WO2018046025A1 - 全息显示面板和全息显示装置 - Google Patents

全息显示面板和全息显示装置 Download PDF

Info

Publication number
WO2018046025A1
WO2018046025A1 PCT/CN2017/110412 CN2017110412W WO2018046025A1 WO 2018046025 A1 WO2018046025 A1 WO 2018046025A1 CN 2017110412 W CN2017110412 W CN 2017110412W WO 2018046025 A1 WO2018046025 A1 WO 2018046025A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
depth
holographic display
field
Prior art date
Application number
PCT/CN2017/110412
Other languages
English (en)
French (fr)
Inventor
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610815306.1A external-priority patent/CN106154797B/zh
Priority claimed from CN201710166323.1A external-priority patent/CN106646905B/zh
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/772,208 priority Critical patent/US10642060B2/en
Publication of WO2018046025A1 publication Critical patent/WO2018046025A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • G03H2001/2297Addressing the hologram to an active spatial light modulator using frame sequential, e.g. for reducing speckle noise
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/2655Time multiplexing, i.e. consecutive records wherein the period between records is pertinent per se
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object
    • G03H2210/454Representation of the decomposed object into planes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/12Amplitude mask, e.g. diaphragm, Louver filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/13Phase mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/55Having optical element registered to each pixel

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a holographic display panel and a holographic display device.
  • Stereoscopic display based on holographic information is receiving more and more attention.
  • the two laser beams propagating along different paths that is, the reference beam and the object beam, interfere with each other to form an optical interference pattern.
  • the optical interference pattern causes chemical or physical changes in the photosensitive recording medium such that information relating to the object to be reproduced is recorded in the recording medium.
  • a reference beam similar to the reference beam for recording is irradiated to the recording medium such that the optical interference pattern in the recording medium diffracts the reference beam to reproduce the object beam, thereby reproducing the information.
  • dynamic display of holographic images can be achieved using a combination such as a liquid crystal display panel and a phase plate.
  • a combination such as a liquid crystal display panel and a phase plate.
  • different views with horizontal parallax are respectively provided to the left and right eyes of the user.
  • a stereoscopic image with a sense of depth is finally formed.
  • Embodiments of the present disclosure provide a holographic display panel, a holographic display device, and a holographic display method.
  • an embodiment of the present disclosure provides a holographic display panel.
  • the holographic display panel includes: a plurality of sub-pixels arranged in an array and a phase plate disposed on a light-emitting side of the plurality of sub-pixels; and a blocking member disposed between the sub-pixel and the phase plate, and the blocking member is The orthographic projection on the plane where the plurality of sub-pixels are located is located Between adjacent sub-pixels, for blocking an edge portion of the light beam diffracted by the sub-pixel.
  • the holographic display panel further includes a first substrate disposed on a light exiting side of the plurality of sub-pixels.
  • the phase plate is disposed on a surface of the first substrate facing away from the plurality of sub-pixels
  • the blocking member is disposed on a surface of the first substrate facing the plurality of sub-pixels.
  • the holographic display panel further includes a color filter substrate disposed on a light exiting side of the plurality of sub-pixels, the blocking member being disposed on a surface of the color filter substrate facing away from the plurality of sub-pixels.
  • the phase plate is configured to adjust an angle of a light beam from the plurality of sub-pixels, and/or the phase plate includes a plurality of sub-phase plates that are in one-to-one correspondence with the plurality of sub-pixels.
  • the phase plate is a diffraction grating.
  • the holographic display panel further includes: a plurality of depth of field display units, each of the depth of field display units including adjacent at least two pixels, each of the pixels including a plurality of sub-pixels; each of the depth of field display
  • the unit further includes a plurality of phase plates, each of the sub-pixels corresponding to one of the phase plates along a light-emitting direction thereof, the phase plate for controlling a diffraction angle of light emitted through the phase plate, wherein, the same pixel
  • the diffraction angles of the respective phase plates corresponding to the sub-pixels are the same, and the diffracted angles of the light beams emitted by the different pixels in the same depth of field display unit through the phase plate are different, so that the light emitted by the same depth of field display unit is reversed.
  • the plurality of depth of field display units are divided into display groups arranged in an array, each display group is composed of at least two depth of field display units, and the positions of the at least two depth of field display units are adjacent to each other; The depth of field of each depth of field display unit in a display group is different.
  • any depth of field display unit adjacent to the depth of field display unit and the depth of field display unit has a different depth of field position.
  • an embodiment of the present disclosure provides a holographic display device.
  • the holographic display device comprises a holographic display panel as described in the above embodiments.
  • FIG. 1a and 1b are schematic structural views of a holographic display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a blocking member in a holographic display panel according to an embodiment of the present disclosure
  • 3a is a schematic diagram of a phase plate adjusting a beam angle in a holographic display panel according to an embodiment of the present disclosure
  • 3b is a schematic structural view of a phase plate in a holographic display panel according to an embodiment of the present disclosure
  • 3c is a schematic structural view of a phase plate in a holographic display panel according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing the principle of depth of field display according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a principle of a holographic display according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural view of a holographic display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a principle of depth of field implementation according to an embodiment of the present disclosure.
  • the virtual image or point in the space is determined by the angle of divergence or convergence of the incident light, and such display devices are generally required to have high resolution (ie, each Inch subpixel count, PPI).
  • PPI Inch subpixel count
  • the inventors have found that as the resolution increases, the size of the sub-pixels decreases, and Fraunhofer diffraction will occur between the sub-pixels of the display panel and the phase plate. The presence of the Fraunhofer diffraction angle results in crosstalk between the beams from adjacent sub-pixels, greatly affecting the depth of field and position of the stereo image, and reducing the display effect.
  • an embodiment of the present disclosure provides a holographic display panel.
  • the holographic display panel 100 includes: a plurality of sub-pixels 101 arranged in an array and a phase plate 102 disposed on a light-emitting side of the plurality of sub-pixels 101; and a blocking member 103 disposed at the Between the sub-pixel 101 and the phase plate 102, and an orthographic projection of the blocking member 103 on a plane in which the plurality of sub-pixels 101 are located is located between adjacent sub-pixels 101 for blocking diffraction by the sub-pixel 101.
  • the edge portion of the beam is described in FIG. 1a and FIG. 1b.
  • the beam crosstalk problem caused by the Fraunhofer diffraction angle in the small-sized sub-pixel is at least partially solved by the blocking member provided above. Therefore, with the configuration of the embodiment of the present disclosure, not only clear sub-pixel edges, color crosstalk and gray crosstalk can be obtained, but also accurate image depth of field can be provided, and the visual effect of the holographic display can be improved.
  • the sub-pixel 101 may be a sub-pixel in a liquid crystal display panel that controls the light intensity on each color filter 106 using the liquid crystal 105.
  • the liquid crystal panel may further include a backlight module (not shown in FIGS. 1a and 1b) for providing the backlight 107.
  • the sub-pixel 101 may also be a sub-pixel in an OLED display panel.
  • the width condition of the blocking member can be derived from the Fraunhofer diffraction angle. With the above width condition, the blocking member can well block the edge portion of the light beam diffracted by the sub-pixel, preventing the edge portion from entering the phase plate corresponding to the adjacent sub-pixel.
  • the Fraunhofer diffraction angle ⁇ 1.22 ⁇ /w.
  • ⁇ /2 ⁇ tg ⁇ /2 a/d.
  • the width a of the blocking member 103 also increases accordingly.
  • the too large blocking member 103 may instead block the portion of the beam 104 near the optical axis, thereby losing light intensity. Therefore, the width a of the blocking member 103 (or the distance d between the blocking member 103 and the sub-pixel 101) should be limited to an appropriate range. Assuming that the interval between two adjacent sub-pixels 101 is p, the width a of the blocking member 103 should be smaller than p.
  • 0.61 ⁇ d / w ⁇ p that is, the distance d ⁇ wp / 0.61 ⁇ between the blocking member 103 and the sub-pixel 101.
  • the holographic display panel 100 further includes a first substrate 108 disposed on a light exiting side of the plurality of sub-pixels 101.
  • the phase plate 102 is disposed on a surface of the first substrate 108 facing away from the plurality of sub-pixels 101
  • the blocking member 103 is disposed on a surface of the first substrate 108 facing the plurality of sub-pixels 101.
  • the blocking member 103 may also be disposed in the sub-rough according to d ⁇ wp / 0.61 ⁇ . At a predetermined position between the pixel 101 and the first substrate 108.
  • the holographic display panel 100 further includes a color filter substrate 109 disposed on a light exiting side of the plurality of sub-pixels 101, the blocking member being disposed on the color filter substrate 109 facing away from the The surface of the plurality of sub-pixels 101.
  • the phase plate 102 is used to adjust the angle of the light beam 104 from the plurality of sub-pixels 101.
  • the phase plate 102 includes a plurality of sub-phase plates 1021 that are in one-to-one correspondence with the plurality of sub-pixels 101.
  • the phase plates may be integral or may be constructed of a plurality of sub-phase plates disposed on the substrate (as shown in Figure 3a).
  • the integrated phase plate may include a plurality of effective regions corresponding to the plurality of sub-pixels, respectively.
  • An integrated phase plate may be directly disposed on the light exiting side of the plurality of sub-pixels to control light beams from the plurality of sub-pixels.
  • the optical path between a sub-pixel and a phase plate refers to an optical path between a single sub-pixel and a sub-phase plate/active area corresponding to the sub-pixel.
  • a phase plate composed of an integrated phase plate or a plurality of sub-phase plates may be disposed on a surface of the first substrate facing away from the plurality of sub-pixels, and the blocking member is disposed on the first substrate facing The surface of the plurality of sub-pixels.
  • the blocking member may be fabricated using a black matrix process such as in a liquid crystal display panel. Accordingly, the blocking member may have a plurality of openings that are in one-to-one correspondence with the plurality of active regions or the plurality of sub-phase plates.
  • the phase plate 103 is a diffraction grating.
  • the beam from the sub-pixels can be adjusted to the desired direction using diffraction gratings with different parameters.
  • the phase plate 102 can control the diffraction angle ⁇ of the light exiting through the phase plate 102.
  • the diffraction angle ⁇ is an angle between the direction in which the phase plate 102 emits light and the direction in which the incident light propagates.
  • the phase plate 102 may be a phase grating, that is, a diffraction grating.
  • a transmission grating can be selected as the phase plate 102 described above. In this case, since the light has a different phase in the convex and concave portions of the transmission grating, it is possible to cause the light to be diffracted after passing through the transmission grating.
  • the transmission grating may be a single-order grating as shown in FIG. 3b or a multi-order grating as shown in FIG. 3c.
  • the plurality of sub-pixels 101 are divided into a plurality of pixel groups 10 for respectively displaying a plurality of images having different depth of fields.
  • the plurality of sub-pixels of the holographic display panel may be divided into a plurality of pixel groups, each of which is for displaying an image having a specific depth of field. Thereby, a plurality of images having different depths of field can be displayed using the holographic display panel using a method such as time division multiplexing and a visual persistence effect, thereby providing a picture having a plurality of depths of field.
  • adjacent three sub-pixels 101 of different colors can be regarded as three sub-pixels of the pixel 01, from the light beams emitted from the phase plates 102 corresponding thereto.
  • the diffraction angles ⁇ are all the same.
  • the diffraction angles ⁇ ' of the light beams emitted from the phase plate 102 corresponding to the three sub-pixels 101' of the pixel 01' are all the same, and ⁇ '.
  • a plurality of pixels 01 and pixels 01' constitute the first pixel group 10.
  • the inverse extension of the beam from pixel 01 and the inverse extension of the beam from pixel 01' intersect at a first depth of field position (DF1).
  • the observer can observe the image at the first depth of field position (DF1).
  • DF1 first depth of field position
  • the plurality of sub-pixels 101 can also be divided into a plurality of pixel groups 10 throughout the display area.
  • the plurality of pixel groups 10 operate simultaneously, thereby obtaining an image that is full of the display area and has the depth of field DF1.
  • the phase plate is used to adjust the beam from the pixel to obtain different sets of pixels, allowing the viewer to view multiple images with different depths of field (DF1, DF2, and DF3).
  • FIG. 7 is a schematic diagram of a principle of depth of field implementation according to an embodiment of the present disclosure.
  • the left side shows the pixel arrangement, and the right figure shows the sub-phase plate corresponding to the pixel.
  • one pixel group corresponds to two pixels, and each pixel corresponds to three sub-pixels, and the structure of the sub-phase plates corresponding to two pixels in one pixel group is different.
  • Two pixels in one pixel group form a depth of field DF3.
  • the odd-numbered pixels corresponding to the odd-numbered pixel group and the even-numbered pixels corresponding to the even-numbered pixel group form the depth of field DF2.
  • the holographic display panel further includes: a plurality of depth of field display units, each of the depth of field display units including adjacent at least two pixels, each of the pixels including a plurality of sub-pixels; each of the The depth of field display unit further includes a plurality of phase plates, each of which The pixel corresponds to one of the phase plates along a light exiting direction thereof, and the phase plate is configured to control a diffraction angle of the light emitted by the phase plate, wherein the diffraction angles of the respective phase plates corresponding to the sub-pixels in the same pixel are the same And the light of the different pixels in the same depth of field display unit passing through the phase plate has different diffraction angles, so that the light extending from the same depth of field display unit has its reverse extension line at a depth of field position.
  • the plurality of depth of field display units are divided into display groups arranged in an array, each display group is composed of at least two depth of field display units, and the positions of the at least two depth of field display units are adjacent to each other; The depth of field of each depth of field display unit in a display group is different.
  • any depth of field display unit adjacent to the depth of field display unit and the depth of field display unit has a different depth of field position.
  • an embodiment of the present disclosure provides a holographic display device.
  • the holographic display device 200 includes the holographic display panel 100 as described in the above embodiments.
  • the holographic display device 200 can also include a data interface 201 and a power interface 202 for providing holographic image data.
  • Other indispensable components of the holographic display device are understood by those of ordinary skill in the art, and are not described herein, nor should they be construed as limiting the disclosure.
  • the holographic display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the beam crosstalk problem caused by the Fraunhofer diffraction angle in the small-sized sub-pixel is well solved by using the blocking member provided above. Therefore, with the configuration of the embodiment of the present disclosure, not only clear sub-pixel edges, color crosstalk and gray crosstalk can be obtained, but also accurate image depth of field can be provided, and the visual effect of the holographic display can be improved.

Abstract

一种全息显示面板、全息显示装置和全息显示方法。全息显示面板(100)包括:阵列布置的多个子像素(101)和布置在多个子像素(101)的出光侧的相位板(102);以及阻挡部件(103),设置在子像素(101)和相位板(102)之间,且阻挡部件(103)在多个子像素(101)所在的平面上的正投影位于相邻子像素(101)之间,用于阻挡由子像素(103)衍射的光束的边缘部分。利用以上设置的阻挡部件(103),很好地解决了小尺寸子像素中夫琅和费衍射角所导致的光束串扰问题。因此,不仅能够获得清晰的子像素边缘,消除颜色串扰和灰度串扰,还能够提供准确的图像景深,提高了全息显示的视觉效果。

Description

全息显示面板和全息显示装置
相关申请
本申请要求保护在2016年9月9日提交的申请号为201610815306.1的中国专利申请和在2017年3月20日提交的申请号为201710166323.1的中国专利申请的优先权,该些申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及显示技术领域,尤其涉及一种全息显示面板和全息显示装置。
背景技术
基于全息信息的立体显示越来越受到关注。在全息信息的记录过程中,沿不同路径传播的两个激光束,即参考光束和物光束,相互干涉形成光学干涉图案。该光学干涉图样引起感光记录介质中的化学或物理变化,使得与待再现物体有关的信息被记录在记录介质中。在全息信息的再现过程中,与用于记录的参考光束相似的参考光束照射到记录介质,使得记录介质中的光学干涉图样对参考光束进行衍射以再现物光束,从而再现信息。随着显示技术的不断发展,立体显示技术日益普及。典型地,利用诸如液晶显示面板和相位板的组合,可以实现全息图像的动态显示。在实现立体显示的过程中,具有水平视差的不同视图分别提供给用户的左眼和右眼。通过大脑的融合作用,最终形成一幅具有深度感的立体图像。
发明内容
本公开的实施例提供了一种全息显示面板、全息显示装置和全息显示方法。
根据本公开的一个方面,本公开实施例提供了一种全息显示面板。所述全息显示面板包括:阵列布置的多个子像素和布置在所述多个子像素的出光侧的相位板;以及阻挡部件,设置在所述子像素和相位板之间,且所述阻挡部件在所述多个子像素所在的平面上的正投影位于 相邻子像素之间,用于阻挡由所述子像素衍射的光束的边缘部分。
可选地,所述阻挡部件的宽度a满足:a=0.61λd/w,其中λ为所述光束的波长,w为所述子像素的宽度,d为所述阻挡部件与所述子像素之间的距离。
可选地,所述全息显示面板还包括布置在所述多个子像素的出光侧的第一基板。所述相位板布置在所述第一基板背离所述多个子像素的表面,所述阻挡部件布置在所述第一基板面对所述多个子像素的表面。
可选地,所述全息显示面板还包括布置在所述多个子像素的出光侧的彩膜基板,所述阻挡部件布置在所述彩膜基板背离所述多个子像素的表面。
可选地,所述相位板用于调节来自所述多个子像素的光束的角度,和/或所述相位板包括与所述多个子像素一一对应的多个子相位板。
可选地,所述相位板是衍射光栅。
可选地,所述全息显示面板还包括:多个景深显示单元,每个所述景深显示单元包括相邻的至少两个像素,每个所述像素包括多个子像素;每个所述景深显示单元还包括多个相位板,每个所述子像素沿其出光方向上对应一个所述相位板,所述相位板用于控制经所述相位板出射光线的衍射角度,其中,与同一个像素中的子像素对应的各个相位板的衍射角度相同,且同一个景深显示单元中不同像素经过相位板出射后的光线其衍射角度不同,以使得经同一所述景深显示单元出射的光线,其反向延长线交于一景深位置处。
可选地,所述多个景深显示单元划分为阵列排布的显示组,每个显示组由至少两个景深显示单元组成,且所述至少两个景深显示单元的位置相邻;其中,同一个显示组中各个景深显示单元的景深位置不同。
可选地,一景深显示单元与该景深显示单元相邻的任意景深显示单元具有的景深位置不同。
根据本公开的另一方面,本公开实施例提供了一种全息显示装置。所述全息显示装置包括如以上实施例所述的全息显示面板。
附图说明
图1a和图1b为根据本公开实施例的全息显示面板的结构示意图;
图2为根据本公开实施例的全息显示面板中阻挡部件的结构示意图;
图3a为根据本公开实施例的全息显示面板中相位板调节光束角度的示意图;
图3b为根据本公开实施例的全息显示面板中相位板的结构示意图;
图3c为根据本公开另一实施例的全息显示面板中相位板的结构示意图;
图4为根据本公开实施例的景深显示的原理示意图;
图5为根据本公开实施例的全息显示的原理示意图;
图6为根据本公开实施例的全息显示装置的结构示意图;以及
图7为根据本公开实施例的景深实现原理示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开专利保护的范围。
在实现近眼显示或使用虚拟现实的显示器件时,空间中虚拟出的图像或点是由入射光的发散或汇聚的角度来决定的,一般要求此类显示器件具有高的分辨率(即,每英寸子像素数量,PPI)。然而,发明人发现,随着分辨率的增加,子像素的尺寸减小,在显示面板的子像素和相位板之间将产生夫琅和费衍射。夫琅和费衍射角的存在导致来自相邻子像素的光束之间的串扰,极大地影响了立体图像的景深和位置,降低了显示效果。
根据本公开的一个方面,本公开实施例提供了一种全息显示面板。如图1a和图1b所示,所述全息显示面板100包括:阵列布置的多个子像素101和布置在所述多个子像素101的出光侧的相位板102;以及阻挡部件103,设置在所述子像素101和相位板102之间,且所述阻挡部件103在所述多个子像素101所在的平面上的正投影位于相邻子像素101之间,用于阻挡由所述子像素101衍射的光束的边缘部分。
在本公开实施例中,利用以上设置的阻挡部件,至少部分地地解决了小尺寸子像素中夫琅和费衍射角所导致的光束串扰问题。因此,利用本公开实施例的配置,不仅能够获得清晰的子像素边缘,消除颜色串扰和灰度串扰,还能够提供准确的图像景深,提高了全息显示的视觉效果。
如图1a和图1b所示,所述子像素101可以是液晶显示面板中的子像素,其利用液晶105控制每个滤色片106上的光强。所述液晶面板还可以包括用于提供背光107的背光模块(未示出在图1a和图1b中)。类似地,所述子像素101也可以是OLED显示面板中的子像素。
如图2所示,可选地,所述阻挡部件103的宽度a满足:a=0.61λd/w,其中λ为所述光束104的波长,w为所述子像素101的宽度,d为所述阻挡部件103与所述子像素101之间的距离。
由于子像素尺寸的缩小,夫琅和费衍射是限制显示器分辨率的主要因素。根据夫琅和费衍射角可以推导出阻挡部件的宽度条件。利用上述宽度条件,阻挡部件能够很好地阻挡由子像素衍射的光束的边缘部分,避免该边缘部分射入相邻子像素对应的相位板。
对于给定的子像素来说,夫琅和费衍射角θ=1.22λ/w。对于较小的角度θ来说,θ/2≈tgθ/2=a/d。由此可以获得所述阻挡部件103的宽度a=0.61λd/w。
由上述关系可知,随着所述距离d的增加,所述阻挡部件103的宽度a也相应增加。对于给定的子像素宽度w来说,太大的阻挡部件103可能反而会阻挡所述光束104的靠近光轴的部分,从而损失光强。因此,应当将所述阻挡部件103的宽度a(或者,所述阻挡部件103与所述子像素101之间的距离d)限制在适当的范围内。假设相邻的两个子像素101之间的间隔为p,则阻挡部件103的宽度a应当小于p。由此可得,0.61λd/w≤p,即所述阻挡部件103与所述子像素101之间的距离d≤wp/0.61λ。
可选地,如图1a所示,所述全息显示面板100还包括布置在所述多个子像素101的出光侧的第一基板108。所述相位板102布置在所述第一基板108背离所述多个子像素101的表面,所述阻挡部件103布置在所述第一基板108面对所述多个子像素101的表面。然而,如图2所示,也可以根据d≤wp/0.61λ,将所述阻挡部件103布置在所述子 像素101和所述第一基板108之间的预定位置处。
可选地,如图1b所示,所述全息显示面板100还包括布置在所述多个子像素101的出光侧的彩膜基板109,所述阻挡部件布置在所述彩膜基板109背离所述多个子像素101的表面。
可选地,如图3a所示,所述相位板102用于调节来自所述多个子像素101的光束104的角度。可选地,所述相位板102包括与所述多个子像素101一一对应的多个子相位板1021。
在实际应用中,相位板可以是一体的,也可以是由布置在基板上的多个子相位板构成(如图3a所示)。一体的相位板可以包括多个有效区(effective region),所述多个有效区分别对应于所述多个子像素。可以将一体的相位板直接布置在所述多个子像素的出光侧,从而控制来自所述多个子像素的光束。在本公开的上下文中,“子像素和相位板之间的光路”指的是单个子像素和与所述子像素对应的子相位板/有效区之间的光路。
类似地,也可以将一体的相位板或多个子相位板构成的相位板布置在所述第一基板背离所述多个子像素的表面,并将所述阻挡部件布置在所述第一基板面对所述多个子像素的表面。在此情况下,可以使用诸如液晶显示面板中的黑矩阵工艺来制作所述阻挡部件。因此,阻挡部件可以具有多个开口,所述多个开口与所述多个有效区或多个子相位板一一对应。
可选地,所述相位板103是衍射光栅。
利用具有不同参数的衍射光栅,可以将来自子像素的光束调节至希望的方向上。由此,如图3a所示,相位板102可以控制经相位板102出射光线的衍射角度β。其中,上述衍射角度β为相位板102出射光与入射光的传播方向之间的夹角。
需要说明的是,由于上述多个相位板102用于对入射光进行衍射,因此该相位板102可以采用相位型光栅,即衍射光栅。在此基础上,为了提高光线的利用率,可以选择透射光栅作为上述相位板102。在此情况下,由于光线在透射光栅的凸起和凹陷部分的相位不同,因此能够使得光线经过该透射光栅后发生衍射。
具体的,当该相位板102为透射光栅时,该透射光栅可以是如图3b所示的单阶光栅或者如图3c所示的多阶光栅。在此情况下,透射光 栅m级衍射波的衍射角β仅由光栅周期P、入射波的波长λ以及入射角β0决定,即sinβ-sinβ0=mλ/P(m=0,±1,±2,…)。因此,在入射光的波长λ相同的情况下,可以通过调节透射光栅的周期P,达到调节衍射角β的目的。
可选地,如图4和图5所示,所述多个子像素101划分为多个像素组10,分别用于显示具有不同景深的多个图像。
所述全息显示面板的多个子像素可以被划分为多个像素组,每个像素组用于显示具有特定景深的图像。由此,可以使用诸如时分复用的方式以及视觉暂留效应,利用所述全息显示面板显示具有不同景深的多个图像,从而提供具有多个景深的画面。
具体的,如图3a、图5和图7所示,相邻的三个颜色不同的子像素101可以被看作是像素01的三个子像素,从与它们对应的相位板102出射的光束的衍射角度β均相同。类似地,与像素01′的三个子像素101′对应的相位板102出射的光束的衍射角度β′均相同,并且β≠β′。若干个像素01和像素01′构成第一像素组10。来自像素01的光束的反向延长线和来自像素01′的光束的反向延长线相交于第一景深位置(DF1)处。由此,观察者可以观察到第一景深位置(DF1)处的图像。尽管在图5中仅示出了一个像素组10,本领域技术人员能够理解,也可以在整个显示区域内将所述多个子像素101划分为多个像素组10。在显示景深DF1的图像期间,所述多个像素组10同时工作,从而获得充满显示区域、并具有景深DF1的图像。依此类推,利用相位板对来自像素的光束进行调整,可以获得不同的像素组,从而使观察者观察到多个具有不同景深(DF1、DF2和DF3)的图像。
图7为根据本公开实施例的景深实现原理示意图。其中左侧示出了像素排布,右图示出像素所对应的子相位板。如图5和图7所示,一个像素组对应两个像素,每个像素对应3个子像素,一个像素组中的两个像素对应的子相位板的结构不同。一个像素组中的两个像素形成景深DF3。奇数的像素组对应的奇数像素和偶数的像素组对应的偶数像素形成景深DF2。
因此,可选地,所述全息显示面板还包括:多个景深显示单元,每个所述景深显示单元包括相邻的至少两个像素,每个所述像素包括多个子像素;每个所述景深显示单元还包括多个相位板,每个所述子 像素沿其出光方向上对应一个所述相位板,所述相位板用于控制经所述相位板出射光线的衍射角度,其中,与同一个像素中的子像素对应的各个相位板的衍射角度相同,且同一个景深显示单元中不同像素经过相位板出射后的光线其衍射角度不同,以使得经同一所述景深显示单元出射的光线,其反向延长线交于一景深位置处。
可选地,所述多个景深显示单元划分为阵列排布的显示组,每个显示组由至少两个景深显示单元组成,且所述至少两个景深显示单元的位置相邻;其中,同一个显示组中各个景深显示单元的景深位置不同。
可选地,一景深显示单元与该景深显示单元相邻的任意景深显示单元具有的景深位置不同。
根据本公开的另一方面,本公开实施例提供了一种全息显示装置。如图6所示,所述全息显示装置200包括如以上实施例所述的全息显示面板100。所述全息显示装置200还可以包括用于提供全息图像数据的数据接口201和电源接口202。对于该全息显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
该全息显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
根据本申请实施例提供的全息显示面板和全息显示装置,利用以上设置的阻挡部件,很好地解决了小尺寸子像素中夫琅和费衍射角所导致的光束串扰问题。因此,利用本公开实施例的配置,不仅能够获得清晰的子像素边缘,消除颜色串扰和灰度串扰,还能够提供准确的图像景深,提高了全息显示的视觉效果。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型。

Claims (10)

  1. 一种全息显示面板,包括:
    阵列布置的多个子像素和布置在所述多个子像素的出光侧的相位板;以及
    阻挡部件,设置在所述子像素和相位板之间,且所述阻挡部件在所述多个子像素所在的平面上的正投影位于相邻子像素之间,用于阻挡由所述子像素衍射的光束的边缘部分。
  2. 如权利要求1所述的全息显示面板,其中所述阻挡部件的宽度a满足:a=0.61λd/w,其中λ为所述光束的波长,w为所述子像素的宽度,d为所述阻挡部件与所述子像素之间的距离。
  3. 如权利要求1所述的全息显示面板,还包括布置在所述多个子像素的出光侧的第一基板,所述相位板布置在所述第一基板背离所述多个子像素的表面,所述阻挡部件布置在所述第一基板面对所述多个子像素的表面。
  4. 如权利要求1所述的全息显示面板,还包括布置在所述多个子像素的出光侧的彩膜基板,所述阻挡部件布置在所述彩膜基板背离所述多个子像素的表面。
  5. 如权利要求1-4之一所述的全息显示面板,其中所述相位板包括与所述多个子像素一一对应的多个子相位板。
  6. 如权利要求5所述的全息显示面板,其中所述子相位板是衍射光栅。
  7. 如权利要求1-4之一所述的全息显示面板,还包括:多个景深显示单元,每个所述景深显示单元包括相邻的至少两个像素,每个所述像素包括多个子像素;每个所述景深显示单元还包括多个相位板,每个所述子像素沿其出光方向上对应一个所述相位板,所述相位板用于控制经所述相位板出射光线的衍射角度,其中,与同一个像素中的子像素对应的各个相位板的衍射角度相同,且同一个景深显示单元中不同像素经过相位板出射后的光线其衍射角度不同,以使得经同一所述景深显示单元出射的光线,其反向延长线交于一景深位置处。
  8. 如权利要求7所述的全息显示面板,所述多个景深显示单元划分为阵列排布的显示组,每个显示组由至少两个景深显示单元组成, 且所述至少两个景深显示单元的位置相邻;其中,同一个显示组中各个景深显示单元的景深位置不同。
  9. 如权利要求8所述的全息显示面板,其中,一景深显示单元与该景深显示单元相邻的任意景深显示单元具有的景深位置不同。
  10. 一种全息显示装置,包括如权利要求1-9之一所述的全息显示面板。
PCT/CN2017/110412 2016-09-09 2017-11-10 全息显示面板和全息显示装置 WO2018046025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/772,208 US10642060B2 (en) 2016-09-09 2017-11-10 Holographic display panel and holographic display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610815306.1 2016-09-09
CN201610815306.1A CN106154797B (zh) 2016-09-09 2016-09-09 一种全息显示面板、全息显示装置及其显示方法
CN201710166323.1A CN106646905B (zh) 2017-03-20 2017-03-20 全息显示面板、全息显示装置和全息显示方法
CN201710166323.1 2017-03-20

Publications (1)

Publication Number Publication Date
WO2018046025A1 true WO2018046025A1 (zh) 2018-03-15

Family

ID=61561327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110412 WO2018046025A1 (zh) 2016-09-09 2017-11-10 全息显示面板和全息显示装置

Country Status (2)

Country Link
US (1) US10642060B2 (zh)
WO (1) WO2018046025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198238B (zh) * 2018-01-30 2021-06-22 北京小米移动软件有限公司 全息投影设备、方法、装置及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568888A (zh) * 2006-10-26 2009-10-28 视瑞尔技术公司 包含全息显示装置的移动电话系统
US20120120059A1 (en) * 2009-10-27 2012-05-17 Alexandre Bratkovski Display for 3d holographic images
CN104024349A (zh) * 2012-11-13 2014-09-03 Lg化学株式会社 包括用相变油墨组合物形成的光屏蔽图案的立体图像显示装置
CN104111560A (zh) * 2014-07-09 2014-10-22 京东方科技集团股份有限公司 一种液晶面板及双视液晶显示装置
CN105917277A (zh) * 2014-01-07 2016-08-31 视瑞尔技术公司 用于全息重建的显示设备
CN106154797A (zh) * 2016-09-09 2016-11-23 京东方科技集团股份有限公司 一种全息显示面板、全息显示装置及其显示方法
CN206002848U (zh) * 2016-09-09 2017-03-08 京东方科技集团股份有限公司 一种全息显示面板及全息显示装置
CN106646905A (zh) * 2017-03-20 2017-05-10 京东方科技集团股份有限公司 全息显示面板、全息显示装置和全息显示方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359403B4 (de) 2003-12-18 2005-12-15 Seereal Technologies Gmbh Autostereoskopisches Multi-User-Display
US8227150B2 (en) 2004-01-07 2012-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. Holographic reticle and patterning method
JP5191491B2 (ja) 2006-10-26 2013-05-08 シーリアル テクノロジーズ ソシエテ アノニム 小型ホログラフィック・ディスプレイ装置
DE102007051520B4 (de) 2007-10-19 2021-01-14 Seereal Technologies S.A. Komplexwertiger räumlicher Lichtmodulator, räumliche Lichtmodulationseinrichtung und Verfahren zur Modulation eines Wellenfeldes
CN202025132U (zh) 2011-03-28 2011-11-02 京东方科技集团股份有限公司 一种相位差板立体显示装置
BR112014010846A8 (pt) 2011-11-09 2017-06-20 Koninklijke Philips Nv dispositivo de exibição, e painel de exibição
TWI551930B (zh) 2012-05-11 2016-10-01 群康科技(深圳)有限公司 具錯位畫素之液晶顯示器
CN104570370B (zh) 2015-02-05 2017-02-22 京东方科技集团股份有限公司 一种立体显示装置
KR102390372B1 (ko) * 2015-06-01 2022-04-25 삼성전자주식회사 개선된 화질을 제공하는 공간 광변조기 및 이를 포함하는 홀로그래픽 디스플레이 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568888A (zh) * 2006-10-26 2009-10-28 视瑞尔技术公司 包含全息显示装置的移动电话系统
US20120120059A1 (en) * 2009-10-27 2012-05-17 Alexandre Bratkovski Display for 3d holographic images
CN104024349A (zh) * 2012-11-13 2014-09-03 Lg化学株式会社 包括用相变油墨组合物形成的光屏蔽图案的立体图像显示装置
CN105917277A (zh) * 2014-01-07 2016-08-31 视瑞尔技术公司 用于全息重建的显示设备
CN104111560A (zh) * 2014-07-09 2014-10-22 京东方科技集团股份有限公司 一种液晶面板及双视液晶显示装置
CN106154797A (zh) * 2016-09-09 2016-11-23 京东方科技集团股份有限公司 一种全息显示面板、全息显示装置及其显示方法
CN206002848U (zh) * 2016-09-09 2017-03-08 京东方科技集团股份有限公司 一种全息显示面板及全息显示装置
CN106646905A (zh) * 2017-03-20 2017-05-10 京东方科技集团股份有限公司 全息显示面板、全息显示装置和全息显示方法

Also Published As

Publication number Publication date
US10642060B2 (en) 2020-05-05
US20180321499A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US11022806B2 (en) Augmented reality light field head-mounted displays
US10551795B2 (en) Spatial light modulator providing improved image quality and holographic display apparatus including the same
WO2018045827A1 (zh) 一种全息显示面板、全息显示装置及其显示方法
US20180321500A1 (en) Directive colour filter and naked-eye 3d display apparatus
KR100880819B1 (ko) 자동입체 표시장치의 픽셀 배열
US9140912B2 (en) Holography 3D display
US20200142355A1 (en) Holographic display apparatus and method for providing expanded viewing window
US10795070B2 (en) Backlight unit and holographic display apparatus including the same
US10854146B1 (en) Directional optical waveguide, directional backlight module, and display device
CN106646905B (zh) 全息显示面板、全息显示装置和全息显示方法
CN105393162A (zh) 具有条纹背光和两个双凸透镜状透镜阵列的自动立体显示设备
US11409120B2 (en) Dynamic full three dimensional display
TW201539040A (zh) 立體顯示裝置
TWI660202B (zh) 裸眼式立體顯示器以及立體影像的顯示方法
KR102612039B1 (ko) 홀로그램 디스플레이
WO2018046025A1 (zh) 全息显示面板和全息显示装置
KR102600440B1 (ko) 홀로그램 표시장치
KR20140076284A (ko) 공간 광 변조 패널 및 이를 이용한 홀로그래피 입체 영상 표시장치
KR20200052199A (ko) 확장된 시야창을 제공하는 홀로그래픽 디스플레이 장치 및 디스플레이 방법
US11899399B2 (en) Beam deflection apparatus and holographic display apparatus including the same
KR102099142B1 (ko) 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
JP2006098775A (ja) 三次元画像表示システム
JP2021016023A (ja) 画像表示装置
US20220004148A1 (en) Apparatus and method of reproduction of a diffractive pattern
KR20160083513A (ko) 표시패널 및 입체영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15772208

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17848198

Country of ref document: EP

Kind code of ref document: A1