JP4859874B2 - Rotational speed control device for cooling seawater transfer pump - Google Patents

Rotational speed control device for cooling seawater transfer pump Download PDF

Info

Publication number
JP4859874B2
JP4859874B2 JP2008124565A JP2008124565A JP4859874B2 JP 4859874 B2 JP4859874 B2 JP 4859874B2 JP 2008124565 A JP2008124565 A JP 2008124565A JP 2008124565 A JP2008124565 A JP 2008124565A JP 4859874 B2 JP4859874 B2 JP 4859874B2
Authority
JP
Japan
Prior art keywords
fresh water
transfer pump
valve opening
rotational speed
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008124565A
Other languages
Japanese (ja)
Other versions
JP2009274469A (en
Inventor
融 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008124565A priority Critical patent/JP4859874B2/en
Priority to CN200980102811XA priority patent/CN101925511B/en
Priority to PCT/JP2009/052047 priority patent/WO2009139201A1/en
Priority to KR1020107013384A priority patent/KR101222799B1/en
Publication of JP2009274469A publication Critical patent/JP2009274469A/en
Application granted granted Critical
Publication of JP4859874B2 publication Critical patent/JP4859874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/383Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling cooling-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • F01P3/207Cooling circuits not specific to a single part of engine or machine liquid-to-liquid heat-exchanging relative to marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers

Description

本発明は、船舶における冷却海水移送ポンプの回転数制御装置に関する。   The present invention relates to a rotation speed control device for a cooling seawater transfer pump in a ship.

従来から一般的に採用されている船舶における主機等の機関室内の各機器の冷却システムにつき、図1の一部を利用して説明する。
従来、冷却海水移送ポンプ4で吸引された船外の海水は、船体外板2に設けられたシーチェスト1から冷却海水配管3を通り、熱交換器6に送られる。
熱交換器6で清水と熱交換された海水は、船外に排出される。
一方、船内の冷却清水は、冷却清水循環ポンプ9により、熱交換器6、冷却清水循環配管7及び船内機器12(主機/機関室内各機器等)を循環するようになっている。
また、冷却清水循環配管7には、熱交換器6をバイパスする清水バイパス配管8も接続されている。
そして、熱交換器6で冷却された清水と熱交換器6をパイバスした清水バイパス配管8からの清水とを清水温度調整弁11で合流、混合させることにより、船内機器12に流入する冷却清水の水温を一定に保っている。
一定の水温に調整された清水は、冷却が必要な船内機器12に供給された後、再度、冷却清水循環ポンプ9に戻り、加圧されて循環する。
A cooling system for each device in an engine room such as a main engine in a ship that has been generally employed will be described with reference to a part of FIG.
Conventionally, seawater outside the ship sucked by the cooling seawater transfer pump 4 is sent from the sea chest 1 provided on the hull outer plate 2 to the heat exchanger 6 through the cooling seawater piping 3.
Seawater heat-exchanged with fresh water by the heat exchanger 6 is discharged out of the ship.
On the other hand, the cooling fresh water in the ship is circulated by the cooling fresh water circulation pump 9 through the heat exchanger 6, the cooling fresh water circulation pipe 7, and the inboard equipment 12 (main engine / engine room equipment, etc.).
Further, a fresh water bypass pipe 8 that bypasses the heat exchanger 6 is also connected to the cooling fresh water circulation pipe 7.
Then, the fresh water cooled by the heat exchanger 6 and the fresh water from the fresh water bypass pipe 8 that bypasses the heat exchanger 6 are joined and mixed by the fresh water temperature control valve 11, whereby the cooled fresh water flowing into the inboard equipment 12 is mixed. The water temperature is kept constant.
The fresh water adjusted to a constant water temperature is supplied to the inboard equipment 12 that needs to be cooled, and then returns to the cooling fresh water circulation pump 9 to be pressurized and circulated.

冷却海水移送ポンプ4及び冷却清水循環ポンプ9の定格(又は最大)容量は、船内機器12の最大発生熱量をベースに決定されており、冷却海水移送ポンプ4及び冷却清水循環ポンプ9は、船内機器12が最大負荷でない場合も、一定速度で運転されている。
なお、冷却海水移送ポンプ4或いは冷却清水循環ポンプ9は、三相交流の冷却海水移送ポンプ駆動モータ5或いは冷却清水循環ポンプ駆動モータ10により駆動され、冷却海水移送ポンプ駆動モータ5及び冷却清水循環ポンプ駆動モータ10は、各々、始動器(スタータ)により発停制御(回転数制御はしない)されるようになっている。
The rated (or maximum) capacities of the cooling seawater transfer pump 4 and the cooling fresh water circulation pump 9 are determined based on the maximum heat generation amount of the inboard equipment 12, and the cooling seawater transfer pump 4 and the cooling fresh water circulation pump 9 are inboard equipment. Even when 12 is not the maximum load, the vehicle is operated at a constant speed.
The cooling seawater transfer pump 4 or the cooling fresh water circulation pump 9 is driven by a three-phase AC cooling seawater transfer pump drive motor 5 or a cooling fresh water circulation pump drive motor 10, and the cooling seawater transfer pump drive motor 5 and the cooling fresh water circulation pump are driven. Each of the drive motors 10 is controlled to start and stop (no rotation speed control) by a starter (starter).

一般に熱交換器、冷却海水移送ポンプ等の設計条件は、海水温度が最大(32℃)で、主機が最大出力で発電機エンジンも最大出力の条件で決められている。
しかしながら、実際の運航では海水温度は32℃より低く、船内負荷も設計条件よりも低いのが実情である。
そこで、清水温度調整弁11により、清水バイパス配管8を通過する清水量を多くして、船内機器12に流入する清水の水温が一定になるように運転される。
この場合、冷却海水移送ポンプ4等は定格出力で運転されているため、無駄に船内電力が消費されるという問題がある。
In general, design conditions for a heat exchanger, a cooling seawater transfer pump, and the like are determined under conditions where the seawater temperature is maximum (32 ° C.), the main engine has the maximum output, and the generator engine has the maximum output.
However, in actual operation, the seawater temperature is lower than 32 ° C., and the inboard load is also lower than the design conditions.
Therefore, the fresh water temperature adjusting valve 11 is operated so that the amount of fresh water passing through the fresh water bypass pipe 8 is increased and the temperature of the fresh water flowing into the inboard equipment 12 becomes constant.
In this case, since the cooling seawater transfer pump 4 and the like are operated at the rated output, there is a problem that the inboard power is wasted.

また、船内電力の削減するために図2に示すものが提案されている。
図2に示すものは、2速運転可能な複数台の海水ポンプ100を備え、該海水ポンプ100により供給される海水と熱交換して清水を冷やす清水クーラー(熱交換器)6を設け、該清水クーラー6を通して清水を循環させ、清水の温度を調整するため、清水循環配管7に清水クーラー6をバイパスする清水バイパス管8を設け、該清水バイパス管8は、清水温度センサー103からの温度指令信号により開度を調整される清水温度調整弁104を介して清水循環配管7に接続されるように構成された機関室内機器の冷却装置において、清水温度調整弁104の開度信号により海水ポンプ100の運転台数及び速度の制御を行なうようになっている。
Moreover, what is shown in FIG. 2 is proposed in order to reduce inboard power.
2 includes a plurality of seawater pumps 100 that can be operated at two speeds, and includes a fresh water cooler (heat exchanger) 6 that cools fresh water by exchanging heat with the seawater supplied by the seawater pump 100. In order to circulate the fresh water through the fresh water cooler 6 and adjust the temperature of the fresh water, the fresh water circulation pipe 7 is provided with a fresh water bypass pipe 8 that bypasses the fresh water cooler 6, and the fresh water bypass pipe 8 receives a temperature command from the fresh water temperature sensor 103. In the cooling device for engine indoor equipment configured to be connected to the fresh water circulation pipe 7 via the fresh water temperature adjustment valve 104 whose opening degree is adjusted by the signal, the seawater pump 100 is given by the opening signal of the fresh water temperature adjustment valve 104. The number of operating units and the speed are controlled.

また、海水配管3の海水ポンプ100の入り口側にセットされた海水温度センサー102は、シーチェスト1から取り込む海水の温度を検知し、海水温度調整弁105に温度指令信号を発している。
このように、海水戻し管106によって、清水クーラー6を通した後の暖まった海水を、シーチェスト1内に戻し、シーチェスト1内に入った氷を融かしている。
なお、101は清水循環ポンプ、12は機関室内機器である(例えば、特許文献1。)。
The seawater temperature sensor 102 set on the inlet side of the seawater pump 100 in the seawater piping 3 detects the temperature of seawater taken from the sea chest 1 and issues a temperature command signal to the seawater temperature adjustment valve 105.
Thus, the seawater return pipe 106 returns the warmed seawater that has passed through the fresh water cooler 6 into the sea chest 1 and melts the ice that has entered the sea chest 1.
In addition, 101 is a fresh water circulation pump, 12 is an engine room apparatus (for example, patent document 1).

しかしながら、特許文献1に記載のものは、海水配管3側にも海水温度センサー102、海水温度調整弁105及び海水戻し管106を設けて、シーチェスト1から取り込む海水の温度も制御しており、従来から一般的に採用されている船舶における主機等の機関室内の各機器の冷却システムに比べて配管、弁類が多く、複雑になっている。   However, the one described in Patent Document 1 is also provided with a seawater temperature sensor 102, a seawater temperature adjustment valve 105, and a seawater return pipe 106 on the seawater piping 3 side to control the temperature of seawater taken in from the sea chest 1, Compared to the cooling system for each device in the engine room such as a main engine in a ship that has been generally adopted in the past, there are many pipes and valves, which are complicated.

また、海水ポンプ100の運転台数及び速度の制御に伴って取り込まれる海水の温度も変化し、清水温度調整弁104の開度信号も変化する。
そして、清水温度調整弁104の開度信号が設定された上限値以上になったとき、1つ上の海水ポンプ100の運転パターンに切り替えると、当然海水の温度が降下するため清水温度調整弁104は閉じる方向に制御され、開度信号は設定された上限値以下となる。
すると、元の海水ポンプ100の運転パターンに戻ることになると思われる。
これに、海水温度調整弁105の制御も加わるため、海水ポンプ100の制御は複雑になると思われる。
Moreover, the temperature of the seawater taken in with the control of the number of operating seawater pumps 100 and the speed also changes, and the opening signal of the fresh water temperature adjustment valve 104 also changes.
When the opening signal of the fresh water temperature adjustment valve 104 becomes equal to or higher than the set upper limit value, when switching to the operation pattern of the seawater pump 100 that is one level higher, naturally the temperature of the sea water drops, so the fresh water temperature adjustment valve 104 Is controlled in the closing direction, and the opening signal is below the set upper limit value.
Then, it seems that it will return to the operation pattern of the original seawater pump 100.
Since the control of the seawater temperature adjustment valve 105 is added to this, the control of the seawater pump 100 seems to be complicated.

特開2002−274493号公報JP 2002-274493 A

本発明は上記のような問題点を解消するためになされたもので、簡素な構成で、船内電力の削減することのできる冷却海水移送ポンプの回転数制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cooling seawater transfer pump rotation speed control device capable of reducing ship power with a simple configuration.

上記の問題点に対し本発明は、以下の各手段を以って課題の解決を図る。   In order to solve the above problems, the present invention aims to solve the problems by the following means.

第1の手段の冷却海水移送ポンプの回転数制御装置は、
熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、前記清水温度調整弁の弁開度値と予め設定された弁開度目標値とに基づき操作回転数の変化率が前記清水温度調整弁の弁開度の変化率より小さくなるような操作回転数を演算し、前記操作回転数にて前記冷却海水移送ポンプ駆動モータの回転数を制御するものであることを特徴とする。
The rotation speed control device for the cooling seawater transfer pump of the first means is:
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
In the inverter device, the rate of change of the operation rotational speed is smaller than the rate of change of the valve opening of the fresh water temperature adjusting valve based on the valve opening value of the fresh water temperature adjusting valve and a preset valve opening target value. The operation rotation speed is calculated, and the rotation speed of the cooling seawater transfer pump drive motor is controlled by the operation rotation speed.

第2の手段は、第1の手段の冷却海水移送ポンプの回転数制御装置において、
前記冷却海水移送ポンプ駆動モータは、三相交流かご形誘導電動機であることを特徴とする。
The second means is the rotational speed control device for the cooling seawater transfer pump of the first means.
The cooling seawater transfer pump drive motor is a three-phase AC squirrel-cage induction motor.

の手段の冷却海水移送ポンプの回転数制御装置は、
熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、
弁開度目標値が予め設定された弁開度目標値設定器と、
前記清水温度調整弁の弁開度値と前記弁開度目標値とを比較する比較器と、
前記比較器での比較結果に基づき操作回転数を演算する回転数演算器と、
前記操作回転数にて冷却海水移送ポンプ駆動モータを駆動するVVVFコントローラとを有し、
前記弁開度目標値設定器には異なる2個の弁開度目標値が予め設定され、前記弁開度目標値設定器又は前記回転数演算器は、前記操作回転数の上昇頻度が所定回数以上になったときに低い方の前記弁開度目標値を選択するものであることを特徴とする。
The rotation speed control device for the cooling seawater transfer pump of the third means is:
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
The inverter device is
A valve opening target value setter in which a valve opening target value is set in advance;
A comparator for comparing the valve opening value of the fresh water temperature adjustment valve and the valve opening target value;
A rotational speed calculator for calculating the operating rotational speed based on the comparison result in the comparator;
Possess a VVVF controller for driving the cooling sea water transfer pump drive motor by said control rotational speed,
Two different valve opening target values are preset in the valve opening target value setter, and the valve opening target value setter or the rotational speed calculator has a frequency of increasing the operation rotational speed a predetermined number of times. The lower valve opening target value is selected when the above is reached .

の手段は、第の手段の冷却海水移送ポンプの回転数制御装置において、
前記インバータ装置は、前記操作回転数の変化率が前記弁開度の変化率より小さくなるように前記操作回転数を制限する回転数制限器を有することを特徴とする。
The fourth means is the rotational speed control device for the cooling seawater transfer pump of the third means,
The inverter device is characterized in that it has a rotation speed limiter which the control rotational speed of the change rate limiting said control rotational speed to be less than the rate of change of the valve opening.

の手段の冷却海水移送ポンプの回転数制御装置は、
熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、
弁開度目標値が予め設定された弁開度目標値設定器と、
前記清水温度調整弁の弁開度値と前記弁開度目標値とを比較する比較器と、
前記弁開度値が前記弁開度目標値より大であれば現在の回転数に予め設定された回転数増減値を加算した操作回転数を演算し、前記弁開度値が弁開度目標値より小であれば現在の回転数に前記回転数増減値を減算した前記操作回転数を演算する回転数演算器と、
前記操作回転数にて冷却海水移送ポンプ駆動モータを駆動するVVVFコントローラとを有し、
前記弁開度目標値設定器には異なる2個の弁開度目標値が予め設定され、前記弁開度目標値設定器又は前記回転数演算器は、前記操作回転数の上昇頻度が所定回数以上になったときに低い方の前記弁開度目標値を選択するものであることを特徴とする。
The rotation speed control device for the cooling seawater transfer pump of the fifth means is:
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
The inverter device is
A valve opening target value setter in which a valve opening target value is set in advance;
A comparator for comparing the valve opening value of the fresh water temperature adjustment valve and the valve opening target value;
If the valve opening value is larger than the valve opening target value, the operation rotational speed obtained by adding a preset rotational speed increase / decrease value to the current rotational speed is calculated, and the valve opening value is calculated as the valve opening target value. A rotational speed calculator that calculates the operation rotational speed obtained by subtracting the rotational speed increase / decrease value from the current rotational speed if smaller than the value;
Possess a VVVF controller for driving the cooling sea water transfer pump drive motor by said control rotational speed,
Two different valve opening target values are preset in the valve opening target value setter, and the valve opening target value setter or the rotational speed calculator has a frequency of increasing the operation rotational speed a predetermined number of times. The lower valve opening target value is selected when the above is reached .

の手段は、第乃至のいずれかの手段の冷却海水移送ポンプの回転数制御装置において、
前記冷却海水移送ポンプ駆動モータは、三相交流かご形誘導電動機であることを特徴とする。
The sixth means is the rotational speed control device for the cooling seawater transfer pump according to any one of the third to fifth means,
The cooling seawater transfer pump drive motor is a three-phase AC squirrel-cage induction motor.

特許請求の範囲に記載の各請求項に係る発明は、上記の各手段を採用しており、簡素な構成で、船内電力の削減することのできる冷却海水移送ポンプの回転数制御装置を得ることができる。
また、操作回転数の変化が清水温度調整弁の弁開度の変化より小さくなるような操作回転数を演算或いは制限しているので、冷却海水移送ポンプの制御と清水温度調整弁の制御が干渉したり、ハンチィングを起こしたりすることがなくなる。
また、2個の弁開度目標値を予め設定し、前記操作回転数の上昇頻度が所定回数以上になったときに低い方の弁開度目標値を選択するようにしたので、冷却海水移送ポンプの回転数制御の頻度を少なくすることができる。
The invention according to each claim described in the claims employs each of the above-described means, and obtains a rotation speed control device for a cooling seawater transfer pump with a simple configuration and capable of reducing ship power. Can do.
Further, since the control rotational speed variation rate is calculated or limiting the control rotational speed as smaller than the change rate of the valve opening degree of the fresh water thermostatic valve, control of the control and Shimizu thermostatic valve of the cooling seawater transfer pump Will not interfere or cause hunting.
In addition, since two valve opening target values are set in advance, and the lower valve opening target value is selected when the frequency of increase in the operation rotational speed exceeds a predetermined number, the cooling seawater transfer The frequency of controlling the rotation speed of the pump can be reduced.

以下、図1に基づき本発明の実施の形態に係る冷却海水移送ポンプの回転数制御装置につき説明する。
図1は、本発明の実施の形態に係る冷却海水移送ポンプの回転数制御装置の全体構成図である。
Hereinafter, a rotation speed control device for a cooling seawater transfer pump according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is an overall configuration diagram of a rotation speed control device for a cooling seawater transfer pump according to an embodiment of the present invention.

<冷却海水系統>
先ず、冷却海水系統30につき説明する。
図1に示すように、冷却海水系統30は、海水を、冷却海水移送ポンプ4により熱交換器6に供給して、海水と清水とによる熱交換を行うものである。
船舶の船底の船体外板2には、シーチェスト1が設けられ、シーチェスト1には、冷却海水移送ポンプ4が介装された冷却海水配管3が接続されている。
また、冷却海水移送ポンプ4より下流側の冷却海水配管3の途中には、熱交換器6が介装されている。
冷却海水配管3の下流端は、船体外板2に穿設された排水孔に接続されている。
<Cooling seawater system>
First, the cooling seawater system 30 will be described.
As shown in FIG. 1, the cooling seawater system 30 supplies seawater to the heat exchanger 6 by the cooling seawater transfer pump 4 and performs heat exchange between seawater and fresh water.
A sea chest 1 is provided on the hull outer plate 2 at the bottom of the ship, and a cooling seawater pipe 3 in which a cooling seawater transfer pump 4 is interposed is connected to the sea chest 1.
A heat exchanger 6 is interposed in the middle of the cooling seawater pipe 3 on the downstream side of the cooling seawater transfer pump 4.
The downstream end of the cooling seawater pipe 3 is connected to a drain hole drilled in the hull outer plate 2.

冷却海水移送ポンプ4で吸引された船外の海水は、シーチェスト1から冷却海水配管3を通り、熱交換器6に供給される。
熱交換器6で清水と熱交換された海水は、船体外板2外に排出される。
この冷却海水移送ポンプ4は、特許文献1に記載の2速運転可能なものではなく、三相交流誘導かご型の冷却海水移送ポンプ駆動モータ5により駆動されるようになっている。
The seawater outside the ship sucked by the cooling seawater transfer pump 4 passes through the cooling seawater piping 3 from the sea chest 1 and is supplied to the heat exchanger 6.
Seawater heat-exchanged with fresh water by the heat exchanger 6 is discharged out of the hull outer plate 2.
The cooling seawater transfer pump 4 is not capable of two-speed operation described in Patent Document 1, but is driven by a three-phase AC induction squirrel-type cooling seawater transfer pump drive motor 5.

なお、図示を省略しているが、冷却海水移送ポンプ4及び冷却海水移送ポンプ駆動モータ5は、冷却システムの2重化のために2組設けられている。
そして、通常航海時等にはどちらか一方のみが運転されており、運転中の冷却海水移送ポンプ4、冷却海水移送ポンプ駆動モータ5或いは制御装置等にトラブルが発生した場合等には、直ちに、スタンバイ中の冷却海水移送ポンプ4及び冷却海水移送ポンプ駆動モータ5が起動し、切り換わるようになっている。
なお、冷却海水移送ポンプ駆動モータ5を制御するインバータ装置23については後述する。
In addition, although illustration is abbreviate | omitted, two sets of the cooling seawater transfer pump 4 and the cooling seawater transfer pump drive motor 5 are provided for the duplication of a cooling system.
Only one of them is operated during normal voyage, etc., and when trouble occurs in the cooling seawater transfer pump 4, the cooling seawater transfer pump drive motor 5 or the control device during operation, The cooling seawater transfer pump 4 and the cooling seawater transfer pump drive motor 5 in standby are started and switched.
The inverter device 23 that controls the cooling seawater transfer pump drive motor 5 will be described later.

<冷却清水系統>
次に、冷却清水系統31につき説明する。
冷却清水系統31は、熱交換器6において海水により冷却された清水を、清水温度調整弁11により水温を調整して冷却清水循環ポンプ9により船内機器12に循環させるものである。
熱交換器6の冷却清水側には、船内機器12(主機等/機関室内各機器)に冷却清水を供給するための冷却清水循環配管7が接続されている。
熱交換器6と船内機器12の間の冷却清水循環配管7の清水戻りライン7aには、冷却清水循環ポンプ9が介装されている。
また、熱交換器6と船内機器12の間の清水供給ライン7bには、2つの入口A、Bを有し、熱交換器6を流れる清水の流量と清水バイパス配管8を流れる清水の流量とを調整する三方弁型の清水温度調整弁11が介装されている。
<Cooling fresh water system>
Next, the cooling fresh water system 31 will be described.
The cooling fresh water system 31 adjusts the temperature of fresh water cooled by seawater in the heat exchanger 6 with the fresh water temperature adjusting valve 11 and circulates it to the inboard equipment 12 with the cooling fresh water circulation pump 9.
A cooling fresh water circulation pipe 7 is connected to the cooling fresh water side of the heat exchanger 6 to supply the cooling fresh water to the inboard equipment 12 (main engine etc./each engine room equipment).
A cooling fresh water circulation pump 9 is interposed in the fresh water return line 7 a of the cooling fresh water circulation pipe 7 between the heat exchanger 6 and the inboard device 12.
The fresh water supply line 7b between the heat exchanger 6 and the inboard equipment 12 has two inlets A and B. The flow rate of fresh water flowing through the heat exchanger 6 and the flow rate of fresh water flowing through the fresh water bypass pipe 8 A three-way valve type fresh water temperature adjusting valve 11 is provided for adjusting the temperature.

更に、熱交換器6と冷却清水循環ポンプ9との間の清水戻りライン7aと、清水温度調整弁11の入口Bとは、熱交換器6をバイパスする清水バイパス配管8により接続されている。
なお、清水温度調整弁11は、三方弁型に限定されるものではなく、清水供給ライン7bと清水バイパス配管8との合流部より上流側の清水供給ライン7b(熱交換器6側)、及び清水バイパス配管8に各々流量調整弁を設け、熱交換器6を流れる清水の流量と清水バイパス配管8を流れる清水の流量とを調整するようにしたものとしてもよい。
また、清水温度調整弁11は、図示略の弁体を駆動する駆動モータと、弁体の入口A側(熱交換器6側)の弁開度Asを調整弁制御装置22に発信する弁開度発信器とを備えている。
Further, the fresh water return line 7 a between the heat exchanger 6 and the cooled fresh water circulation pump 9 and the inlet B of the fresh water temperature regulating valve 11 are connected by a fresh water bypass pipe 8 that bypasses the heat exchanger 6.
In addition, the fresh water temperature control valve 11 is not limited to a three-way valve type, the fresh water supply line 7b (heat exchanger 6 side) upstream from the junction of the fresh water supply line 7b and the fresh water bypass pipe 8, and A flow rate adjustment valve may be provided in each of the fresh water bypass pipes 8 to adjust the flow rate of fresh water flowing through the heat exchanger 6 and the flow rate of fresh water flowing through the fresh water bypass pipe 8.
The fresh water temperature adjusting valve 11 is a valve motor that transmits a valve motor (not shown) and a valve opening As on the inlet A side (heat exchanger 6 side) of the valve body to the adjusting valve control device 22. With a transmitter.

清水温度調整弁11と船内機器12との間(清水温度調整弁11の下流側)の清水供給ライン7bには、清水供給ライン7b内を流れる清水の水温を計測する清水温度検出器21が取り付けられている。
そして、清水温度検出器21にて検出された清水の温度計測値は、調整弁制御装置22に送信される。
A fresh water temperature detector 21 for measuring the temperature of fresh water flowing through the fresh water supply line 7b is attached to the fresh water supply line 7b between the fresh water temperature adjustment valve 11 and the inboard equipment 12 (downstream of the fresh water temperature adjustment valve 11). It has been.
The measured temperature value of fresh water detected by the fresh water temperature detector 21 is transmitted to the regulating valve control device 22.

調整弁制御装置22では、清水温度検出器21から送信された清水の温度計測値に基づき、清水の水温が予め設定された所定の水温の範囲内に納まるように、遠隔開閉制御式の清水温度調整弁11の入口A、Bの開度を制御するようになっている。
このようにして、熱交換器6で冷却された清水と熱交換器6をパイバスした清水戻りライン7aからの清水とを清水温度調整弁11で混合させることにより、船内機器12に流入する冷却清水の水温を一定に保っている。
なお、調整弁制御装置22には、弁開度Asを表示する表示器も必要に応じて設けられている。
In the regulating valve control device 22, based on the measured value of the fresh water temperature transmitted from the fresh water temperature detector 21, the fresh water temperature of the remote open / close control type is set so that the fresh water temperature falls within a predetermined water temperature range set in advance. The opening degree of the inlets A and B of the regulating valve 11 is controlled.
In this way, the fresh water cooled by the heat exchanger 6 and the fresh water from the fresh water return line 7 a that bypasses the heat exchanger 6 are mixed by the fresh water temperature control valve 11, whereby the cooled fresh water flowing into the inboard equipment 12. The water temperature is kept constant.
The adjusting valve control device 22 is also provided with a display for displaying the valve opening degree As as required.

冷却清水循環ポンプ9は、三相交流誘導かご型の冷却清水循環ポンプ駆動モータ10により駆動されるようになっている。
なお、図示を省略しているが、冷却清水循環ポンプ9及び冷却清水循環ポンプ駆動モータ10も、冷却システムの2重化のために2組設けられている。
The cooling fresh water circulation pump 9 is driven by a three-phase AC induction squirrel-type cooling fresh water circulation pump drive motor 10.
In addition, although illustration is abbreviate | omitted, two sets of the cooling fresh water circulation pump 9 and the cooling fresh water circulation pump drive motor 10 are also provided for the duplication of a cooling system.

そして、通常航海時等にはどちらか一方のみが運転されており、運転中の冷却清水循環ポンプ9、冷却清水循環ポンプ駆動モータ10或いは制御装置等にトラブルが発生した場合等には、直ちに、スタンバイ中の冷却清水循環ポンプ9及び冷却清水循環ポンプ駆動モータ10が起動し、切り換わるようになっている。
また、各冷却清水循環ポンプ駆動モータ10は、各々、冷却清水循環ポンプ始動器(スタータ)20により発停制御(回転数制御はしない)されるようになっている。
Only one of them is operated during normal voyage, etc., and when trouble occurs in the cooling fresh water circulation pump 9, the cooling fresh water circulation pump drive motor 10 or the control device during operation, immediately, The cooling fresh water circulation pump 9 and the cooling fresh water circulation pump drive motor 10 in standby are started and switched.
Each of the cooling fresh water circulation pump drive motors 10 is controlled to start and stop (no rotation speed control) by a cooling fresh water circulation pump starter (starter) 20.

以上の冷却海水系統30及び冷却清水系統31(冷却海水移送ポンプ駆動モータ5の制御を除く)は、従来から実機に採用されているものと何等変るところはない。
従来から実機に採用されているものと異なる点は、冷却海水移送ポンプ駆動モータ5の制御にある。
以下、冷却海水移送ポンプ駆動モータ5の回転数制御につき説明する。
The above-described cooling seawater system 30 and cooling freshwater system 31 (excluding control of the cooling seawater transfer pump drive motor 5) are not different from those conventionally used in actual machines.
The difference from what has been conventionally used in actual machines is the control of the cooling seawater transfer pump drive motor 5.
Hereinafter, the rotation speed control of the cooling seawater transfer pump drive motor 5 will be described.

<冷却海水移送ポンプ駆動モータ制御>
各冷却海水移送ポンプ4を駆動する各冷却海水移送ポンプ駆動モータ5は、インバータ装置23により回転数が制御されるようになっている。
この各インバータ装置23は、調整弁制御装置22(或いは、清水温度調整弁11)からの弁開度値Asと弁開度目標値Aoとに基づき、操作回転数Rs(及び供給電圧)を演算するコントロールユニット25と、上記操作回転数Rsで冷却海水移送ポンプ駆動モータ5を駆動制御するVVVFコントローラ24(Variable Voltage Variable Frequency Controller)とにより構成されている。
<Cooling seawater transfer pump drive motor control>
Each cooling seawater transfer pump drive motor 5 that drives each cooling seawater transfer pump 4 is controlled in rotation speed by an inverter device 23.
Each inverter device 23 calculates the operation rotation speed Rs (and supply voltage) based on the valve opening value As and the valve opening target value Ao from the adjusting valve control device 22 (or the fresh water temperature adjusting valve 11). And a VVVF controller 24 (Variable Voltage Variable Frequency Controller) for driving and controlling the cooling seawater transfer pump drive motor 5 at the operation rotational speed Rs.

VVVFコントローラ24は、配電盤からの三相交流電流を目標の電圧の直流電流に変換するコンバータ部と直流電流を目標の周波数の三相交流電流に変換するインバータ部とにより構成されている。
なお、各インバータ装置23は、配電盤の三相交流電源から遮断器を介して電力が供給されるようになっている。
The VVVF controller 24 includes a converter unit that converts a three-phase alternating current from the switchboard into a direct current having a target voltage, and an inverter unit that converts the direct current into a three-phase alternating current having a target frequency.
Each inverter device 23 is supplied with electric power from a three-phase AC power source of the switchboard via a circuit breaker.

また、コントロールユニット25は、回転数演算器26、比較器27及び弁開度目標値設定器28により構成されている。
なお、コントロールユニット25はマイクロコンピュータ、プロセッサー、シーケンサー等の形態をなし、回転数演算器26、比較器27、弁開度目標値設定器28等の各種の演算器、処理器は、(サブ)プログラム等の形態をなす。
この場合、弁開度目標値設定器28の弁開度目標値Aoは、プログラム内に予め設定された(組み込まれた)定数とすることができる。
The control unit 25 includes a rotation speed calculator 26, a comparator 27, and a valve opening target value setter 28.
The control unit 25 is in the form of a microcomputer, processor, sequencer, etc., and various arithmetic units and processors such as a rotational speed calculator 26, a comparator 27, and a valve opening target value setter 28 are (sub). It takes the form of a program.
In this case, the valve opening target value Ao of the valve opening target value setter 28 can be a constant preset (incorporated) in the program.

しかしながら、本発明及び実施の形態のものは、これに限定されるものではなく、回転数演算器26、比較器27、弁開度目標値設定器28等を、個々の電子回路の形態のものとしても良い。
更には、回転数演算器26、比較器27、弁開度目標値設定器28等の各機能を実行するプログラムを、CD−ROM等の記録媒体に記録しておき、コントロールユニット25(マイクロコンピュータ等)にダウンロードし、実行するようにしても良い。
However, the present invention and the embodiment are not limited to this, and the rotational speed calculator 26, the comparator 27, the valve opening target value setter 28, etc. are in the form of individual electronic circuits. It is also good.
Furthermore, a program for executing each function of the rotational speed calculator 26, the comparator 27, the valve opening target value setter 28, etc. is recorded on a recording medium such as a CD-ROM, and the control unit 25 (microcomputer). Etc.) and may be executed.

次に、コントロールユニット25における種々のモータの制御の例につき説明する。
<コントロールユニット25における第1のモータ制御例>
弁開度目標値設定器28には、例えば「80%(正確には、80%±数%の範囲)」といった1個の所定の弁開度目標値Aoが予め設定されている。
比較器27は、弁開度目標値設定器28に予め設定された弁開度目標値Aoと調整弁制御装置22から送信された弁開度値Asとを比較し、弁開度値As>弁開度目標値Aoか否かを判定し、その比較結果(Yes/No)を回転数演算器26に送信する。
Next, examples of control of various motors in the control unit 25 will be described.
<First Motor Control Example in Control Unit 25>
In the valve opening target value setter 28, for example, one predetermined valve opening target value Ao such as “80% (exactly, a range of 80% ± several%)” is set in advance.
The comparator 27 compares the valve opening target value Ao preset in the valve opening target value setter 28 with the valve opening value As transmitted from the regulating valve control device 22, and the valve opening value As> It is determined whether or not the valve opening target value is Ao, and the comparison result (Yes / No) is transmitted to the rotational speed calculator 26.

回転数演算器26は、比較器27からの比較結果の信号に基づき、弁開度値As>弁開度目標値Aoであれば現在の回転数Roに予め設定された所定の回転数増減値Rα(固定値)を加算した操作回転数Rsを、所定の時間間隔でVVVFコントローラ24に送信する。
なお、現在の回転数Roがモータの定格最大回転数であれば、現在の回転数Roを操作回転数Rsとし(回転数維持)、所定の時間間隔でVVVFコントローラ24に送信する。
また、弁開度値As<弁開度目標値Aoであれば現在の回転数Roに予め設定された所定の回転数増減値Rα(固定値)を減算した操作回転数Rsを、所定の時間間隔でVVVFコントローラ24に送信する。
なお、現在の回転数Roがモータの定格最低回転数であれば、現在の回転数Roを操作回転数Rsとし(回転数維持)、所定の時間間隔でVVVFコントローラ24に送信する。
VVVFコントローラ24では、回転数演算器26から送信された操作回転数Rsにて冷却海水移送ポンプ駆動モータ5を駆動する。
Based on the comparison result signal from the comparator 27, the rotational speed calculator 26 is a predetermined rotational speed increase / decrease value preset to the current rotational speed Ro if the valve opening value As> the valve opening target value Ao. The operation rotation speed Rs obtained by adding Rα (fixed value) is transmitted to the VVVF controller 24 at predetermined time intervals.
If the current rotation speed Ro is the rated maximum rotation speed of the motor, the current rotation speed Ro is set as the operation rotation speed Rs (maintenance of the rotation speed), and is transmitted to the VVVF controller 24 at predetermined time intervals.
Further, if the valve opening degree value As <the valve opening degree target value Ao, the operation rotational speed Rs obtained by subtracting a predetermined rotational speed increase / decrease value Rα (fixed value) set in advance to the current rotational speed Ro is set to a predetermined time. It is transmitted to the VVVF controller 24 at intervals.
If the current rotation speed Ro is the rated minimum rotation speed of the motor, the current rotation speed Ro is set as the operation rotation speed Rs (maintenance of the rotation speed), and is transmitted to the VVVF controller 24 at predetermined time intervals.
In the VVVF controller 24, the cooling seawater transfer pump drive motor 5 is driven at the operation rotational speed Rs transmitted from the rotational speed calculator 26.

このとき、冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変化率(ΔRs/s)は、調整弁制御装置22における弁開度値Asの変化率(ΔAs/s)より遅く(ΔRs/s<ΔAs/s)すると良い。
例えば、調整弁制御装置22にいて、開度80%から開度40%(半分)にするのに要する時間が10秒間であれば、冷却海水移送ポンプ駆動モータ5の操作回転数Rsを半分にするのに要する時間を例えば2倍の20秒間(2×ΔRs/s=ΔAs/s)とする。
なお、清水温度調整弁11は、通常モータ駆動(回転数はほぼ一定)である。
したがって、弁開度値Asの変化率(ΔAs/s)は既知(ほぼ一定の固定値)であるので、弁開度値Asの変化率(ΔAs/s)より遅い変化率(ΔRs/s)の回転数増減値Rα(固定値)を、容易に決定することができる。
At this time, the rate of change (ΔRs / s) of the operation speed Rs of the cooling seawater transfer pump drive motor 5 is slower than the rate of change (ΔAs / s) of the valve opening value As in the regulating valve control device 22 (ΔRs / s). <ΔAs / s).
For example, in the regulating valve control device 22, if the time required to change the opening degree from 80% to 40% (half) is 10 seconds, the operation speed Rs of the cooling seawater transfer pump drive motor 5 is halved. For example, the time required for this is doubled for 20 seconds (2 × ΔRs / s = ΔAs / s).
The fresh water temperature adjusting valve 11 is normally driven by a motor (the rotation speed is substantially constant).
Therefore, since the rate of change (ΔAs / s) of the valve opening value As is known (almost constant fixed value), the rate of change (ΔRs / s) slower than the rate of change (ΔAs / s) of the valve opening value As. The rotation speed increase / decrease value Rα (fixed value) can be easily determined.

このように構成することにより、冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変化に遅れることなく清水温度調整弁11が操作されるので、冷却海水移送ポンプ駆動モータ5は、常に最新の弁開度値Asに基づき制御され、冷却海水移送ポンプ駆動モータ5の制御と清水温度調整弁11の制御とが緩衝してハンチィングを起こしたりすることがない。   By configuring in this way, the fresh water temperature adjustment valve 11 is operated without delaying the change in the operation speed Rs of the cooling seawater transfer pump drive motor 5, so that the cooling seawater transfer pump drive motor 5 is always the latest valve. It is controlled based on the opening value As, and the control of the cooling seawater transfer pump drive motor 5 and the control of the fresh water temperature adjusting valve 11 do not buffer and cause hunting.

<コントロールユニット25における第2のモータ制御例>
第2のモータ制御例においては、図1の点線で図示のように、回転数演算器26とVVVFコントローラ24との間に、回転数制限器29が設けられている。
そして、回転数制限器29には、操作回転数Rsの変化率(ΔRs/s)<弁開度値Asの変化率(ΔAs/s)となるような、所定の操作回転数Rsの変化率(ΔRs/s)の上限値(ΔRsmax/s)が予め設定されている。
<Second Motor Control Example in Control Unit 25>
In the second motor control example, a rotation speed limiter 29 is provided between the rotation speed calculator 26 and the VVVF controller 24 as shown by a dotted line in FIG.
Then, the rotation speed limiter 29 includes a change rate of a predetermined operation rotation speed Rs such that a change rate of the operation rotation speed Rs (ΔRs / s) <a change rate of the valve opening value As (ΔAs / s). An upper limit value (ΔRsmax / s) of (ΔRs / s) is set in advance.

弁開度目標値設定器28には、第1のモータ制御例と同様に、1個の所定の弁開度目標値Aoが予め設定されている。
比較器27は、弁開度目標値設定器28に予め設定された弁開度目標値Aoと調整弁制御装置22から送信された弁開度値Asとの差(As−Ao)、比(As/Ao)或いは変化率((As−Ao)/Ao)を演算し、その比較結果を回転数演算器26に送信する。
In the valve opening target value setter 28, one predetermined valve opening target value Ao is preset in the same manner as in the first motor control example.
The comparator 27 is configured such that a difference (As−Ao) between the valve opening target value Ao preset in the valve opening target value setting unit 28 and the valve opening value As transmitted from the adjusting valve control device 22 As / Ao) or rate of change ((As−Ao) / Ao) is calculated, and the comparison result is transmitted to the rotational speed calculator 26.

回転数演算器26は、比較器27からの比較結果の信号(As−Ao、As/Ao、或いは、(As−Ao)/Ao)に基づき、例えば、PI演算、PID演算等にて操作回転数Rsを演算する。
なお、操作回転数Rsには、回転数上限値(モータの定格最大回転数)及び回転数下限値(モータの定格最低回転数)が予め設定されており、回転数上限値を超える場合は回転数上限値を操作回転数Rsとし、回転数下限値を下回る場合は回転数下限値を操作回転数Rsとする。
次に、回転数制限器29にて、操作回転数Rsの変化率(ΔRs/s)<弁開度値Asの変化率(ΔAs/s)か否か、或いは、操作回転数Rsの変化率(ΔRs/s)<操作回転数Rsの変化率(ΔRs/s)の上限値(ΔRsmax/s)か否か、という判定が行われる。
Based on the comparison result signal (As-Ao, As / Ao, or (As-Ao) / Ao) from the comparator 27, the rotational speed calculator 26 is operated and rotated by, for example, PI calculation or PID calculation. The number Rs is calculated.
Note that the operation speed Rs is preset with a rotation speed upper limit (rated maximum motor speed) and a rotation speed lower limit (rated minimum motor speed). The upper limit of the number of rotations is the operation speed Rs, and if it is below the lower limit of the rotation speed, the lower limit of the rotation speed is the operation speed Rs.
Next, the rotation speed limiter 29 determines whether or not the rate of change of the operation speed Rs (ΔRs / s) <the rate of change of the valve opening value As (ΔAs / s), or the rate of change of the operation speed Rs. It is determined whether (ΔRs / s) <the upper limit (ΔRsmax / s) of the rate of change (ΔRs / s) of the operation speed Rs.

ΔRs/s<ΔAs/s(又はΔRsmax/s)であれば、回転数演算器26にて演算された操作回転数Rsを所定の時間間隔でVVVFコントローラ24に送信する。
逆に、ΔRs/s≧ΔAs/s(又はΔRsmax/s)であれば、上記の所定の操作回転数Rsの変化率(ΔRs/s)の上限値(ΔRsmax/s)に基づき、操作回転数Rsを演算し所定の時間間隔でVVVFコントローラ24に送信する。
VVVFコントローラ24では、回転数演算器26から送信された操作回転数Rsにて冷却海水移送ポンプ駆動モータ5を駆動する。
If ΔRs / s <ΔAs / s (or ΔRsmax / s), the operation rotational speed Rs calculated by the rotational speed calculator 26 is transmitted to the VVVF controller 24 at predetermined time intervals.
Conversely, if ΔRs / s ≧ ΔAs / s (or ΔRsmax / s), the operation speed is based on the upper limit value (ΔRsmax / s) of the change rate (ΔRs / s) of the predetermined operation speed Rs. Rs is calculated and transmitted to the VVVF controller 24 at predetermined time intervals.
In the VVVF controller 24, the cooling seawater transfer pump drive motor 5 is driven at the operation rotational speed Rs transmitted from the rotational speed calculator 26.

このように、調整弁制御装置22からの弁開度値Asと弁開度目標値Aoとに基づき冷却海水移送ポンプ駆動モータ5の回転数を制御するに当たり、操作回転数Rsの変化率(ΔRs/s)<弁開度値Asの変化率(ΔAs/s)となるような操作回転数Rsを用いることにより、上記の第1のモータ制御例と同様に、冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変化に遅れることなく清水温度調整弁11が操作されるので、冷却海水移送ポンプ駆動モータ5は、常に最新の弁開度値Asに基づき制御され、冷却海水移送ポンプ駆動モータ5の制御と清水温度調整弁11の制御とが緩衝してハンチィングを起こしたりすることがない。   Thus, in controlling the rotation speed of the cooling seawater transfer pump drive motor 5 based on the valve opening value As and the valve opening target value Ao from the regulating valve control device 22, the change rate (ΔRs) of the operation rotation speed Rs is controlled. / S) By using the operation speed Rs such that the rate of change of the valve opening value As (ΔAs / s) is satisfied, the cooling seawater transfer pump drive motor 5 is controlled in the same manner as in the first motor control example. Since the fresh water temperature adjustment valve 11 is operated without delaying the change in the operation speed Rs, the cooling seawater transfer pump drive motor 5 is always controlled based on the latest valve opening value As, and the cooling seawater transfer pump drive motor 5 is controlled. And the control of the fresh water temperature control valve 11 do not cause hunting due to buffering.

<コントロールユニット25における第3のモータ制御例>
弁開度目標値設定器28には、例えば「80%」、「60%」のごとく異なる少なくとも2個の第1、2の弁開度目標値Ao1、Ao2が予め設定されている。
通常は、上記の第1、2のモータ制御例と同様に、第1の弁開度目標値Ao1として「80%」を採用して演算、制御が行われる。
<Third Motor Control Example in Control Unit 25>
In the valve opening target value setter 28, for example, at least two first and second valve opening target values Ao1 and Ao2 that are different, such as “80%” and “60%”, are set in advance.
Normally, calculation and control are performed using “80%” as the first valve opening target value Ao1 as in the first and second motor control examples.

そして、清水の需要が増し、清水温度調整弁11が全開になる頻度(所定時間或いは単位時間当たりの回数)が増加したとき、頻繁に冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変更が行われることになる。
そこで、清水温度調整弁11が全開になる頻度が増加したとき、弁開度目標値設定器28或いは回転数演算器26にて、第1の弁開度目標値Ao1より低い値の第2の弁開度目標値Ao2を「60%」に自動的に選択(切替え)するようにする。
即ち、冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変更が頻繁に行われる場合、低めの第2の弁開度目標値Ao2を設定することにより、応答速度の速い清水温度調整弁11による温度制御を多くして、冷却海水移送ポンプ駆動モータ5の操作回転数Rsの変更の割合を少なくすることができる。
And when the demand for fresh water increases and the frequency at which the fresh water temperature adjustment valve 11 is fully opened (the number of times per predetermined time or unit time) is increased, the operation rotational speed Rs of the cooling seawater transfer pump drive motor 5 is frequently changed. Will be done.
Therefore, when the frequency at which the fresh water temperature adjustment valve 11 is fully opened increases, the second valve opening target value setter 28 or the rotation speed calculator 26 has a second value lower than the first valve opening target value Ao1. The valve opening target value Ao2 is automatically selected (switched) to “60%”.
That is, when the operation rotation speed Rs of the cooling seawater transfer pump drive motor 5 is frequently changed, by setting the lower second valve opening target value Ao2, the fresh water temperature adjusting valve 11 having a quick response speed is used. By increasing the temperature control, the rate of change in the operation rotational speed Rs of the cooling seawater transfer pump drive motor 5 can be reduced.

本発明の実施の形態に係る冷却海水移送ポンプの回転数制御装置或いは船舶の冷却システムは上記のごとく構成されており、インバータ装置23により、冷却海水移送ポンプ4の回転数が制御される。
このとき、回転数の制御は、調整弁制御装置22により制御される清水温度調整弁11の弁開度値Asが予め設定された弁開度目標値Aoとなるように、冷却海水移送ポンプ4の回転数を、段階的ではなく、インバータ装置23により連続的に制御することにより行われる。
The cooling seawater transfer pump rotation speed control device or the ship cooling system according to the embodiment of the present invention is configured as described above, and the rotation speed of the cooling seawater transfer pump 4 is controlled by the inverter device 23.
At this time, the rotation speed is controlled so that the valve opening value As of the fresh water temperature adjusting valve 11 controlled by the adjusting valve control device 22 becomes the preset valve opening target value Ao. The rotation speed is controlled by the inverter device 23 continuously rather than stepwise.

即ち、清水温度調整弁11の熱交換器6側(図1の入口A)の弁開度値Asが、所定の弁開度目標値Ao(Ao1、Ao2)より大きい場合は、インバータ装置23により、冷却海水移送ポンプ4の回転数を連続的に増加させる。
逆に、弁開度値Asが、所定の弁開度目標値Ao(Ao1、Ao2)より小さい(清水バイパス配管8側(図1の入口B)に開いている)場合は、インバータ装置23により、冷却海水移送ポンプ4の回転数を連続的に減少させる。
That is, when the valve opening value As on the heat exchanger 6 side (inlet A in FIG. 1) of the fresh water temperature adjusting valve 11 is larger than a predetermined valve opening target value Ao (Ao1, Ao2), the inverter device 23 The number of rotations of the cooling seawater transfer pump 4 is continuously increased.
On the contrary, when the valve opening value As is smaller than the predetermined valve opening target value Ao (Ao1, Ao2) (opened on the fresh water bypass pipe 8 side (inlet B in FIG. 1)), the inverter device 23 The number of rotations of the cooling seawater transfer pump 4 is continuously reduced.

このとき、冷却海水移送ポンプ4(冷却海水移送ポンプ駆動モータ5)の操作回転数Rsの変化率(ΔRs/s)<清水温度調整弁11の弁開度値Asの変化率(ΔAs/s)となるように、冷却海水移送ポンプ4(冷却海水移送ポンプ駆動モータ5)の回転数を制御する。   At this time, the change rate (ΔRs / s) of the operation speed Rs of the cooling seawater transfer pump 4 (cooling seawater transfer pump drive motor 5) <the change rate of the valve opening value As of the fresh water temperature adjustment valve 11 (ΔAs / s). Then, the rotation speed of the cooling seawater transfer pump 4 (cooling seawater transfer pump drive motor 5) is controlled.

このように冷却海水移送ポンプ4の回転数制御を、インバータ装置23により、清水温度調整弁11の弁開度値Asに基づき行うことにより、以下の場合に冷却海水移送ポンプ4の回転数を定格回転数よりも低い回転数で運転することが可能となり、消費電力の削減に繋がる。
1)冷却海水温度が設計温度(通常32℃)より低い場合
2)船内機器12の発生熱量が、設計条件よりも少ない場合
Thus, by controlling the rotation speed of the cooling seawater transfer pump 4 by the inverter device 23 based on the valve opening value As of the fresh water temperature adjusting valve 11, the rotation speed of the cooling seawater transfer pump 4 is rated in the following cases. It becomes possible to operate at a lower rotational speed than the rotational speed, which leads to a reduction in power consumption.
1) When the cooling seawater temperature is lower than the design temperature (usually 32 ° C) 2) When the amount of heat generated by the inboard equipment 12 is less than the design conditions

<その他の実施の形態>
以上、本発明の各実施の形態について説明したが、本発明は上記の各実施の形態に限定されず、本発明の範囲内で種々の変更を加えてよいことは言うまでもない。
<Other embodiments>
As mentioned above, although each embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to each said embodiment, A various change may be added within the scope of the present invention.

例えば、冷却清水循環ポンプ9は、清水戻りライン7aではなく清水供給ライン7bに設けてもよく、清水温度調整弁11は、清水供給ライン7bではなく清水戻りライン7aに設けてもよい。   For example, the cooling fresh water circulation pump 9 may be provided in the fresh water supply line 7b instead of the fresh water return line 7a, and the fresh water temperature adjustment valve 11 may be provided in the fresh water return line 7a instead of the fresh water supply line 7b.

本発明の実施の形態に係る冷却海水移送ポンプの速度制御装置及び船舶の冷却システムの全体構成図である。1 is an overall configuration diagram of a cooling seawater transfer pump speed control device and a ship cooling system according to an embodiment of the present invention. 従来のものの全体構成図である。It is a whole block diagram of the conventional one.

符号の説明Explanation of symbols

1 シーチェスト1
2 船体外板2
3 冷却海水配管3
4 冷却海水移送ポンプ4
5 冷却海水移送ポンプ駆動モータ5
6 熱交換器6
7 冷却清水循環配管7
7a 清水戻りライン7a
7b 清水供給ライン7b
8 清水バイパス配管8
9 冷却清水循環ポンプ9
10 冷却清水循環ポンプ駆動モータ10
11 清水温度調整弁11
12 船内機器12
20 冷却清水循環ポンプ始動器20
21 清水温度検出器21
22 調整弁制御装置22
23 インバータ装置23
24 VVVFコントローラ24
25 コントロールユニット25
26 回転数演算器26
27 比較器27
28 弁開度目標値設定器28
29 回転数制限器29
30 冷却海水系統30
31 冷却清水系統31
Ao 弁開度目標値Ao
As 弁開度(弁開度値)As
Rs 操作回転数Rs
1 Sea Chest 1
2 Hull skin 2
3 Cooling seawater piping 3
4 Cooling seawater transfer pump 4
5 Cooling seawater transfer pump drive motor 5
6 Heat exchanger 6
7 Cooling fresh water circulation piping 7
7a Shimizu return line 7a
7b Fresh water supply line 7b
8 Shimizu bypass piping 8
9 Cooling fresh water circulation pump 9
10 Cooling fresh water circulation pump drive motor 10
11 Shimizu temperature control valve 11
12 Inboard equipment 12
20 Cooling fresh water circulation pump starter 20
21 Shimizu temperature detector 21
22 Control valve control device 22
23 Inverter device 23
24 VVVF controller 24
25 Control unit 25
26 Rotational speed calculator 26
27 Comparator 27
28 Valve opening target value setter 28
29 Speed limiter 29
30 Cooling seawater system 30
31 Cooling fresh water system 31
Ao Valve opening target value Ao
As valve opening (valve opening value) As
Rs Operation speed Rs

Claims (6)

熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、前記清水温度調整弁の弁開度値と予め設定された弁開度目標値とに基づき操作回転数の変化率が前記清水温度調整弁の弁開度の変化率より小さくなるような操作回転数を演算し、前記操作回転数にて前記冷却海水移送ポンプ駆動モータの回転数を制御するものであることを特徴とする冷却海水移送ポンプの回転数制御装置。
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
In the inverter device, the rate of change of the operation rotational speed is smaller than the rate of change of the valve opening of the fresh water temperature adjusting valve based on the valve opening value of the fresh water temperature adjusting valve and a preset valve opening target value. A rotation speed control device for a cooling seawater transfer pump, characterized in that the operation rotation speed is calculated and the rotation speed of the cooling seawater transfer pump drive motor is controlled by the operation rotation speed.
前記冷却海水移送ポンプ駆動モータは、三相交流かご形誘導電動機であることを特徴とする請求項1に記載の冷却海水移送ポンプの回転数制御装置。   The rotation speed control device for a cooling seawater transfer pump according to claim 1, wherein the cooling seawater transfer pump drive motor is a three-phase AC squirrel-cage induction motor. 熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、
弁開度目標値が予め設定された弁開度目標値設定器と、
前記清水温度調整弁の弁開度値と前記弁開度目標値とを比較する比較器と、
前記比較器での比較結果に基づき操作回転数を演算する回転数演算器と、
前記操作回転数にて冷却海水移送ポンプ駆動モータを駆動するVVVFコントローラとを有し、
前記弁開度目標値設定器には異なる2個の弁開度目標値が予め設定され、前記弁開度目標値設定器又は前記回転数演算器は、前記操作回転数の上昇頻度が所定回数以上になったときに低い方の前記弁開度目標値を選択するものであることを特徴とする冷却海水移送ポンプの回転数制御装置。
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
The inverter device is
A valve opening target value setter in which a valve opening target value is set in advance;
A comparator for comparing the valve opening value of the fresh water temperature adjustment valve and the valve opening target value;
A rotational speed calculator for calculating the operating rotational speed based on the comparison result in the comparator;
Possess a VVVF controller for driving the cooling sea water transfer pump drive motor by said control rotational speed,
Two different valve opening target values are preset in the valve opening target value setter, and the valve opening target value setter or the rotational speed calculator has a frequency of increasing the operation rotational speed a predetermined number of times. When it becomes above, the said lower valve opening target value is selected , The rotation speed control apparatus of the cooling seawater transfer pump characterized by the above-mentioned .
前記インバータ装置は、前記操作回転数の変化率が前記弁開度の変化率より小さくなるように前記操作回転数を制限する回転数制限器を有することを特徴とする請求項に記載の冷却海水移送ポンプの回転数制御装置。 The inverter device, cooling according to claim 3, characterized in that it has a rotation speed limiter which the control rotational speed of the change rate limiting said control rotational speed to be less than the rate of change in the valve opening Rotational speed control device for seawater transfer pump. 熱交換器に海水を供給する冷却海水移送ポンプと、
前記冷却海水移送ポンプを駆動する冷却海水移送ポンプ駆動モータと、
前記冷却海水移送ポンプ駆動モータの回転数を制御するインバータ装置と、
前記熱交換器により冷却された清水を船内機器に循環させる冷却清水循環配管と、
前記冷却清水循環配管に接続され前記熱交換器をバイパスする清水バイパス配管と、
前記熱交換器を流れる清水の流量と前記清水バイパス配管を流れる清水の流量とを調整する清水温度調整弁と、
前記清水温度調整弁の下流側の清水の水温を計測する清水温度検出器と、
前記清水温度検出器にて計測された水温により前記清水温度調整弁の開度を調整する調整弁制御装置とを備え、
前記インバータ装置は、
弁開度目標値が予め設定された弁開度目標値設定器と、
前記清水温度調整弁の弁開度値と前記弁開度目標値とを比較する比較器と、
前記弁開度値が前記弁開度目標値より大であれば現在の回転数に予め設定された回転数増減値を加算した操作回転数を演算し、前記弁開度値が弁開度目標値より小であれば現在の回転数に前記回転数増減値を減算した前記操作回転数を演算する回転数演算器と、
前記操作回転数にて冷却海水移送ポンプ駆動モータを駆動するVVVFコントローラとを有し、
前記弁開度目標値設定器には異なる2個の弁開度目標値が予め設定され、前記弁開度目標値設定器又は前記回転数演算器は、前記操作回転数の上昇頻度が所定回数以上になったときに低い方の前記弁開度目標値を選択するものであることを特徴とする冷却海水移送ポンプの回転数制御装置。
A cooling seawater transfer pump for supplying seawater to the heat exchanger;
A cooling seawater transfer pump drive motor for driving the cooling seawater transfer pump;
An inverter device for controlling the rotation speed of the cooling seawater transfer pump drive motor;
Cooled fresh water circulation piping for circulating fresh water cooled by the heat exchanger to inboard equipment;
A fresh water bypass pipe connected to the cooled fresh water circulation pipe and bypassing the heat exchanger;
A fresh water temperature regulating valve for adjusting a flow rate of fresh water flowing through the heat exchanger and a flow rate of fresh water flowing through the fresh water bypass pipe;
A fresh water temperature detector for measuring the temperature of the fresh water downstream of the fresh water temperature regulating valve;
An adjustment valve control device for adjusting the opening of the fresh water temperature adjustment valve according to the water temperature measured by the fresh water temperature detector;
The inverter device is
A valve opening target value setter in which a valve opening target value is set in advance;
A comparator for comparing the valve opening value of the fresh water temperature adjustment valve and the valve opening target value;
If the valve opening value is larger than the valve opening target value, the operation rotational speed obtained by adding a preset rotational speed increase / decrease value to the current rotational speed is calculated, and the valve opening value is calculated as the valve opening target value. A rotational speed calculator that calculates the operation rotational speed obtained by subtracting the rotational speed increase / decrease value from the current rotational speed if smaller than the value;
Possess a VVVF controller for driving the cooling sea water transfer pump drive motor by said control rotational speed,
Two different valve opening target values are preset in the valve opening target value setter, and the valve opening target value setter or the rotational speed calculator has a frequency of increasing the operation rotational speed a predetermined number of times. When it becomes above, the said lower valve opening target value is selected , The rotation speed control apparatus of the cooling seawater transfer pump characterized by the above-mentioned .
前記冷却海水移送ポンプ駆動モータは、三相交流かご形誘導電動機であることを特徴とする請求項3乃至5のいずれかに記載の冷却海水移送ポンプの回転数制御装置。 The rotation speed control device for a cooling seawater transfer pump according to any one of claims 3 to 5 , wherein the cooling seawater transfer pump drive motor is a three-phase AC squirrel-cage induction motor.
JP2008124565A 2008-05-12 2008-05-12 Rotational speed control device for cooling seawater transfer pump Active JP4859874B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008124565A JP4859874B2 (en) 2008-05-12 2008-05-12 Rotational speed control device for cooling seawater transfer pump
CN200980102811XA CN101925511B (en) 2008-05-12 2009-02-06 Speed control apparatus for cooling sea-water transfer pump
PCT/JP2009/052047 WO2009139201A1 (en) 2008-05-12 2009-02-06 Speed control apparatus for cooling sea-water transfer pump
KR1020107013384A KR101222799B1 (en) 2008-05-12 2009-02-06 Speed control apparatus for cooling sea-water transfer pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124565A JP4859874B2 (en) 2008-05-12 2008-05-12 Rotational speed control device for cooling seawater transfer pump

Publications (2)

Publication Number Publication Date
JP2009274469A JP2009274469A (en) 2009-11-26
JP4859874B2 true JP4859874B2 (en) 2012-01-25

Family

ID=41318574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124565A Active JP4859874B2 (en) 2008-05-12 2008-05-12 Rotational speed control device for cooling seawater transfer pump

Country Status (4)

Country Link
JP (1) JP4859874B2 (en)
KR (1) KR101222799B1 (en)
CN (1) CN101925511B (en)
WO (1) WO2009139201A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324409B2 (en) * 2009-12-11 2013-10-23 郵船商事株式会社 Heat load cooling device and control device for heat load cooling device
JP5729910B2 (en) * 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof
JP2012122371A (en) * 2010-12-07 2012-06-28 Ihi Marine United Inc Cooling system and cooling method
KR101494567B1 (en) * 2011-10-11 2015-02-17 미츠비시 쥬고교 가부시키가이샤 Ship propulsion system and ship with same
KR101324949B1 (en) * 2011-11-16 2013-11-08 삼성중공업 주식회사 Cooling system for ship and operation control method thereof and ship having the same
WO2014172153A1 (en) 2013-04-19 2014-10-23 Imo Industries, Inc. Intelligent sea water cooling system
KR102146906B1 (en) 2013-11-19 2020-08-21 대우조선해양 주식회사 Apparatus for controlling operation point of cooling sea water centrifugal pump
JP2015131613A (en) * 2014-01-15 2015-07-23 株式会社浪速ポンプ製作所 Vessel cooling system
CN110735706A (en) * 2014-08-21 2020-01-31 色蔻泵北美有限责任公司 Intelligent seawater cooling system
CA2969329C (en) * 2015-02-13 2019-04-30 Imo Industries, Inc. Intelligent sea water cooling system and method
CN105539804A (en) * 2015-12-24 2016-05-04 中国船舶重工集团公司第七0四研究所 Frequency converting control system and control method suitable for central cooling system of ship
DE102016213787A1 (en) * 2016-07-27 2018-02-01 Man Diesel & Turbo Se Method for operating a cooling system of a ship
JP6599293B2 (en) * 2016-09-02 2019-10-30 住友重機械マリンエンジニアリング株式会社 Central fresh water cooling system for ships
JP6788440B2 (en) 2016-09-06 2020-11-25 川崎重工業株式会社 Ship cooling system
KR102411481B1 (en) 2017-12-05 2022-06-22 대우조선해양 주식회사 Cooling system for a ship using flow control
CN109850110A (en) * 2019-02-26 2019-06-07 广东省智能机器人研究院 Water-cooling system and its cooling means suitable for small-sized hydraulic jet propulsion unmanned boat
CN109969372A (en) * 2019-04-11 2019-07-05 苏州飞驰环保科技股份有限公司 Inner-outer circulation switching is with the water-cooling system of the water surface cleaning ship suitable for different waters
CN112145406A (en) * 2020-06-28 2020-12-29 中国舰船研究设计中心 Energy-saving control method for sea water pump of central cooling system
KR102589151B1 (en) * 2021-12-09 2023-10-13 주식회사 드라이브포스 Control system of seawater pump for vessels
CN114572372A (en) * 2022-02-18 2022-06-03 中国船舶重工集团公司第七一九研究所 Ship constant-frequency pump cooling system, control method thereof, electronic device and storage medium
CN114934896B (en) * 2022-05-30 2023-06-16 广船国际有限公司 Water pump variable frequency control method, control system and ship

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE442889B (en) * 1983-04-12 1986-02-03 Alfa Laval Marine Power Eng SET AND DEVICE FOR OPERATION OF COOLING SYSTEM
JPH01132493A (en) * 1987-11-19 1989-05-24 Mitsui Eng & Shipbuild Co Ltd Cooling water system for boat engine part
JPH1172087A (en) * 1997-07-03 1999-03-16 Kensetsusho Kanto Chiho Kensetsu Kyokucho Operating device for motor-driven rotary machine and its operation control method
JP3576500B2 (en) * 2001-03-22 2004-10-13 住友重機械工業株式会社 Automatic operation control system of seawater pump in cooling system of engine room equipment of ship
JP4196802B2 (en) * 2003-10-07 2008-12-17 株式会社デンソー Cooling water circuit
CN100414079C (en) * 2006-09-29 2008-08-27 中国船舶重工集团公司第七一一研究所 Diesel engine side electric control modular cooling system

Also Published As

Publication number Publication date
KR101222799B1 (en) 2013-01-15
WO2009139201A1 (en) 2009-11-19
KR20100080566A (en) 2010-07-08
CN101925511A (en) 2010-12-22
CN101925511B (en) 2013-08-21
JP2009274469A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4859874B2 (en) Rotational speed control device for cooling seawater transfer pump
JP5323584B2 (en) Central fresh water cooling system
JP2009275512A (en) Operating method and control device for fresh water circulating pump of ship, and cooling system for ship
JP5324409B2 (en) Heat load cooling device and control device for heat load cooling device
JP6599293B2 (en) Central fresh water cooling system for ships
KR101544893B1 (en) The control method of cooling system for a vessel
CN109642488B (en) Cooling system for ship
KR100725900B1 (en) control system for pump of cooling system for ship
US7569954B2 (en) Redundant cooling system with two cooling circuits for an electric motor
JP5326004B2 (en) Ship cooling water system
KR101529229B1 (en) Stability cooling system for a vessel
JP2012122371A (en) Cooling system and cooling method
KR20180051934A (en) Cooling system for ship and ship having the same
JP2010065612A (en) Marine main engine cooling facility, cooling method and cooling system in ship
JP5816057B2 (en) Cooling system control method and apparatus
KR20180078090A (en) The cooling equipment and the cooling method for vessel&#39;s heating unit
KR920004275B1 (en) Method and system for operating a cooling plant
JP2008130791A (en) Cooling system of power conversion device
JP2015131613A (en) Vessel cooling system
JPH06259146A (en) Cool/hot water pump driving device
JPS58225617A (en) Transformer cooling apparatus
KR20170061946A (en) Cooling system for vessel with EGR unit and cooling method therefor
CN107193301A (en) The energy-saving control system and method for ship sea water pump
JP2021069259A (en) Cooling apparatus
JPH0681450B2 (en) Cooling water supply device for rotating electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R151 Written notification of patent or utility model registration

Ref document number: 4859874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350