WO2018047525A1 - Cooling system for ship - Google Patents

Cooling system for ship Download PDF

Info

Publication number
WO2018047525A1
WO2018047525A1 PCT/JP2017/027867 JP2017027867W WO2018047525A1 WO 2018047525 A1 WO2018047525 A1 WO 2018047525A1 JP 2017027867 W JP2017027867 W JP 2017027867W WO 2018047525 A1 WO2018047525 A1 WO 2018047525A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh water
temperature
line
seawater
heat exchanger
Prior art date
Application number
PCT/JP2017/027867
Other languages
French (fr)
Japanese (ja)
Inventor
岳夫 宇井
桂介 三宅
雄輝 宍粟
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020197008523A priority Critical patent/KR102240300B1/en
Priority to CN201780053414.2A priority patent/CN109642488B/en
Publication of WO2018047525A1 publication Critical patent/WO2018047525A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature

Definitions

  • the present invention relates to a ship cooling system.
  • Patent Document 1 discloses a ship cooling system 100 as shown in FIG.
  • seawater is guided from the outside of the hull to the heat exchanger 110 by the first seawater line 151, and is guided from the heat exchanger 110 to the outside of the hull by the second seawater line 152.
  • a seawater pump 160 is provided in the first seawater line 151.
  • the fresh water that exchanges heat with seawater in the heat exchanger 110 is guided from the heat exchanger 110 to the main machine 120 through the first fresh water line 131, and from the main machine 120 to the heat exchanger 110 through the second fresh water line 132.
  • a bypass line 133 is connected to the first fresh water line 131 and the second fresh water line 132 so as to bypass the heat exchanger 110.
  • the ratio of the flow rate of fresh water passing through the heat exchanger 110 and the flow rate of fresh water flowing through the bypass line 133 is changed by the temperature adjustment valve 140.
  • the temperature adjustment valve 140 is controlled by the control device 170.
  • Control device 170 controls temperature adjustment valve 140 so that the temperature of fresh water supplied to main unit 120 is constant. Moreover, the control apparatus 170 controls the rotation speed of the seawater pump 160 through the inverter 175 so that the opening degree by the side of the heat exchanger 110 of the temperature control valve 140 may approach the target opening degree.
  • an object of the present invention is to provide a ship cooling system that can further improve the fuel consumption of the main engine.
  • the inventors of the present invention As a result of earnest research, when the main engine is a reciprocating engine, fresh water cools not only the main engine but also the air supplied from the supercharger to the main engine. In view of the fact that if the temperature of the fresh water supplied to the air cooler is lowered, the fuel efficiency of the main engine will be improved because it is also supplied to the air cooler, a control method has been devised. The present invention has been made from such a viewpoint.
  • a cooling system for a ship includes a heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water, and a seawater pump that guides seawater from outside the hull to the heat exchanger.
  • a first seawater line provided with a second seawater line for guiding seawater from the heat exchanger to the outside of the hull, and a main engine that is a reciprocating engine of a ship and a supercharger that supplies the main engine from the heat exchanger
  • a first fresh water line that guides fresh water to an air cooler that cools the air to be cooled, a second fresh water line that guides fresh water from the main engine and the air cooler to the heat exchanger, and the second fresh water so as to bypass the heat exchanger
  • a temperature control valve that changes a ratio between a bypass line branched from the line and joined to the first fresh water line, a flow rate of fresh water passing through the heat exchanger and a flow rate of fresh water flowing through the bypass line, and A temperature sensor after cooling fresh water that detects the temperature of fresh water flowing
  • the rotation speed of the seawater pump is controlled via an inverter so that the temperature detected by the temperature sensor after cooling with fresh water is maintained at a set temperature, and the rotation speed of the seawater pump becomes the minimum rotation speed.
  • the temperature detected by the temperature sensor after cooling with fresh water becomes lower than the set temperature, the temperature detected by the temperature sensor after cooling with fresh water is kept at the lower limit temperature lower than the set temperature.
  • a control device for controlling the temperature regulating valve is controlled via an inverter so that the temperature detected by the temperature sensor after cooling with fresh water is maintained at a set temperature, and the rotation speed of the seawater pump becomes the minimum rotation speed.
  • a cooling system for a ship includes a heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water, and first guides seawater from outside the hull to the heat exchanger.
  • a first seawater line provided with a seawater pump that can be switched to either a rotational speed or a second rotational speed greater than the first rotational speed; and a second seawater line that guides the seawater from the heat exchanger to the outside of the hull.
  • a first fresh water line that guides fresh water from the heat exchanger to an air cooler that cools air supplied to the main engine from a main engine and a supercharger that are reciprocating engines of a ship, and the heat exchange from the main engine and the air cooler A second fresh water line that guides fresh water to the vessel, a bypass line that branches from the second fresh water line so as to bypass the heat exchanger and joins the first fresh water line, and fresh water that passes through the heat exchanger Flow And a temperature control valve that changes the ratio of the flow rate of fresh water flowing through the bypass line, a temperature sensor after fresh water cooling that detects the temperature of fresh water flowing through the first fresh water line at a downstream side of the junction of the bypass line, and A temperature sensor before fresh water cooling that detects the temperature of fresh water flowing through the second fresh water line, a sea water inflow temperature sensor that detects the temperature of sea water flowing through the first sea water line, a temperature sensor after fresh water cooling, and the fresh water cooling Based on the temperature detected by the pre-temperature sensor and the seawater inflow temperature
  • the temperature control valve is controlled so that water does not flow and the low-speed operation condition is satisfied, the temperature detected by the temperature sensor after the fresh water cooling when the seawater pump is switched to the first rotation speed is And a control device that controls the temperature regulating valve so as to be maintained at a lower limit temperature lower than the set temperature.
  • the heat exchanger is configured to cool fresh water to a set temperature or lower when the seawater pump reaches the second rotation speed. Therefore, according to said structure, the temperature of the fresh water supplied to a main machine and an air cooler can be changed between preset temperature and minimum temperature. That is, if the temperature of the fresh water supplied to the air cooler is lower than the set temperature, the temperature of the air supplied to the main machine is lowered. Thereby, the fuel consumption of the main engine can be improved. Moreover, in the above configuration, it is not necessary to use an inverter, so that the cost can be reduced.
  • the seawater pump is configured to be manually switched between the first rotation speed and the second rotation speed, and the control device displays whether or not the low speed operation condition is satisfied. You may display via.
  • the seawater pump is configured to be switched to either the first rotation speed or the second rotation speed by an electric signal, and the control device is configured to perform the above operation when the low-speed operation condition is not satisfied.
  • the seawater pump may be switched to the first rotational speed.
  • the control device When the seawater pump is at the second rotation speed, the control device is configured to change the heat exchanger based on temperatures detected by the temperature sensor after fresh water cooling, the temperature sensor before fresh water cooling, and the seawater inflow temperature sensor.
  • the heat exchange capacity coefficient may be calculated, and it may be determined whether or not the low speed operation condition is satisfied using the calculated heat exchange capacity coefficient. According to this configuration, it is possible to determine whether or not the low-speed operation condition is satisfied in consideration of the secular change due to dirt or the like of the heat exchanger.
  • the first fresh water line guides fresh water from the heat exchanger not only to the main engine and the air cooler but also to the EGR cooler, and the second fresh water line serves not only from the main machine and the air cooler but also from the EGR cooler. You may guide fresh water to the exchanger.
  • EGR is used only in a specific sea area.
  • the cooling system has sufficient cooling capacity during normal operation in which EGR is not used, so that the effect of improving the fuel consumption of the main engine can be obtained more remarkably.
  • the first fresh water line leads fresh water from the heat exchanger not only to the main engine and the air cooler but also to special cooling equipment that requires cooling at a constant temperature
  • the second fresh water line includes only the main machine and the air cooler.
  • the cooling system is branched from the second fresh water line so as to form a circulation circuit for the special cooling equipment.
  • a reflux line may be further provided to join the two. According to this configuration, the fresh water supplied to the special cooling device can be kept at a constant temperature.
  • the fuel consumption of the main engine of the ship can be further improved.
  • FIG. 1 is a schematic configuration diagram of a ship cooling system according to a first embodiment of the present invention. It is a systematic diagram regarding the supply and exhaust of the main engine. It is a schematic block diagram of the cooling system of the ship which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the conventional ship cooling system.
  • FIG. 1 shows a cooling system 1A for a ship according to a first embodiment of the present invention.
  • This cooling system 1A is for cooling the main engine 11 and other equipment of a ship using fresh water and seawater.
  • the main machine 11 may drive a screw propeller (not shown) directly (mechanical propulsion) or may be driven via a generator and a motor (electric propulsion).
  • the main engine 11 is a reciprocating engine and has a plurality of combustion chambers formed by cylinders and pistons.
  • the main machine 11 is connected to the compressor 92 of the supercharger 91 through an air supply line 94 and is connected to the turbine 93 of the supercharger 91 through an exhaust line 95.
  • An air cooler 12 is provided in the air supply line 94. The air cooler 12 cools the air supplied from the compressor 92 of the supercharger 91 to the main engine 11.
  • an EGR (Exhaust Gas Recirculation) line 96 is branched from the exhaust line 95, and the EGR line 96 joins the air supply line 94 on the downstream side of the air cooler 12.
  • the EGR line 96 is provided with an EGR cooler 13 and a blower 97 in order from the upstream side.
  • the cooling system 1A includes a heat exchanger 21 that performs heat exchange between fresh water and seawater to cool the fresh water.
  • the cooling system 1A includes a first seawater line 31 that guides seawater from outside the hull to the heat exchanger 21 and a second seawater line 32 that guides seawater from the heat exchanger 21 to the outside of the hull.
  • the first seawater line 31 is provided with a seawater pump 33.
  • the cooling system 1A guides fresh water from the heat exchanger 21 to the main machine 11, the air cooler 12 and the EGR cooler 13, and the fresh water from the main machine 11, the air cooler 12 and the EGR cooler 13 to the heat exchanger 21.
  • 2nd fresh water line 5 is included.
  • the first fresh water line 4 guides fresh water from the heat exchanger 21 to the special cooling device 14 that requires cooling at a constant temperature
  • the second fresh water line 5 passes from the special cooling device 14 to the heat exchanger. Leads Shimizu to 21.
  • the special cooling device 14 is, for example, a power generation engine.
  • the first fresh water line 4 includes one main flow path 41 extending from the heat exchanger 21, the main flow path 41, and the above-described cooling target devices (main machine 11, air cooler 12, EGR cooler 13, and special cooling device 14). Are connected to each other.
  • the 2nd fresh water line 5 has the one main flow path 51 extended from the heat exchanger 21, and the several branch flow path 52 which each connects the main flow path 51 and a cooling object apparatus.
  • a bypass line 22 is connected to the first fresh water line 4 and the second fresh water line 5 so as to bypass the heat exchanger 110.
  • the bypass line 22 branches from the main flow path 51 of the second fresh water line 5 and merges with the main flow path 41 of the first fresh water line 4.
  • the main flow path 51 of the second fresh water line 5 is provided with a fresh water pump 23 upstream of the branch point of the bypass line 22.
  • the ratio of the flow rate of fresh water passing through the heat exchanger 21 and the flow rate of fresh water flowing through the bypass line 22 is changed by the temperature adjustment valve 24.
  • the temperature adjustment valve 24 is a three-way valve (mixing valve) provided at the junction of the bypass line 22 in the main flow path 41 of the first fresh water line 4.
  • the temperature adjustment valve 24 may be a three-way valve (distribution valve) provided at the branch point of the bypass line 22 in the main flow path 51 of the second fresh water line 5.
  • the temperature adjustment valve 24 includes a first flow rate control valve provided in a portion upstream of the junction of the bypass line 22 in the main flow channel 41 or a portion downstream of the branch point of the bypass line 22 in the main flow channel 51. You may comprise the 2nd flow control valve provided in the bypass line 22.
  • a circulation line 61 is connected to the branch passages 42 and 52 for the main machine 11 in the first and second fresh water lines 4 and 5.
  • the circulation line 61 branches from the branch flow path 52 of the second fresh water line 5 and joins the branch flow path 42 of the first fresh water line 4 so as to form a circulation circuit for the main machine 11.
  • the circulation line 61 is provided with a pump 62 for circulating fresh water in the circulation circuit for the main machine 11.
  • the pump 62 may be provided in a portion upstream of the branch point of the circulation line 61 in the branch flow path 52 or a portion downstream of the junction of the circulation line 61 in the branch flow path 42.
  • the circulation circuit for the main machine 11 is provided with a temperature adjustment valve 63 for keeping the temperature of the fresh water supplied to the main machine 11 constant.
  • the temperature adjustment valve 63 is a three-way valve (mixing valve) provided at the junction of the circulation line 61 in the branch flow path 42, but the temperature adjustment valve 63 is a branch of the circulation line 61 in the branch flow path 52. It may be a three-way valve (distribution valve) provided at the point.
  • a circulation line 64 is connected to the branch passages 42 and 52 for the special cooling device 14 in the first fresh water line 4 and the second fresh water line 5.
  • the circulation line 64 branches from the branch flow path 52 of the second fresh water line 5 and joins the branch flow path 42 of the first fresh water line 4 so as to form a circulation circuit for the special cooling device 14.
  • the circulation line 64 is provided with a pump 65 for circulating fresh water in the circulation circuit for the special cooling device 14.
  • the pump 65 may be provided at a portion upstream of the branch point of the circulation line 64 in the branch flow path 52 or a portion downstream of the junction of the circulation line 64 in the branch flow path 42.
  • the circulation circuit for the special cooling device 14 is provided with a temperature adjustment valve 66 for keeping the temperature of the fresh water supplied to the special cooling device 14 constant.
  • the temperature adjustment valve 66 is a three-way valve (mixing valve) provided at the junction of the circulation line 64 in the branch flow path 42, but the temperature adjustment valve 66 is a branch of the circulation line 61 in the branch flow path 52. It may be a three-way valve (distribution valve) provided at the point.
  • the temperature adjusting valves 24, 63, 66 described above are controlled by the control device 7. Further, the control device 7 controls the rotational speed of the seawater pump 33 described above via the inverter 8. In FIG. 1, only some signal lines are drawn for the sake of simplicity. On the other hand, the rotation speed of the fresh water pump 23 is constant.
  • the control device 7 is a computer having a memory such as a ROM or a RAM and a CPU. The control device 7 may be a single device, or may be divided into a device for controlling the seawater pump 33 and a plurality of devices for controlling the temperature control valves 24, 63, 66.
  • the control of the temperature adjustment valve 24 will be described in detail.
  • the main flow path 41 of the first fresh water line 4 is provided with a fresh water cooled temperature sensor 71 that detects the temperature of the fresh water flowing through the first fresh water line 4 on the downstream side of the junction of the bypass line 22.
  • a temperature sensor for controlling the seawater pump is used as the temperature sensor 71 after cooling with fresh water.
  • a temperature sensor for controlling the temperature regulating valve 24 may be used.
  • the control device 7 controls the temperature control valve 24 so that fresh water does not flow into the bypass line 22 in a normal state, and then inverts the temperature detected by the temperature sensor 71 after cooling with fresh water to the set temperature Td. 8 to control the rotation speed of the seawater pump 33. That is, at the normal time, the rotation speed of the seawater pump 33 is adjusted between the maximum rotation speed N1 and the minimum rotation speed N2 so that the temperature of the fresh water flowing out from the heat exchanger 21 is constant.
  • the set temperature Td is 36 ° C.
  • the maximum rotation speed N1 and the minimum rotation speed N2 are 1200 rpm and 600 rpm, respectively.
  • the control device 7 changes the temperature from the constant temperature control to the temperature. Transition to variable control.
  • the constant temperature control is control in which the temperature of fresh water supplied to the cooling target devices (main machine 11, air cooler 12, EGR cooler 13 and special cooling device 14) is kept at the set temperature Td, and temperature variable control is the cooling target. In this control, the temperature of fresh water supplied to the device is kept lower than the set temperature Td.
  • the control device 7 controls the temperature adjustment valve 24 so that the temperature detected by the temperature sensor 71 after cooling with fresh water is maintained at the lower limit temperature Tl lower than the set temperature Td.
  • the lower limit temperature Tl is 10 ° C.
  • the temperature of seawater may be below 10 ° C.
  • the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22. .
  • the temperature of the fresh water supplied to the equipment to be cooled is left to random (precisely, the main engine 11 and the special cooling equipment 14 have the constant temperature of fresh water by the action of the temperature control valves 63 and 66. Is supplied).
  • the control device 7 causes the fresh water to flow through the bypass line 22 and the temperature detected by the fresh water cooling temperature sensor 71 is the lower limit temperature.
  • the temperature adjustment valve 24 is controlled so as to rise to Tl.
  • the temperature constant control is executed in the normal time.
  • the seawater pump 33 reaches the minimum rotation speed N2
  • the temperature of the fresh water supplied to the cooling target device is between the set temperature Td and the lower limit temperature Tl when the fresh water does not flow into the bypass line 22.
  • the lower limit temperature Tl is maintained. That is, when the seawater pump 33 reaches the minimum rotation speed N2, the temperature of fresh water supplied to the air cooler 12 can be kept lower than the set temperature Td. Thereby, the temperature of the air supplied to the main unit 11 is lowered, and the fuel consumption of the main unit 11 can be improved.
  • EGR is used only in a specific sea area. That is, since there is a margin in the cooling capacity of the cooling system 1A during normal operation in which EGR is not used, the effect of improving the fuel consumption of the main engine 11 can be obtained more remarkably.
  • the circulation circuit for the special cooling device 14 since the circulation circuit for the special cooling device 14 is formed, the fresh water supplied to the special cooling device 14 can be kept at a constant temperature.
  • FIG. 3 shows a cooling system 1B for a ship according to a second embodiment of the present invention.
  • the cooling system 1B is different from the cooling system 1A of the first embodiment in that the seawater pump 33 can be switched between the first rotation speed Na and the second rotation speed Nb that is larger than the first rotation speed Na. is there.
  • the first rotation speed Na is 600 rpm
  • the second rotation speed Nb is 1200 rpm.
  • the seawater pump 33 is configured to be manually switched between the first rotation speed Na and the second rotation speed Nb.
  • the control device 7 is connected to the display 9.
  • a fresh water cooling temperature sensor 72 is provided in the main flow path 51 of the second fresh water line 5, and a sea water inflow temperature sensor 73 is provided in the first sea water line 31.
  • the fresh water pre-cooling temperature sensor 72 detects the temperature of fresh water flowing through the main flow path 51 of the second fresh water line 5, and the seawater inflow temperature sensor 73 detects the temperature of seawater flowing through the first seawater line 31.
  • the control device 7 determines whether or not the low speed operation condition is satisfied based on the temperatures detected by the fresh water cooling temperature sensor 71, the fresh water cooling temperature sensor 72, and the seawater inflow temperature sensor 73.
  • the low-speed operation condition is a condition that the fresh water can be cooled to the set temperature Td or less by the heat exchanger 21 when the seawater pump 33 is set to the first rotation speed Na.
  • the control device 7 displays whether or not the low speed operation condition is satisfied via the display unit 9.
  • the display 9 may be a display having a screen or a simple lamp. Even when the control device 7 displays the information via the display 9, whether or not the low-speed operation condition is satisfied is displayed with the content indicating which of the first rotation speed Na and the second rotation speed Nb should be selected. Good. The ship operator looks at the display on the display 9 and switches the seawater pump 33 to the first rotation speed Na or the second rotation speed Nb.
  • the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22 when the seawater pump 33 is switched to the second rotation speed Nb.
  • the control device 7 determines that the temperature detected by the temperature sensor 71 after cooling with fresh water when the seawater pump 33 is switched to the first rotation speed Na is lower than the set temperature Td.
  • the temperature adjustment valve 24 is controlled so as to be maintained at Tl.
  • the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22. . That is, in this case, the temperature of the fresh water supplied to the devices to be cooled (the main machine 11, the air cooler 12, the EGR cooler 13, and the special cooling device 14) depends on the situation (more precisely, the main machine 11 and the special cooling device 14).
  • the control device 7 causes the fresh water to flow through the bypass line 22 and the temperature detected by the fresh water cooling temperature sensor 71 is the lower limit temperature.
  • the temperature adjustment valve 24 is controlled so as to rise to Tl.
  • the control apparatus 7 when the seawater pump 33 is the 2nd rotation speed Nb, the control apparatus 7 is the temperature detected by the temperature sensor 71 after fresh water cooling, the temperature sensor 72 before fresh water cooling, and the seawater inflow temperature sensor 73. Based on this, the heat exchange capacity coefficient Kb of the heat exchanger 21 is calculated, and it is determined whether or not the low speed operation condition is satisfied using the calculated heat exchange capacity coefficient Kb.
  • the temperature detected by the temperature sensor 71 after cooling with fresh water becomes equal to or higher than the set temperature Tb when the low-speed operation condition is not satisfied.
  • the control device 7 first calculates the heat exchange amount Q from the following Equation 1.
  • Q (Tf1 ⁇ Tf2) ⁇ cf ⁇ df ⁇ Ff (Formula 1)
  • Tf1 Temperature detected by temperature sensor 72 before fresh water cooling
  • Tf2 Temperature detected by temperature sensor 71 after cooling fresh water
  • cf Specific heat of fresh water
  • df Specific gravity of fresh water
  • Ff Flow rate of fresh water (converted from the number of rotations of fresh water pump 23) )
  • the control apparatus 7 calculates seawater outflow temperature Ts2b from the following formula 2.
  • Ts2b Ts1 + Q / (cs ⁇ ds ⁇ Fsb) (Formula 2)
  • Ts1 Temperature detected by the seawater inflow temperature sensor 73
  • cs Specific heat of seawater ds: Specific gravity of seawater
  • Fsb Flow rate of seawater at the second rotation speed Nb
  • the control device 7 calculates the logarithmic average temperature difference LMTDb at the second rotation speed Nb from the following Expression 3.
  • LMTDb (TD1b ⁇ TD2b) / ln (TD1b / TD2b) ...
  • TD1b Fresh water inlet side temperature difference (Tf1-Ts2b)
  • TD2b Fresh water outlet side temperature difference (Tf2-Ts1)
  • control device 7 calculates the heat exchange capacity coefficient Kb from the following equation 4.
  • Kb Q / LMTDb (Formula 4)
  • control device 7 calculates a virtual heat exchange capacity coefficient Ka at which the fresh water outflow temperature becomes the set temperature Td when the seawater pump 33 is set to the first rotation speed Na.
  • the control device 7 calculates the fresh water cooling pre-cooling temperature Tf1a from the following Equation 5.
  • Tf1a Td + Q / (cf ⁇ df ⁇ Ff) (Formula 5)
  • the control device 7 calculates the seawater outflow temperature Ts2a from the following Expression 6.
  • Ts2a Ts1 + Q / (cs ⁇ ds ⁇ Fsa) (Formula 6)
  • Fsa Flow rate of seawater at the first rotation speed Na
  • the control device 7 calculates the logarithmic average temperature difference LMTDa at the first rotation speed Na from the following Expression 7.
  • LMTDa (TD1a ⁇ TD2a) / ln (TD1a / TD2a) ...
  • TD1a fresh water inlet side temperature difference
  • Tf1a-Ts2a fresh water outlet side temperature difference
  • Td-Ts1 fresh water outlet side temperature difference
  • control device 7 calculates the heat exchange capacity coefficient Ka from the following Expression 8.
  • Ka Q / LMTDa (Formula 8)
  • the control device 7 After calculating both the heat exchange capacity coefficient Kb at the second rotation speed Nb and the virtual heat exchange capacity coefficient Ka at the first rotation speed Na, the control device 7 compares them, and Kb> Ka If there is, it is determined that the low speed operation condition is satisfied, and if Kb ⁇ Ka, it is determined that the low speed operation condition is not satisfied.
  • the heat exchanger 21 is configured to cool the fresh water to a set temperature Td or less when the seawater pump 33 reaches the second rotation speed Nb. Therefore, if it is control like this embodiment, the temperature of the fresh water supplied to a cooling object apparatus can be changed between preset temperature Td and lower limit temperature Tl. That is, if the temperature of the fresh water supplied to the air cooler 12 is lower than the set temperature Td, the temperature of the air supplied to the main machine 11 is lowered. Thereby, the fuel consumption of the main engine 11 can be improved. Moreover, in the above configuration, it is not necessary to use the inverter 8 (see FIG. 1), so that the cost can be reduced.
  • the heat exchange capacity coefficient K at the time of design is stored in the control device 7 in advance, It may be determined whether or not the low-speed operation condition is satisfied using the heat exchange capacity coefficient K.
  • the heat exchange capacity coefficient Kb of the heat exchanger 21 is calculated as in the above embodiment, it is possible to determine whether or not the low speed operation condition is satisfied in consideration of the secular change due to contamination of the heat exchanger 21 or the like. it can.
  • the low-speed operation condition when the change of the heat exchange capability when the flow rate of seawater is changed is known as a characteristic of the heat exchanger 21, it may be determined whether or not the low-speed operation condition is satisfied by taking this effect into consideration. . For example, if the heat exchange capacity is reduced by 20% when the flow rate of seawater is reduced, the low speed operation condition may be determined as Kb ⁇ 0.8> Ka.
  • the seawater pump 33 may be configured to be switched to either the first rotation speed Na or the second rotation speed Nb by an electric signal.
  • the control device 7 switches the seawater pump 33 to the second rotation speed Nb when the low speed operation condition is not satisfied, and switches the seawater pump 33 to the first rotation speed Na when the low speed operation condition is satisfied.
  • a seawater outflow temperature sensor may be provided in the second seawater line 32, and the temperature directly detected by this temperature sensor may be used as the seawater outflow temperature Ts2b.
  • the EGR line 96 and the EGR cooler 13 may not be provided. 1 and 3, not only the EGR cooler 13 but also the special cooling device 14 may be employed, and the first fresh water line 4 may guide fresh water from the heat exchanger 21 only to the main machine 11 and the air cooler 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

The cooling system for a ship is provided with: a heat exchanger for exchanging heat between fresh water and sea water; a temperature regulation valve for changing the ratio between the flow rate of fresh water passing through the heat exchanger and the flow rate of fresh water flowing through a bypass line; and a control device wherein at normal times the control device controls the temperature regulation valve so as to prevent the fresh water from flowing in the bypass line and then controls the rotation speed of a seawater pump via an inverter such that the temperature detected by a post-cooling fresh water temperature sensor is kept at a preset temperature, and wherein when the rotation speed of the seawater pump has reached a minimum rotation speed and the temperature detected by the post-cooling fresh water temperature sensor has become lower than the preset temperature, the control device controls the temperature regulation valve such that the temperature detected by the post-cooling fresh water temperature sensor is kept at a lower-limit temperature which is lower than the preset temperature.

Description

船舶の冷却システムShip cooling system
 本発明は、船舶の冷却システムに関する。 The present invention relates to a ship cooling system.
 一般的に、船舶では、主機を冷却するために、主機と熱交換器との間で清水が循環され、前記熱交換器で清水と海水との熱交換が行われる。例えば、特許文献1には、図4に示すような船舶の冷却システム100が開示されている。 Generally, in a ship, in order to cool the main engine, fresh water is circulated between the main engine and the heat exchanger, and heat exchange between the fresh water and seawater is performed in the heat exchanger. For example, Patent Document 1 discloses a ship cooling system 100 as shown in FIG.
 具体的に、冷却システム100では、海水が、第1海水ライン151により船体外から熱交換器110へ導かれ、第2海水ライン152により熱交換器110から船体外へ導かれる。第1海水ライン151には、海水ポンプ160が設けられている。また、熱交換器110で海水と熱交換を行う清水は、第1清水ライン131により熱交換器110から主機120へ導かれ、第2清水ライン132により主機120から熱交換器110へ導かれる。 Specifically, in the cooling system 100, seawater is guided from the outside of the hull to the heat exchanger 110 by the first seawater line 151, and is guided from the heat exchanger 110 to the outside of the hull by the second seawater line 152. A seawater pump 160 is provided in the first seawater line 151. The fresh water that exchanges heat with seawater in the heat exchanger 110 is guided from the heat exchanger 110 to the main machine 120 through the first fresh water line 131, and from the main machine 120 to the heat exchanger 110 through the second fresh water line 132.
 第1清水ライン131および第2清水ライン132には、熱交換器110をバイパスするようにバイパスライン133が接続されている。そして、熱交換器110を通過する清水の流量とバイパスライン133を流れる清水の流量のとの比率が、温度調整弁140により変更される。温度調整弁140は、制御装置170により制御される。 A bypass line 133 is connected to the first fresh water line 131 and the second fresh water line 132 so as to bypass the heat exchanger 110. The ratio of the flow rate of fresh water passing through the heat exchanger 110 and the flow rate of fresh water flowing through the bypass line 133 is changed by the temperature adjustment valve 140. The temperature adjustment valve 140 is controlled by the control device 170.
 制御装置170は、主機120へ供給される清水の温度が一定となるように、温度調整弁140を制御する。また、制御装置170は、温度調整弁140の熱交換器110側開度が目標開度に近づくように、インバータ175を介して海水ポンプ160の回転数を制御する。 Control device 170 controls temperature adjustment valve 140 so that the temperature of fresh water supplied to main unit 120 is constant. Moreover, the control apparatus 170 controls the rotation speed of the seawater pump 160 through the inverter 175 so that the opening degree by the side of the heat exchanger 110 of the temperature control valve 140 may approach the target opening degree.
特開2009-274469号公報JP 2009-274469 A
 ところで、図4に示す冷却システム100では、主機120の燃費にさらなる改善の余地がある。 Incidentally, in the cooling system 100 shown in FIG. 4, there is room for further improvement in the fuel consumption of the main engine 120.
 そこで、本発明は、主機の燃費をいっそう改善できる船舶の冷却システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a ship cooling system that can further improve the fuel consumption of the main engine.
 前記課題を解決するために、本発明の発明者らは、鋭意研究の結果、主機がレシプロエンジンである場合には、清水が主機だけでなく過給機から主機へ供給される空気を冷却するエアクーラにも供給されるため、そのエアクーラへ供給する清水の温度を低下させれば、主機の燃費が改善されることに鑑み、それを実現する制御方法を考案した。本発明は、このような観点からなされたものである。 In order to solve the above-mentioned problems, the inventors of the present invention, as a result of earnest research, when the main engine is a reciprocating engine, fresh water cools not only the main engine but also the air supplied from the supercharger to the main engine. In view of the fact that if the temperature of the fresh water supplied to the air cooler is lowered, the fuel efficiency of the main engine will be improved because it is also supplied to the air cooler, a control method has been devised. The present invention has been made from such a viewpoint.
 本発明の1つの側面からの船舶の冷却システムは、清水と海水との間で熱交換を行って前記清水を冷却する熱交換器と、船体外から前記熱交換器へ海水を導く、海水ポンプが設けられた第1海水ラインと、前記熱交換器から前記船体外へ海水を導く第2海水ラインと、前記熱交換器から、船舶のレシプロエンジンである主機および過給機から前記主機へ供給される空気を冷却するエアクーラへ清水を導く第1清水ラインと、前記主機および前記エアクーラから前記熱交換器へ清水を導く第2清水ラインと、前記熱交換器をバイパスするように前記第2清水ラインから分岐して前記第1清水ラインに合流するバイパスラインと、前記熱交換器を通過する清水の流量と前記バイパスラインを流れる清水の流量との比率を変更する温度調整弁と、前記バイパスラインの合流点よりも下流側で前記第1清水ラインに流れる清水の温度を検出する清水冷却後温度センサと、通常時は、前記バイパスラインに清水が流れないように前記温度調整弁を制御した上で、前記清水冷却後温度センサで検出される温度が設定温度に保たれるようにインバータを介して前記海水ポンプの回転数を制御し、前記海水ポンプの回転数が最低回転数となり、かつ、前記清水冷却後温度センサで検出される温度が前記設定温度よりも低くなったときは、前記清水冷却後温度センサで検出される温度が前記設定温度よりも低い下限温度に保たれるように前記温度調整弁を制御する制御装置と、を備える、ことを特徴とする。 A cooling system for a ship according to one aspect of the present invention includes a heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water, and a seawater pump that guides seawater from outside the hull to the heat exchanger. A first seawater line provided with a second seawater line for guiding seawater from the heat exchanger to the outside of the hull, and a main engine that is a reciprocating engine of a ship and a supercharger that supplies the main engine from the heat exchanger A first fresh water line that guides fresh water to an air cooler that cools the air to be cooled, a second fresh water line that guides fresh water from the main engine and the air cooler to the heat exchanger, and the second fresh water so as to bypass the heat exchanger A temperature control valve that changes a ratio between a bypass line branched from the line and joined to the first fresh water line, a flow rate of fresh water passing through the heat exchanger and a flow rate of fresh water flowing through the bypass line, and A temperature sensor after cooling fresh water that detects the temperature of fresh water flowing through the first fresh water line downstream from the junction of the bypass line, and the temperature adjusting valve so that fresh water does not flow through the bypass line in normal times. After controlling, the rotation speed of the seawater pump is controlled via an inverter so that the temperature detected by the temperature sensor after cooling with fresh water is maintained at a set temperature, and the rotation speed of the seawater pump becomes the minimum rotation speed. When the temperature detected by the temperature sensor after cooling with fresh water becomes lower than the set temperature, the temperature detected by the temperature sensor after cooling with fresh water is kept at the lower limit temperature lower than the set temperature. And a control device for controlling the temperature regulating valve.
 上記の構成によれば、通常時は、主機およびエアクーラへ供給される清水の温度が設定温度に保たれる温度一定制御が実行される。一方、海水ポンプが最低回転数となったときは、主機およびエアクーラへ供給される清水の温度が、バイパスラインに清水が流れない場合は設定温度と下限温度の間で成り行きに任され、バイパスラインに清水が流れる場合は下限温度に保たれる。すなわち、海水ポンプが最低回転数となったときは、エアクーラへ供給される清水の温度を設定温度よりも低く抑えることができる。これにより、主機へ供給される空気の温度が低下し、主機の燃費を改善することができる。 According to the above configuration, at a normal time, constant temperature control is performed in which the temperature of fresh water supplied to the main engine and the air cooler is maintained at the set temperature. On the other hand, when the seawater pump reaches the minimum number of revolutions, the temperature of the fresh water supplied to the main engine and the air cooler is left between the set temperature and the lower limit temperature when the fresh water does not flow into the bypass line. When fresh water flows through the tank, it is kept at the lower limit temperature. That is, when the seawater pump reaches the minimum rotation speed, the temperature of the fresh water supplied to the air cooler can be kept lower than the set temperature. Thereby, the temperature of the air supplied to the main engine is lowered, and the fuel efficiency of the main engine can be improved.
 本発明の別の側面からの船舶の冷却システムは、清水と海水との間で熱交換を行って前記清水を冷却する熱交換器と、船体外から前記熱交換器へ海水を導く、第1回転数と前記第1回転数よりも大きな第2回転数のどちらかに切り換え可能な海水ポンプが設けられた第1海水ラインと、前記熱交換器から前記船体外へ海水を導く第2海水ラインと、前記熱交換器から、船舶のレシプロエンジンである主機および過給機から前記主機へ供給される空気を冷却するエアクーラへ清水を導く第1清水ラインと、前記主機および前記エアクーラから前記熱交換器へ清水を導く第2清水ラインと、前記熱交換器をバイパスするように前記第2清水ラインから分岐して前記第1清水ラインに合流するバイパスラインと、前記熱交換器を通過する清水の流量と前記バイパスラインを流れる清水の流量との比率を変更する温度調整弁と、前記バイパスラインの合流点よりも下流側で前記第1清水ラインに流れる清水の温度を検出する清水冷却後温度センサと、前記第2清水ラインに流れる清水の温度を検出する清水冷却前温度センサと、前記第1海水ラインに流れる海水の温度を検出する海水流入温度センサと、前記清水冷却後温度センサ、前記清水冷却前温度センサおよび前記海水流入温度センサで検出される温度に基づいて、前記海水ポンプを前記第1回転数としたときに前記熱交換器で清水を設定温度以下まで冷却できるかという低速運転条件を満たすか否かを判定し、前記低速運転条件を満たさないときは、前記海水ポンプが前記第2回転数に切り換えられた場合に前記バイパスラインに清水が流れないように前記温度調整弁を制御し、前記低速運転条件を満たすときは、前記海水ポンプが前記第1回転数に切り換えられた場合に前記清水冷却後温度センサで検出される温度が前記設定温度よりも低い下限温度に保たれるように前記温度調整弁を制御する制御装置と、を備える、ことを特徴とする。 A cooling system for a ship according to another aspect of the present invention includes a heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water, and first guides seawater from outside the hull to the heat exchanger. A first seawater line provided with a seawater pump that can be switched to either a rotational speed or a second rotational speed greater than the first rotational speed; and a second seawater line that guides the seawater from the heat exchanger to the outside of the hull. A first fresh water line that guides fresh water from the heat exchanger to an air cooler that cools air supplied to the main engine from a main engine and a supercharger that are reciprocating engines of a ship, and the heat exchange from the main engine and the air cooler A second fresh water line that guides fresh water to the vessel, a bypass line that branches from the second fresh water line so as to bypass the heat exchanger and joins the first fresh water line, and fresh water that passes through the heat exchanger Flow And a temperature control valve that changes the ratio of the flow rate of fresh water flowing through the bypass line, a temperature sensor after fresh water cooling that detects the temperature of fresh water flowing through the first fresh water line at a downstream side of the junction of the bypass line, and A temperature sensor before fresh water cooling that detects the temperature of fresh water flowing through the second fresh water line, a sea water inflow temperature sensor that detects the temperature of sea water flowing through the first sea water line, a temperature sensor after fresh water cooling, and the fresh water cooling Based on the temperature detected by the pre-temperature sensor and the seawater inflow temperature sensor, a low-speed operation condition is set as to whether fresh water can be cooled to a set temperature or less by the heat exchanger when the seawater pump is at the first rotation speed. When the low-speed operation condition is not satisfied, it is determined whether the seawater pump is switched to the second rotational speed. When the temperature control valve is controlled so that water does not flow and the low-speed operation condition is satisfied, the temperature detected by the temperature sensor after the fresh water cooling when the seawater pump is switched to the first rotation speed is And a control device that controls the temperature regulating valve so as to be maintained at a lower limit temperature lower than the set temperature.
 通常、熱交換器は、海水ポンプが第2回転数となったときに清水を設定温度以下まで冷却できるように構成される。従って、上記の構成によれば、主機およびエアクーラへ供給される清水の温度を設定温度と下限温度の間で変化させることができる。つまり、エアクーラへ供給される清水の温度が設定温度よりも低くなれば、主機へ供給される空気の温度が低下する。これにより、主機の燃費を改善することができる。しかも、上記の構成では、インバータを用いる必要がないので、コストを低減することができる。 Normally, the heat exchanger is configured to cool fresh water to a set temperature or lower when the seawater pump reaches the second rotation speed. Therefore, according to said structure, the temperature of the fresh water supplied to a main machine and an air cooler can be changed between preset temperature and minimum temperature. That is, if the temperature of the fresh water supplied to the air cooler is lower than the set temperature, the temperature of the air supplied to the main machine is lowered. Thereby, the fuel consumption of the main engine can be improved. Moreover, in the above configuration, it is not necessary to use an inverter, so that the cost can be reduced.
 例えば、前記海水ポンプは、手動で前記第1回転数と前記第2回転数のどちらかに切り換えられるように構成されており、前記制御装置は、前記低速運転条件を満たすか否かを表示器を介して表示してもよい。 For example, the seawater pump is configured to be manually switched between the first rotation speed and the second rotation speed, and the control device displays whether or not the low speed operation condition is satisfied. You may display via.
 あるいは、前記海水ポンプは、電気信号によって前記第1回転数と前記第2回転数のどちらかに切り換えられるように構成されており、前記制御装置は、前記低速運転条件を満たさないときは、前記海水ポンプを前記第2回転数に切り換え、前記低速運転条件を満たすときは、前記海水ポンプを前記第1回転数に切り換えてもよい。 Alternatively, the seawater pump is configured to be switched to either the first rotation speed or the second rotation speed by an electric signal, and the control device is configured to perform the above operation when the low-speed operation condition is not satisfied. When the seawater pump is switched to the second rotational speed and the low-speed operation condition is satisfied, the seawater pump may be switched to the first rotational speed.
 前記制御装置は、前記海水ポンプが前記第2回転数のときに、前記清水冷却後温度センサ、前記清水冷却前温度センサおよび前記海水流入温度センサで検出される温度に基づいて、前記熱交換器の熱交換能力係数を算出し、算出した熱交換能力係数を使用して前記低速運転条件を満たすか否かを判定してもよい。この構成によれば、熱交換器の汚れ等による経年変化を考慮して低速運転条件を満たすか否かを判定することができる。 When the seawater pump is at the second rotation speed, the control device is configured to change the heat exchanger based on temperatures detected by the temperature sensor after fresh water cooling, the temperature sensor before fresh water cooling, and the seawater inflow temperature sensor. The heat exchange capacity coefficient may be calculated, and it may be determined whether or not the low speed operation condition is satisfied using the calculated heat exchange capacity coefficient. According to this configuration, it is possible to determine whether or not the low-speed operation condition is satisfied in consideration of the secular change due to dirt or the like of the heat exchanger.
 前記第1清水ラインは、前記熱交換器から前記主機および前記エアクーラだけでなくEGRクーラへも清水を導き、前記第2清水ラインは、前記主機および前記エアクーラだけでなく前記EGRクーラからも前記熱交換器へ清水を導いてもよい。特に、EGRが採用された船舶では、EGRは特定の海域のみでしか使用されない。つまり、EGRが使用されない通常運転時には冷却システムの冷却能力に余裕があるので、主機の燃費の改善という効果をより顕著に得ることができる。 The first fresh water line guides fresh water from the heat exchanger not only to the main engine and the air cooler but also to the EGR cooler, and the second fresh water line serves not only from the main machine and the air cooler but also from the EGR cooler. You may guide fresh water to the exchanger. In particular, in a ship adopting EGR, EGR is used only in a specific sea area. In other words, the cooling system has sufficient cooling capacity during normal operation in which EGR is not used, so that the effect of improving the fuel consumption of the main engine can be obtained more remarkably.
 前記第1清水ラインは、前記熱交換器から前記主機および前記エアクーラだけでなく一定温度での冷却が必要な特殊冷却機器へも清水を導き、前記第2清水ラインは、前記主機および前記エアクーラだけでなく前記特殊冷却機器からも前記熱交換器へ清水を導き、上記の冷却システムは、前記特殊冷却機器用の循環回路を形成するように前記第2清水ラインから分岐して前記第1清水ラインに合流する還流ラインをさらに備えてもよい。この構成によれば、特殊冷却機器へ供給される清水を一定温度に保つことができる。 The first fresh water line leads fresh water from the heat exchanger not only to the main engine and the air cooler but also to special cooling equipment that requires cooling at a constant temperature, and the second fresh water line includes only the main machine and the air cooler. Not only the special cooling equipment but also the fresh water is led to the heat exchanger, and the cooling system is branched from the second fresh water line so as to form a circulation circuit for the special cooling equipment. A reflux line may be further provided to join the two. According to this configuration, the fresh water supplied to the special cooling device can be kept at a constant temperature.
 本発明によれば、船舶の主機の燃費をいっそう改善することができる。 According to the present invention, the fuel consumption of the main engine of the ship can be further improved.
本発明の第1実施形態に係る船舶の冷却システムの概略構成図である。1 is a schematic configuration diagram of a ship cooling system according to a first embodiment of the present invention. 主機の給気および排気に関する系統図である。It is a systematic diagram regarding the supply and exhaust of the main engine. 本発明の第2実施形態に係る船舶の冷却システムの概略構成図である。It is a schematic block diagram of the cooling system of the ship which concerns on 2nd Embodiment of this invention. 従来の船舶の冷却システムの概略構成図である。It is a schematic block diagram of the conventional ship cooling system.
 (第1実施形態)
 図1に、本発明の第1実施形態に係る船舶の冷却システム1Aを示す。この冷却システム1Aは、清水および海水を使用して船舶の主機11およびその他の機器を冷却するためのものである。
(First embodiment)
FIG. 1 shows a cooling system 1A for a ship according to a first embodiment of the present invention. This cooling system 1A is for cooling the main engine 11 and other equipment of a ship using fresh water and seawater.
 主機11は、図略のスクリュープロペラを直接的に駆動してもよいし(機械推進)、発電機およびモータを介して駆動してもよい(電気推進)。主機11は、レシプロエンジンであり、シリンダとピストンとで形成される複数の燃焼室を有する。 The main machine 11 may drive a screw propeller (not shown) directly (mechanical propulsion) or may be driven via a generator and a motor (electric propulsion). The main engine 11 is a reciprocating engine and has a plurality of combustion chambers formed by cylinders and pistons.
 図2に示すように、主機11は、給気ライン94により過給機91の圧縮機92と接続されているとともに、排気ライン95により過給機91のタービン93と接続されている。給気ライン94には、エアクーラ12が設けられている。エアクーラ12は、過給機91の圧縮機92から主機11へ供給される空気を冷却する。 As shown in FIG. 2, the main machine 11 is connected to the compressor 92 of the supercharger 91 through an air supply line 94 and is connected to the turbine 93 of the supercharger 91 through an exhaust line 95. An air cooler 12 is provided in the air supply line 94. The air cooler 12 cools the air supplied from the compressor 92 of the supercharger 91 to the main engine 11.
 本実施形態では、排気ライン95からEGR(Exhaust Gas Recirculation)ライン96が分岐しており、このEGRライン96がエアクーラ12の下流側で給気ライン94に合流している。EGRライン96には、上流側から順に、EGRクーラ13およびブロア97が設けられている。 In this embodiment, an EGR (Exhaust Gas Recirculation) line 96 is branched from the exhaust line 95, and the EGR line 96 joins the air supply line 94 on the downstream side of the air cooler 12. The EGR line 96 is provided with an EGR cooler 13 and a blower 97 in order from the upstream side.
 図1に示すように、冷却システム1Aは、清水と海水との間で熱交換を行って清水を冷却する熱交換器21を含む。また、冷却システム1Aは、船体外から熱交換器21へ海水を導く第1海水ライン31と、熱交換器21から船体外へ海水を導く第2海水ライン32を含む。第1海水ライン31には、海水ポンプ33が設けられている。 As shown in FIG. 1, the cooling system 1A includes a heat exchanger 21 that performs heat exchange between fresh water and seawater to cool the fresh water. The cooling system 1A includes a first seawater line 31 that guides seawater from outside the hull to the heat exchanger 21 and a second seawater line 32 that guides seawater from the heat exchanger 21 to the outside of the hull. The first seawater line 31 is provided with a seawater pump 33.
 さらに、冷却システム1Aは、熱交換器21から主機11、エアクーラ12およびEGRクーラ13へ清水を導く第1清水ライン4と、主機11、エアクーラ12およびEGRクーラ13から熱交換器21へ清水を導く第2清水ライン5を含む。本実施形態では、第1清水ライン4が、熱交換器21から一定温度での冷却が必要な特殊冷却機器14へも清水を導き、第2清水ライン5が、特殊冷却機器14から熱交換器21へも清水を導く。特殊冷却機器14は、例えば、発電用エンジンなどである。 Further, the cooling system 1A guides fresh water from the heat exchanger 21 to the main machine 11, the air cooler 12 and the EGR cooler 13, and the fresh water from the main machine 11, the air cooler 12 and the EGR cooler 13 to the heat exchanger 21. 2nd fresh water line 5 is included. In the present embodiment, the first fresh water line 4 guides fresh water from the heat exchanger 21 to the special cooling device 14 that requires cooling at a constant temperature, and the second fresh water line 5 passes from the special cooling device 14 to the heat exchanger. Leads Shimizu to 21. The special cooling device 14 is, for example, a power generation engine.
 より詳しくは、第1清水ライン4は、熱交換器21から延びる1本の主流路41と、主流路41と上述した冷却対象機器(主機11、エアクーラ12、EGRクーラ13および特殊冷却機器14)とをそれぞれ接続する複数本の支流路42を有する。同様に、第2清水ライン5は、熱交換器21から延びる1本の主流路51と、主流路51と冷却対象機器とをそれぞれ接続する複数本の支流路52を有する。 More specifically, the first fresh water line 4 includes one main flow path 41 extending from the heat exchanger 21, the main flow path 41, and the above-described cooling target devices (main machine 11, air cooler 12, EGR cooler 13, and special cooling device 14). Are connected to each other. Similarly, the 2nd fresh water line 5 has the one main flow path 51 extended from the heat exchanger 21, and the several branch flow path 52 which each connects the main flow path 51 and a cooling object apparatus.
 第1清水ライン4および第2清水ライン5には、熱交換器110をバイパスするようにバイパスライン22が接続されている。バイパスライン22は、第2清水ライン5の主流路51から分岐して、第1清水ライン4の主流路41に合流している。第2清水ライン5の主流路51には、バイパスライン22の分岐点よりも上流側に清水ポンプ23が設けられている。 A bypass line 22 is connected to the first fresh water line 4 and the second fresh water line 5 so as to bypass the heat exchanger 110. The bypass line 22 branches from the main flow path 51 of the second fresh water line 5 and merges with the main flow path 41 of the first fresh water line 4. The main flow path 51 of the second fresh water line 5 is provided with a fresh water pump 23 upstream of the branch point of the bypass line 22.
 熱交換器21を通過する清水の流量とバイパスライン22を流れる清水の流量との比率は、温度調整弁24により変更される。本実施形態では、温度調整弁24が、第1清水ライン4の主流路41におけるバイパスライン22の合流点に設けられた三方弁(混合弁)である。ただし、温度調整弁24は、第2清水ライン5の主流路51におけるバイパスライン22の分岐点に設けられた三方弁(分配弁)であってもよい。あるいは、温度調整弁24は、主流路41におけるバイパスライン22の合流点よりも上流側部分または主流路51におけるバイパスライン22の分岐点よりも下流側部分に設けられた第1流量制御弁と、バイパスライン22に設けられた第2流量制御弁で構成されてもよい。 The ratio of the flow rate of fresh water passing through the heat exchanger 21 and the flow rate of fresh water flowing through the bypass line 22 is changed by the temperature adjustment valve 24. In the present embodiment, the temperature adjustment valve 24 is a three-way valve (mixing valve) provided at the junction of the bypass line 22 in the main flow path 41 of the first fresh water line 4. However, the temperature adjustment valve 24 may be a three-way valve (distribution valve) provided at the branch point of the bypass line 22 in the main flow path 51 of the second fresh water line 5. Alternatively, the temperature adjustment valve 24 includes a first flow rate control valve provided in a portion upstream of the junction of the bypass line 22 in the main flow channel 41 or a portion downstream of the branch point of the bypass line 22 in the main flow channel 51. You may comprise the 2nd flow control valve provided in the bypass line 22.
 第1清水ライン4および第2清水ライン5における主機11用の支流路42,52には、循環ライン61が接続されている。循環ライン61は、主機11用の循環回路を形成するように、第2清水ライン5の支流路52から分岐して、第1清水ライン4の支流路42に合流している。循環ライン61には、主機11用の循環回路に清水を循環させるためのポンプ62が設けられている。ただし、ポンプ62は、支流路52における循環ライン61の分岐点よりも上流側部分または支流路42における循環ライン61の合流点よりも下流側部分に設けられてもよい。 A circulation line 61 is connected to the branch passages 42 and 52 for the main machine 11 in the first and second fresh water lines 4 and 5. The circulation line 61 branches from the branch flow path 52 of the second fresh water line 5 and joins the branch flow path 42 of the first fresh water line 4 so as to form a circulation circuit for the main machine 11. The circulation line 61 is provided with a pump 62 for circulating fresh water in the circulation circuit for the main machine 11. However, the pump 62 may be provided in a portion upstream of the branch point of the circulation line 61 in the branch flow path 52 or a portion downstream of the junction of the circulation line 61 in the branch flow path 42.
 また、主機11用の循環回路には、主機11へ供給される清水の温度を一定に保つための温度調整弁63が設けられている。本実施形態では、温度調整弁63が、支流路42における循環ライン61の合流点に設けられた三方弁(混合弁)であるが、温度調整弁63は、支流路52における循環ライン61の分岐点に設けられた三方弁(分配弁)であってもよい。 Also, the circulation circuit for the main machine 11 is provided with a temperature adjustment valve 63 for keeping the temperature of the fresh water supplied to the main machine 11 constant. In this embodiment, the temperature adjustment valve 63 is a three-way valve (mixing valve) provided at the junction of the circulation line 61 in the branch flow path 42, but the temperature adjustment valve 63 is a branch of the circulation line 61 in the branch flow path 52. It may be a three-way valve (distribution valve) provided at the point.
 同様に、第1清水ライン4および第2清水ライン5における特殊冷却機器14用の支流路42,52には、循環ライン64が接続されている。循環ライン64は、特殊冷却機器14用の循環回路を形成するように、第2清水ライン5の支流路52から分岐して、第1清水ライン4の支流路42に合流している。循環ライン64には、特殊冷却機器14用の循環回路に清水を循環させるためのポンプ65が設けられている。ただし、ポンプ65は、支流路52における循環ライン64の分岐点よりも上流側部分または支流路42における循環ライン64の合流点よりも下流側部分に設けられてもよい。 Similarly, a circulation line 64 is connected to the branch passages 42 and 52 for the special cooling device 14 in the first fresh water line 4 and the second fresh water line 5. The circulation line 64 branches from the branch flow path 52 of the second fresh water line 5 and joins the branch flow path 42 of the first fresh water line 4 so as to form a circulation circuit for the special cooling device 14. The circulation line 64 is provided with a pump 65 for circulating fresh water in the circulation circuit for the special cooling device 14. However, the pump 65 may be provided at a portion upstream of the branch point of the circulation line 64 in the branch flow path 52 or a portion downstream of the junction of the circulation line 64 in the branch flow path 42.
 また、特殊冷却機器14用の循環回路には、特殊冷却機器14へ供給される清水の温度を一定に保つための温度調整弁66が設けられている。本実施形態では、温度調整弁66が、支流路42における循環ライン64の合流点に設けられた三方弁(混合弁)であるが、温度調整弁66は、支流路52における循環ライン61の分岐点に設けられた三方弁(分配弁)であってもよい。 Further, the circulation circuit for the special cooling device 14 is provided with a temperature adjustment valve 66 for keeping the temperature of the fresh water supplied to the special cooling device 14 constant. In this embodiment, the temperature adjustment valve 66 is a three-way valve (mixing valve) provided at the junction of the circulation line 64 in the branch flow path 42, but the temperature adjustment valve 66 is a branch of the circulation line 61 in the branch flow path 52. It may be a three-way valve (distribution valve) provided at the point.
 上述した温度調整弁24,63,66は、制御装置7により制御される。また、制御装置7は、上述した海水ポンプ33の回転数をインバータ8を介して制御する。なお、図1では、図面の簡略化のために一部の信号線のみを描いている。一方、清水ポンプ23の回転数は一定である。例えば、制御装置7は、ROMやRAMなどのメモリとCPUを有するコンピュータである。制御装置7は、単一の装置であってもよいし、海水ポンプ33制御用の装置と温度調整弁24,63,66の制御用の複数の装置とに分割されていてもよい。以下、温度調整弁24の制御について詳しく説明する。 The temperature adjusting valves 24, 63, 66 described above are controlled by the control device 7. Further, the control device 7 controls the rotational speed of the seawater pump 33 described above via the inverter 8. In FIG. 1, only some signal lines are drawn for the sake of simplicity. On the other hand, the rotation speed of the fresh water pump 23 is constant. For example, the control device 7 is a computer having a memory such as a ROM or a RAM and a CPU. The control device 7 may be a single device, or may be divided into a device for controlling the seawater pump 33 and a plurality of devices for controlling the temperature control valves 24, 63, 66. Hereinafter, the control of the temperature adjustment valve 24 will be described in detail.
 第1清水ライン4の主流路41には、バイパスライン22の合流点よりも下流側で、第1清水ライン4に流れる清水の温度を検出する清水冷却後温度センサ71が設けられている。制御装置7が海水ポンプ33制御用の装置と温度調整弁24,63,66の制御用の複数の装置とに分割される場合、清水冷却後温度センサ71として、海水ポンプ制御用の温度センサと、温度調整弁24制御用の温度センサが用いられてもよい。 The main flow path 41 of the first fresh water line 4 is provided with a fresh water cooled temperature sensor 71 that detects the temperature of the fresh water flowing through the first fresh water line 4 on the downstream side of the junction of the bypass line 22. When the control device 7 is divided into a device for controlling the seawater pump 33 and a plurality of devices for controlling the temperature control valves 24, 63, 66, a temperature sensor for controlling the seawater pump is used as the temperature sensor 71 after cooling with fresh water. A temperature sensor for controlling the temperature regulating valve 24 may be used.
 制御装置7は、通常時、バイパスライン22に清水が流れないように温度調整弁24を制御した上で、清水冷却後温度センサ71で検出される温度が設定温度Tdに保たれるようにインバータ8を介して海水ポンプ33の回転数を制御する。つまり、通常時は、熱交換器21から流出する清水の温度が一定となるように、海水ポンプ33の回転数が最高回転数N1と最低回転数N2の間で調整される。例えば、設定温度Tdは36℃であり、最高回転数N1および最低回転数N2はそれぞれ1200rpmおよび600rpmである。 The control device 7 controls the temperature control valve 24 so that fresh water does not flow into the bypass line 22 in a normal state, and then inverts the temperature detected by the temperature sensor 71 after cooling with fresh water to the set temperature Td. 8 to control the rotation speed of the seawater pump 33. That is, at the normal time, the rotation speed of the seawater pump 33 is adjusted between the maximum rotation speed N1 and the minimum rotation speed N2 so that the temperature of the fresh water flowing out from the heat exchanger 21 is constant. For example, the set temperature Td is 36 ° C., and the maximum rotation speed N1 and the minimum rotation speed N2 are 1200 rpm and 600 rpm, respectively.
 例えば、主機11の負荷が高いときは、主機11から流出する清水の温度が高くなるため、海水ポンプ33の回転数が大きくなり、主機11の負荷が低いときは、主機11から流出する清水の温度が低くなるため、海水ポンプ33の回転数が小さくなる。 For example, when the load on the main unit 11 is high, the temperature of the fresh water flowing out from the main unit 11 increases, so the rotation speed of the seawater pump 33 increases, and when the load on the main unit 11 is low, the fresh water flowing out from the main unit 11 Since temperature becomes low, the rotation speed of the seawater pump 33 becomes small.
 一方、海水ポンプ33の回転数が最低回転数N2となり、かつ、清水冷却後温度センサ71で検出される温度が設定温度Tdよりも低くなったときは、制御装置7は、温度一定制御から温度可変制御に移行する。温度一定制御は、冷却対象機器(主機11、エアクーラ12、EGRクーラ13および特殊冷却機器14)へ供給される清水の温度が設定温度Tdに保たれる制御であり、温度可変制御は、冷却対象機器へ供給される清水の温度を設定温度Tdよりも低く抑える制御である。 On the other hand, when the rotation speed of the seawater pump 33 reaches the minimum rotation speed N2 and the temperature detected by the temperature sensor 71 after cooling with fresh water is lower than the set temperature Td, the control device 7 changes the temperature from the constant temperature control to the temperature. Transition to variable control. The constant temperature control is control in which the temperature of fresh water supplied to the cooling target devices (main machine 11, air cooler 12, EGR cooler 13 and special cooling device 14) is kept at the set temperature Td, and temperature variable control is the cooling target. In this control, the temperature of fresh water supplied to the device is kept lower than the set temperature Td.
 具体的に、温度可変制御では、制御装置7が、清水冷却後温度センサ71で検出される温度が設定温度Tdよりも低い下限温度Tlに保たれるように温度調整弁24を制御する。例えば、下限温度Tlは10℃である。北極圏などでは、海水の温度が10℃を下回ることがある。 Specifically, in the temperature variable control, the control device 7 controls the temperature adjustment valve 24 so that the temperature detected by the temperature sensor 71 after cooling with fresh water is maintained at the lower limit temperature Tl lower than the set temperature Td. For example, the lower limit temperature Tl is 10 ° C. In the Arctic Circle, the temperature of seawater may be below 10 ° C.
 清水冷却後温度センサ71で検出される温度が下限温度Tlよりも高い場合は、バイパスライン22に清水が流れると、検出温度がさらに高くなる。従って、清水冷却後温度センサ71で検出される温度が下限温度Tlと設定温度Tdの間にある場合は、制御装置7は、バイパスライン22に清水が流れないように温度調整弁24を制御する。つまり、この場合は、冷却対象機器へ供給される清水の温度が成り行きに任される(正確には、主機11および特殊冷却機器14には、温度調整弁63,66の作用によって一定温度の清水が供給される)。一方、清水冷却後温度センサ71で検出される温度が下限温度Tlを下回った場合は、制御装置7は、バイパスライン22に清水が流れて清水冷却後温度センサ71で検出される温度が下限温度Tlまで上昇するように温度調整弁24を制御する。 When the temperature detected by the temperature sensor 71 after cooling with fresh water is higher than the lower limit temperature Tl, when fresh water flows through the bypass line 22, the detected temperature further increases. Therefore, when the temperature detected by the temperature sensor 71 after cooling with fresh water is between the lower limit temperature Tl and the set temperature Td, the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22. . In other words, in this case, the temperature of the fresh water supplied to the equipment to be cooled is left to random (precisely, the main engine 11 and the special cooling equipment 14 have the constant temperature of fresh water by the action of the temperature control valves 63 and 66. Is supplied). On the other hand, when the temperature detected by the fresh water cooling temperature sensor 71 is lower than the lower limit temperature Tl, the control device 7 causes the fresh water to flow through the bypass line 22 and the temperature detected by the fresh water cooling temperature sensor 71 is the lower limit temperature. The temperature adjustment valve 24 is controlled so as to rise to Tl.
 以上説明したように、本実施形態の冷却システム1Aでは、通常時は温度一定制御が実行される。一方、海水ポンプ33が最低回転数N2となったときは、冷却対象機器へ供給される清水の温度が、バイパスライン22に清水が流れない場合は設定温度Tdと下限温度Tlの間で成り行きに任され、バイパスライン22に清水が流れる場合は下限温度Tlに保たれる。すなわち、海水ポンプ33が最低回転数N2となったときは、エアクーラ12へ供給される清水の温度を設定温度Tdよりも低く抑えることができる。これにより、主機11へ供給される空気の温度が低下し、主機11の燃費を改善することができる。 As described above, in the cooling system 1A of the present embodiment, the temperature constant control is executed in the normal time. On the other hand, when the seawater pump 33 reaches the minimum rotation speed N2, the temperature of the fresh water supplied to the cooling target device is between the set temperature Td and the lower limit temperature Tl when the fresh water does not flow into the bypass line 22. When the fresh water flows through the bypass line 22, the lower limit temperature Tl is maintained. That is, when the seawater pump 33 reaches the minimum rotation speed N2, the temperature of fresh water supplied to the air cooler 12 can be kept lower than the set temperature Td. Thereby, the temperature of the air supplied to the main unit 11 is lowered, and the fuel consumption of the main unit 11 can be improved.
 特に、本実施形態のようにEGRが採用された船舶では、EGRは特定の海域のみでしか使用されない。つまり、EGRが使用されない通常運転時には冷却システム1Aの冷却能力に余裕があるので、主機11の燃費の改善という効果をより顕著に得ることができる。 In particular, in a ship adopting EGR as in the present embodiment, EGR is used only in a specific sea area. That is, since there is a margin in the cooling capacity of the cooling system 1A during normal operation in which EGR is not used, the effect of improving the fuel consumption of the main engine 11 can be obtained more remarkably.
 また、本実施形態では、特殊冷却機器14用の循環回路が形成されているので、特殊冷却機器14へ供給される清水を一定温度に保つことができる。 Further, in this embodiment, since the circulation circuit for the special cooling device 14 is formed, the fresh water supplied to the special cooling device 14 can be kept at a constant temperature.
 (第2実施形態)
 図3に、本発明の第2実施形態に係る船舶の冷却システム1Bを示す。この冷却システム1Bが第1実施形態の冷却システム1Aと異なる点は、海水ポンプ33が第1回転数Naと第1回転数Naよりも大きな第2回転数Nbのどちらかに切り換え可能な点である。例えば、第1回転数Naは600rpmであり、第2回転数Nbは1200rpmである。
(Second Embodiment)
FIG. 3 shows a cooling system 1B for a ship according to a second embodiment of the present invention. The cooling system 1B is different from the cooling system 1A of the first embodiment in that the seawater pump 33 can be switched between the first rotation speed Na and the second rotation speed Nb that is larger than the first rotation speed Na. is there. For example, the first rotation speed Na is 600 rpm, and the second rotation speed Nb is 1200 rpm.
 本実施形態では、海水ポンプ33が、手動で第1回転数Naと第2回転数Nbのどちらかに切り換えられるように構成されている。そして、制御装置7が表示器9と接続されている。 In the present embodiment, the seawater pump 33 is configured to be manually switched between the first rotation speed Na and the second rotation speed Nb. The control device 7 is connected to the display 9.
 さらに、本実施形態では、第2清水ライン5の主流路51に清水冷却前温度センサ72が設けられているとともに、第1海水ライン31に海水流入温度センサ73が設けられている。清水冷却前温度センサ72は、第2清水ライン5の主流路51に流れる清水の温度を検出し、海水流入温度センサ73は、第1海水ライン31に流れる海水の温度を検出する。 Furthermore, in the present embodiment, a fresh water cooling temperature sensor 72 is provided in the main flow path 51 of the second fresh water line 5, and a sea water inflow temperature sensor 73 is provided in the first sea water line 31. The fresh water pre-cooling temperature sensor 72 detects the temperature of fresh water flowing through the main flow path 51 of the second fresh water line 5, and the seawater inflow temperature sensor 73 detects the temperature of seawater flowing through the first seawater line 31.
 制御装置7は、清水冷却後温度センサ71、清水冷却前温度センサ72および海水流入温度センサ73で検出される温度に基づいて、低速運転条件を満たすか否かを判定する。低速運転条件は、海水ポンプ33を第1回転数Naとしたときに熱交換器21で清水を設定温度Td以下まで冷却できるかという条件である。制御装置7は、低速運転条件を満たすか否かを表示器9を介して表示する。 The control device 7 determines whether or not the low speed operation condition is satisfied based on the temperatures detected by the fresh water cooling temperature sensor 71, the fresh water cooling temperature sensor 72, and the seawater inflow temperature sensor 73. The low-speed operation condition is a condition that the fresh water can be cooled to the set temperature Td or less by the heat exchanger 21 when the seawater pump 33 is set to the first rotation speed Na. The control device 7 displays whether or not the low speed operation condition is satisfied via the display unit 9.
 表示器9は、画面を有するディスプレイであってもよいし、単なるランプであってもよい。制御装置7は、表示器9を介して表示する際に、低速運転条件を満たすか否かを第1回転数Naと第2回転数Nbのどちらが選択されるべきかという内容で表示してもよい。操船者は、表示器9上の表示を見て、海水ポンプ33を第1回転数Naまたは第2回転数Nbに切り換える。 The display 9 may be a display having a screen or a simple lamp. Even when the control device 7 displays the information via the display 9, whether or not the low-speed operation condition is satisfied is displayed with the content indicating which of the first rotation speed Na and the second rotation speed Nb should be selected. Good. The ship operator looks at the display on the display 9 and switches the seawater pump 33 to the first rotation speed Na or the second rotation speed Nb.
 制御装置7は、低速運転条件を満たさないときは、海水ポンプ33が第2回転数Nbに切り換えられた場合にバイパスライン22に清水が流れないように温度調整弁24を制御する。一方、低速運転条件を満たすときは、制御装置7は、海水ポンプ33が第1回転数Naに切り換えられた場合に清水冷却後温度センサ71で検出される温度が設定温度Tdよりも低い下限温度Tlに保たれるように温度調整弁24を制御する。 When the low speed operation condition is not satisfied, the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22 when the seawater pump 33 is switched to the second rotation speed Nb. On the other hand, when the low-speed operation condition is satisfied, the control device 7 determines that the temperature detected by the temperature sensor 71 after cooling with fresh water when the seawater pump 33 is switched to the first rotation speed Na is lower than the set temperature Td. The temperature adjustment valve 24 is controlled so as to be maintained at Tl.
 低速運転条件を満たすときは、第1実施形態と同様に、清水冷却後温度センサ71で検出される温度が下限温度Tlよりも高い場合は、バイパスライン22に清水が流れると、検出温度がさらに高くなる。従って、清水冷却後温度センサ71で検出される温度が下限温度Tlと設定温度Tdの間にある場合は、制御装置7は、バイパスライン22に清水が流れないように温度調整弁24を制御する。つまり、この場合は、冷却対象機器(主機11、エアクーラ12、EGRクーラ13および特殊冷却機器14)へ供給される清水の温度が成り行きに任される(正確には、主機11および特殊冷却機器14には、温度調整弁63,66の作用によって一定温度の清水が供給される)。一方、清水冷却後温度センサ71で検出される温度が下限温度Tlを下回った場合は、制御装置7は、バイパスライン22に清水が流れて清水冷却後温度センサ71で検出される温度が下限温度Tlまで上昇するように温度調整弁24を制御する。 When the low-speed operation condition is satisfied, similarly to the first embodiment, when the temperature detected by the temperature sensor 71 after cooling with fresh water is higher than the lower limit temperature Tl, when the fresh water flows into the bypass line 22, the detected temperature further increases. Get higher. Therefore, when the temperature detected by the temperature sensor 71 after cooling with fresh water is between the lower limit temperature Tl and the set temperature Td, the control device 7 controls the temperature adjustment valve 24 so that fresh water does not flow into the bypass line 22. . That is, in this case, the temperature of the fresh water supplied to the devices to be cooled (the main machine 11, the air cooler 12, the EGR cooler 13, and the special cooling device 14) depends on the situation (more precisely, the main machine 11 and the special cooling device 14). Is supplied with fresh water having a constant temperature by the action of the temperature regulating valves 63 and 66). On the other hand, when the temperature detected by the fresh water cooling temperature sensor 71 is lower than the lower limit temperature Tl, the control device 7 causes the fresh water to flow through the bypass line 22 and the temperature detected by the fresh water cooling temperature sensor 71 is the lower limit temperature. The temperature adjustment valve 24 is controlled so as to rise to Tl.
 さらに、本実施形態では、制御装置7が、海水ポンプ33が第2回転数Nbのときに、清水冷却後温度センサ71、清水冷却前温度センサ72および海水流入温度センサ73で検出される温度に基づいて、熱交換器21の熱交換能力係数Kbを算出し、算出した熱交換能力係数Kbを使用して低速運転条件を満たすか否かを判定する。熱交換能力係数Kbは、熱交換面積Sと熱伝達係数kと汚れ係数λをかけ合わせたものである(Kb=S×k×λ)。 Furthermore, in this embodiment, when the seawater pump 33 is the 2nd rotation speed Nb, the control apparatus 7 is the temperature detected by the temperature sensor 71 after fresh water cooling, the temperature sensor 72 before fresh water cooling, and the seawater inflow temperature sensor 73. Based on this, the heat exchange capacity coefficient Kb of the heat exchanger 21 is calculated, and it is determined whether or not the low speed operation condition is satisfied using the calculated heat exchange capacity coefficient Kb. The heat exchange capacity coefficient Kb is a product of the heat exchange area S, the heat transfer coefficient k, and the contamination coefficient λ (Kb = S × k × λ).
 一方、海水ポンプ33が第1回転数Naのときは、清水冷却後温度センサ71で検出される温度が設定温度Tb以上となったときが、低速運転条件を満たさなくなったときである。 On the other hand, when the seawater pump 33 is at the first rotation speed Na, the temperature detected by the temperature sensor 71 after cooling with fresh water becomes equal to or higher than the set temperature Tb when the low-speed operation condition is not satisfied.
 具体的に、制御装置7は、まず、以下の式1から、熱交換量Qを算出する。
  Q=(Tf1-Tf2)×cf×df×Ff ・・・ (式1)
    Tf1:清水冷却前温度センサ72で検出される温度
    Tf2:清水冷却後温度センサ71で検出される温度
    cf:清水の比熱
    df:清水の比重
    Ff:清水の流量(清水ポンプ23の回転数から換算)
Specifically, the control device 7 first calculates the heat exchange amount Q from the following Equation 1.
Q = (Tf1−Tf2) × cf × df × Ff (Formula 1)
Tf1: Temperature detected by temperature sensor 72 before fresh water cooling Tf2: Temperature detected by temperature sensor 71 after cooling fresh water cf: Specific heat of fresh water df: Specific gravity of fresh water Ff: Flow rate of fresh water (converted from the number of rotations of fresh water pump 23) )
 次に、制御装置7は、以下の式2から、海水流出温度Ts2bを算出する。
  Ts2b=Ts1+Q/(cs×ds×Fsb) ・・・ (式2)
    Ts1:海水流入温度センサ73で検出される温度
    cs:海水の比熱
    ds:海水の比重
    Fsb:第2回転数Nb時の海水の流量
Next, the control apparatus 7 calculates seawater outflow temperature Ts2b from the following formula 2.
Ts2b = Ts1 + Q / (cs × ds × Fsb) (Formula 2)
Ts1: Temperature detected by the seawater inflow temperature sensor 73 cs: Specific heat of seawater ds: Specific gravity of seawater Fsb: Flow rate of seawater at the second rotation speed Nb
 次に、制御装置7は、以下の式3から、第2回転数Nb時の対数平均温度差LMTDbを算出する。
  LMTDb=(TD1b-TD2b)/ln(TD1b/TD2b)
                                ・・・ (式3)
    TD1b:清水入口側温度差(Tf1-Ts2b)
    TD2b:清水出口側温度差(Tf2-Ts1)
Next, the control device 7 calculates the logarithmic average temperature difference LMTDb at the second rotation speed Nb from the following Expression 3.
LMTDb = (TD1b−TD2b) / ln (TD1b / TD2b)
... (Formula 3)
TD1b: Fresh water inlet side temperature difference (Tf1-Ts2b)
TD2b: Fresh water outlet side temperature difference (Tf2-Ts1)
 最後に、制御装置7は、以下の式4から、熱交換能力係数Kbを算出する。
  Kb=Q/LMTDb ・・・ (式4)
Finally, the control device 7 calculates the heat exchange capacity coefficient Kb from the following equation 4.
Kb = Q / LMTDb (Formula 4)
 次に、制御装置7は、海水ポンプ33を第1回転数Naとしたときに清水流出温度が設定温度Tdとなる仮想の熱交換能力係数Kaを算出する。 Next, the control device 7 calculates a virtual heat exchange capacity coefficient Ka at which the fresh water outflow temperature becomes the set temperature Td when the seawater pump 33 is set to the first rotation speed Na.
 まず、制御装置7は、以下の式5から、清水冷却前温度Tf1aを算出する。
  Tf1a=Td+Q/(cf×df×Ff) ・・・ (式5)
First, the control device 7 calculates the fresh water cooling pre-cooling temperature Tf1a from the following Equation 5.
Tf1a = Td + Q / (cf × df × Ff) (Formula 5)
 次に、制御装置7は、以下の式6から、海水流出温度Ts2aを算出する。
  Ts2a=Ts1+Q/(cs×ds×Fsa) ・・・ (式6)
    Fsa:第1回転数Na時の海水の流量
Next, the control device 7 calculates the seawater outflow temperature Ts2a from the following Expression 6.
Ts2a = Ts1 + Q / (cs × ds × Fsa) (Formula 6)
Fsa: Flow rate of seawater at the first rotation speed Na
 次に、制御装置7は、以下の式7から、第1回転数Na時の対数平均温度差LMTDaを算出する。
  LMTDa=(TD1a-TD2a)/ln(TD1a/TD2a)
                                ・・・ (式7)
    TD1a:清水入口側温度差(Tf1a-Ts2a)
    TD2a:清水出口側温度差(Td-Ts1)
Next, the control device 7 calculates the logarithmic average temperature difference LMTDa at the first rotation speed Na from the following Expression 7.
LMTDa = (TD1a−TD2a) / ln (TD1a / TD2a)
... (Formula 7)
TD1a: fresh water inlet side temperature difference (Tf1a-Ts2a)
TD2a: Fresh water outlet side temperature difference (Td-Ts1)
 最後に、制御装置7は、以下の式8から、熱交換能力係数Kaを算出する。
  Ka=Q/LMTDa ・・・ (式8)
Finally, the control device 7 calculates the heat exchange capacity coefficient Ka from the following Expression 8.
Ka = Q / LMTDa (Formula 8)
 第2回転数Nb時の熱交換能力係数Kbと第1回転数Naとしたときの仮想の熱交換能力係数Kaの双方を算出した後は、制御装置7はそれらを比較し、Kb>Kaであれば低速運転条件を満たすと判定し、Kb<Kaであれば低速運転条件を満たさないと判定する。 After calculating both the heat exchange capacity coefficient Kb at the second rotation speed Nb and the virtual heat exchange capacity coefficient Ka at the first rotation speed Na, the control device 7 compares them, and Kb> Ka If there is, it is determined that the low speed operation condition is satisfied, and if Kb <Ka, it is determined that the low speed operation condition is not satisfied.
 通常、熱交換器21は、海水ポンプ33が第2回転数Nbとなったときに清水を設定温度Td以下まで冷却できるように構成される。従って、本実施形態のような制御であれば、冷却対象機器へ供給される清水の温度を設定温度Tdと下限温度Tlの間で変化させることができる。つまり、エアクーラ12へ供給される清水の温度が設定温度Tdよりも低くなれば、主機11へ供給される空気の温度が低下する。これにより、主機11の燃費を改善することができる。しかも、上記の構成では、インバータ8(図1参照)を用いる必要がないので、コストを低減することができる。 Usually, the heat exchanger 21 is configured to cool the fresh water to a set temperature Td or less when the seawater pump 33 reaches the second rotation speed Nb. Therefore, if it is control like this embodiment, the temperature of the fresh water supplied to a cooling object apparatus can be changed between preset temperature Td and lower limit temperature Tl. That is, if the temperature of the fresh water supplied to the air cooler 12 is lower than the set temperature Td, the temperature of the air supplied to the main machine 11 is lowered. Thereby, the fuel consumption of the main engine 11 can be improved. Moreover, in the above configuration, it is not necessary to use the inverter 8 (see FIG. 1), so that the cost can be reduced.
 <変形例>
 低速運転条件を満たすか否かを判定する際には、算出した熱交換能力係数Kbを使用する代わりに、設計時の熱交換能力係数Kを予め制御装置7に格納しておき、その設計時の熱交換能力係数Kを使用して低速運転条件を満たすか否かを判定してもよい。ただし、前記実施形態のように熱交換器21の熱交換能力係数Kbを算出すれば、熱交換器21の汚れ等による経年変化を考慮して低速運転条件を満たすか否かを判定することができる。
<Modification>
When determining whether or not the low-speed operation condition is satisfied, instead of using the calculated heat exchange capacity coefficient Kb, the heat exchange capacity coefficient K at the time of design is stored in the control device 7 in advance, It may be determined whether or not the low-speed operation condition is satisfied using the heat exchange capacity coefficient K. However, if the heat exchange capacity coefficient Kb of the heat exchanger 21 is calculated as in the above embodiment, it is possible to determine whether or not the low speed operation condition is satisfied in consideration of the secular change due to contamination of the heat exchanger 21 or the like. it can.
 また、熱交換器21の特性として、海水の流量を変化させた時の熱交換能力の変化が既知の場合は、この効果を加味して低速運転条件を満たすか否かを判定してもよい。例えば、海水の流量を減じた時に熱交換能力が2割減ずるのであれば、低速運転条件をKb×0.8>Kaとして判定してもよい。 Moreover, when the change of the heat exchange capability when the flow rate of seawater is changed is known as a characteristic of the heat exchanger 21, it may be determined whether or not the low-speed operation condition is satisfied by taking this effect into consideration. . For example, if the heat exchange capacity is reduced by 20% when the flow rate of seawater is reduced, the low speed operation condition may be determined as Kb × 0.8> Ka.
 海水ポンプ33は、電気信号によって第1回転数Naと第2回転数Nbのどちらかに切り換えられるように構成されてもよい。この場合、制御装置7は、低速運転条件を満たさないときは、海水ポンプ33を第2回転数Nbに切り換え、低速運転条件を満たすときは、海水ポンプ33を第1回転数Naに切り換える。 The seawater pump 33 may be configured to be switched to either the first rotation speed Na or the second rotation speed Nb by an electric signal. In this case, the control device 7 switches the seawater pump 33 to the second rotation speed Nb when the low speed operation condition is not satisfied, and switches the seawater pump 33 to the first rotation speed Na when the low speed operation condition is satisfied.
 また、第2海水ライン32に海水流出温度センサを設け、この温度センサで直接検出される温度を海水流出温度Ts2bとして使用してもよい。 Also, a seawater outflow temperature sensor may be provided in the second seawater line 32, and the temperature directly detected by this temperature sensor may be used as the seawater outflow temperature Ts2b.
 (その他の実施形態)
 本発明は上述した第1および第2実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the first and second embodiments described above, and various modifications can be made without departing from the scope of the present invention.
 例えば、図2において、EGRライン96およびEGRクーラ13が設けられなくてもよい。また、図1,3において、EGRクーラ13だけでなく特殊冷却機器14も採用されずに、第1清水ライン4が熱交換器21から主機11およびエアクーラ12のみへ清水を導いてもよい。 For example, in FIG. 2, the EGR line 96 and the EGR cooler 13 may not be provided. 1 and 3, not only the EGR cooler 13 but also the special cooling device 14 may be employed, and the first fresh water line 4 may guide fresh water from the heat exchanger 21 only to the main machine 11 and the air cooler 12.
 1A,1B 船舶の冷却システム
 11 主機
 12 エアクーラ
 13 EGRクーラ
 14 特殊冷却機器
 21 熱交換器
 22 バイパスライン
 24 温度調整弁
 31 第1海水ライン
 32 第2海水ライン
 33 海水ポンプ
 4  第1清水ライン
 5  第2清水ライン
 64 循環ライン
 7  制御装置
 71 清水冷却後温度センサ
 72 清水冷却前温度センサ
 73 海水流入温度センサ
 8  インバータ
 9  表示器
1A, 1B Ship Cooling System 11 Main Engine 12 Air Cooler 13 EGR Cooler 14 Special Cooling Equipment 21 Heat Exchanger 22 Bypass Line 24 Temperature Control Valve 31 First Sea Water Line 32 Second Sea Water Line 33 Sea Water Pump 4 First Fresh Water Line 5 Second Fresh water line 64 Circulation line 7 Control device 71 Temperature sensor after fresh water cooling 72 Temperature sensor before fresh water cooling 73 Seawater inflow temperature sensor 8 Inverter 9 Display

Claims (7)

  1.  清水と海水との間で熱交換を行って前記清水を冷却する熱交換器と、
     船体外から前記熱交換器へ海水を導く、海水ポンプが設けられた第1海水ラインと、
     前記熱交換器から前記船体外へ海水を導く第2海水ラインと、
     前記熱交換器から、船舶のレシプロエンジンである主機および過給機から前記主機へ供給される空気を冷却するエアクーラへ清水を導く第1清水ラインと、
     前記主機および前記エアクーラから前記熱交換器へ清水を導く第2清水ラインと、
     前記熱交換器をバイパスするように前記第2清水ラインから分岐して前記第1清水ラインに合流するバイパスラインと、
     前記熱交換器を通過する清水の流量と前記バイパスラインを流れる清水の流量との比率を変更する温度調整弁と、
     前記バイパスラインの合流点よりも下流側で前記第1清水ラインに流れる清水の温度を検出する清水冷却後温度センサと、
     通常時は、前記バイパスラインに清水が流れないように前記温度調整弁を制御した上で、前記清水冷却後温度センサで検出される温度が設定温度に保たれるようにインバータを介して前記海水ポンプの回転数を制御し、前記海水ポンプの回転数が最低回転数となり、かつ、前記清水冷却後温度センサで検出される温度が前記設定温度よりも低くなったときは、前記清水冷却後温度センサで検出される温度が前記設定温度よりも低い下限温度に保たれるように前記温度調整弁を制御する制御装置と、
    を備える、船舶の冷却システム。
    A heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water;
    A first seawater line provided with a seawater pump for guiding seawater from outside the hull to the heat exchanger;
    A second seawater line for guiding seawater from the heat exchanger to the outside of the hull;
    A first fresh water line that guides fresh water from the heat exchanger to an air cooler that cools air supplied to the main engine from a main engine and a supercharger that are reciprocating engines of a ship;
    A second fresh water line for guiding fresh water from the main engine and the air cooler to the heat exchanger;
    A bypass line that branches from the second fresh water line and bypasses the first fresh water line so as to bypass the heat exchanger;
    A temperature control valve that changes a ratio of a flow rate of fresh water passing through the heat exchanger and a flow rate of fresh water flowing through the bypass line;
    A temperature sensor after fresh water cooling for detecting the temperature of fresh water flowing to the first fresh water line downstream from the junction of the bypass line;
    Normally, after controlling the temperature control valve so that fresh water does not flow into the bypass line, the seawater is passed through an inverter so that the temperature detected by the temperature sensor after cooling with fresh water is maintained at a set temperature. When the rotation speed of the seawater pump is controlled to the minimum rotation speed and the temperature detected by the temperature sensor after cooling with fresh water is lower than the set temperature, the temperature after cooling with fresh water is controlled. A control device for controlling the temperature regulating valve so that the temperature detected by the sensor is maintained at a lower limit temperature lower than the set temperature;
    A ship cooling system.
  2.  清水と海水との間で熱交換を行って前記清水を冷却する熱交換器と、
     船体外から前記熱交換器へ海水を導く、第1回転数と前記第1回転数よりも大きな第2回転数のどちらかに切り換え可能な海水ポンプが設けられた第1海水ラインと、
     前記熱交換器から前記船体外へ海水を導く第2海水ラインと、
     前記熱交換器から、船舶のレシプロエンジンである主機および過給機から前記主機へ供給される空気を冷却するエアクーラへ清水を導く第1清水ラインと、
     前記主機および前記エアクーラから前記熱交換器へ清水を導く第2清水ラインと、
     前記熱交換器をバイパスするように前記第2清水ラインから分岐して前記第1清水ラインに合流するバイパスラインと、
     前記熱交換器を通過する清水の流量と前記バイパスラインを流れる清水の流量との比率を変更する温度調整弁と、
     前記バイパスラインの合流点よりも下流側で前記第1清水ラインに流れる清水の温度を検出する清水冷却後温度センサと、
     前記第2清水ラインに流れる清水の温度を検出する清水冷却前温度センサと、
     前記第1海水ラインに流れる海水の温度を検出する海水流入温度センサと、
     前記清水冷却後温度センサ、前記清水冷却前温度センサおよび前記海水流入温度センサで検出される温度に基づいて、前記海水ポンプを前記第1回転数としたときに前記熱交換器で清水を設定温度以下まで冷却できるかという低速運転条件を満たすか否かを判定し、前記低速運転条件を満たさないときは、前記海水ポンプが前記第2回転数に切り換えられた場合に前記バイパスラインに清水が流れないように前記温度調整弁を制御し、前記低速運転条件を満たすときは、前記海水ポンプが前記第1回転数に切り換えられた場合に前記清水冷却後温度センサで検出される温度が前記設定温度よりも低い下限温度に保たれるように前記温度調整弁を制御する制御装置と、
    を備える、船舶の冷却システム。
    A heat exchanger that performs heat exchange between fresh water and seawater to cool the fresh water;
    A first seawater line provided with a seawater pump that guides seawater from outside the hull to the heat exchanger and can be switched between a first rotation speed and a second rotation speed greater than the first rotation speed;
    A second seawater line for guiding seawater from the heat exchanger to the outside of the hull;
    A first fresh water line that guides fresh water from the heat exchanger to an air cooler that cools air supplied to the main engine from a main engine and a supercharger that are reciprocating engines of a ship;
    A second fresh water line for guiding fresh water from the main engine and the air cooler to the heat exchanger;
    A bypass line that branches from the second fresh water line and bypasses the first fresh water line so as to bypass the heat exchanger;
    A temperature control valve that changes a ratio of a flow rate of fresh water passing through the heat exchanger and a flow rate of fresh water flowing through the bypass line;
    A temperature sensor after fresh water cooling for detecting the temperature of fresh water flowing to the first fresh water line downstream from the junction of the bypass line;
    A temperature sensor before fresh water cooling for detecting the temperature of fresh water flowing through the second fresh water line;
    A seawater inflow temperature sensor for detecting the temperature of the seawater flowing in the first seawater line;
    Based on the temperature detected by the fresh water cooling temperature sensor, the fresh water cooling temperature sensor, and the sea water inflow temperature sensor, the fresh water is set in the heat exchanger when the sea water pump is at the first rotation speed. It is determined whether or not the low-speed operation condition of whether it can be cooled to below is satisfied, and when the low-speed operation condition is not satisfied, when the seawater pump is switched to the second rotation speed, fresh water flows into the bypass line When the temperature control valve is controlled so that the low-speed operation condition is satisfied, the temperature detected by the temperature sensor after fresh water cooling when the seawater pump is switched to the first rotation speed is the set temperature. A control device for controlling the temperature regulating valve so as to be maintained at a lower lower limit temperature,
    A ship cooling system.
  3.  前記海水ポンプは、手動で前記第1回転数と前記第2回転数のどちらかに切り換えられるように構成されており、
     前記制御装置は、前記低速運転条件を満たすか否かを表示器を介して表示する、請求項2に記載の船舶の冷却システム。
    The seawater pump is configured to be manually switched between the first rotation speed and the second rotation speed,
    The ship control system according to claim 2, wherein the control device displays whether or not the low-speed operation condition is satisfied via a display.
  4.  前記海水ポンプは、電気信号によって前記第1回転数と前記第2回転数のどちらかに切り換えられるように構成されており、
     前記制御装置は、前記低速運転条件を満たさないときは、前記海水ポンプを前記第2回転数に切り換え、前記低速運転条件を満たすときは、前記海水ポンプを前記第1回転数に切り換える、請求項2に記載の船舶の冷却システム。
    The seawater pump is configured to be switched to either the first rotation speed or the second rotation speed by an electrical signal,
    The control device switches the seawater pump to the second rotation speed when the low speed operation condition is not satisfied, and switches the seawater pump to the first rotation speed when the low speed operation condition is satisfied. The ship cooling system according to 2.
  5.  前記制御装置は、前記海水ポンプが前記第2回転数のときに、前記清水冷却後温度センサ、前記清水冷却前温度センサおよび前記海水流入温度センサで検出される温度に基づいて、前記熱交換器の熱交換能力係数を算出し、算出した熱交換能力係数を使用して前記低速運転条件を満たすか否かを判定する、請求項2~4のいずれか一項に記載の船舶の冷却システム。 When the seawater pump is at the second rotation speed, the control device is configured to change the heat exchanger based on temperatures detected by the temperature sensor after fresh water cooling, the temperature sensor before fresh water cooling, and the seawater inflow temperature sensor. The ship cooling system according to any one of claims 2 to 4, wherein a heat exchange capacity coefficient is calculated, and whether or not the low speed operation condition is satisfied is determined using the calculated heat exchange capacity coefficient.
  6.  前記第1清水ラインは、前記熱交換器から前記主機および前記エアクーラだけでなくEGRクーラへも清水を導き、
     前記第2清水ラインは、前記主機および前記エアクーラだけでなく前記EGRクーラからも前記熱交換器へ清水を導く、請求項1~5のいずれか一項に記載の船舶の冷却システム。
    The first fresh water line guides fresh water from the heat exchanger not only to the main engine and the air cooler but also to an EGR cooler,
    The marine cooling system according to any one of claims 1 to 5, wherein the second fresh water line guides fresh water not only from the main engine and the air cooler but also from the EGR cooler to the heat exchanger.
  7.  前記第1清水ラインは、前記熱交換器から前記主機および前記エアクーラだけでなく一定温度での冷却が必要な特殊冷却機器へも清水を導き、
     前記第2清水ラインは、前記主機および前記エアクーラだけでなく前記特殊冷却機器からも前記熱交換器へ清水を導き、
     前記特殊冷却機器用の循環回路を形成するように前記第2清水ラインから分岐して前記第1清水ラインに合流する還流ラインをさらに備える、請求項1~6のいずれか一項に記載の船舶の冷却システム。
    The first fresh water line leads fresh water from the heat exchanger not only to the main engine and the air cooler but also to special cooling equipment that requires cooling at a constant temperature,
    The second fresh water line leads fresh water to the heat exchanger not only from the main engine and the air cooler but also from the special cooling device,
    The marine vessel according to any one of claims 1 to 6, further comprising a return line that branches off from the second fresh water line and joins the first fresh water line so as to form a circulation circuit for the special cooling device. Cooling system.
PCT/JP2017/027867 2016-09-06 2017-08-01 Cooling system for ship WO2018047525A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197008523A KR102240300B1 (en) 2016-09-06 2017-08-01 Ship's cooling system
CN201780053414.2A CN109642488B (en) 2016-09-06 2017-08-01 Cooling system for ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-173762 2016-09-06
JP2016173762A JP6788440B2 (en) 2016-09-06 2016-09-06 Ship cooling system

Publications (1)

Publication Number Publication Date
WO2018047525A1 true WO2018047525A1 (en) 2018-03-15

Family

ID=61561960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027867 WO2018047525A1 (en) 2016-09-06 2017-08-01 Cooling system for ship

Country Status (4)

Country Link
JP (1) JP6788440B2 (en)
KR (1) KR102240300B1 (en)
CN (1) CN109642488B (en)
WO (1) WO2018047525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736931A (en) * 2019-03-01 2019-05-10 广西玉柴机器股份有限公司 Simulative automobile cistern device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745229A (en) * 2019-11-26 2020-02-04 南通旭日船用机械有限公司 Plate cooler seawater frequency conversion control method and system
KR102336108B1 (en) * 2021-06-01 2021-12-10 (주) 대경엔지니어링 Electric Ship Charging System Having Charging Cable Safety Structure
CN114109577A (en) * 2021-11-10 2022-03-01 中国重汽集团济南动力有限公司 Engine waste heat management system and use method thereof
CN114572372A (en) * 2022-02-18 2022-06-03 中国船舶重工集团公司第七一九研究所 Ship constant-frequency pump cooling system, control method thereof, electronic device and storage medium
CN115434833B (en) * 2022-09-30 2023-07-25 南通中远海运川崎船舶工程有限公司 Novel cooling water system of EGR host computer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979036A (en) * 1995-09-08 1997-03-25 Hitachi Zosen Corp Cooling operation method and cooling equipment in marine vessel
JP2010065612A (en) * 2008-09-11 2010-03-25 Mitsubishi Heavy Ind Ltd Marine main engine cooling facility, cooling method and cooling system in ship
KR20120047019A (en) * 2010-11-03 2012-05-11 대우조선해양 주식회사 Cooling system and method for midium speed emergency generator engine
JP2015522133A (en) * 2012-07-12 2015-08-03 ゼネラル・エレクトリック・カンパニイ System and method for cooling fluid circuit
JP2016520471A (en) * 2013-04-19 2016-07-14 アイエムオー・インダストリーズ・インコーポレーテッド Intelligent seawater cooling system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522462Y2 (en) * 1990-11-20 1997-01-16 日野自動車工業株式会社 Seawater flow control device for cooling marine engines
JP4859874B2 (en) 2008-05-12 2012-01-25 三菱重工業株式会社 Rotational speed control device for cooling seawater transfer pump
KR101529229B1 (en) * 2009-07-01 2015-06-17 대우조선해양 주식회사 Stability cooling system for a vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979036A (en) * 1995-09-08 1997-03-25 Hitachi Zosen Corp Cooling operation method and cooling equipment in marine vessel
JP2010065612A (en) * 2008-09-11 2010-03-25 Mitsubishi Heavy Ind Ltd Marine main engine cooling facility, cooling method and cooling system in ship
KR20120047019A (en) * 2010-11-03 2012-05-11 대우조선해양 주식회사 Cooling system and method for midium speed emergency generator engine
JP2015522133A (en) * 2012-07-12 2015-08-03 ゼネラル・エレクトリック・カンパニイ System and method for cooling fluid circuit
JP2016520471A (en) * 2013-04-19 2016-07-14 アイエムオー・インダストリーズ・インコーポレーテッド Intelligent seawater cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736931A (en) * 2019-03-01 2019-05-10 广西玉柴机器股份有限公司 Simulative automobile cistern device

Also Published As

Publication number Publication date
KR20190040058A (en) 2019-04-16
CN109642488B (en) 2021-05-07
JP2018040276A (en) 2018-03-15
CN109642488A (en) 2019-04-16
KR102240300B1 (en) 2021-04-14
JP6788440B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2018047525A1 (en) Cooling system for ship
JP5323584B2 (en) Central fresh water cooling system
JP4859874B2 (en) Rotational speed control device for cooling seawater transfer pump
JP5324409B2 (en) Heat load cooling device and control device for heat load cooling device
JP6599293B2 (en) Central fresh water cooling system for ships
US9726068B2 (en) Cooling device for internal combustion engine and control method for cooling device
JP2007519853A (en) Equipment for cooling exhaust and supply air
CN105841408B (en) Closed-type circulating cooling water energy-saving driving system and method
US10107176B2 (en) Cooling device of internal combustion engine for vehicle and control method thereof
JP7248378B2 (en) Method for operating ship cooling system
CN108138641B (en) Cooling device for vehicle internal combustion engine, control device and flow control valve used for cooling device, and control method
JP2009275512A (en) Operating method and control device for fresh water circulating pump of ship, and cooling system for ship
JP4288200B2 (en) Internal combustion engine with high and low temperature cooling system
KR20140025943A (en) Central cooling system
JP2016196853A (en) Internal combustion engine cooling system and method for controlling the same
KR20160114326A (en) Cooling Water System of Engine Room on Ship
JP2010065612A (en) Marine main engine cooling facility, cooling method and cooling system in ship
WO2016031089A1 (en) Drive system
JP5816057B2 (en) Cooling system control method and apparatus
KR20180078090A (en) The cooling equipment and the cooling method for vessel&#39;s heating unit
JP2015131613A (en) Vessel cooling system
KR20130064431A (en) Cooling system for fuel cell electric vehicle
KR20170061946A (en) Cooling system for vessel with EGR unit and cooling method therefor
KR20150076854A (en) Closed cooling system for outboard engine
KR101990469B1 (en) Ship cooling system for saving fuel energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008523

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848470

Country of ref document: EP

Kind code of ref document: A1