WO2018046129A1 - Lectin for reversible cell immobilisation - Google Patents
Lectin for reversible cell immobilisation Download PDFInfo
- Publication number
- WO2018046129A1 WO2018046129A1 PCT/EP2017/001071 EP2017001071W WO2018046129A1 WO 2018046129 A1 WO2018046129 A1 WO 2018046129A1 EP 2017001071 W EP2017001071 W EP 2017001071W WO 2018046129 A1 WO2018046129 A1 WO 2018046129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogel
- cells
- lectin
- glycoproteins
- sugar
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/04—Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/098—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer formed in the presence of the enzymes or microbial cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/06—Enzymes or microbial cells immobilised on or in an organic carrier attached to the carrier via a bridging agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0062—General methods for three-dimensional culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
- C12N2501/59—Lectins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
Definitions
- the present invention relates to processes for the preparation of hydrogels for the reversible immobilization of glycoproteins and / or cells on the hydrogel, comprising the coupling of lectins to the hydrogel, corresponding lectin-coupled hydrogels, their use in 3D cell culture, and the like Process for the reversible immobilization of glycoproteins and / or cells on such hydrogels.
- the immobilization of cells plays an important role, for example in SD cell culture, in the 3D printing of cell-supporting systems, in the cultivation of artificial tissue, in the basic research of cell systems in a native environment (eg tumor model formation), as well as in the testing potential agents on immobilized cells.
- the immobilization of proteins on surfaces is interesting for many applications.
- hydrogels are becoming increasingly important. Hydrogels are generally insoluble polymers that can bind significant amounts of water, but the matrix itself is insoluble in water. The molecules are linked by covalent or ionic bonds into a three-dimensional network. Hydrogels have become an important branch of research in recent years due to their wide application potential.
- hydrogel systems in medicine ranges, for example, from the treatment of open wounds via drug delivery to the cultivation of pharmaceutically and / or biotechnologically relevant organisms or stem cells for transplantation medicine, for example in cancer therapy. Due to the wide variety of possible uses for hydrogels, it is expected that the number of applications and the possible fields of application will increase considerably in the coming years. Basically, one differentiates between two types of hydrogels. With permanent hydrogels there is a covalent cross-linking of the matrix building blocks. In the case of reversible hydrogels, on the other hand, the molecules involved are linked only by noncovalent bonds, ie ionic interactions, hydrogen bonds, hydrophobic interactions, or mechanical interweaving.
- hydrogels are used from sugars, their derivatives or polysaccharides such as alginates, chitosan or dextran for tissue engineering and drug delivery applications.
- proteins such as fibrin, elastin, lysozyme and collagen are now common starting materials for hydrogeism, with some excellent properties being attributed to them.
- DNA as a potentially versatile material has also been used as a starting material for hydrogels, although the possibilities for effective and cost-effective production of tailor-made DNA in biotechnological, application-relevant or even industrial standards are, at best, to be regarded as very limited.
- chemically-synthetic, non-biodegradable polymers such as polyvinyl alcohol or polyhydroxy methacrylates are used as the basis for hydrogels.
- Protein hydrogels are emerging as a highly promising category of materials, as proteins have unique principal properties due to their biological synthesis principle by translating a matrix from the point of view of the polymer chemist. As a precision polymer with a defined chain length, they are monodisperse and inspired by their function as a universal building material of nature, they are provided with a multitude of almost freely determinable physicochemical and biological properties, which goes far beyond the obvious argument of biocompatibility / degradability.
- the matrix consists of a backbone of protein, which is usually chemically linked by suitable binding molecules (linker molecules) as cross-linker.
- linker molecules carry, for example, reactive groups such as hydroxyl, carboxyl or amino groups.
- a gel of human protein was used for cell culture Turning covalently linked via maleimide functions to a spatial gel structure.
- Other gels are based, for example, on the connective tissue protein collagen, which is cross-linked via terminal amino groups and a corresponding linker molecule.
- serum albumin-based gels have also been described.
- Conventional methods for the immobilization of cells or proteins on surfaces such as hydrogels include the (chemical) functionalization of materials with cell-adhesive peptides, whereby the cells can be enzymatically detached from the material, for example by means of trypsin or accutase. Further, a direct encapsulation of cells in materials and dissolution of the material by heat without damaging the cells or the use of cationized material to ensure sufficient cell adhesion and detachment of the cells by proteolytic digestion are described.
- the present invention is therefore based on the object of providing a process for the simple and reversible immobilization of cells and / or proteins on surfaces or in porous systems based on hydrogels. Continue to corresponding hydrogels and methods for their preparation are provided.
- an article of the present invention relates to a process for the preparation of a hydrogel for the reversible immobilization of glycoproteins and / or cells on the hydrogel, comprising the steps:
- step (c) at least partially reacting the glycosylated material obtained in step (b) with a linker molecule such that crosslinking of the glycosylated material takes place and a hydrogel is obtained,
- step (d) lyophilizing the hydrogel obtained in step (c), thereby producing a macroporous structure in the hydrogel
- step (f) incubating the washed hydrogel with a solution containing a lectin having two or more binding sites for the specific binding of the sugar molecule used for the glycosylation in step (b), whereby the lectin is bound to the hydrogel.
- reversible immobilization refers to an immobilization of cells and / or proteins on a carrier material which can be reversed by suitable measures, ie the possibility of removing and / or removing the cells and / or proteins from and / or or from the carrier material.
- glycoproteins refers to proteins comprising one or more covalently linked carbohydrate moieties.
- a polymerizable, biocompatible starting material is provided for the preparation of a hydrogel.
- Corresponding materials are not particularly limited and are known in the art. Examples of such materials include collagen, elastin, fibrin, lysozyme, alginate, chitosan, dextran, polyethylene glycol diacrylates (PEGDA), polyvinyl alcohols (PVA), polyethylene glycols (PEG), bovine serum albumin (BSA), and mixtures of these components.
- the material is bovine serum albumin (BSA).
- the starting material provided is glycosylated with a sugar molecule.
- suitable sugar molecules are not particularly limited and are known in the art. Possible sugar molecules in this context include sucrose, maltose, glucose, fucose, fructose, galactose and lactose.
- the sugar molecule is sucrose.
- the glycosylated material is at least partially reacted with a linker molecule, so that a crosslinking of the glycosylated material takes place and a hydrogel is obtained.
- linker molecules are not particularly limited and are known in the art. In this connection, preference is given to linker molecules which are present at least homo- or heterobifunctional and are directed against primary amines, carboxyl, sulfhydryl or carbonyl groups occurring in proteins. Examples of possible linker molecules include NHS esters, imidoesters, maleimides, haloacetyls, pyridyl disulfides, hydrazides, alkoxyamines, diazirines and arylazides. Another concrete example of a possible linker molecule is tetrakis (hydroxymethyl) phosphonium chloride.
- linker molecules is added in the form of a solution at a concentration of 10 to 50 mg / ml, for example 30 mg / ml, of the linker molecule to the glycosylated material.
- the mixing ratio can be 1: 1, based on the volume of the solutions.
- step (d) of the process of the invention the resulting hydrogel is lyophilized to produce a macroporous structure in the hydrogel.
- Corresponding methods of lyophilizing hydrogels are not particularly limited and are known in the art.
- step (e) of the process of the invention the lyophilized hydrogel is washed. This is preferably carried out in a phosphate-buffered saline solution at physiological pH (pH 7.4), preferably at room temperature.
- lectins are coupled to the hydrogel.
- the term "lectin” as used herein refers to complex proteins or glycoproteins which bind specific carbohydrate structures and thereby are capable, for example, of binding specifically to cells and cell membranes and eliciting biochemical reactions therefrom, but lectins do not exert any enzymatic activity
- the coupling of the lectins to the hydrogel is accomplished by incubating the washed hydrogel with a solution containing a lectin having at least one binding site for the specific binding of the sugar molecule used for the glycosylation in step (b), thereby binding the lectin to the hydrogel
- Appropriate lectins for binding to the sugar molecule used in step (b) of the process of the invention are known in the art Possible lectins include lectins such as concavalin A and j common multimeric plant or bacterial lectins.
- a lectin in this context is the lectin PA-IIL (lecB) derived from Pseudomonas aeruginosa.
- the lectin is a multimeric lectin.
- said solution preferably contains the lectin in an amount of 50 to 400 ⁇ , more preferably 200 to 300 ⁇ .
- the lectin used is preferably matched to the cells and / or proteins to be immobilized, that is, chosen such that the cells and / or proteins to be immobilized have sugar residues which can bind to the selected lectin.
- Sugar residues present on cells and / or glycoproteins, as well as corresponding lectins which can bind them, are known in the art.
- Another object of the present invention relates to a hydrogel comprising a glycosylated, biocompatible starting material for the preparation of a hydrogel, wherein
- the starting material is crosslinked by means of a linker molecule
- a lectin is bound to the sugar molecules used for the glycosylation which has two or more binding sites for the specific binding of said sugar molecule.
- the biocompatible starting material, the sugar molecule used for the glycosylation, the linker molecule and the lectin are preferably as defined above.
- the hydrogel according to the invention is obtainable by the preparation process according to the invention.
- Another object of the present invention relates to the use of a hydrogel according to the invention for the 3D cell culture.
- Methods for 3D cell culture are not particularly limited, are known in the art, and can be readily adapted for use with the hydrogels of the present invention.
- a further subject matter of the present invention relates to a process for the reversible immobilization of glycoproteins and / or cells on a hydrogel, comprising the steps:
- biocompatible starting material the sugar molecule used for the glycosylation, the linker molecule and the lectin are preferably as defined above.
- the method defined above also includes the detachment of the glycoproteins and / or cells from the hydrogel.
- the method preferably comprises the step:
- the lectin used is preferably matched to the cells and / or proteins to be immobilized, that is selected such that the cells and / or proteins to be immobilized have sugar residues which can bind to the selected lectin.
- Sugar residues present on cells and / or glycoproteins, as well as corresponding lectins which can bind them, are known in the art.
- the affinities of various sugar molecules for a given lectin are known in the art.
- a sugar molecule which has a higher affinity for the lectins than the sugar molecule used for the glycosylation can be readily selected.
- glycosylated materials can be modified by binding lectin as an adapter molecule and thereby cells or proteins can be reversibly immobilized on corresponding surfaces or in porous 3D matrices and subsequently gently removed from / from these.
- the detachment takes place within a short time by the addition of the corresponding binder sugar in low concentration and is therefore exceptionally gentle.
- the method developed here ensures a gentle, reversible integration of cells and / or proteins on surfaces or macroporous 3D atrices which can be detached from the material within minutes by the simple addition of suitable sugars in low concentration.
- Possible applications are, for example, in 3D cell culture as well as in research on artificial tissue, in the basic research of cell systems in a native environment, as well as in the testing of potential active ingredients.
- sugar and sugar binding molecules play a major role in cell adhesion has long been known, but lectins are here for the first time for the functionalization of a synthetic material used to introduce cells and / or proteins in this reversible to immobilize there and a To cause adhesion. Furthermore, the cells can be dissolved out of the material by the simple addition of sugars specific for lectins in a gentle process
- the figure shows:
- Figure 1 Replacement of cells from a hydrogel according to the present invention over time.
- the recombinantly produced lectin is a sugar-binding protein which forms a homotetramer. Each of these subunits is able to bind a sugar molecule, mainly through cooperative hydrogen bridges is realized.
- the recognition of sugars is specific to the different types of lectin.
- the protein used here the following affinity was found: L-fucose>L-galactose>D-mannose> D-fructose.
- a special affinity chromatography was used in which mannose is immobilized on a solid phase to which lectin can bind. After binding, the lectin PA-IIL (lecB) was released from the column with an excess of mannose.
- the same principle was used in cellular adhesion;
- the tetrameric lectin acts as a link between the components of the hydrogel and the cells that carry various sugars on the surface.
- the separation of the cells from the matrix was then carried out either by adding a sugar with higher affinity or by adding excess sugars.
- BSA was glycosylated via a dry process and polymerized to gels with the aid of a linker molecule (tetrakis (hydroxymethyl) phosphonium chloride, four arms, reacted with lysine groups in proteins).
- linker molecule tetrakis (hydroxymethyl) phosphonium chloride, four arms, reacted with lysine groups in proteins.
- These gels were lyophilized (FreezeDryer Epsilon 1-6D, Christ, Osterode am Harz, Germany) to produce superior, macroporous structures by sublimation of the ice crystals formed in the frozen gel.
- the gels were incubated with lectin (50-400 ⁇ ) so that lectin could bind to the network in sufficient concentration.
- lectin 50-400 ⁇
- lung and breast carcinoma cells were added to the porous hydrogels to ensure attachment.
- cells and hydrogel-forming BSA molecules could be bound via the tetrameric structure of the lectins.
- the gels were solubilized to provide optimal growth conditions for the cells. The dissolution of the cells from the gels was carried out by adding a sugar with a very high affinity to lectin.
- FIG. 1 shows the detachment of cells from a hydrogel according to the present invention over time.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Dispersion Chemistry (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
The invention relates to methods for producing hydrogels for reversibly immobilising glycoproteins and/or cells on the hydrogel, involving lectins being coupled to the hydrogel, corresponding lectin-coupled hydrogels, the use thereof in 3D cell culture, and corresponding methods for reversibly immobilising glycoproteins and/or cells on such hydrogels.
Description
Lektin zur reversiblen Immobilisierung von Zellen Lectin for the reversible immobilization of cells
Beschreibung description
Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Hydrogelen für die reversible Immobilisierung von Glykoproteinen und/oder Zellen auf dem Hydrogel, umfassend die Kopplung von Lektinen an das Hydrogel, entsprechende Lektin-gekop- pelte Hydrogele, deren Verwendung in der 3D-Zellkultur, und entsprechende Verfah- ren zur reversiblen Immobilisierung von Glykoproteinen und/oder Zellen auf solchen Hydrogelen. The present invention relates to processes for the preparation of hydrogels for the reversible immobilization of glycoproteins and / or cells on the hydrogel, comprising the coupling of lectins to the hydrogel, corresponding lectin-coupled hydrogels, their use in 3D cell culture, and the like Process for the reversible immobilization of glycoproteins and / or cells on such hydrogels.
Die Immobilisierung von Zellen spielt eine wichtige Rolle, beispielsweise in der SD- Zellkultur, beim 3D-Druck von zelltragenden Systemen, bei der Anzucht künstlicher Gewebe, bei der Grundlagenforschung von Zellsystemen in nativer Umgebung (z. B. Tumormodellbildung), sowie bei der Testung potentieller Wirkstoffe an immobilisierten Zellen. Ebenso ist die Immobilisierung von Proteinen auf Oberflächen für vielen Anwendungsbereiche interessant. Als Trägermaterial für eine solche Immobilisierung gewinnen Hydrogele zunehmend an Bedeutung. Bei Hydrogelen handelt es sich allgemein um unlösliche Polymere, die erhebliche Mengen Wasser binden können, wobei die Matrix selber jedoch wasserunlöslich ist. Die Moleküle werden dabei durch kovalente oder ionische Bindungen zu einem dreidimensionalen Netzwerk verknüpft. Hydrogele haben sich aufgrund ihres breiten Anwendungspotentials in den letzten Jahren zu einem wichtigen Forschungszweig entwickelt. Die Anwendung von Hydrogelsystemen in der Medizin reicht beispielsweise von der Behandlung offener Wunden über die Wirkstoffverabreichung bis hin zur Kultivierung pharmazeutisch und/oder biotechnologisch relevanter Organismen oder Stammzellen für die Transplantationsmedizin, etwa in der Krebstherapie. Auf- grund der vielfältigen Einsatzmöglichkeiten für Hydrogele ist zu erwarten, dass die Anzahl der Anwendungen und der möglichen Einsatzgebiete in den nächsten Jahren noch erheblich weiter ansteigen wird.
Grundsätzlich unterscheidet man zwischen zwei Arten von Hydrogelen. Bei permanenten Hydrogelen liegt eine kovalente Vernetzung der Matrixbausteine vor. Bei reversiblen Hydrogelen hingegen sind die beteiligten Moleküle lediglich durch nichtkovalente Bindungen, also ionische Wechselwirkungen, Wasserstoffbrückenbindungen, hydrophobe Interaktionen oder mechanische Verflechtung miteinander verbunden. Verschiedene Klassen von Molekülen (Polymeren) können als Grundbausteine für Hydrogele herangezogen werden. So werden Hydrogele beispielsweise aus Zuckern, deren Derivaten oder Polysacchariden wie Alginaten, Chitosan oder Dextran für Anwendungen in der Gewebezüchtung und Wirkstoffverabreichung verwendet. Ebenso stellen Proteine wie Fibrin, Elastin, Lysozym und Kollagen inzwischen gebräuchliche Ausgangsmaterialien für Hydrogeie dar, wobei ihnen teilweise hervorragende Eigenschaften zugesprochen werden. Auch DNA als potentiell vielseitig einsetzbares Material wurde als Ausgangsbaustein für Hydrogele eingesetzt, wobei jedoch die Möglichkeiten zur effektiven und kostengünstigen Herstellung von maßgeschneiderter DNA in biotechnologisch, Anwendungs-relevanten oder gar industriellen Maßstäben bestenfalls als sehr limitiert zu betrachten sind. Auch chemisch-synthetische, nicht bio-abbaubare Polymere wie Polyvinylalkohol oder Polyhydroxymethacrylate werden als Basis für Hydrogele eingesetzt. The immobilization of cells plays an important role, for example in SD cell culture, in the 3D printing of cell-supporting systems, in the cultivation of artificial tissue, in the basic research of cell systems in a native environment (eg tumor model formation), as well as in the testing potential agents on immobilized cells. Likewise, the immobilization of proteins on surfaces is interesting for many applications. As a carrier material for such immobilization, hydrogels are becoming increasingly important. Hydrogels are generally insoluble polymers that can bind significant amounts of water, but the matrix itself is insoluble in water. The molecules are linked by covalent or ionic bonds into a three-dimensional network. Hydrogels have become an important branch of research in recent years due to their wide application potential. The application of hydrogel systems in medicine ranges, for example, from the treatment of open wounds via drug delivery to the cultivation of pharmaceutically and / or biotechnologically relevant organisms or stem cells for transplantation medicine, for example in cancer therapy. Due to the wide variety of possible uses for hydrogels, it is expected that the number of applications and the possible fields of application will increase considerably in the coming years. Basically, one differentiates between two types of hydrogels. With permanent hydrogels there is a covalent cross-linking of the matrix building blocks. In the case of reversible hydrogels, on the other hand, the molecules involved are linked only by noncovalent bonds, ie ionic interactions, hydrogen bonds, hydrophobic interactions, or mechanical interweaving. Different classes of molecules (polymers) can be used as basic building blocks for hydrogels. For example, hydrogels are used from sugars, their derivatives or polysaccharides such as alginates, chitosan or dextran for tissue engineering and drug delivery applications. Likewise, proteins such as fibrin, elastin, lysozyme and collagen are now common starting materials for hydrogeism, with some excellent properties being attributed to them. DNA as a potentially versatile material has also been used as a starting material for hydrogels, although the possibilities for effective and cost-effective production of tailor-made DNA in biotechnological, application-relevant or even industrial standards are, at best, to be regarded as very limited. Also chemically-synthetic, non-biodegradable polymers such as polyvinyl alcohol or polyhydroxy methacrylates are used as the basis for hydrogels.
Hydrogele aus Proteinen (Proteinhydrogele) entwickeln sich zu einer äußerst vielversprechenden Kategorie von Materialien, da Proteine aufgrund ihres biologischen Syntheseprinzips durch Translation einer Matrix aus Sicht des Polymerchemikers einzigartige prinzipielle Eigenschaften aufweisen. Als Präzisionspolymer mit definierter Kettenlänge sind sie monodispers und lassen sich inspiriert durch ihre Funktion als universeller Baustoff der Natur mit einer Vielzahl von nahezu frei bestimmbaren physikochemischen und biologischen Eigenschaften versehen, was weit über das offensichtliche Argument einer Bioverträglichkeit/-abbaubarkeit hinausgeht. In Proteinhydroge- len besteht die Matrix aus einem Rückgrat aus Protein, die Verknüpfung erfolgt meist chemisch durch geeignete Bindemoleküle (Linkermoleküle) als Quervernetzer. Solche Linkermoleküle tragen beispielsweise reaktive Gruppen wie Hydroxyl-, Carboxyl- oder Aminogruppen. Durch kovalente Verknüpfung der reaktiven Gruppen mit Resten auf der Oberfläche von Proteinen werden so dreidimensionale Netzwerke erzeugt. So wurde beispielsweise ein Gel aus humanem Protein (Serumalbumin) für Zellkulturan-
Wendungen entwickelt, welches kovalent über Maleimid-Funktionen zu einer räumlichen Gel-Struktur verknüpft wurde. Weitere Gele basieren etwa auf dem Bindege- websprotein Kollagen, das über endständige Aminogruppen und ein entsprechendes Linkermolekül quervernetzt ist. Für die Verabreichung von Wirkstoffen an Patienten wurden ebenfalls auf Serumalbumin basierende Gele beschrieben. Protein hydrogels (protein hydrogels) are emerging as a highly promising category of materials, as proteins have unique principal properties due to their biological synthesis principle by translating a matrix from the point of view of the polymer chemist. As a precision polymer with a defined chain length, they are monodisperse and inspired by their function as a universal building material of nature, they are provided with a multitude of almost freely determinable physicochemical and biological properties, which goes far beyond the obvious argument of biocompatibility / degradability. In protein hydrogels, the matrix consists of a backbone of protein, which is usually chemically linked by suitable binding molecules (linker molecules) as cross-linker. Such linker molecules carry, for example, reactive groups such as hydroxyl, carboxyl or amino groups. By covalently linking the reactive groups with residues on the surface of proteins, three-dimensional networks are generated. For example, a gel of human protein (serum albumin) was used for cell culture Turning covalently linked via maleimide functions to a spatial gel structure. Other gels are based, for example, on the connective tissue protein collagen, which is cross-linked via terminal amino groups and a corresponding linker molecule. For the administration of drugs to patients, serum albumin-based gels have also been described.
Herkömmliche Verfahren für die Immobilisierung von Zellen oder Proteinen auf Oberflächen wie Hydrogelen umfassen unter anderem die (chemische) Funktionalisierung von Materialien mit zelladhäsiven Peptiden, wobei die Zellen enzymatisch, beispielsweise mittels Trypsin oder Accutase, vom Material abgelöst werden können. Weiter ist ein direktes Einkapseln von Zellen in Materialien und Auflösen des Materials durch Hitze, ohne die Zellen zu schädigen, oder die Verwendung von kationisiertem Material, um ausreichende Zelladhäsion zu gewährleisten und ein Ablösen der Zellen durch proteolytischen Verdau beschrieben. Weitere Möglichkeiten umfassen beispielsweise die Verwendung von UV-sensitiven, ablösbaren Peptiden, eine Erhöhung der Hydrophobi- zität eines Materials mittels UV Licht, die Zerstörung der zelltragenden Struktur (beispielsweise die Zerstörung eines Hydrogels durch enzymatischen Abbau), die Aktivierung und Inaktivierung von zelladhäsiven Sequenzen (RGD) durch chemisches Blocken der Sequenzen und die Verwendung von zelladhäsiven Aptameren und Abbau dieser durch DNAsen. Conventional methods for the immobilization of cells or proteins on surfaces such as hydrogels include the (chemical) functionalization of materials with cell-adhesive peptides, whereby the cells can be enzymatically detached from the material, for example by means of trypsin or accutase. Further, a direct encapsulation of cells in materials and dissolution of the material by heat without damaging the cells or the use of cationized material to ensure sufficient cell adhesion and detachment of the cells by proteolytic digestion are described. Other possibilities include, for example, the use of UV-sensitive detachable peptides, an increase in the hydrophobicity of a material by means of UV light, the destruction of the cell-carrying structure (for example the destruction of a hydrogel by enzymatic degradation), the activation and inactivation of cell-adhesive sequences (US Pat. RGD) by chemically blocking the sequences and using cell-adhesive aptamers and degrading them by DNAses.
Allerdings müssen bei diesen genannten Verfahren in der Regel relativ harsche Bedingungen erzeugt werden, um die Zellen aus dem Material herauszulösen, beispielsweise durch eine Temperaturerhöhung, den Einsatz von UV-Strahlung oder den Einsatz von Proteasen. Dabei werden oft toxische Produkte beim Freisetzen der Zellen generiert, etwa beim enzymatischen Abbau und/oder einer Zersetzung der Matrix. Solche unerwünschten Nebenprodukte können entweder die Zellen selbst oder das Material schädigen und Folgeanwendungen stören. Schließlich ist bei solchen Verfahren oft die lange Dauer bis zur Ablösung der Zellen von Nachteil. However, these processes generally require relatively harsh conditions to dissolve the cells out of the material, for example, by increasing the temperature, using UV radiation, or using proteases. Toxic products are often generated during the release of the cells, for example during enzymatic degradation and / or decomposition of the matrix. Such unwanted by-products can either damage the cells themselves or the material and interfere with subsequent applications. Finally, in such procedures often the long time to detachment of the cells of disadvantage.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur einfachen und reversiblen Immobilisierung von Zellen und/oder Proteinen auf Oberflächen bzw. in porösen Systemen auf Basis von Hydrogelen bereitzustellen. Weiter sol-
ien entsprechende Hydrogele und Verfahren zu deren Herstellung bereitgestellt werden. The present invention is therefore based on the object of providing a process for the simple and reversible immobilization of cells and / or proteins on surfaces or in porous systems based on hydrogels. Continue to corresponding hydrogels and methods for their preparation are provided.
Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen gelöst. Insbesondere werden erfindungsgemäß ein Verfahren zur Herstellung eines Hydrogels für die reversible Immobilisierung von Glykoproteinen und/oder Zellen auf dem Hydrogel, ein entsprechendes Hydrogel, dessen Verwendung in der SD-Zellkultur, sowie ein entsprechendes Verfahren zur reversiblen Immobilisierung von Glykoproteinen und/oder Zellen auf einem Hydrogel bereitgestellt. This object is achieved by the embodiments characterized in the claims. In particular, a method for producing a hydrogel for the reversible immobilization of glycoproteins and / or cells on the hydrogel, a corresponding hydrogel, its use in SD cell culture, and a corresponding method for the reversible immobilization of glycoproteins and / or cells on a Hydrogel provided.
Dementsprechend betrifft ein Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Hydrogels für die reversible Immobilisierung von Glykoproteinen und/oder Zellen auf dem Hydrogel, umfassend die Schritte: Accordingly, an article of the present invention relates to a process for the preparation of a hydrogel for the reversible immobilization of glycoproteins and / or cells on the hydrogel, comprising the steps:
(a) Bereitstellen eines polymerisierbaren, biokompatiblen Ausgangsmaterials für die Herstellung eines Hydrogels, (a) providing a polymerizable, biocompatible starting material for the preparation of a hydrogel,
(b) Glykosylieren des bereitgestellten Ausgangsmaterials mit einem Zuckermolekül, (b) glycosylating the provided starting material with a sugar molecule,
(c) mindestens teilweises Umsetzen des in Schritt (b) erhaltenen glykosylierten Materials mit einem Linkermolekül, sodass eine Vernetzung des glykosylierten Materials stattfindet und ein Hydrogel erhalten wird, (c) at least partially reacting the glycosylated material obtained in step (b) with a linker molecule such that crosslinking of the glycosylated material takes place and a hydrogel is obtained,
(d) Lyophiiisieren des in Schritt (c) erhaltenen Hydrogels, wodurch eine makroporöse Struktur in dem Hydrogel erzeugt wird, (d) lyophilizing the hydrogel obtained in step (c), thereby producing a macroporous structure in the hydrogel,
(e) Waschen des lyophilisierten Hydrogels, und (e) washing the lyophilized hydrogel, and
(f) Inkubieren des gewaschenen Hydrogels mit einer Lösung, enthaltend ein Lektin, welches zwei oder mehr Bindungsstellen für die spezifische Bindung des für die Glykosylierung in Schritt (b) verwendeten Zuckermoleküls aufweist, wodurch das Lektin auf dem Hydrogel gebunden wird. (f) incubating the washed hydrogel with a solution containing a lectin having two or more binding sites for the specific binding of the sugar molecule used for the glycosylation in step (b), whereby the lectin is bound to the hydrogel.
Der Begriff„reversible Immobilisierung" wie hierin verwendet betrifft eine Immobilisierung von Zellen und/oder Proteinen auf einem Trägermaterial, die durch geeignete Maßnahmen rückgängig gemacht werden kann, also die Möglichkeit einer Ab- und/oder Herauslösung der Zellen und/oder Proteine von und/oder aus dem Trägermaterial umfasst.
Der Begriff„Glykoproteine" wie hierin verwendet betrifft Proteine, die eine oder mehrere kovalent gebundene Kohlenhydratgruppe(n) umfassen. The term "reversible immobilization" as used herein refers to an immobilization of cells and / or proteins on a carrier material which can be reversed by suitable measures, ie the possibility of removing and / or removing the cells and / or proteins from and / or or from the carrier material. The term "glycoproteins" as used herein refers to proteins comprising one or more covalently linked carbohydrate moieties.
In Schritt (a) des erfindungsgemäßen Verfahrens wird ein polymerisierbares, biokompatibles Ausgangsmaterial für die Herstellung eines Hydrogels bereitgestellt. Entsprechende Materialien unterliegen keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. Beispiele für solche Materialien umfassen Kollagen, Elastin, Fibrin, Lysozyme, Alginat, Chitosan, Dextran, Polyethylenglykoldiacrylate (PEGDA), Polyvinylalkohole (PVA), Polyethylenglykole (PEG), bovines Serumalbumin (BSA) sowie Gemische aus diesen Komponenten. In einer bevorzugten Ausführungsform ist das Material bovines Serumalbumin (BSA). In step (a) of the process of the invention, a polymerizable, biocompatible starting material is provided for the preparation of a hydrogel. Corresponding materials are not particularly limited and are known in the art. Examples of such materials include collagen, elastin, fibrin, lysozyme, alginate, chitosan, dextran, polyethylene glycol diacrylates (PEGDA), polyvinyl alcohols (PVA), polyethylene glycols (PEG), bovine serum albumin (BSA), and mixtures of these components. In a preferred embodiment, the material is bovine serum albumin (BSA).
In Schritt (b) des erfindungsgemäßen Verfahrens wird das bereitgestellte Ausgangsmaterial mit einem Zuckermolekül glykosyliert. Verfahren zur Giykosylierung von bestimmten Materialien unterliegen keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. Ebenso unterliegen geeignete Zuckermoleküle keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. Mögliche Zuckermoleküle in diesem Zusammenhang umfassen Saccharose, Maltose, Glucose, Fucose, Fructose, Galaktose und Lactose. In einer bevorzugten Ausführungsform ist das Zuckermolekül Saccharose. in Schritt (c) des erfindungsgemäßen Verfahrens wird das glykosylierte Material mindestens teilweise mit einem Linkermolekül umgesetzt, sodass eine Vernetzung des glykosylierten Materials stattfindet und ein Hydrogel erhalten wird. Dabei ist der Anteil des umgesetzten Materials zumindest so hoch, dass ein Hydrogel ausgebildet wird. Geeignete Linkermoleküle unterliegen keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. Bevorzugt sind in diesem Zusammenhang Linkermoleküle, die mindestens homo- oder hetero-bifunktional vorliegen und gegen in Proteinen vorkommende primäre Amine, Carboxyl-, Sulfhydryl- oder Carbonylgruppen gerichtet sind. Beipiele möglicher Linkermoleküle umfassen NHS-Ester, Imidoester, Maleimide, Haloacetyle, Pyridyldisulfide, Hydrazide, Alkoxyamine, Diazirine und Arylazide. Ein weiteres konkretes Beispiel für ein mögliches Linkermolekül ist Tetrakis(hydroxyme- thyl)phosphoniumchlorid. Verfahren zur Umsetzung von Materialien mit Linkermolekülen zur Herstellung eines Hydrogels unterliegen keinen besonderen Beschränkungen
und sind im Stand der Technik bekannt. Bevorzugt wird das Linkermolekül in Form einer Lösung mit einer Konzentration von 10 bis 50 mg/ml, beispielsweise 30 mg/ml, des Linkermoleküls zu dem glykosyiierten Material zugegeben. Das Mischungsverhältnis kann dabei 1 :1 , bezogen auf das Volumen der Lösungen betragen. In step (b) of the process according to the invention, the starting material provided is glycosylated with a sugar molecule. Methods for the glycosylation of certain materials are not particularly limited and are known in the art. Likewise, suitable sugar molecules are not particularly limited and are known in the art. Possible sugar molecules in this context include sucrose, maltose, glucose, fucose, fructose, galactose and lactose. In a preferred embodiment, the sugar molecule is sucrose. In step (c) of the method according to the invention, the glycosylated material is at least partially reacted with a linker molecule, so that a crosslinking of the glycosylated material takes place and a hydrogel is obtained. In this case, the proportion of the reacted material is at least so high that a hydrogel is formed. Suitable linker molecules are not particularly limited and are known in the art. In this connection, preference is given to linker molecules which are present at least homo- or heterobifunctional and are directed against primary amines, carboxyl, sulfhydryl or carbonyl groups occurring in proteins. Examples of possible linker molecules include NHS esters, imidoesters, maleimides, haloacetyls, pyridyl disulfides, hydrazides, alkoxyamines, diazirines and arylazides. Another concrete example of a possible linker molecule is tetrakis (hydroxymethyl) phosphonium chloride. Methods for reacting materials with linker molecules to produce a hydrogel are not particularly limited and are known in the art. Preferably, the linker molecule is added in the form of a solution at a concentration of 10 to 50 mg / ml, for example 30 mg / ml, of the linker molecule to the glycosylated material. The mixing ratio can be 1: 1, based on the volume of the solutions.
In Schritt (d) des erfindungsgemäßen Verfahrens wird das erhaltene Hydrogel lyophilisiert, wodurch eine makroporöse Struktur in dem Hydrogel erzeugt wird. Entsprechende Verfahren zur Lyophilisierung von Hydrogelen unterliegen keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. In step (d) of the process of the invention, the resulting hydrogel is lyophilized to produce a macroporous structure in the hydrogel. Corresponding methods of lyophilizing hydrogels are not particularly limited and are known in the art.
In Schritt (e) des erfindungsgemäßen Verfahrens wird das lyophilisierte Hydrogel gewaschen. Dies erfolgt bevorzugt in einer phosphatgepufferten Salzlösung bei physiologischem pH-Wert (pH 7,4), bevorzugt bei Raumtemperatur. In step (e) of the process of the invention, the lyophilized hydrogel is washed. This is preferably carried out in a phosphate-buffered saline solution at physiological pH (pH 7.4), preferably at room temperature.
In Schritt (f) des erfindungsgemäßen Verfahrens werden Lektine an das Hydrogel gekoppelt. Der Begriff„Lektin" wie hierin verwendet bezeichnet komplexe Proteine oder Glykoproteine, die spezifische Kohlenhydratstrukturen binden und dadurch beispielsweise in der Lage sind, spezifisch an Zellen oder Zellmembranen zu binden und von dort aus biochemische Reaktionen auszulösen. Lektine üben jedoch keine enzymati- sche Aktivität aus. Die Kopplung der Lektine an das Hydrogel erfolgt durch Inkubieren des gewaschenen Hydrogels mit einer Lösung, enthaltend ein Lektin, welches mindestens eine Bindungsstelle für die spezifische Bindung des für die Glykosylierung in Schritt (b) verwendeten Zuckermoleküls aufweist, wodurch das Lektin auf dem Hydrogel gebunden wird. Entsprechende Verfahren unterliegen keinen besonderen Beschränkungen und sind im Stand der Technik bekannt. Geeignete Lektine für die Bindung an das in Schritt (b) des erfindungsgemäßen Verfahrens verwendete Zuckermolekül sind im Stand der Technik bekannt. Mögliche Lektine umfassen Lektine wie Con- cavalin A und jegliche multimeren pflanzlichen oder bakteriellen Lektine. Ein spezifisches Beispiel für ein Lektin in diesem Zusammenhang ist das aus Pseudomonas aeruginosa stammended Lektin PA-IIL (lecB). Bevorzugt ist das Lektin ein multimeres Lektin. Weiter enthält die genannte Lösung das Lektin bevorzugt in einer Menge von 50 bis 400 μΜ, mehr bevorzugt 200 bis 300 μΜ.
Darüber hinaus ist das verwendete Lektin bevorzugt auf die zu immobilisierenden Zellen und/oder Proteine abgestimmt, also so gewählt, dass die zu immobilisierenden Zellen und/oder Proteine Zuckerreste aufweisen, die an das gewählte Lektin binden können. Auf Zellen und/oder Glykoproteinen vorhandene Zuckerreste sind, ebenso wie entsprechende Lektine, welche diese binden können, im Stand der Technik bekannt. In step (f) of the method according to the invention, lectins are coupled to the hydrogel. The term "lectin" as used herein refers to complex proteins or glycoproteins which bind specific carbohydrate structures and thereby are capable, for example, of binding specifically to cells and cell membranes and eliciting biochemical reactions therefrom, but lectins do not exert any enzymatic activity The coupling of the lectins to the hydrogel is accomplished by incubating the washed hydrogel with a solution containing a lectin having at least one binding site for the specific binding of the sugar molecule used for the glycosylation in step (b), thereby binding the lectin to the hydrogel Appropriate lectins for binding to the sugar molecule used in step (b) of the process of the invention are known in the art Possible lectins include lectins such as concavalin A and j common multimeric plant or bacterial lectins. A specific example of a lectin in this context is the lectin PA-IIL (lecB) derived from Pseudomonas aeruginosa. Preferably, the lectin is a multimeric lectin. Further, said solution preferably contains the lectin in an amount of 50 to 400 μΜ, more preferably 200 to 300 μΜ. In addition, the lectin used is preferably matched to the cells and / or proteins to be immobilized, that is, chosen such that the cells and / or proteins to be immobilized have sugar residues which can bind to the selected lectin. Sugar residues present on cells and / or glycoproteins, as well as corresponding lectins which can bind them, are known in the art.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Hydrogel, umfassend ein glykosyliertes, biokompatiblen Ausgangsmaterial für die Herstellung eines Hydro- gels, wobei Another object of the present invention relates to a hydrogel comprising a glycosylated, biocompatible starting material for the preparation of a hydrogel, wherein
(i) das Ausgangsmaterial mittels eines Linkermoleküls quervernetzt ist, und (i) the starting material is crosslinked by means of a linker molecule, and
(ii) ein Lektin an die für die Glykosylierung verwendeten Zuckermoleküle gebunden vorliegt, welches zwei oder mehr Bindungsstellen für die spezifische Bindung des genannten Zuckermoleküls aufweist. (ii) a lectin is bound to the sugar molecules used for the glycosylation which has two or more binding sites for the specific binding of said sugar molecule.
In diesem Zusammenhang finden alle relevanten Definitionen und Einschränkungen, die vorstehend für das erfindungsgemäße Verfahren zur Herstellung eines Hydrogels genannt sind, auch auf das erfindungsgemäße Hydrogel Anwendung. Insbesondere ist das biokompatible Ausgangsmaterial, das für die Glykosylierung verwendete Zuckermolekül, das Linkermolekül und das Lektin bevorzugt wie vorstehend definiert. In this connection, all relevant definitions and restrictions mentioned above for the method according to the invention for the production of a hydrogel are also applicable to the hydrogel according to the invention. In particular, the biocompatible starting material, the sugar molecule used for the glycosylation, the linker molecule and the lectin are preferably as defined above.
In einer bevorzugten Ausführungsform ist das erfindungsgemäße Hydrogel durch das erfindungsgemäße Herstellungsverfahren erhältlich. In a preferred embodiment, the hydrogel according to the invention is obtainable by the preparation process according to the invention.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung eines erfindungsgemäßen Hydrogels für die 3D-Zellkultur. Verfahren zur 3D-Zellkultur unterliegen keinen besonderen Beschränkungen, sind im Stand der Technik bekannt, und können ohne weiteres an die Verwendung mit den erfindungsgemäßen Hydrogelen angepasst werden. Another object of the present invention relates to the use of a hydrogel according to the invention for the 3D cell culture. Methods for 3D cell culture are not particularly limited, are known in the art, and can be readily adapted for use with the hydrogels of the present invention.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur reversiblen Immobilisierung von Glykoproteinen und/oder Zellen auf einem Hydrogel, umfassend die Schritte: A further subject matter of the present invention relates to a process for the reversible immobilization of glycoproteins and / or cells on a hydrogel, comprising the steps:
(a) Bereitstellen eines Hydrogels gemäß der vorliegenden Erfindung, und
(b) Inkubieren des bereitgestellten Hydrogels mit den Glykoproteinen und/oder Zellen, wodurch die Glykoproteine und/oder Zellen durch Bindung von auf den Glykoproteinen und/oder Zellen vorhandenen Zuckerresten an die auf dem Hydrogel vorhandenen Lektine immobilisiert werden. (a) providing a hydrogel according to the present invention, and (b) incubating the provided hydrogel with the glycoproteins and / or cells whereby the glycoproteins and / or cells are immobilized by binding of sugar residues present on the glycoproteins and / or cells to the lectins present on the hydrogel.
In diesem Zusammenhang finden alle relevanten Definitionen und Einschränkungen, die vorstehend für das erfindungsgemäße Verfahren zur Herstellung eines Hydrogels genannt sind, auch auf das erfindungsgemäße Verfahren zur reversiblen Immobilisierung von Glykoproteinen und/oder Zellen auf einem Hydrogel Anwendung. Insbesondere ist das biokompatible Ausgangsmaterial, das für die Glykosylierung verwendete Zuckermolekül, das Linkermolekül und das Lektin bevorzugt wie vorstehend definiert. In this connection, all the relevant definitions and restrictions mentioned above for the process according to the invention for the preparation of a hydrogel also apply to the process according to the invention for the reversible immobilization of glycoproteins and / or cells on a hydrogel. In particular, the biocompatible starting material, the sugar molecule used for the glycosylation, the linker molecule and the lectin are preferably as defined above.
In einer bevorzugten Ausführungsform beinhaltet das vorstehend definierte Verfahren auch die Ablösung der Glykoproteine und/oder Zellen von dem Hydrogel. Insbesondere umfasst das Verfahren bevorzugt den Schritt: In a preferred embodiment, the method defined above also includes the detachment of the glycoproteins and / or cells from the hydrogel. In particular, the method preferably comprises the step:
(c) Inkubieren des die immobilisierten Glykoproteine und/oder Zellen tragenden Hydrogels mit einer Lösung, umfassend das für die Glykosylierung verwendete Zuckermolekül und/oder ein Zuckermolekül, welches eine höhere Affinität zu den Lektinen als dieses aufweist. (c) incubating the hydrogel carrying the immobilized glycoproteins and / or cells with a solution comprising the sugar molecule used for the glycosylation and / or a sugar molecule which has a higher affinity for the lectins than this.
Wie vorstehend bereits beschrieben ist das verwendete Lektin bevorzugt auf die zu immobilisierenden Zellen und/oder Proteine abgestimmt, also so gewählt, dass die zu immobilisierenden Zellen und/oder Proteine Zuckerreste aufweisen, die an das gewählte Lektin binden können. Auf Zellen und/oder Glykoproteinen vorhandene Zuckerreste sind, ebenso wie entsprechende Lektine, welche diese binden können, im Stand der Technik bekannt. Weiter sind die Affinitäten verschiedener Zuckermoleküle zu einem gegebenen Lektin im Stand der Technik bekannt. Somit kann ein Zuckermolekül, welches eine höhere Affinität zu den Lektinen als das für die Glykosylierung verwendete Zuckermolekül aufweist, ohne weiteres ausgewählt werden. As already described above, the lectin used is preferably matched to the cells and / or proteins to be immobilized, that is selected such that the cells and / or proteins to be immobilized have sugar residues which can bind to the selected lectin. Sugar residues present on cells and / or glycoproteins, as well as corresponding lectins which can bind them, are known in the art. Further, the affinities of various sugar molecules for a given lectin are known in the art. Thus, a sugar molecule which has a higher affinity for the lectins than the sugar molecule used for the glycosylation can be readily selected.
Mit Hilfe der vorliegenden Erfindung können (synthetisch) glykosylierte Materialien durch Bindung von Lektin als Adaptermolekül modifiziert und Zellen bzw. Proteine dadurch reversibel auf entsprechende Oberflächen oder in porösen 3D Matrices immobilisiert werden und anschließend auch schonend von/aus diesen abgelöst werden.
Die Ablösung erfolgt innerhalb kurzer Zeit durch die Zugabe des korrespondierenden Bindezuckers in geringer Konzentration und ist daher außergewöhnlich schonend. With the aid of the present invention, (synthetically) glycosylated materials can be modified by binding lectin as an adapter molecule and thereby cells or proteins can be reversibly immobilized on corresponding surfaces or in porous 3D matrices and subsequently gently removed from / from these. The detachment takes place within a short time by the addition of the corresponding binder sugar in low concentration and is therefore exceptionally gentle.
Das hier entwickelte Verfahren sorgt für eine schonende, reversible Integration von Zellen und/oder Proteinen auf Oberflächen oder makroporösen 3D atrices welche durch die einfache Zugabe geeigneter Zucker in geringer Konzentration innerhalb von Minuten von dem Material abgelöst werden können. Mögliche Anwendungen finden sich beispielsweise in der 3D-Zellkultur sowie bei der Forschung an künstlichem Gewebe, in der Grundlagenforschung von Zellsystemen in nativer Umgebung, sowie bei der Testung potentieller Wirkstoffe. The method developed here ensures a gentle, reversible integration of cells and / or proteins on surfaces or macroporous 3D atrices which can be detached from the material within minutes by the simple addition of suitable sugars in low concentration. Possible applications are, for example, in 3D cell culture as well as in research on artificial tissue, in the basic research of cell systems in a native environment, as well as in the testing of potential active ingredients.
Das Zucker und zuckerbindende Moleküle eine große Rolle bei der Zelladhäsion spielen ist seit langem bekannt, allerdings werden Lektine hier zum ersten Mal für die Funk- tionalisierung eines synthetischen Materials genutzt, um Zellen und/oder Proteine in dieses einzubringen, dort reversibel zu immobilisieren und eine Adhäsion zu bewirken. Weiterhin können die Zellen durch die einfache Zugabe von für Lektine spezifischen Zuckern in einem schonenden Verfahren aus dem Material herausgelöst werden The sugar and sugar binding molecules play a major role in cell adhesion has long been known, but lectins are here for the first time for the functionalization of a synthetic material used to introduce cells and / or proteins in this reversible to immobilize there and a To cause adhesion. Furthermore, the cells can be dissolved out of the material by the simple addition of sugars specific for lectins in a gentle process
Die Figur zeigt: The figure shows:
Figur 1 : Ablösung von Zellen aus einem Hydrogel gemäß der vorliegenden Erfindung über die Zeit. Figure 1: Replacement of cells from a hydrogel according to the present invention over time.
Die vorliegende Erfindung wird anhand des folgenden, nicht-einschränkenden Beispiels näher erläutert. The present invention will be further illustrated by the following non-limiting example.
Beispiel: Example:
Bei dem rekombinant hergestellten Lektin handelt es sich um ein zuckerbindendes Protein welches ein Homotetramer bildet. Jede dieser Untereinheiten ist in der Lage, ein Zuckermolekül zu binden, wobei dies hauptsächlich über kooperative Wasserstoff-
brücken realisiert wird. Die Erkennung der Zucker ist hierbei spezifisch für die verschiedenen Typen des Lektins. Für das hier verwendete Protein wurde folgende Affinität festgestellt: L-Fucose > L-Galactose> D-Mannose > D-Fructose. Anhand dieser Erkenntnisse wurde hier eine spezielle Affinitätschromatographie angewendet, bei der Mannose auf einer Festphase immobilisiert vorliegt, an welche Lektin binden kann. Nach der Bindung wurde das Lektin PA-IIL (lecB) mit einem Überschuss an Mannose von der Säule gelöst. Das gleiche Prinzip kam bei der zellulären Adhäsion zum Einsatz; das tetramere Lektin wirkt als Bindeglied zwischen den Bestandteilen des Hyd- rogels und den Zellen, die verschiedene Zucker auf der Oberfläche tragen. Die Ablösung der Zellen aus der Matrix erfolgte im Anschluss entweder über Zugabe eines Zuckers mit höherer Affinität oder über Zugabe von Zucker im Überschuss. The recombinantly produced lectin is a sugar-binding protein which forms a homotetramer. Each of these subunits is able to bind a sugar molecule, mainly through cooperative hydrogen bridges is realized. The recognition of sugars is specific to the different types of lectin. For the protein used here, the following affinity was found: L-fucose>L-galactose>D-mannose> D-fructose. On the basis of these findings, a special affinity chromatography was used in which mannose is immobilized on a solid phase to which lectin can bind. After binding, the lectin PA-IIL (lecB) was released from the column with an excess of mannose. The same principle was used in cellular adhesion; The tetrameric lectin acts as a link between the components of the hydrogel and the cells that carry various sugars on the surface. The separation of the cells from the matrix was then carried out either by adding a sugar with higher affinity or by adding excess sugars.
Um die Adhäsion des Lektins an BSA Protein (aus dem die resultierenden Hydrogele bestehen) zu ermöglichen, wurde BSA über ein Trockenverfahren glykosyliert und mit Hilfe eines Linkermoleküls (Tetrakis(hydroxymethyl)phosphoniumchlorid; vierarmig, reagiert mit Lysingruppen in Proteinen) zu Gelen auspolymerisiert. Diese Gele wurden lyophilisiert (FreezeDryer Epsilon 1-6D, Christ, Osterode am Harz, Germany), um übergeordnete, makroporöse Strukturen durch die Sublimation der im gefrorenen Gel entstandenen Eiskristalle zu erzeugen. Nach ausgiebigem Waschen in phosphatgepufferter Salzlösung bei einem physiologischen pH (7,4) und Raumtemperatur wurden die Gele mit Lektin (50 - 400 μΜ) inkubiert, sodass Lektin in ausreichender Konzentration an das Netzwerk binden konnte. Im nächsten Schritt wurden Lungen- und Brustkarzinomzellen zu den porösen Hydrogelen gegeben, um eine Anheftung zu gewährleisten. Über die tetramere Struktur der Lektins konnten gleichzeitig Zellen und hydro- gelbildende BSA Moleküle gebunden werden. Anschließend wurden die Gele in Lösung gebracht, um optimale Wachstumsbedingungen für die Zellen zu schaffen. Das Herauslösen der Zellen aus den Gelen erfolgte durch Zugabe eines Zuckers mit sehr hoher Affinität zu Lektin. Zellen wurden aus dem Gel geschwemmt und befanden sich im Folgenden im Medium, aus dem sie durch eine Zentrifugation zur weiteren Verwendung gesammelt werden konnten. Dieses hier zum ersten Mal beschriebene Verfahren zur Immobilisierung von Zellen mit Hilfe eines mikrobiellen Proteins ist durch die einfache Freisetzung der Zellen sehr zellschonend und reversibel.
Figur 1 zeigt die Ablösung von Zellen aus einem Hydrogel gemäß der vorliegenden Erfindung über die Zeit. In order to facilitate the adhesion of the lectin to BSA protein (from which the resulting hydrogels are made), BSA was glycosylated via a dry process and polymerized to gels with the aid of a linker molecule (tetrakis (hydroxymethyl) phosphonium chloride, four arms, reacted with lysine groups in proteins). These gels were lyophilized (FreezeDryer Epsilon 1-6D, Christ, Osterode am Harz, Germany) to produce superior, macroporous structures by sublimation of the ice crystals formed in the frozen gel. After extensive washing in phosphate buffered saline at physiological pH (7.4) and room temperature, the gels were incubated with lectin (50-400 μΜ) so that lectin could bind to the network in sufficient concentration. In the next step, lung and breast carcinoma cells were added to the porous hydrogels to ensure attachment. At the same time, cells and hydrogel-forming BSA molecules could be bound via the tetrameric structure of the lectins. Subsequently, the gels were solubilized to provide optimal growth conditions for the cells. The dissolution of the cells from the gels was carried out by adding a sugar with a very high affinity to lectin. Cells were washed out of the gel and were subsequently in the medium from which they could be collected by centrifugation for further use. This method, described for the first time for the immobilization of cells with the aid of a microbial protein, is very gentle on the cell and reversible due to the simple release of the cells. Figure 1 shows the detachment of cells from a hydrogel according to the present invention over time.
Eine detaillierte Darstellung der vorstehenden experimentellen Daten kann in Boden- berger et al. (Bodenberger, N. et al., Lectin-mediated reversible immobilization of human cells into a glycosylated macroporous protein hydrogel as a cell culture matrix; Scientific Reports, 7; 2017; Article number 6151 ) gefunden werden.
A detailed description of the above experimental data can be found in Bodenberger et al. (Bodenberger, N. et al., Lectin-mediated reversible immobilization of human cells into a glycosylated macroporous protein hydrogel as a cell culture matrix; Scientific Reports, 7; 2017; Article number 6151).
Claims
1. Verfahren zur Herstellung eines Hydrogels für die reversible Immobilisierung von Glykoproteinen und/oder Zellen auf dem Hydrogel, umfassend die Schritte:1. A process for the preparation of a hydrogel for the reversible immobilization of glycoproteins and / or cells on the hydrogel, comprising the steps:
(a) Bereitstellen eines polymerisierbaren, biokompatiblen Ausgangsmaterials für die Herstellung eines Hydrogels, (a) providing a polymerizable, biocompatible starting material for the preparation of a hydrogel,
(b) Glykosylieren des bereitgestellten Ausgangsmaterials mit einem Zuckermolekül, (b) glycosylating the provided starting material with a sugar molecule,
(c) mindestens teilweises Umsetzen des in Schritt (b) erhaltenen glykosylierten Materials mit einem Linkermolekül, sodass eine Vernetzung des glykosylierten Materials stattfindet und ein Hydrogel erhalten wird, (c) at least partially reacting the glycosylated material obtained in step (b) with a linker molecule such that crosslinking of the glycosylated material takes place and a hydrogel is obtained,
(d) Lyophilisieren des in Schritt (c) erhaltenen Hydrogels, wodurch eine makroporöse Struktur in dem Hydrogel erzeugt wird, (d) lyophilizing the hydrogel obtained in step (c) to produce a macroporous structure in the hydrogel,
(e) Waschen des lyophilisierten Hydrogels, und (e) washing the lyophilized hydrogel, and
(f) Inkubieren des gewaschenen Hydrogels mit einer Lösung, enthaltend ein Lektin, welches zwei oder mehr Bindungsstellen für die spezifische Bindung des für die Glykosylierung in Schritt (b) verwendeten Zuckermoleküls aufweist, wodurch das Lektin auf dem Hydrogel gebunden wird. (f) incubating the washed hydrogel with a solution containing a lectin having two or more binding sites for the specific binding of the sugar molecule used for the glycosylation in step (b), whereby the lectin is bound to the hydrogel.
2. Verfahren nach Anspruch 1 , wobei das in Schritt (a) bereitgestellte Ausgangsmaterial für die Herstellung einen Hydrogels ausgewählt ist aus der Gruppe, bestehend aus Kollagen, Elastin, Fibrin, Lysozymen, Alginaten, Chitosan, Dextran, Po- lyethylenglykoldiacrylaten (PEGDA), Polyvinylalkoholen (PVA), Polyethylengly- kolen (PEG), bovinem Serumalbumin (BSA) sowie Gemischen aus diesen Komponenten. 2. The method of claim 1, wherein the starting material provided in step (a) for the preparation of a hydrogel is selected from the group consisting of collagen, elastin, fibrin, lysozymes, alginates, chitosan, dextran, polyethylene glycol diacrylates (PEGDA), Polyvinyl alcohols (PVA), polyethylene glycols (PEG), bovine serum albumin (BSA) and mixtures of these components.
3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das für die Glykosylierung verwendete Zuckermolekül ausgewählt ist aus der Gruppe, bestehend aus Saccharose, Maltose, Glucose, Fucose, Fructose, Galaktose und Lactose.
3. The method of claim 1 or claim 2, wherein the sugar molecule used for the glycosylation is selected from the group consisting of sucrose, maltose, glucose, fucose, fructose, galactose and lactose.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Linkermolekül ausgewählt ist aus der Gruppe, bestehend aus NHS-Estern, Imidoestern, Maleimiden, Haloacetylen, Pyridyldisulfiden, Hydraziden, Alkoxyaminen, Diazirinen und Antaziden. 4. The method according to any one of claims 1 to 3, wherein the linker molecule is selected from the group consisting of NHS esters, imido esters, maleimides, haloacetylene, pyridyl disulfides, hydrazides, alkoxyamines, diazirines and antacids.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Waschen in Schritt (e) in einer phosphatgepufferten Salzlösung bei physiologischem pH-Wert (pH 7,4) und Raumtemperatur erfolgt. 5. The method according to any one of claims 1 to 4, wherein the washing in step (e) is carried out in a phosphate buffered saline solution at physiological pH (pH 7.4) and room temperature.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das in Schritt (f) verwendete Lektin ein multimeres Lektin ist. 6. The method according to any one of claims 1 to 5, wherein the lectin used in step (f) is a multimeric lectin.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Lösung aus Schritt (f) das Lektin in einer Menge von 50 bis 400 μΜ enthält. 7. The method according to any one of claims 1 to 6, wherein the solution from step (f) contains the lectin in an amount of 50 to 400 μΜ.
8. Hydrogel, umfassend ein glykosyliertes, biokompatiblen Ausgangsmaterial für die Herstellung eines Hydrogels, wobei A hydrogel comprising a glycosylated biocompatible starting material for the preparation of a hydrogel, wherein
(i) das Ausgangsmaterial mittels eines Linkermoleküls quervemetzt ist, und (i) the starting material is crosslinked by means of a linker molecule, and
(ii) ein Lektin an die für die Glykosylierung verwendeten Zuckermoleküle gebunden vorliegt, welches zwei oder mehr Bindungsstellen für die spezifische Bindung des genannten Zuckermoleküls aufweist. (ii) a lectin is bound to the sugar molecules used for the glycosylation which has two or more binding sites for the specific binding of said sugar molecule.
9. Hydrogel nach Anspruch 8, welches durch ein Verfahren nach einem der Ansprüche 1 bis 7 erhältlich ist. 9. Hydrogel according to claim 8, which is obtainable by a method according to any one of claims 1 to 7.
10. Verwendung eines Hydrogels nach Anspruch 8 oder Anspruch 9 für die SD-Zellkultur. 10. Use of a hydrogel according to claim 8 or claim 9 for SD cell culture.
11. Verfahren zur reversiblen Immobilisierung von Glykoproteinen und/oder Zellen auf einem Hydrogel, umfassend die Schritte: 11. A method for the reversible immobilization of glycoproteins and / or cells on a hydrogel, comprising the steps:
(a) Bereitstellen eines Hydrogels nach Anspruch 8 oder Anspruch 9, und (a) providing a hydrogel according to claim 8 or claim 9, and
(b) Inkubieren des bereitgestellten Hydrogels mit den Glykoproteinen und/oder Zellen, wodurch die Glykoproteine und/oder Zellen durch Bindung von auf den Glykoproteinen und/oder Zellen vorhandenen Zuckerresten an die auf
dem Hydrogel vorhandenen Lektine immobilisiert werden. (b) incubating the provided hydrogel with the glycoproteins and / or cells whereby the glycoproteins and / or cells bind to one another by binding sugar residues present on the glycoproteins and / or cells immobilized to the hydrogel lectins are immobilized.
2. Verfahren nach Anspruch 11 , wobei die Ablösung der Glykoproteine und/oder Zellen von dem Hydrogel den Schritt umfasst: 2. The method of claim 11, wherein the detachment of the glycoproteins and / or cells from the hydrogel comprises the step of:
(c) Inkubieren des die immobilisierten Glykoproteine und/oder Zellen tragenden Hydrogels mit einer Lösung, umfassend das für die Glykosylierung verwendete Zuckermolekül und/oder ein Zuckermolekül, welches eine höhere Affinität zu den Lektinen als dieses aufweist.
(c) incubating the hydrogel carrying the immobilized glycoproteins and / or cells with a solution comprising the sugar molecule used for the glycosylation and / or a sugar molecule which has a higher affinity for the lectins than this.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016011057.0A DE102016011057B4 (en) | 2016-09-12 | 2016-09-12 | Lectin for the reversible immobilization of cells |
DE102016011057.0 | 2016-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018046129A1 true WO2018046129A1 (en) | 2018-03-15 |
Family
ID=60001852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/001071 WO2018046129A1 (en) | 2016-09-12 | 2017-09-11 | Lectin for reversible cell immobilisation |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102016011057B4 (en) |
WO (1) | WO2018046129A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1027544B1 (en) * | 2019-09-16 | 2021-08-19 | Univ Qingdao | MANUFACTURING PROCESS FOR A HEAT-SENSITIVE 4D HYDROGEL BASED ON CHITOSAN |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070105176A1 (en) * | 2005-09-28 | 2007-05-10 | Ibey Bennett L | Method and apparatus for glucose monitoring |
US20080171381A1 (en) * | 2007-01-17 | 2008-07-17 | Hiroyuki Yonekawa | Method and device for the multiplex cells and tissues analysis |
WO2012080258A1 (en) * | 2010-12-17 | 2012-06-21 | Eyesense Ag | Use of hydrogels for biosensors having elevated sensitivity |
WO2012080218A1 (en) * | 2010-12-17 | 2012-06-21 | Eyesense Ag | Competitive biosensor having elevated sensitivity |
-
2016
- 2016-09-12 DE DE102016011057.0A patent/DE102016011057B4/en not_active Expired - Fee Related
-
2017
- 2017-09-11 WO PCT/EP2017/001071 patent/WO2018046129A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070105176A1 (en) * | 2005-09-28 | 2007-05-10 | Ibey Bennett L | Method and apparatus for glucose monitoring |
US20080171381A1 (en) * | 2007-01-17 | 2008-07-17 | Hiroyuki Yonekawa | Method and device for the multiplex cells and tissues analysis |
WO2012080258A1 (en) * | 2010-12-17 | 2012-06-21 | Eyesense Ag | Use of hydrogels for biosensors having elevated sensitivity |
WO2012080218A1 (en) * | 2010-12-17 | 2012-06-21 | Eyesense Ag | Competitive biosensor having elevated sensitivity |
Non-Patent Citations (11)
Title |
---|
BAE K.H. ET AL: "Emerging hydrogel designs for controlled protein delivery", BIOMATERIALS SCIENCE, vol. 4, no. 8, 4 July 2016 (2016-07-04), GB, pages 1184 - 1192, XP055430613, ISSN: 2047-4830, DOI: 10.1039/C6BM00330C * |
BODENBERGER, N. ET AL.: "Lectin-mediated reversible immobilization of human cells into a glycosylated macroporous protein hydrogel as a cell culture matrix", SCIENTIFIC REPORTS, vol. 7, 2017 |
DYUKOVA V.I. ET AL: "Hydrogel glycan microarrays", ANALYTICAL BIOCHEMISTRY, vol. 347, no. 1, 27 September 2005 (2005-09-27), pages 94 - 105, XP005502679, ISSN: 0003-2697, DOI: 10.1016/J.AB.2005.09.009 * |
HEFFERNAN J.M. ET AL: "Temperature responsive hydrogels enable transient three-dimensional tumor cultures via rapid cell recovery : RECOVERY OF 3D CULTURED CELLS", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, PART A, vol. 104, no. 1, 15 July 2015 (2015-07-15), HOBOKEN, NY, US, pages 17 - 25, XP055430057, ISSN: 1549-3296, DOI: 10.1002/jbm.a.35534 * |
LOWE S.B. ET AL: "Synthesis and High-Throughput Processing of Polymeric Hydrogels for 3D Cell Culture", BIOCONJUGATE CHEMISTRY, vol. 25, no. 9, 25 April 2014 (2014-04-25), pages 1581 - 1601, XP055411669, ISSN: 1043-1802, DOI: 10.1021/bc500310v * |
REUEL N.F. ET AL: "Transduction of Glycan-Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 44, 4 October 2011 (2011-10-04), pages 17923 - 17933, XP055019797, ISSN: 0002-7863, DOI: 10.1021/ja2074938 * |
RUEDINGER F. ET AL: "Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 99, no. 2, 30 November 2014 (2014-11-30), pages 623 - 636, XP036127149, ISSN: 0175-7598, [retrieved on 20141130], DOI: 10.1007/S00253-014-6253-Y * |
SIMON K.A. ET AL: "Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures", BIOMACROMOLECULES, vol. 16, no. 12, 28 October 2015 (2015-10-28), pages 3952 - 3958, XP055430055, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.5b01266 * |
VAISHYA R. ET AL: "Long-term delivery of protein therapeutics", EXPERT OPINION ON DRUG DELIVERY, vol. 12, no. 3, 24 September 2014 (2014-09-24), GB, pages 415 - 440, XP055430617, ISSN: 1742-5247, DOI: 10.1517/17425247.2015.961420 * |
WOOD K.M. ET AL: "Lectin functionalized complexation hydrogels for oral protein delivery", JOURNAL OF CONTROLLED RELEASE, vol. 116, no. 2, 28 November 2006 (2006-11-28), pages e66 - e68, XP024957746, ISSN: 0168-3659, [retrieved on 20061128], DOI: 10.1016/J.JCONREL.2006.09.053 * |
ZHANG H. ET AL: "New progress and prospects: The application of nanogel in drug delivery", MATERIALS SCIENCE AND ENGINEERING C, vol. 60, 18 November 2015 (2015-11-18), pages 560 - 568, XP029365422, ISSN: 0928-4931, DOI: 10.1016/J.MSEC.2015.11.041 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1027544B1 (en) * | 2019-09-16 | 2021-08-19 | Univ Qingdao | MANUFACTURING PROCESS FOR A HEAT-SENSITIVE 4D HYDROGEL BASED ON CHITOSAN |
Also Published As
Publication number | Publication date |
---|---|
DE102016011057A1 (en) | 2018-03-15 |
DE102016011057B4 (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69523585T2 (en) | WOUND MEDICINE | |
DE69232790T2 (en) | WATER-INSOLUBLE DERIVATIVES OF POLYANIONIC POLYSACCHARIDES | |
DE68905722T2 (en) | BIODEGRADABLE HYDROGEL MATRICES FOR THE CONTROLLED RELEASE OF PHARMACOLOGICALLY ACTIVE ACTIVE SUBSTANCES. | |
DE69702911T2 (en) | OXYDATED OLIGOSACCHARID | |
DE69231935T2 (en) | CONJUGATE CONTAINING A STRAIGHT CHAIN ORGANIC POLYMER WITH BONDED SULFATED GLUCOSAMINOGLUCANS, FOR EXAMPLE HEPARINE, ITS PRODUCTION, USE AND A CORRESPONDING SUBSTRATE | |
DE69724257T2 (en) | USE OF OXYDED CELLULOSE AND THEIR COMPLEXES FOR THE TREATMENT OF CHRONIC Wounds | |
DE602005005062T2 (en) | HYALURONIC ACID AND ALPHA, BETA-POLYASPARTYLHYDRAZIDHYDROGELE AND THEIR BIOMEDICAL AND PHARMACEUTICAL USES | |
EP2164949B1 (en) | Biomaterial based on a hydrophilic polymer carrier | |
DE602004002908T2 (en) | Post-surgical antiadhesion layer consisting of carboxymethyl chitosan and carboxymethyl cellulose and their method of preparation | |
EP1126881B1 (en) | Muco-adhesive polymers, use thereof and method for producing the same | |
DE102009036995B4 (en) | Collagen-based matrix for use as a restorative material and method of making the same | |
DE69925757T2 (en) | DEXTRAN MALEIC ACID MONOESTER AND HYDROGELES THEREOF | |
DE69528654T2 (en) | ANTI-adhesive | |
EP2796100A1 (en) | Gelling system for the removal of kidney stone fragments | |
DE102004041340A1 (en) | Nanoparticles and process for their preparation | |
DE69217104T2 (en) | Oligosaccharide with an affinity for the fibroblast growth factor and method for its production | |
US20220160752A1 (en) | Genipin-crosslinked pdrn-sacran biopolymer scaffolds | |
DE102016011057B4 (en) | Lectin for the reversible immobilization of cells | |
EP2268264B1 (en) | Cross-linked polymer matrix, in particular for administering active ingredients | |
DE10235954A1 (en) | Hyperbranched amylopectin, for use as a plasma volume expander and to improve microcirculation, comprises that it is completely metabolized and forms low-viscosity solutions | |
DE102007051059B4 (en) | Biocompound material for the controlled release of active substances | |
DE69932113T2 (en) | Pharmaceutical compositions of hedgehog proteins and their use | |
DE102016122837A1 (en) | Material for bone implants | |
KR20220093701A (en) | Manufacturing Method Of Nano Fiber Membrane For Wound Dressing Based On Collagen-Hyaluronic Acid Composite Natural-Polymer Having Physiological Activity includes Antiinflammation | |
DE202013012287U1 (en) | Gel-forming system for removing kidney stone fragments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17777787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17777787 Country of ref document: EP Kind code of ref document: A1 |