WO2018047540A1 - Device temperature adjusting apparatus - Google Patents

Device temperature adjusting apparatus Download PDF

Info

Publication number
WO2018047540A1
WO2018047540A1 PCT/JP2017/028064 JP2017028064W WO2018047540A1 WO 2018047540 A1 WO2018047540 A1 WO 2018047540A1 JP 2017028064 W JP2017028064 W JP 2017028064W WO 2018047540 A1 WO2018047540 A1 WO 2018047540A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
condensed water
working fluid
contact portion
Prior art date
Application number
PCT/JP2017/028064
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 雅之
康光 大見
義則 毅
功嗣 三浦
山中 隆
加藤 吉毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018047540A1 publication Critical patent/WO2018047540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
  • thermosiphon as a device temperature control device for adjusting the temperature of an electrical device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.
  • a heat absorption part provided in an upper part of a power storage device for a vehicle and a heat dissipation part provided above the heat absorption part are connected in an annular shape by two circulation paths.
  • the refrigerant as the working fluid is sealed inside.
  • the liquid-phase refrigerant in the heat-absorbing part absorbs the heat and boils to flow into the heat-radiating part as a gas-phase refrigerant.
  • the heat dissipation unit condenses the gas-phase refrigerant to generate a liquid-phase refrigerant.
  • the liquid phase refrigerant is supplied to the heat absorption unit.
  • the power storage device is cooled by such natural circulation of the refrigerant.
  • the device temperature control apparatus described in Patent Document 1 cools the heat dissipating part and condenses the refrigerant flowing inside the heat dissipating part by injecting washer liquid onto the heat dissipating part. If the condensation of the refrigerant by the heat dissipating part is promoted, it is possible to increase the cooling capacity of the device temperature control device.
  • the apparatus temperature control device described in Patent Document 1 has a problem in that the number of times the washer liquid is replenished to the tank for storing the washer liquid increases in order to prevent the washer liquid from being depleted.
  • the configuration for injecting the washer liquid to the heat radiating portion becomes complicated.
  • the tank for storing the washer liquid is disposed in the engine room, the temperature of the washer liquid becomes higher than the outside air temperature. For this reason, it is difficult to sufficiently cool the heat radiating portion only by spraying the washer liquid onto the heat radiating portion.
  • This disclosure aims to provide a device temperature control device capable of increasing the cooling capacity.
  • a cooling unit disposed in an air conditioning case is mounted on a vehicle including an air conditioning unit that cools blown air and blows air into a vehicle interior.
  • the device temperature control device that adjusts the temperature of the target device by phase change
  • a heat absorbing part that evaporates the working fluid by absorbing heat from the target device to the working fluid
  • a heat dissipating part that is provided above the heat absorbing part in the direction of gravity and that condenses the working fluid by dissipating the working fluid evaporated in the heat absorbing part
  • a forward path portion that forms a forward flow path that connects a heat radiation portion discharge port that discharges the liquid-phase working fluid from the heat radiation portion and a heat absorption portion inlet that the liquid-phase working fluid flows into the heat absorption portion
  • a heat return part discharge port for discharging the gas phase working fluid from the heat absorption part, and a return path part that forms a return flow path that connects the heat radiation part inlet port where the gas phase working fluid flows into the heat dissipation
  • the inventors focused on the fact that the time when the target device needs to be further cooled and the time when the amount of condensed water generated in the cooling unit of the air conditioning unit increases are common.
  • the temperature of the condensed water is generally lower than the temperature of the working fluid flowing inside at least one of the heat radiating section and the forward path section.
  • Heat exchange between the condensed water and the working fluid that flows inside the contact portion of the device temperature control device facilitates condensation of the working fluid that flows inside the contact portion, and the working fluid is in a liquid phase.
  • the temperature of the is lower. Therefore, it is possible to increase the flow rate of the liquid-phase working fluid supplied from the forward path portion to the heat absorption portion, and to reduce the temperature of the liquid-phase working fluid. Therefore, this device temperature control device can further increase the cooling capacity when it is necessary to further cool the target device.
  • the condensed water generated in the cooling unit of the air conditioning unit is generated by the electric power used in the vehicle air conditioner. Therefore, by effectively using the condensed water for the device temperature control device, the cooling capacity of the device temperature control device can be efficiently increased without increasing the power consumption of the vehicle.
  • the apparatus temperature control device of this embodiment is mounted on an electric vehicle (hereinafter simply referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle.
  • vehicle such as an electric vehicle or a hybrid vehicle.
  • the device temperature control device 10 functions as a cooling device that cools a secondary battery 12 (hereinafter referred to as “battery 12”) mounted on a vehicle.
  • the battery 12 as a target device to be cooled by the device temperature control device 10 will be described.
  • a power storage device in other words, a battery pack
  • the battery 12 generates heat when the vehicle is used, such as when the vehicle is running. And if the battery 12 becomes high temperature, it not only can not exhibit a sufficient function, but also causes deterioration and breakage, so a cooling device for maintaining the battery 12 at a certain temperature or less is required.
  • the battery temperature rises not only when the vehicle is running but also when parked.
  • the battery 12 is often arranged under the floor of a vehicle or under a trunk room, and although the amount of heat per unit time given to the battery 12 is small, the battery temperature gradually rises when left for a long time. If the battery 12 is left in a high temperature state, the life of the battery 12 is shortened. Therefore, it is desired to maintain the battery temperature at a low temperature, for example, by cooling the battery 12 while the vehicle is left.
  • the battery 12 is configured as an assembled battery including a plurality of battery cells 121.
  • the temperature of each battery cell 121 varies, the deterioration of the battery cell 121 is biased, and the performance of the power storage device decreases. End up. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 121 that is most deteriorated. Therefore, in order for the battery 12 to exhibit desired performance over a long period of time, it is important to equalize the temperature so as to reduce the temperature variation between the plurality of battery cells 121.
  • cooling device for cooling the battery 12 generally, air blowing by a blower, air cooling using the refrigeration cycle 1, water cooling, or a direct refrigerant cooling system is adopted.
  • the blower since the blower only blows air in the passenger compartment, the cooling capacity is low.
  • the battery 12 is cooled by the sensible heat of the air by the blower by the blower, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation among the plurality of battery cells 121 cannot be sufficiently suppressed.
  • the refrigeration cycle method has a high cooling capacity, since the battery 12 is cooled by sensible heat of air or water in either air cooling or water cooling, temperature variations between the battery cells 121 cannot be sufficiently suppressed.
  • driving the compressor or cooling fan of the refrigeration cycle 1 while the vehicle is parked is not preferable because it causes an increase in power consumption and noise.
  • the device temperature control apparatus 10 of the present embodiment adopts a thermosiphon system that adjusts the temperature of the battery 12 by natural circulation of the refrigerant, instead of forcibly circulating the refrigerant as the working fluid by the compressor. Yes.
  • the device temperature control apparatus 10 includes a battery cooler 14 as a heat absorption unit, a heat radiation unit 16, an outward piping 18 as an outward path, and a return piping 20 as an inward path.
  • the heat radiating section 16, the forward piping 18, the battery cooler 14, and the return piping 20 are connected in an annular shape to constitute a fluid circulation circuit 26 in which a refrigerant as a working fluid of the device temperature control device 10 circulates. Yes.
  • the fluid circulation circuit 26 is a heat pipe that performs heat transfer by evaporation and condensation of the refrigerant.
  • the fluid circulation circuit 26 is configured to be a loop thermosiphon (in other words, a thermosiphon circuit) in which a flow path through which a gas-phase refrigerant flows and a flow path through which a liquid-phase refrigerant flows are separated.
  • an arrow DR ⁇ b> 1 indicates the direction of the vehicle on which the device temperature control device 10 is mounted. That is, the arrow DR1 indicates the vehicle vertical direction DR1.
  • the vehicle vertical direction DR1 does not indicate the vertical direction in each configuration of the air conditioning unit 41 of the air conditioner 40.
  • the fluid circulation circuit 26 is filled with refrigerant.
  • the fluid circulation circuit 26 is filled with the refrigerant.
  • the refrigerant circulates in the fluid circulation circuit 26, and the device temperature adjustment device 10 adjusts the temperature of the battery 12 by the phase change between the liquid phase and the gas phase of the refrigerant. Specifically, the battery 12 is cooled by the phase change of the refrigerant.
  • the refrigerant filled in the fluid circulation circuit 26 is, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a.
  • the battery cooler 14 of the device temperature control device 10 is a heat absorption unit that absorbs heat from the battery 12 to the refrigerant. In other words, the battery cooler 14 cools the battery 12 by transferring heat from the battery 12 to the refrigerant.
  • the battery cooler 14 is made of a metal having high thermal conductivity, for example.
  • a cooler chamber 14 a for storing a liquid phase refrigerant is formed inside the battery cooler 14.
  • the battery cooler 14 absorbs heat from the battery 12 to the refrigerant in the cooler chamber 14a, thereby evaporating the refrigerant in the cooler chamber 14a.
  • the battery 12 cooled by the battery cooler 14 includes a plurality of battery cells 121 electrically connected in series.
  • the plurality of battery cells 121 are stacked in the battery stacking direction DRb, and the battery stacking direction DRb is in the horizontal direction in a vehicle horizontal state in which the vehicle is horizontally disposed.
  • FIG. 1 is a schematic diagram and does not show the shape of each component and the specific connection location of the pipes 18 and 20 connected to the battery cooler 14 and the heat radiating part 16 respectively. Absent.
  • the battery cooler 14 has, for example, a rectangular parallelepiped box shape and is formed to extend in the battery stacking direction DRb. Further, the battery cooler 14 has an upper surface portion 141 on which an upper surface 141a of the battery cooler 14 is formed. That is, an upper inner wall surface 141b that forms the upper side of the cooler chamber 14a is formed on the side of the upper surface portion 141 opposite to the upper surface 141a side.
  • the cooler chamber 14a When the liquid refrigerant accumulated in the cooler chamber 14a does not include bubbles due to refrigerant boiling or the like, the cooler chamber 14a is filled with the liquid refrigerant in the horizontal state of the vehicle. It is said to be a quantity. Therefore, the liquid level of the liquid-phase refrigerant is formed in the forward piping 18 and the return piping 20, and is positioned above the upper inner wall surface 141 b of the battery cooler 14.
  • the liquid surface position SF1 of the liquid phase refrigerant in the forward pipe 18 is indicated by a one-dot chain line SF1
  • the liquid surface position SF2 of the liquid phase refrigerant in the return pipe 20 is indicated by a one-dot chain line SF2.
  • the plurality of battery cells 121 are arranged side by side on the upper surface 141a of the battery cooler 14, respectively. Each of the plurality of battery cells 121 is connected to the upper surface portion 141 so as to be able to conduct heat with the upper surface portion 141 of the battery cooler 14. Thereby, the upper surface 141a of the battery cooler 14 functions as a battery cooling surface that cools the battery 12, and the upper surface portion 141 of the battery cooler 14 functions as a cooling surface forming portion that forms the battery cooling surface.
  • the battery cooler 14 is formed with an endothermic inlet 14b and an endothermic outlet 14c.
  • the heat absorption part inlet 14b connects the forward flow passage 18a formed in the forward piping 18 to the inside of the battery cooler 14 (that is, the cooler chamber 14a). Therefore, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the forward flow passage 18a flows into the cooler chamber 14a through the heat absorption part inlet 14b of the battery cooler 14.
  • the forward flow path 18 a is a refrigerant flow path for flowing the refrigerant from the heat radiating unit 16 to the battery cooler 14.
  • the endothermic inlet 14b of the battery cooler 14 is provided at, for example, one end of the battery cooler 14 in the battery stacking direction DRb.
  • the heat absorption part discharge port 14 c of the battery cooler 14 communicates the return flow passage 20 a formed inside the return pipe 20 into the battery cooler 14. Therefore, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the cooler chamber 14a flows out to the return flow passage 20a through the heat absorption part discharge port 14c of the battery cooler 14.
  • the return flow path 20 a is a refrigerant flow path for flowing the refrigerant from the battery cooler 14 to the heat radiating unit 16.
  • the heat absorption part discharge port 14c of the battery cooler 14 is provided, for example, at the other end of the battery cooler 14 in the battery stacking direction DRb. Note that the battery cooler 14 has a structure (not shown) that causes the gas-phase refrigerant in the cooler chamber 14a to flow out of the endothermic portion outlet 14c exclusively of the endothermic portion inlet 14b and the endothermic portion outlet 14c.
  • the heat radiating part 16 of the device temperature control device 10 is for radiating heat from the refrigerant in the heat radiating part 16 to the heat receiving fluid. More specifically, the refrigerant in the gas phase flows into the heat radiating section 16 from the return pipe 20, and the heat radiating section 16 is a condenser that condenses the refrigerant by radiating heat from the refrigerant.
  • the heat receiving fluid for exchanging heat with the refrigerant in the heat radiating unit 16 is air.
  • the heat receiving fluid for exchanging heat with the refrigerant in the heat radiating unit 16 is not limited to air.
  • the heat dissipation part 16 is disposed above the battery cooler 14.
  • a heat radiating portion inlet 16 a is formed in the upper portion of the heat radiating portion 16, and a heat radiating portion discharge port 16 b is formed in the lower portion of the heat radiating portion 16.
  • the heat radiating portion inlet 16 a communicates the return flow passage 20 a formed inside the return piping 20 with the heat radiating portion 16. Accordingly, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the return flow passage 20 a flows into the heat radiating portion 16 through the heat radiating portion inlet 16 a of the heat radiating portion 16.
  • the heat radiation part discharge port 16 b communicates the forward flow passage 18 a formed inside the forward pipe 18 with the inside of the heat radiation part 16. Therefore, when the refrigerant condenses in the heat radiating section 16, the liquid refrigerant flows from the inside of the heat radiating section 16 to the forward flow passage 18a by gravity. The refrigerant flowing through the forward flow passage 18a flows into the cooler chamber 14a via the heat absorption part inlet 14b of the battery cooler 14.
  • the device temperature control apparatus 10 configured as described above, for example, when the battery 12 generates heat and the battery temperature becomes high, for example, when the vehicle is running, heat is transmitted to the upper surface portion 141 of the battery cooler 14 through the lower surface of the battery cell 121, The liquid phase refrigerant in the battery cooler 14 boils due to heat. Each battery cell 121 is cooled by the latent heat of vaporization caused by the boiling of the liquid phase refrigerant. Moreover, the refrigerant
  • thermosiphon phenomenon when the thermosiphon phenomenon is started in the device temperature control device 10, the refrigerant circulates in the fluid circulation circuit 26 as indicated by the arrow ARc.
  • movements are performed by the natural circulation of the refrigerant
  • the vehicle according to the present embodiment includes an air conditioner 40 for adjusting the temperature and humidity of air in the passenger compartment, as in a general vehicle.
  • the air conditioner 40 includes an air conditioning unit 41 that cools the air blown by a cooling unit disposed in the air conditioning case 44 and blows the air into the vehicle interior, and a refrigeration cycle that supplies refrigerant to the cooling unit in the air conditioning unit 41.
  • the cooling unit disposed in the air conditioning case 44 of the air conditioning unit 41 is not limited to the evaporator 50, and may be configured by, for example, a Peltier element.
  • the refrigeration cycle 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 50, and the like. These components are connected in an annular shape by a pipe 6 and constitute a refrigerant circulation path.
  • the compressor 2 sucks and compresses the refrigerant from the evaporator 50 side.
  • the compressor 2 is driven by power transmitted from an engine or electric motor for traveling the vehicle (not shown).
  • the high-pressure gas-phase refrigerant discharged from the compressor 2 flows into the condenser 3.
  • the high-pressure gas-phase refrigerant that has flowed into the condenser 3 flows through the refrigerant flow path of the condenser 3, it is cooled and condensed by heat exchange with the outside air.
  • the liquid-phase refrigerant condensed in the condenser 3 is decompressed when passing through the expansion valve 4, and becomes a mist-like gas-liquid two-phase state.
  • the expansion valve 4 is configured by a fixed throttle such as an orifice or a nozzle, or an appropriate variable throttle.
  • the evaporator 50 is disposed in the air conditioning case 44.
  • the low-pressure refrigerant flowing inside the evaporator 50 absorbs heat from the air blown by the blower 48 and evaporates.
  • the evaporator 50 cools the air flowing through the ventilation path 44c in the air conditioning case 44 by the latent heat of vaporization of the low-pressure refrigerant.
  • the temperature of the air is adjusted by the air heater 52 and blown out into the passenger compartment.
  • the refrigerant that has passed through the evaporator 50 is sucked into the compressor 2 via an accumulator (not shown).
  • the air conditioning unit 41 of the present embodiment is disposed inside the instrument panel at the foremost part of the vehicle interior.
  • the air conditioning unit 41 sucks one or both of the inside air that is the air inside the vehicle interior and the outside air that is the air outside the vehicle interior, and adjusts the sucked air to blow out the air into the vehicle interior.
  • the air conditioning unit 41 includes an air conditioning case 44, an inside / outside air switching door 46, a blower or blower 48, the evaporator 50, the air heater 52, the air mix door 54, and a plurality of outlet switching.
  • the doors 56a to 56d are provided.
  • the outlet switching doors 56a to 56d are all butterfly doors, for example.
  • the air conditioning case 44 forms a housing of the air conditioning unit 41, and air inlets 44a and 44b are formed on one side of the air conditioning case 44, and a plurality of airs that pass toward the vehicle interior pass on the other side. An air outlet is formed. And the ventilation path 44c is formed in the air-conditioning case 44, and the ventilation path 44c flows blowing air from the air inlets 44a and 44b to a blower outlet.
  • the air conditioning case 44 has an air suction part 441 in which two air inlets 44 a and 44 b are formed on the upstream side (that is, one side) of the air conditioning case 44.
  • One of the two air introduction ports 44a and 44b is an inside air introduction port 44a that sucks in the inside air, and the other is an outside air introduction port 44b that sucks in outside air. That is, the air conditioning unit 41 sucks in the inside air from the inside air introduction port 44a and sucks the outside air from the outside air introduction port 44b.
  • the inside / outside air switching door 46 is an opening / closing device that increases or decreases the opening degree of the inside air introduction port 44a and the opening degree of the outside air introduction port 44b.
  • the inside / outside air switching door 46 rotates in the air suction portion 441 and is driven by an actuator such as a servo motor. Specifically, the inside / outside air switching door 46 rotates so as to close the other of the inside air introduction port 44a and the outside air introduction port 44b, and the flow rate ratio between the inside air and the outside air flowing into the air suction portion 441. Adjust.
  • the opening degree of the inside air introduction port 44a is the opening degree of the inside air introduction port 44a
  • the opening degree of the outside air introduction port 44b is the opening degree of the outside air introduction port 44b.
  • the inside / outside air switching door 46 switches the air conditioning unit 41 between an inside air mode in which inside air is exclusively introduced into the air conditioning unit 41 and an outside air mode in which outside air is exclusively introduced into the air conditioning unit 41.
  • the inside air mode the inside / outside air switching door 46 opens the inside air introduction port 44a while closing the outside air introduction port 44b.
  • the inside / outside air switching door 46 closes the inside air introduction port 44a while opening the outside air introduction port 44b.
  • the air conditioning unit 41 has the inside / outside air switching door 46 so that it can be switched between the inside air mode and the outside air mode.
  • the blower 48 flows the air that has flowed into the air suction portion 441 to the evaporator 50 and blows the air that has passed through the evaporator 50 so as to flow into the vehicle interior.
  • the blower 48 allows air to flow from the air conditioning unit 41 into the vehicle interior.
  • the blower 48 includes an impeller 481 that is a centrifugal fan and a motor (not shown) that rotates the impeller 481.
  • the impeller 481 of the blower 48 is disposed downstream of the air suction portion 441 and upstream of the evaporator 50 in the air flow in the air conditioning case 44.
  • the evaporator 50 is disposed in the airflow case 44 on the downstream side of the air flow with respect to the impeller 481 of the blower 48.
  • the evaporator 50 is a heat exchanger for air cooling.
  • the evaporator 50 constitutes a part of the refrigeration cycle 1 described above.
  • the evaporator 50 exchanges heat between the refrigerant circulating in the refrigeration cycle 1 and the blown air sent from the blower 48, evaporates the refrigerant by the heat exchange, and cools the blown air. Note that when the blown air is cooled by the evaporator 50, water vapor contained in the blown air is condensed, and condensed water may be generated on the outer wall of the evaporator 50.
  • a lower tray 60 for receiving the condensed water generated by the evaporator 50 is provided on the lower side in the gravity direction of the evaporator 50.
  • Packings 51 are provided between the lower surface of the evaporator 50 and the lower tray 60 and between the upper surface of the evaporator 50 and the inner wall of the air conditioning case 44.
  • the packing 51 is made of, for example, sponge-like polyurethane.
  • the lower receiving tray 60 is connected to a discharge pipe 61 for discharging condensed water accumulated in the lower receiving tray 60. Thereby, the condensed water produced
  • the air heater 52 is disposed on the downstream side of the air flow with respect to the evaporator 50 in the air conditioning case 44.
  • the air heater 52 is a heater core that heats the air passing through the air heater 52 by exchanging heat with engine cooling water for engine cooling.
  • the air heater 52 is disposed in the air conditioning case 44 so as to partially cross the ventilation path 44 c on the downstream side of the air flow from the evaporator 50.
  • the air mix door 54 is disposed on the upstream side of the air flow with respect to the air heater 52 and on the downstream side of the air flow with respect to the evaporator 50.
  • the air mix door 54 is driven by an actuator such as a servo motor, and changes the blowout temperature of the conditioned air blown from each blowout port toward the vehicle interior.
  • the air mix door 54 passes through the evaporator 50 and bypasses the air heater 52 according to the rotational position of the air mix door 54, and the air heater after passing through the evaporator 50.
  • the air volume ratio with the warm air passing through 52 is adjusted.
  • the air conditioning case 44 has a defroster opening 442, a face opening 443, a front seat foot opening 444, and a rear seat foot opening 445. These openings 442, 443, 444, 445 are arranged at the most downstream site in the air flow in the air conditioning case 44.
  • the defroster duct 442a is connected to the defroster opening 442.
  • a defroster door 56 a is provided in the defroster opening 442.
  • the defroster door 56 a opens and closes the defroster opening 442. If the defroster opening 442 is opened by the defroster door 56a, air is blown out from the defroster opening 442 to the inner surface of the front window of the vehicle via the defroster duct 442a.
  • a face duct 443a is connected to the face opening 443.
  • the face opening 443 is provided with a face door 56b.
  • the face door 56 b opens and closes the face opening 443. If the face opening 443 is opened by the face door 56b, air is blown out from the face opening 443 through the face duct 443a toward the head chest of the front seat occupant.
  • a front seat foot duct 444a is connected to the front seat foot opening 444.
  • the front seat foot opening 444 is provided with a front seat foot door 56c.
  • the front seat foot door 56 c opens and closes the front seat foot opening 444. If the front seat foot opening 444 is opened by the front seat foot door 56c, air is blown out from the front seat foot opening 444 to the feet of the front seat occupant through the front seat foot duct 444a.
  • the rear seat foot duct 445a is connected to the rear seat foot opening 445.
  • the rear seat foot opening 445 is provided with a rear seat foot door 56d.
  • the rear seat foot door 56d opens and closes the rear seat foot opening 445. If the rear seat foot opening 445 is opened by the rear seat foot door 56d, air is blown out from the rear seat foot opening 445 through the rear seat foot duct 445a toward the feet of the rear seat occupant.
  • the air outlet mode of the air conditioning unit 41 is switched according to the opening / closing operation of the air outlet switching doors 56a to 56d.
  • the outlet mode may include a face mode, a bi-level mode, a foot mode, a foot defroster mode, a defroster mode, and the like.
  • the air conditioner 40 of the present embodiment includes the discharge pipe 61 for discharging the condensed water generated by the evaporator 50 provided in the air conditioning case 44 to the outside of the vehicle.
  • the discharge pipe 61 for discharging the condensed water generated by the evaporator 50 provided in the air conditioning case 44 to the outside of the vehicle.
  • the double pipe structure 70 of the present embodiment has a configuration in which the forward pipe 18 is disposed inside the discharge pipe 61.
  • a portion constituting the double-pipe structure 70 in the outgoing pipe 18 functions as a contact portion 181 that comes into contact with the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61.
  • the contact portion 181 provided on the outward route pipe 18 is referred to as an outward route contact portion 181.
  • the refrigerant flowing in the forward pipe 18 passes through the forward flow path 18 a inside the forward path contact portion 181, the refrigerant exchanges heat with the condensed water flowing through the discharge flow path 61 a inside the discharge pipe 61.
  • the battery 12 to be cooled by the device temperature control device 10 of the present embodiment needs to be cooled with a large cooling capacity at a time when the outside air temperature is high such as summer.
  • a large cooling capacity at a time when the outside air temperature is high such as summer.
  • the difference between the outside air temperature and the set temperature in the passenger compartment is large, and the humidity of the outside air is also high. Therefore, the amount of condensed water generated in the evaporator 50 of the refrigeration cycle 1 Will increase. That is, the time when the battery 12 needs to be cooled with a large cooling capacity and the time when the amount of condensed water generated in the evaporator 50 increases are common.
  • the temperature of the refrigerant flowing through the evaporator 50 of the refrigeration cycle 1 is normally controlled at about 1 ° C. to 3 ° C., and the condensed water generated in the evaporator 50 has the same temperature as the refrigerant flowing through the evaporator 50. It has become. Therefore, in the forward contact portion 181, the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 exchanges heat with the cold condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61. Therefore, the condensation of the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 is further promoted, and the temperature of the liquid phase refrigerant is further reduced.
  • the device temperature control apparatus 10 can increase the cooling capacity of the battery 12 by the battery cooler 14 at a time when the outside air temperature is high such as in summer and the battery 12 needs to be cooled with a large cooling capacity.
  • the condensed water generated by the evaporator 50 of the refrigeration cycle 1 is generated by the electric power used for the air conditioner 40 of the vehicle.
  • the condensed water is discharged out of the vehicle as it is.
  • the cooling capacity of the device temperature control device 10 can be efficiently increased without increasing the power consumption of the vehicle. .
  • the apparatus temperature control apparatus 10 of this embodiment uses the condensed water produced
  • the flow rate of the liquid phase refrigerant can be increased.
  • a mechanism for spraying a liquid such as a washer liquid is not required with respect to the technique described in Patent Document 1 described above, the configuration of the device temperature adjustment device 10 can be simplified.
  • the forward contact portion 181 and the discharge pipe 61 constitute a double pipe structure 70. Therefore, it is possible to increase the area where the condensed water is in contact with the outer periphery of the forward path contact portion 181. Therefore, the heat exchange efficiency between the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61a inside the discharge pipe 61 can be increased.
  • the forward contact portion 181 is provided inside the double pipe structure 70 and the discharge pipe 61 is provided outside, so that the forward contact portion 181 is not exposed to the outside air. Therefore, the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 is not heated by the outside air. Therefore, this equipment temperature control apparatus 10 can suppress that the refrigerant flowing from the heat radiating unit 16 through the outward piping 18 is heated by the outside air.
  • the second embodiment is different from the first embodiment in the configuration of the double-pipe structure 70 constituted by the forward contact portion 181 and the discharge pipe 61, and is otherwise the same as the first embodiment. Therefore, only a different part from 1st Embodiment is demonstrated.
  • the forward contact portion 181 and the discharge pipe 61 constitute a double pipe structure 70.
  • the double-pipe structure 70 of the second embodiment has a configuration in which the forward path contact portion 181 is provided outside the discharge pipe 61. Also with this configuration, it is possible to increase the area where the refrigerant flowing in the forward flow passage 18 a inside the forward contact portion 181 contacts the outer periphery of the discharge pipe 61. Therefore, the heat exchange efficiency between the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61a inside the discharge pipe 61 can be increased. Therefore, the second embodiment can achieve the same operational effects as the first embodiment.
  • the forward contact portion 181 and the discharge pipe 61 do not constitute a double pipe structure 70.
  • the forward contact portion 181 and the discharge pipe 61 are in contact with each other.
  • the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61 exchange heat.
  • the third embodiment can achieve the same effects as the first and second embodiments.
  • a fourth embodiment will be described.
  • the fourth embodiment is obtained by changing the configuration of the forward contact portion 181 with respect to the first to third embodiments described above, and is otherwise the same as the first to third embodiments. Only parts different from the third embodiment will be described.
  • FIG. 6 the overall configuration of the device temperature control device 10 is omitted, and only the cross section of the forward contact portion 181 is shown.
  • the forward contact portion 181 included in the device temperature adjustment device 10 is provided on the lower tray 60. Condensed water generated by the evaporator 50 of the refrigeration cycle 1 is accumulated in the lower tray 60. Therefore, the condensed water collected in the lower tray 60 comes into contact with the forward contact portion 181 before being discharged from the air conditioning unit 41 via the discharge pipe 61. Thereby, the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61 exchange heat. Therefore, the fourth embodiment can achieve the same operational effects as the first to third embodiments.
  • the fourth embodiment it is possible to eliminate piping for guiding condensed water from the air conditioning unit 41 to the outward contact portion 181. Therefore, the configuration of the fourth embodiment can be simplified compared to the first to third embodiments.
  • FIG. 7 the overall configuration of the device temperature control device 10 is omitted, and only the heat radiating unit 16 is shown.
  • the heat radiating unit 16 included in the device temperature control device 10 is provided on the lower tray 60. Condensed water generated by the evaporator 50 of the refrigeration cycle 1 is accumulated in the lower tray 60. Therefore, the condensed water accumulated in the lower tray 60 comes into contact with the heat radiating unit 16 before being discharged from the air conditioning unit 41.
  • the heat radiation part 16 is provided in the downstream side of the air flow in the air conditioning case 44 with respect to the evaporator 50 in the lower tray 60.
  • the condensed water generated in the evaporator 50 flows downstream of the evaporator 50 due to the airflow flowing in the air conditioning case 44. Therefore, the condensed water generated in the evaporator 50 and flowing downstream of the evaporator 50 comes into contact with the heat radiating unit 16.
  • Both the surface on the lower tray 60 side and the surface on the evaporator 50 side of the heat radiation portion 16 function as a contact portion 161 that contacts the condensed water.
  • the contact part 161 provided in the surface by the side of the lower saucer 60 and the surface by the side of the evaporator 50 among the heat radiation parts 16 is called the heat radiation contact part 161.
  • the refrigerant flowing inside the heat radiation contact portion 161 exchanges heat with the condensed water generated by the evaporator 50.
  • the refrigerant flowing inside the heat radiating unit 16 also exchanges heat with the condensed water through the heat radiating contact unit 161. Therefore, the fifth embodiment can achieve the same operational effects as the first to fourth embodiments.
  • the fifth embodiment it is possible to eliminate piping or the like for guiding condensed water from the air conditioning unit 41 to the heat radiation contact portion 161. Therefore, the configuration of the fifth embodiment can be simplified compared to the first to third embodiments.
  • FIG. 1 A sixth embodiment will be described.
  • the sixth embodiment is obtained by changing the configurations of the forward contact portion 181 and the discharge pipe 61 with respect to the first to fifth embodiments described above, and is otherwise the same as the first to fifth embodiments. Only differences from the first to fifth embodiments will be described.
  • the forward contact portion 181 is provided directly below the drain water discharge port 62 formed at the end of the discharge pipe 61 opposite to the lower tray 60. . Therefore, the condensed water W dripping from the drain water discharge port 62 through the discharge pipe 61 comes into contact with the forward contact portion 181.
  • the forward path contact portion 181 is disposed so as to extend in a direction intersecting the direction of gravity so that the condensate W can be easily contacted.
  • the outward contact part 181 is arrange
  • the sixth embodiment can also provide the same operational effects as the first to fifth embodiments.
  • the sixth embodiment it is possible to eliminate or shorten the piping for guiding the condensed water W from the air conditioning unit 41 to the forward contact portion 181. Accordingly, the sixth embodiment can simplify the configuration compared to the first to third embodiments.
  • a seventh embodiment will be described.
  • the seventh embodiment is a modification of the sixth embodiment described above.
  • a guide plate 63 is provided between the drain water discharge port 62 and the forward path contact portion 181.
  • the guide plate 63 guides the condensed water W generated by the evaporator 50 and dripped from the drain water discharge port 62 to the forward contact portion 181.
  • the cross section of the guide plate 63 has a U-shape that is convex downward in the direction of gravity.
  • the apparatus temperature control apparatus 10 can respond
  • the seventh embodiment even when the discharge pipe 61 is deformed due to secular change, the condensed water W dripped from the drain water discharge port 62 can be reliably brought into contact with the forward contact portion 181 by the guide plate 63. Also, the seventh embodiment can achieve the same effects as the first to sixth embodiments.
  • the heat radiating portion 16 is provided directly below the drain water discharge port 62 provided at the end of the discharge pipe 61. Condensed water W dripping from the drain water discharge port 62 through the discharge pipe 61 contacts the heat radiation contact portion 161 of the heat radiation portion 16.
  • the surface of the heat radiating portion 16 that faces the drain water discharge port 62 is the heat radiating contact portion 161.
  • the heat dissipating contact portion 161 is arranged so as to intersect the direction of gravity so that it can easily come into contact with the condensed water W.
  • the eighth embodiment can achieve the same operational effects as the first to seventh embodiments.
  • the eighth embodiment it is possible to eliminate or shorten the piping for guiding the condensed water W from the air conditioning unit 41 to the heat radiation contact portion 161. Therefore, the configuration of the eighth embodiment can be simplified compared to the first to third embodiments.
  • a guide plate as described in the seventh embodiment may be provided.
  • the guide plate is provided between the drain water discharge port 62 and the heat radiation contact portion 161, and guides the condensed water W dripping from the drain water discharge port 62 to the heat radiation contact portion 161.
  • the condensed water W is guided to the heat radiation contact portion 161 by the guide plate, and the heat radiation contact portion 161 is provided. It is possible to bring the condensed water W into contact therewith.
  • the ninth embodiment is different from the first embodiment in that the water retaining member 64 is provided outside the outward contact portion 181 with respect to the first embodiment, and the other parts are the same as the first embodiment. Only will be described.
  • a water retaining member 64 is provided on the outside of the forward contact portion 181.
  • the water retaining member 64 is formed in a cylindrical shape and covers the outer periphery of the forward path contact portion 181.
  • the water retaining member 64 may be provided on at least a part of the forward path contact portion 181.
  • the water retaining member 64 is formed of a material capable of retaining condensed water inside. Examples of the water retaining member 64 include sponge-like polyurethane.
  • the water retaining member 64 By providing the water retaining member 64 outside the outward path contact portion 181, the water retaining member 64 can always retain the condensed water even if the amount of condensed water generated by the evaporator 50 changes. Therefore, the site
  • the outside air temperature when the outside air temperature is low such as in winter, it is preferable to suppress the cooling of the battery 12 in order to improve the performance of the battery 12.
  • the outside air temperature when the outside air temperature is low such as in the winter, the humidity is low, so that almost no condensed water is generated in the evaporator 50 of the refrigeration cycle 1. That is, the time when it is preferable to suppress the cooling of the battery 12 and the time when almost no condensed water is generated in the evaporator 50 of the refrigeration cycle 1 are common.
  • the water retaining member 64 when the outside air temperature is low, such as in winter, the water retaining member 64 functions as a heat insulating layer, so that the outward flow passage inside the outward contact portion 181 by the outside air. It can suppress that the refrigerant
  • the tenth embodiment is different from the fourth embodiment in that the water retaining member 64 is provided outside the outward contact portion 181 with respect to the fourth embodiment, and the other parts are the same as the fourth embodiment. Only will be described.
  • a water retaining member 64 is provided on the outside of the outward contact portion 181.
  • the water retaining member 64 is formed in a cylindrical shape and covers the outer periphery of the forward path contact portion 181.
  • the water retaining member 64 is disposed on the lower tray 60.
  • the water retaining member 64 may cover at least a part of the outer periphery of the forward path contact portion 181.
  • the water retaining member 64 can always retain the condensed water even if the amount of condensed water generated by the evaporator 50 changes. Therefore, the site
  • the outside air temperature control device 10 when the outside air temperature is low such as in winter, it is possible to prevent the coolant flowing through the forward flow passage 18a inside the forward contact portion 181 from being cooled by the outside air by causing the water retaining member 64 to function as a heat insulating layer. Therefore, when the outside air temperature is low such as in winter, the cooling capacity of the device temperature control device 10 can be suppressed.
  • the packing 51 and the water retaining member 64 provided between the lower surface of the evaporator 50 and the lower tray 60 may be integrally formed. Thereby, the number of parts can be reduced and the manufacturing cost can be reduced.
  • a switching valve 65 is provided in the middle of the outward piping 18.
  • the switching valve 65 includes a first discharge pipe 611 that connects the lower tray 60 and the switching valve 65, a second discharge pipe 612 that connects the switching valve 65 and the double pipe structure 70, and the switching valve 65 and the outside air.
  • the 3rd discharge pipe 613 which connects is connected.
  • the switching valve 65 switches between a state in which the condensed water flowing from the lower tray 60 through the first discharge pipe 611 flows through the second discharge pipe 612 and a state through which the condensed water flows through the third discharge pipe 613.
  • the switching valve 65 causes the condensed water flowing from the lower tray 60 to flow through the first discharge pipe 611 to flow into the second discharge pipe 612. Thereby, the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 constituting the double pipe structure 70 and the condensed water flowing inside the second discharge pipe 612 exchange heat.
  • the switching valve 65 causes the condensed water flowing from the lower tray 60 to flow through the first discharge pipe 611 to flow into the third discharge pipe 613.
  • the condensed water flowing through the first discharge pipe 611 is discharged from the third discharge pipe 613 to the outside without flowing into the second discharge pipe 612. That is, the switching valve 65 can stop the condensed water flowing through the first discharge pipe 611 from flowing through the second discharge pipe 612 to the forward contact portion 181. Therefore, in the eleventh embodiment, even when condensed water is generated in the evaporator 50 by the dehumidifying and heating control of the air conditioner 40, the condensed water can be prevented from flowing to the forward contact portion 181.
  • Twelfth embodiment A twelfth embodiment will be described.
  • the twelfth embodiment is further provided with a configuration for cooling the refrigerant in the middle of the outward piping 18 with respect to the first embodiment, and the other aspects are the same as those of the first embodiment. Only the different parts will be described.
  • the refrigeration cycle 1 of the air conditioner 40 includes a first evaporator 50 and a second evaporator 53.
  • the first evaporator 50 and the second evaporator 53 are connected in parallel by the pipe 6.
  • the first evaporator 50 is provided in the air conditioning unit 41 of the air conditioner 40.
  • the second evaporator 53 is provided in the middle of the outward piping 18.
  • the device temperature control device 10 can further increase the cooling capacity of the battery 12 by the battery cooler 14.
  • the refrigeration cycle 1 described in the twelfth embodiment may be configured separately from the refrigeration cycle 1 included in the air conditioner 40.
  • 13th Embodiment changes the structure which cools the refrigerant
  • the refrigeration cycle 1 included in the air conditioner 40 includes a first evaporator 50 and a second evaporator 53.
  • the first evaporator 50 is provided in the air conditioning unit 41 of the air conditioner 40.
  • the second evaporator 53 is connected to the cooling water circulation circuit 80.
  • the cooling water circulation circuit 80 is configured such that a pump 81, a first heat exchanger 82, and a second heat exchanger 83 are connected in a ring shape by a pipe 84.
  • the first heat exchanger 82 of the cooling water circulation circuit 80 and the second evaporator 53 of the refrigeration cycle 1 are integrally configured.
  • the second heat exchanger 83 of the cooling water circulation circuit 80 is provided in the middle of the forward piping 18.
  • the cooling water flows through the piping 84 of the cooling water circulation circuit 80 by driving the pump.
  • the cooling water is cooled by exchanging heat with the refrigerant flowing through the second evaporator 53 of the refrigeration cycle 1 when flowing through the first heat exchanger 82. Further, when the cooling water flows through the second heat exchanger 83, the cooling water exchanges heat with the refrigerant flowing through the outward piping 18. For this reason, the condensation of the refrigerant flowing in the forward pipe 18 is further promoted, and the temperature of the liquid-phase refrigerant is further lowered. Therefore, the thirteenth embodiment can achieve the same effects as the twelfth embodiment.
  • the target device that the device temperature control device 10 cools is the secondary battery 12, but the target device is not limited.
  • the target device may be an electric device other than the secondary battery 12 such as a motor, an inverter, or a charger, or may be a simple heating element.
  • the target device is not limited to a vehicle-mounted device, and may be a device such as a base station that requires stationary cooling.
  • the air heater 52 is a heater core, but it may be an indoor condenser that constitutes a part of the refrigeration cycle 1.
  • the air conditioning unit 41 is a front air conditioning unit that is disposed, for example, in the foremost part of the vehicle interior, but this is an example.
  • the air conditioning unit 41 in which the heat radiating unit 16 of the device temperature control device 10 is disposed may be a rear air conditioning unit of a dual air conditioner.
  • the outward piping 18 is provided as an outward portion of the device temperature control device 10, but the outward portion does not need to be configured by a piping member.
  • a piping member For example, when a hole formed in the block-like object is provided as the forward flow path 18a, a portion of the block-like object that forms the forward flow path 18a corresponds to the forward path part. The same applies to the return pipe 20.
  • one heat radiating part 16 is provided, but a plurality of heat radiating parts 16 may be provided.
  • the refrigerant filled in the fluid circulation circuit 26 is, for example, a chlorofluorocarbon refrigerant.
  • the refrigerant in the fluid circulation circuit 26 is not limited to the chlorofluorocarbon refrigerant.
  • other refrigerants such as propane or CO 2 and other media that change phase may be used.
  • the device temperature adjustment device 10 adjusts the temperature of the battery 12 by cooling the battery 12, but the device temperature adjustment device 10 includes the battery 12 in addition to such a cooling function.
  • a heating function for heating may be provided.
  • the arrangement of the components in the air conditioning case 44 of the air conditioning unit 41 is determined according to the specific vehicle on which the air conditioning unit 41 is mounted.
  • the air conditioning case 44 of the air conditioning unit 41 has the two foot opening portions 444 and 445, but the air conditioning case without one of the two foot opening portions 444 and 445. 44 can also be assumed.
  • apparatus temperature control apparatus cools ventilation air in the cooling part arrange
  • This device temperature control device adjusts the temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid, and includes a heat absorption unit, a heat radiation unit, a forward path unit, and a return path unit.
  • the heat absorption part evaporates the working fluid by absorbing heat from the target device to the working fluid.
  • the heat dissipating part is provided above the heat absorbing part in the gravity direction, and condenses the working fluid by dissipating the working fluid evaporated in the heat absorbing part.
  • the forward path portion forms an outward flow path that connects the heat radiation portion discharge port that discharges the liquid phase working fluid from the heat radiation portion and the heat absorption portion inlet port where the liquid phase working fluid flows into the heat absorption portion.
  • the return path section forms a return flow path that connects the heat absorption section discharge port that discharges the gas phase working fluid from the heat absorption section and the heat radiation section inlet that the gas phase working fluid flows into the heat dissipation section.
  • At least one of the heat dissipating part and the forward path part has a contact part configured to exchange heat between the working fluid flowing inside thereof and the condensed water generated in the cooling part.
  • the contact part is provided in the position where the condensed water produced
  • the device temperature control device further includes a guide plate that guides the condensed water generated in the cooling unit to the contact unit.
  • this apparatus temperature control apparatus can respond to various vehicle types.
  • this equipment temperature control device can reliably contact the condensed water with the contact portion by the guide plate.
  • the device temperature control device further includes a discharge pipe for discharging the condensed water generated in the cooling unit to the outside of the vehicle.
  • the contact portion comes into contact with the discharge pipe.
  • the contact part and the discharge pipe of the forward path part constitute a double pipe structure in which either one is arranged inside the other.
  • the area where the condensed water flowing through the discharge pipe contacts the contact portion can be increased, and the heat exchange efficiency between the working fluid flowing inside the contact portion and the condensed water can be increased.
  • the device temperature control device further includes a switching valve that switches between a state in which condensed water flowing through the discharge pipe flows to the contact portion and a state in which it is stopped.
  • this apparatus temperature control apparatus can prevent the condensed water from flowing to the contact portion even when condensed water is generated by dehumidifying heating control of the air conditioner.
  • the air conditioner further includes a tray for receiving condensed water generated in the cooling unit.
  • the contact portion is provided on the lower tray.
  • the condensed water accumulated in the receiving tray comes into contact with the contact portion, it is possible to surely exchange heat between the working fluid flowing inside the contact portion and the condensed water. Further, the configuration can be simplified by eliminating the piping for guiding the condensed water to the contact portion.
  • the contact part is provided in the site
  • the condensed water generated in the cooling unit flows to the downstream side of the cooling unit due to the airflow of the air conditioner, the condensed water can be brought into contact with the surface of the contact unit.
  • the apparatus further includes a water retaining member provided outside the contact portion and capable of retaining condensed water.
  • this apparatus temperature control apparatus can cool stably the working fluid which flows inside the contact part.
  • the water retaining member provided outside the contact portion functions as a heat insulating layer, so that the working fluid flowing inside the contact portion can be prevented from being cooled by the outside air. Therefore, when the outside air temperature is low such as in winter, the cooling capacity of the device temperature control device can be suppressed.

Abstract

The present invention provides a device temperature adjusting apparatus which is capable of improving cooling performance. This device temperature adjusting apparatus is mounted to a vehicle provided with an air-conditioning unit (41) which cools blown air using a cooling unit (50) provided in an air-conditioning case (44), and blows the air into a cabin. A heat absorption unit (14) causes a working fluid to absorb heat from a device (12) to be subjected to temperature adjustment. A heat release unit (16) causes the working fluid evaporated by the heat absorption unit (14) to release heat. An outward path part (18) connects a heat release unit discharge port (16b) through which the liquid-phase working fluid is discharged from the heat release unit (16), and a heat absorption unit inflow port (14b) through which the liquid-phase working fluid flows into the heat absorption unit (14). A return path part (20) connects a heat absorption unit discharge port (14c) through which the gas-phase working fluid is discharged from the heat absorption unit (14), and a heat release unit inflow port (16a) through which the gas-phase working fluid flows into the heat release unit (16). The heat release unit (16) and/or the outward path part (18) are/is provided with a contact part (161, 181) formed such that heat is exchanged between the working fluid flowing therein, and a condensate generated by the cooling unit (50).

Description

機器温調装置Equipment temperature controller 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年9月9日に出願された日本特許出願番号2016-176795号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-176785 filed on Sep. 9, 2016, the contents of which are incorporated herein by reference.
 本開示は、対象機器の温度を調整する機器温調装置に関するものである。 This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
 近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォンを使用した技術が検討されている。 In recent years, a technique using a thermosiphon as a device temperature control device for adjusting the temperature of an electrical device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.
 特許文献1に記載の機器温調装置は、車両用の蓄電装置の上部に設けられた吸熱部と、その吸熱部の上方に設けられた放熱部とが2本の循環経路により環状に接続され、その内側に作動流体としての冷媒が封入されたものである。蓄電装置が自己発熱すると、その熱を吸熱部の液相冷媒が吸熱して沸騰し、気相冷媒となって放熱部に流入する。放熱部は、その気相冷媒を凝縮させて液相冷媒を生成する。その液相冷媒は吸熱部に供給される。このような冷媒の自然循環により、蓄電装置の冷却が行われる。 In the device temperature control device described in Patent Document 1, a heat absorption part provided in an upper part of a power storage device for a vehicle and a heat dissipation part provided above the heat absorption part are connected in an annular shape by two circulation paths. The refrigerant as the working fluid is sealed inside. When the power storage device self-heats, the liquid-phase refrigerant in the heat-absorbing part absorbs the heat and boils to flow into the heat-radiating part as a gas-phase refrigerant. The heat dissipation unit condenses the gas-phase refrigerant to generate a liquid-phase refrigerant. The liquid phase refrigerant is supplied to the heat absorption unit. The power storage device is cooled by such natural circulation of the refrigerant.
 ところで、一般に、夏季などの外気温が高い季節は蓄電装置の温度も高くなることから、蓄電装置をより冷却する必要が生じる。そこで、特許文献1に記載の機器温調装置は、放熱部に対してウォッシャー液を噴射することで、放熱部を冷却し、放熱部の内側を流れる冷媒を凝縮させている。放熱部による冷媒の凝縮が促進されれば、機器温調装置の冷却能力を高めることが可能である。 By the way, generally, since the temperature of the power storage device becomes high in the season when the outside air temperature is high such as summer, it is necessary to further cool the power storage device. Therefore, the device temperature control apparatus described in Patent Document 1 cools the heat dissipating part and condenses the refrigerant flowing inside the heat dissipating part by injecting washer liquid onto the heat dissipating part. If the condensation of the refrigerant by the heat dissipating part is promoted, it is possible to increase the cooling capacity of the device temperature control device.
特開2016-105365号公報JP 2016-105365 A
 しかしながら、特許文献1に記載の機器温調装置では、ウォッシャー液の枯渇を防ぐため、ウォッシャー液を溜めるタンクに対してウォッシャー液を補充する回数が増加するという問題がある。また、放熱部に対してウォッシャー液を噴射するための構成が複雑になる。さらに、一般に、ウォッシャー液を溜めるタンクはエンジンルームに配置されているので、ウォッシャー液の温度は外気温より高くなる。そのため、ウォッシャー液を放熱部に噴射するのみでは、放熱部を十分に冷却することは困難である。 However, the apparatus temperature control device described in Patent Document 1 has a problem in that the number of times the washer liquid is replenished to the tank for storing the washer liquid increases in order to prevent the washer liquid from being depleted. In addition, the configuration for injecting the washer liquid to the heat radiating portion becomes complicated. Further, generally, since the tank for storing the washer liquid is disposed in the engine room, the temperature of the washer liquid becomes higher than the outside air temperature. For this reason, it is difficult to sufficiently cool the heat radiating portion only by spraying the washer liquid onto the heat radiating portion.
 また、機器温調装置の冷却能力を高めるため、放熱部の体格を大型化し、放熱部が外気と接する面積を増加することで放熱部による冷媒の凝縮を促進することが考えられる。しかし、放熱部の体格を大型化すると、車両への搭載性が悪化する。また、放熱部を外気によって冷却する場合、放熱部を外気温以下に冷却することはできない。そのため、夏季など外気温が高い条件では、機器温調装置の冷却能力を高めることが困難である。 Also, in order to increase the cooling capacity of the equipment temperature control device, it is conceivable to increase the size of the heat dissipating part and to increase the area where the heat dissipating part is in contact with the outside air, thereby promoting the condensation of refrigerant by the heat dissipating part. However, when the physique of the heat dissipating part is enlarged, the mountability on the vehicle is deteriorated. Moreover, when cooling a thermal radiation part with external air, a thermal radiation part cannot be cooled below to external temperature. For this reason, it is difficult to increase the cooling capacity of the device temperature controller under conditions where the outside air temperature is high, such as in summer.
 本開示は、冷却能力を高めることの可能な機器温調装置を提供することを目的とする。 This disclosure aims to provide a device temperature control device capable of increasing the cooling capacity.
 本開示の1つの観点によれば、空調ケース内に配置された冷却部で送風空気を冷却して車室内に送風する空調ユニットを備える車両に搭載され、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、
 対象機器から作動流体に吸熱させることにより作動流体を蒸発させる吸熱部と、
 吸熱部よりも重力方向上側に設けられ、吸熱部で蒸発した作動流体を放熱させることにより作動流体を凝縮させる放熱部と、
 放熱部から液相の作動流体を排出する放熱部排出口と吸熱部に液相の作動流体が流入する吸熱部流入口とを連通する往路流通路を形成する往路部と、
 吸熱部から気相の作動流体を排出する吸熱部排出口と放熱部に気相の作動流体が流入する放熱部流入口とを連通する復路流通路を形成する復路部と、を備え、
 放熱部および往路部の少なくとも一方は、その内側を流れる作動流体と冷却部で生成される凝縮水とが熱交換するように構成された接触部を有する。
According to one aspect of the present disclosure, a cooling unit disposed in an air conditioning case is mounted on a vehicle including an air conditioning unit that cools blown air and blows air into a vehicle interior. The device temperature control device that adjusts the temperature of the target device by phase change
A heat absorbing part that evaporates the working fluid by absorbing heat from the target device to the working fluid;
A heat dissipating part that is provided above the heat absorbing part in the direction of gravity and that condenses the working fluid by dissipating the working fluid evaporated in the heat absorbing part;
A forward path portion that forms a forward flow path that connects a heat radiation portion discharge port that discharges the liquid-phase working fluid from the heat radiation portion and a heat absorption portion inlet that the liquid-phase working fluid flows into the heat absorption portion;
A heat return part discharge port for discharging the gas phase working fluid from the heat absorption part, and a return path part that forms a return flow path that connects the heat radiation part inlet port where the gas phase working fluid flows into the heat dissipation part, and
At least one of the heat dissipating part and the forward path part has a contact part configured to exchange heat between the working fluid flowing inside thereof and the condensed water generated in the cooling part.
 上述したように、夏季などの外気温が高い季節は、対象機器をより冷却する必要が生じる。一方、夏季などの外気温が高い季節は、空調ユニットの冷却部に凝縮水が生成される量が多くなる。即ち、発明者らは、対象機器をより冷却する必要が生じる時期と、空調ユニットの冷却部に凝縮水が生成される量が多くなる時期とが共通していることに着目したのである。ここで、凝縮水の温度は、一般的に放熱部および往路部の少なくとも一方の内側を流れる作動流体の温度よりも低い。その凝縮水と、機器温調装置が備える接触部の内側を流れる作動流体とが熱交換することで、接触部の内側を流れる作動流体の凝縮が促進されると共に、液相になった作動流体の温度がより低下する。そのため、往路部から吸熱部に供給される液相の作動流体の流量が増加すると共に、その液相の作動流体の温度を下げることが可能である。したがって、この機器温調装置は、対象機器をより冷却する必要が生じる時期に、冷却能力をより高めることができる。 As described above, it is necessary to further cool the target device in the season when the outside air temperature is high such as summer. On the other hand, in the season when the outside air temperature is high such as summer, the amount of condensed water generated in the cooling unit of the air conditioning unit increases. That is, the inventors focused on the fact that the time when the target device needs to be further cooled and the time when the amount of condensed water generated in the cooling unit of the air conditioning unit increases are common. Here, the temperature of the condensed water is generally lower than the temperature of the working fluid flowing inside at least one of the heat radiating section and the forward path section. Heat exchange between the condensed water and the working fluid that flows inside the contact portion of the device temperature control device facilitates condensation of the working fluid that flows inside the contact portion, and the working fluid is in a liquid phase. The temperature of the is lower. Therefore, it is possible to increase the flow rate of the liquid-phase working fluid supplied from the forward path portion to the heat absorption portion, and to reduce the temperature of the liquid-phase working fluid. Therefore, this device temperature control device can further increase the cooling capacity when it is necessary to further cool the target device.
 また、空調ユニットの冷却部で生成される凝縮水は、車両の空調装置に使用された電力によって生成されたものである。したがって、その凝縮水を機器温調装置に有効利用することで、車両の消費電力を増加することなく、機器温調装置の冷却能力を効率よく高めることができる。 Also, the condensed water generated in the cooling unit of the air conditioning unit is generated by the electric power used in the vehicle air conditioner. Therefore, by effectively using the condensed water for the device temperature control device, the cooling capacity of the device temperature control device can be efficiently increased without increasing the power consumption of the vehicle.
 また、空調ユニットの冷却部で生成される凝縮水を使用することで、放熱部の体格を大型化することなく、液相の作動流体の生成量を増やすことができる。さらに、上述した特許文献1に記載の技術に対し、ウォッシャー液などの液体を噴霧する機構が不要であるため、機器温調装置の構成を簡素にすることができる。 Also, by using the condensed water generated in the cooling unit of the air conditioning unit, it is possible to increase the amount of liquid-phase working fluid generated without increasing the size of the heat dissipation unit. Furthermore, since a mechanism for spraying a liquid such as a washer liquid is not required with respect to the technique described in Patent Document 1 described above, the configuration of the device temperature control device can be simplified.
第1実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 1st Embodiment. 図1のII―II線の断面図である。It is sectional drawing of the II-II line | wire of FIG. 第1実施形態にかかる空調装置が有する冷凍サイクルの概略構成を示した模式図である。It is the schematic diagram which showed schematic structure of the refrigerating cycle which the air conditioner concerning 1st Embodiment has. 第2実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 2nd Embodiment. 第3実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 3rd Embodiment. 第4実施形態にかかる機器温調装置の一部と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed a part of apparatus temperature control apparatus concerning 4th Embodiment, and the schematic structure of an air conditioner. 第5実施形態にかかる機器温調装置の一部と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed a part of apparatus temperature control apparatus concerning 5th Embodiment, and schematic structure of an air conditioner. 第6実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 6th Embodiment. 第7実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 7th Embodiment. 第8実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 8th Embodiment. 第9実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 9th Embodiment. 第10実施形態にかかる機器温調装置の一部と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed a part of apparatus temperature control apparatus concerning 10th Embodiment, and schematic structure of an air conditioner. 第11実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 11th Embodiment. 第12実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 12th Embodiment. 第13実施形態にかかる機器温調装置と空調装置の概略構成を示した模式的な断面図である。It is typical sectional drawing which showed schematic structure of the apparatus temperature control apparatus and air conditioner concerning 13th Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本実施形態の機器温調装置は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両」という)に搭載されるものである。図1に示すように、機器温調装置10は、車両に搭載される二次電池12(以下、「電池12」という)を冷却する冷却装置として機能する。
(First embodiment)
The apparatus temperature control device of this embodiment is mounted on an electric vehicle (hereinafter simply referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle. As shown in FIG. 1, the device temperature control device 10 functions as a cooling device that cools a secondary battery 12 (hereinafter referred to as “battery 12”) mounted on a vehicle.
 まず、機器温調装置10が冷却する対象機器としての電池12について説明する。 First, the battery 12 as a target device to be cooled by the device temperature control device 10 will be described.
 機器温調装置10を搭載する車両では、電池12を主要構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電力がインバータなどを介して車両走行用モータに供給される。電池12は車両走行中など車両使用時に自己発熱する。そして、電池12は高温になると、十分な機能を発揮できないだけでなく、劣化や破損を招くので、電池12を一定温度以下に維持するための冷却装置が必要となる。 In a vehicle equipped with the device temperature control device 10, electric power stored in a power storage device (in other words, a battery pack) including the battery 12 as a main component is supplied to a vehicle travel motor via an inverter or the like. The battery 12 generates heat when the vehicle is used, such as when the vehicle is running. And if the battery 12 becomes high temperature, it not only can not exhibit a sufficient function, but also causes deterioration and breakage, so a cooling device for maintaining the battery 12 at a certain temperature or less is required.
 また、夏季などの外気温が高い季節では、車両走行中だけでなく、駐車放置中などにも電池温度は上昇する。また、電池12は車両の床下やトランクルーム下などに配置されることが多く、電池12に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。電池12を高温状態で放置すると電池12の寿命が短くなるので、車両の放置中も電池12を冷却するなど電池温度を低温に維持することが望まれている。 In addition, in high seasons such as summer, the battery temperature rises not only when the vehicle is running but also when parked. Further, the battery 12 is often arranged under the floor of a vehicle or under a trunk room, and although the amount of heat per unit time given to the battery 12 is small, the battery temperature gradually rises when left for a long time. If the battery 12 is left in a high temperature state, the life of the battery 12 is shortened. Therefore, it is desired to maintain the battery temperature at a low temperature, for example, by cooling the battery 12 while the vehicle is left.
 さらに、電池12は、複数の電池セル121を含む組電池として構成されているが、各電池セル121の温度にばらつきがあると電池セル121の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。これは、最も劣化した電池セル121の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって電池12に所望の性能を発揮させるためには、複数の電池セル121相互間の温度ばらつきを低減させる均温化が重要となる。 Furthermore, the battery 12 is configured as an assembled battery including a plurality of battery cells 121. However, if the temperature of each battery cell 121 varies, the deterioration of the battery cell 121 is biased, and the performance of the power storage device decreases. End up. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 121 that is most deteriorated. Therefore, in order for the battery 12 to exhibit desired performance over a long period of time, it is important to equalize the temperature so as to reduce the temperature variation between the plurality of battery cells 121.
 また、一般に、電池12を冷却する他の冷却装置として、一般にブロワによる送風や、冷凍サイクル1を用いた空冷、水冷、あるいは冷媒直接冷却方式が採用されている。しかし、ブロワは車室内の空気を送風するだけなので、冷却能力は低い。また、ブロワによる送風では空気の顕熱で電池12を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セル121同士の温度ばらつきを十分に抑制できない。また、冷凍サイクル方式は冷却能力は高いものの、空冷または水冷の何れも空気または水の顕熱で電池12を冷却するので、電池セル121間の温度ばらつきを十分に抑制できない。さらに、車両の駐車中に冷凍サイクル1のコンプレッサや冷却ファンを駆動することは、電力消費の増大や騒音などの原因となるので好ましくない。 Further, generally, as another cooling device for cooling the battery 12, generally, air blowing by a blower, air cooling using the refrigeration cycle 1, water cooling, or a direct refrigerant cooling system is adopted. However, since the blower only blows air in the passenger compartment, the cooling capacity is low. Moreover, since the battery 12 is cooled by the sensible heat of the air by the blower by the blower, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation among the plurality of battery cells 121 cannot be sufficiently suppressed. In addition, although the refrigeration cycle method has a high cooling capacity, since the battery 12 is cooled by sensible heat of air or water in either air cooling or water cooling, temperature variations between the battery cells 121 cannot be sufficiently suppressed. Furthermore, driving the compressor or cooling fan of the refrigeration cycle 1 while the vehicle is parked is not preferable because it causes an increase in power consumption and noise.
 これらの背景から、本実施形態の機器温調装置10は、作動流体としての冷媒をコンプレッサにより強制循環させるのではなく、冷媒の自然循環によって電池12の温度を調整するサーモサイフォン方式を採用している。 From these backgrounds, the device temperature control apparatus 10 of the present embodiment adopts a thermosiphon system that adjusts the temperature of the battery 12 by natural circulation of the refrigerant, instead of forcibly circulating the refrigerant as the working fluid by the compressor. Yes.
 次に、機器温調装置10の構成について説明する。 Next, the configuration of the device temperature control device 10 will be described.
 機器温調装置10は、吸熱部としての電池冷却器14と、放熱部16と、往路部としての往路配管18と、復路部としての復路配管20とを備えている。そして、それらの放熱部16と往路配管18と電池冷却器14と復路配管20とは、環状に連結され、機器温調装置10の作動流体としての冷媒が循環する流体循環回路26を構成している。 The device temperature control apparatus 10 includes a battery cooler 14 as a heat absorption unit, a heat radiation unit 16, an outward piping 18 as an outward path, and a return piping 20 as an inward path. The heat radiating section 16, the forward piping 18, the battery cooler 14, and the return piping 20 are connected in an annular shape to constitute a fluid circulation circuit 26 in which a refrigerant as a working fluid of the device temperature control device 10 circulates. Yes.
 すなわち、その流体循環回路26は、冷媒の蒸発および凝縮により熱移動を行うヒートパイプである。そして、流体循環回路26は、気相冷媒が流れる流路と液相冷媒が流れる流路とが分離されたループ型のサーモサイフォン(言い換えれば、サーモサイフォン回路)となるように構成されている。なお、図1において矢印DR1は、機器温調装置10が搭載される車両の向きを示す。すなわち、矢印DR1は車両上下方向DR1を示している。ただし、車両上下方向DR1は、空調装置40が有する空調ユニット41の各構成における上下方向を示すものではない。 That is, the fluid circulation circuit 26 is a heat pipe that performs heat transfer by evaporation and condensation of the refrigerant. The fluid circulation circuit 26 is configured to be a loop thermosiphon (in other words, a thermosiphon circuit) in which a flow path through which a gas-phase refrigerant flows and a flow path through which a liquid-phase refrigerant flows are separated. In FIG. 1, an arrow DR <b> 1 indicates the direction of the vehicle on which the device temperature control device 10 is mounted. That is, the arrow DR1 indicates the vehicle vertical direction DR1. However, the vehicle vertical direction DR1 does not indicate the vertical direction in each configuration of the air conditioning unit 41 of the air conditioner 40.
 流体循環回路26内には冷媒が封入充填されている。そして、流体循環回路26内はその冷媒で満たされている。その冷媒は流体循環回路26を循環し、機器温調装置10は、その冷媒の液相と気相との相変化によって電池12の温度を調整する。詳細には、その冷媒の相変化によって電池12を冷却する。 The fluid circulation circuit 26 is filled with refrigerant. The fluid circulation circuit 26 is filled with the refrigerant. The refrigerant circulates in the fluid circulation circuit 26, and the device temperature adjustment device 10 adjusts the temperature of the battery 12 by the phase change between the liquid phase and the gas phase of the refrigerant. Specifically, the battery 12 is cooled by the phase change of the refrigerant.
 流体循環回路26内に充填されている冷媒は、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒である。 The refrigerant filled in the fluid circulation circuit 26 is, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a.
 機器温調装置10の電池冷却器14は、電池12から冷媒に吸熱させる吸熱部である。言い換えれば、電池冷却器14は、電池12から冷媒へ熱移動させることにより電池12を冷却する。電池冷却器14は、例えば熱伝導性の高い金属製である。 The battery cooler 14 of the device temperature control device 10 is a heat absorption unit that absorbs heat from the battery 12 to the refrigerant. In other words, the battery cooler 14 cools the battery 12 by transferring heat from the battery 12 to the refrigerant. The battery cooler 14 is made of a metal having high thermal conductivity, for example.
 詳細には、電池冷却器14の内部には、液相冷媒を貯める冷却器室14aが形成されている。そして、電池冷却器14は、電池12から冷却器室14a内の冷媒に吸熱させることにより、冷却器室14a内の冷媒を蒸発させる。 Specifically, a cooler chamber 14 a for storing a liquid phase refrigerant is formed inside the battery cooler 14. The battery cooler 14 absorbs heat from the battery 12 to the refrigerant in the cooler chamber 14a, thereby evaporating the refrigerant in the cooler chamber 14a.
 また、電池冷却器14が冷却する電池12は、直列に電気接続された複数の電池セル121を含んでいる。その複数の電池セル121は電池積層方向DRbに積層されており、その電池積層方向DRbは、車両が水平に配置された車両水平状態では、水平方向になる。 The battery 12 cooled by the battery cooler 14 includes a plurality of battery cells 121 electrically connected in series. The plurality of battery cells 121 are stacked in the battery stacking direction DRb, and the battery stacking direction DRb is in the horizontal direction in a vehicle horizontal state in which the vehicle is horizontally disposed.
 また本実施形態では、電池12は、車両の床下に配置されている。そのため、電池冷却器14も車両の床下に配置されている。なお、確認的に述べるが、図1は模式図であり、各構成の形状、および、電池冷却器14と放熱部16のそれぞれに接続する配管18、20の具体的な接続箇所を示すものではない。 Further, in the present embodiment, the battery 12 is disposed under the floor of the vehicle. Therefore, the battery cooler 14 is also arranged under the floor of the vehicle. In addition, although it confirms, FIG. 1 is a schematic diagram and does not show the shape of each component and the specific connection location of the pipes 18 and 20 connected to the battery cooler 14 and the heat radiating part 16 respectively. Absent.
 電池冷却器14は例えば直方体形状の箱状を成し、電池積層方向DRbへ延びるように形成されている。また、電池冷却器14は、その電池冷却器14の上面141aが形成された上面部141を有している。すなわち、その上面部141の上面141a側とは反対側には、冷却器室14aの上側を形成する上側内壁面141bが形成されている。 The battery cooler 14 has, for example, a rectangular parallelepiped box shape and is formed to extend in the battery stacking direction DRb. Further, the battery cooler 14 has an upper surface portion 141 on which an upper surface 141a of the battery cooler 14 is formed. That is, an upper inner wall surface 141b that forms the upper side of the cooler chamber 14a is formed on the side of the upper surface portion 141 opposite to the upper surface 141a side.
 流体循環回路26内への冷媒の充填量は、冷却器室14aに溜まった液相冷媒が冷媒沸騰等による気泡を含まない場合に、車両水平状態で冷却器室14aが液相冷媒で満たされる量とされている。そのため、液相冷媒の液面は、往路配管18内と復路配管20内とに形成され、電池冷却器14の上側内壁面141bよりも上方に位置する。図1では、往路配管18内の液相冷媒の液面位置SF1を一点鎖線SF1で示し、復路配管20内の液相冷媒の液面位置SF2を一点鎖線SF2で示している。 When the liquid refrigerant accumulated in the cooler chamber 14a does not include bubbles due to refrigerant boiling or the like, the cooler chamber 14a is filled with the liquid refrigerant in the horizontal state of the vehicle. It is said to be a quantity. Therefore, the liquid level of the liquid-phase refrigerant is formed in the forward piping 18 and the return piping 20, and is positioned above the upper inner wall surface 141 b of the battery cooler 14. In FIG. 1, the liquid surface position SF1 of the liquid phase refrigerant in the forward pipe 18 is indicated by a one-dot chain line SF1, and the liquid surface position SF2 of the liquid phase refrigerant in the return pipe 20 is indicated by a one-dot chain line SF2.
 複数の電池セル121はそれぞれ、電池冷却器14の上面141aの上に並べて配置されている。そして、複数の電池セル121はそれぞれ、電池冷却器14の上面部141との間で熱伝導可能なようにその上面部141に接続されている。これにより、電池冷却器14の上面141aは、電池12を冷却する電池冷却面として機能し、電池冷却器14の上面部141は、その電池冷却面を形成する冷却面形成部として機能する。 The plurality of battery cells 121 are arranged side by side on the upper surface 141a of the battery cooler 14, respectively. Each of the plurality of battery cells 121 is connected to the upper surface portion 141 so as to be able to conduct heat with the upper surface portion 141 of the battery cooler 14. Thereby, the upper surface 141a of the battery cooler 14 functions as a battery cooling surface that cools the battery 12, and the upper surface portion 141 of the battery cooler 14 functions as a cooling surface forming portion that forms the battery cooling surface.
 電池冷却器14には、吸熱部流入口14bと吸熱部排出口14cとが形成されている。その吸熱部流入口14bは、往路配管18の内部に形成された往路流通路18aを電池冷却器14内(すなわち、冷却器室14a)へ連通させている。したがって、流体循環回路26を冷媒が循環すると、往路流通路18aの冷媒は電池冷却器14の吸熱部流入口14bを介して冷却器室14aに流入する。その往路流通路18aは、放熱部16から電池冷却器14へ冷媒を流す冷媒流路である。電池冷却器14の吸熱部流入口14bは、例えば、電池積層方向DRbにおける電池冷却器14の一方側の端部に設けられている。 The battery cooler 14 is formed with an endothermic inlet 14b and an endothermic outlet 14c. The heat absorption part inlet 14b connects the forward flow passage 18a formed in the forward piping 18 to the inside of the battery cooler 14 (that is, the cooler chamber 14a). Therefore, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the forward flow passage 18a flows into the cooler chamber 14a through the heat absorption part inlet 14b of the battery cooler 14. The forward flow path 18 a is a refrigerant flow path for flowing the refrigerant from the heat radiating unit 16 to the battery cooler 14. The endothermic inlet 14b of the battery cooler 14 is provided at, for example, one end of the battery cooler 14 in the battery stacking direction DRb.
 また、電池冷却器14の吸熱部排出口14cは、復路配管20の内部に形成された復路流通路20aを電池冷却器14内へ連通させている。したがって、流体循環回路26を冷媒が循環すると、冷却器室14aの冷媒は電池冷却器14の吸熱部排出口14cを介して復路流通路20aへ流出する。その復路流通路20aは、電池冷却器14から放熱部16へ冷媒を流す冷媒流路である。電池冷却器14の吸熱部排出口14cは例えば、電池積層方向DRbにおける電池冷却器14の他方側の端部に設けられている。なお、電池冷却器14は、冷却器室14aの気相冷媒を吸熱部流入口14bと吸熱部排出口14cとのうち専ら吸熱部排出口14cから流出させる不図示の構造を備えている。 Further, the heat absorption part discharge port 14 c of the battery cooler 14 communicates the return flow passage 20 a formed inside the return pipe 20 into the battery cooler 14. Therefore, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the cooler chamber 14a flows out to the return flow passage 20a through the heat absorption part discharge port 14c of the battery cooler 14. The return flow path 20 a is a refrigerant flow path for flowing the refrigerant from the battery cooler 14 to the heat radiating unit 16. The heat absorption part discharge port 14c of the battery cooler 14 is provided, for example, at the other end of the battery cooler 14 in the battery stacking direction DRb. Note that the battery cooler 14 has a structure (not shown) that causes the gas-phase refrigerant in the cooler chamber 14a to flow out of the endothermic portion outlet 14c exclusively of the endothermic portion inlet 14b and the endothermic portion outlet 14c.
 機器温調装置10の放熱部16は、放熱部16内の冷媒から受熱流体へ放熱させるものである。詳細に言えば、放熱部16には復路配管20から気相の冷媒が流入し、放熱部16は、冷媒から放熱させることによりその冷媒を凝縮させる凝縮器である。本実施形態では、放熱部16内の冷媒と熱交換するための受熱流体は空気である。なお、放熱部16内の冷媒と熱交換するための受熱流体は、空気に限るものではない。 The heat radiating part 16 of the device temperature control device 10 is for radiating heat from the refrigerant in the heat radiating part 16 to the heat receiving fluid. More specifically, the refrigerant in the gas phase flows into the heat radiating section 16 from the return pipe 20, and the heat radiating section 16 is a condenser that condenses the refrigerant by radiating heat from the refrigerant. In the present embodiment, the heat receiving fluid for exchanging heat with the refrigerant in the heat radiating unit 16 is air. The heat receiving fluid for exchanging heat with the refrigerant in the heat radiating unit 16 is not limited to air.
 放熱部16は電池冷却器14よりも上方に配置されている。放熱部16のうち上方寄りの部位に放熱部流入口16aが形成され、放熱部16のうち下方寄りの部位に放熱部排出口16bが形成されている。放熱部流入口16aは、復路配管20の内部に形成された復路流通路20aを放熱部16内に連通させている。したがって、流体循環回路26を冷媒が循環すると、復路流通路20aの冷媒は放熱部16の放熱部流入口16aを介して放熱部16の内部に流入する。 The heat dissipation part 16 is disposed above the battery cooler 14. A heat radiating portion inlet 16 a is formed in the upper portion of the heat radiating portion 16, and a heat radiating portion discharge port 16 b is formed in the lower portion of the heat radiating portion 16. The heat radiating portion inlet 16 a communicates the return flow passage 20 a formed inside the return piping 20 with the heat radiating portion 16. Accordingly, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the return flow passage 20 a flows into the heat radiating portion 16 through the heat radiating portion inlet 16 a of the heat radiating portion 16.
 放熱部排出口16bは、往路配管18の内部に形成された往路流通路18aを放熱部16の内部に連通させている。したがって、放熱部16で冷媒が凝縮すると、その液相冷媒は、重力によって、放熱部16の内部から往路流通路18aへ流れる。往路流通路18aを流れる冷媒は、電池冷却器14の吸熱部流入口14bを介して冷却器室14aに流入する。 The heat radiation part discharge port 16 b communicates the forward flow passage 18 a formed inside the forward pipe 18 with the inside of the heat radiation part 16. Therefore, when the refrigerant condenses in the heat radiating section 16, the liquid refrigerant flows from the inside of the heat radiating section 16 to the forward flow passage 18a by gravity. The refrigerant flowing through the forward flow passage 18a flows into the cooler chamber 14a via the heat absorption part inlet 14b of the battery cooler 14.
 以上のように構成された機器温調装置10では、例えば車両走行中など電池12が発熱し電池温度が高くなると、電池セル121の下面を通じて電池冷却器14の上面部141へ熱が伝わり、その熱によって電池冷却器14内の液相冷媒が沸騰する。その液相冷媒の沸騰による蒸発潜熱で各電池セル121は冷却される。また、電池冷却器14内で沸騰した冷媒は気体となって上方へ移動する。すなわち、その気体となった冷媒(すなわち、気相冷媒)は、復路流通路20aを通って放熱部16へ移動する。そうすると、その放熱部16へ流入した気相冷媒は放熱部16で冷却されて液化し、往路配管18を通って再び電池冷却器14に流入する。 In the device temperature control apparatus 10 configured as described above, for example, when the battery 12 generates heat and the battery temperature becomes high, for example, when the vehicle is running, heat is transmitted to the upper surface portion 141 of the battery cooler 14 through the lower surface of the battery cell 121, The liquid phase refrigerant in the battery cooler 14 boils due to heat. Each battery cell 121 is cooled by the latent heat of vaporization caused by the boiling of the liquid phase refrigerant. Moreover, the refrigerant | coolant which boiled within the battery cooler 14 becomes gas, and moves upwards. That is, the refrigerant (that is, the gas-phase refrigerant) that has become the gas moves to the heat radiating unit 16 through the return flow passage 20a. Then, the gas-phase refrigerant that has flowed into the heat radiating portion 16 is cooled and liquefied by the heat radiating portion 16, and then flows into the battery cooler 14 again through the outward piping 18.
 要するに、機器温調装置10でサーモサイフォン現象が開始されると、流体循環回路26に冷媒が矢印ARcのように循環する。このように、機器温調装置10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、流体循環回路26に封入された冷媒の自然循環により行われる。 In short, when the thermosiphon phenomenon is started in the device temperature control device 10, the refrigerant circulates in the fluid circulation circuit 26 as indicated by the arrow ARc. Thus, in the apparatus temperature control apparatus 10, these operation | movements are performed by the natural circulation of the refrigerant | coolant enclosed by the fluid circulation circuit 26, without requiring drive devices, such as a compressor.
 続いて、本実施形態の車両が備える空調装置40について説明する。本実施形態の車両は、一般的な車両と同様に、車室内の空気の温度および湿度を調整するための空調装置40を備えている。空調装置40は、空調ケース44内に配置された冷却部で送風空気を冷却して車室内に送風する空調ユニット41と、その空調ユニット41内の冷却部に冷媒を供給する冷凍サイクルを有している。なお、空調ユニット41の空調ケース44内に配置される冷却部は、蒸発器50に限らず、例えばペルチェ素子などにより構成されるものであってもよい。 Subsequently, the air conditioner 40 provided in the vehicle of the present embodiment will be described. The vehicle according to the present embodiment includes an air conditioner 40 for adjusting the temperature and humidity of air in the passenger compartment, as in a general vehicle. The air conditioner 40 includes an air conditioning unit 41 that cools the air blown by a cooling unit disposed in the air conditioning case 44 and blows the air into the vehicle interior, and a refrigeration cycle that supplies refrigerant to the cooling unit in the air conditioning unit 41. ing. The cooling unit disposed in the air conditioning case 44 of the air conditioning unit 41 is not limited to the evaporator 50, and may be configured by, for example, a Peltier element.
 まず、空調装置40が有する冷凍サイクルについて説明する。 First, the refrigeration cycle of the air conditioner 40 will be described.
 図3に示すように、冷凍サイクル1は、圧縮機2、凝縮器3、膨張弁4、および蒸発器50などを備えている。これら構成部品は、配管6によって環状に接続され、冷媒の循環路を構成する。 As shown in FIG. 3, the refrigeration cycle 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 50, and the like. These components are connected in an annular shape by a pipe 6 and constitute a refrigerant circulation path.
 圧縮機2は、蒸発器50側から冷媒を吸引し圧縮する。圧縮機2は、図示していない車両の走行用のエンジンまたは電動機から動力が伝達されて駆動する。 The compressor 2 sucks and compresses the refrigerant from the evaporator 50 side. The compressor 2 is driven by power transmitted from an engine or electric motor for traveling the vehicle (not shown).
 圧縮機2から吐出した高圧の気相冷媒は凝縮器3に流入する。凝縮器3に流入した高圧の気相冷媒は、凝縮器3の冷媒流路を流れる際、外気との熱交換により冷却されて凝縮する。 The high-pressure gas-phase refrigerant discharged from the compressor 2 flows into the condenser 3. When the high-pressure gas-phase refrigerant that has flowed into the condenser 3 flows through the refrigerant flow path of the condenser 3, it is cooled and condensed by heat exchange with the outside air.
 凝縮器3で凝縮された液相冷媒は、膨張弁4を通過する際に減圧され、霧状の気液二相状態となる。膨張弁4はオリフィスまたはノズルのような固定絞り、或いは、適宜の可変絞り等により構成される。 The liquid-phase refrigerant condensed in the condenser 3 is decompressed when passing through the expansion valve 4, and becomes a mist-like gas-liquid two-phase state. The expansion valve 4 is configured by a fixed throttle such as an orifice or a nozzle, or an appropriate variable throttle.
 減圧後の低圧冷媒は、蒸発器50に流入する。図1に示すように、蒸発器50は、空調ケース44内に配置されている。蒸発器50の内部を流れる低圧冷媒は、送風機48により送風される空気から吸熱して蒸発する。蒸発器50は、低圧冷媒の蒸発潜熱により、空調ケース44内の通風路44cを流れる空気を冷却する。その空気は、空気加熱器52により温度調整されて車室内へ吹き出される。図3に示すように、蒸発器50を通過した冷媒は、図示していないアキュムレータを経由して圧縮機2に吸引される。 The low-pressure refrigerant after decompression flows into the evaporator 50. As shown in FIG. 1, the evaporator 50 is disposed in the air conditioning case 44. The low-pressure refrigerant flowing inside the evaporator 50 absorbs heat from the air blown by the blower 48 and evaporates. The evaporator 50 cools the air flowing through the ventilation path 44c in the air conditioning case 44 by the latent heat of vaporization of the low-pressure refrigerant. The temperature of the air is adjusted by the air heater 52 and blown out into the passenger compartment. As shown in FIG. 3, the refrigerant that has passed through the evaporator 50 is sucked into the compressor 2 via an accumulator (not shown).
 続いて、空調装置40が有する空調ユニット41について説明する。 Subsequently, the air conditioning unit 41 of the air conditioner 40 will be described.
 図1に示すように、本実施形態の空調ユニット41は、車室内最前部のインストルメントパネルの内側に配置されている。空調ユニット41は、車室内の空気である内気と車室外の空気である外気との一方または両方を吸い込むと共に、その吸い込んだ空気を調温して車室内へ吹き出す。図1に示すように、空調ユニット41は、空調ケース44、内外気切替ドア46、ブロワすなわち送風機48、上述した蒸発器50、空気加熱器52、エアミックスドア54、および、複数の吹出口切替ドア56a~56d等を有している。その吹出口切替ドア56a~56dは何れも、例えばバタフライドアである。 As shown in FIG. 1, the air conditioning unit 41 of the present embodiment is disposed inside the instrument panel at the foremost part of the vehicle interior. The air conditioning unit 41 sucks one or both of the inside air that is the air inside the vehicle interior and the outside air that is the air outside the vehicle interior, and adjusts the sucked air to blow out the air into the vehicle interior. As shown in FIG. 1, the air conditioning unit 41 includes an air conditioning case 44, an inside / outside air switching door 46, a blower or blower 48, the evaporator 50, the air heater 52, the air mix door 54, and a plurality of outlet switching. The doors 56a to 56d are provided. The outlet switching doors 56a to 56d are all butterfly doors, for example.
 空調ケース44は空調ユニット41の筐体を成し、空調ケース44のうちの一方側には、空気導入口44a、44bが形成され、他方側には、車室内に向かう空気が通過する複数の吹出口が形成されている。そして、空調ケース44内には通風路44cが形成されており、その通風路44cは、空気導入口44a、44bから吹出口へ送風空気を流す。 The air conditioning case 44 forms a housing of the air conditioning unit 41, and air inlets 44a and 44b are formed on one side of the air conditioning case 44, and a plurality of airs that pass toward the vehicle interior pass on the other side. An air outlet is formed. And the ventilation path 44c is formed in the air-conditioning case 44, and the ventilation path 44c flows blowing air from the air inlets 44a and 44b to a blower outlet.
 また、空調ケース44は、2つの空気導入口44a、44bが形成された空気吸込部441を、空調ケース44の上流側(すなわち一方側)に有している。その2つの空気導入口44a、44bのうちの一方は、内気を吸い込む内気導入口44aであり、他方は、外気を吸い込む外気導入口44bである。すなわち、空調ユニット41は、内気導入口44aから内気を吸い込み、外気導入口44bから外気を吸い込む。 In addition, the air conditioning case 44 has an air suction part 441 in which two air inlets 44 a and 44 b are formed on the upstream side (that is, one side) of the air conditioning case 44. One of the two air introduction ports 44a and 44b is an inside air introduction port 44a that sucks in the inside air, and the other is an outside air introduction port 44b that sucks in outside air. That is, the air conditioning unit 41 sucks in the inside air from the inside air introduction port 44a and sucks the outside air from the outside air introduction port 44b.
 内外気切替ドア46は、内気導入口44aの開度と外気導入口44bの開度とを増減する開閉装置である。内外気切替ドア46は、空気吸込部441内で回動動作し、サーボモータなどのアクチュエータによって駆動される。詳細には、内外気切替ドア46は、内気導入口44aと外気導入口44bとの一方を開くほど他方を閉じるように回動し、空気吸込部441内に流入する内気と外気との流量割合を調整する。なお、内気導入口44aの開度とは内気導入口44aの開き度合であり、外気導入口44bの開度とは外気導入口44bの開き度合である。 The inside / outside air switching door 46 is an opening / closing device that increases or decreases the opening degree of the inside air introduction port 44a and the opening degree of the outside air introduction port 44b. The inside / outside air switching door 46 rotates in the air suction portion 441 and is driven by an actuator such as a servo motor. Specifically, the inside / outside air switching door 46 rotates so as to close the other of the inside air introduction port 44a and the outside air introduction port 44b, and the flow rate ratio between the inside air and the outside air flowing into the air suction portion 441. Adjust. The opening degree of the inside air introduction port 44a is the opening degree of the inside air introduction port 44a, and the opening degree of the outside air introduction port 44b is the opening degree of the outside air introduction port 44b.
 例えば、内外気切替ドア46は、空調ユニット41内へ専ら内気が導入される内気モードと、空調ユニット41内へ専ら外気が導入される外気モードとに、空調ユニット41を切り替える。その内気モードでは、内外気切替ドア46は、内気導入口44aを開く一方で外気導入口44bを閉じる。その一方で、外気モードでは、内外気切替ドア46は、内気導入口44aをほぼ閉じる一方で外気導入口44bを開く。 For example, the inside / outside air switching door 46 switches the air conditioning unit 41 between an inside air mode in which inside air is exclusively introduced into the air conditioning unit 41 and an outside air mode in which outside air is exclusively introduced into the air conditioning unit 41. In the inside air mode, the inside / outside air switching door 46 opens the inside air introduction port 44a while closing the outside air introduction port 44b. On the other hand, in the outside air mode, the inside / outside air switching door 46 closes the inside air introduction port 44a while opening the outside air introduction port 44b.
 このように、空調ユニット41は、内外気切替ドア46を有することにより、内気モードと外気モードとに切替え可能となっている。 Thus, the air conditioning unit 41 has the inside / outside air switching door 46 so that it can be switched between the inside air mode and the outside air mode.
 送風機48は、空気吸込部441に流入した空気を蒸発器50へ流し、その蒸発器50を通過した空気を車室内へ流出させるように送風する。要するに、送風機48は、空調ユニット41内から車室内へ空気を流す。そのために、送風機48は、遠心式ファンである羽根車481と、その羽根車481を回転させる不図示のモータとを有している。 The blower 48 flows the air that has flowed into the air suction portion 441 to the evaporator 50 and blows the air that has passed through the evaporator 50 so as to flow into the vehicle interior. In short, the blower 48 allows air to flow from the air conditioning unit 41 into the vehicle interior. For this purpose, the blower 48 includes an impeller 481 that is a centrifugal fan and a motor (not shown) that rotates the impeller 481.
 送風機48の羽根車481は、空調ケース44内の空気流れにおいて、空気吸込部441よりも下流側であって且つ蒸発器50よりも上流側に配置されている。 The impeller 481 of the blower 48 is disposed downstream of the air suction portion 441 and upstream of the evaporator 50 in the air flow in the air conditioning case 44.
 蒸発器50は、空調ケース44内において送風機48の羽根車481に対し空気流れ下流側に配置されている。蒸発器50は空気冷却用の熱交換器である。この蒸発器50は、上述した冷凍サイクル1の一部を構成している。そして、蒸発器50は、その冷凍サイクル1を循環する冷媒と送風機48から送られる送風空気とを熱交換させ、その熱交換により冷媒を蒸発気化させると共に送風空気を冷却する。なお、送風空気が蒸発器50によって冷やされる際、送風空気に含まれる水蒸気が凝縮し、蒸発器50の外壁に凝縮水が生成されることがある。 The evaporator 50 is disposed in the airflow case 44 on the downstream side of the air flow with respect to the impeller 481 of the blower 48. The evaporator 50 is a heat exchanger for air cooling. The evaporator 50 constitutes a part of the refrigeration cycle 1 described above. The evaporator 50 exchanges heat between the refrigerant circulating in the refrigeration cycle 1 and the blown air sent from the blower 48, evaporates the refrigerant by the heat exchange, and cools the blown air. Note that when the blown air is cooled by the evaporator 50, water vapor contained in the blown air is condensed, and condensed water may be generated on the outer wall of the evaporator 50.
 蒸発器50の重力方向下側には、蒸発器50で生成された凝縮水を受けるための下受皿60が設けられている。蒸発器50の下面と下受皿60との間、および、蒸発器50の上面と空調ケース44の内壁との間には、パッキン51が設けられている。パッキン51は、例えばスポンジ状のポリウレタンなどにより形成されている。下受皿60には、その下受皿60に溜まった凝縮水を排出するための排出管61が接続されている。これにより、蒸発器50で生成された凝縮水は、下受皿60から排出管61の内側に形成される排出流通路61aを通り、車外に排出される。 A lower tray 60 for receiving the condensed water generated by the evaporator 50 is provided on the lower side in the gravity direction of the evaporator 50. Packings 51 are provided between the lower surface of the evaporator 50 and the lower tray 60 and between the upper surface of the evaporator 50 and the inner wall of the air conditioning case 44. The packing 51 is made of, for example, sponge-like polyurethane. The lower receiving tray 60 is connected to a discharge pipe 61 for discharging condensed water accumulated in the lower receiving tray 60. Thereby, the condensed water produced | generated by the evaporator 50 passes along the discharge flow path 61a formed inside the discharge pipe 61 from the lower tray 60, and is discharged | emitted outside the vehicle.
 空気加熱器52は、空調ケース44内において蒸発器50に対し空気流れ下流側に配置されている。空気加熱器52は、空気加熱器52を通過する空気をエンジン冷却用のエンジン冷却水と熱交換させることにより加熱するヒータコアである。 The air heater 52 is disposed on the downstream side of the air flow with respect to the evaporator 50 in the air conditioning case 44. The air heater 52 is a heater core that heats the air passing through the air heater 52 by exchanging heat with engine cooling water for engine cooling.
 空気加熱器52は、空調ケース44内において蒸発器50よりも空気流れ下流側で、通風路44cを部分的に横切るように配設されている。 The air heater 52 is disposed in the air conditioning case 44 so as to partially cross the ventilation path 44 c on the downstream side of the air flow from the evaporator 50.
 エアミックスドア54は、空気加熱器52に対する空気流れ上流側で且つ蒸発器50に対する空気流れ下流側に配置されている。エアミックスドア54は、サーボモータなどのアクチュエータにより駆動されており、各吹出口から車室内に向けて、それぞれ吹き出される空調風の吹出温度を変更する。換言すると、エアミックスドア54は、そのエアミックスドア54の回動位置に応じて、蒸発器50を通過し空気加熱器52を迂回して流れる冷風と、蒸発器50を通過した後に空気加熱器52を通過する温風との風量比率を調整する。 The air mix door 54 is disposed on the upstream side of the air flow with respect to the air heater 52 and on the downstream side of the air flow with respect to the evaporator 50. The air mix door 54 is driven by an actuator such as a servo motor, and changes the blowout temperature of the conditioned air blown from each blowout port toward the vehicle interior. In other words, the air mix door 54 passes through the evaporator 50 and bypasses the air heater 52 according to the rotational position of the air mix door 54, and the air heater after passing through the evaporator 50. The air volume ratio with the warm air passing through 52 is adjusted.
 空調ケース44は、デフロスタ開口部442、フェイス開口部443、前席フット開口部444、および後席フット開口部445を有している。それらの開口部442、443、444、445は、空調ケース44内の空気流れにおいて最も下流側の部位に配置されている。 The air conditioning case 44 has a defroster opening 442, a face opening 443, a front seat foot opening 444, and a rear seat foot opening 445. These openings 442, 443, 444, 445 are arranged at the most downstream site in the air flow in the air conditioning case 44.
 そして、デフロスタ開口部442にはデフロスタダクト442aが接続されている。また、デフロスタ開口部442にはデフロスタドア56aが設けられている。そのデフロスタドア56aはデフロスタ開口部442を開閉する。デフロスタ開口部442がデフロスタドア56aによって開かれていれば、デフロスタ開口部442からデフロスタダクト442aを介して、車両のフロントウインドゥの内面に向かって空気が吹き出される。 The defroster duct 442a is connected to the defroster opening 442. In addition, a defroster door 56 a is provided in the defroster opening 442. The defroster door 56 a opens and closes the defroster opening 442. If the defroster opening 442 is opened by the defroster door 56a, air is blown out from the defroster opening 442 to the inner surface of the front window of the vehicle via the defroster duct 442a.
 フェイス開口部443にはフェイスダクト443aが接続されている。また、フェイス開口部443にはフェイスドア56bが設けられている。そのフェイスドア56bはフェイス開口部443を開閉する。フェイス開口部443がフェイスドア56bによって開かれていれば、フェイス開口部443からフェイスダクト443aを介して、前席乗員の頭胸部に向かって空気が吹き出される。 A face duct 443a is connected to the face opening 443. The face opening 443 is provided with a face door 56b. The face door 56 b opens and closes the face opening 443. If the face opening 443 is opened by the face door 56b, air is blown out from the face opening 443 through the face duct 443a toward the head chest of the front seat occupant.
 前席フット開口部444には前席フットダクト444aが接続されている。また、前席フット開口部444には前席フットドア56cが設けられている。その前席フットドア56cは前席フット開口部444を開閉する。前席フット開口部444が前席フットドア56cによって開かれていれば、前席フット開口部444から前席フットダクト444aを介して、前席乗員の足元部に向かって空気が吹き出される。 A front seat foot duct 444a is connected to the front seat foot opening 444. The front seat foot opening 444 is provided with a front seat foot door 56c. The front seat foot door 56 c opens and closes the front seat foot opening 444. If the front seat foot opening 444 is opened by the front seat foot door 56c, air is blown out from the front seat foot opening 444 to the feet of the front seat occupant through the front seat foot duct 444a.
 後席フット開口部445には後席フットダクト445aが接続されている。また、後席フット開口部445には後席フットドア56dが設けられている。その後席フットドア56dは後席フット開口部445を開閉する。後席フット開口部445が後席フットドア56dによって開かれていれば、後席フット開口部445から後席フットダクト445aを介して、後席乗員の足元部に向かって空気が吹き出される。 The rear seat foot duct 445a is connected to the rear seat foot opening 445. The rear seat foot opening 445 is provided with a rear seat foot door 56d. The rear seat foot door 56d opens and closes the rear seat foot opening 445. If the rear seat foot opening 445 is opened by the rear seat foot door 56d, air is blown out from the rear seat foot opening 445 through the rear seat foot duct 445a toward the feet of the rear seat occupant.
 各吹出口切替ドア56a~56dの開閉作動に応じて、空調ユニット41の吹出口モードが切り替えられる。例えば、その吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、フットデフロスタモード、デフロスタモード等を挙げることができる。 The air outlet mode of the air conditioning unit 41 is switched according to the opening / closing operation of the air outlet switching doors 56a to 56d. For example, the outlet mode may include a face mode, a bi-level mode, a foot mode, a foot defroster mode, a defroster mode, and the like.
 次に、本実施形態の機器温調装置10および空調装置40の特徴的構成と、その作用効果について説明する。 Next, the characteristic configurations of the device temperature control device 10 and the air conditioner 40 of the present embodiment and the operation and effects thereof will be described.
 上述したように、本実施形態の空調装置40は、空調ケース44内に設けられた蒸発器50で生成される凝縮水を車外に排出するための排出管61を備えている。図1および図2に示すように、排出管61の少なくとも一部と往路配管18の少なくとも一部とは、2重管構造70を構成している。本実施形態の2重管構造70は、往路配管18が排出管61の内側に配置された構成である。往路配管18のうち2重管構造70を構成している箇所は、排出管61の内側の排出流通路61aを流れる凝縮水と接触する接触部181として機能する。本実施形態では、往路配管18に設けられた接触部181を、往路接触部181と称する。往路配管18を流れる冷媒は、往路接触部181の内側の往路流通路18aを通過する際、排出管61の内側の排出流通路61aを流れる凝縮水と熱交換する。 As described above, the air conditioner 40 of the present embodiment includes the discharge pipe 61 for discharging the condensed water generated by the evaporator 50 provided in the air conditioning case 44 to the outside of the vehicle. As shown in FIGS. 1 and 2, at least a part of the discharge pipe 61 and at least a part of the outgoing pipe 18 constitute a double pipe structure 70. The double pipe structure 70 of the present embodiment has a configuration in which the forward pipe 18 is disposed inside the discharge pipe 61. A portion constituting the double-pipe structure 70 in the outgoing pipe 18 functions as a contact portion 181 that comes into contact with the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61. In the present embodiment, the contact portion 181 provided on the outward route pipe 18 is referred to as an outward route contact portion 181. When the refrigerant flowing in the forward pipe 18 passes through the forward flow path 18 a inside the forward path contact portion 181, the refrigerant exchanges heat with the condensed water flowing through the discharge flow path 61 a inside the discharge pipe 61.
 本実施形態の機器温調装置10が冷却の対象としている電池12は、夏季などの外気温が高い時期に、大きな冷却能力により冷却する必要が生じる。一方、夏季などの外気温が高い季節は、外気温と車室内設定温度との差が大きく、且つ、外気の湿度も高いことから、冷凍サイクル1の蒸発器50に凝縮水が生成される量が多くなる。即ち、電池12を大きな冷却能力により冷却する必要が生じる時期と、蒸発器50に凝縮水が生成される量が多くなる時期とは共通している。また、冷凍サイクル1の蒸発器50を流れる冷媒の温度は通常約1℃~3℃で制御されており、蒸発器50で生成される凝縮水もその蒸発器50を流れる冷媒と同等の温度となっている。そのため、往路接触部181では、その往路接触部181の内側の往路流通路18aを流れる冷媒と排出管61の内側の排出流通路61aを流れる冷たい凝縮水とが熱交換する。そのため、往路接触部181の内側の往路流通路18aを流れる冷媒の凝縮がさらに促進されると共に、液相冷媒の温度がより低下する。したがって、往路配管18から電池冷却器14に供給される液相冷媒の流量が増加すると共に、その液相冷媒の温度を下げることが可能である。したがって、この機器温調装置10は、夏季などの外気温が高く、電池12を大きな冷却能力で冷却する必要が生じる時期に、電池冷却器14による電池12の冷却能力を高めることができる。 The battery 12 to be cooled by the device temperature control device 10 of the present embodiment needs to be cooled with a large cooling capacity at a time when the outside air temperature is high such as summer. On the other hand, in the season when the outside air temperature is high such as summer, the difference between the outside air temperature and the set temperature in the passenger compartment is large, and the humidity of the outside air is also high. Therefore, the amount of condensed water generated in the evaporator 50 of the refrigeration cycle 1 Will increase. That is, the time when the battery 12 needs to be cooled with a large cooling capacity and the time when the amount of condensed water generated in the evaporator 50 increases are common. In addition, the temperature of the refrigerant flowing through the evaporator 50 of the refrigeration cycle 1 is normally controlled at about 1 ° C. to 3 ° C., and the condensed water generated in the evaporator 50 has the same temperature as the refrigerant flowing through the evaporator 50. It has become. Therefore, in the forward contact portion 181, the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 exchanges heat with the cold condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61. Therefore, the condensation of the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 is further promoted, and the temperature of the liquid phase refrigerant is further reduced. Therefore, it is possible to increase the flow rate of the liquid phase refrigerant supplied from the forward piping 18 to the battery cooler 14 and to lower the temperature of the liquid phase refrigerant. Therefore, the device temperature control apparatus 10 can increase the cooling capacity of the battery 12 by the battery cooler 14 at a time when the outside air temperature is high such as in summer and the battery 12 needs to be cooled with a large cooling capacity.
 また、冷凍サイクル1の蒸発器50で生成される凝縮水は、車両の空調装置40に使用された電力によって生成されたものである。一般に、凝縮水はそのまま車外に排出される。これに対し、本実施形態では、その凝縮水を機器温調装置10に有効利用することで、車両の消費電力を増加することなく、機器温調装置10の冷却能力を効率よく高めることができる。 Further, the condensed water generated by the evaporator 50 of the refrigeration cycle 1 is generated by the electric power used for the air conditioner 40 of the vehicle. In general, the condensed water is discharged out of the vehicle as it is. In contrast, in the present embodiment, by effectively using the condensed water for the device temperature control device 10, the cooling capacity of the device temperature control device 10 can be efficiently increased without increasing the power consumption of the vehicle. .
 さらに、本実施形態の機器温調装置10は、冷凍サイクル1の蒸発器50で生成される凝縮水を使用することで、機器温調装置10の放熱部16の体格を大型化することなく、液相冷媒の流量を増やすことができる。さらに、上述した特許文献1に記載の技術に対し、ウォッシャー液などの液体を噴霧する機構が不要であるため、機器温調装置10の構成を簡素にすることができる。 Furthermore, the apparatus temperature control apparatus 10 of this embodiment uses the condensed water produced | generated with the evaporator 50 of the refrigerating cycle 1, without enlarging the physique of the thermal radiation part 16 of the apparatus temperature control apparatus 10, The flow rate of the liquid phase refrigerant can be increased. Furthermore, since a mechanism for spraying a liquid such as a washer liquid is not required with respect to the technique described in Patent Document 1 described above, the configuration of the device temperature adjustment device 10 can be simplified.
 また、本実施形態では、往路接触部181と排出管61とが2重管構造70を構成している。そのため、往路接触部181の外周に凝縮水が接する面積を大きくすることが可能である。したがって、往路接触部181の内側の往路流通路18aを流れる冷媒と排出管61の内側の排出流通路61aを流れる凝縮水との熱交換効率を高めることができる。 Further, in the present embodiment, the forward contact portion 181 and the discharge pipe 61 constitute a double pipe structure 70. Therefore, it is possible to increase the area where the condensed water is in contact with the outer periphery of the forward path contact portion 181. Therefore, the heat exchange efficiency between the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61a inside the discharge pipe 61 can be increased.
 さらに、2重管構造70の内側に往路接触部181を設け、外側に排出管61を設けることで、往路接触部181が外気に露出しない構成となる。そのため、往路接触部181の内側の往路流通路18aを流れる冷媒が外気によって加熱されることがない。したがって、この機器温調装置10は、放熱部16から往路配管18を流れる冷媒が外気によって加熱されることを抑制することができる。 Furthermore, the forward contact portion 181 is provided inside the double pipe structure 70 and the discharge pipe 61 is provided outside, so that the forward contact portion 181 is not exposed to the outside air. Therefore, the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 is not heated by the outside air. Therefore, this equipment temperature control apparatus 10 can suppress that the refrigerant flowing from the heat radiating unit 16 through the outward piping 18 is heated by the outside air.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して往路接触部181と排出管61によって構成された2重管構造70の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. The second embodiment is different from the first embodiment in the configuration of the double-pipe structure 70 constituted by the forward contact portion 181 and the discharge pipe 61, and is otherwise the same as the first embodiment. Therefore, only a different part from 1st Embodiment is demonstrated.
 図4に示すように、第2実施形態でも、往路接触部181と排出管61とは2重管構造70を構成している。ただし、第2実施形態の2重管構造70は、往路接触部181が排出管61の外側に設けられた構成である。この構成によっても、往路接触部181の内側の往路流通路18aを流れる冷媒が排出管61の外周に接する面積を大きくすることが可能である。したがって、往路接触部181の内側の往路流通路18aを流れる冷媒と排出管61の内側の排出流通路61aを流れる凝縮水との熱交換効率を高めることができる。したがって、第2実施形態も、第1実施形態と同様の作用効果を奏することができる。 As shown in FIG. 4, also in the second embodiment, the forward contact portion 181 and the discharge pipe 61 constitute a double pipe structure 70. However, the double-pipe structure 70 of the second embodiment has a configuration in which the forward path contact portion 181 is provided outside the discharge pipe 61. Also with this configuration, it is possible to increase the area where the refrigerant flowing in the forward flow passage 18 a inside the forward contact portion 181 contacts the outer periphery of the discharge pipe 61. Therefore, the heat exchange efficiency between the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61a inside the discharge pipe 61 can be increased. Therefore, the second embodiment can achieve the same operational effects as the first embodiment.
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、上述した第1、第2実施形態に対して往路接触部181と排出管61の構成を変更したものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment will be described. In the third embodiment, the configurations of the forward contact portion 181 and the discharge pipe 61 are changed with respect to the first and second embodiments described above, and the other parts are the same as the first and second embodiments. Only the differences from the first and second embodiments will be described.
 図5に示すように、第3実施形態では、往路接触部181と排出管61とは2重管構造70を構成していない。しかし、第3実施形態でも、往路接触部181と排出管61とは互いに接触している。これにより、往路接触部181の内側の往路流通路18aを流れる冷媒と、排出管61の内側の排出流通路61aを流れる凝縮水とが熱交換する。なお、往路接触部181と排出管61とは、互いに面接触または線接触するように構成してもよい。また、往路接触部181と排出管61とは、熱伝導率の高い部材を介して間接的に接触するように構成してもよい。第3実施形態も、第1、第2実施形態と同様の作用効果を奏することができる。 As shown in FIG. 5, in the third embodiment, the forward contact portion 181 and the discharge pipe 61 do not constitute a double pipe structure 70. However, also in the third embodiment, the forward contact portion 181 and the discharge pipe 61 are in contact with each other. Thereby, the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61 exchange heat. In addition, you may comprise the outward path contact part 181 and the discharge pipe 61 so that a surface contact or a line contact may mutually be carried out. Moreover, you may comprise the outward path contact part 181 and the discharge pipe 61 so that it may contact indirectly through a member with high heat conductivity. The third embodiment can achieve the same effects as the first and second embodiments.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、上述した第1~第3実施形態に対して往路接触部181の構成を変更したものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment will be described. The fourth embodiment is obtained by changing the configuration of the forward contact portion 181 with respect to the first to third embodiments described above, and is otherwise the same as the first to third embodiments. Only parts different from the third embodiment will be described.
 図6では、機器温調装置10の全体的な構成は省略し、往路接触部181の断面のみを示している。図6に示すように、第4実施形態では、機器温調装置10が備える往路接触部181は、下受皿60の上に設けられている。下受皿60には、冷凍サイクル1の蒸発器50で生成された凝縮水が溜まる。そのため、その下受皿60に溜まった凝縮水は、空調ユニット41から排出管61を介して排出される前に往路接触部181に接触する。これにより、往路接触部181の内側の往路流通路18aを流れる冷媒と、排出管61の内側の排出流通路61aを流れる凝縮水とが熱交換する。したがって、第4実施形態も、第1~第3実施形態と同様の作用効果を奏することができる。 In FIG. 6, the overall configuration of the device temperature control device 10 is omitted, and only the cross section of the forward contact portion 181 is shown. As shown in FIG. 6, in the fourth embodiment, the forward contact portion 181 included in the device temperature adjustment device 10 is provided on the lower tray 60. Condensed water generated by the evaporator 50 of the refrigeration cycle 1 is accumulated in the lower tray 60. Therefore, the condensed water collected in the lower tray 60 comes into contact with the forward contact portion 181 before being discharged from the air conditioning unit 41 via the discharge pipe 61. Thereby, the refrigerant flowing through the forward flow passage 18 a inside the forward contact portion 181 and the condensed water flowing through the discharge flow passage 61 a inside the discharge pipe 61 exchange heat. Therefore, the fourth embodiment can achieve the same operational effects as the first to third embodiments.
 さらに、第4実施形態では、空調ユニット41から往路接触部181に凝縮水を導くための配管などを廃止することが可能である。したがって、第4実施形態は、第1~第3実施形態に対し、構成を簡素にすることができる。 Furthermore, in the fourth embodiment, it is possible to eliminate piping for guiding condensed water from the air conditioning unit 41 to the outward contact portion 181. Therefore, the configuration of the fourth embodiment can be simplified compared to the first to third embodiments.
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、上述した第1~第4実施形態に対して放熱部16と往路配管18の構成を変更したものであり、その他については第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。
(Fifth embodiment)
A fifth embodiment will be described. In the fifth embodiment, the configurations of the heat radiating section 16 and the outward piping 18 are changed with respect to the first to fourth embodiments described above, and the others are the same as the first to fourth embodiments. Only the parts different from the first to fourth embodiments will be described.
 図7では、機器温調装置10の全体的な構成は省略し、放熱部16のみを示している。図7に示すように、第5実施形態では、機器温調装置10が備える放熱部16は、下受皿60の上に設けられている。下受皿60には、冷凍サイクル1の蒸発器50で生成された凝縮水が溜まる。そのため、その下受皿60に溜まった凝縮水は、空調ユニット41から排出される前に放熱部16に接触する。 In FIG. 7, the overall configuration of the device temperature control device 10 is omitted, and only the heat radiating unit 16 is shown. As shown in FIG. 7, in the fifth embodiment, the heat radiating unit 16 included in the device temperature control device 10 is provided on the lower tray 60. Condensed water generated by the evaporator 50 of the refrigeration cycle 1 is accumulated in the lower tray 60. Therefore, the condensed water accumulated in the lower tray 60 comes into contact with the heat radiating unit 16 before being discharged from the air conditioning unit 41.
 また、放熱部16は、下受皿60のうち蒸発器50よりも空調ケース44内の空気流れ下流側の部位に設けられている。蒸発器50で生成された凝縮水は空調ケース44内を流れる気流により、蒸発器50の下流側に流れる。そのため、蒸発器50で生成されて蒸発器50の下流側に流れる凝縮水は、放熱部16に接触する。 Moreover, the heat radiation part 16 is provided in the downstream side of the air flow in the air conditioning case 44 with respect to the evaporator 50 in the lower tray 60. The condensed water generated in the evaporator 50 flows downstream of the evaporator 50 due to the airflow flowing in the air conditioning case 44. Therefore, the condensed water generated in the evaporator 50 and flowing downstream of the evaporator 50 comes into contact with the heat radiating unit 16.
 放熱部16のうち下受皿60側の面と蒸発器50側の面とはいずれも、凝縮水に接触する接触部161として機能する。本実施形態では、放熱部16のうち下受皿60側の面と蒸発器50側の面に設けられた接触部161を、放熱接触部161と称する。放熱接触部161の内部を流れる冷媒は、蒸発器50で生成される凝縮水と熱交換する。また、放熱部16の内部を流れる冷媒も、放熱接触部161を介して凝縮水と熱交換する。したがって、第5実施形態も、第1~第4実施形態と同様の作用効果を奏することができる。 Both the surface on the lower tray 60 side and the surface on the evaporator 50 side of the heat radiation portion 16 function as a contact portion 161 that contacts the condensed water. In this embodiment, the contact part 161 provided in the surface by the side of the lower saucer 60 and the surface by the side of the evaporator 50 among the heat radiation parts 16 is called the heat radiation contact part 161. The refrigerant flowing inside the heat radiation contact portion 161 exchanges heat with the condensed water generated by the evaporator 50. In addition, the refrigerant flowing inside the heat radiating unit 16 also exchanges heat with the condensed water through the heat radiating contact unit 161. Therefore, the fifth embodiment can achieve the same operational effects as the first to fourth embodiments.
 さらに、第5実施形態では、空調ユニット41から放熱接触部161に凝縮水を導くための配管などを廃止することが可能である。したがって、第5実施形態は、第1~第3実施形態に対し、構成を簡素にすることができる。 Furthermore, in the fifth embodiment, it is possible to eliminate piping or the like for guiding condensed water from the air conditioning unit 41 to the heat radiation contact portion 161. Therefore, the configuration of the fifth embodiment can be simplified compared to the first to third embodiments.
 (第6実施形態)
 第6実施形態について説明する。第6実施形態は、上述した第1~第5実施形態に対して往路接触部181と排出管61の構成を変更したものであり、その他については第1~第5実施形態と同様であるため、第1~第5実施形態と異なる部分についてのみ説明する。
(Sixth embodiment)
A sixth embodiment will be described. The sixth embodiment is obtained by changing the configurations of the forward contact portion 181 and the discharge pipe 61 with respect to the first to fifth embodiments described above, and is otherwise the same as the first to fifth embodiments. Only differences from the first to fifth embodiments will be described.
 図8に示すように、第6実施形態では、往路接触部181は、排出管61のうち下受皿60とは反対側の端部に形成されたドレン水排出口62の直下に設けられている。そのため、排出管61を通ってドレン水排出口62から滴下する凝縮水Wは、往路接触部181に接触する。往路接触部181は、その凝縮水Wに接触しやすいように、重力方向に対して交差する方向に延びるように配置される。なお、往路接触部181は、水平に近い状態で配置されることが好ましい。これにより、往路接触部181の内側の往路流通路18aを流れる冷媒と、排出管61のドレン水排出口62から滴下して往路接触部181に接触した凝縮水Wとが熱交換する。第6実施形態も、第1~第5実施形態と同様の作用効果を奏することができる。 As shown in FIG. 8, in the sixth embodiment, the forward contact portion 181 is provided directly below the drain water discharge port 62 formed at the end of the discharge pipe 61 opposite to the lower tray 60. . Therefore, the condensed water W dripping from the drain water discharge port 62 through the discharge pipe 61 comes into contact with the forward contact portion 181. The forward path contact portion 181 is disposed so as to extend in a direction intersecting the direction of gravity so that the condensate W can be easily contacted. In addition, it is preferable that the outward contact part 181 is arrange | positioned in the state near horizontal. As a result, the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 and the condensed water W dripped from the drain water discharge port 62 of the discharge pipe 61 and contacting the forward contact portion 181 exchange heat. The sixth embodiment can also provide the same operational effects as the first to fifth embodiments.
 さらに、第6実施形態では、空調ユニット41から往路接触部181に凝縮水Wを導くための配管を廃止しまたは短くすることが可能である。したがって、第6実施形態は、第1~第3実施形態に対し、構成を簡素にすることができる。 Furthermore, in the sixth embodiment, it is possible to eliminate or shorten the piping for guiding the condensed water W from the air conditioning unit 41 to the forward contact portion 181. Accordingly, the sixth embodiment can simplify the configuration compared to the first to third embodiments.
 (第7実施形態)
 第7実施形態について説明する。第7実施形態は、上述した第6実施形態の変形例である。図9に示すように、第7実施形態では、ドレン水排出口62と往路接触部181との間に、案内板63が設けられている。案内板63は、蒸発器50で生成されてドレン水排出口62から滴下する凝縮水Wを、往路接触部181に案内する。なお、案内板63の断面は、重力方向下側に凸のU字状であることが好ましい。これにより、ドレン水排出口62から凝縮水Wが滴下する位置の直下に往路接触部181を設けることが困難な場合でも、案内板63により凝縮水Wを往路接触部181に導き、往路接触部181に凝縮水Wを接触させることが可能である。そのため、第7実施形態では、機器温調装置10は、種々の車種に対応することができる。また、第7実施形態では、排出管61が経年変化により変形した場合でも、案内板63によって、ドレン水排出口62から滴下する凝縮水Wを往路接触部181に確実に接触させることができる。また、第7実施形態も、第1~第6実施形態と同様の作用効果を奏することができる。
(Seventh embodiment)
A seventh embodiment will be described. The seventh embodiment is a modification of the sixth embodiment described above. As shown in FIG. 9, in the seventh embodiment, a guide plate 63 is provided between the drain water discharge port 62 and the forward path contact portion 181. The guide plate 63 guides the condensed water W generated by the evaporator 50 and dripped from the drain water discharge port 62 to the forward contact portion 181. In addition, it is preferable that the cross section of the guide plate 63 has a U-shape that is convex downward in the direction of gravity. Thereby, even when it is difficult to provide the forward contact portion 181 directly below the position where the condensed water W drops from the drain water discharge port 62, the condensed water W is guided to the forward contact portion 181 by the guide plate 63. The condensed water W can be brought into contact with 181. Therefore, in 7th Embodiment, the apparatus temperature control apparatus 10 can respond | correspond to various vehicle types. Further, in the seventh embodiment, even when the discharge pipe 61 is deformed due to secular change, the condensed water W dripped from the drain water discharge port 62 can be reliably brought into contact with the forward contact portion 181 by the guide plate 63. Also, the seventh embodiment can achieve the same effects as the first to sixth embodiments.
 (第8実施形態)
 第8実施形態について説明する。第8実施形態は、上述した第1~第7実施形態に対して放熱部16と排出管61の構成を変更したものであり、その他については第1~第7実施形態と同様であるため、第1~第7実施形態と異なる部分についてのみ説明する。
(Eighth embodiment)
An eighth embodiment will be described. In the eighth embodiment, the configurations of the heat radiating section 16 and the discharge pipe 61 are changed with respect to the first to seventh embodiments described above, and the others are the same as those of the first to seventh embodiments. Only portions different from the first to seventh embodiments will be described.
 図10に示すように、第8実施形態では、放熱部16は、排出管61の端部に設けられたドレン水排出口62の直下に設けられている。排出管61を通ってドレン水排出口62から滴下する凝縮水Wは、放熱部16のうちの放熱接触部161に接触する。第8実施形態では、放熱部16のうちドレン水排出口62に向き合う面が放熱接触部161である。放熱接触部161は、その凝縮水Wに接触しやすいように、重力方向に対して交差するように配置されている。ドレン水排出口62から滴下する凝縮水Wが放熱接触部161に接触することにより、その凝縮水Wと、放熱接触部161の内部を流れる冷媒とが熱交換する。また、放熱部16の内部を流れる冷媒も、放熱接触部161を介して凝縮水Wと熱交換する。したがって、第8実施形態も、第1~第7実施形態と同様の作用効果を奏することができる。 As shown in FIG. 10, in the eighth embodiment, the heat radiating portion 16 is provided directly below the drain water discharge port 62 provided at the end of the discharge pipe 61. Condensed water W dripping from the drain water discharge port 62 through the discharge pipe 61 contacts the heat radiation contact portion 161 of the heat radiation portion 16. In the eighth embodiment, the surface of the heat radiating portion 16 that faces the drain water discharge port 62 is the heat radiating contact portion 161. The heat dissipating contact portion 161 is arranged so as to intersect the direction of gravity so that it can easily come into contact with the condensed water W. When the condensed water W dripped from the drain water discharge port 62 comes into contact with the heat radiation contact portion 161, the condensed water W and the refrigerant flowing inside the heat radiation contact portion 161 exchange heat. Further, the refrigerant flowing inside the heat radiating unit 16 also exchanges heat with the condensed water W through the heat radiating contact portion 161. Therefore, the eighth embodiment can achieve the same operational effects as the first to seventh embodiments.
 さらに、第8実施形態では、空調ユニット41から放熱接触部161に凝縮水Wを導くための配管を廃止しまたは短くすることが可能である。したがって、第8実施形態は、第1~第3実施形態に対し、構成を簡素にすることができる。 Furthermore, in the eighth embodiment, it is possible to eliminate or shorten the piping for guiding the condensed water W from the air conditioning unit 41 to the heat radiation contact portion 161. Therefore, the configuration of the eighth embodiment can be simplified compared to the first to third embodiments.
 なお、図示していないが、第8実施形態において、第7実施形態で説明したような案内板を設けてもよい。その場合、案内板は、ドレン水排出口62と放熱接触部161との間に設けられ、ドレン水排出口62から滴下する凝縮水Wを放熱接触部161に案内する。これにより、ドレン水排出口62から凝縮水Wが滴下する位置の直下に放熱接触部161を設けることが困難な場合でも、案内板により凝縮水Wを放熱接触部161に導き、放熱接触部161に凝縮水Wを接触させることが可能である。 Although not shown, in the eighth embodiment, a guide plate as described in the seventh embodiment may be provided. In that case, the guide plate is provided between the drain water discharge port 62 and the heat radiation contact portion 161, and guides the condensed water W dripping from the drain water discharge port 62 to the heat radiation contact portion 161. Thereby, even when it is difficult to provide the heat radiation contact portion 161 immediately below the position where the condensed water W drops from the drain water discharge port 62, the condensed water W is guided to the heat radiation contact portion 161 by the guide plate, and the heat radiation contact portion 161 is provided. It is possible to bring the condensed water W into contact therewith.
 (第9実施形態)
 第9実施形態について説明する。第9実施形態は、第1実施形態に対して往路接触部181の外側に保水部材64を設けたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Ninth embodiment)
A ninth embodiment will be described. The ninth embodiment is different from the first embodiment in that the water retaining member 64 is provided outside the outward contact portion 181 with respect to the first embodiment, and the other parts are the same as the first embodiment. Only will be described.
 図11に示すように、往路接触部181の外側には、保水部材64が設けられている。保水部材64は、筒状に形成され、往路接触部181の外周を覆っている。なお、保水部材64は、往路接触部181の少なくとも一部に設けられていてもよい。保水部材64は、凝縮水を内部に保持することの可能な材料により形成されている。保水部材64として、例えばスポンジ状のポリウレタンなどが挙げられる。 As shown in FIG. 11, a water retaining member 64 is provided on the outside of the forward contact portion 181. The water retaining member 64 is formed in a cylindrical shape and covers the outer periphery of the forward path contact portion 181. The water retaining member 64 may be provided on at least a part of the forward path contact portion 181. The water retaining member 64 is formed of a material capable of retaining condensed water inside. Examples of the water retaining member 64 include sponge-like polyurethane.
 往路接触部181の外側に保水部材64を設けることで、蒸発器50で生成される凝縮水の量が変化しても、保水部材64は凝縮水を常に保持することが可能である。そのため、往路接触部181のうち保水部材64を設けた部位は、常に凝縮水と接触する。そのため、この機器温調装置10は、往路接触部181の内側の往路流通路18aを流れる冷媒を安定して冷却することが可能となる。 By providing the water retaining member 64 outside the outward path contact portion 181, the water retaining member 64 can always retain the condensed water even if the amount of condensed water generated by the evaporator 50 changes. Therefore, the site | part which provided the water retention member 64 among the outward path contact parts 181 always contacts condensed water. Therefore, the device temperature control device 10 can stably cool the refrigerant flowing in the forward flow passage 18a inside the forward contact portion 181.
 ところで、冬季など外気温が低いときには、電池12の冷却を抑制することが電池12の性能向上に好ましい。一方、その冬季など外気温が低いときは湿度が低いため、冷凍サイクル1の蒸発器50に凝縮水が殆ど生成されなくなる。すなわち、電池12の冷却を抑制することが好ましい時期と、冷凍サイクル1の蒸発器50に凝縮水が殆ど生成されない時期とは共通している。そこで、往路接触部181の外側に保水部材64を設けることで、冬季など外気温が低いときはその保水部材64を断熱層として機能させることで、外気によって往路接触部181の内側の往路流通路18aを流れる冷媒が冷却されることを抑制することができる。したがって、冬季など外気温が低いとき、機器温調装置10の冷却能力を抑制することができる。 By the way, when the outside air temperature is low such as in winter, it is preferable to suppress the cooling of the battery 12 in order to improve the performance of the battery 12. On the other hand, when the outside air temperature is low such as in the winter, the humidity is low, so that almost no condensed water is generated in the evaporator 50 of the refrigeration cycle 1. That is, the time when it is preferable to suppress the cooling of the battery 12 and the time when almost no condensed water is generated in the evaporator 50 of the refrigeration cycle 1 are common. Therefore, by providing the water retaining member 64 outside the outward contact portion 181, when the outside air temperature is low, such as in winter, the water retaining member 64 functions as a heat insulating layer, so that the outward flow passage inside the outward contact portion 181 by the outside air. It can suppress that the refrigerant | coolant which flows through 18a is cooled. Therefore, when the outside air temperature is low such as in winter, the cooling capacity of the device temperature control device 10 can be suppressed.
 (第10実施形態)
 第10実施形態について説明する。第10実施形態は、第4実施形態に対して往路接触部181の外側に保水部材64を設けたものであり、その他については第4実施形態と同様であるため、第4実施形態と異なる部分についてのみ説明する。
(10th Embodiment)
A tenth embodiment will be described. The tenth embodiment is different from the fourth embodiment in that the water retaining member 64 is provided outside the outward contact portion 181 with respect to the fourth embodiment, and the other parts are the same as the fourth embodiment. Only will be described.
 図12に示すように、往路接触部181の外側には、保水部材64が設けられている。保水部材64は、筒状に形成され、往路接触部181の外周を覆っている。保水部材64は、下受皿60に配置されている。なお、保水部材64は、往路接触部181の外周の少なくとも一部を覆うものであってもよい。 As shown in FIG. 12, a water retaining member 64 is provided on the outside of the outward contact portion 181. The water retaining member 64 is formed in a cylindrical shape and covers the outer periphery of the forward path contact portion 181. The water retaining member 64 is disposed on the lower tray 60. The water retaining member 64 may cover at least a part of the outer periphery of the forward path contact portion 181.
 往路接触部181の外側に保水部材64を設けることで、蒸発器50で生成される凝縮水の量が変化しても、保水部材64は凝縮水を常に保持することが可能である。そのため、往路接触部181のうち保水部材64を設けた部位は、常に凝縮水と接触する。さらに、保水部材64を伝わる凝縮水の毛管現象により、下受皿60から往路接触部181の上部まで凝縮水を行き渡らせることが可能である。そのため、この機器温調装置10は、往路接触部181の内側の往路流通路18aを流れる冷媒を安定して冷却することが可能となる。 By providing the water retaining member 64 outside the outward path contact portion 181, the water retaining member 64 can always retain the condensed water even if the amount of condensed water generated by the evaporator 50 changes. Therefore, the site | part which provided the water retention member 64 among the outward path contact parts 181 always contacts condensed water. Furthermore, it is possible to spread the condensed water from the lower tray 60 to the upper part of the forward contact portion 181 by the capillary phenomenon of the condensed water transmitted through the water retaining member 64. Therefore, the device temperature control device 10 can stably cool the refrigerant flowing in the forward flow passage 18a inside the forward contact portion 181.
 一方、冬季など外気温が低いときには、保水部材64を断熱層として機能させることで、外気によって往路接触部181の内側の往路流通路18aを流れる冷媒が冷却されることを抑制することができる。したがって、冬季など外気温が低いとき、機器温調装置10の冷却能力を抑制することができる。 On the other hand, when the outside air temperature is low such as in winter, it is possible to prevent the coolant flowing through the forward flow passage 18a inside the forward contact portion 181 from being cooled by the outside air by causing the water retaining member 64 to function as a heat insulating layer. Therefore, when the outside air temperature is low such as in winter, the cooling capacity of the device temperature control device 10 can be suppressed.
 なお、蒸発器50の下面と下受皿60との間に設けられるパッキン51と保水部材64とを一体に形成してもよい。これにより、部品点数を少なくし、製造上のコストを低減することができる。 Note that the packing 51 and the water retaining member 64 provided between the lower surface of the evaporator 50 and the lower tray 60 may be integrally formed. Thereby, the number of parts can be reduced and the manufacturing cost can be reduced.
 (第11実施形態)
 第11実施形態について説明する。第11実施形態は、第1実施形態に対して往路配管18の途中に切替バルブ65を設けたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Eleventh embodiment)
An eleventh embodiment will be described. In the eleventh embodiment, a switching valve 65 is provided in the middle of the outward piping 18 with respect to the first embodiment, and the other parts are the same as in the first embodiment. Only explained.
 図13に示すように、往路配管18の途中には、切替バルブ65が設けられている。切替バルブ65には、下受皿60と切替バルブ65とを接続する第1排出管611、切替バルブ65と2重管構造70とを接続する第2排出管612、および、切替バルブ65と外気とを連通する第3排出管613が接続されている。切替バルブ65は、下受皿60から第1排出管611を流れる凝縮水を、第2排出管612に流す状態と、第3排出管613に流す状態とを切り替えるものである。 As shown in FIG. 13, a switching valve 65 is provided in the middle of the outward piping 18. The switching valve 65 includes a first discharge pipe 611 that connects the lower tray 60 and the switching valve 65, a second discharge pipe 612 that connects the switching valve 65 and the double pipe structure 70, and the switching valve 65 and the outside air. The 3rd discharge pipe 613 which connects is connected. The switching valve 65 switches between a state in which the condensed water flowing from the lower tray 60 through the first discharge pipe 611 flows through the second discharge pipe 612 and a state through which the condensed water flows through the third discharge pipe 613.
 電池12を冷却するとき、切替バルブ65により、下受皿60から第1排出管611を流れる凝縮水を、第2排出管612へ流す状態にする。これにより、2重管構造70を構成する往路接触部181の内側の往路流通路18aを流れる冷媒と第2排出管612の内側を流れる凝縮水とが熱交換する。 When cooling the battery 12, the switching valve 65 causes the condensed water flowing from the lower tray 60 to flow through the first discharge pipe 611 to flow into the second discharge pipe 612. Thereby, the refrigerant flowing through the forward flow passage 18a inside the forward contact portion 181 constituting the double pipe structure 70 and the condensed water flowing inside the second discharge pipe 612 exchange heat.
 一方、電池12の冷却を抑制するとき、切替バルブ65により、下受皿60から第1排出管611を流れる凝縮水を、第3排出管613に流す状態にする。これにより、第1排出管611を流れる凝縮水は、第2排出管612に流れることなく、第3排出管613から車外に排出される。すなわち、切替バルブ65は、第1排出管611を流れる凝縮水が第2排出管612を経由して往路接触部181に流れることを止めることが可能である。したがって、第11実施形態では、空調装置40の除湿暖房制御によって蒸発器50に凝縮水が生成された場合でも、その凝縮水が往路接触部181に流れることを防ぐことができる。 On the other hand, when the cooling of the battery 12 is suppressed, the switching valve 65 causes the condensed water flowing from the lower tray 60 to flow through the first discharge pipe 611 to flow into the third discharge pipe 613. Thereby, the condensed water flowing through the first discharge pipe 611 is discharged from the third discharge pipe 613 to the outside without flowing into the second discharge pipe 612. That is, the switching valve 65 can stop the condensed water flowing through the first discharge pipe 611 from flowing through the second discharge pipe 612 to the forward contact portion 181. Therefore, in the eleventh embodiment, even when condensed water is generated in the evaporator 50 by the dehumidifying and heating control of the air conditioner 40, the condensed water can be prevented from flowing to the forward contact portion 181.
 (第12実施形態)
 第12実施形態について説明する。第12実施形態は、第1実施形態に対して往路配管18の途中に冷媒を冷却する構成をさらに備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Twelfth embodiment)
A twelfth embodiment will be described. The twelfth embodiment is further provided with a configuration for cooling the refrigerant in the middle of the outward piping 18 with respect to the first embodiment, and the other aspects are the same as those of the first embodiment. Only the different parts will be described.
 図14に示すように、第12実施形態では、空調装置40が有する冷凍サイクル1は、第1の蒸発器50と第2の蒸発器53とを備えている。第1の蒸発器50と第2の蒸発器53とは、配管6によって並列に接続されている。第1の蒸発器50は、空調装置40が有する空調ユニット41内に設けられるものである。第2の蒸発器53は、往路配管18の途中に設けられている。これにより、冷凍サイクル1の第2の蒸発器53を流れる冷媒と、往路配管18の内側の往路流通路18aを流れる冷媒とが熱交換する。そのため、往路配管18の内側の往路流通路18aを流れる冷媒の凝縮がさらに促進されると共に、液相冷媒の温度がより低下する。したがって、往路配管18から電池冷却器14に供給される液相冷媒の流量が増加すると共に、その液相冷媒の温度を下げることが可能である。したがって、この機器温調装置10は、電池冷却器14による電池12の冷却能力をより高めることができる。 As shown in FIG. 14, in the twelfth embodiment, the refrigeration cycle 1 of the air conditioner 40 includes a first evaporator 50 and a second evaporator 53. The first evaporator 50 and the second evaporator 53 are connected in parallel by the pipe 6. The first evaporator 50 is provided in the air conditioning unit 41 of the air conditioner 40. The second evaporator 53 is provided in the middle of the outward piping 18. As a result, the refrigerant flowing through the second evaporator 53 of the refrigeration cycle 1 and the refrigerant flowing through the forward flow passage 18a inside the forward piping 18 exchange heat. For this reason, the condensation of the refrigerant flowing in the forward flow passage 18a inside the forward piping 18 is further promoted, and the temperature of the liquid phase refrigerant is further reduced. Therefore, it is possible to increase the flow rate of the liquid phase refrigerant supplied from the forward piping 18 to the battery cooler 14 and to lower the temperature of the liquid phase refrigerant. Therefore, the device temperature control device 10 can further increase the cooling capacity of the battery 12 by the battery cooler 14.
 なお、第12実施形態で説明した冷凍サイクル1は、空調装置40が有する冷凍サイクル1とは別個独立に構成されるものであってもよい。 In addition, the refrigeration cycle 1 described in the twelfth embodiment may be configured separately from the refrigeration cycle 1 included in the air conditioner 40.
 (第13実施形態)
 第13実施形態について説明する。第13実施形態は、第12実施形態に対して往路配管18を流れる冷媒を冷却する構成を変更したものであり、その他については第13実施形態と同様であるため、第13実施形態と異なる部分についてのみ説明する。
(13th Embodiment)
A thirteenth embodiment will be described. 13th Embodiment changes the structure which cools the refrigerant | coolant which flows through the outward piping 18 with respect to 12th Embodiment, Since others are the same as that of 13th Embodiment, it is a different part from 13th Embodiment. Only will be described.
 図15に示すように、第13実施形態でも、空調装置40が有する冷凍サイクル1は、第1の蒸発器50と第2の蒸発器53とを備えている。第1の蒸発器50は、空調装置40が有する空調ユニット41内に設けられるものである。第2の蒸発器53は、冷却水循環回路80に接続している。 As shown in FIG. 15, also in the thirteenth embodiment, the refrigeration cycle 1 included in the air conditioner 40 includes a first evaporator 50 and a second evaporator 53. The first evaporator 50 is provided in the air conditioning unit 41 of the air conditioner 40. The second evaporator 53 is connected to the cooling water circulation circuit 80.
 冷却水循環回路80は、ポンプ81、第1熱交換器82および第2熱交換器83が配管84によって環状に接続されたものである。冷却水循環回路80の第1熱交換器82と、冷凍サイクル1の第2の蒸発器53とは一体に構成されている。冷却水循環回路80の第2熱交換器83は、往路配管18の途中に設けられている。 The cooling water circulation circuit 80 is configured such that a pump 81, a first heat exchanger 82, and a second heat exchanger 83 are connected in a ring shape by a pipe 84. The first heat exchanger 82 of the cooling water circulation circuit 80 and the second evaporator 53 of the refrigeration cycle 1 are integrally configured. The second heat exchanger 83 of the cooling water circulation circuit 80 is provided in the middle of the forward piping 18.
 ポンプの駆動により、冷却水循環回路80の配管84を冷却水が流れる。その冷却水は、第1熱交換器82を流れる際、冷凍サイクル1の第2の蒸発器53を流れる冷媒と熱交換することで冷却される。また、その冷却水は、第2熱交換器83を流れる際、往路配管18を流れる冷媒と熱交換する。そのため、往路配管18を流れる冷媒の凝縮がさらに促進されると共に、液相冷媒の温度がより低下する。したがって、第13実施形態は、第12実施形態と同様の作用効果を奏することができる。 The cooling water flows through the piping 84 of the cooling water circulation circuit 80 by driving the pump. The cooling water is cooled by exchanging heat with the refrigerant flowing through the second evaporator 53 of the refrigeration cycle 1 when flowing through the first heat exchanger 82. Further, when the cooling water flows through the second heat exchanger 83, the cooling water exchanges heat with the refrigerant flowing through the outward piping 18. For this reason, the condensation of the refrigerant flowing in the forward pipe 18 is further promoted, and the temperature of the liquid-phase refrigerant is further lowered. Therefore, the thirteenth embodiment can achieve the same effects as the twelfth embodiment.
 (他の実施形態)
 (1)上述の各実施形態では図1に示すように、機器温調装置10が冷却する対象機器は二次電池12であるが、その対象機器に限定はない。例えば、その対象機器は、モータ、インバータ、充電器など二次電池12以外の電気機器であってもよいし、単なる発熱体であってもよい。また、その対象機器は車載機器に限らず、基地局など定置で冷却が必要な機器であってもよい。
(Other embodiments)
(1) In each of the above-described embodiments, as illustrated in FIG. 1, the target device that the device temperature control device 10 cools is the secondary battery 12, but the target device is not limited. For example, the target device may be an electric device other than the secondary battery 12 such as a motor, an inverter, or a charger, or may be a simple heating element. In addition, the target device is not limited to a vehicle-mounted device, and may be a device such as a base station that requires stationary cooling.
 (2)上述の各実施形態では、空気加熱器52はヒータコアであるが、冷凍サイクル1の一部を構成する室内コンデンサであっても差し支えない。 (2) In each of the above-described embodiments, the air heater 52 is a heater core, but it may be an indoor condenser that constitutes a part of the refrigeration cycle 1.
 (3)上述の各実施形態において、空調ユニット41は、例えば車室内最前部に配置されるフロント空調ユニットであるが、これは一例である。例えば、機器温調装置10の放熱部16が配置される空調ユニット41は、デュアルエアコンのうちのリヤ空調ユニットであってもよい。 (3) In each of the above-described embodiments, the air conditioning unit 41 is a front air conditioning unit that is disposed, for example, in the foremost part of the vehicle interior, but this is an example. For example, the air conditioning unit 41 in which the heat radiating unit 16 of the device temperature control device 10 is disposed may be a rear air conditioning unit of a dual air conditioner.
 (4)上述の各実施形態において、往路配管18は、機器温調装置10の往路部としてとして設けられているが、その往路部は配管部材で構成されている必要はない。例えば、ブロック状物内に形成された孔が往路流通路18aとして設けられている場合には、そのブロック状物のうち往路流通路18aを形成する部位が往路部に相当する。このことは、復路配管20に関しても同様である。 (4) In each of the above-described embodiments, the outward piping 18 is provided as an outward portion of the device temperature control device 10, but the outward portion does not need to be configured by a piping member. For example, when a hole formed in the block-like object is provided as the forward flow path 18a, a portion of the block-like object that forms the forward flow path 18a corresponds to the forward path part. The same applies to the return pipe 20.
 (5)上述の各実施形態では図1に示したように、放熱部16は1つ設けられているが、放熱部16は複数設けられていても差し支えない。 (5) In each of the above-described embodiments, as shown in FIG. 1, one heat radiating part 16 is provided, but a plurality of heat radiating parts 16 may be provided.
 (6)上述の各実施形態において、流体循環回路26内に充填されている冷媒は、例えばフロン系冷媒であるが、その流体循環回路26内の冷媒はフロン系冷媒に限らない。例えば、その流体循環回路26内に充填されている冷媒として、プロパンまたはCOなどの他の冷媒や、相変化する他の媒体が用いられても差し支えない。 (6) In each of the embodiments described above, the refrigerant filled in the fluid circulation circuit 26 is, for example, a chlorofluorocarbon refrigerant. However, the refrigerant in the fluid circulation circuit 26 is not limited to the chlorofluorocarbon refrigerant. For example, as the refrigerant filled in the fluid circulation circuit 26, other refrigerants such as propane or CO 2 and other media that change phase may be used.
 (7)上述の各実施形態では、機器温調装置10は電池12を冷却することで電池12の温度調整を行うが、機器温調装置10は、そのような冷却機能に加え、電池12を加熱する加熱機能を備えていても差し支えない。 (7) In each of the above-described embodiments, the device temperature adjustment device 10 adjusts the temperature of the battery 12 by cooling the battery 12, but the device temperature adjustment device 10 includes the battery 12 in addition to such a cooling function. A heating function for heating may be provided.
 (8)上述の各実施形態において、空調ユニット41の空調ケース44内の各構成の配置は、空調ユニット41が搭載される具体的な車両に応じて決まるものである。 (8) In each of the above-described embodiments, the arrangement of the components in the air conditioning case 44 of the air conditioning unit 41 is determined according to the specific vehicle on which the air conditioning unit 41 is mounted.
 (9)上述の各実施形態において、空調ユニット41の空調ケース44は2つのフット開口部444、445を有しているが、その2つのフット開口部444、445のうちの一方が無い空調ケース44も想定できる。 (9) In each of the above-described embodiments, the air conditioning case 44 of the air conditioning unit 41 has the two foot opening portions 444 and 445, but the air conditioning case without one of the two foot opening portions 444 and 445. 44 can also be assumed.
 なお、本開示は、上述の実施形態に限定されることなく、様々な変形例や均等範囲内の変形を包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。 Note that the present disclosure is not limited to the above-described embodiment, and includes various modifications and modifications within an equivalent range. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible.
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。 In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case.
 また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、空調ケース内に配置された冷却部で送風空気を冷却して車室内に送風する空調ユニットを備える車両に搭載される。この機器温調装置は、作動流体の液相と気相との相変化により対象機器の温度を調整するものであり、吸熱部、放熱部、往路部および復路部を備える。吸熱部は、対象機器から作動流体に吸熱させることにより作動流体を蒸発させる。放熱部は、吸熱部よりも重力方向上側に設けられ、吸熱部で蒸発した作動流体を放熱させることにより作動流体を凝縮させる。往路部は、放熱部から液相の作動流体を排出する放熱部排出口と吸熱部に液相の作動流体が流入する吸熱部流入口とを連通する往路流通路を形成する。復路部は、吸熱部から気相の作動流体を排出する吸熱部排出口と放熱部に気相の作動流体が流入する放熱部流入口とを連通する復路流通路を形成する。放熱部および往路部の少なくとも一方は、その内側を流れる作動流体と冷却部で生成される凝縮水とが熱交換するように構成された接触部を有する。
(Summary)
According to the 1st viewpoint shown by one part or all part of said each embodiment, apparatus temperature control apparatus cools ventilation air in the cooling part arrange | positioned in an air-conditioning case, and air-conditioning unit which ventilates into a vehicle interior It is mounted on a vehicle equipped with This device temperature control device adjusts the temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid, and includes a heat absorption unit, a heat radiation unit, a forward path unit, and a return path unit. The heat absorption part evaporates the working fluid by absorbing heat from the target device to the working fluid. The heat dissipating part is provided above the heat absorbing part in the gravity direction, and condenses the working fluid by dissipating the working fluid evaporated in the heat absorbing part. The forward path portion forms an outward flow path that connects the heat radiation portion discharge port that discharges the liquid phase working fluid from the heat radiation portion and the heat absorption portion inlet port where the liquid phase working fluid flows into the heat absorption portion. The return path section forms a return flow path that connects the heat absorption section discharge port that discharges the gas phase working fluid from the heat absorption section and the heat radiation section inlet that the gas phase working fluid flows into the heat dissipation section. At least one of the heat dissipating part and the forward path part has a contact part configured to exchange heat between the working fluid flowing inside thereof and the condensed water generated in the cooling part.
 第2の観点によれば、接触部は、冷却部で生成される凝縮水が接触する位置に設けられている。 According to the 2nd viewpoint, the contact part is provided in the position where the condensed water produced | generated in a cooling part contacts.
 これによれば、凝縮水を接触部に導くための配管を廃止しまたは短くすることが可能となり、機器温調装置の構成を簡素にすることができる。 According to this, it is possible to eliminate or shorten the piping for guiding the condensed water to the contact portion, and to simplify the configuration of the device temperature control device.
 第3の観点によれば、機器温調装置は、冷却部で生成される凝縮水を、接触部に案内する案内板をさらに備える。 According to the third aspect, the device temperature control device further includes a guide plate that guides the condensed water generated in the cooling unit to the contact unit.
 これによれば、空調装置から凝縮水が排出される位置の直下に接触部を設けることが困難な場合でも、案内板により凝縮水を接触部に導くことで、接触部に凝縮水を接触させることが可能である。そのため、この機器温調装置は、種々の車種に対応することができる。 According to this, even when it is difficult to provide the contact portion directly below the position where the condensed water is discharged from the air conditioner, the condensed water is brought into contact with the contact portion by guiding the condensed water to the contact portion by the guide plate. It is possible. Therefore, this apparatus temperature control apparatus can respond to various vehicle types.
 また、空調装置から凝縮水を排出する排出管が経年変化により変形した場合でも、この機器温調装置は、案内板により、凝縮水を接触部に確実に接触させることができる。 In addition, even when the discharge pipe that discharges condensed water from the air conditioner is deformed due to aging, this equipment temperature control device can reliably contact the condensed water with the contact portion by the guide plate.
 第4の観点によれば、機器温調装置は、冷却部で生成される凝縮水を車外に排出する排出管をさらに備える。接触部は、その排出管と接触する。 According to the fourth aspect, the device temperature control device further includes a discharge pipe for discharging the condensed water generated in the cooling unit to the outside of the vehicle. The contact portion comes into contact with the discharge pipe.
 これによれば、排出管によって凝縮水を接触部に導くことで、接触部の内側を流れる作動流体と凝縮水とを確実に熱交換させることが可能である。 According to this, it is possible to reliably exchange heat between the working fluid flowing inside the contact portion and the condensed water by guiding the condensed water to the contact portion by the discharge pipe.
 第5の観点によれば、往路部が有する接触部と排出管とは、いずれか一方が他方の内側に配置される2重管構造を構成している。 According to the fifth aspect, the contact part and the discharge pipe of the forward path part constitute a double pipe structure in which either one is arranged inside the other.
 これによれば、排出管を流れる凝縮水と接触部とが接する面積を大きくし、接触部の内側を流れる作動流体と凝縮水との熱交換効率を高めることができる。 According to this, the area where the condensed water flowing through the discharge pipe contacts the contact portion can be increased, and the heat exchange efficiency between the working fluid flowing inside the contact portion and the condensed water can be increased.
 第6の観点によれば、機器温調装置は、排出管を流れる凝縮水を接触部に流す状態と止める状態とを切り替える切替バルブをさらに備える。 According to a sixth aspect, the device temperature control device further includes a switching valve that switches between a state in which condensed water flowing through the discharge pipe flows to the contact portion and a state in which it is stopped.
 これによれば、対象機器を冷却するとき、切替バルブにより、排出管を流れる凝縮水を接触部に流すことが可能である。一方、対象機器の冷却を抑制することが好ましいとき、切替バルブにより、排出管を流れる凝縮水が接触部に流れることを止めることが可能である。したがって、この機器温調装置は、空調装置の除湿暖房制御によって凝縮水が生成された場合でも、その凝縮水が接触部に流れることを防ぐことができる。 According to this, when the target device is cooled, it is possible to flow the condensed water flowing through the discharge pipe to the contact portion by the switching valve. On the other hand, when it is preferable to suppress the cooling of the target device, the switching valve can stop the condensed water flowing through the discharge pipe from flowing to the contact portion. Therefore, this apparatus temperature control apparatus can prevent the condensed water from flowing to the contact portion even when condensed water is generated by dehumidifying heating control of the air conditioner.
 第7の観点によれば、空調装置は、冷却部で生成される凝縮水を受ける下受皿をさらに備える。接触部は、下受皿に設けられている。 According to a seventh aspect, the air conditioner further includes a tray for receiving condensed water generated in the cooling unit. The contact portion is provided on the lower tray.
 これによれば、下受皿に溜まった凝縮水と接触部とが接触するので、接触部の内側を流れる作動流体と凝縮水とを確実に熱交換させることが可能である。また、接触部に凝縮水を導くための配管を廃止することで、構成を簡素にすることができる。 According to this, since the condensed water accumulated in the receiving tray comes into contact with the contact portion, it is possible to surely exchange heat between the working fluid flowing inside the contact portion and the condensed water. Further, the configuration can be simplified by eliminating the piping for guiding the condensed water to the contact portion.
 第8の観点によれば、接触部は、下受皿のうち冷却部より空調装置の気流流れ下流側の部位に設けられている。 According to the 8th viewpoint, the contact part is provided in the site | part downstream of the airflow flow of an air conditioner from the cooling part among the receiving trays.
 これによれば、冷却部で生成された凝縮水は空調装置の気流により冷却部の下流側に流れるので、その凝縮水を接触部の表面に接触させることが可能である。 According to this, since the condensed water generated in the cooling unit flows to the downstream side of the cooling unit due to the airflow of the air conditioner, the condensed water can be brought into contact with the surface of the contact unit.
 第9の観点によれば、接触部の外側に設けられ、凝縮水を保水することの可能な保水部材をさらに備える。 According to the ninth aspect, the apparatus further includes a water retaining member provided outside the contact portion and capable of retaining condensed water.
 これによれば、冷却部で生成される凝縮水の量が変化しても、保水部材が凝縮水を常に保持しているので、接触部のうち保水部材を設けた部位が凝縮水と常に接触する。そのため、この機器温調装置は、接触部の内側を流れる作動流体を安定して冷却することが可能となる。 According to this, even if the amount of condensed water generated in the cooling unit changes, the water retaining member always retains the condensed water, so the portion of the contact portion where the water retaining member is provided is always in contact with the condensed water. To do. Therefore, this apparatus temperature control apparatus can cool stably the working fluid which flows inside the contact part.
 一方、冬季など外気温が低いときは、接触部の外側に設けた保水部材が断熱層として機能するので、接触部の内側を流れる作動流体が外気によって冷却されることを抑制することができる。したがって、冬季など外気温が低いとき、機器温調装置の冷却能力を抑制することができる。 On the other hand, when the outside air temperature is low such as in winter, the water retaining member provided outside the contact portion functions as a heat insulating layer, so that the working fluid flowing inside the contact portion can be prevented from being cooled by the outside air. Therefore, when the outside air temperature is low such as in winter, the cooling capacity of the device temperature control device can be suppressed.

Claims (9)

  1.  空調ケース(44)内に配置された冷却部(50)で送風空気を冷却して車室内に送風する空調ユニット(41)を備える車両に搭載され、作動流体の液相と気相との相変化により対象機器(12)の温度を調整する機器温調装置であって、
     前記対象機器から作動流体に吸熱させることにより作動流体を蒸発させる吸熱部(14)と、
     前記吸熱部よりも重力方向上側に設けられ、前記吸熱部で蒸発した作動流体を放熱させることにより作動流体を凝縮させる放熱部(16)と、
     前記放熱部から液相の作動流体を排出する放熱部排出口(16b)と前記吸熱部に液相の作動流体が流入する吸熱部流入口(14b)とを連通する往路流通路(18a)を形成する往路部(18)と、
     前記吸熱部から気相の作動流体を排出する吸熱部排出口(14c)と前記放熱部に気相の作動流体が流入する放熱部流入口(16a)とを連通する復路流通路(20a)を形成する復路部(20)と、を備え、
     前記放熱部および前記往路部の少なくとも一方は、その内側を流れる作動流体と前記冷却部で生成される凝縮水とが熱交換するように構成された接触部(161、181)を有する機器温調装置。
    It is mounted on a vehicle including an air conditioning unit (41) that cools blown air by a cooling unit (50) disposed in an air conditioning case (44) and blows the air into the passenger compartment, and a phase between a liquid phase and a gas phase of the working fluid. A device temperature control device for adjusting the temperature of the target device (12) by a change,
    A heat absorbing part (14) for evaporating the working fluid by absorbing heat from the target device to the working fluid;
    A heat dissipating part (16) provided above the heat absorbing part and condensing the working fluid by dissipating the working fluid evaporated in the heat absorbing part;
    A forward flow passage (18a) that connects the heat radiation portion discharge port (16b) for discharging the liquid phase working fluid from the heat radiation portion and the heat absorption portion inlet (14b) for flowing the liquid phase working fluid into the heat absorption portion. A forward path portion (18) to be formed;
    A return flow passage (20a) that connects a heat absorption part discharge port (14c) for discharging the gas phase working fluid from the heat absorption part and a heat radiation part inlet (16a) for flowing the gas phase working fluid into the heat dissipation part. A return path portion (20) to be formed,
    At least one of the heat radiating part and the forward path part has a temperature control unit having contact parts (161, 181) configured to exchange heat between the working fluid flowing inside thereof and the condensed water generated in the cooling part. apparatus.
  2.  前記接触部は、前記冷却部で生成される凝縮水が接触する位置に設けられている請求項1に記載の機器温調装置。 The apparatus temperature adjusting device according to claim 1, wherein the contact portion is provided at a position where the condensed water generated in the cooling portion comes into contact.
  3.  前記冷却部で生成される凝縮水を、前記接触部に案内する案内板(63)をさらに備える請求項1または2に記載の機器温調装置。 The apparatus temperature control device according to claim 1 or 2, further comprising a guide plate (63) for guiding the condensed water generated in the cooling unit to the contact unit.
  4.  前記冷却部で生成される凝縮水を車外に排出する排出管(61)をさらに備え、
     前記接触部は、前記排出管と接触するものである請求項1に記載の機器温調装置。
    Further comprising a discharge pipe (61) for discharging the condensed water generated in the cooling unit to the outside of the vehicle,
    The apparatus temperature control device according to claim 1, wherein the contact portion is in contact with the discharge pipe.
  5.  前記往路部が有する前記接触部と前記排出管とは、いずれか一方が他方の内側に配置される2重管構造(70)を構成している請求項4に記載の機器温調装置。 The apparatus temperature control device according to claim 4, wherein the contact portion and the discharge pipe included in the forward path section constitute a double pipe structure (70) in which one of them is disposed inside the other.
  6.  前記排出管に設けられ、前記排出管を流れる凝縮水を前記接触部に流す状態と止める状態とを切り替える切替バルブ(65)をさらに備える請求項4または5に記載の機器温調装置。 The apparatus temperature control device according to claim 4 or 5, further comprising a switching valve (65) provided in the discharge pipe and configured to switch between a state in which condensed water flowing through the discharge pipe flows to the contact portion and a state in which the condensed water is stopped.
  7.  前記空調装置は、前記冷却部で生成される凝縮水を受ける下受皿(60)をさらに備え、
     前記接触部は、前記下受皿に設けられている請求項1または2に記載の機器温調装置。
    The air conditioner further includes a tray (60) that receives the condensed water generated in the cooling unit,
    The apparatus temperature control device according to claim 1, wherein the contact portion is provided in the lower tray.
  8.  前記接触部は、前記下受皿のうち前記冷却部よりも空気流れ下流側の部位に設けられている請求項7に記載の機器温調装置。 The device temperature adjusting device according to claim 7, wherein the contact portion is provided in a portion of the lower tray that is downstream of the cooling portion with respect to the air flow.
  9.  前記接触部の外側に設けられ、凝縮水を保持することの可能な保水部材(64)をさらに備える請求項1ないし8のいずれか1つに記載の機器温調装置。 The device temperature adjusting device according to any one of claims 1 to 8, further comprising a water retaining member (64) provided outside the contact portion and capable of retaining condensed water.
PCT/JP2017/028064 2016-09-09 2017-08-02 Device temperature adjusting apparatus WO2018047540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176795A JP2019196842A (en) 2016-09-09 2016-09-09 Device temperature regulator
JP2016-176795 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047540A1 true WO2018047540A1 (en) 2018-03-15

Family

ID=61562722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028064 WO2018047540A1 (en) 2016-09-09 2017-08-02 Device temperature adjusting apparatus

Country Status (2)

Country Link
JP (1) JP2019196842A (en)
WO (1) WO2018047540A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049248A1 (en) * 2018-09-04 2020-03-12 Exoes Electric module comprising a plurality of battery cells submerged in a dielectric fluid
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
WO2022249452A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108745U (en) * 1976-02-14 1977-08-18
JPS58150763U (en) * 1982-04-02 1983-10-08 三菱重工業株式会社 Refrigeration equipment
JPS6146378U (en) * 1984-08-30 1986-03-27 株式会社東芝 air conditioner
JPH04159125A (en) * 1990-10-23 1992-06-02 Nippondenso Co Ltd Refrigerator for vehicle
JPH116434A (en) * 1997-06-19 1999-01-12 Nissan Motor Co Ltd Engine room interior atmospheric temperature reducing device
JP2005331141A (en) * 2004-05-19 2005-12-02 Mitsubishi Electric Corp Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
JP2009144556A (en) * 2007-12-12 2009-07-02 Mitsubishi Fuso Truck & Bus Corp Radiator for vehicle
JP2012255624A (en) * 2011-06-10 2012-12-27 Panasonic Corp Electric vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108745U (en) * 1976-02-14 1977-08-18
JPS58150763U (en) * 1982-04-02 1983-10-08 三菱重工業株式会社 Refrigeration equipment
JPS6146378U (en) * 1984-08-30 1986-03-27 株式会社東芝 air conditioner
JPH04159125A (en) * 1990-10-23 1992-06-02 Nippondenso Co Ltd Refrigerator for vehicle
JPH116434A (en) * 1997-06-19 1999-01-12 Nissan Motor Co Ltd Engine room interior atmospheric temperature reducing device
JP2005331141A (en) * 2004-05-19 2005-12-02 Mitsubishi Electric Corp Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
JP2009144556A (en) * 2007-12-12 2009-07-02 Mitsubishi Fuso Truck & Bus Corp Radiator for vehicle
JP2012255624A (en) * 2011-06-10 2012-12-27 Panasonic Corp Electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
WO2020049248A1 (en) * 2018-09-04 2020-03-12 Exoes Electric module comprising a plurality of battery cells submerged in a dielectric fluid
WO2022249452A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2019196842A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018047540A1 (en) Device temperature adjusting apparatus
JP6610800B2 (en) Equipment temperature controller
JP6201434B2 (en) Refrigeration cycle equipment
JP5659925B2 (en) Air conditioner for vehicles
JP6724888B2 (en) Equipment temperature controller
US11383583B2 (en) Thermal management device for vehicle
CN102692100B (en) Heat exchange system and vehicle refrigeration cycle system
US11186141B2 (en) Vehicle-mounted temperature controller
JP5373841B2 (en) Cooling system
WO2011155204A1 (en) Heat pump cycle
US10414244B2 (en) Refrigeration system, and in-vehicle refrigeration system
CN113227673B (en) Temperature adjusting device
WO2018168276A1 (en) Device temperature adjusting apparatus
JP2013217631A (en) Refrigeration cycle device
WO2015004858A1 (en) Vehicle air-conditioner
JP6575690B2 (en) Equipment temperature controller
KR20200022485A (en) Refrigeration cycle unit
WO2018047533A1 (en) Device temperature adjusting apparatus
WO2021100409A1 (en) Refrigeration cycle device
JP2014126209A (en) Refrigeration cycle device
WO2014002369A1 (en) Heat pump cycle
JP2019027690A (en) Complex type heat exchanger
JP5510374B2 (en) Heat exchange system
JPH1183235A (en) Refrigerating equipment and air conditioner
JP6341118B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP