WO2018047448A1 - Signal generation circuit - Google Patents

Signal generation circuit Download PDF

Info

Publication number
WO2018047448A1
WO2018047448A1 PCT/JP2017/023965 JP2017023965W WO2018047448A1 WO 2018047448 A1 WO2018047448 A1 WO 2018047448A1 JP 2017023965 W JP2017023965 W JP 2017023965W WO 2018047448 A1 WO2018047448 A1 WO 2018047448A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal generation
dead time
duty
signal
clk2
Prior art date
Application number
PCT/JP2017/023965
Other languages
French (fr)
Japanese (ja)
Inventor
小林 敦
剛 松崎
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018047448A1 publication Critical patent/WO2018047448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present disclosure relates to a signal generation circuit that generates two rectangular wave signals that change in a complementary manner and have a dead time at which both indicate off.
  • a signal generation circuit that generates a general rectangular wave signal is designed so that the duty of the generated rectangular wave signal is 50% or a value close to it because of the simplicity of the circuit and the small number of elements.
  • the peak of the odd-order harmonic component is relatively high and the peak of the even-order harmonic component is relatively low in the rectangular wave signal having a duty of about 50%. For this reason, when the generated rectangular wave signal is used in a charge pump circuit or the like that needs to be designed with a high driving capability, there arises a problem that odd-order harmonics cannot meet the standards for emission noise. There is a fear.
  • Patent Document 1 discloses a technique for reducing noise by measuring and feeding back noise externally and performing duty control (PWM control) according to the noise measurement result.
  • An object of the present disclosure is to provide a signal generation circuit that can reduce noise of harmonic components without using noise countermeasure components such as a filter and an external capacitor.
  • the signal generation circuit generates two rectangular wave signals that are used in the charge pump circuit and change in a complementary manner and have a dead time at which both of them indicate off.
  • a signal generation unit is provided.
  • the signal generation unit generates two rectangular wave signals having a predetermined duty so that the frequency is constant and the peak of odd harmonics is higher than the peak of even harmonics.
  • the signal generation unit includes a dead time changing unit that periodically changes the dead time while maintaining the average duty of the two rectangular wave signals to be a predetermined duty.
  • the signal generation circuit has a configuration suitable for use in a charge pump circuit because the frequency of the rectangular wave signal is constant and the average duty is maintained at a predetermined duty. Therefore, according to the above configuration, it is possible to obtain an excellent effect that noise of harmonic components can be reduced without using a noise countermeasure component circuit scale such as a filter or an external capacitor.
  • FIG. 1 is a diagram schematically illustrating a configuration of a signal generation circuit and a charge pump circuit according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating a specific configuration example of the signal generation circuit.
  • FIG. 3 is a timing chart schematically showing the waveform of the signal and voltage of each part.
  • FIG. 4 is a timing chart schematically showing signal and voltage waveforms of each part when the dead time is periodically changed.
  • FIG. 5 is a timing chart showing the waveform of the clock signal in the upper stage and the duty of the clock signal in the lower stage.
  • FIG. 6 is a diagram illustrating frequency distribution in the signal generation circuit and the charge pump circuit.
  • FIG. 7 is a diagram illustrating a result of simulating circuit operation.
  • the signal generation circuit 1 generates clock signals CLK1 and CLK2 corresponding to rectangular wave signals using a clock signal CLK given from the outside.
  • the clock signals CLK1 and CLK2 are used in the charge pump circuit 2, and as shown in FIG. 3, the clock signals CLK1 and CLK2 change in a complementary manner and have a dead time in which both become off levels.
  • the high level of the clock signals CLK1 and CLK2 is the power supply voltage VDD (for example, 5V) of the circuit, and the low level is the reference potential GND (for example, 0V) of the circuit.
  • the charge pump circuit 2 is provided, for example, in an electronic control device mounted on a vehicle, and boosts and outputs the power supply voltage VDD by about twice.
  • the output voltage Vo output via the output power line Lo of the charge pump circuit 1 is supplied to a load circuit (not shown).
  • the signal generation circuit 1 and the charge pump circuit 2 are configured as a semiconductor integrated circuit, that is, an IC.
  • the capacitors C1 and C2 included in the charge pump circuit 2 may have a so-called external configuration provided outside the IC.
  • Switches S1 and S2 are connected in series in this order between the input power supply line Li to which the power supply voltage VDD is applied and the output power supply line Lo.
  • Switches S3 and S4 are connected in series in this order between the input power line Li and the ground line Lg to which the reference potential GND is applied.
  • a capacitor C1 is connected between the interconnection node N1 of the switches S1 and S2 and the interconnection node N2 of the switches S3 and S4.
  • a capacitor C2 is connected between the output power supply line Lo and the ground line Lg.
  • the switches S1 to S4 are constituted by semiconductor switching elements such as MOS transistors, for example.
  • a clock signal CLK2 is supplied to the conduction control terminal (for example, a gate) of the switch S1, and a clock signal CLK1 is supplied to the conduction control terminals of the switches S2 and S3.
  • a signal obtained by inverting the clock signal CLK1 is supplied to the conduction control terminal of the switch S4 via the inverter circuit 5.
  • the switches S1 to S4 are turned on when the signal applied to the conduction control terminal is at a high level and turned off when the signal is at a low level. Accordingly, the switch S1 is turned on when the clock signal CLK2 is at a high level and turned off when the clock signal CLK2 is at a low level.
  • the switches S2 and S3 are turned on when the clock signal CLK1 is at a high level and turned off when the clock signal CLK1 is at a low level.
  • the switch S4 is turned on when the clock signal CLK1 is at a low level and turned off when the clock signal CLK1 is at a high level.
  • the switches S1 and S4 and the switches S2 and S3 are turned on and off in a complementary manner.
  • the switches S1 to S4 are turned on / off in this manner, the capacitor C1 is charged / discharged.
  • the boost operation by the charge pump circuit 1 is realized.
  • the potentials of the two nodes N1 and N2 change according to the clock signals CLK1 and CLK2, and thus become emission noise sources.
  • the signal generation circuit 1 includes inverter circuits 11 and 12, an RC filter circuit 13, a switching unit 14, an AND circuit 15, and a NOR circuit 16.
  • a clock signal CLK is supplied to one input terminal of each of the AND circuit 15 and the NOR circuit 16.
  • a delayed clock signal F is supplied to the other input terminal of each of the AND circuit 15 and the NOR circuit 16.
  • the signal output from the AND circuit 15 is the clock signal CLK1.
  • the signal output from the NOR circuit 16 is the clock signal CLK2.
  • the delayed clock signal F is a signal obtained by delaying the clock signal CLK by a predetermined delay time, and is generated as follows. That is, the clock signal CLK is inverted by the inverter circuit 11, the inverted signal is input to the RC filter circuit 13, and a signal obtained by inverting the output of the RC filter circuit 13 by the inverter circuit 12 is the delayed clock signal F.
  • the RC filter circuit 13 is configured to switch its time constant.
  • the time constant of the RC filter circuit 13 is switched by a switching unit 14 including a counter.
  • the delay time of the delayed clock signal F is switched according to the switching of the time constant of the RC filter circuit 13.
  • the RC filter circuit 13 includes a plurality of resistors Ra connected in series between the input / output terminals, a plurality of switches Sa connected in parallel to each of the resistors Ra, and between the output terminal and the ground line Lg. And a connected capacitor Ca.
  • the switch Sa is turned on / off according to a switching signal given from the switching unit 14. According to such a configuration, the number of resistors Ra connected between the input / output terminals can be changed according to the on / off state of the switch Sa, whereby the time constant of the RC filter circuit 13 can be switched.
  • the clock signals CLK1 and CLK2 generated by the signal generation circuit 1 having the above configuration have a dead time Td in which both change in a complementary manner and become low level.
  • the dead time Td is slightly exaggerated, but the actual dead time Td is much shorter than one cycle of the clock signals CLK1 and CLK2.
  • the dead time Td of the clock signals CLK1 and CLK2 is determined according to the delay time of the delayed clock signal F with respect to the clock signal CLK. Therefore, the dead time Td can be changed by switching the time constant of the RC filter 13.
  • the dead time Td when the dead time Td is changed periodically, for example, every period, the duty of the clock signals CLK1 and CLK2 and the signals of the nodes N1 and N2 that become noise sources (hereinafter referred to as noise) are accordingly generated.
  • the duty of the source signal also changes.
  • the dead time and the change range of the duty are exaggerated for easy understanding.
  • the dead time Td is changed in three stages: Td (small), Td (medium), and Td (large).
  • the value of the dead time Td has a relationship of “Td (small) ⁇ Td (medium) ⁇ Td (large)”.
  • Td (small) the signal duty of the nodes N1 and N2
  • Td the largest Td (large)
  • the nodes n1 and N2 The signal duty is the smallest.
  • the duty of the signals at the nodes N1 and N2 increases as the dead time Td of the clock signals CLK1 and CLK2 decreases, and the duty of the signals at the nodes N1 and N2 decreases as the dead time Td increases. Yes.
  • the signal generation circuit 1 periodically switches the dead time Td of the clock signals CLK1 and CLK2 by periodically switching the time constant of the RC filter circuit 13.
  • the dead time Td is switched while maintaining the average duty of the clock signals CLK1, CLK2, and hence the noise source signal at 50%.
  • the switching is performed for each cycle of the clock signals CLK1 and CLK2.
  • the duty of the clock signals CLK1 and CLK2 gradually increases and starts decreasing when reaching the upper limit, gradually decreases and then increases again when reaching the lower limit.
  • the dead time Td is changed so as to change with regularity. Specifically, the dead time Td is changed so that the duty of the clock signals CLK1 and CLK2 changes like a sine wave. In this way, it is possible to periodically change the duty of each of the signals while maintaining the average duty of the clock signals CLK1, CLK2 and the noise source signal at 50%. As described above, the frequencies of the clock signals CLK1 and CLK2 are made constant.
  • the dead time Td is switched so that the upper and lower limits of the duty of the clock signals CLK1 and CLK2 are within a range in which the charge pump circuit 2 can perform the desired operation.
  • the duty of the clock signals CLK1 and CLK2 is changed according to the change of the dead time Td, but the average duty is maintained at 50% to the last. . That is, the signal generation circuit 1 of the present embodiment does not perform PWM control that changes the duty in order to control the state of the control target to a target state.
  • the signal generation circuit 1 periodically changes the dead time Td while maintaining the average duty of the clock signals CLK1 and CLK2 used in the charge pump circuit 2 to be 50%. As the dead times of the clock signals CLK1 and CLK2 change periodically, the duty of the clock signals CLK1 and CLK2 and thus the noise source signal changes periodically. Thereby, the harmonic components contained in the clock signals CLK1 and CLK2 and the noise source signal are diffused.
  • the peak of the odd-order harmonic component can be suppressed to be lower than that of the conventional technique that does not change the dead time Td. For this reason, the spectrum envelope does not exceed the standard line, and the standard regarding emission noise can be satisfied.
  • the spectrum in the prior art in which the dead time Td is not changed is indicated by a dotted line.
  • the peak of the even-order harmonic component is slightly higher than that of the prior art, but the peak of the even-order harmonic component is originally low, so the standard for emission noise is also applied to the even-order harmonic component. You can be satisfied enough.
  • the upper limit of the duty of the clock signals CLK1 and CLK2 is set to 53% and the lower limit is set to 47%.
  • the dead time Td is changed so that the duty changes by 1% for each cycle of the clock signals CLK1 and CLK2.
  • the frequency of the clock signals CLK1 and CLK2 is 10 kHz.
  • the peak of the odd-order harmonic component is low over almost the entire frequency band as compared with the conventional technique in which the duty of the clock signal is fixed to 50%.
  • the AM band it can be seen that a reduction effect of about 5 dB is obtained.
  • the noise reduction effect in the AM band is very beneficial when the signal generation circuit 1 and the charge pump circuit 2 are used in an in-vehicle application that requires consideration for radio noise.
  • the frequencies of the two clock signals CLK1 and CLK2 are constant and the average duty is maintained at 50%. Therefore, the charge pump circuit 2 can perform the same operation as that of the prior art in which the duty of the clock signal is fixed to 50%. That is, according to the present embodiment, it is possible to reduce the noise of harmonic components without impairing the original operation of the charge pump circuit 2.
  • the change in the dead time Td is performed for each cycle of the clock signals CLK1 and CLK2.
  • the present invention is not limited to this, and may be performed for every plurality of cycles of the clock signals CLK1 and CLK2, for example. However, it may be changed irregularly.
  • the average duty of the clock signals CLK1 and CLK2 only needs to be such that the peak value of the odd-order harmonic is larger than the peak value of the even-order harmonic, for example, a value slightly larger than 50% or slightly smaller. It may be a value (a value of about 50%). Even with such an average duty, the noise reduction effect of the harmonic component according to the present embodiment can be obtained.
  • the method of changing the dead time Td is not limited to the one in which the duty of the clock signals CLK1 and CLK2 changes gently and regularly, or the one in which the duty of the clock signals CLK1 and CLK2 changes abruptly. It may be changed irregularly.
  • both the dead time Td between the falling edge of the clock signal CLK1 and the rising edge of the clock signal CLK2 and the dead time between the falling edge of the clock signal CLK2 and the rising edge of the clock signal CLK1 are changed.
  • the duty of both the clock signals CLK1 and CLK2 is changed.
  • the dead time may be changed so that the duty of at least one of the clock signals CLK1 and CLK2 is changed.
  • the harmonic component contained in at least one of the clock signals CLK1 and CLK2 is diffused, so that the effect of reducing harmonic noise can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A signal generation circuit (1) is provided with a signal generation unit (3) that generates two rectangular wave signals that are used in a charge pump circuit (2), and have dead times that vary in a complementary manner and indicate when both rectangular wave signals are off, the signal generation unit (3) generating the two rectangular wave signals having a fixed frequency and having a prescribed duty such that the odd-order harmonic peak is higher than the even-order harmonic peak. The signal generation unit is provided with a dead-time varying unit (4) for cyclically varying the dead times, while the average duty of the two rectangular wave signals is maintained to be at a prescribed duty.

Description

信号生成回路Signal generation circuit 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年9月9日に出願された日本出願番号2016-176693号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-176663 filed on September 9, 2016, the contents of which are incorporated herein by reference.
 本開示は、相補的に変化するとともに双方がオフを示すレベルとなるデッドタイムを有する2つの矩形波信号を生成する信号生成回路に関する。 The present disclosure relates to a signal generation circuit that generates two rectangular wave signals that change in a complementary manner and have a dead time at which both indicate off.
 一般的な矩形波信号を生成する信号生成回路では、回路の単純さや素子数の少なさから、生成される矩形波信号のデューティが50%またはその近傍の値となるように設計が行われることが多い。そして、デューティが50%程度の矩形波信号では、奇数次の高調波成分のピークが比較的高くなり、偶数次の高調波成分のピークが比較的低くなることが知られている。このようなことから、生成された矩形波信号が、駆動能力を高く設計する必要があるチャージポンプ回路などに用いられる場合、奇数次の高調波がエミッションノイズに関する規格を満たせなくなるといった問題が発生するおそれがある。 A signal generation circuit that generates a general rectangular wave signal is designed so that the duty of the generated rectangular wave signal is 50% or a value close to it because of the simplicity of the circuit and the small number of elements. There are many. It is known that the peak of the odd-order harmonic component is relatively high and the peak of the even-order harmonic component is relatively low in the rectangular wave signal having a duty of about 50%. For this reason, when the generated rectangular wave signal is used in a charge pump circuit or the like that needs to be designed with a high driving capability, there arises a problem that odd-order harmonics cannot meet the standards for emission noise. There is a fear.
 特許文献1には、ノイズを外部で測定してフィードバックし、ノイズの測定結果に応じたデューティ制御(PWM制御)を行うことにより、ノイズを低減する技術が開示されている。 Patent Document 1 discloses a technique for reducing noise by measuring and feeding back noise externally and performing duty control (PWM control) according to the noise measurement result.
特開2012-110060号公報JP 2012-110060 A
 矩形波信号がチャージポンプ回路に用いられる場合、その矩形波信号のデューティは50%程度で固定であり、特許文献1記載の技術のような可変デューティとなるPWM制御を適用することはできない。そこで、このようなノイズ規格を満たすためには、外付け容量やフィルタなどのノイズ対策部品を別途設ける必要が生じるが、そうすると、装置の体格やコストが増加してしまう。 When a rectangular wave signal is used in a charge pump circuit, the duty of the rectangular wave signal is fixed at about 50%, and PWM control with variable duty as in the technique described in Patent Document 1 cannot be applied. Therefore, in order to satisfy such a noise standard, it is necessary to separately provide noise countermeasure parts such as an external capacitor and a filter, but this increases the physique and cost of the apparatus.
 本開示の目的は、フィルタや外付け容量などのノイズ対策部品を用いることなく、高調波成分のノイズを低減することができる信号生成回路を提供することにある。 An object of the present disclosure is to provide a signal generation circuit that can reduce noise of harmonic components without using noise countermeasure components such as a filter and an external capacitor.
 本開示の第一の態様において、信号生成回路は、チャージポンプ回路に用いられ且つ相補的に変化するとともに双方がオフを示すレベルとなるデッドタイムを有する2つの矩形波信号を生成するもので、信号生成部を備える。信号生成部は、周波数が一定であり且つ奇数次の高調波のピークが偶数次の高調波のピークよりも高くなるような所定のデューティを持つ2つの矩形波信号を生成する。また、信号生成部は、2つの矩形波信号の平均デューティが所定のデューティとなるように維持しつつ、デッドタイムを周期的に変化させるデッドタイム変化部を備える。 In the first aspect of the present disclosure, the signal generation circuit generates two rectangular wave signals that are used in the charge pump circuit and change in a complementary manner and have a dead time at which both of them indicate off. A signal generation unit is provided. The signal generation unit generates two rectangular wave signals having a predetermined duty so that the frequency is constant and the peak of odd harmonics is higher than the peak of even harmonics. The signal generation unit includes a dead time changing unit that periodically changes the dead time while maintaining the average duty of the two rectangular wave signals to be a predetermined duty.
 2つの矩形波信号のデッドタイムが周期的に変化することにより、2つの矩形波信号の少なくとも一方のデューティが周期的に変化する。これにより、2つの矩形波信号のうち少なくとも一方に含まれる高調波成分が拡散され、その結果、奇数次の高調波成分のピークが低く抑えられエミッションノイズに関する規格を満足することができる。また、信号生成回路では、矩形波信号の周波数は一定であり且つ平均デューティは所定のデューティに維持されるため、チャージポンプ回路に用いるのに好適な構成となっている。したがって、上記構成によれば、フィルタや外付け容量などのノイズ対策部品回路規模を用いることなく、高調波成分のノイズを低減することができるという優れた効果が得られる。 When the dead time of the two rectangular wave signals changes periodically, the duty of at least one of the two rectangular wave signals changes periodically. As a result, the harmonic component contained in at least one of the two rectangular wave signals is diffused, and as a result, the peak of the odd-order harmonic component can be kept low, and the standard regarding emission noise can be satisfied. Further, the signal generation circuit has a configuration suitable for use in a charge pump circuit because the frequency of the rectangular wave signal is constant and the average duty is maintained at a predetermined duty. Therefore, according to the above configuration, it is possible to obtain an excellent effect that noise of harmonic components can be reduced without using a noise countermeasure component circuit scale such as a filter or an external capacitor.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態に係る信号生成回路およびチャージポンプ回路の構成を模式的に示す図であり、 図2は、信号生成回路の具体的な構成例を模式的に示す図であり、 図3は、各部の信号および電圧の波形を模式的に示すタイミングチャートであり、 図4は、デッドタイムを周期的に変化させた場合における各部の信号および電圧の波形を模式的に示すタイミングチャートであり、 図5は、上段にクロック信号の波形を示し、下段にクロック信号のデューティを示すタイミングチャートであり、 図6は、信号生成回路およびチャージポンプ回路における周波数分布を表す図であり、 図7は、回路動作をシミュレーションした結果を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram schematically illustrating a configuration of a signal generation circuit and a charge pump circuit according to an embodiment. FIG. 2 is a diagram schematically illustrating a specific configuration example of the signal generation circuit. FIG. 3 is a timing chart schematically showing the waveform of the signal and voltage of each part. FIG. 4 is a timing chart schematically showing signal and voltage waveforms of each part when the dead time is periodically changed. FIG. 5 is a timing chart showing the waveform of the clock signal in the upper stage and the duty of the clock signal in the lower stage. FIG. 6 is a diagram illustrating frequency distribution in the signal generation circuit and the charge pump circuit. FIG. 7 is a diagram illustrating a result of simulating circuit operation.
 以下、一実施形態について図面を参照して説明する。
 図1に示すように、信号生成回路1は、外部から与えられるクロック信号CLKを用いて、矩形波信号に相当するクロック信号CLK1、CLK2を生成する。この場合、クロック信号CLK1、CLK2は、チャージポンプ回路2で用いられるもので、図3に示すように、相補的に変化するとともに双方がオフを示すレベルとなるデッドタイムを有する。なお、この場合、クロック信号CLK1、CLK2のハイレベルは回路の電源電圧VDD(例えば5V)であり、ロウレベルは回路の基準電位GND(例えば0V)である。
Hereinafter, an embodiment will be described with reference to the drawings.
As shown in FIG. 1, the signal generation circuit 1 generates clock signals CLK1 and CLK2 corresponding to rectangular wave signals using a clock signal CLK given from the outside. In this case, the clock signals CLK1 and CLK2 are used in the charge pump circuit 2, and as shown in FIG. 3, the clock signals CLK1 and CLK2 change in a complementary manner and have a dead time in which both become off levels. In this case, the high level of the clock signals CLK1 and CLK2 is the power supply voltage VDD (for example, 5V) of the circuit, and the low level is the reference potential GND (for example, 0V) of the circuit.
 信号生成回路1が備える信号生成部3は、周波数が例えば10kHzで一定であり且つ50%(=0.5)のデューティを持つ2つの矩形波信号を生成する。そして、信号生成部3は、その生成した2つの矩形波信号について、平均デューティを50%に維持しつつ、デッドタイムを周期的に変化させたものを、クロック信号CLK1、CLK2として出力する。なお、このようなデッドタイムを変化させる機能は、デッドタイム変化部4により実現される。 The signal generation unit 3 included in the signal generation circuit 1 generates two rectangular wave signals having a constant frequency of, for example, 10 kHz and a duty of 50% (= 0.5). Then, the signal generator 3 outputs, as the clock signals CLK1 and CLK2, the two rectangular wave signals that are generated, the dead duty of which is periodically changed while maintaining the average duty at 50%. Such a function of changing the dead time is realized by the dead time changing unit 4.
 チャージポンプ回路2は、例えば車両に搭載される電子制御装置などに設けられるものであり、電源電圧VDDを2倍程度に昇圧して出力する。チャージポンプ回路1の出力電源線Loを介して出力される出力電圧Voは、図示しない負荷回路に供給される。本実施形態では、信号生成回路1およびチャージポンプ回路2は、半導体集積回路、つまりICとして構成されている。なお、チャージポンプ回路2が備えるコンデンサC1、C2は、ICの外部に設ける、いわゆる外付けの構成としてもよい。 The charge pump circuit 2 is provided, for example, in an electronic control device mounted on a vehicle, and boosts and outputs the power supply voltage VDD by about twice. The output voltage Vo output via the output power line Lo of the charge pump circuit 1 is supplied to a load circuit (not shown). In the present embodiment, the signal generation circuit 1 and the charge pump circuit 2 are configured as a semiconductor integrated circuit, that is, an IC. Note that the capacitors C1 and C2 included in the charge pump circuit 2 may have a so-called external configuration provided outside the IC.
 電源電圧VDDが与えられる入力電源線Liと出力電源線Loの間には、スイッチS1、S2がこの順に直列接続されている。入力電源線Liと基準電位GNDが与えられるグランド線Lgの間には、スイッチS3、S4がこの順に直列接続されている。スイッチS1、S2の相互接続ノードN1と、スイッチS3、S4の相互接続ノードN2の間には、コンデンサC1が接続されている。出力電源線Loとグランド線Lgの間には、コンデンサC2が接続されている。 Switches S1 and S2 are connected in series in this order between the input power supply line Li to which the power supply voltage VDD is applied and the output power supply line Lo. Switches S3 and S4 are connected in series in this order between the input power line Li and the ground line Lg to which the reference potential GND is applied. A capacitor C1 is connected between the interconnection node N1 of the switches S1 and S2 and the interconnection node N2 of the switches S3 and S4. A capacitor C2 is connected between the output power supply line Lo and the ground line Lg.
 スイッチS1~S4は、例えばMOSトランジスタなどの半導体スイッチング素子により構成されている。スイッチS1の導通制御端子(例えばゲートなど)には、クロック信号CLK2が与えられ、スイッチS2、S3の導通制御端子には、クロック信号CLK1が与えられている。また、スイッチS4の導通制御端子には、インバータ回路5を介してクロック信号CLK1を反転させた信号が与えられている。 The switches S1 to S4 are constituted by semiconductor switching elements such as MOS transistors, for example. A clock signal CLK2 is supplied to the conduction control terminal (for example, a gate) of the switch S1, and a clock signal CLK1 is supplied to the conduction control terminals of the switches S2 and S3. A signal obtained by inverting the clock signal CLK1 is supplied to the conduction control terminal of the switch S4 via the inverter circuit 5.
 スイッチS1~S4は、その導通制御端子に与えられる信号がハイレベルのときにオンされるとともに、ロウレベルのときにオフされる。したがって、スイッチS1は、クロック信号CLK2がハイレベルのときにオンされ、ロウレベルのときにオフされる。また、スイッチS2、S3は、クロック信号CLK1がハイレベルのときにオンされ、ロウレベルのときにオフされる。また、スイッチS4は、クロック信号CLK1がロウレベルのときにオンされ、ハイレベルのときにオフされる。 The switches S1 to S4 are turned on when the signal applied to the conduction control terminal is at a high level and turned off when the signal is at a low level. Accordingly, the switch S1 is turned on when the clock signal CLK2 is at a high level and turned off when the clock signal CLK2 is at a low level. The switches S2 and S3 are turned on when the clock signal CLK1 is at a high level and turned off when the clock signal CLK1 is at a low level. The switch S4 is turned on when the clock signal CLK1 is at a low level and turned off when the clock signal CLK1 is at a high level.
 つまり、スイッチS1、S4と、スイッチS2、S3とは、相補的にオンオフされる。このようにスイッチS1~S4がオンオフされることで、コンデンサC1への充放電が行われ、その結果、チャージポンプ回路1による昇圧動作が実現される。このとき、2つのノードN1、N2は、その電位がクロック信号CLK1、CLK2に応じて変化するため、エミッションノイズ源となる。 That is, the switches S1 and S4 and the switches S2 and S3 are turned on and off in a complementary manner. As the switches S1 to S4 are turned on / off in this manner, the capacitor C1 is charged / discharged. As a result, the boost operation by the charge pump circuit 1 is realized. At this time, the potentials of the two nodes N1 and N2 change according to the clock signals CLK1 and CLK2, and thus become emission noise sources.
 クロック信号CLK1、CLK2を生成する信号生成回路1の具体的な構成としては、例えば図2に示すような構成を採用することができる。この場合、信号生成回路1は、インバータ回路11、12、RCフィルタ回路13、切替部14、AND回路15およびNOR回路16を備えている。 As a specific configuration of the signal generation circuit 1 that generates the clock signals CLK1 and CLK2, for example, a configuration as shown in FIG. 2 can be adopted. In this case, the signal generation circuit 1 includes inverter circuits 11 and 12, an RC filter circuit 13, a switching unit 14, an AND circuit 15, and a NOR circuit 16.
 AND回路15およびNOR回路16のそれぞれの一方の入力端子には、クロック信号CLKが与えられている。AND回路15およびNOR回路16のそれぞれの他方の入力端子には、遅延クロック信号Fが与えられている。AND回路15から出力される信号は、クロック信号CLK1となる。また、NOR回路16から出力される信号は、クロック信号CLK2となる。 A clock signal CLK is supplied to one input terminal of each of the AND circuit 15 and the NOR circuit 16. A delayed clock signal F is supplied to the other input terminal of each of the AND circuit 15 and the NOR circuit 16. The signal output from the AND circuit 15 is the clock signal CLK1. The signal output from the NOR circuit 16 is the clock signal CLK2.
 遅延クロック信号Fは、クロック信号CLKを所定の遅延時間だけ遅延させた信号であり、次のように生成される。すなわち、クロック信号CLKをインバータ回路11で反転させ、その反転した信号をRCフィルタ回路13に入力し、RCフィルタ回路13の出力をインバータ回路12により反転させた信号が、遅延クロック信号Fとなる。 The delayed clock signal F is a signal obtained by delaying the clock signal CLK by a predetermined delay time, and is generated as follows. That is, the clock signal CLK is inverted by the inverter circuit 11, the inverted signal is input to the RC filter circuit 13, and a signal obtained by inverting the output of the RC filter circuit 13 by the inverter circuit 12 is the delayed clock signal F.
 ここで、RCフィルタ回路13は、その時定数を切り替え可能な構成となっている。RCフィルタ回路13の時定数は、カウンタなどから構成される切替部14により切り替えられる。RCフィルタ回路13の時定数の切り替えに応じて、遅延クロック信号Fの遅延時間が切り替えられる。 Here, the RC filter circuit 13 is configured to switch its time constant. The time constant of the RC filter circuit 13 is switched by a switching unit 14 including a counter. The delay time of the delayed clock signal F is switched according to the switching of the time constant of the RC filter circuit 13.
 この場合、RCフィルタ回路13は、その入出力端子間に直列接続された複数の抵抗Raと、それら抵抗Raのそれぞれに並列接続された複数のスイッチSaと、その出力端子とグランド線Lg間に接続されたコンデンサCaとを備えている。スイッチSaは、切替部14から与えられる切替信号に応じてオンオフされる。このような構成によれば、スイッチSaのオンオフに応じて入出力端子間に接続される抵抗Raの数を変更することができ、それにより、RCフィルタ回路13の時定数を切り替えることができる。 In this case, the RC filter circuit 13 includes a plurality of resistors Ra connected in series between the input / output terminals, a plurality of switches Sa connected in parallel to each of the resistors Ra, and between the output terminal and the ground line Lg. And a connected capacitor Ca. The switch Sa is turned on / off according to a switching signal given from the switching unit 14. According to such a configuration, the number of resistors Ra connected between the input / output terminals can be changed according to the on / off state of the switch Sa, whereby the time constant of the RC filter circuit 13 can be switched.
 図3に示すように、上記構成の信号生成回路1により生成されるクロック信号CLK1、CLK2は、相補的に変化するとともに双方がロウレベルとなるデッドタイムTdを有する。なお、図3では、説明の都合上、デッドタイムTdをやや誇張して示しているが、実際のデッドタイムTdはクロック信号CLK1、CLK2の1周期に比べ非常に短い時間となる。 As shown in FIG. 3, the clock signals CLK1 and CLK2 generated by the signal generation circuit 1 having the above configuration have a dead time Td in which both change in a complementary manner and become low level. In FIG. 3, for convenience of explanation, the dead time Td is slightly exaggerated, but the actual dead time Td is much shorter than one cycle of the clock signals CLK1 and CLK2.
 この場合、クロック信号CLK1、CLK2のデッドタイムTdは、遅延クロック信号Fのクロック信号CLKに対する遅延時間に応じて定まるようになっている。したがって、RCフィルタ13の時定数の切り替えにより、デッドタイムTdを変化させることができる。 In this case, the dead time Td of the clock signals CLK1 and CLK2 is determined according to the delay time of the delayed clock signal F with respect to the clock signal CLK. Therefore, the dead time Td can be changed by switching the time constant of the RC filter 13.
 図4に示すように、デッドタイムTdを周期的に、例えば1周期毎に変化させると、それに伴い、クロック信号CLK1、CLK2のデューティ、ひいてはノイズ源となるノードN1、N2の信号(以下、ノイズ源信号と呼ぶ)のデューティも変化する。なお、図4では、デッドタイムおよびデューティの変化幅について、分かり易くするために誇張して示している。 As shown in FIG. 4, when the dead time Td is changed periodically, for example, every period, the duty of the clock signals CLK1 and CLK2 and the signals of the nodes N1 and N2 that become noise sources (hereinafter referred to as noise) are accordingly generated. The duty of the source signal also changes. In FIG. 4, the dead time and the change range of the duty are exaggerated for easy understanding.
 また、図4では、デッドタイムTdについて、Td(小)、Td(中)、Td(大)の3段階に変化させている。なお、デッドタイムTdの値は、「Td(小)<Td(中)<Td(大)」という関係となっている。図4に示すように、デッドタイムTdが最も小さいTd(小)のときにノードN1、N2の信号のデューティが最も大きくなり、デッドタイムTdが最も大きいTd(大)のときにノードn1、N2の信号のデューティが最も小さくなっている。すなわち、上記構成ではクロック信号CLK1、CLK2のデッドタイムTdが小さくなるほどノードN1、N2の信号のデューティが大きくなり、デッドタイムTdが大きくなるほどノードN1、N2の信号のデューティが小さくなるようになっている。 In FIG. 4, the dead time Td is changed in three stages: Td (small), Td (medium), and Td (large). The value of the dead time Td has a relationship of “Td (small) <Td (medium) <Td (large)”. As shown in FIG. 4, when the dead time Td is the smallest Td (small), the signal duty of the nodes N1 and N2 is the largest, and when the dead time Td is the largest Td (large), the nodes n1 and N2 The signal duty is the smallest. That is, in the above configuration, the duty of the signals at the nodes N1 and N2 increases as the dead time Td of the clock signals CLK1 and CLK2 decreases, and the duty of the signals at the nodes N1 and N2 decreases as the dead time Td increases. Yes.
 本実施形態の信号生成回路1は、RCフィルタ回路13の時定数を周期的に切り替えることで、クロック信号CLK1、CLK2のデッドタイムTdを周期的に切り替えるようになっている。ただし、この場合、クロック信号CLK1、CLK2、ひいてはノイズ源信号の平均デューティを50%に維持しつつ、デッドタイムTdの切り替えが行われる。なお、本実施形態では、上記切り替えは、クロック信号CLK1、CLK2の1周期毎に行われるようになっている。 The signal generation circuit 1 according to the present embodiment periodically switches the dead time Td of the clock signals CLK1 and CLK2 by periodically switching the time constant of the RC filter circuit 13. However, in this case, the dead time Td is switched while maintaining the average duty of the clock signals CLK1, CLK2, and hence the noise source signal at 50%. In the present embodiment, the switching is performed for each cycle of the clock signals CLK1 and CLK2.
 この場合、図5に示すように、クロック信号CLK1、CLK2のデューティが、徐々に上昇して上限に達すると減少に転じ、徐々に減少して下限に達すると再び上昇に転じる、といった具合に緩やかに且つ規則性を持って変化するように、デッドタイムTdを変化させている。具体的には、クロック信号CLK1、CLK2のデューティがサイン波状に変化するようにデッドタイムTdを変化させている。このようにすれば、クロック信号CLK1、CLK2およびノイズ源信号の平均デューティを50%に維持しつつ、それら各信号のデューティを周期的に変化させることができる。なお、前述したとおり、クロック信号CLK1、CLK2の周波数については、一定となるようにしている。 In this case, as shown in FIG. 5, the duty of the clock signals CLK1 and CLK2 gradually increases and starts decreasing when reaching the upper limit, gradually decreases and then increases again when reaching the lower limit. In addition, the dead time Td is changed so as to change with regularity. Specifically, the dead time Td is changed so that the duty of the clock signals CLK1 and CLK2 changes like a sine wave. In this way, it is possible to periodically change the duty of each of the signals while maintaining the average duty of the clock signals CLK1, CLK2 and the noise source signal at 50%. As described above, the frequencies of the clock signals CLK1 and CLK2 are made constant.
 ここで、クロック信号CLK1、CLK2のデューティがあまりにも大きく変化すると、チャージポンプ回路2の昇圧効率の低下や出力電圧Voの許容を超える変動を招くおそれがあり、さらには昇圧動作が正常に行えなくなるおそれもある。そこで、この場合、クロック信号CLK1、CLK2のデューティの上限および下限が、チャージポンプ回路2が所望する動作を実行可能な範囲となるように、デッドタイムTdの切り替えが行われるようになっている。 Here, if the duty ratios of the clock signals CLK1 and CLK2 change too much, there is a risk that the boosting efficiency of the charge pump circuit 2 will be reduced and the output voltage Vo will be fluctuated, and the boosting operation cannot be performed normally. There is also a fear. Therefore, in this case, the dead time Td is switched so that the upper and lower limits of the duty of the clock signals CLK1 and CLK2 are within a range in which the charge pump circuit 2 can perform the desired operation.
 なお、上述したように、信号生成回路1では、デッドタイムTdの変化に伴ってクロック信号CLK1、CLK2のデューティを変化させるようにしているが、それらの平均デューティはあくまでも50%に維持されている。つまり、本実施形態の信号生成回路1は、制御対象の状態を目標とする状態に制御するためにデューティを変化させるPWM制御を行うものではない。 As described above, in the signal generation circuit 1, the duty of the clock signals CLK1 and CLK2 is changed according to the change of the dead time Td, but the average duty is maintained at 50% to the last. . That is, the signal generation circuit 1 of the present embodiment does not perform PWM control that changes the duty in order to control the state of the control target to a target state.
 以上説明した本実施形態によれば、次のような効果が得られる。
 信号生成回路1は、チャージポンプ回路2に用いられるクロック信号CLK1、CLK2について、平均デューティが50%となるように維持しつつ、デッドタイムTdを周期的に変化させるようにしている。クロック信号CLK1、CLK2のデッドタイムが周期的に変化することにより、クロック信号CLK1、CLK2、ひいてはノイズ源信号のデューティが周期的に変化する。これにより、クロック信号CLK1、CLK2およびノイズ源信号に含まれる高調波成分が拡散される。
According to this embodiment described above, the following effects can be obtained.
The signal generation circuit 1 periodically changes the dead time Td while maintaining the average duty of the clock signals CLK1 and CLK2 used in the charge pump circuit 2 to be 50%. As the dead times of the clock signals CLK1 and CLK2 change periodically, the duty of the clock signals CLK1 and CLK2 and thus the noise source signal changes periodically. Thereby, the harmonic components contained in the clock signals CLK1 and CLK2 and the noise source signal are diffused.
 その結果、本実施形態におけるスペクトラム(周波数分布)を表す図6から明らかなように、奇数次の高調波成分のピークが、デッドタイムTdを変化させない従来技術に比べて低く抑えられる。そのため、スペクトラムの包絡線が規格線を上回ることはく、エミッションノイズに関する規格を満足することができる。なお、図6では、本実施形態との比較のため、デッドタイムTdを変化させない従来技術におけるスペクトラムを点線で示している。ちなみに、この場合、偶数次の高調波成分のピークは、従来技術に比べて若干高くなるが、偶数次の高調波のピークは元々低いため、偶数次の高調波成分についてもエミッションノイズに関する規格を十分に満足することができる。 As a result, as is clear from FIG. 6 showing the spectrum (frequency distribution) in the present embodiment, the peak of the odd-order harmonic component can be suppressed to be lower than that of the conventional technique that does not change the dead time Td. For this reason, the spectrum envelope does not exceed the standard line, and the standard regarding emission noise can be satisfied. In FIG. 6, for comparison with the present embodiment, the spectrum in the prior art in which the dead time Td is not changed is indicated by a dotted line. Incidentally, in this case, the peak of the even-order harmonic component is slightly higher than that of the prior art, but the peak of the even-order harmonic component is originally low, so the standard for emission noise is also applied to the even-order harmonic component. You can be satisfied enough.
 このように本実施形態によれば、フィルタや外付け容量などのノイズ対策部品回路規模を用いることなく、高調波成分のノイズを低減することができるという優れた効果が得られる。このような本実施形態により得られる効果は、回路動作をシミュレーションした結果を示す図7からも明らかである。 As described above, according to the present embodiment, it is possible to obtain an excellent effect that noise of harmonic components can be reduced without using a noise countermeasure component circuit scale such as a filter or an external capacitor. Such an effect obtained by the present embodiment is also apparent from FIG. 7 showing the result of simulating the circuit operation.
 このシミュレーションでは、クロック信号CLK1、CLK2のデューティの上限を53%にするとともに下限を47%としている。また、この場合、クロック信号CLK1、CLK2の1周期毎にデューティが1%ずつ変化するように、デッドタイムTdを変化させている。さらに、この場合、クロック信号CLK1、CLK2の周波数は、10kHzとしている。 In this simulation, the upper limit of the duty of the clock signals CLK1 and CLK2 is set to 53% and the lower limit is set to 47%. In this case, the dead time Td is changed so that the duty changes by 1% for each cycle of the clock signals CLK1 and CLK2. Furthermore, in this case, the frequency of the clock signals CLK1 and CLK2 is 10 kHz.
 図7に示すように、本実施形態によれば、クロック信号のデューティが50%に固定された従来技術に対し、ほぼ全周波数帯にわたって奇数次の高調波成分のピークが低くなっている。特に、AM帯においては、5dBほどの低減効果が得られていることが分かる。AM帯でのノイズ低減効果は、信号生成回路1およびチャージポンプ回路2が、ラジオノイズへの配慮が必要となる車載用途に用いられる場合、非常に有益なものとなる。 As shown in FIG. 7, according to the present embodiment, the peak of the odd-order harmonic component is low over almost the entire frequency band as compared with the conventional technique in which the duty of the clock signal is fixed to 50%. In particular, in the AM band, it can be seen that a reduction effect of about 5 dB is obtained. The noise reduction effect in the AM band is very beneficial when the signal generation circuit 1 and the charge pump circuit 2 are used in an in-vehicle application that requires consideration for radio noise.
 また、信号生成回路1では、2つのクロック信号CLK1、CLK2の周波数は一定であり且つ平均デューティは50%に維持されている。そのため、チャージポンプ回路2は、クロック信号のデューティを50%に固定した従来技術と同等の動作を行うことができる。つまり、本実施形態によれば、チャージポンプ回路2の本来の動作を損なうことなく、高調波成分のノイズを低減することができる。 In the signal generation circuit 1, the frequencies of the two clock signals CLK1 and CLK2 are constant and the average duty is maintained at 50%. Therefore, the charge pump circuit 2 can perform the same operation as that of the prior art in which the duty of the clock signal is fixed to 50%. That is, according to the present embodiment, it is possible to reduce the noise of harmonic components without impairing the original operation of the charge pump circuit 2.
   (その他の実施形態)
 なお、本開示は上記し且つ図面に記載した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
(Other embodiments)
The present disclosure is not limited to the embodiments described above and illustrated in the drawings, and can be arbitrarily modified, combined, or expanded without departing from the scope of the present disclosure.
 上記実施形態では、デッドタイムTdの変化は、クロック信号CLK1、CLK2の1周期毎に行うようにしたが、これに限らずともよく、例えばクロック信号CLK1、CLK2の複数周期毎に行ってもよいし、不規則に変化させてもよい。 In the above-described embodiment, the change in the dead time Td is performed for each cycle of the clock signals CLK1 and CLK2. However, the present invention is not limited to this, and may be performed for every plurality of cycles of the clock signals CLK1 and CLK2, for example. However, it may be changed irregularly.
 クロック信号CLK1、CLK2の平均デューティは、奇数次の高調波のピーク値が偶数次の高調波のピーク値よりも大きくなるようなデューティであればよく、例えば50%よりも若干大きい値や若干小さい値(50%程度の値)でもよい。このような平均デューティであっても、本実施形態による高調波成分のノイズ低減効果が得られる。 The average duty of the clock signals CLK1 and CLK2 only needs to be such that the peak value of the odd-order harmonic is larger than the peak value of the even-order harmonic, for example, a value slightly larger than 50% or slightly smaller. It may be a value (a value of about 50%). Even with such an average duty, the noise reduction effect of the harmonic component according to the present embodiment can be obtained.
 デッドタイムTdの変化のさせ方としては、クロック信号CLK1、CLK2のデューティが緩やかに且つ規則的に変化するものに限らずともよく、クロック信号CLK1、CLK2のデューティが急峻に変化するものでもよいし、不規則に変化するものでもよい。 The method of changing the dead time Td is not limited to the one in which the duty of the clock signals CLK1 and CLK2 changes gently and regularly, or the one in which the duty of the clock signals CLK1 and CLK2 changes abruptly. It may be changed irregularly.
 上記実施形態では、クロック信号CLK1の立ち下がりとクロック信号CLK2の立ち上がりとの間のデッドタイムTdと、クロック信号CLK2の立ち下がりとクロック信号CLK1の立ち上がりとの間のデッドタイムとの両方を変化させることで、クロック信号CLK1、CLK2の両方のデューティを変化させるようにしていたが、クロック信号CLK1、CLK2の少なくとも一方のデューティを変化させるようにデッドタイムを変化させてもよい。このようにした場合でも、クロック信号CLK1、CLK2のうち少なくとも一方に含まれる高調波成分が拡散されるため、高調波ノイズの低減効果が得られる。 In the above embodiment, both the dead time Td between the falling edge of the clock signal CLK1 and the rising edge of the clock signal CLK2 and the dead time between the falling edge of the clock signal CLK2 and the rising edge of the clock signal CLK1 are changed. Thus, the duty of both the clock signals CLK1 and CLK2 is changed. However, the dead time may be changed so that the duty of at least one of the clock signals CLK1 and CLK2 is changed. Even in this case, the harmonic component contained in at least one of the clock signals CLK1 and CLK2 is diffused, so that the effect of reducing harmonic noise can be obtained.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  チャージポンプ回路(2)に用いられ且つ相補的に変化するとともに双方がオフを示すレベルとなるデッドタイムを有する2つの矩形波信号を生成する信号生成回路(1)であって、
     周波数が一定であり且つ奇数次の高調波のピークが偶数次の高調波のピークよりも高くなるような所定のデューティを持つ前記2つの矩形波信号を生成する信号生成部(3)を備え、
     前記信号生成部は、前記2つの矩形波信号の平均デューティが前記所定のデューティとなるように維持しつつ、前記デッドタイムを周期的に変化させるデッドタイム変化部(4)を備える信号生成回路。
    A signal generation circuit (1) used for the charge pump circuit (2), which generates two rectangular wave signals having a dead time that changes in a complementary manner and has a level indicating both off,
    A signal generator (3) for generating the two rectangular wave signals having a predetermined duty such that the frequency is constant and the peak of the odd harmonic is higher than the peak of the even harmonic;
    The signal generation circuit includes a dead time changing unit (4) that periodically changes the dead time while maintaining an average duty of the two rectangular wave signals to be the predetermined duty.
  2.  前記デッドタイム変化部は、前記チャージポンプ回路が所望する動作を実行可能な範囲で、前記デッドタイムを変化させる請求項1に記載の信号生成回路。 The signal generation circuit according to claim 1, wherein the dead time changing unit changes the dead time within a range in which the charge pump circuit can perform a desired operation.
  3.  前記デッドタイム変化部は、前記矩形波信号の1周期毎に前記デッドタイムを変化させる請求項1または2に記載の信号生成回路。 3. The signal generation circuit according to claim 1, wherein the dead time changing unit changes the dead time for each period of the rectangular wave signal.
  4.  前記所定のデューティは、0.5である請求項1から3のいずれか一項に記載の信号生成回路。 The signal generation circuit according to any one of claims 1 to 3, wherein the predetermined duty is 0.5.
PCT/JP2017/023965 2016-09-09 2017-06-29 Signal generation circuit WO2018047448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176693A JP2018042430A (en) 2016-09-09 2016-09-09 Signal generating circuit
JP2016-176693 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047448A1 true WO2018047448A1 (en) 2018-03-15

Family

ID=61562563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023965 WO2018047448A1 (en) 2016-09-09 2017-06-29 Signal generation circuit

Country Status (2)

Country Link
JP (1) JP2018042430A (en)
WO (1) WO2018047448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200360A (en) * 2018-11-20 2020-05-26 安凯(广州)微电子技术有限公司 Switch capacitor converter system based on lithium battery SOC uses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124827A (en) * 2007-11-13 2009-06-04 Rohm Co Ltd Charge pump circuit, and circuit and method for controlling the same
JP2010283952A (en) * 2009-06-03 2010-12-16 Toshiba Mobile Display Co Ltd Charge pump circuit
JP2013183485A (en) * 2012-02-29 2013-09-12 Toshiba Corp Dc-dc converter and audio output device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124827A (en) * 2007-11-13 2009-06-04 Rohm Co Ltd Charge pump circuit, and circuit and method for controlling the same
JP2010283952A (en) * 2009-06-03 2010-12-16 Toshiba Mobile Display Co Ltd Charge pump circuit
JP2013183485A (en) * 2012-02-29 2013-09-12 Toshiba Corp Dc-dc converter and audio output device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200360A (en) * 2018-11-20 2020-05-26 安凯(广州)微电子技术有限公司 Switch capacitor converter system based on lithium battery SOC uses
CN111200360B (en) * 2018-11-20 2021-06-18 安凯(广州)微电子技术有限公司 Switch capacitor converter system based on lithium battery SOC uses

Also Published As

Publication number Publication date
JP2018042430A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
US7902909B2 (en) Charge pump circuit
CN107294506B (en) Crystal oscillator circuit
US20140152362A1 (en) Duty Cycle Adjusting Circuit and Adjusting Method
US20100289548A1 (en) Frequency Generator for Generating Signals with Variable Frequencies
US11063515B2 (en) Power converter
JP6145038B2 (en) DC-DC converter and semiconductor integrated circuit
KR20040018139A (en) Control circuit for dc/dc converter
CN111033274B (en) Low power low duty cycle switched capacitor voltage divider
US9360881B2 (en) Drive circuit, integrated circuit device, and method for controlling charge pump circuit
WO2018047448A1 (en) Signal generation circuit
KR101901706B1 (en) Power amplifying apparatus with spurious reduction function
TWI740203B (en) Gate driving circuit, charge pump having the same, and chip
JP6719242B2 (en) Level shift circuit
JP5966503B2 (en) Buck-boost DC-DC converter and portable device
US20090072889A1 (en) Charge Pump
JP2012115039A (en) Control circuit of switching power supply, and switching power supply and electronic using the same
CN215072364U (en) Annular oscillation circuit and integrated chip
US20210328504A1 (en) Driving circuit with emi reduction
US7986179B2 (en) Circuit and method for reducing popping sound
US9825600B2 (en) Class D amplifier and electronic devices including the same
KR20140105272A (en) Voltage level converor and rf switching driver apparatus using the same
CN109962694B (en) Duty cycle adjusting circuit
US20150054481A1 (en) Switch circuit
JP6606057B2 (en) Semiconductor device and DC-DC converter
JP6672195B2 (en) Power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848393

Country of ref document: EP

Kind code of ref document: A1