WO2018047321A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2018047321A1
WO2018047321A1 PCT/JP2016/076747 JP2016076747W WO2018047321A1 WO 2018047321 A1 WO2018047321 A1 WO 2018047321A1 JP 2016076747 W JP2016076747 W JP 2016076747W WO 2018047321 A1 WO2018047321 A1 WO 2018047321A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sheet
cell module
heat
flame
Prior art date
Application number
PCT/JP2016/076747
Other languages
French (fr)
Japanese (ja)
Inventor
飯村 和茂
穣 斎田
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2018537970A priority Critical patent/JP6678754B2/en
Priority to PCT/JP2016/076747 priority patent/WO2018047321A1/en
Publication of WO2018047321A1 publication Critical patent/WO2018047321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Embodiment of this invention is related with the solar cell module which improved fire prevention property.
  • a tile-type solar cell module is a type that is directly laid on a roof via a field board or a roofing sheet, like a normal roof tile, and is excellent in design and easy to install and replace. There are benefits.
  • tile-type solar cell modules are increasing, and the level required in response is increasing accordingly. Specifically, not only to improve the power generation performance such as maximum module conversion efficiency, but also the performance of existing roof tiles is equivalent to or higher than that of roof tiles. Is sought after.
  • roof tiles are made of non-combustible materials specified by the Building Standards Act, and do not burn even when exposed to fire heat. Moreover, non-damage property and heat shielding property are high, and fire resistance is excellent.
  • the main material of the solar cell is composed of silicon, an inorganic compound, or an organic compound, the heat resistant temperature is only about 400 ° C., and the fire resistance does not reach the roof tile. .
  • Embodiments of the present invention have been proposed in order to solve the above-described problems, and an object thereof is to provide a solar cell module that is improved in fire resistance with a simple configuration.
  • an embodiment of the present invention is a solar cell module provided with a solar cell that converts sunlight into electric power, wherein a flame retardant sheet is disposed on the back surface of the solar cell.
  • FIG. 9 is an enlarged perspective view of a portion A in FIG. 8.
  • FIG. 1 is a cross-sectional view of the solar cell module 1.
  • the solar cell module 1 is provided with a solar cell 2 for converting sunlight into electric power.
  • the solar cell 2 is composed of, for example, a single crystal cell or a polycrystalline cell as a main constituent member.
  • the solar cell 2 has a light receiving surface formed on the upper surface side, and contact portions 3 of N-type electrodes and P-type electrodes are alternately formed on the rear surface side.
  • an electrode portion 4 of an N-type electrode and a P-type electrode is disposed on the back surface of each contact portion 3.
  • a method in which the electrodes are collectively arranged on the back side of the solar cell 2 is called a back contact (back surface connection) method.
  • a back contact (back surface connection) method since there is no electrode that blocks sunlight on the surface side of the solar cell module 1, the appearance design is excellent, the amount of received light is large, and the power generation efficiency is good.
  • a cover glass 5 made of tempered glass or the like is installed on the light receiving surface of the solar cell 2.
  • the upper surface of the cover glass 5 is coated with a reflection reducing layer 6 for suppressing the amount of light received by reflection.
  • an antireflection film 7 is provided at the boundary between the cover glass 5 and the solar cell 2, so that sunlight taken into the solar cell 2 is reflected and does not escape.
  • a reflective film 8 is provided between the contact portion 3 and the electrode portion 4 of the N-type electrode and the P-type electrode so that sunlight does not escape on the back side of the solar cell 2.
  • FIG. 2 is an exploded perspective view of the solar cell module 1.
  • the cover glass 5 side disposed on the upper side of the solar cell 2 is shown on the lower side when installed on the roof, and the lower side of the solar cell 2 placed on the roof is shown on the solar cell 2.
  • the back side (shown as the back seat side in FIG. 2) is shown on the upper side. 3 to 9 showing the following embodiments, the cover glass 5 side is the lower side, and the back side of the solar cell 2 (the back sheet side in the drawing) is the upper side, as in FIG. Yes.
  • a flame retardant sheet 9 is disposed on the back side of the solar cell 2 (on the back sheet side in FIG. 2). Since FIG. 2 is an exploded perspective view, the flame retardant sheet 9 and the back surface of the solar cell 2 are illustrated apart from each other. However, in the assembled state of the solar cell module 1, the flame retardant sheet 9 is the back surface of the solar cell 2. And are adhered with an adhesive.
  • the flame-retardant sheet 9 has a size that covers the entire back surface of the solar cell 2, and is made of, for example, a sheet of PTFE or polycarbonate.
  • the flame retardancy in the flame retardant sheet 9 is a property indicating the difficulty of burning, and is defined as the resistance to combustion even if it is unavoidable to ignite when exposed to flame.
  • the level of flame retardancy defined in this way includes “self-extinguishing” that extinguishes the fire that has been burned away from the flame, and “slow flammability” that does not extinguish the burning fire but has a slow burning rate.
  • flame retardant sheets There are various types of flame retardant sheets on the market. Known indicators for flame retardancy include flame retardancy standards such as UL-94 and oxygen index. (Action and effect)
  • the flame retardant sheet 9 is burned even if a part of the members constituting the solar cell 2 is ignited in the unlikely event that the cover glass 5 melts and the cover glass 5 melts due to the cover glass 5 of the solar cell module 1. Since it is a difficult member, the flame-retardant sheet 9 can suppress the spread of flame. Further, even if the solar cell 2 is ignited due to a failure or the like, the flame retardant sheet 9 can also suppress the spread of flame.
  • the flame-retardant sheet 9 suppresses the burning and heating of the constituent members in the solar cell 2, it is possible to prevent the occurrence of melting drip due to high heat.
  • the flame retardant sheet 9 employed in the first embodiment may be a commercially available one, and is less expensive than installing a special member. Therefore, fire suppression can be enhanced while suppressing an increase in cost, which is economical.
  • the fire resistance of the solar cell module 1 is improved by a simple configuration in which the flame retardant sheet 9 is disposed in close contact with the back side of the solar cell 2. Can do.
  • the fire resistance is equal to or higher than that of an existing roof tile, and can contribute to the improvement of the quality of the solar cell module 1. .
  • FIG. 3 is an exploded perspective view of the solar cell module 12.
  • a flame retardant sheet 9 is disposed on the back side of the solar cell 2 (on the back sheet side in FIG. 2).
  • the second embodiment is characterized in that a large number of heat radiation holes 10 are formed on the entire surface of the flame retardant sheet 9.
  • the heat dissipation hole 10 has a circular opening for releasing heat.
  • the opening of the heat radiating hole 10 has a shape, size, and interval that not only allows heat to escape but also prevents flames and melted drips from coming out.
  • the “shape, size and interval at which the flame or melted drip does not come out” at the opening of the heat radiating hole 10 is defined by, for example, “Containment of Fire” in “IEC 62368-1's Treatment of Enclosure Openings”.
  • the heat trapped between the back surface of the solar cell 2 and the flame retardant sheet 9 is released by opening the heat radiating holes 10 in the flame retardant sheet 9.
  • the temperature rise of the solar cell 2 can be prevented, and it is possible to maintain power generation efficiency while ensuring excellent fire resistance by the flame retardant sheet 9.
  • the solar cell module 12 according to the second embodiment since the temperature increase of the solar cell 2 is suppressed by providing the heat radiating hole 10, there is no fear that the deterioration of the member is accelerated. According to the solar cell module 12 according to the second embodiment as described above, it is possible to improve fire prevention and acquire high safety, and to perform stable power generation continuously over a long period of time.
  • FIG. 4 is an exploded perspective view of the solar cell module 13.
  • a heat conductive sheet 11 is arranged on the back side of the solar cell 2 (the back sheet side in FIG. 4). Since FIG. 4 is an exploded perspective view, the heat conductive sheet 11 and the back surface of the solar cell 2 are illustrated apart from each other, but the heat conductive sheet 11 is in close contact with the back surface of the solar cell 2 when the solar cell module 13 is assembled. And bonded with an adhesive.
  • the heat conductive sheet 11 is a sheet member that also has flame retardancy.
  • the heat conductive sheet 11 has a size that covers the entire back surface of the solar cell 2 and is made of a flexible sheet having, for example, graphite (graphite) as a main component.
  • graphite is a hexagonal crystal and has a structure in which a large number of plate-like graphenes are stacked.
  • Graphite which is a main component of the heat conductive sheet 11, has a large number of plate-like graphene layers, and therefore has anisotropy in heat conduction, and has a heat conductivity approximately 300 times greater in the plane direction than in the thickness direction. is there. Such graphite has a much higher thermal conductivity than copper or aluminum.
  • the heat conductive sheet 11 since the heat conductive sheet 11 is in close contact with the back surface of the solar cell 2, an air layer is not formed between them, and the heat of the solar cell 2 is efficiently transmitted to the heat conductive sheet 11. be able to.
  • the heat conductive sheet 11 exhibits high heat conductivity, and heat is directed in the surface direction. To escape. As a result, the solar cell 2 does not reach a high temperature, the solar cell 2 does not have a portion that ignites, and combustion can be prevented. Thereby, the fireproof property of the solar cell module 13 can be improved.
  • the ignited heat is quickly diffused to the surroundings by the action of the heat conductive sheet 11 and does not become high heat. Therefore, it is possible to suppress the spread of flame and to prevent the occurrence of melting drip. Furthermore, by providing the heat conductive sheet 11 for diffusing heat, the temperature of the solar cell 2 does not rise, and the reduction in power generation efficiency and the deterioration of members due to high temperatures can be suppressed.
  • the heat conductive sheet 11 contributes to heat
  • FIG. 5 is an exploded perspective view of the solar cell module 14.
  • the fourth embodiment is a modification of the third embodiment.
  • FIG. 5 is an exploded perspective view, the reinforcing sheet 17 and the heat conductive sheet 11 are shown apart from each other. However, when the solar cell module 14 is assembled, the reinforcing sheet 17 is in close contact with the heat conductive sheet 11 and adhesive. It is adhered by.
  • the reinforcing sheet 17 is for supplementing the strength of the heat conductive sheet 11, the reinforcing sheet 17 is a tough and flexible sheet having a higher strength than the heat conductive sheet 11. Further, the reinforcing sheet 17 has a size that covers the entire heat conductive sheet 11. Further, a large number of circular heat radiating holes 18 are formed in the reinforcing sheet 17 over the entire surface of the sheet.
  • the material of the reinforcing sheet 17 for example, PET is suitable, and for example, the thickness dimension is preferably 10 ⁇ m.
  • the heat dissipation hole 18 of the reinforcing sheet 17 is for releasing the heat of the heat conductive sheet 11 to the outside.
  • the opening part of the heat radiating hole 18 has a shape, a dimension, and an interval not only for releasing heat but also preventing a flame and a melted drip from coming out from the opening. That is, the heat radiating hole 18 is defined, for example, by “Containment of Fire” of “IEC 36862368-1's Treatment Enclosure Openings '', similarly to the radiating hole 10 of the second embodiment.
  • the heat conductive sheet 11 made of graphite or the like is known to exhibit high heat conductivity but weak in strength and difficult to handle as a sheet member. That is, the heat conductive sheet 11 is torn or torn with only a slight impact. Therefore, in the fourth embodiment, the strength of the heat conductive sheet 11 is increased by bringing the reinforcing sheet 17 into close contact. Thereby, the risk of the damage of the heat conductive sheet 11 can be reduced, and the heat conductive sheet 11 can surely exhibit heat conductivity and flame retardancy.
  • the reinforcing sheet 17 does not consider thermal conductivity, the thermal conductivity is likely to be lower than that of the thermal conductive sheet 11. As a result, it is conceivable that the heat dissipation effect is lower than in the third embodiment having only the heat conductive sheet 11. Therefore, in the fourth embodiment, by providing the heat radiating holes 18 in the reinforcing sheet 17, a decrease in the heat radiating effect is suppressed. According to such 4th Embodiment, like the said 2nd Embodiment, the temperature rise of the solar cell 2 can be prevented, the outstanding electric power generation efficiency can be ensured, and it is anxious about deteriorating member deterioration. Nor.
  • FIG. 6 is an exploded perspective view of the solar cell module 15.
  • the fifth embodiment is a modification of the fourth embodiment.
  • an adhesive sheet 19 is disposed between the back side of the solar cell 2 (the back sheet side in FIG. 6) and the heat conductive sheet 11. Since FIG. 6 is an exploded perspective view, the adhesive sheet 19 is separated from the back surface of the solar cell 2 and the heat conductive sheet 11.
  • the lower surface (upper side in FIG. 6) of the adhesive sheet 19 is in close contact with the heat conductive sheet 11, and the upper surface (lower side in FIG. 6) is the rear surface of the solar cell 2.
  • the adhesive sheet 19 is adhered by the adhesive force. That is, in the tile-shaped solar cell module 15, the heat conductive sheet 11, the reinforcing sheet 17, and the adhesive sheet 19 are stacked in close contact.
  • a laminated sheet 21 is provided by the three sheet members 11, 17, and 19 in the laminated state.
  • the adhesive sheet 19 is lower in thermal conductivity than the heat conductive sheet 11, but has a higher strength than that of the heat conductive sheet 11. Further, an adhesive is uniformly applied to both surfaces of the adhesive sheet 19 over the entire surface.
  • the adhesive sheet 19 has a size that covers the entire back surface of the solar cell 2.
  • the thickness dimension of the adhesive sheet 19 is preferably 100 ⁇ m, for example.
  • the adhesive sheet 19 is formed with a large number of circular heat radiation holes 20 over the entire surface of the sheet.
  • the heat radiation holes 20 are opened to the same number as the heat radiation holes 18 of the reinforcing sheet 17.
  • the heat radiating hole 18 of the reinforcing sheet 17 and the heat radiating hole 20 of the adhesive sheet 19 are provided so as not to overlap each other when the reinforcing sheet 17 and the adhesive sheet 19 are overlapped when viewed from above.
  • FIG. 7 shows an exploded perspective view of the laminated sheet 21 composed of the heat conductive sheet 11, the reinforcing sheet 17 and the adhesive sheet 19.
  • the heat dissipation holes 18 of the reinforcing sheet 17 are indicated by thin solid lines
  • the heat dissipation holes 20 of the adhesive sheet 19 are indicated by thick solid lines.
  • thick dotted lines on the reinforcing sheet 17 and the heat conductive sheet 11 indicate the positions of the heat radiation holes 20 of the adhesive sheet 19.
  • thin dotted lines on the adhesive sheet 19 and the heat conductive sheet 11 indicate the positions of the heat radiation holes 18 of the adhesive sheet 17.
  • the portion provided with the heat radiation holes 18 and 20 has a low heat conductivity on the heat conductive sheet 11. Since the reinforcing sheet 17 or the adhesive sheet 19 is not present, the thermal conductivity is improved accordingly. In FIG. 7, this is indicated by a thick arrow as the thermal conductivity “large”.
  • the portions where the heat dissipation holes 18 and 20 are not opened are provided with the heat dissipation holes 18 and 20 because the reinforcing sheet 17 or the adhesive sheet 19 having a low thermal conductivity exists on the heat conductive sheet 11.
  • the thermal conductivity is smaller than that of the part. In FIG. 7, this is indicated by a thin arrow as the thermal conductivity “medium”.
  • the portion having the large thermal conductivity and the portion having the “medium” are provided along the same straight line.
  • the heat radiation hole 20 is provided in the adhesive sheet 19, the back surface of the solar cell 2 and the heat conductive sheet 11 are in direct contact with each other at the opening of the heat radiation hole 20. Therefore, the heat conductive sheet 11 can exhibit a high heat dissipation effect without being blocked by the adhesive sheet 19.
  • the heat dissipation holes 18 of the reinforcing sheet 17 and the heat dissipation holes 20 of the adhesive sheet 19 do not overlap with each other. It is formed on the upper surface or the lower surface. Further, since the reinforcing sheet 17 and the adhesive sheet 19 have the same size and the same number of the heat radiation holes 18 and 20 formed therein, the opening areas of both companies with respect to the heat conductive sheet 11 are substantially equal. .
  • the portions having the thermal conductivity “large” are uniformly formed on the upper surface and the lower surface of the heat conductive sheet 11. It will be. At this time, since the heat conductive sheet 11 conducts heat in the surface direction, a portion having a large heat conductivity is connected as a heat conduction route.
  • the route (thick arrow in FIG. 7) having a thermal conductivity of “large” is connected from the lower side to the upper side in FIG.
  • the heat conductive sheet 11 has no portion where heat dissipation is delayed and can exhibit a high heat dissipation effect.
  • the heat conductive sheet 11 is sandwiched between the reinforcing sheet 17 and the adhesive sheet 19, it is possible to exhibit the maximum heat dissipation effect.
  • the heat conductive sheet 11 is always covered by the reinforcing sheet 17 and the adhesive sheet 19 on either the front or back side. Therefore, there is no portion where the heat conductive sheet 11 having low strength is exposed, and there is no possibility that the heat conductive sheet 11 is damaged. Thereby, the heat conductive sheet 11 can endure the impact from the thickness direction of the lamination sheet 21, and can avoid damage reliably. As a result, the heat conductive sheet 11 can stably exhibit the heat dissipation effect.
  • FIG. 8 is an exploded perspective view of the solar cell module 16.
  • FIG. 9 is an enlarged perspective view of a portion A in FIG.
  • the sixth embodiment is a modification of the fifth embodiment.
  • the solar cell module 16 is provided with a laminated sheet 21 in which a heat conductive sheet 11, a reinforcing sheet 17, and an adhesive sheet 19 are laminated.
  • a rectangular parallelepiped frame 22 is attached around the four sides of the laminated sheet 21.
  • a groove is formed in the central portion of the frame 22 along the longitudinal direction, and an adhesive 23 is provided here.
  • the periphery of the laminated sheet 21 is inserted into the portion of the frame 22 where the adhesive 23 is provided.
  • a plurality of adhesive holes 24 are formed through the laminated sheet 21 so that the frame 22 and the back surface of the solar cell 2 are in direct contact with each other at the periphery of the laminated sheet 21 at the attachment portion of the frame 22 to the adhesive 23.
  • the bonding hole 24 is a rectangular square hole, and is continuously provided along the peripheral edge of the solar cell 2.
  • the adhesive 23 of the frame 22 and the laminated sheet 21 are bonded (see FIG. 9). For this reason, the solar cell 2 and the frame 22 and the frame 22 and the laminated sheet 21 are bonded to each other on the back side of the solar cell 2, and the adhesive strength is further improved.
  • any of the above embodiments may be a tile-shaped solar cell module.
  • the flame retardant sheet 9 is disposed on the entire back surface of the solar cell 2, but it is not necessarily the entire surface, and when the frame portion is present on the back surface of the solar cell 2, The flame retardant sheet 9 may not be disposed on the back surface of the frame portion. According to such an embodiment, it is possible to improve heat dissipation.
  • the kind of the flame retardant sheet polycarbonate, polypropylene, thermoplastic elastomer, non-halogen, siloxane-free, and the like can be appropriately selected. Moreover, you may make it provide a flame retardance by coating a normal sheet member with a flame retardant resin. Furthermore, the thickness dimension, shape, and the like of the flame retardant sheet can be appropriately changed.
  • the adhesive sheet and the reinforcing sheet may be flame retardant sheets.
  • a sheet member having a different level of flame retardancy may be used as one sheet member.
  • the flame retardant sheet and the heat conductive sheet may be arranged in a checkered pattern.
  • the checkered pattern arrangement means that a square flame retardant sheet is arranged around the square heat conductive sheet. According to such a configuration, a heat dissipation effect is ensured by the heat conductive sheet, and at the same time, even if a spark is generated in the heat conductive sheet, the flame retardant sheet is located on all sides of the heat conductive sheet, so that excellent fire resistance is achieved. It can be demonstrated.
  • each sheet member of the flame retardant sheet, the adhesive sheet, and the reinforcing sheet it is possible to improve the followability to uneven surfaces, adhesion, and vibration proofing by providing cushioning properties.
  • An adhesive having a high thermal conductivity may be used as the adhesive applied to the adhesive sheet.
  • each sheet member can be applied to the shape of the solar cell module even when the tile-shaped solar cell module is not rectangular.
  • the heat radiation holes provided in the adhesive sheet, the reinforcing sheet, etc. can be appropriately changed in terms of the size, shape, number of arrangements, etc.
  • the number of laminated sheet members can be selected as appropriate.
  • the size of the sheet members need not be the same for all the sheet members.
  • the adhesive sheet may be in a tape shape, a plurality of tapes may be arranged in parallel, or arranged in a lattice shape. May be.

Abstract

To provide a solar cell module in which fire protection performance is improved. A flame retardant sheet 9 is disposed so as to be in close contact with the back surface of a solar cell 2. Therefore, even if by chance a spark lands on a cover glass 5 of a solar cell module 1 and the cover glass 5 melts, and a portion of a member constituting the solar cell 2 ignites, the spread of flames can be inhibited by the flame-retardant sheet 9 because the flame-retardant sheet 9 is a member that does not readily burn. In addition, even if the solar cell 2 ignites due to a malfunction, etc., the spread of flames can be similarly suppressed by the flame-retardant sheet 9. Furthermore, because the flame-retardant sheet 9 inhibits the combustion and heating of the constituent members of the solar cell 2, melting and dripping due to high temperatures can be prevented.

Description

太陽電池モジュールSolar cell module
 本発明の実施形態は、防火性を高めた太陽電池モジュールに関するものである。 Embodiment of this invention is related with the solar cell module which improved fire prevention property.
 近年、地球環境とエネルギーへの関心が一段と高まり、再生可能エネルギーを利用した発電システムとして、太陽光発電や風力発電などが研究、開発されている。例えば、太陽光発電の分野では、一般住宅用の太陽電池モジュールや大規模なメガソーラーシステムなど、様々なタイプが提案されている。 In recent years, interest in the global environment and energy has further increased, and solar power generation and wind power generation have been researched and developed as power generation systems using renewable energy. For example, in the field of photovoltaic power generation, various types such as a solar cell module for general housing and a large-scale mega solar system have been proposed.
 中でも、一般住宅の屋根に設置される太陽電池モジュールは広く普及しており、最近では瓦型の太陽電池モジュールが大きな注目を集めている。瓦型の太陽電池モジュールとは、通常の屋根瓦と同様に、野地板又はルーフィングシートを介して屋根の上に直接敷くタイプであって、デザイン性に優れ、施工および交換作業も容易であるといったメリットがある。 Above all, solar cell modules installed on the roofs of ordinary houses are widely used, and recently, tile-type solar cell modules have attracted much attention. A tile-type solar cell module is a type that is directly laid on a roof via a field board or a roofing sheet, like a normal roof tile, and is excellent in design and easy to install and replace. There are benefits.
 そのため、瓦型の太陽電池モジュールは、需要が増大しており、それに応じて要求されるレベルも高まっている。具体的には、最大モジュール変換効率などの発電性能を高めることは勿論のこと、既存の屋根瓦が持つ性能についても、屋根瓦と同等以上のレベルを持つことが、瓦型の太陽電池モジュールには求められている。 Therefore, the demand for tile-type solar cell modules is increasing, and the level required in response is increasing accordingly. Specifically, not only to improve the power generation performance such as maximum module conversion efficiency, but also the performance of existing roof tiles is equivalent to or higher than that of roof tiles. Is sought after.
特開2013-249582号公報JP 2013-249582 A
 屋根瓦が持つ性能の一つに、屋根からの類焼を防ぐ防火性がある。屋根瓦は建築基準法で指定される不燃材料から構成されており、火災による火熱に晒されても燃えることがない。また、非損傷性や熱遮蔽性も高く、防火性に優れている。これに対して、太陽電池は、構成部材の主要材料がシリコンや無機化合物あるいは有機化合物から構成されているため、その耐熱温度は400℃程度に過ぎず、防火性に関しては屋根瓦には及ばない。 One of the performances of roof tiles is fireproofing to prevent burning from the roof. Roof tiles are made of non-combustible materials specified by the Building Standards Act, and do not burn even when exposed to fire heat. Moreover, non-damage property and heat shielding property are high, and fire resistance is excellent. On the other hand, since the main material of the solar cell is composed of silicon, an inorganic compound, or an organic compound, the heat resistant temperature is only about 400 ° C., and the fire resistance does not reach the roof tile. .
 近隣の住宅で火災が発生した場合、太陽電池モジュールに、燃焼物が降りかかり、飛び火が生じる可能性が高い。飛び火の温度は通常、600~800℃ほどになるので、太陽電池モジュールには、飛び火によって簡単に燃えてしまう部分がある。また、太陽電池モジュールでは、火災による飛び火だけではなく、故障により発火することもあり得る。 場合 When a fire breaks out in a nearby house, there is a high possibility that burning will fall on the solar cell module and sparks will occur. Since the temperature of the spark is usually about 600 to 800 ° C., the solar cell module has a portion that is easily burned by the spark. In addition, in the solar cell module, not only a spark caused by a fire but also a fire may be caused by a failure.
 太陽電池にて発火が起きると、太陽電池を構成する部材が熱によって溶けて溶解ドリップが発生し、これが滴下するといった不具合が生じた。そこで、従来の太陽電池の背面側には、防火性を確保するために特殊な部材を使用している。しかし、このような特殊な部材は一般に高価であり、コストの増大を招いていた。そこで、太陽電池モジュールにおいては、火災にあっても燃え難く、且つ発火があってもこれを抑制して燃焼を防止することが求められていた。 When ignition occurred in the solar cell, the members constituting the solar cell were melted by heat and a melting drip was generated, which caused a drip. Therefore, a special member is used on the back side of the conventional solar cell in order to ensure fire resistance. However, such a special member is generally expensive, resulting in an increase in cost. Therefore, in the solar cell module, it has been required to prevent combustion even if there is a fire and to suppress combustion even if there is a fire.
 本発明の実施形態は、上記の課題を解消するために提案されたものであり、その目的は、簡単な構成によって防火性の向上を図った太陽電池モジュールを提供することにある。 Embodiments of the present invention have been proposed in order to solve the above-described problems, and an object thereof is to provide a solar cell module that is improved in fire resistance with a simple configuration.
 上記の目的を達成するために、本発明の実施形態は、太陽光を電力に変換する太陽電池が設けられた太陽電池モジュールにおいて、前記太陽電池の背面に難燃性シートが配置されたことを特徴とする。 In order to achieve the above object, an embodiment of the present invention is a solar cell module provided with a solar cell that converts sunlight into electric power, wherein a flame retardant sheet is disposed on the back surface of the solar cell. Features.
第1の実施形態の断面図。Sectional drawing of 1st Embodiment. 第1の実施形態の分解斜視図。The disassembled perspective view of 1st Embodiment. 第2の実施形態の分解斜視図。The disassembled perspective view of 2nd Embodiment. 第3の実施形態の分解斜視図。The disassembled perspective view of 3rd Embodiment. 第4の実施形態の分解斜視図。The disassembled perspective view of 4th Embodiment. 第5の実施形態の分解斜視図。The disassembled perspective view of 5th Embodiment. 第5の実施形態の要部分解斜視図。The principal part disassembled perspective view of 5th Embodiment. 第6の実施形態の分解斜視図。The disassembled perspective view of 6th Embodiment. 図8のA部分の拡大斜視図。FIG. 9 is an enlarged perspective view of a portion A in FIG. 8.
 以下、本発明に係る実施形態について、図面を参照して具体的に説明する。なお、各実施形態において、同一部材に関しては同一符号を付して重複する説明は省略する。 Embodiments according to the present invention will be specifically described below with reference to the drawings. In each embodiment, the same reference numerals are assigned to the same members, and duplicate descriptions are omitted.
(1)第1の実施形態
(構成)
 第1の実施形態に係る太陽電池モジュール1の概要について図1を参照して説明する。図1は太陽電池モジュール1の断面図である。
(1) First embodiment (configuration)
The outline | summary of the solar cell module 1 which concerns on 1st Embodiment is demonstrated with reference to FIG. FIG. 1 is a cross-sectional view of the solar cell module 1.
 図1に示すように、太陽電池モジュール1には、太陽光を電力に変換する太陽電池2が設けられている。太陽電池2は、例えば単結晶セルあるいは多結晶セルなどを主要構成部材として構成されている。太陽電池モジュール1が屋根に配置された状態で、太陽電池2は上面側には受光面が形成され、背面側にはN型電極とP型電極のコンタクト部3が交互に形成される。各コンタクト部3の背面にはN型電極とP型電極の電極部4が配置されている。 As shown in FIG. 1, the solar cell module 1 is provided with a solar cell 2 for converting sunlight into electric power. The solar cell 2 is composed of, for example, a single crystal cell or a polycrystalline cell as a main constituent member. In a state where the solar cell module 1 is arranged on the roof, the solar cell 2 has a light receiving surface formed on the upper surface side, and contact portions 3 of N-type electrodes and P-type electrodes are alternately formed on the rear surface side. On the back surface of each contact portion 3, an electrode portion 4 of an N-type electrode and a P-type electrode is disposed.
 このように、太陽電池2の背面側に電極をまとめて配置する方式をバックコンタクト(裏面接続)方式と呼んでいる。この方式では、太陽電池モジュール1の表面側に太陽光を遮る電極が存在しないので、外観のデザイン性に優れており、また受光量も多く発電効率も良好である。 In this way, a method in which the electrodes are collectively arranged on the back side of the solar cell 2 is called a back contact (back surface connection) method. In this method, since there is no electrode that blocks sunlight on the surface side of the solar cell module 1, the appearance design is excellent, the amount of received light is large, and the power generation efficiency is good.
 太陽電池2の受光面には強化ガラスなどからなるカバーガラス5が設置されている。カバーガラス5の上面には反射による受光量を抑えるための反射低減層6がコーティングされている。カバーガラス5と太陽電池2との境目には、太陽電池2内に取り込んだ太陽光が反射して逃げないように、反射防止膜7が設けられている。また、N型電極とP型電極のコンタクト部3と電極部4との間には、太陽電池2の裏側に太陽光が逃げないように反射膜8が設けられている。 A cover glass 5 made of tempered glass or the like is installed on the light receiving surface of the solar cell 2. The upper surface of the cover glass 5 is coated with a reflection reducing layer 6 for suppressing the amount of light received by reflection. At the boundary between the cover glass 5 and the solar cell 2, an antireflection film 7 is provided so that sunlight taken into the solar cell 2 is reflected and does not escape. A reflective film 8 is provided between the contact portion 3 and the electrode portion 4 of the N-type electrode and the P-type electrode so that sunlight does not escape on the back side of the solar cell 2.
 第1の実施形態の構成上の特徴について図2を用いて説明する。図2は太陽電池モジュール1の分解斜視図である。図2では、太陽電池2において、屋根に設置された状態では太陽電池2の上側に配置されるカバーガラス5側が下側に示され、屋根に設置された状態では下側に来る太陽電池2の背面側(図2ではバックシート側と示す)が上側に示されている。なお、下記の実施の形態を示した図3~図9の斜視図でも、図2と同じく、カバーガラス5側が下側、太陽電池2の背面側(図面ではバックシート側)が上側となっている。 The structural features of the first embodiment will be described with reference to FIG. FIG. 2 is an exploded perspective view of the solar cell module 1. In FIG. 2, in the solar cell 2, the cover glass 5 side disposed on the upper side of the solar cell 2 is shown on the lower side when installed on the roof, and the lower side of the solar cell 2 placed on the roof is shown on the solar cell 2. The back side (shown as the back seat side in FIG. 2) is shown on the upper side. 3 to 9 showing the following embodiments, the cover glass 5 side is the lower side, and the back side of the solar cell 2 (the back sheet side in the drawing) is the upper side, as in FIG. Yes.
 図2に示すように、太陽電池2の背面側には(図2ではバックシート側)には、難燃性シート9が配置されている。図2は分解斜視図なので、難燃性シート9と太陽電池2の背面とは離れて図示されているが、太陽電池モジュール1が組み立てられた状態では難燃性シート9は太陽電池2の背面に密着し、接着剤にて接着されている。難燃性シート9は太陽電池2の背面全体を覆う大きさであり、材質としては、例えばPTFEやポリカーボネートなどのシートからなる。 As shown in FIG. 2, a flame retardant sheet 9 is disposed on the back side of the solar cell 2 (on the back sheet side in FIG. 2). Since FIG. 2 is an exploded perspective view, the flame retardant sheet 9 and the back surface of the solar cell 2 are illustrated apart from each other. However, in the assembled state of the solar cell module 1, the flame retardant sheet 9 is the back surface of the solar cell 2. And are adhered with an adhesive. The flame-retardant sheet 9 has a size that covers the entire back surface of the solar cell 2, and is made of, for example, a sheet of PTFE or polycarbonate.
 難燃性シート9における難燃性とは、燃え難さを示す性質であり、炎に晒されると着火することは避けられないまでも、燃焼に対する抵抗力として定義される。このように定義される難燃性のレベルには、炎を遠ざければ燃えていた火が消える「自己消火性」や、燃えていた火は消えないが燃焼速度は遅い「遅燃性」などがあり、様々な種類の難燃性シートが市販されている。難燃性を示す指標としては、難燃規格であるUL-94や酸素指数などが知られている。
(作用と効果)
The flame retardancy in the flame retardant sheet 9 is a property indicating the difficulty of burning, and is defined as the resistance to combustion even if it is unavoidable to ignite when exposed to flame. The level of flame retardancy defined in this way includes “self-extinguishing” that extinguishes the fire that has been burned away from the flame, and “slow flammability” that does not extinguish the burning fire but has a slow burning rate. There are various types of flame retardant sheets on the market. Known indicators for flame retardancy include flame retardancy standards such as UL-94 and oxygen index.
(Action and effect)
 第1の実施形態では、太陽電池モジュール1のカバーガラス5に飛び火してカバーガラス5が溶け、万が一、太陽電池2を構成する部材の一部が発火したとしても、難燃性シート9は燃え難い部材なので、難燃性シート9が炎の燃え広がりを抑えることが可能である。また、太陽電池2が故障などにより仮に発火したとしても、同じく難燃性シート9が炎の燃え広がりを抑止することができる。 In the first embodiment, the flame retardant sheet 9 is burned even if a part of the members constituting the solar cell 2 is ignited in the unlikely event that the cover glass 5 melts and the cover glass 5 melts due to the cover glass 5 of the solar cell module 1. Since it is a difficult member, the flame-retardant sheet 9 can suppress the spread of flame. Further, even if the solar cell 2 is ignited due to a failure or the like, the flame retardant sheet 9 can also suppress the spread of flame.
 さらに、難燃性シート9が、太陽電池2における構成部材の燃焼および加熱を抑えるので、高熱による溶解ドリップの発生を防ぐことが可能である。しかも、第1の実施形態で採用される難燃性シート9は、市販のものでよく、特殊な部材を設置することに比べて低価格で済む。したがって、コストの増大を抑えつつ、防火性を高めることができ、経済的である。 Furthermore, since the flame-retardant sheet 9 suppresses the burning and heating of the constituent members in the solar cell 2, it is possible to prevent the occurrence of melting drip due to high heat. In addition, the flame retardant sheet 9 employed in the first embodiment may be a commercially available one, and is less expensive than installing a special member. Therefore, fire suppression can be enhanced while suppressing an increase in cost, which is economical.
 以上述べたように、第1の実施形態によれば、難燃性シート9を太陽電池2の背面側に密着させて配置するといった簡単な構成により、太陽電池モジュール1の防火性を向上させることができる。このような太陽電池モジュール1を瓦型の太陽電池モジュール1として採用した場合、その防火性は、既存の屋根瓦と同等以上のレベルとなり、太陽電池モジュール1の高品位化に寄与することができる。 As described above, according to the first embodiment, the fire resistance of the solar cell module 1 is improved by a simple configuration in which the flame retardant sheet 9 is disposed in close contact with the back side of the solar cell 2. Can do. When such a solar cell module 1 is employed as the tile-type solar cell module 1, the fire resistance is equal to or higher than that of an existing roof tile, and can contribute to the improvement of the quality of the solar cell module 1. .
(2)第2の実施形態
(構成)
 第2の実施形態に係る太陽電池モジュール12の概要について図3を参照して説明する。図3は太陽電池モジュール12の分解斜視図である。上記第1の実施形態と同じく、図3に示すように、太陽電池2の背面側には(図2ではバックシート側)には、難燃性シート9が配置されている。
(2) Second embodiment (configuration)
An outline of the solar cell module 12 according to the second embodiment will be described with reference to FIG. FIG. 3 is an exploded perspective view of the solar cell module 12. As in the first embodiment, as shown in FIG. 3, a flame retardant sheet 9 is disposed on the back side of the solar cell 2 (on the back sheet side in FIG. 2).
 第2の実施形態では、図3に示すように、難燃性シート9には放熱穴10がシート全面にわたり多数、形成されている点に特徴がある。放熱穴10は、熱を逃がすための円形の開口部を有している。 As shown in FIG. 3, the second embodiment is characterized in that a large number of heat radiation holes 10 are formed on the entire surface of the flame retardant sheet 9. The heat dissipation hole 10 has a circular opening for releasing heat.
 放熱穴10の開口部は、熱を逃がすだけではなく、そこから炎や溶解ドリップが外部に出ないような形状、寸法および間隔となっている。放熱穴10の開口部における「炎や溶解ドリップが外部に出ないような形状、寸法および間隔」については、例えば『IEC 62368-1's Treatment of Enclosure Openings』の「Containment of Fire」によって規定される。 The opening of the heat radiating hole 10 has a shape, size, and interval that not only allows heat to escape but also prevents flames and melted drips from coming out. The “shape, size and interval at which the flame or melted drip does not come out” at the opening of the heat radiating hole 10 is defined by, for example, “Containment of Fire” in “IEC 62368-1's Treatment of Enclosure Openings”.
(作用と効果)
 太陽電池2の背面に難燃性シート9を密着させると、太陽電池2が発する熱が太陽電池2の背面と難燃性シート9との間にこもってしまい、太陽電池2の温度が上昇する可能性がある。その結果、太陽電池2の発電効率が低下するだけではなく、太陽電池2の構成部材の劣化速度が高まるおそれがある。
(Action and effect)
When the flame retardant sheet 9 is brought into close contact with the back surface of the solar cell 2, the heat generated by the solar cell 2 is trapped between the back surface of the solar cell 2 and the flame retardant sheet 9, and the temperature of the solar cell 2 rises. there is a possibility. As a result, not only the power generation efficiency of the solar cell 2 decreases, but also the deterioration rate of the constituent members of the solar cell 2 may increase.
 そこで第2の実施形態では、難燃性シート9に放熱穴10を開けることで、太陽電池2の背面と難燃性シート9との間にこもった熱を逃がしている。これにより、太陽電池2の温度上昇を防ぐことができ、難燃性シート9によって優れた防火性を確保しつつ、発電効率を維持することが可能である。 Therefore, in the second embodiment, the heat trapped between the back surface of the solar cell 2 and the flame retardant sheet 9 is released by opening the heat radiating holes 10 in the flame retardant sheet 9. Thereby, the temperature rise of the solar cell 2 can be prevented, and it is possible to maintain power generation efficiency while ensuring excellent fire resistance by the flame retardant sheet 9.
 また、第2の実施形態では、放熱穴10を設けたことで太陽電池2の温度上昇を抑えるので、部材の劣化が早まる心配もない。このような第2の実施形態に係る太陽電池モジュール12によれば、防火性が向上して高い安全性を獲得すると共に、安定した発電を長期にわたり継続して行うことが可能である。 Further, in the second embodiment, since the temperature increase of the solar cell 2 is suppressed by providing the heat radiating hole 10, there is no fear that the deterioration of the member is accelerated. According to the solar cell module 12 according to the second embodiment as described above, it is possible to improve fire prevention and acquire high safety, and to perform stable power generation continuously over a long period of time.
(3)第3の実施形態
(構成)
 第3の実施形態に係る太陽電池モジュール13の概要について図4を参照して説明する。図4は太陽電池モジュール13の分解斜視図である。図4に示すように、太陽電池2の背面側(図4ではバックシート側)には、熱伝導シート11が配置されている。図4は分解斜視図なので、熱伝導シート11と太陽電池2の背面とは離れて図示されているが、太陽電池モジュール13が組み立てられた状態では熱伝導シート11は太陽電池2の背面に密着し、接着剤にて接着されている。
(3) Third embodiment (configuration)
The outline | summary of the solar cell module 13 which concerns on 3rd Embodiment is demonstrated with reference to FIG. FIG. 4 is an exploded perspective view of the solar cell module 13. As shown in FIG. 4, a heat conductive sheet 11 is arranged on the back side of the solar cell 2 (the back sheet side in FIG. 4). Since FIG. 4 is an exploded perspective view, the heat conductive sheet 11 and the back surface of the solar cell 2 are illustrated apart from each other, but the heat conductive sheet 11 is in close contact with the back surface of the solar cell 2 when the solar cell module 13 is assembled. And bonded with an adhesive.
 熱伝導シート11は難燃性も兼ね備えたシート部材である。熱伝導シート11は、太陽電池2の背面全体を覆う大きさであり、例えばグラファイト(黒鉛)を主構成成分とした柔軟なシートからなる。グラファイトは六方晶系の結晶であり、板状のグラフェンが多数重なった構造となっている。熱伝導シート11の厚さ寸法としては例えば500μmが好適である。 The heat conductive sheet 11 is a sheet member that also has flame retardancy. The heat conductive sheet 11 has a size that covers the entire back surface of the solar cell 2 and is made of a flexible sheet having, for example, graphite (graphite) as a main component. Graphite is a hexagonal crystal and has a structure in which a large number of plate-like graphenes are stacked. As a thickness dimension of the heat conductive sheet 11, for example, 500 μm is preferable.
(作用と効果)
 熱伝導シート11の主要構成成分であるグラファイトは、板状のグラフェンが多数重なっているため、熱伝導に異方性があり、厚さ方向に比べて面方向に約300倍の熱伝導率がある。このようなグラファイトの熱伝導率は銅やアルミニウムに比べて遥かに高い。本実施形態では、熱伝導シート11は太陽電池2の背面に密着しているため、両者間に空気層が形成されることがなく、太陽電池2の熱を熱伝導シート11に効率良く伝達することができる。
(Action and effect)
Graphite, which is a main component of the heat conductive sheet 11, has a large number of plate-like graphene layers, and therefore has anisotropy in heat conduction, and has a heat conductivity approximately 300 times greater in the plane direction than in the thickness direction. is there. Such graphite has a much higher thermal conductivity than copper or aluminum. In this embodiment, since the heat conductive sheet 11 is in close contact with the back surface of the solar cell 2, an air layer is not formed between them, and the heat of the solar cell 2 is efficiently transmitted to the heat conductive sheet 11. be able to.
 したがって、太陽電池2が火災の火熱に晒されたり、カバーガラス5上に燃焼物が載って飛び火が生じたりしても、熱伝導シート11が高い熱伝導性を発揮して、熱を面方向に逃がしていく。その結果、太陽電池2は高温にならず、太陽電池2において発火に至る部分がなく、燃焼を防止することができる。これにより、太陽電池モジュール13の防火性を高めることが可能である。 Therefore, even if the solar cell 2 is exposed to the fire heat of a fire or a burned material is placed on the cover glass 5 and a spark is generated, the heat conductive sheet 11 exhibits high heat conductivity, and heat is directed in the surface direction. To escape. As a result, the solar cell 2 does not reach a high temperature, the solar cell 2 does not have a portion that ignites, and combustion can be prevented. Thereby, the fireproof property of the solar cell module 13 can be improved.
 また、太陽電池2が故障などにより仮に発火したとしても、熱伝導シート11の働きによって、発火した熱は周囲に素早く拡散して、高熱になることがない。そのため、炎の燃え広がりを抑えることができ、且つ溶解ドリップの発生も防ぐことが可能である。さらには、熱を拡散させる熱伝導シート11を備えたことで、太陽電池2の温度が上昇せず、高温による発電効率の低下および部材の劣化を抑えることができる。 Further, even if the solar cell 2 is ignited due to a failure or the like, the ignited heat is quickly diffused to the surroundings by the action of the heat conductive sheet 11 and does not become high heat. Therefore, it is possible to suppress the spread of flame and to prevent the occurrence of melting drip. Furthermore, by providing the heat conductive sheet 11 for diffusing heat, the temperature of the solar cell 2 does not rise, and the reduction in power generation efficiency and the deterioration of members due to high temperatures can be suppressed.
 しかも、熱伝導シート11を用いて放熱性を高めているため、難燃性シート9に放熱穴10を形成しなくとも、上記第2の実施形態と同等の放熱性を発揮することができる。このため、難燃性を発揮するシートに放熱穴10を設ける手間を省くことができ、経済性がより向上する。 Moreover, since heat dissipation is enhanced using the heat conductive sheet 11, even if the heat dissipation hole 10 is not formed in the flame retardant sheet 9, the heat dissipation equivalent to the second embodiment can be exhibited. For this reason, the trouble of providing the heat radiating hole 10 in the sheet exhibiting flame retardance can be saved, and the economy is further improved.
 また、第3の実施形態では、熱伝導シート11が熱の拡散に寄与するので、太陽電池2に特有のホットスポットによる局所的な温度上昇を抑えることができ、安定した発電性能を発揮することができる。このような第3の実施形態によれば、防火性が向上して優れた安全性を獲得すると共に、安定した発電を長期にわたって継続することが可能である。 Moreover, in 3rd Embodiment, since the heat conductive sheet 11 contributes to heat | fever diffusion, the local temperature rise by the hot spot peculiar to the solar cell 2 can be suppressed, and the stable electric power generation performance is exhibited. Can do. According to the third embodiment, it is possible to improve fire prevention and obtain excellent safety, and to continue stable power generation over a long period of time.
(4)第4の実施形態
(構成)
 第4の実施形態に係る太陽電池モジュール14の概要について図5を参照して説明する。図5は太陽電池モジュール14の分解斜視図である。第4の実施形態は、上記第3の実施形態の変形例である。
(4) Fourth embodiment (configuration)
An outline of the solar cell module 14 according to the fourth embodiment will be described with reference to FIG. FIG. 5 is an exploded perspective view of the solar cell module 14. The fourth embodiment is a modification of the third embodiment.
 図5に示すように、熱伝導シート11の真下(図5では上側)には、補強シート17が敷かれている。図5は分解斜視図なので、補強シート17と熱伝導シート11とは離れて図示されているが、太陽電池モジュール14が組み立てられた状態では補強シート17は熱伝導シート11に密着して接着剤により接着されている。 As shown in FIG. 5, a reinforcing sheet 17 is laid directly under the heat conductive sheet 11 (upper side in FIG. 5). Since FIG. 5 is an exploded perspective view, the reinforcing sheet 17 and the heat conductive sheet 11 are shown apart from each other. However, when the solar cell module 14 is assembled, the reinforcing sheet 17 is in close contact with the heat conductive sheet 11 and adhesive. It is adhered by.
 補強シート17は熱伝導シート11の強度を補うためのものなので、熱伝導シート11よりも高い強度を持つ強靭且つ柔軟なシートからなる。また、補強シート17は、熱伝導シート11全体を覆う大きさである。さらに、補強シート17には円形の放熱穴18がシート全面にわたり多数、形成されている。補強シート17の材料としては、例えばPETなどが好適であり、厚さ寸法としては例えば10μmが好適である。 Since the reinforcing sheet 17 is for supplementing the strength of the heat conductive sheet 11, the reinforcing sheet 17 is a tough and flexible sheet having a higher strength than the heat conductive sheet 11. Further, the reinforcing sheet 17 has a size that covers the entire heat conductive sheet 11. Further, a large number of circular heat radiating holes 18 are formed in the reinforcing sheet 17 over the entire surface of the sheet. As the material of the reinforcing sheet 17, for example, PET is suitable, and for example, the thickness dimension is preferably 10 μm.
 補強シート17の放熱穴18は、熱伝導シート11の熱を外部に逃がすためのものである。また、放熱穴18の開口部は、熱を逃がすだけではなく、そこから炎や溶解ドリップが外部に出ないような形状、寸法および間隔となっている。つまり、放熱穴18は、前記第2の実施形態の放熱穴10と同様、例えば『IEC 62368-1's Treatment of Enclosure Openings』の「Containment of Fire」によって規定されるものである。 The heat dissipation hole 18 of the reinforcing sheet 17 is for releasing the heat of the heat conductive sheet 11 to the outside. Moreover, the opening part of the heat radiating hole 18 has a shape, a dimension, and an interval not only for releasing heat but also preventing a flame and a melted drip from coming out from the opening. That is, the heat radiating hole 18 is defined, for example, by “Containment of Fire” of “IEC 36862368-1's Treatment Enclosure Openings '', similarly to the radiating hole 10 of the second embodiment.
(作用と効果)
 通常、グラファイトなどからなる熱伝導シート11は、高い熱伝導率を発揮する反面、強度が弱く、シート部材として取り扱いが難しいことが知られている。すなわち、熱伝導シート11は、わずかな衝撃が加わるだけで、破れたり、裂けたりする。そこで第4の実施形態では、補強シート17を密着させることによって熱伝導シート11の強度を高めている。これにより、熱伝導シート11の破損のリスクを低減させることができ、熱伝導シート11は確実に熱伝導性および難燃性を発揮することが可能となる。
(Action and effect)
In general, the heat conductive sheet 11 made of graphite or the like is known to exhibit high heat conductivity but weak in strength and difficult to handle as a sheet member. That is, the heat conductive sheet 11 is torn or torn with only a slight impact. Therefore, in the fourth embodiment, the strength of the heat conductive sheet 11 is increased by bringing the reinforcing sheet 17 into close contact. Thereby, the risk of the damage of the heat conductive sheet 11 can be reduced, and the heat conductive sheet 11 can surely exhibit heat conductivity and flame retardancy.
 ただし、補強シート17は、熱伝導性を考慮していないため、熱伝導性は熱伝導シート11に比べて低くなり易い。その結果、熱伝導シート11だけを有する上記第3の実施形態よりも放熱効果が低下することが考えられる。そこで、第4の実施形態では、補強シート17に放熱穴18を設けることにより、放熱効果の低下を抑えている。このような第4の実施形態によれば、前記第2の実施形態と同じく、太陽電池2の温度上昇を防ぐことができ、優れた発電効率を確保可能であり、且つ部材の劣化を早める心配もない。 However, since the reinforcing sheet 17 does not consider thermal conductivity, the thermal conductivity is likely to be lower than that of the thermal conductive sheet 11. As a result, it is conceivable that the heat dissipation effect is lower than in the third embodiment having only the heat conductive sheet 11. Therefore, in the fourth embodiment, by providing the heat radiating holes 18 in the reinforcing sheet 17, a decrease in the heat radiating effect is suppressed. According to such 4th Embodiment, like the said 2nd Embodiment, the temperature rise of the solar cell 2 can be prevented, the outstanding electric power generation efficiency can be ensured, and it is anxious about deteriorating member deterioration. Nor.
(5)第5の実施形態
(構成)
 第5の実施形態に係る太陽電池モジュール15の概要について図6、図7を参照して説明する。図6は太陽電池モジュール15の分解斜視図である。第5の実施形態は、上記第4の実施形態の変形例である。
(5) Fifth embodiment (configuration)
An outline of the solar cell module 15 according to the fifth embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is an exploded perspective view of the solar cell module 15. The fifth embodiment is a modification of the fourth embodiment.
 図6に示すように、太陽電池2の背面側(図6ではバックシート側)と熱伝導シート11との間には、接着シート19が配置されている。図6は分解斜視図なので、接着シート19と、太陽電池2の背面および熱伝導シート11とは、いずれも離れて図示されている。 As shown in FIG. 6, an adhesive sheet 19 is disposed between the back side of the solar cell 2 (the back sheet side in FIG. 6) and the heat conductive sheet 11. Since FIG. 6 is an exploded perspective view, the adhesive sheet 19 is separated from the back surface of the solar cell 2 and the heat conductive sheet 11.
 ただし、太陽電池モジュール15が組み立てられた状態では接着シート19の下面(図6では上側)は熱伝導シート11に密着し、接着シート19の上面(図6では下側)は太陽電池2の背面に密着して、接着シート19の接着力により接着されている。すなわち、瓦型の太陽電池モジュール15では、熱伝導シート11、補強シート17および接着シート19が密着した状態で積層されている。このように積層した状態の3枚のシート部材11、17、19によって、積層シート21が設けられている。 However, when the solar cell module 15 is assembled, the lower surface (upper side in FIG. 6) of the adhesive sheet 19 is in close contact with the heat conductive sheet 11, and the upper surface (lower side in FIG. 6) is the rear surface of the solar cell 2. The adhesive sheet 19 is adhered by the adhesive force. That is, in the tile-shaped solar cell module 15, the heat conductive sheet 11, the reinforcing sheet 17, and the adhesive sheet 19 are stacked in close contact. A laminated sheet 21 is provided by the three sheet members 11, 17, and 19 in the laminated state.
 接着シート19は、熱伝導シート11よりは熱導電性が低いが、その分、熱伝導シート11よりは高い強度を有している。また、接着シート19の両面には全面にわたって接着剤が均一に塗布されている。接着シート19は太陽電池2の背面全体を覆う大きさである。接着シート19の厚さ寸法としては例えば100μmが好適である。 The adhesive sheet 19 is lower in thermal conductivity than the heat conductive sheet 11, but has a higher strength than that of the heat conductive sheet 11. Further, an adhesive is uniformly applied to both surfaces of the adhesive sheet 19 over the entire surface. The adhesive sheet 19 has a size that covers the entire back surface of the solar cell 2. The thickness dimension of the adhesive sheet 19 is preferably 100 μm, for example.
 さらに、接着シート19には円形の放熱穴20がシート全面にわたり多数、形成されている。この放熱穴20は、補強シート17の放熱穴18と同数程度に開口されている。補強シート17の放熱穴18と接着シート19の放熱穴20は、上方から見て、補強シート17と接着シート19とを重ねた時に互いに重複しないように設けられている。 Furthermore, the adhesive sheet 19 is formed with a large number of circular heat radiation holes 20 over the entire surface of the sheet. The heat radiation holes 20 are opened to the same number as the heat radiation holes 18 of the reinforcing sheet 17. The heat radiating hole 18 of the reinforcing sheet 17 and the heat radiating hole 20 of the adhesive sheet 19 are provided so as not to overlap each other when the reinforcing sheet 17 and the adhesive sheet 19 are overlapped when viewed from above.
 図7は、熱伝導シート11、補強シート17および接着シート19からなる積層シート21の分解斜視図を示している。図7では、補強シート17の放熱穴18は細い実線で示し、接着シート19の放熱穴20は太い実線で示している。また、図7において、補強シート17上および熱伝導シート11上での太い点線は、接着シート19の放熱穴20の位置を示している。さらに、接着シート19上および熱伝導シート11上での細い点線は、接着シート17の放熱穴18の位置を示している。 FIG. 7 shows an exploded perspective view of the laminated sheet 21 composed of the heat conductive sheet 11, the reinforcing sheet 17 and the adhesive sheet 19. In FIG. 7, the heat dissipation holes 18 of the reinforcing sheet 17 are indicated by thin solid lines, and the heat dissipation holes 20 of the adhesive sheet 19 are indicated by thick solid lines. In FIG. 7, thick dotted lines on the reinforcing sheet 17 and the heat conductive sheet 11 indicate the positions of the heat radiation holes 20 of the adhesive sheet 19. Further, thin dotted lines on the adhesive sheet 19 and the heat conductive sheet 11 indicate the positions of the heat radiation holes 18 of the adhesive sheet 17.
 図7に示すように、熱伝導シート11、補強シート17および接着シート19を積層した積層シート21において、放熱穴18、20を設けた部分は、熱伝導シート11上に、熱伝導率が低い補強シート17あるいは接着シート19が存在しないので、その分だけ熱伝導率は良好となる。図7では、これを熱伝導率「大」として太い矢印で示す。 As shown in FIG. 7, in the laminated sheet 21 in which the heat conductive sheet 11, the reinforcing sheet 17, and the adhesive sheet 19 are laminated, the portion provided with the heat radiation holes 18 and 20 has a low heat conductivity on the heat conductive sheet 11. Since the reinforcing sheet 17 or the adhesive sheet 19 is not present, the thermal conductivity is improved accordingly. In FIG. 7, this is indicated by a thick arrow as the thermal conductivity “large”.
 一方、積層シート21において、放熱穴18、20が開いていない部分は、熱伝導シート11上に、熱伝導率が低い補強シート17あるいは接着シート19が存在するので、放熱穴18、20を設けた部分に比べて熱伝導率は小さくなる。図7では、これを熱伝導率「中」として細い矢印で示す。第5の実施形態では、放熱穴18、20は互いに重なりあっていないため、熱伝導率が「大」の部分と「中」の部分とは同一直線上に沿って設けられることになる。 On the other hand, in the laminated sheet 21, the portions where the heat dissipation holes 18 and 20 are not opened are provided with the heat dissipation holes 18 and 20 because the reinforcing sheet 17 or the adhesive sheet 19 having a low thermal conductivity exists on the heat conductive sheet 11. The thermal conductivity is smaller than that of the part. In FIG. 7, this is indicated by a thin arrow as the thermal conductivity “medium”. In the fifth embodiment, since the heat radiating holes 18 and 20 do not overlap each other, the portion having the large thermal conductivity and the portion having the “medium” are provided along the same straight line.
(作用と効果)
 上記の第5の実施形態では、太陽電池2の背面と熱伝導シート11との間に極めて薄い接着シート19を設けて、両者を接着させるので、太陽電池2の背面に熱伝導シート11を強く密着させることができる。また、接着シート19は全面にわたり接着剤を均一に塗布しているので、太陽電池2の背面および熱伝導シート11を均等に密着させることができる。
(Action and effect)
In said 5th Embodiment, since the very thin adhesive sheet 19 is provided between the back surface of the solar cell 2, and the heat conductive sheet 11, and both are adhere | attached, the heat conductive sheet 11 is strongly attached to the back surface of the solar cell 2. It can be adhered. Moreover, since the adhesive sheet 19 has uniformly applied the adhesive over the entire surface, the back surface of the solar cell 2 and the heat conductive sheet 11 can be evenly adhered.
 さらには、接着シート19には放熱穴20を設けているので、放熱穴20の開口部では太陽電池2の背面と熱伝導シート11とが直接接触することになる。したがって、熱伝導シート11は接着シート19に阻まれることなく、高い放熱効果を発揮することができる。 Furthermore, since the heat radiation hole 20 is provided in the adhesive sheet 19, the back surface of the solar cell 2 and the heat conductive sheet 11 are in direct contact with each other at the opening of the heat radiation hole 20. Therefore, the heat conductive sheet 11 can exhibit a high heat dissipation effect without being blocked by the adhesive sheet 19.
 しかも、図7に示したように、補強シート17の放熱穴18と、接着シート19の放熱穴20は互いに重なりあっていないため、熱伝導率が「大」の部分が、熱伝導シート11の上面あるいは下面に形成される。さらに、補強シート17と接着シート19とは互いに同程度の大きさであり、且つそこに形成される放熱穴18、20は同数程度なので、熱伝導シート11に対する両社の開口面積は、ほぼ等しくなる。 Moreover, as shown in FIG. 7, the heat dissipation holes 18 of the reinforcing sheet 17 and the heat dissipation holes 20 of the adhesive sheet 19 do not overlap with each other. It is formed on the upper surface or the lower surface. Further, since the reinforcing sheet 17 and the adhesive sheet 19 have the same size and the same number of the heat radiation holes 18 and 20 formed therein, the opening areas of both companies with respect to the heat conductive sheet 11 are substantially equal. .
 つまり、熱伝導シート11、補強シート17および接着シート19からなる3層の積層シート21では、熱伝導率が「大」にある部分が、熱伝導シート11の上面および下面に均等に形成されたことになる。このとき、熱伝導シート11は面方向に熱を伝えるので、熱伝導率が「大」である部分が熱伝導のルートとして繋がることになる。 That is, in the three-layer laminated sheet 21 composed of the heat conductive sheet 11, the reinforcing sheet 17, and the adhesive sheet 19, the portions having the thermal conductivity “large” are uniformly formed on the upper surface and the lower surface of the heat conductive sheet 11. It will be. At this time, since the heat conductive sheet 11 conducts heat in the surface direction, a portion having a large heat conductivity is connected as a heat conduction route.
 したがって、熱伝導シート11では、熱伝導率が「大」であるルート(図7の太い矢印)は、図7の下側から上側へとつながっていく。その結果、熱伝導シート11は、放熱が滞る部分がなく、高い放熱効果を発揮することができる。これにより、熱伝導シート11は補強シート17および接着シート19に挟まれているとしても、最大限の放熱効果を発揮することが可能となる。 Therefore, in the heat conductive sheet 11, the route (thick arrow in FIG. 7) having a thermal conductivity of “large” is connected from the lower side to the upper side in FIG. As a result, the heat conductive sheet 11 has no portion where heat dissipation is delayed and can exhibit a high heat dissipation effect. Thereby, even if the heat conductive sheet 11 is sandwiched between the reinforcing sheet 17 and the adhesive sheet 19, it is possible to exhibit the maximum heat dissipation effect.
 また、第5の実施形態においては、放熱穴18、20が互いに重なりあっていないので、熱伝導シート11は表裏いずれかの面で補強シート17および接着シート19によって、必ずカバーされている。したがって、強度が低い熱伝導シート11が露出している部分はなく、熱伝導シート11が破損するおそれがない。これにより、熱伝導シート11は、積層シート21の厚さ方向からの衝撃に耐えることができ、破損を確実に回避することができる。その結果、熱伝導シート11は放熱効果を安定して発揮することが可能である。 Further, in the fifth embodiment, since the heat radiating holes 18 and 20 do not overlap each other, the heat conductive sheet 11 is always covered by the reinforcing sheet 17 and the adhesive sheet 19 on either the front or back side. Therefore, there is no portion where the heat conductive sheet 11 having low strength is exposed, and there is no possibility that the heat conductive sheet 11 is damaged. Thereby, the heat conductive sheet 11 can endure the impact from the thickness direction of the lamination sheet 21, and can avoid damage reliably. As a result, the heat conductive sheet 11 can stably exhibit the heat dissipation effect.
(6)第6の実施形態
(構成)
 第6の実施形態に係る瓦型の太陽電池モジュール15の概要について図8、図9を参照して説明する。図8は太陽電池モジュール16の分解斜視図である。図9は図8のA部分の拡大斜視図である。第6の実施形態は、上記第5の実施形態の変形例である。
(6) Sixth embodiment (configuration)
An outline of the tile-shaped solar cell module 15 according to the sixth embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is an exploded perspective view of the solar cell module 16. FIG. 9 is an enlarged perspective view of a portion A in FIG. The sixth embodiment is a modification of the fifth embodiment.
 図8に示すように、太陽電池モジュール16には、熱伝導シート11、補強シート17および接着シート19を積層させた積層シート21が設けられている。積層シート21の四方の周囲には直方体状のフレーム22が取り付けられている。フレーム22の中央部分には長手方向に沿って溝が形成されており、ここに接着材23が設けられている。 As shown in FIG. 8, the solar cell module 16 is provided with a laminated sheet 21 in which a heat conductive sheet 11, a reinforcing sheet 17, and an adhesive sheet 19 are laminated. A rectangular parallelepiped frame 22 is attached around the four sides of the laminated sheet 21. A groove is formed in the central portion of the frame 22 along the longitudinal direction, and an adhesive 23 is provided here.
 フレーム22において接着材23を設けた部分には、積層シート21の周縁部が挿入されるようになっている。積層シート21の周縁部においてフレーム22の接着材23への取付部分には、フレーム22と太陽電池2の背面が直接接するように、複数の接着穴24が、積層シート21に貫通して形成されている。接着穴24は長方形の角穴であって、太陽電池2の周縁部に沿って連続して設けられている。 The periphery of the laminated sheet 21 is inserted into the portion of the frame 22 where the adhesive 23 is provided. A plurality of adhesive holes 24 are formed through the laminated sheet 21 so that the frame 22 and the back surface of the solar cell 2 are in direct contact with each other at the periphery of the laminated sheet 21 at the attachment portion of the frame 22 to the adhesive 23. ing. The bonding hole 24 is a rectangular square hole, and is continuously provided along the peripheral edge of the solar cell 2.
(作用と効果)
 以上の第6の実施形態では、積層シート21の周縁部に接着穴24を設けたので、この接着穴24の部分では、フレーム22の接着材23と太陽電池2の背面とが直接、接着される。
(Action and effect)
In the above sixth embodiment, since the bonding hole 24 is provided in the peripheral edge portion of the laminated sheet 21, the bonding material 23 of the frame 22 and the back surface of the solar cell 2 are directly bonded to each other at the bonding hole 24. The
 また、接着穴24の間が開けられていない部分では、フレーム22の接着材23と積層シート21とが接着される(図9参照)。このため、太陽電池2の背面側において、太陽電池2とフレーム22、フレーム22と積層シート21とがそれぞれ接着され、接着強度がさらに向上する。 Further, in the portion where the space between the bonding holes 24 is not opened, the adhesive 23 of the frame 22 and the laminated sheet 21 are bonded (see FIG. 9). For this reason, the solar cell 2 and the frame 22 and the frame 22 and the laminated sheet 21 are bonded to each other on the back side of the solar cell 2, and the adhesive strength is further improved.
(7)他の実施形態
 上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(7) Other Embodiments The above-described embodiments are presented as examples in the present specification, and are not intended to limit the scope of the invention. In other words, the present invention can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and their equivalents as well as included in the scope and gist of the invention.
 例えば、上記の実施形態はいずれも、瓦型の太陽電池モジュールであってもよい。また、第1の実施形態では、難燃性シート9を太陽電池2の背面の全体に配置したが、必ずしも全体である必要はなく、太陽電池2の背面にフレーム部分が存在する場合には、フレーム部分の背面には難燃性シート9を配置しなくてもよい。このような実施形態によれば、放熱性の向上を図ることができる。 For example, any of the above embodiments may be a tile-shaped solar cell module. Further, in the first embodiment, the flame retardant sheet 9 is disposed on the entire back surface of the solar cell 2, but it is not necessarily the entire surface, and when the frame portion is present on the back surface of the solar cell 2, The flame retardant sheet 9 may not be disposed on the back surface of the frame portion. According to such an embodiment, it is possible to improve heat dissipation.
 難燃性シートの種類としては、ポリカーボネート、ポリプロピレン系、熱可塑性エラストマー系、さらにはノンハロゲン系やシロキサンフリーのものなど、適宜選択可能である。また、通常のシート部材に難燃性樹脂をコーティングすることによって難燃性を付与するようにしてもよい。さらに、難燃性シートの厚さ寸法や形状なども適宜変更可能である。また、熱伝導シートだけではなく、接着シートや補強シートが難燃性シートであってもよい。 ¡As the kind of the flame retardant sheet, polycarbonate, polypropylene, thermoplastic elastomer, non-halogen, siloxane-free, and the like can be appropriately selected. Moreover, you may make it provide a flame retardance by coating a normal sheet member with a flame retardant resin. Furthermore, the thickness dimension, shape, and the like of the flame retardant sheet can be appropriately changed. In addition to the heat conductive sheet, the adhesive sheet and the reinforcing sheet may be flame retardant sheets.
 さらに難燃性のレベルが異なるシート部材を1枚のシート部材として用いるようにしてもよい。例えば、難燃性シートと熱伝導シートを、市松模様状に配置して構成するようにしてもよい。市松模様状の配置とは、四角い熱伝導シートの周囲に、四角の難燃性シートを配置したことになる。このような構成によれば、熱伝導シートにより放熱効果を確保すると同時に、仮に熱伝導シートに飛び火が生じても、熱伝導シートの四方に難燃性シートが位置するので、優れた防火性を発揮することができる。 Further, a sheet member having a different level of flame retardancy may be used as one sheet member. For example, the flame retardant sheet and the heat conductive sheet may be arranged in a checkered pattern. The checkered pattern arrangement means that a square flame retardant sheet is arranged around the square heat conductive sheet. According to such a configuration, a heat dissipation effect is ensured by the heat conductive sheet, and at the same time, even if a spark is generated in the heat conductive sheet, the flame retardant sheet is located on all sides of the heat conductive sheet, so that excellent fire resistance is achieved. It can be demonstrated.
 難燃性シート、接着シートおよび補強シートの各シート部材に関して、クッション性を備えるようにして、凹凸面への追従性、密着性、防振性を高めることができる。接着シートに塗布される接着剤として、熱伝導率の高い接着剤を使用するようにしてもよい。 With respect to each sheet member of the flame retardant sheet, the adhesive sheet, and the reinforcing sheet, it is possible to improve the followability to uneven surfaces, adhesion, and vibration proofing by providing cushioning properties. An adhesive having a high thermal conductivity may be used as the adhesive applied to the adhesive sheet.
 また、各シート部材に薄いPETフィルムなどを支持体として挿入することで、適度な硬さを持たせて、且つ希望の形状への加工も容易に行うことが可能である。したがって、瓦型の太陽電池モジュールが長方形以外となる場合でも、各シート部材を太陽電池モジュールの形状に適用させることが可能である。 Also, by inserting a thin PET film or the like as a support into each sheet member, it is possible to impart an appropriate hardness and easily process it into a desired shape. Therefore, each sheet member can be applied to the shape of the solar cell module even when the tile-shaped solar cell module is not rectangular.
 さらに、接着シートや補強シートなどに設ける放熱穴については、その径の大きさや形状、配置数など、適宜変更可能である。シート部材を積層させてなる積層シートに関しては、シート部材の積層数などは適宜選択可能である。また、シート部材の大きさも、全てのシート部材が同じである必要はなく、例えば、接着シートがテープ状であってもよく、テープが複数平行に配置されていてもよいし、格子状に配置されていてもよい。 Furthermore, the heat radiation holes provided in the adhesive sheet, the reinforcing sheet, etc. can be appropriately changed in terms of the size, shape, number of arrangements, etc. Regarding the laminated sheet obtained by laminating sheet members, the number of laminated sheet members can be selected as appropriate. Also, the size of the sheet members need not be the same for all the sheet members. For example, the adhesive sheet may be in a tape shape, a plurality of tapes may be arranged in parallel, or arranged in a lattice shape. May be.
1、12~16…太陽電池モジュール
2…太陽電池
3…コンタクト部
4…電極部
5…カバーガラス
6…反射低減層
7…反射防止膜
8…反射低減シート
9…難燃性シート
10、18、20…放熱穴
11…熱伝導シート
17…補強シート
19…接着シート
21…積層シート
22…フレーム
23…接着材
24…接着穴
DESCRIPTION OF SYMBOLS 1, 12-16 ... Solar cell module 2 ... Solar cell 3 ... Contact part 4 ... Electrode part 5 ... Cover glass 6 ... Antireflection layer 7 ... Antireflection film 8 ... Antireflection sheet 9 ... Flame retardant sheet 10,18, 20 ... Heat radiation hole 11 ... Heat conductive sheet 17 ... Reinforcement sheet 19 ... Adhesive sheet 21 ... Laminated sheet 22 ... Frame 23 ... Adhesive 24 ... Adhesive hole

Claims (9)

  1.  太陽光を電力に変換する太陽電池が設けられた太陽電池モジュールにおいて、
     前記太陽電池の背面に難燃性シートが配置されたことを特徴とする瓦型の太陽電池モジュール。
    In a solar cell module provided with a solar cell that converts sunlight into electric power,
    A tile-shaped solar cell module, wherein a flame-retardant sheet is disposed on the back surface of the solar cell.
  2.  前記難燃性シートに放熱穴が設けられたことを特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a heat radiating hole is provided in the flame retardant sheet.
  3.  前記難燃性シートが熱伝導性を有することを特徴とする請求項1又は2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the flame-retardant sheet has thermal conductivity.
  4.  前記熱伝導性を有する難燃性シートはグラファイトを主構成成分とすることを特徴とする請求項3に記載の太陽電池モジュール。 4. The solar cell module according to claim 3, wherein the flame-retardant sheet having thermal conductivity contains graphite as a main component.
  5.  前記熱伝導性を有する難燃性シートに接して補強シートが配置されたことを特徴とする請求項3または4に記載の太陽電池モジュール。 The solar cell module according to claim 3 or 4, wherein a reinforcing sheet is disposed in contact with the flame retardant sheet having thermal conductivity.
  6.  前記補強シートに放熱穴が設けられたことを特徴とする請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, wherein a heat radiating hole is provided in the reinforcing sheet.
  7.  前記補強シートと前記接着シートとを重ねた場合、前記補強シートの放熱穴と前記接着シートの放熱穴は、上方から見て互いに重複しないように設けられたことを特徴とする請求項6に記載の太陽電池モジュール。 The heat dissipation hole of the reinforcing sheet and the heat dissipation hole of the adhesive sheet are provided so as not to overlap each other when viewed from above when the reinforcing sheet and the adhesive sheet are overlapped with each other. Solar cell module.
  8.  前記難燃性シート、前記補強シートおよび前記接着シートのうち、少なくとも前記難燃性シートを含めてこれらのシート部材を積層させた積層シートが設けられ、
     前記積層シートの周囲には接着材を付けたフレームが取り付けられ、
     前記積層シートにおいて前記フレームの前記接着材を取り付ける部分には、前記フレームと前記太陽電池の下面とが接するように切欠き部が形成されたことを特徴とする請求項1~7のいずれか1項に記載の太陽電池モジュール。
    Among the flame retardant sheet, the reinforcing sheet and the adhesive sheet, a laminated sheet in which these sheet members are laminated including at least the flame retardant sheet is provided,
    A frame with an adhesive is attached around the laminated sheet,
    The cutout portion is formed in a portion of the laminated sheet to which the adhesive of the frame is attached so that the frame and a lower surface of the solar cell are in contact with each other. The solar cell module according to item.
  9.  前記太陽電池が瓦型であることを特徴とする請求項1~8のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 8, wherein the solar cell is a roof type.
PCT/JP2016/076747 2016-09-12 2016-09-12 Solar cell module WO2018047321A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018537970A JP6678754B2 (en) 2016-09-12 2016-09-12 Solar cell module
PCT/JP2016/076747 WO2018047321A1 (en) 2016-09-12 2016-09-12 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076747 WO2018047321A1 (en) 2016-09-12 2016-09-12 Solar cell module

Publications (1)

Publication Number Publication Date
WO2018047321A1 true WO2018047321A1 (en) 2018-03-15

Family

ID=61561466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076747 WO2018047321A1 (en) 2016-09-12 2016-09-12 Solar cell module

Country Status (2)

Country Link
JP (1) JP6678754B2 (en)
WO (1) WO2018047321A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352348B1 (en) * 2021-07-19 2022-01-18 김성원 Solar cell module for installation on veranda

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032852A (en) * 2007-07-26 2009-02-12 Hitachi Chem Co Ltd Solar-battery module
JP2013249582A (en) * 2012-05-30 2013-12-12 Toshiba Corp Roof tile type solar cell module
JP2014519199A (en) * 2011-05-17 2014-08-07 ヨウル チョン ケミカル カンパニー, リミテッド Back sheet for solar cell module and solar cell module including the same
US20140261682A1 (en) * 2013-03-12 2014-09-18 University Of Central Florida Research Foundation, Inc. Photovoltaic Modules Incorporating Lateral Heat Removal
WO2016053627A1 (en) * 2014-10-02 2016-04-07 Google Inc. Using solar cells as bypass diode heat sinks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032852A (en) * 2007-07-26 2009-02-12 Hitachi Chem Co Ltd Solar-battery module
JP2014519199A (en) * 2011-05-17 2014-08-07 ヨウル チョン ケミカル カンパニー, リミテッド Back sheet for solar cell module and solar cell module including the same
JP2013249582A (en) * 2012-05-30 2013-12-12 Toshiba Corp Roof tile type solar cell module
US20140261682A1 (en) * 2013-03-12 2014-09-18 University Of Central Florida Research Foundation, Inc. Photovoltaic Modules Incorporating Lateral Heat Removal
WO2016053627A1 (en) * 2014-10-02 2016-04-07 Google Inc. Using solar cells as bypass diode heat sinks

Also Published As

Publication number Publication date
JP6678754B2 (en) 2020-04-08
JPWO2018047321A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US6437235B1 (en) Solar cell module, solar cell-bearing roof and solar cell power generation system
WO2012176483A1 (en) Flexible solar cell module and fire-spread prevention sheet thereof
US20170148942A1 (en) Solar panel and method of manufacturing such a solar panel
Mazziotti et al. Fire risk related to the use of PV systems in building facades
JP2001349013A (en) Exterior finishing material, solar battery module, its manufacturing method, manufacturing apparatus, and construction method it, building and solar photovoltaic power generator
CN111416071B (en) Delay-burning-prevention battery module and delay-burning-prevention layer
CN103000728A (en) Solar cell back panel assembly and solar cell assembly
WO2018047321A1 (en) Solar cell module
JP2011134986A (en) Fire-resistant sealing material for solar cell module and solar cell module using the same
KR102253838B1 (en) Solar cell module and back sheet used for the same
JP6062208B2 (en) Solar cell module
JP2000315810A (en) Solar battery module
JP6846266B2 (en) Solar cell module
CN209071388U (en) Upper housing and battery pack for battery pack
JP6205790B2 (en) Waterproof sheet for solar cell, solar cell layer with waterproof sheet and waterproof structure
JP2006128329A (en) Double-side light-receiving solar cell module and solar cell
KR20230095013A (en) Steel Sheet-Integrated Photovoltaic Module
JPH09148614A (en) Solar battery panel
JP4323649B2 (en) Solar panel, roof with solar cell, and power generator
CN218124649U (en) Fire prevention fire-retardant type photovoltaic module
WO2018158803A1 (en) Solar cell module
EP3971994B1 (en) Photovoltaic module, backsheet of photovoltaic module, and method for manufacturing photovoltaic module
JP3195826U (en) Solar cell module
CN215990642U (en) Back plate, roof photovoltaic module and photovoltaic building
CN218447937U (en) Insulating type solar energy backplate and photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915739

Country of ref document: EP

Kind code of ref document: A1