JP2006128329A - Double-side light-receiving solar cell module and solar cell - Google Patents

Double-side light-receiving solar cell module and solar cell Download PDF

Info

Publication number
JP2006128329A
JP2006128329A JP2004313222A JP2004313222A JP2006128329A JP 2006128329 A JP2006128329 A JP 2006128329A JP 2004313222 A JP2004313222 A JP 2004313222A JP 2004313222 A JP2004313222 A JP 2004313222A JP 2006128329 A JP2006128329 A JP 2006128329A
Authority
JP
Japan
Prior art keywords
solar cell
double
cell module
receiving
sided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004313222A
Other languages
Japanese (ja)
Inventor
Norihisa Wada
憲久 和田
Ichiro Araki
一郎 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004313222A priority Critical patent/JP2006128329A/en
Publication of JP2006128329A publication Critical patent/JP2006128329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-side light-receiving solar cell having a single-glass module structure improving dampproofness and reducing the deterioration of performance. <P>SOLUTION: In the double-side light-receiving solar cell module, a protective material on at least the rear side of a solar cell module is formed by evaporating and coating a cyclic olefin copolymer on the surface of a film composed of a polyethylene terephthalate (PET). In the solar cell, the double-side light-receiving solar cell module is installed on an inclined frame or installed vertically and a power is generated. The resistance to humidity is improved by mounting a high moisture-resistant transparent resin sheet, and a high moisture-resistant transparent resin back sheet can be realized. A time up to the deterioration of the performance can be elongated largely. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面だけではなく裏面からの受光においても発電する両面受光型太陽電池モジュールに係り、特に片側の保護材に透明樹脂シートを用いて軽量化ができ裏面での受光発電が可能な傾斜架台に設置の両面受光型太陽電池モジュール及び太陽電池に関する。   The present invention relates to a double-sided light-receiving solar cell module that generates power not only from the front side but also from the back side, and more particularly, a slant that enables light reception and power generation at the back side by using a transparent resin sheet as a protective material on one side. The present invention relates to a double-sided light receiving solar cell module and a solar cell installed on a gantry.

従来、受光面が片面の太陽電池が主流であり、裏面のバックシートは太陽電池を通過した光を反射させて変換効率を高めるため、一般的に白色等、非透明樹脂が用いられる。また、太陽電池の劣化を防ぐため、裏面のバックシート内にアルミニウム箔を積層し、高い耐湿性を持たせる方法が取られている。また、建材一体型の分野では、カーテンウォール内に太陽電池を設置する場合には、表面および裏面ともガラスで覆うことが一般的である。   Conventionally, a solar cell with a single-sided light-receiving surface has been the mainstream, and a backsheet on the back surface generally uses a non-transparent resin such as white in order to reflect light that has passed through the solar cell and increase conversion efficiency. Moreover, in order to prevent deterioration of a solar cell, the method of laminating | stacking aluminum foil in the back seat | sheet of a back surface, and giving high moisture resistance is taken. Further, in the field of building material integrated type, when installing a solar cell in a curtain wall, it is common to cover both the front and back surfaces with glass.

両面受光型太陽電池では、従来の技術として、〔特許文献1〕に記載のように、太陽電池がマトリックス状に配列され、銅薄板等の金属薄板よりなる接続部材により電気的に直列接続され、EVA等の透光性且つ絶縁性を有する封止材により表面部材と裏面部材との間に封止された太陽電池モジュールがある。そして、表面部材及び裏面部材としては外寸法1300mm×875mmのガラスを用い、両側から光入射の可能なモジュール構造としていること、裏面部材はガラスに限る必要はなく透光性のプラスチック材料を用いることができ、透光性のプラスチック材料を用いる場合は、水蒸気透過率が20g/m2・day以下の材料が好ましいことが記載されている。 In the double-sided light receiving solar cell, as described in [Patent Document 1], solar cells are arranged in a matrix and electrically connected in series by a connecting member made of a metal thin plate such as a copper thin plate, There is a solar cell module sealed between a front surface member and a back surface member by a light-transmitting and insulating sealing material such as EVA. And, as the front member and the back member, glass having an outer dimension of 1300 mm × 875 mm is used, the module structure allows light incidence from both sides, and the back member is not limited to glass, and a light-transmitting plastic material is used. It is described that when a translucent plastic material is used, a material having a water vapor transmission rate of 20 g / m 2 · day or less is preferable.

特開2000−101122号公報JP 2000-101122 A

両面受光型太陽電池は表面だけでなく裏面からの受光によっても発電するので、表面および裏面共に透明の保護材を用いることが必要である。従来の片面受光型太陽電池に用いられてきた強化ガラスを、表面および裏面の保護材に用いるダブルガラスモジュール構造は、両面受光型太陽電池モジュールを構成する上で有効な構造である。特に、片面受光型太陽電池との発電量差が最も大きくなる垂直設置の両面受光型太陽電池に適用する場合、雹等の落下物に対する太陽電池の保護に適したものである。   Since the double-sided light-receiving solar cell generates power not only from the front surface but also from the back surface, it is necessary to use a transparent protective material for both the front and back surfaces. The double glass module structure using the tempered glass that has been used in conventional single-sided light-receiving solar cells as a protective material for the front and back surfaces is an effective structure for constituting a double-sided light-receiving solar cell module. In particular, when applied to a vertically installed double-sided light-receiving solar cell in which the difference in power generation from the single-sided light-receiving solar cell is the largest, it is suitable for protecting the solar cell against falling objects such as a bag.

しかし、ダブルガラスモジュール構造は、ガラスを少なくとも2枚用いるため質量が重く、太陽電池モジュールの輸送や据付において作業上不利な面がある。また、製造過程においてもダブルガラスモジュール構造では、シングルガラスモジュール構造に比べ、ガラスの重ね合わせ作業が発生する他、太陽電池セルを封止材で封止するラミネーション作業において、封止材の溶解によるセルの流れや気泡の発生が起こる可能性が高く、生産性に劣る面がある。   However, the double glass module structure has a heavy mass because it uses at least two pieces of glass, and is disadvantageous in terms of work in transportation and installation of the solar cell module. In addition, in the manufacturing process, the double glass module structure has a glass overlapping work as compared with the single glass module structure, and in the lamination work for sealing the solar cells with the sealing material, the sealing material is dissolved. There is a high possibility that the flow of cells and the generation of bubbles will occur, and the productivity is inferior.

このため、両面受光型太陽電池をシングルガラスモジュール構造とすることが考えられる。この場合、機能を十分に発揮するためには、両面受光型太陽電池は裏面でも受光することが必要であり、バックシートには透明性を有する高透過率の樹脂シートが用いられる。しかし、従来の透明フッ素樹脂フィルム等の樹脂シートでは、耐湿性に劣り、水分吸収に伴う太陽電池セルの性能劣化の問題があった。   For this reason, it can be considered that the double-sided light-receiving solar cell has a single glass module structure. In this case, in order to fully exhibit the function, the double-sided light-receiving solar cell needs to receive light even on the back surface, and a transparent highly transparent resin sheet is used for the back sheet. However, conventional resin sheets such as transparent fluororesin films are inferior in moisture resistance and have a problem of deterioration in the performance of solar cells due to moisture absorption.

本発明の目的は、耐湿性を改善し性能劣化の少ないシングルガラスモジュール構造の両面受光型太陽電池を提供することにある。   An object of the present invention is to provide a double-sided light-receiving solar cell having a single glass module structure with improved moisture resistance and less performance deterioration.

本発明の他の目的は、耐湿性を改善し性能劣化の少ない両面受光型太陽電池を提供することにある。   Another object of the present invention is to provide a double-sided light-receiving solar cell with improved humidity resistance and less performance deterioration.

上記目的を達成するために、本発明の両面受光太陽電池は、片面あるいは両面を耐湿性の高い透明樹脂シートで保護したものである。透明性に優れ、高耐湿性の透明樹脂シートは、ポリエチレンテレフタレートフィルムに環状オレフィンコポリマーをコーティングしたものである。また、透明樹脂シートを用いた両面受光型太陽電池モジュールを、傾斜架台に設置したものである。   In order to achieve the above object, the double-sided light-receiving solar cell of the present invention has one or both sides protected with a transparent resin sheet having high moisture resistance. A transparent resin sheet having excellent transparency and high moisture resistance is a polyethylene terephthalate film coated with a cyclic olefin copolymer. Moreover, the double-sided light-receiving solar cell module using a transparent resin sheet is installed on an inclined frame.

本発明によれば、高耐湿透明樹脂シートを設けることにより、耐湿を向上させ、高耐湿性透明樹脂バックシートが実現できる。また、性能劣化に至る時間を大幅に延長することができる。   According to the present invention, by providing a highly moisture-resistant transparent resin sheet, moisture resistance can be improved and a highly moisture-resistant transparent resin back sheet can be realized. In addition, the time to performance degradation can be greatly extended.

両面受光型太陽電池モジュールは、表面および裏面からの受光を得るため保護材には透明性が要求される。また両面受光型太陽電池モジュールは垂直に設置することにより、片面受光型太陽電池モジュールに比べ年間発電電力量が約1.3 倍多く発電することが知られている。   In the double-sided light-receiving solar cell module, the protective material is required to be transparent in order to receive light from the front surface and the back surface. In addition, it is known that when the double-sided light receiving solar cell module is installed vertically, the annual power generation amount is about 1.3 times larger than that of the single-sided light receiving solar cell module.

本発明の一実施例を図1から図5により説明する。図1は、本実施例の太陽電池セルの構造を示す縦断面図、図2は、太陽電池セルのグリッド状電極を示す平面図、図3は、片面に透明のバックシートを適用したシングルガラスモジュール構造の両面受光型太陽電池の縦断面図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing the structure of a solar battery cell of this example, FIG. 2 is a plan view showing grid-like electrodes of the solar battery cell, and FIG. 3 is a single glass with a transparent back sheet applied on one side. It is a longitudinal cross-sectional view of the double-sided light receiving solar cell having a module structure.

図1に示すように、本実施例の太陽電池セル10は、シリコン基板1の表側の面にリン拡散によるn+ 層2を、裏側の面にボロン拡散によるp+ 層3を形成している。このn+ 層2とシリコン基板1のp層とでpn接合を形成し、裏側の面側のp+ 層3がBSFを形成している。n+ 層2及びp+ 層3の上には、シリコン酸化膜(SiO2 )4を形成している。このn+pp+BSF構造の拡散基板に、表側の面に(−)電極である、おもて電極5と、裏側の面に(+)電極である裏面電極6とを形成している。 As shown in FIG. 1, in the solar cell 10 of this example, an n + layer 2 by phosphorus diffusion is formed on the front surface of the silicon substrate 1 and a p + layer 3 by boron diffusion is formed on the back surface. . The n + layer 2 and the p layer of the silicon substrate 1 form a pn junction, and the p + layer 3 on the back surface side forms a BSF. A silicon oxide film (SiO 2 ) 4 is formed on the n + layer 2 and the p + layer 3. In the diffusion substrate having the n + pp + BSF structure, a front electrode 5 which is a (−) electrode on the front surface and a back electrode 6 which is a (+) electrode are formed on the back surface.

図2に示すように、太陽電池セルのグリッド状電極は、バスバー電極8とフィンガー電極9とを備え、幅の広いバスバー電極8から、幅の狭いフィンガー電極9が延在している。   As shown in FIG. 2, the grid electrode of the solar battery cell includes a bus bar electrode 8 and a finger electrode 9, and a narrow finger electrode 9 extends from the wide bus bar electrode 8.

図3に示すように、太陽電池モジュールは、太陽電池セル10を封止材12で封止しており、封止材12の表面には保護材として強化ガラス11が設けられ、裏面には保護材として樹脂母材13と撥水層14で構成される高耐湿透明樹脂シートが設けられている。樹脂母材13には、ポリエチレンテレフタレート(PET)のフィルムを用い、この表面に撥水層14として環状オレフィンコポリマーを蒸着コーティングして高耐湿透明樹脂シートを形成している。   As shown in FIG. 3, the solar cell module has solar cells 10 sealed with a sealing material 12, tempered glass 11 is provided as a protective material on the surface of the sealing material 12, and protection is provided on the back surface. A high moisture resistant transparent resin sheet composed of a resin base material 13 and a water repellent layer 14 is provided as a material. A polyethylene terephthalate (PET) film is used as the resin base material 13, and a cyclic olefin copolymer is deposited on the surface as a water repellent layer 14 to form a highly moisture-resistant transparent resin sheet.

ここで、封止材12で太陽電池セル10を封止する際のラミネーション過程で実施される加熱による損傷を防止するため、撥水層14に使用する環状オレフィンコポリマーは、ガラス転移温度が130〜150℃であるものを選定している。また、光線透過率は90%以上となるように設定するのが望ましい。コーティングの厚さが厚すぎるとラミネーション時の熱膨張により線膨張係数の異なる樹脂母材13を変形させてしまうので、熱変形は樹脂母材13側で主として生じるように厚さ3μm程度にすると良い。また、コーティング面内の厚さ分布の差が大きいと熱変形時に亀裂を生じさせることがあり、一様にコーティングさせるのが好ましい。   Here, the cyclic olefin copolymer used for the water-repellent layer 14 has a glass transition temperature of 130 to 130 in order to prevent damage caused by heating performed in the lamination process when the solar battery cell 10 is sealed with the sealing material 12. The one that is 150 ° C is selected. Further, it is desirable to set the light transmittance to be 90% or more. If the coating is too thick, the resin base material 13 having a different linear expansion coefficient is deformed due to thermal expansion during lamination. Therefore, the thickness of the coating is preferably about 3 μm so that the thermal deformation mainly occurs on the resin base material 13 side. . Further, if the difference in thickness distribution in the coating surface is large, cracks may occur during thermal deformation, and it is preferable to coat uniformly.

また、樹脂母材13に用いるポリエチレンテレフタレートは、透湿度が小さい程良いが材料の性質上透湿度には限界があり、光線透過率が90%以上のものを使用することが好ましい。バックシートの母材は、厚さを100μm以上とし、ラミネーション時に封止材が溶解した際、バックシートの外観形状が損なわれないようにしている。   The polyethylene terephthalate used for the resin base material 13 is preferably as low as possible in moisture permeability, but the moisture permeability is limited due to the properties of the material, and it is preferable to use one having a light transmittance of 90% or more. The base material of the back sheet has a thickness of 100 μm or more so that the outer shape of the back sheet is not impaired when the sealing material is dissolved during lamination.

この構成により、表面側の保護材である強化ガラス11からの入射光15と裏面側の保護材である高耐湿透明樹脂シートからの入射光16が受光でき、両面受光型太陽電池が実現できる。また、太陽電池モジュールを垂直に設置した時の降雹等の落下物による損傷を防止し、落下物等から保護が行える。   With this configuration, it is possible to receive incident light 15 from the tempered glass 11 that is the protective material on the front surface side and incident light 16 from the high moisture-resistant transparent resin sheet that is the protective material on the back surface side, thereby realizing a double-sided light receiving solar cell. In addition, damage caused by falling objects such as falling when the solar cell module is installed vertically can be prevented, and protection from falling objects can be performed.

表面側に強化ガラス11を設ける必要がない使い方ができる場合は、表面側の保護材として樹脂母材13と撥水層14で構成される高耐湿透明樹脂シートを設けてもよい。この場合も樹脂母材13には、ポリエチレンテレフタレート(PET)のフィルムを用い、この表面に撥水層14として環状オレフィンコポリマーを蒸着コーティングして高耐湿透明樹脂シートを形成する。   When it is possible to use the tempered glass 11 without providing the tempered glass 11 on the surface side, a highly moisture-resistant transparent resin sheet composed of the resin base material 13 and the water repellent layer 14 may be provided as a protective material on the surface side. Also in this case, a polyethylene terephthalate (PET) film is used as the resin base material 13, and a cyclic olefin copolymer is vapor-deposited as a water repellent layer 14 on the surface to form a highly moisture-resistant transparent resin sheet.

表面側に強化ガラス11を設け、裏面側の保護材として本実施例の高耐湿透明樹脂シートを設けた太陽電池モジュール20と、表面側に強化ガラス11を設け、裏面側の保護材として従来の透明フッ素樹脂シートを設けた太陽電池モジュール21を製作し、高温,高湿度で比較試験を行った。この試験では恒温槽を用い、温度は85℃、湿度は85%に設定して太陽電池モジュール20,21を入れ、太陽電池モジュール20,21それぞれについて時間経過と電気性能の関係を測定した。   A solar cell module 20 provided with a tempered glass 11 on the front surface side and provided with the high moisture-resistant transparent resin sheet of this embodiment as a protective material on the back surface side, and a tempered glass 11 provided on the front surface side, and a conventional protective material on the back side. A solar cell module 21 provided with a transparent fluororesin sheet was manufactured, and a comparative test was performed at high temperature and high humidity. In this test, a thermostat was used, the temperature was set to 85 ° C., the humidity was set to 85%, the solar cell modules 20 and 21 were inserted, and the relationship between the passage of time and the electrical performance was measured for each of the solar cell modules 20 and 21.

図4及び図5は、その試験結果を示す図で、図4は、表面側の出力変化特性を、図5は、裏面側の出力変化特性を示している。電気性能が初期値の95%に低下した経過時間を比較すると、図4に示すように、表面側では太陽電池モジュール20の方が、約5.8 倍時間経過が長く、図5に示すように、裏面側でも太陽電池モジュール20の方が、約7.1倍時間経過が長かった。   4 and 5 show the test results. FIG. 4 shows the output change characteristic on the front side, and FIG. 5 shows the output change characteristic on the back side. Comparing the elapsed time when the electrical performance decreased to 95% of the initial value, as shown in FIG. 4, the solar cell module 20 is about 5.8 times longer on the surface side, as shown in FIG. In addition, the solar cell module 20 was about 7.1 times longer on the back side.

このように、本実施例の高耐湿透明樹脂シートを設けることにより、耐湿を向上させ、高耐湿性透明樹脂バックシートが実現できる。また、性能劣化に至る時間を大幅に延長することができる。   Thus, by providing the highly moisture-resistant transparent resin sheet of this example, moisture resistance can be improved and a highly moisture-resistant transparent resin back sheet can be realized. In addition, the time to performance degradation can be greatly extended.

両面受光型太陽電池は垂直に設置する他、片面受光型太陽電池と同様に傾斜架台に設置しても良い。両面受光型太陽電池は裏面からの受光によっても発電するので、地面に対し例えば30°の傾斜角を設けて設置することにより、地面の反射光や散乱光を裏面に受けて発電するので、片面受光型太陽電池より多くの発電量を得ることができる。ダブルガラスモジュール構造の両面受光型太陽電池を傾斜架台に設置することが可能であるが、重量が重いため傾斜架台が大きくなる。本実施例のシングルガラスモジュール構造の両面受光型太陽電池は、軽量化できるので、特に大面積の土地に太陽電池モジュールを敷き詰め、大容量の太陽光発電システムを建設する場合、傾斜架台を小型にでき、その結果、太陽電池モジュールを多く設置できるため、発電量を多くできる。また、建設作業性や生産性も向上できる。   The double-sided light-receiving solar cell may be installed vertically, or may be installed on an inclined frame in the same manner as the single-sided light-receiving solar cell. Since the double-sided solar cell generates power even when it receives light from the back surface, for example, it is provided with an inclination angle of 30 ° with respect to the ground to generate power by receiving reflected light and scattered light from the back surface. A larger amount of power generation than the light receiving solar cell can be obtained. It is possible to install a double-sided light receiving solar cell having a double glass module structure on an inclined pedestal, but the inclined pedestal becomes larger due to its heavy weight. The double-sided light receiving solar cell with a single glass module structure of the present embodiment can be reduced in weight. Therefore, in particular, when constructing a large-capacity solar power generation system by laying the solar cell module on a large area of land, the tilt frame is made small. As a result, since many solar cell modules can be installed, the amount of power generation can be increased. Moreover, construction workability and productivity can be improved.

また、垂直設置に用いられるダブルガラスモジュール構造の両面受光型太陽電池に比べ、片側の保護材をガラスではなく透明樹脂シートを用いたシングルガラスモジュールは、裏面からの受光による発電機能を損なうことなく、かつ軽量である他、低コストでの製造が可能であり、両面受光型太陽電池モジュールの傾斜架台設置方式での太陽光発電システムへの適用を大きく拡大させるものである。また、高効率の両面受光型太陽電池モジュールの適用範囲が増大し、自然破壊を防止する大規模な太陽光発電システムを実現することが可能となり、二酸化炭素の発生しない自然エネルギーを得ることで地球環境保護に大きく貢献できる。   Compared to double-sided solar cells with a double glass module structure used for vertical installation, the single glass module using a transparent resin sheet instead of glass as the protective material on one side does not impair the power generation function due to light reception from the back side. In addition to being lightweight, it can be manufactured at low cost, and greatly expands the application of the double-sided light receiving solar cell module to a photovoltaic power generation system using an inclined frame installation method. In addition, the application range of high-efficiency double-sided solar cell modules has increased, and it has become possible to realize a large-scale photovoltaic power generation system that prevents natural destruction. By obtaining natural energy that does not generate carbon dioxide, It can greatly contribute to environmental protection.

本発明の一実施例である太陽電池セルの構造を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the photovoltaic cell which is one Example of this invention. 太陽電池セルのグリッド状電極を示す平面図。The top view which shows the grid-like electrode of a photovoltaic cell. 片面に透明のバックシートを適用したシングルガラスモジュール構造の両面受光型太陽電池の縦断面図。The longitudinal cross-sectional view of the double-sided light reception type solar cell of the single glass module structure which applied the transparent backsheet to the single side | surface. 高温高湿度の試験による表面側の出力変化を示す図。The figure which shows the output change of the surface side by the test of high temperature high humidity. 高温高湿度の試験による裏面側の出力変化を示す図。The figure which shows the output change of the back side by the test of high temperature high humidity.

符号の説明Explanation of symbols

10…太陽電池セル、11…強化ガラス、12…封止材、13…樹脂母材、14…撥水層、15…表面入射光、16…裏面入射光。   DESCRIPTION OF SYMBOLS 10 ... Solar cell, 11 ... Tempered glass, 12 ... Sealing material, 13 ... Resin base material, 14 ... Water-repellent layer, 15 ... Front surface incident light, 16 ... Back surface incident light.

Claims (5)

太陽電池モジュールの少なくとも裏面側の保護材を、樹脂母材の表面に撥水層を蒸着コーティングして高耐湿透明樹脂シートで形成した両面受光型太陽電池モジュール。   A double-sided light-receiving solar cell module in which a protective material on at least the back side of the solar cell module is formed of a highly moisture-resistant transparent resin sheet by depositing a water-repellent layer on the surface of a resin base material. 太陽電池モジュールの少なくとも裏面側の保護材を、ポリエチレンテレフタレート
(PET)のフィルムの表面に環状オレフィンコポリマーを蒸着コーティングして形成した両面受光型太陽電池モジュール。
A double-sided solar cell module in which a protective material on at least the back side of the solar cell module is formed by vapor-depositing a cyclic olefin copolymer on the surface of a polyethylene terephthalate (PET) film.
太陽電池モジュールの表面側の保護材として強化ガラスを設けた請求項1又は2に記載の両面受光型太陽電池モジュール。   The double-sided solar cell module according to claim 1 or 2, wherein tempered glass is provided as a protective material on the surface side of the solar cell module. 請求項1から3のいずれかに記載の両面受光型太陽電池モジュールを傾斜架台に設置して発電させる太陽電池。   The solar cell which installs the double-sided light reception type solar cell module in any one of Claim 1 to 3 in an inclination mount frame, and generates electric power. 請求項1から3のいずれかに記載の両面受光型太陽電池モジュールを垂直に設置して発電させる太陽電池。
A solar cell for generating power by vertically installing the double-sided light-receiving solar cell module according to claim 1.
JP2004313222A 2004-10-28 2004-10-28 Double-side light-receiving solar cell module and solar cell Pending JP2006128329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313222A JP2006128329A (en) 2004-10-28 2004-10-28 Double-side light-receiving solar cell module and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313222A JP2006128329A (en) 2004-10-28 2004-10-28 Double-side light-receiving solar cell module and solar cell

Publications (1)

Publication Number Publication Date
JP2006128329A true JP2006128329A (en) 2006-05-18

Family

ID=36722727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313222A Pending JP2006128329A (en) 2004-10-28 2004-10-28 Double-side light-receiving solar cell module and solar cell

Country Status (1)

Country Link
JP (1) JP2006128329A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088383B1 (en) 2010-12-06 2011-12-01 주식회사 신성솔라에너지 Bifacial photovoltaic solar cell manufacturing method using printing method, and bifacial photovoltaic solar cell of the same
JP2014531745A (en) * 2011-08-29 2014-11-27 サン−ゴバン グラス フランスSaint−Gobain Glass France Thin film solar cell module with hydrophobic coating on the back
TWI481048B (en) * 2012-11-26 2015-04-11 Motech Ind Inc Solar cell and module comprising the same
CN108198885A (en) * 2018-01-18 2018-06-22 晶澳太阳能有限公司 A kind of double-sided solar battery component for promoting generated energy
JP2018160662A (en) * 2017-03-23 2018-10-11 エルジー エレクトロニクス インコーポレイティド Double-sided light receiving solar cell module
CN110861376A (en) * 2019-12-02 2020-03-06 上海紫江彩印包装有限公司 Polyolefin film for transparent back plate film and preparation method thereof
WO2021019593A1 (en) 2019-07-26 2021-02-04 株式会社東芝 Flight vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088383B1 (en) 2010-12-06 2011-12-01 주식회사 신성솔라에너지 Bifacial photovoltaic solar cell manufacturing method using printing method, and bifacial photovoltaic solar cell of the same
JP2014531745A (en) * 2011-08-29 2014-11-27 サン−ゴバン グラス フランスSaint−Gobain Glass France Thin film solar cell module with hydrophobic coating on the back
TWI481048B (en) * 2012-11-26 2015-04-11 Motech Ind Inc Solar cell and module comprising the same
JP2018160662A (en) * 2017-03-23 2018-10-11 エルジー エレクトロニクス インコーポレイティド Double-sided light receiving solar cell module
JP7103793B2 (en) 2017-03-23 2022-07-20 エルジー エレクトロニクス インコーポレイティド Double-sided light-receiving solar cell module
CN108198885A (en) * 2018-01-18 2018-06-22 晶澳太阳能有限公司 A kind of double-sided solar battery component for promoting generated energy
CN108198885B (en) * 2018-01-18 2024-04-12 晶澳太阳能有限公司 Double-sided solar cell module capable of improving generated energy
WO2021019593A1 (en) 2019-07-26 2021-02-04 株式会社東芝 Flight vehicle
CN110861376A (en) * 2019-12-02 2020-03-06 上海紫江彩印包装有限公司 Polyolefin film for transparent back plate film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101070871B1 (en) Back sheet of solar cell module for photovoltaic power generation
EP2416374B1 (en) Solar cell module with layers of design for integration into buildings
KR101439393B1 (en) Daylighting solar battery module
JP2006344964A (en) Photovoltaic force concentrating device of solar energy system
JP2008141143A (en) Solar battery module
JP3193193U (en) Flexible solar panel
JP5981325B2 (en) Solar power system
KR101762795B1 (en) High efficiency Solar system having reflection board and solar panel device using Bifacial transparent solar cell
US20070256732A1 (en) Photovoltaic module
JP2012507851A (en) Functional sheet and solar cell module including the same
JPH10284747A (en) Solar battery module
JP2006073707A (en) Solar cell module
JP5212307B2 (en) Solar cell module
JP3776082B2 (en) Solar cell module
JP2006128329A (en) Double-side light-receiving solar cell module and solar cell
JP2003110128A (en) Thin film solar cell module and its manufacturing method
JP2009032779A (en) Thin-film solar cell module
JP2012104637A (en) Back sheet for solar cell
KR20100071246A (en) Solar cell module
KR20210004125A (en) Double window system including buiding integrated photovoltaic module
KR101405279B1 (en) solar cell module
KR102586342B1 (en) Solar module and method for the production thereof
JP4194457B2 (en) Solar cell module
JP2005129728A (en) Protective sheet for solar cell module, solar cell module using it, and method of manufacturing solar cell module
JP5927560B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425