分離機流量を「10L/分」とし、処理量を「15m」とした。
Example 4
Example 4 differs from Example 1 in that centrifuge conditions, throughput, and heaters are not provided, and that centrifuge separation and defoaming are not performed continuously. Was the same as in Example 1.
In Example 4, the clarified liquid obtained by centrifugation was once stored in a container, and then bubbles in the clarified liquid were removed from the clarified liquid in the container at the defoaming section.
In Example 4, the centrifuge flow rate was set to “10 L / min” and the processing amount was set to “15 m 2 ” for the centrifuge conditions.
 (比較例1)
 比較例1は、実施例1に比して、遠心分離条件、処理量、脱泡部を設けていない点、およびヒータを設けていない点が異なり、それ以外は実施例1と同じとした。比較例1では、遠心分離条件について遠心分離機流量を「5L/分」とし、処理量を「0m」とした。処理量0mの現像疲労液とは、現像処理していない状態であり、洗い出し液のことである。
 比較例1では、洗い出し液を遠心分離した。
 なお、比較例1ではヒータを設けていないため、「ヒータへの皮膜付着」の欄、「貯蔵部の液温の昇温時間(分)」の欄、および「現像処理時の貯蔵部の液温」の欄に「-」と記した。
(Comparative Example 1)
Compared with Example 1, Comparative Example 1 was the same as Example 1 except that the centrifugation conditions, the amount of treatment, the defoaming part were not provided, and the heater was not provided. In Comparative Example 1, the centrifuge flow rate was set to “5 L / min” and the treatment amount was set to “0 m 2 ” for the centrifuge conditions. The development fatigue solution with a processing amount of 0 m 2 is a state in which the development treatment is not performed and is a washing solution.
In Comparative Example 1, the washout solution was centrifuged.
In Comparative Example 1, since no heater is provided, the column of “film adhesion to heater”, the column of “temperature increase time (minutes) of liquid temperature of storage unit”, and “liquid of storage unit during development processing” "-" Is written in the "Warm" column.
 (比較例2)
 比較例2は、実施例1に比して、遠心分離条件、および脱泡部を設けていない点が異なり、それ以外は実施例1と同じとした。
 比較例2では、遠心分離条件について遠心分離機流量を「5L/分」とした。
(Comparative Example 2)
Comparative Example 2 was different from Example 1 in that the centrifugal separation conditions and the defoaming part were not provided, and the rest was the same as Example 1.
In Comparative Example 2, the centrifuge flow rate was set to “5 L / min” for the centrifuge conditions.
 (比較例3)
 比較例3は、実施例1に比して、遠心分離条件、脱泡部を設けていない点、およびヒータを設けていない点が異なり、それ以外は実施例1と同じとした。
 比較例3では、遠心分離条件について遠心分離機流量を「5L/分」とした。
 なお、比較例3ではヒータを設けていないため、「ヒータへの皮膜付着」の欄、「貯蔵部の液温の昇温時間(分)」の欄、および「現像処理時の貯蔵部の液温」の欄に「-」と記した。
(Comparative Example 3)
Compared to Example 1, Comparative Example 3 was the same as Example 1 except that the centrifugation conditions, the defoaming part were not provided, and the heater was not provided.
In Comparative Example 3, the centrifuge flow rate was set to “5 L / min” for the centrifuge conditions.
In Comparative Example 3, since no heater is provided, the column “Attachment of film to heater”, the column “Temperature rise time of liquid temperature in storage unit (min)”, and “Liquid in storage unit during development process” "-" Is written in the "Warm" column.
 (比較例4)
 比較例4は、実施例3に比して、脱泡部を設けていない点が異なり、それ以外は実施例3と同じとした。
(Comparative Example 4)
Comparative Example 4 was different from Example 3 in that the defoaming part was not provided, and the others were the same as Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~3は、現像疲労液を遠心分離した後に、連続して清澄液中の気泡を除去することにより、貯蔵部での気泡の発生が少なく、貯蔵部の液面の高さも低く、かつ現像処理の版面故障も発生しなかった。
 また、遠心分離処理と脱泡処理を連続して実施していない実施例4は、遠心分離処理と脱泡処理を連続して実施した実施例1~3と同様に、貯蔵部での気泡の発生が少なく、貯蔵部の液面の高さも低く、かつ現像処理の版面故障も発生しなかった。
 これに対して、脱泡部がない比較例1~4は、貯蔵部での気泡の発生が多く、貯蔵部の液面の高さも高かった。特に比較例2~4は、貯蔵部から清澄液が溢れ、かつ現像処理の版面故障も発生した。
 なお、実施例3は、固形分濃度が比較例1~3よりも高いが、現像処理の版面故障が発生していない。
 また、ヒータがある実施例1と比較例2とを比較した場合、比較例2にヒータに皮膜の付着があり、かつ貯蔵部の液温の昇温時間(分)に長い時間を要した。
 ヒータがある実施例1と比較例2とは、いずれも液温を50℃に対して許容範囲1℃で制御したが、実施例1は許容範囲内にあり、比較例2は許容範囲を超えた。
 以上のことから、本発明の効果は明らかである。
As shown in Table 1, in Examples 1 to 3, after the development fatigue solution was centrifuged, the bubbles in the clarification solution were continuously removed, so that the generation of bubbles in the storage unit was reduced. The height of the liquid surface was low, and no plate failure occurred during the development process.
In addition, Example 4 in which the centrifugal separation process and the defoaming process were not performed continuously is the same as the Examples 1 to 3 in which the centrifugal separation process and the defoaming process were performed in succession. There was little occurrence, the level of the liquid level in the storage section was low, and no plate failure occurred during the development process.
On the other hand, in Comparative Examples 1 to 4 having no defoaming part, many bubbles were generated in the storage part, and the liquid level of the storage part was high. In Comparative Examples 2 to 4, in particular, the clarified liquid overflowed from the storage section, and the plate surface failure of the developing process occurred.
In Example 3, the solid content concentration was higher than those in Comparative Examples 1 to 3, but no plate failure occurred in the development process.
Moreover, when Example 1 with a heater was compared with Comparative Example 2, the film was adhered to the heater in Comparative Example 2, and a long time was required for the temperature rise time (minutes) of the liquid temperature in the storage unit.
In both Example 1 and Comparative Example 2 with a heater, the liquid temperature was controlled within an allowable range of 1 ° C. with respect to 50 ° C., but Example 1 was within the allowable range, and Comparative Example 2 exceeded the allowable range. It was.
From the above, the effect of the present invention is clear.
 10 処理システム
 12 露光部
 14 現像部
 15 切換部
 16 貯蔵部
 18 供給部
 20 処理部
 22 脱泡部
 24 制御部
 25 現像疲労液処理部
 26 ヒータ
 27 バルブ
 28 受皿
 29 固形物
 30、31、32、33、34、35、36、37 パイプ
 40、41、42 ポンプ
 50 現像槽
 52 ブラシ
 53 駆動部材
 54 供給管
 60 フレキソ印刷版原版
 60a 表面
 Q 出し液
 Qw 現像疲労液
DESCRIPTION OF SYMBOLS 10 Processing system 12 Exposure part 14 Developing part 15 Switching part 16 Storage part 18 Supply part 20 Processing part 22 Defoaming part 24 Control part 25 Developing fatigue solution processing part 26 Heater 27 Valve 28 Sauce 29 Solid matter 30, 31, 32, 33 , 34, 35, 36, 37 Pipe 40, 41, 42 Pump 50 Developing tank 52 Brush 53 Drive member 54 Supply pipe 60 Flexographic printing plate precursor 60a Surface Q Extracted liquid Qw Developing fatigue liquid

Claims (12)

  1.  画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、前記洗い出し液として再使用する処理システムであって、
     遠心分離により前記現像疲労液を、清澄液と前記固形物を含む残渣とに分離する処理部と、
     前記処理部で得られた前記清澄液中の気泡を除去する脱泡部とを有し、
     前記気泡が除去された前記清澄液が前記洗い出し液として再使用される、処理システム。
    A processing system in which a development fatigue solution containing solid matter generated by removing an unexposed portion by developing a flexographic printing plate precursor after imagewise exposure by washing with a washing solution is reused as the washing solution. There,
    A processing section for separating the developing fatigue liquid into a clarified liquid and a residue containing the solid matter by centrifugation;
    A defoaming section for removing bubbles in the clarified liquid obtained in the processing section,
    The processing system in which the clarified liquid from which the bubbles have been removed is reused as the washing liquid.
  2.  画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、前記洗い出し液として再使用する処理システムであって、
     遠心分離により前記現像疲労液を、清澄液と前記固形物を含む残渣とに分離する処理部と、
     前記処理部に連続して接続され、前記処理部で得られた前記清澄液中の気泡を除去する脱泡部とを有し、
     前記気泡が除去された前記清澄液が前記洗い出し液として再使用される、処理システム。
    A processing system in which a development fatigue solution containing solid matter generated by removing an unexposed portion by developing a flexographic printing plate precursor after imagewise exposure by washing with a washing solution is reused as the washing solution. There,
    A processing section for separating the developing fatigue liquid into a clarified liquid and a residue containing the solid matter by centrifugation;
    A defoaming unit that is continuously connected to the processing unit and removes bubbles in the clarified liquid obtained in the processing unit;
    The processing system in which the clarified liquid from which the bubbles have been removed is reused as the washing liquid.
  3.  前記脱泡部は、前記清澄液を容器内で旋回させて流動し、前記気泡を前記容器の中央部に集めて除去するものである、請求項1または2に記載の処理システム。 The processing system according to claim 1 or 2, wherein the defoaming unit is configured to flow the clarified liquid by swirling in the container and collect and remove the bubbles at a central part of the container.
  4.  前記脱泡部は、気液分離膜を使用した減圧脱気を行い前記気泡を除去するものである、請求項1または2に記載の処理システム。 The treatment system according to claim 1 or 2, wherein the defoaming unit is configured to remove the bubbles by performing vacuum degassing using a gas-liquid separation membrane.
  5.  前記フレキソ印刷版原版を前記洗い出し液を用いて現像処理する現像部と、前記現像部で発生した前記現像疲労液を貯留する貯蔵部とを有し、
     前記貯蔵部に貯留された前記現像疲労液が前記処理部に供給されて、前記遠心分離により前記清澄液と前記残渣に分離される、請求項1~4のいずれか1項に記載の処理システム。
    A developing unit that develops the flexographic printing plate precursor using the washing solution; and a storage unit that stores the development fatigue liquid generated in the developing unit;
    The processing system according to any one of claims 1 to 4, wherein the developing fatigue liquid stored in the storage unit is supplied to the processing unit and separated into the clarified liquid and the residue by the centrifugal separation. .
  6.  前記フレキソ印刷版原版を前記洗い出し液を用いて現像処理する現像部を有し、
     前記現像部で現像処理して発生した前記現像疲労液が前記処理部に直接供給されて、前記遠心分離により前記清澄液と前記残渣に分離される、請求項1~4のいずれか1項に記載の処理システム。
    A developing section for developing the flexographic printing plate precursor using the washing solution;
    The development fatigue fluid generated by the development processing in the development section is directly supplied to the processing section and separated into the clarified liquid and the residue by the centrifugal separation. The processing system described.
  7.  画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、前記洗い出し液として再使用する処理方法であって、
     遠心分離により前記現像疲労液を、清澄液と前記固形物を含む残渣とに分離する第1の工程と、
     前記清澄液中の気泡を除去する第2の工程と、
     前記気泡が除去された前記清澄液を前記洗い出し液として再使用する第3の工程とを有する、処理方法。
    A processing method in which a development fatigue solution containing a solid material generated by removing an unexposed part by developing a flexographic printing plate precursor after imagewise exposure by washing with a washing solution is reused as the washing solution. There,
    A first step of separating the developing fatigue liquid into a clarified liquid and a residue containing the solid matter by centrifugation;
    A second step of removing bubbles in the clarified liquid;
    And a third step of reusing the clarified liquid from which the bubbles have been removed as the washing liquid.
  8.  画像様露光後のフレキソ印刷版原版を洗い出し液を用いた現像処理によって、未露光部が除去されることにより発生する固形物を含んだ現像疲労液を、前記洗い出し液として再使用する処理方法であって、
     遠心分離により前記現像疲労液を、清澄液と前記固形物を含む残渣とに分離する第1の工程と、
     前記第1の工程に連続して、前記清澄液中の気泡を除去する第2の工程と、
     前記気泡が除去された前記清澄液を前記洗い出し液として再使用する第3の工程とを有する、処理方法。
    A processing method in which a development fatigue solution containing a solid material generated by removing an unexposed part by developing a flexographic printing plate precursor after imagewise exposure by washing with a washing solution is reused as the washing solution. There,
    A first step of separating the developing fatigue liquid into a clarified liquid and a residue containing the solid matter by centrifugation;
    A second step of removing bubbles in the clarified liquid continuously with the first step;
    And a third step of reusing the clarified liquid from which the bubbles have been removed as the washing liquid.
  9.  前記清澄液中の気泡を除去する前記第2の工程は、前記清澄液を容器内で旋回させて流動し、前記気泡を中央部に集めて除去する方法である、請求項7または8に記載の処理方法。 The said 2nd process of removing the bubble in the said clarified liquid is a method of making the said clarified liquid swirl within a container, flowing, and collecting and removing the said bubble in the center part. Processing method.
  10.  前記清澄液中の気泡を除去する前記第2の工程は、気液分離膜を使用した減圧脱気を行い前記気泡を除去する方法である、請求項7または8に記載の処理方法。 The processing method according to claim 7 or 8, wherein the second step of removing bubbles in the clarified liquid is a method of removing the bubbles by performing vacuum degassing using a gas-liquid separation membrane.
  11.  前記第1の工程は、前記フレキソ印刷版原版を前記洗い出し液を用いて現像処理して発生した前記現像疲労液を貯留した後に、前記貯留した前記現像疲労液を、前記遠心分離により前記清澄液と前記残渣に分離する、請求項7~10のいずれか1項に記載の処理方法。 In the first step, after the development fatigue solution generated by developing the flexographic printing plate precursor using the washing solution is stored, the stored development fatigue solution is centrifuged to form the clarified solution. The treatment method according to any one of claims 7 to 10, wherein the residue is separated into the residue.
  12.  前記第1の工程は、前記フレキソ印刷版原版を前記洗い出し液を用いて現像処理して発生した前記現像疲労液を、直接前記遠心分離により前記清澄液と前記残渣に分離する、請求項7~10のいずれか1項に記載の処理方法。 In the first step, the development fatigue liquid generated by developing the flexographic printing plate precursor using the washing liquid is separated into the clarified liquid and the residue directly by the centrifugation. The processing method according to any one of 10 above.
PCT/JP2019/001608 2018-01-31 2019-01-21 Processing system and processing method WO2019151006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569009A JPWO2019151006A1 (en) 2018-01-31 2019-01-21 Processing system and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014645 2018-01-31
JP2018-014645 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151006A1 true WO2019151006A1 (en) 2019-08-08

Family

ID=67479243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001608 WO2019151006A1 (en) 2018-01-31 2019-01-21 Processing system and processing method

Country Status (2)

Country Link
JP (1) JPWO2019151006A1 (en)
WO (1) WO2019151006A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424306A (en) * 2020-04-13 2020-07-17 厦门通富微电子有限公司 Bubble stripping device and electroplating solution electroplating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328620A (en) * 1994-06-08 1995-12-19 Toyobo Co Ltd Treatment of wash out liquid of photosensitive resin plate and device therefor
JPH10123722A (en) * 1996-10-21 1998-05-15 Nippon Zeon Co Ltd Developing device for photosensitive original printing plate
JP2000350902A (en) * 1999-06-09 2000-12-19 Fuji Photo Film Co Ltd Deaeration method
JP2001137615A (en) * 1999-11-18 2001-05-22 Sato Jushi Kogyo Kk Bubble removing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328620A (en) * 1994-06-08 1995-12-19 Toyobo Co Ltd Treatment of wash out liquid of photosensitive resin plate and device therefor
JPH10123722A (en) * 1996-10-21 1998-05-15 Nippon Zeon Co Ltd Developing device for photosensitive original printing plate
JP2000350902A (en) * 1999-06-09 2000-12-19 Fuji Photo Film Co Ltd Deaeration method
JP2001137615A (en) * 1999-11-18 2001-05-22 Sato Jushi Kogyo Kk Bubble removing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424306A (en) * 2020-04-13 2020-07-17 厦门通富微电子有限公司 Bubble stripping device and electroplating solution electroplating system

Also Published As

Publication number Publication date
JPWO2019151006A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6732107B2 (en) Processing method and processing apparatus
US9785061B2 (en) Lithographic apparatus and in-line cleaning apparatus
JP6808056B2 (en) Transport type washing device
WO2019151006A1 (en) Processing system and processing method
JP6311956B2 (en) Cleaning liquid, cleaning device and cleaning method for resist stripping filter
WO2018061958A1 (en) Printing plate development method and development device
JP7317993B2 (en) Processing equipment and processing method
JP6099487B2 (en) Processing method of printing plate developer
WO2020022019A1 (en) Processing method and processing device
WO2020066788A1 (en) Manufacturing method for flexographic printing original plate and manufacturing device for flexographic printing original plate
WO2019188899A1 (en) Printing plate development method and development device
JP2022153927A (en) Developer processing method
JPH01307755A (en) Method and device of processing non-silver salt photosensitive material by which workability etc., of waste liquid treatment is improved
JP2006350076A (en) Automatic developing apparatus and planographic printing plate
JPH08262812A (en) Suppressing method of reduction of ph in eluting liquid for electrophotographic planographic printing plate and eluting device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748367

Country of ref document: EP

Kind code of ref document: A1