WO2018046513A1 - Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs - Google Patents

Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs Download PDF

Info

Publication number
WO2018046513A1
WO2018046513A1 PCT/EP2017/072285 EP2017072285W WO2018046513A1 WO 2018046513 A1 WO2018046513 A1 WO 2018046513A1 EP 2017072285 W EP2017072285 W EP 2017072285W WO 2018046513 A1 WO2018046513 A1 WO 2018046513A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
current
field
radius
circuit board
Prior art date
Application number
PCT/EP2017/072285
Other languages
German (de)
English (en)
Inventor
Jürgen Götz
Stefan Hain
Franz MEIERHÖFER
Roland Weiss
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP17765397.9A priority Critical patent/EP3491398A1/fr
Priority to RU2019110266A priority patent/RU2717397C1/ru
Priority to KR1020197009239A priority patent/KR102182504B1/ko
Priority to JP2019512977A priority patent/JP6803974B2/ja
Publication of WO2018046513A1 publication Critical patent/WO2018046513A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the invention relates to a device and a method for measuring the current intensity of a single conductor of a multi ⁇ conductor system.
  • multi-conductor cables comprising at least two conductors are used. With multi-conductor cables, each conductor is isolated according to the voltage. All conductors are then typically stranded together and again covered with egg ⁇ nem common insulation material.
  • the measurement of the current flow in a single conductor of such a multi-conductor system can be effected by means of shunt resistors, toroidal transformers, Rogowski coils or with a field-probe-based sensor system.
  • the conductor to be measured must be accessible individually for a measurement, which often means that the multi-conductor cable has to be separated.
  • the measuring system comprises at least two field sensors which are arranged on a printed circuit board around the multi-conductor system.
  • the field sensors are suitable, a magnetic field resulting from a linear combination of the Mag ⁇ netfelder of each conductor to be measured and convert them into an electrical signal.
  • the measuring system also includes a signal evaluation device, by means of which the current in the current conductor is determined by means of the signals of the at least two field sensors and by at least a distance of the current ⁇ conductor to one of the field sensors.
  • this measuring system is sensitive to via external fields, whereby the measurement of the current flow in the conductor can be falsified.
  • the object is achieved with a device according to claim 1 and a method according to claim 10.
  • the device according to the invention for measuring a current intensity in a conductor of a multi-conductor system with at least two conductors comprises at least two field sensors.
  • Each field sensor is suitable to measure a magnetic field resulting from egg ⁇ ner linear combination of the magnetic fields of the individual conductors and convert it into an electrical signal.
  • a first field sensor is arranged on a first radius nikseg- element-like around the conductor and a second field ⁇ sensor is arranged on a second radius in a circle segment around the conductor, wherein the first radius is greater than the second radius.
  • the apparatus further comprises a signal evaluation device which is suitable for determining the current intensity in the current conductor by means of the difference of the signals of the at least two field sensors and by means of at least a first distance of the current conductor to the first field sensor or by means of a second distance of the current conductor to the second field sensor to investigate.
  • a signal evaluation device which is suitable for determining the current intensity in the current conductor by means of the difference of the signals of the at least two field sensors and by means of at least a first distance of the current conductor to the first field sensor or by means of a second distance of the current conductor to the second field sensor to investigate.
  • the first and the second field sensor are arranged on a common printed circuit board. All field sensors, ie both the field sensors on the first radius and the field sensors on the second radius, are arranged on the common printed circuit board and can be placed around the multi-conductor system and fixed. Thus, the rela ⁇ tive position and the distance of the field sensors to each other and to the current conductor to be measured during the measurement are constant. This advantageously allows constant measurements.
  • the first field sensor on a first circuit board and the second field sensor on a second Lei ⁇ terplatte are arranged.
  • the first and the second radius can be selected independently of each other.
  • the printed circuit board with the field sensors can thus be laid variably around the multi-conductor system.
  • the multi-conductor system can have different shapes, in particular circular or oval-shaped.
  • the scope of the multi-conductor system and the length of the first and / or second circuit board need not be exactly matched. It is advantageous sufficient if the printed circuit boards each ⁇ wells partially can be placed around the multi-conductor system around.
  • the flexible circuit board can be installed both on new multi-conductor systems, as well as already installed old systems. The fixation, for example, by flexible terminals, a Screwed or made by an adapter made to fit.
  • the number of field sensors on a printed circuit board is equal to or greater than the number of Stromlei ⁇ ter. It is advantageous possible for each individual conductors of multi-conductor system, the current strength during limited ⁇ men.
  • the field sensors have different distances to the current conductor to be measured. Since the magnetic field of a straight current-carrying conductor decreases reciprocally with the distance, it is then possible with the aid of a linear combination of the magnetic fields of the individual conductors to deduce the current intensity in a specific individual current conductor.
  • the number of field sensors on the first and second circuit board is the same.
  • a first and a second field sensor are then assigned to each other in pairs. The two sensors can then advantageously produce signals which are used to determine the
  • the ratio of the first radius to the second radius is in a range between 1.1 and 3.
  • the measuring signals of the first and second field sensors are sufficiently different in this area to exclude foreign fields from the measurement and on the other hand of the same order of magnitude in order to be able to calculate the current intensity.
  • the first field sensor and the second Field sensor radially aligned, that is arranged from a center of the multi-conductor system on a line.
  • the sensitive direction of the field sensors is aligned parallel to one another Wesentli ⁇ chen.
  • At least one of the field sensors is a fluxgate sensor or a Hall sensor.
  • a fluxgate sensor is understood to mean a sensor which represents a magnetometer for the vectorial determination of a magnetic field.
  • the fluxgate sensor is also called a forester probe. With fluxgate sensors it is possible to measure magnetic fields from 0, 1 nT to 5 mT.
  • a Hall sensor advantageously uses the Hall effect to measure magnetic fields.
  • a Hall sensor does not change the magnetic field to be measured, since no magnetically active materials have to be installed in Hall sensors.
  • the first and the second field sensor are arranged substantially planar to one another.
  • the first and the second circuit board are then also arranged substantially zuei ⁇ nander planar.
  • the sensitive direction of each ⁇ thro nozzle field sensors is aligned parallel to one another.
  • the printed circuit boards are arranged around the multi-conductor system such that the printed circuit boards are arranged with respect to their surface normal parallel to the axial direction of the multi-conductor cable. In this arrangement, the distance-of the first and second field sensor to each other and to the center of the multi-conductor system in the radial direction kon ⁇ constant.
  • the distance of the field sensors to the center of the system can be easily determined over the circumference, so that this distance is known.
  • This arrangement can thus advantageously ensure the necessary flexibility during the assembly ⁇ phase of the circuit board and continue to ⁇ advantageous to ensure the spatially fixed radial arrangement of the field sensors to each other and to be measured conductors during the measurement phase.
  • the length of the circuit board is selectable such that the multi-wire system is arranged in a circular segment-like Wenig ⁇ least 180 ° around the multi-conductor system around.
  • the circuit board can be arranged different multi ⁇ conductor systems with different circumferential lengths and circumferences around.
  • the signal evaluation device is arranged on the circuit board. It is advantageous for measuring the
  • a current egg nes current conductor in a multi-conductor system by means of the off ⁇ valuing at least two electrical signals from at least two field sensors is determined in a signal evaluation device. From a first signal, a first magnetic field strength is determined and from a second signal, a second magnetic field strength is determined. Furthermore, a first distance between the first field sensor and the current conductor is known, or a second distance between the second field sensor and the current conductor is known. By using the law of Biot-Savart the amperage of the Stromlei ⁇ ters is then determined from the difference of the first and second magnetic field strength and from the first or the second distance.
  • Figure 2 is a plan view of a multi-conductor system measuring apparatus
  • FIG. 3 shows a multi-conductor system with a field sensor band running parallel to the axis of the multi-conductor system relative to its surface normal.
  • FIG. 1 shows a measuring device 1 and a multi-conductor cable 14 in cross-section.
  • the multi-conductor cable 14 comprises three current ⁇ conductor 7. These current conductors 7 are arranged symmetrically about an imaginary center of the multi-conductor cable 14 in this embodiment. However, it is also conceivable that the power conductors 7 are not arranged symmetrically in the multi-conductor cable 14.
  • the measuring apparatus 1 to the Mes ⁇ sen the current strength is arranged reasonable in at least one current conductor.
  • the measuring device 1 comprises a flexible circuit ⁇ plate 2. It is also possible (not shown in figure), that two belts are arranged on each of the first and second radii on the flexible circuit board 2, which comprise the field ⁇ sensors.
  • a first field sensor 3 in a first radius R 1 and a second field sensor 4 in a second radius R 2 are arranged around the center of the multi-conductor system 14.
  • the ERS ⁇ te radius Rl here describes a larger radius around the center of the multi-conductor system around than the second radius R2.
  • the flexible printed circuit board 2 is arranged with respect to its surface normal 17 parallel to the axial direction of the multi-conductor system 2.
  • the first radius R1 and the second radius R2 depend on the requirements of the insulation, the geometry of the conductor arrangement, the current intensity and the type of field sensors used.
  • the first radius Rl of the first field sensors 3 is in this example
  • the magnet-sensitive direction of the field sensors 3, 4 is arranged at the same angle a s to the current conductor 7 to be measured.
  • One of the two mutually associated field sensors 3,4 is located on the outer radius Rl with a first distance 5 to the conductor 7 and the other on an inner radius R2 with a two ⁇ th distance 6 to the conductor 7 of the multi-conductor system 14. Based on the field difference between the inner and the outer field sensor, that is, the first field sensor 3 and the second field sensor 4, the sensor pair, and the first distance 5 or the second distance 6, the current flow in the current conductor 7 can be determined.
  • the three current conductors 7 to be measured each have six field sensors on the first radius R 1 and six field sensors on the second radius R 2.
  • the two field sensors 3, 4 are fluxgate sensors in this example. It is alternatively possible to use Hall sensors.
  • a signal evaluation device 8 is electrically connected to the flexible printed circuit board 2.
  • the signal evaluation device 8 is from at least two signals from at least two field sensors 3, 4 with two different radii R 1, R 2, in particular from a field sensor pair 16, to determine a current intensity in a single conductor 7 of a multi-conductor system 14.
  • the flexible circuit board 2 is shorter than the circumference of the multi-conductor cable 14, so that a first opening 15 remains free to go multi-conductor cable ⁇ fourteenth
  • the geometry of the multi-conductor cable 14 is known, so that the distances of the current conductor 7 to the two field sensors 3,4 are known.
  • Skalianssfak ⁇ factors can be determined.
  • a scaling factor a defined current is sent through the current conductor 7, and then the magnetic field is measured by means of the first and second field sensors 3, 4. From this, scaling factors can be calculated, which in turn can be used when flowing through an unknown current through the current conductor 7.
  • Figure 2 shows a plan view of the multi-conductor cable 14 and the measuring device 1.
  • the flexible circuit board 2 is arranged with its surface normal 17 pa ⁇ rallel to the current-carrying current conductor 7 in the multi-conductor cable 14. Furthermore, the opening 15 can be seen, since the flexible printed circuit board 2 is shorter than the circumference of the multi ⁇ conductor cable 14. Furthermore, the signal evaluation device 8 is arranged on the flexible printed circuit board 2. The determination of the current strength is based on the law of Biot-Savart:
  • Bio-Savart's law states that a current conductor of infinitesimal length dl at location r ', which is traversed by a current I, has the magnetic field strength dH at a location r.
  • a number M of currents from a number of N sensor signals can then be determined by means of the least squares method.
  • ⁇ ⁇ 1 is the magnetic field strength measured by the first field sensor 3, in the form of ⁇ , at the position ( ⁇ ⁇ ⁇ ⁇ 1 ).
  • ⁇ ⁇ 2 is the magnetic field strength measured by the second field sensor 4, denoted by ⁇ 2 in the formulas, at the position ( ⁇ ⁇ 2 ⁇ ⁇ 2).
  • I # is the stream at the location (x # y # ), that is in the
  • a 2 Equation 5-2 Gle i chung 6-1. .
  • the angle 3 ⁇ is the angle between the magnetic field sensitive direction of the sensor ⁇ and the x-axis of the coordinate system 9 in FIG. 1.
  • the angle 3 ⁇ 2 is the angle between the magnetic field sensitive direction of the sensor ⁇ 2 and the X axis.
  • Axis The coordinate system 9 relates to equations 2 to 7.
  • FIG. 3 shows a multi-conductor system 14 with a measuring device 1, the first field sensors 3 on a first band 12 and the second field sensors 4 on a second band 13 with their surface normal 17 parallel to the axial Direction of the multi-conductor system 14 are arranged.
  • the first band 12 and the second band 13 are firmly connected to one another, so that the spatially fixed radial arrangement of the field sensors 3, 4 can be ensured around the current conductor 7 during the operating or measuring phase.
  • the flexible band system comprising the first and second band 12, 13 advantageously has at least one opening 15, so that the mechanical flexibility can be currency ⁇ rend ensures the mounting of the measurement apparatus.
  • Both the mounting of the first and second bands 12, 13 and the mounting of a flexible circuit board 2 allows easy retrofitting to existing facilities with the measuring device 1 without major modifications or it allows temporary measurements, especially in the commissioning ⁇ me a plant.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

L'invention concerne un dispositif (1) et un procédé permettant de mesurer l'intensité du courant dans un conducteur de courant (7) d'un système à plusieurs conducteurs (14) comprenant au moins deux conducteurs de courant (7) à l'aide d'au moins deux capteurs de champ (3, 4), chaque capteur de champ (3, 4) étant approprié pour mesurer un champ magnétique résultant d'une combinaison linéaire des champs magnétiques des conducteurs de courant (7) individuels et pour le convertir en un signal électrique. Un capteur de champ (3) est disposé sur un premier rayon (R1) autour du système à plusieurs conducteurs (14) et un capteur de champ (4) est disposé sur un deuxième rayon (R2) autour du système à plusieurs conducteurs (14), le premier rayon (R1) étant plus grand que le deuxième rayon (R2). Le dispositif (1) comporte en outre un dispositif d'évaluation de signaux (8), lequel est approprié pour déterminer l'intensité du courant dans le conducteur de courant (7) au moyen de la différence des signaux desdits au moins deux capteurs de champ (3, 4) et au moyen d'au moins une première distance (5) ou d'une deuxième distance (6) du conducteur de courant (7) à l'un des capteurs de champ (3, 4).
PCT/EP2017/072285 2016-09-09 2017-09-06 Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs WO2018046513A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17765397.9A EP3491398A1 (fr) 2016-09-09 2017-09-06 Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs
RU2019110266A RU2717397C1 (ru) 2016-09-09 2017-09-06 Устройство и способ для измерения силы тока одного отдельного провода многопроводной системы
KR1020197009239A KR102182504B1 (ko) 2016-09-09 2017-09-06 다심 시스템의 개별 도체의 전류 세기를 측정하기 위한 장치 및 방법
JP2019512977A JP6803974B2 (ja) 2016-09-09 2017-09-06 多導体システムの1つの個別導体の電流強度を測定する装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016217168.2A DE102016217168A1 (de) 2016-09-09 2016-09-09 Vorrichtung und Verfahren zur Messung der Stromstärke eines einzelnen Leiters eines Mehrleitersystems
DE102016217168.2 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018046513A1 true WO2018046513A1 (fr) 2018-03-15

Family

ID=59858707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/072285 WO2018046513A1 (fr) 2016-09-09 2017-09-06 Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs

Country Status (6)

Country Link
EP (1) EP3491398A1 (fr)
JP (1) JP6803974B2 (fr)
KR (1) KR102182504B1 (fr)
DE (1) DE102016217168A1 (fr)
RU (1) RU2717397C1 (fr)
WO (1) WO2018046513A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561524A1 (fr) * 2018-04-25 2019-10-30 Siemens Aktiengesellschaft Dispositif de mesure de courant à carte de circuits imprimés flexible

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671226A1 (fr) * 2018-12-18 2020-06-24 Siemens Aktiengesellschaft Dispositif de mesure de courant permettant de mesurer un courant électrique dans un conducteur
CA3167806A1 (fr) * 2020-02-15 2021-08-19 Remoni A/S Systeme et procede d'analyse de qualite de puissance pour la surveillance depuis l'exterieur de cables multiconducteurs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597404A2 (fr) * 1992-11-13 1994-05-18 ABBPATENT GmbH Procédé et dispositif de détermination des courants de conducteurs d'un système polyphasé
DE19748550A1 (de) * 1997-04-19 1998-10-29 Lust Antriebstechnik Gmbh Verfahren zum Messen von elektrischen Strömen in n Leitern sowie Vorrichtung zur Durchführung des Verfahrens
DE10051160A1 (de) * 2000-10-16 2002-05-02 Infineon Technologies Ag Sensoranordnung zur kontaktlosen Messung eines Stroms
DE60026952T2 (de) * 1999-02-17 2006-11-30 Abb Control Stromsensor
DE102012100361A1 (de) * 2011-01-24 2012-10-25 Infineon Technologies Ag Stromdifferenzsensoren, -systeme und -verfahren
US20160169941A1 (en) * 2013-08-29 2016-06-16 Alps Green Devices Co.,Ltd. Current sensor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IES69863B2 (en) * 1996-03-01 1996-10-16 Suparules Ltd Apparatus for measuring an A.C. current in a cable
DE19905118B4 (de) * 1999-02-09 2010-04-08 Michael Heilmann Stromteiler für Meßwandler
WO2001079869A1 (fr) 2000-04-17 2001-10-25 Suparules Limited Dispositif de mesure de courant
DE10051138A1 (de) * 2000-10-16 2002-05-02 Vacuumschmelze Gmbh & Co Kg Anordnung zur potentialfreien Messung hoher Ströme
IES20040206A2 (en) 2003-03-27 2004-10-20 Suparules Ltd An apparatus for measuring an A.C. current in a cable
DE102008029476B4 (de) * 2008-06-20 2021-01-28 Robert Bosch Gmbh Berührungslos arbeitende Strommessanordnung zur Messung eines Batteriestromes
US7719258B2 (en) 2008-10-13 2010-05-18 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores
JP2011164019A (ja) * 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
US8575918B2 (en) 2010-03-12 2013-11-05 Frank R. Stockum Wideband transducer for measuring a broad range of currents in high voltage conductors
JP2012189506A (ja) * 2011-03-11 2012-10-04 Aisin Aw Co Ltd 電流検出装置
JP5834292B2 (ja) 2011-05-09 2015-12-16 アルプス・グリーンデバイス株式会社 電流センサ
JP5816985B2 (ja) 2013-01-11 2015-11-18 アルプス・グリーンデバイス株式会社 電流センサ
TWI499791B (zh) 2013-12-20 2015-09-11 Ind Tech Res Inst 應用於雙線電源線電流量測之非接觸式電流感測器安裝位置變動補償裝置
EP3106884B1 (fr) 2014-02-13 2018-09-19 Alps Electric Co., Ltd. Capteur de courant
JP6413317B2 (ja) * 2014-04-22 2018-10-31 横河電機株式会社 電流センサ
JP2015219058A (ja) * 2014-05-15 2015-12-07 旭化成エレクトロニクス株式会社 電流センサ
JP6566188B2 (ja) * 2015-02-13 2019-08-28 横河電機株式会社 電流センサ
DE102016210970A1 (de) 2016-06-20 2017-12-21 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Messung der Stromstärke eines einzelnen Leiters eines Mehrleitersystems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597404A2 (fr) * 1992-11-13 1994-05-18 ABBPATENT GmbH Procédé et dispositif de détermination des courants de conducteurs d'un système polyphasé
DE19748550A1 (de) * 1997-04-19 1998-10-29 Lust Antriebstechnik Gmbh Verfahren zum Messen von elektrischen Strömen in n Leitern sowie Vorrichtung zur Durchführung des Verfahrens
DE60026952T2 (de) * 1999-02-17 2006-11-30 Abb Control Stromsensor
DE10051160A1 (de) * 2000-10-16 2002-05-02 Infineon Technologies Ag Sensoranordnung zur kontaktlosen Messung eines Stroms
DE102012100361A1 (de) * 2011-01-24 2012-10-25 Infineon Technologies Ag Stromdifferenzsensoren, -systeme und -verfahren
US20160169941A1 (en) * 2013-08-29 2016-06-16 Alps Green Devices Co.,Ltd. Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561524A1 (fr) * 2018-04-25 2019-10-30 Siemens Aktiengesellschaft Dispositif de mesure de courant à carte de circuits imprimés flexible
WO2019206659A1 (fr) * 2018-04-25 2019-10-31 Siemens Aktiengesellschaft Dispositif de mesure de courant à carte de circuit imprimé flexible

Also Published As

Publication number Publication date
EP3491398A1 (fr) 2019-06-05
RU2717397C1 (ru) 2020-03-23
JP2019526805A (ja) 2019-09-19
DE102016217168A1 (de) 2018-03-15
KR102182504B1 (ko) 2020-11-24
KR20190042699A (ko) 2019-04-24
JP6803974B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
DE102007046054B4 (de) Verbesserter hochgenauer Rogowski-Stromwandler
DE102016210970A1 (de) Vorrichtung und Verfahren zur Messung der Stromstärke eines einzelnen Leiters eines Mehrleitersystems
DE102007003830B4 (de) Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE60019836T2 (de) Strommessvorrichtungen
DE102006034579A1 (de) Stromerfassungsvorrichtung und Verfahren zur Stromerfassung
EP3491398A1 (fr) Dispositif et procédé permettant de mesurer l'intensité du courant d'un conducteur individuel d'un système à plusieurs conducteurs
DE2735054C2 (de) Zangenstrommesser
EP3385727A1 (fr) Procédé et dispositif de mesure de courant
DE69937348T2 (de) Lichtbogendetektor mit diskreten induktoren
DE60029573T2 (de) Verbesserte stromfühleranordnung für niederspannungs-leistungsschalter
DE10045670B4 (de) Stromerfassungsvorrichtung und Stromerfassungsverfahren
EP2674766A1 (fr) Procédé et dispositif de mesure du courant sensible à tous les types de courants
EP2174147A1 (fr) Dispositif de mesure d'un courant circulant dans un conducteur électrique
DE10243645A1 (de) Frequenzunabhängige galvanisch getrennte Strommessung
EP3069150A1 (fr) Dispositif, agencement et procédé permettant de mesurer l'intensité d'un courant dans un conducteur primaire parcouru par un courant
WO2005093376A2 (fr) Dispositif de mesure et/ou de controle de debit d'un fluide a mesurer
BE1026245B1 (de) Stromsensor
DE102020128731B3 (de) Wirbelstromsonde und Wirbelstrom-Prüfgerät
DE3817299C2 (fr)
DE102015202985B4 (de) Verwendung eines elektromagnetischen Sensors und Verfahren zur Messung von magnetischen Werkstoffeigenschaften
DE102015002890B4 (de) Vorrichtung zum Messen von elektrischen Strömen bei elektrischen Bauteilen
EP1728052A2 (fr) Dispositif destine a mesurer et/ou surveiller le debit d'un milieu de mesure
AT506682B1 (de) Strommesseinrichtung und verfahren zur galvanisch getrennten messung von strömen
DE202010011725U1 (de) Vorrichtung zur Strommessung an einem elektrischen Leiter
WO2024068749A1 (fr) Dispositif de mesure de courant pour une machine électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512977

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017765397

Country of ref document: EP

Effective date: 20190301

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009239

Country of ref document: KR

Kind code of ref document: A