WO2018045976A1 - 一种飞行器的飞行控制方法和飞行控制装置 - Google Patents

一种飞行器的飞行控制方法和飞行控制装置 Download PDF

Info

Publication number
WO2018045976A1
WO2018045976A1 PCT/CN2017/100837 CN2017100837W WO2018045976A1 WO 2018045976 A1 WO2018045976 A1 WO 2018045976A1 CN 2017100837 W CN2017100837 W CN 2017100837W WO 2018045976 A1 WO2018045976 A1 WO 2018045976A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
flight
fly
target
flight control
Prior art date
Application number
PCT/CN2017/100837
Other languages
English (en)
French (fr)
Inventor
周大军
申俊峰
王斌
魏学峰
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2018045976A1 publication Critical patent/WO2018045976A1/zh
Priority to US16/006,600 priority Critical patent/US10795379B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0033Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by having the operator tracking the vehicle either by direct line of sight or via one or more cameras located remotely from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0056Navigation or guidance aids for a single aircraft in an emergency situation, e.g. hijacking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers

Definitions

  • the present application relates to the field of aircraft technology, and in particular, to a flight control method and a flight control device for an aircraft.
  • Aircraft have many applications in the national economy and military. Aircraft have been widely used in aerial photography, power inspection, environmental monitoring, forest fire prevention, disaster inspection, anti-terrorism rescue, military reconnaissance, battlefield assessment, etc.
  • Remote-controlled equipment and self-contained program control devices are operated by unmanned aircraft. There is no cockpit on the aircraft, but it is equipped with autopilot, program control device, information acquisition device and other equipment. The remote station personnel track, locate, remotely control, telemetry and digital transmission through radar and other equipment.
  • the aircraft usually adopts the following two schemes when performing flight operations: 1. During the flight, the user manually controls the aircraft to perform basic flight movement by manually controlling the joystick on the remote controller; 2. The user operates the handheld device to simulate the control shake. Rod, the joystick controls the flight movement of the aircraft, and the handheld device can refer to a mobile device such as a smartphone or a tablet.
  • each aircraft is controlled by a user, whether using a remote control or a handheld device
  • the flight motion of the aircraft is controlled by a joystick
  • the method of controlling the aircraft through the joystick requires the user to pay attention to it at any time.
  • the flight path of the aircraft, and the manipulation methods between different users are different, it is difficult to complete the common flight between at least two aircraft.
  • the embodiment of the present application provides a flight control method and a flight control device for an aircraft, which are used to complete a common flight between at least two aircraft.
  • the embodiment of the present application provides the following technical solutions:
  • an embodiment of the present application provides a flight control method for an aircraft, including:
  • the embodiment of the present application further provides a flight control apparatus, including:
  • An acquiring module configured to acquire a first flight control instruction and a flight parameter sent by the mobile terminal, where the flight parameter includes a preset flying height
  • a flight mode control module configured to control the first aircraft to fly to the preset flying height in response to the first flight control instruction
  • a target tracking module configured to determine whether a target aircraft exists within a perimeter of the first aircraft, and determine a flight attitude of the first aircraft according to the determination result.
  • the embodiment of the present application further provides a flight control apparatus, including:
  • One or more processors are One or more processors.
  • a memory storing program instructions that, when executed by the one or more processors, configure the apparatus to perform a flight control method in accordance with the present application.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium, where There are program instructions that, when executed by a processor of a computing device, configure the device to perform a flight control method in accordance with the present application.
  • the embodiments of the present application have the following advantages:
  • the first aircraft may start the artificial intelligence automatic flight mode according to the first flight control instruction and the flight parameter issued by the mobile terminal, and fly to a preset flight altitude to perform a hovering state, so the first aircraft The automatic takeoff can be performed without real-time manipulation by the user.
  • whether the target aircraft exists in the peripheral range of the first aircraft can be determined, and the target aircraft is determined according to whether there is a target aircraft in the surrounding range of the first aircraft.
  • the current judgment result adjusts the flight attitude of the first aircraft.
  • the flight process of the first aircraft is closely related to the target aircraft, so that the common flight of the first aircraft and the target aircraft can be achieved, achieving a common flight between at least two aircraft.
  • FIG. 1 is a flowchart of a flight control method of an aircraft according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a flight control implementation scheme of an aircraft according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an automatic path finding implementation method for an aircraft according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an automatic pathfinding algorithm for an aircraft according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of another automatic pathfinding algorithm for an aircraft according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a flight control apparatus according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a composition of a target tracking module according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another target tracking module according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another target tracking module according to an embodiment of the present application.
  • FIG. 3 e is a schematic structural diagram of another flight control device according to an embodiment of the present application.
  • FIG. 3-f is a schematic structural diagram of another flight control apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a flight control device according to an embodiment of the present application.
  • the embodiment of the present application provides a flight control method and a flight control device for an aircraft, which are used to complete a common flight between at least two aircrafts in an implementation scenario in which a user cannot simultaneously control multiple aircraft.
  • the flight control method of the aircraft of the present application may be specifically applied to automatic flight control of the first aircraft to achieve common flight of the first aircraft and one or more second aircraft (also referred to as target aircraft).
  • the first aircraft may include a flight control device, the first aircraft is flight controlled by the flight control device, the flight control device receives flight control commands through the mobile terminal, and the flight control device controls the first aircraft.
  • the aircraft described herein may specifically be a drone, or may be a remote control aircraft, a model airplane, or the like.
  • an embodiment of the present application provides a flight control method for an aircraft. As shown in FIG. 1, the method may include the following steps:
  • the first flight control command is used to control the first aircraft to enter an artificial intelligence automatic flight mode, and the flight parameters include a preset flight altitude.
  • the mobile terminal may be a user controller of the first aircraft, and the user may send a control command to the first aircraft through the mobile terminal, and the communication module in the mobile terminal and the communication module in the flight control device may be wireless.
  • Mobile The terminal and the flight control device can be connected by a micro-aircraft connection (English name: Micro Air Vehicle Link, English abbreviation: MavLink).
  • the MavLink protocol is a communication protocol for small unmanned vehicles, between the mobile terminal and the flight control device. Communication interaction can be achieved.
  • the mobile terminal may send the first flight control instruction and the flight parameters to the first aircraft, and the user may indicate the first aircraft through the mobile terminal, for example, the user may control the first aircraft to enter the artificial intelligence (English full name: Artificial) Intelligence, English abbreviation: AI) Automatic flight mode, the user can also set the flight height of the first aircraft.
  • the flight control device can receive the first flight control command and flight parameters transmitted by the mobile terminal.
  • the flight control command is sent by the user to the first aircraft through the mobile terminal, and the flight control command carries a flight mode in which the user needs to control the first aircraft.
  • the first aircraft may have multiple flight modes, such as an airplane mode. It can be a manual control flight mode or an artificial intelligence automatic flight mode.
  • the first aircraft can perform automatic path-finding flight according to the configured artificial intelligence automatic flight mode, in addition to the user's real-time manipulation, and the automatic path-finding flight can be completed without real-time manipulation by the user.
  • the flight parameters include the flight altitude configured by the user through the mobile terminal, and the flight altitude is the height that the first aircraft needs to take off during the take-off phase, and may be configured by default or pre-configured according to the application scenario.
  • the first aircraft may be controlled to start the artificial intelligence automatic flight mode according to the first flight control instruction, and the first aircraft is controlled to fly to a preset flying height according to the flight parameters, and then the hovering state is performed.
  • the flight control device may take off according to the first flight control instruction and the flight parameter, and the first aircraft starts the artificial intelligence automatic flight mode, and flies to the pre-flight Set the flight height.
  • the first aircraft can enter a hover state after flying to a preset flying height.
  • the first aircraft can automatically fly without receiving the flight control command sent by the mobile terminal, and the automatic flight process of the first aircraft is implemented as described in the following step 103.
  • the flight control method of the aircraft provided by the embodiment of the present application In addition to performing the foregoing steps, the flight control method of the aircraft further includes:
  • A1 acquiring a second flight control command sent by the mobile terminal, where the second flight control command is used to control the first aircraft to cancel the artificial intelligence automatic flight mode;
  • A2 Control the first aircraft to exit the artificial intelligence automatic flight mode according to the second flight control instruction, and control the first aircraft to enter the hovering state.
  • the first aircraft maintains a priority response to the user input during the flight, the user can interrupt the automatic flight of the first aircraft, and manually control the flight of the first aircraft, so that the safety of the first aircraft can be preferentially guaranteed, avoiding the first An abnormal situation such as a collision of the aircraft occurs.
  • the user can send a second flight control command through the mobile terminal, and then control the first aircraft to exit the artificial intelligence automatic flight mode according to the second flight control instruction, and control An aircraft enters a hovering state.
  • the flight control method of the aircraft includes: in addition to performing the foregoing steps, the flight control method of the aircraft further includes:
  • the parameters of the first aircraft may also be monitored in real time, for example, the battery power of the first aircraft may be detected to determine the battery of the first aircraft. Whether the power can continue to maintain the flight state of the first aircraft, determine whether the battery capacity of the first aircraft is less than a preset threshold, if the battery power is less than the threshold, control the first aircraft to land, if the battery power is greater than or equal to the threshold, control the first aircraft Return to the takeoff point.
  • the first aircraft starts the artificial intelligence automatic flight mode flight to a preset flight altitude, and then the peripheral range of the first aircraft can be detected to determine whether other aircraft (ie, the target aircraft) exist. If there is a presence in the perimeter of the first aircraft Its aircraft can then control the aircraft to fly in accordance with the determined flight attitude from the preset flight altitude.
  • the flight attitude described herein may include, for example, flight speed, flight altitude, flight direction, rotational axis, and/or rotational speed, and the like.
  • the target aircraft here may be specific to some types of aircraft, or may not be specific to certain aircraft, but only need to be other aircraft than the first aircraft. For example, it can be judged by collecting and analyzing the image of the surrounding environment of the first aircraft, or the target aircraft can also be detected by the infrared imaging module configured in the first aircraft. All objects in nature can radiate infrared rays. Infrared imaging modules (such as detectors) can be used to measure infrared differences between the target itself and the background to obtain infrared images of different thermal infrared rays. The infrared image is used to determine the perimeter of the first aircraft. Whether there is a target aircraft inside.
  • the flight attitude of the first aircraft may be determined according to the judgment of the target aircraft, wherein the flight attitude of the first aircraft may refer to the orientation, height and position of the aircraft.
  • the positional movement of the first aircraft with the target aircraft is primarily controlled. For example, determining the flight attitude may simply control the first aircraft to fly forward, and may also refer to controlling the first aircraft to achieve a flight action such as tumbling.
  • determining whether the target aircraft exists in the peripheral range of the first aircraft in step 103 may include:
  • C2. Determine whether there is a target aircraft within a perimeter of the first aircraft according to the surrounding environment image.
  • the first aircraft may be in a hovering state, and the camera in the first aircraft may be activated to collect the surrounding environment image of the first aircraft, and the surrounding environment image refers to the first Image information acquired around the first aircraft when the first aircraft is in a hovering state after the aircraft has taken off.
  • the step C1 collects the surrounding environment image of the first aircraft, which may specifically include:
  • C11 Acquire a front environment image of the first aircraft according to a current viewing direction of the camera of the first aircraft, and then adjust a camera viewing direction of the first aircraft to collect the first aircraft.
  • the first aircraft can be hovered when the environmental image is acquired.
  • a vision system may also be disposed in the first aircraft, and the surrounding environment image of the first aircraft is acquired by the vision system. For example, if at least one camera is disposed in the vision system, according to the current perspective of the camera. The direction collects the front environment image when the first aircraft is in the hovering state, and then adjusts the camera viewing direction of the first aircraft, thereby collecting the rear environment image, the left environment image, and the right environment image when the first aircraft is in the hovering state. .
  • the first aircraft may also be provided with a plurality of cameras to simultaneously collect images of the surrounding environment, which is not limited herein.
  • step C2 is next performed to perform image detection on the surrounding environment image to determine whether there is a target aircraft in the peripheral range of the first aircraft, for example, the target aircraft may be stored in advance.
  • the image feature is then subjected to image classification detection of the surrounding environment image by the image feature of the target aircraft, so that it can be determined whether the target aircraft exists within the perimeter of the first aircraft.
  • the fuzzy judgment mode may also be adopted.
  • the first aircraft is in mid-air after taking off, and whether there is a flying object around the first aircraft can be determined by detecting the surrounding environment image.
  • the aircraft detection algorithm used in the embodiment of the present application It may be a method based on an Adaboost learning algorithm, such as a fast calculation method of eigenvalues of Haar-like rectangular features, and the like.
  • the aircraft detection algorithm used in the embodiment of the present application may also be a neural network method, a geometric feature based method, or the like. Determining the flight attitude of the first aircraft based on the judgment of the target aircraft, wherein the flight attitude of the first aircraft may refer to the orientation, altitude and position of the aircraft, during the implementation of tracking the target aircraft using the first aircraft, the main control The first aircraft moves with the position of the target aircraft. For example, determining the flight attitude may simply control the first aircraft to fly forward, and may also refer to controlling the first aircraft to achieve a flight action such as tumbling.
  • determining the flight attitude of the first aircraft according to the determination result obtained by determining whether the target aircraft exists in the peripheral range of the first aircraft in step 103 includes:
  • the first aircraft and the target aircraft co-flight is described in steps D1 to D4.
  • the determination result it is determined that the target aircraft is found in the rear environment of the first aircraft, and the target aircraft is in the first aircraft.
  • the flight direction of the target aircraft is obtained.
  • the flight direction of the target aircraft can be detected by real-time detection of the captured image of the target aircraft.
  • the first aircraft can The flight is performed in accordance with the flight control method described in steps D2 to D4, respectively.
  • steps D2 to D4 are only one implementation manner for determining the flight attitude of the first aircraft when the target aircraft is found in the rear environment of the first aircraft, if the front environment of the first aircraft, the left environment, and the right
  • the flight attitude of the first aircraft may also be determined in the manner described in the embodiments herein when the target aircraft is found in the square environment, thereby enabling common flight of the first aircraft and the target aircraft.
  • determining, in step 103, a flight attitude of the first aircraft based on a determination result obtained by determining whether a target aircraft exists in a peripheral range of the first aircraft including: if in the first aircraft The target aircraft is present in the peripheral range, the flight direction of the target aircraft is acquired, and the flight direction of the first aircraft is determined to be the same as the flight direction of the target aircraft. For example, if the target aircraft flies to the right, the first aircraft is controlled to also fly to the right to make the flight paths of the two coincide.
  • determining the flight attitude of the first aircraft according to the determination result obtained by determining whether the target aircraft exists in the peripheral range of the first aircraft in step 103 includes: determining, according to the determination result, that the first No target aircraft is found in the surrounding environment of the aircraft, and the flight attitude of the aircraft is determined to be a preset flight attitude. For example, it may be predetermined that if the target aircraft is not found in the surrounding environment of the first aircraft, the flight of the first aircraft The line poses and the corresponding data is pre-stored in the aircraft.
  • the flight control device may adjust the flight attitude of the first aircraft at intervals. For example, the flight control device may periodically adjust the flight attitude of the first aircraft, and the adjustment period may be set to, for example, 5 times/second, 10 times/second, and the like.
  • the flight control device adjusts the flight attitude of the first aircraft each time based on the current judgment result obtained by judging whether the target aircraft exists in the peripheral range of the first aircraft, which may include, for example:
  • E2 Obtaining whether the target aircraft is found in the environment behind the first aircraft in the historical judgment result (for example, the last judgment result) before the current judgment result;
  • the first aircraft is controlled to fly in the forward direction, or to the right, or to the left.
  • the flight control device adjusts the flight attitude of the first aircraft to be a periodic control behavior, and there is a history adjustment process before the current adjustment process, and the adjustment period may be set, for example, 5 times/second, 10 times/second, etc. Etc., when the target aircraft is not found in the current judgment result, the history judgment result may also be combined to determine how to adjust the flight attitude of the first aircraft during the current adjustment process.
  • Step D4 The embodiment shown.
  • the first aircraft is controlled to fly in the forward direction, or to the right, or to the left, so the result of this judgment and the last time
  • the flight attitude of the first aircraft may be adjusted arbitrarily, and the first aircraft may be controlled to fly in the forward direction, or to the right, or to the left, where the flight may not be backward.
  • the principles are equally applicable to other directions.
  • the flight parameters further include: a preset flight boundary, the flight boundary including at least one of the following: a maximum flight distance, a highest flight altitude, and a lowest flight altitude.
  • the flight control method of the aircraft provided by the embodiment of the present application further includes:
  • the flight position of the first aircraft needs to be detected during the flight of the first aircraft, and if the first aircraft reaches the flight boundary, then It is necessary to change the flight attitude of the first aircraft to return the first aircraft to the flight boundary, thereby realizing automatic adjustment of the first aircraft in real time according to the flight boundary without requiring manual manipulation by the user.
  • step F2 changes the flight attitude of the first aircraft to return the first aircraft to the flight boundary, including:
  • F21 Control the first aircraft to fly upwards and backwards, or to fly downwards and backwards, or to fly upwards and to the right, or to fly downwards and to the right, or upwards. Fly and fly to the left, or fly down and fly to the left;
  • F22 Determine whether the first aircraft reaches the highest flight altitude in the upward direction, and if so, control the first aircraft to fly downward;
  • step F21 may be performed, and after changing the flight height of the first aircraft in step F21, it is also necessary to determine whether the highest and lowest flight altitudes are exceeded, thereby changing the first aircraft again.
  • the flying height is to avoid the height crossing the boundary, realizing automatic adjustment of the first aircraft according to the flight boundary in real time without manual manipulation by the user.
  • the first aircraft can start the artificial intelligence automatic flight mode according to the first flight control command and the flight parameter sent by the mobile terminal, and fly to a preset flight altitude to perform a hovering state. Therefore, the first aircraft can automatically take off without real-time manipulation by the user.
  • it can be determined whether there is a target aircraft in the peripheral range of the first aircraft, and whether the target aircraft exists according to the surrounding range of the first aircraft.
  • the judgment result obtained after the judgment is made determines or adjusts the flight attitude of the first aircraft.
  • the flight process of the first aircraft is closely related to the target aircraft, so that the common flight of the first aircraft and the target aircraft can be achieved, achieving a common flight between at least two aircraft.
  • the above-mentioned aircraft is specifically described as an unmanned aerial vehicle.
  • the aforementioned first aircraft is an automatic pathfinding drone
  • the target aircraft is a drone operated by a user.
  • the embodiment of the present application can greatly improve the user experience of the drone, thereby enriching the application scenario of the drone.
  • the AI path finding in the case of the drone 1V1 requires two drones to be performed together, one drone is operated by the user, and one drone performs its own path-finding flight according to the flight control method described in the embodiment of the present application, without User control.
  • FIG. 2-a is a schematic diagram of a flight control implementation scheme of an aircraft provided by an embodiment of the present application.
  • the AI pathfinding in the case of the drone 1V1 includes the following parts: the user's mobile phone is set to perform the AI automatic flight mode; the mobile phone APP sends the flight control command to the flight control device; the flight control device enters the AI automatic flight mode; the drone is based on The AI algorithm automatically flies; the user's mobile phone cancels the AI automatic flight mode; the mobile phone notifies the flight control device to exit the AI automatic flight mode; the drone automatically hovers and then lands.
  • the user's mobile phone setting enters the AI automatic flight mode, which means that the user uses the mobile phone to turn on the AI automatic flight mode, and sets the flyable range of the drone: the highest and lowest flight altitudes, and the maximum distance parameter that can be flightd. Initialize the work.
  • the mobile terminal APP sends the control command and related parameters to the flight control device through the MavLink protocol.
  • the flight control device of the drone After receiving the control command and parameter data, the flight control device of the drone enters the AI automatic pathfinding flight mode and executes different AI algorithms according to the data provided by the drone vision system.
  • the drone After the drone enters the AI automatic flight mode, it takes off a few seconds and enters the predetermined altitude (time and altitude can be set) and hovering at the set height.
  • the flight control device of the drone determines whether there is a UAV target in the back according to the visual system, as shown in FIG. 2-b, which is a schematic diagram of an automatic pathfinding implementation scheme of the aircraft provided by the embodiment of the present application. If the drone is found, the AI algorithm 1 is executed; if the drone is not found, the AI algorithm 2 is executed; the flight action is calculated by the algorithm.
  • the AI algorithm 1 is shown in Figure 2-c, and the AI algorithm 2 is shown in Figure 2-d.
  • 3.2.1AI algorithm 1 First determine the flight direction of the rear drone. If the rear drone is flying left/right, select the right/left direction (in the opposite direction) and randomly change the altitude flight. . If the rear drone flies forward, choose to fly forward or randomly (not to fly backwards, it may hit the rear drone), and there is a probability to randomly change the height once.
  • a security boundary check is then performed, and if the flightable boundary is not reached, the algorithm is complete. If the flightable boundary is reached, fly randomly downwards or upwards and fly a distance in the opposite direction of the flight boundary (ie, return from the boundary position). If the minimum/maximum altitude is reached when flying down or up, fly up/down a distance and then fly a distance in the opposite direction of the flight boundary.
  • AI algorithm 2 First judge whether the last time the vision system finds the drone. If the drone is not found in the previous calculation, then randomly select one direction from the front, left and right directions to fly (not select the rear, there is May hit the rear drone). If the rear drone is found in the last calculation, if the rear drone is not found in this calculation, it will fly in the previous direction and change the height randomly.
  • a security boundary check is then performed, and if the flightable boundary is not reached, the algorithm is complete. If the flightable boundary is reached, fly randomly downwards or upwards and in the opposite direction of the flight boundary Flying a distance (ie, returning from the boundary position), if the minimum/maximum flight altitude is reached when flying down or upward, fly up/down a distance and then fly a distance to the opposite direction of the flight boundary.
  • the flight control device performs this flight action.
  • the user's mobile phone is set to exit the AI automatic flight mode.
  • the terminal APP sends the control command to the drone flight control device through the MavLink protocol. After receiving the control command, the flight control device exits the AI automatic flight mode.
  • the drone enters the hovering state according to the preset setting. After waiting for a certain period of time, if there is no user control signal, it will land or return to the take-off point by itself.
  • the drone will respond to the user input with priority.
  • the user can interrupt the automatic flight of the drone and control the flight of the drone. This will ensure the safety of the drone and avoid the collision of the drone. An abnormal situation occurs.
  • the embodiment of the present application can automatically calculate the flight action by using the UAV AI path finding algorithm, and control the drone to perform automatic flight; solve the problem that the drone flight must require user manipulation, and creatively propose two drones. Flying together, a user controlled, a solution controlled by the AI pathfinding algorithm, greatly enhances the drone's experience in playability, thereby enriching the application scenarios of the drone.
  • the flight control device Using the UAV AI pathfinding algorithm, the flight control device will calculate the next flight action based on the relevant parameters and visual data, and perform this flight action.
  • a flight control device 300 provided by an embodiment of the present application may be included.
  • An acquisition module 301 an airplane mode control module 302, and a target tracking module 303, where
  • the acquiring module 301 is configured to acquire a first flight control instruction and a flight parameter sent by the mobile terminal, where the first flight control instruction is used to control the first aircraft to enter an artificial intelligence automatic flight mode, where the flight parameter includes a preset flying height ;
  • the flight mode control module 302 is configured to control the first aircraft to fly to the preset flying height in response to the first flight control instruction;
  • the target tracking module 303 is configured to determine whether a target aircraft exists in a peripheral range of the first aircraft, and determine the first result according to a determination result obtained by determining whether a target aircraft exists in a peripheral range of the first aircraft Flight attitude of the aircraft.
  • the flight mode control module 302 controls the first aircraft to activate an artificial intelligence automatic flight mode according to the first flight control instruction, and controls the first aircraft to fly to the location according to the flight parameters.
  • the hover state is performed after the preset flying height is described.
  • the target tracking module 303 includes:
  • the image acquisition module 3031 is configured to collect a surrounding environment image of the first aircraft
  • the target determining module 3032 is configured to determine, according to the surrounding environment image, whether a target aircraft exists within a perimeter of the first aircraft.
  • the image acquisition module 3031 is configured to collect a front environment image of the first aircraft according to a current viewing direction of a camera of the first aircraft, and then adjust the first aircraft.
  • the camera viewing direction is such that the rear environment image, the left environment image, and the right environment image of the first aircraft are acquired.
  • the image acquisition module 3031 acquires a surrounding environment image of the first aircraft when the first aircraft is in a hovering state.
  • the target tracking module 303 includes:
  • a first target aircraft monitoring module 3033 configured to acquire a flight direction of the target aircraft if it is determined that the target aircraft is found in a rear environment of the first aircraft according to the foregoing determination result;
  • a first flight control module 3034 configured to control the first aircraft to fly to the right direction and change the location if the target aircraft flies from the left direction of the first aircraft to the first aircraft Determining a flying height of the first aircraft; if the target aircraft flies from the right direction of the first aircraft to the first aircraft, controlling the first aircraft to fly to the left direction and changing the first aircraft a flying height; if the target aircraft flies toward the first aircraft in a forward direction of the first aircraft, controlling the first aircraft to fly in a forward direction, or to fly in a right direction, or to fly in a left direction, and Changing the flying height of the first aircraft.
  • the target tracking module 303 includes:
  • a second target aircraft monitoring module 3035 configured to determine, according to the current determination result, whether the target aircraft is found within a perimeter of the first aircraft
  • the historical judgment result obtaining module 3036 is configured to: if the second target aircraft monitoring module 3035 determines that the target aircraft is not found in the peripheral range of the first aircraft according to the current determination result, obtain the last judgment before the current judgment result Whether the target aircraft is found in the peripheral range of the first aircraft in the result;
  • a second flight control module 3037 configured to: if it is determined that the target aircraft is found in a peripheral range of the first aircraft according to the last determination result, flying the first aircraft according to the last determination result Adjusting the attitude of the first aircraft by the attitude adjustment mode;
  • the third flight control module 3038 is configured to control a flight direction of the first aircraft when it is determined that the target aircraft is not found within a perimeter of the first aircraft according to the last determination result. For example, if the target aircraft is not found in the rear environment of the first aircraft, the first aircraft is controlled to fly in a forward direction, or to fly in a right direction, or to fly in a left direction.
  • the flight parameters further include: a preset flight boundary, the flight boundary including at least one of the following: a maximum flight distance, a highest flight altitude, and a lowest flight altitude.
  • the flight control device 300 further includes: a flight boundary control module 304, configured to determine, by the target tracking module 303, whether a target aircraft exists in a peripheral range of the first aircraft. After determining the flight attitude of the first aircraft, determining whether the first aircraft reaches the flight boundary; if the first aircraft reaches the flight boundary, changing a flight attitude of the first aircraft.
  • the flight boundary control module 304 is specifically configured to control the first aircraft to fly in an upward direction and fly backward, or to fly downward and backward. Flying, either flying upwards and flying to the right, or flying downwards and flying to the right, or flying upwards and flying to the left, or flying downwards and flying to the left; determining the first aircraft Whether the flight in the upward direction reaches the highest flight altitude, and if so, controlling the first aircraft to fly downward; determining whether the first aircraft travels in the downward direction to reach the minimum flight altitude, and if so, controlling the first aircraft to go up flight.
  • the acquiring module 301 is further configured to acquire a second flight control instruction sent by the mobile terminal, where the second flight control instruction is used to control the first aircraft to cancel artificial intelligence automatically.
  • Flight mode is further configured to acquire a second flight control instruction sent by the mobile terminal, where the second flight control instruction is used to control the first aircraft to cancel artificial intelligence automatically.
  • the flight mode control module 302 is further configured to control the first aircraft to exit the artificial intelligence automatic flight mode according to the second flight control instruction, and control the first aircraft to enter a hovering state.
  • the flight control device 300 further includes:
  • the energy detecting module 305 is configured to acquire a battery power of the first aircraft, and determine whether the battery power of the first aircraft is less than a preset threshold;
  • the fourth flight control module 306 is configured to control the first aircraft to fall if the battery power is less than a threshold, and to control the first aircraft to return to a takeoff point if the battery power is greater than or equal to a threshold.
  • the first aircraft can start the artificial intelligence automatic flight mode according to the first flight control command and the flight parameter sent by the mobile terminal, and fly to a preset flight altitude to perform a hover state, so An aircraft can automatically take off without real-time manipulation by the user.
  • it can be determined whether there is a target aircraft in the peripheral range of the first aircraft, and whether the target aircraft exists according to the surrounding range of the first aircraft. The judgment result obtained later determines or adjusts the flight attitude of the first aircraft.
  • the flight process of the first aircraft is closely related to the target aircraft, so that the common flight of the first aircraft and the target aircraft can be achieved, achieving a common flight between at least two aircraft.
  • an embodiment of the present application provides a flight control device 400, which can implement the functions of the flight control device in the embodiment shown in FIG. 3-a to FIG.
  • the flight control device 400 includes:
  • the program stored in memory 404 may include one or more modules, each of which may include a series of instruction operations in the flight control device.
  • central processor 403 can be configured to communicate with memory 404 to perform a series of instruction operations in memory 404 on flight control device 400.
  • Flight control device 400 may also include one or more power sources, one or more wired or wireless network interfaces, one or more input and output interfaces, and/or one or more operating systems, in the above embodiments by a flight control device The method steps performed may be based on the flight control device structure shown in FIG.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Emergency Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种飞行器的飞行控制方法和飞行控制装置(300),用于完成至少两个飞行器之间的共同飞行。飞行器的飞行控制方法包括:获取移动终端发送的第一飞行控制指令和飞行参数,飞行参数包括预设的飞行高度(101);响应第一飞行控制指令控制第一飞行器飞行至预设的飞行高度(102);判断在第一飞行器的周边范围内是否存在目标飞行器,根据判断结果确定第一飞行器的飞行姿态(103)。

Description

一种飞行器的飞行控制方法和飞行控制装置
本申请要求于2016年9月9日提交中国专利局,申请号为201610814711.1,发明名称为“一种飞行器的飞行控制方法和飞行控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及飞行器技术领域,尤其涉及一种飞行器的飞行控制方法和飞行控制装置。
背景技术
飞行器在国民经济、军事上都有很多应用,飞行器己被广泛应用于航拍摄影、电力巡检、环境监测、森林防火、灾情巡查、防恐救生、军事侦察、战场评估等领域,飞行器是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置、信息采集装置等设备,遥控站人员通过雷达等设备,对其进行跟踪、定位、遥控、遥测和数字传输。
飞行器在执行飞行动作时通常采用如下两种方案:1、飞行器在飞行过程中,用户通过人工控制遥控器上的摇杆,手动控制飞行器做基本的飞行运动;2、用户操作手持设备模拟控制摇杆,由摇杆来控制飞行器的飞行运动,手持设备可以是指智能手机、平板电脑等移动设备。
基于上述方案,通常存在如下的应用场景,多个用户分别操作各自的飞行器进行飞行,则在天空中多个飞行器之间可以实现共同飞行,每个用户都可以体验到与其它用户共同操控的可玩性体验,例如在飞行器1V1(一对一)应用场景下,两个飞行器可以由不同用户操作实现一对一对战。但是目前的解决方案中,多个飞行器需要多个用户分别同时操控才能完成,对于一个用户无法同时操控多个飞行器的实现场景下就无法完成至少两个飞行器之间的 共同飞行。另外,在每个飞行器由一个用户操控的实现场景下,无论是使用遥控器还是手持设备,都是通过摇杆来控制飞行器的飞行运动,但是这种通过摇杆控制飞行器的方法需要用户随时关注飞行器的飞行轨迹,并且不同用户之间的操控手法都不同,很难完成至少两个飞行器之间的共同飞行。
发明内容
本申请实施例提供了一种飞行器的飞行控制方法和飞行控制装置,用于完成至少两个飞行器之间的共同飞行。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种飞行器的飞行控制方法,包括:
获取移动终端发送的第一飞行控制指令和飞行参数,所述飞行参数包括预设的飞行高度;
响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度;
判断在所述第一飞行器的周边范围内是否存在目标飞行器;
根据所述判断结果确定所述第一飞行器的飞行姿态。
第二方面,本申请实施例还提供一种飞行控制装置,包括:
获取模块,用于获取移动终端发送的第一飞行控制指令和飞行参数,所述飞行参数包括预设的飞行高度;
飞行模式控制模块,用于响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度;
目标跟踪模块,用于判断在所述第一飞行器的周边范围内是否存在目标飞行器,并根据所述判断结果确定所述第一飞行器的飞行姿态。
第三方面,本申请实施例还提供一种飞行控制装置,包括:
一个或多个处理器;和
存储器,所述存储器存储有程序指令,所述指令当由所述一个或多个处理器执行时,配置所述装置执行根据本申请的飞行控制方法。
第四方面,本申请实施例还提供一种非暂态计算机可读存储介质,存储 有程序指令,所述指令当由计算装置的处理器执行时,配置所述装置执行根据本申请的飞行控制方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
在本申请实施例中,第一飞行器可以根据移动终端下发的第一飞行控制指令和飞行参数启动人工智能自动飞行模式,并飞行至预置的飞行高度后进行悬停状态,因此第一飞行器可以不需要用户的实时操控就可以自动起飞,本申请实施例中还可以判断在第一飞行器的周边范围内是否存在目标飞行器,并根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的当前判断结果调整第一飞行器的飞行姿态。从而第一飞行器的飞行过程与目标飞行器紧密相关,从而可以实现第一飞行器和目标飞行器的共同飞行,实现至少两个飞行器之间的共同飞行。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种飞行器的飞行控制方法的流程图;
图2-a为本申请实施例提供的一种飞行器的飞行控制实现方案示意图;
图2-b为本申请实施例提供的一种飞行器的自动寻路实现方案示意图;
图2-c为本申请实施例提供的一种飞行器自动寻路算法示意图;
图2-d为本申请实施例提供的另一种飞行器自动寻路算法示意图;
图3-a为本申请实施例提供的一种飞行控制装置的组成示意图;
图3-b为本申请实施例提供的一种目标跟踪模块的组成示意图;
图3-c为本申请实施例提供的另一种目标跟踪模块的组成示意图;
图3-d为本申请实施例提供的另一种目标跟踪模块的组成示意图;
图3-e为本申请实施例提供的另一种飞行控制装置的组成示意图;
图3-f为本申请实施例提供的另一种飞行控制装置的组成示意图;
图4为本申请实施例提供的飞行控制装置的结构示意图。
具体实施方式
本申请实施例提供了一种飞行器的飞行控制方法和飞行控制装置,用于一个用户无法同时操控多个飞行器的实现场景下完成至少两个飞行器之间的共同飞行。
为使得本申请的申请目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
本申请飞行器的飞行控制方法的一个实施例,具体可以应用于对第一飞行器的自动飞行控制,从而实现第一飞行器和一个或多个第二飞行器(也称作目标飞行器)的共同飞行。第一飞行器可以包括飞行控制装置,第一飞行器由飞行控制装置进行飞行控制,飞行控制装置通过移动终端来接收飞行控制指令,飞行控制装置控制第一飞行器。这里所述的飞行器具体可以是无人机、也可以是遥控飞机、航模飞机等。
接下来从飞行控制装置的角度来说明,本申请一个实施例提供的飞行器的飞行控制方法。如图1所示,该方法可以包括如下步骤:
101、获取移动终端发送的第一飞行控制指令和飞行参数。其中,第一飞行控制指令用于控制第一飞行器进入人工智能自动飞行模式,飞行参数包括预设的飞行高度。
在本申请实施例中,移动终端可以是第一飞行器的用户控制器,用户可以通过移动终端发送控制指令给第一飞行器,移动终端中的通信模块和飞行控制装置中的通信模块可以是采用无线网络连接或者配对的数传模块。移动 终端和飞行控制装置可以采用微型航空器连接(英文全称:Micro Air Vehicle Link,英文简称:MavLink)协议,MavLink协议是一种用于小型无人载具的通信协议,移动终端和飞行控制装置之间可以实现通信交互。
在第一飞行器初始化启动之后,移动终端可以向第一飞行器发送第一飞行控制指令和飞行参数,用户可以通过移动终端指示第一飞行器,例如用户可以控制第一飞行器进入人工智能(英文全称:Artificial Intelligence,英文简称:AI)自动飞行模式,用户还可以设置第一飞行器的飞行高度。飞行控制装置可以接收移动终端发送的第一飞行控制指令和飞行参数。其中,飞行控制指令由用户通过移动终端发送给第一飞行器,飞行控制指令中携带有用户需要控制第一飞行器的飞行模式,在实际应用中,第一飞行器可以有多种飞行模式,例如飞行模式可以是人工控制飞行模式,也可以是人工智能自动飞行模式。本申请实施例中第一飞行器除了可以按照用户实时操控进行飞行外,还可以根据配置的人工智能自动飞行模式进行自动寻路飞行,而不需要用户的实时操控就可以完成自动寻路飞行。飞行参数中包括用户通过移动终端配置的飞行高度,该飞行高度是第一飞行器在起飞阶段需要起飞到的高度,具体可以根据应用场景进行默认配置或者预先配置。
102、响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度。
在该步骤,可以根据第一飞行控制指令控制第一飞行器启动人工智能自动飞行模式,并根据飞行参数控制第一飞行器飞行至预设的飞行高度,然后进行悬停状态。
在本申请实施例中,获取到第一飞行控制指令和飞行参数之后,飞行控制装置可以根据该第一飞行控制指令和飞行参数进行起飞,第一飞行器启动人工智能自动飞行模式,并飞行至预设的飞行高度。第一飞行器飞行至预设的飞行高度后可以进入悬停状态。
从而第一飞行器进入人工智能自动飞行模式后,第一飞行器就不需要再接收移动终端发送的飞行控制指令就可以自动飞行,第一飞行器的自动飞行过程实现详见后续步骤103的说明。
在本申请的一些实施例中,本申请实施例提供的飞行器的飞行控制方法 除了执行前述步骤之外,该飞行器的飞行控制方法还包括:
A1、获取移动终端发送的第二飞行控制指令,第二飞行控制指令用于控制第一飞行器取消人工智能自动飞行模式;
A2、根据第二飞行控制指令控制第一飞行器退出人工智能自动飞行模式,控制第一飞行器进入悬停状态。
其中,第一飞行器在飞行的过程中,对用户输入保持优先响应,用户可以打断第一飞行器的自动飞行,手动控制第一飞行器的飞行,这样可以优先保障第一飞行器的安全,避免第一飞行器碰撞等异常情况发生,例如当用户仍需要控制第一飞行器时,用户可以通过移动终端发送第二飞行控制指令,然后根据第二飞行控制指令控制第一飞行器退出人工智能自动飞行模式,控制第一飞行器进入悬停状态。
在本申请的一些实施例中,飞行器的飞行控制方法除了执行前述步骤之外,该飞行器的飞行控制方法还包括:
B1、获取第一飞行器的电池电量,判断第一飞行器的电池电量是否小于预设的阈值;
B2、若电池电量小于阈值,控制第一飞行器降落;
B3、若电池电量大于或等于阈值,控制第一飞行器返航到起飞点。
在本申请的一些实施例中,在第一飞行器按照人工智能自动飞行模式飞行期间,还可以实时的监测第一飞行器的参数,例如可以检测第一飞行器的电池电量,以判断第一飞行器的电池电量能否继续维持第一飞行器的飞行状态,判断第一飞行器的电池电量是否小于预设的阈值,若电池电量小于阈值,控制第一飞行器降落,若电池电量大于或等于阈值,控制第一飞行器返航到起飞点。
103、判断在第一飞行器的周边范围内是否存在目标飞行器,并根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定第一飞行器的飞行姿态。
在本申请实施例中,第一飞行器启动人工智能自动飞行模式飞行至预设的飞行高度,接下来可以对第一飞行器的周边范围进行检测,从而判断出是否有其它飞行器(即目标飞行器)存在,若第一飞行器的周边范围内存在其 它飞行器,则可以控制所述飞行器从所述预设的飞行高度开始按照所确定的飞行姿态进行飞行。这里所述的飞行姿态例如可以包括飞行速度、飞行高度、飞行方向、旋转轴和/或旋转速度等等。
此处的目标飞行器可以特指某一些类型的飞行器,也可以不特指某些飞行器,只需要是除该第一飞行器以外的其它飞行器即可。例如可以通过对第一飞行器的周边环境图像的采集与分析来判断,或者也可以通过第一飞行器中配置的红外成像模块来检测目标飞行器。自然界的一切物体都可以辐射红外线,利用红外成像模块(例如探测仪)测量目标本身与背景间的红外线差可以得到不同的热红外线形成的红外图像,通过红外图像判断出在第一飞行器的周边范围内是否存在目标飞行器。在判断出第一飞行器的周边范围是否存在目标飞行器后,可以根据对目标飞行器的判断来确定第一飞行器的飞行姿态,其中,第一飞行器的飞行姿态可以指的是飞行器的朝向,高度和位置,在使用第一飞行器跟踪目标飞行器的实现过程中,主要控制第一飞行器随目标飞行器进行的位置移动。例如,确定飞行姿态可以只是控制第一飞行器往前飞行,也可以指控制第一飞行器实现翻滚等飞行动作。
在本申请的一些实施例中,步骤103中的判断在第一飞行器的周边范围内是否存在目标飞行器,可以包括:
C1、采集第一飞行器的周边环境图像(此时第一飞行器可以处于悬停状态);
C2、根据周边环境图像判断在第一飞行器的周边范围内是否存在目标飞行器。
第一飞行器通过步骤102中的描述完成起飞之后,第一飞行器可以处于悬停状态,此时可以启用第一飞行器中的摄像头来采集该第一飞行器的周边环境图像,周边环境图像是指第一飞行器起飞完成之后第一飞行器处于悬停状态时在该第一飞行器的周围所采集到的图像信息。
在本申请的一些实施例中,步骤C1采集第一飞行器的周边环境图像,具体可以包括:
C11、按照第一飞行器的摄像头的当前视角方向采集第一飞行器的前方环境图像,然后调整第一飞行器的摄像头视角方向,从而采集到第一飞行器的 后方环境图像、左方环境图像和右方环境图像。采集环境图像时第一飞行器可以处于悬停状态。
在本申请的一些实施例中,第一飞行器中还可以设置视觉系统,通过视觉系统来采集第一飞行器的周边环境图像,例如该视觉系统中配置有至少一个的摄像头,则按照摄像头的当前视角方向采集第一飞行器处于悬停状态时的前方环境图像,然后调整第一飞行器的摄像头视角方向,从而采集到第一飞行器处于悬停状态时的后方环境图像、左方环境图像和右方环境图像。不限定的是,第一飞行器还可以设置多个摄像头来同时采集周边环境图像,此处不做限定。
通过步骤C1采集到的第一飞行器的周边环境图像之后,接下来执行步骤C2,对该周边环境图像进行图像检测,以判断第一飞行器的周边范围内是否存在目标飞行器,例如可以预先存储目标飞行器的图像特征,然后以目标飞行器的图像特征来对周边环境图像进行图像分类检测,从而可以判断出在第一飞行器的周边范围内是否存在目标飞行器。另外,还可以采用模糊判断方式,通常第一飞行器起飞之后会处于半空中,在第一飞行器的周边是否存在有飞行物可以通过周边环境图像的检测来确定,本申请实施例采用的飞行器检测算法可以是基于Adaboost学习算法的方法,例如Haar-like矩形特征的特征值的快速计算方法等等。不限的是,在本申请的其他实施例中,本申请实施例采用的飞行器检测算法还可以是神经网络的方法,或者基于几何特征的方法等等。根据对目标飞行器的判断来确定第一飞行器的飞行姿态,其中,第一飞行器的飞行姿态可以指的是飞行器的朝向,高度和位置,在使用第一飞行器跟踪目标飞行器的实现过程中,主要控制第一飞行器随目标飞行器进行的位置移动。例如,确定飞行姿态可以只是控制第一飞行器往前飞行,也可以指控制第一飞行器实现翻滚等飞行动作。
在本申请的一些实施例中,步骤103中的根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定第一飞行器的飞行姿态,包括:
D1、根据所述判断结果如果确定在第一飞行器的后方环境中发现目标飞行器,获取目标飞行器的飞行方向;
D2、若目标飞行器从第一飞行器的左方向飞向第一飞行器,则控制第一飞行器向右方向飞行,并改变第一飞行器的飞行高度;
D3、若目标飞行器从第一飞行器的右方向飞向第一飞行器,则控制第一飞行器向左方向飞行,并改变第一飞行器的飞行高度;
D4、若目标飞行器向第一飞行器的前方向飞向第一飞行器,则控制第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,并改变第一飞行器的飞行高度。
其中,步骤D1至步骤D4中描述了第一飞行器和目标飞行器共同飞行的一种具体实现场景,首先根据判断结果确定在第一飞行器的后方环境中发现目标飞行器,此时目标飞行器处于第一飞行器的当前飞行位置的后方,接下来获取目标飞行器的飞行方向,例如可以通过对目标飞行器的拍摄图像进行实时检测,从而判断出目标飞行器的飞行方向,对于目标飞行器的不同飞行方向,第一飞行器可以分别按照步骤D2至步骤D4中所述的飞行控制方法进行飞行。需要说明的是,上述步骤D2至步骤D4只是在第一飞行器的后方环境中发现目标飞行器时确定第一飞行器的飞行姿态的一种实现方式,若第一飞行器的前方环境、左方环境、右方环境中发现目标飞行器时也可以基于此处实施例描述的方式来确定第一飞行器的飞行姿态,从而实现第一飞行器和目标飞行器的共同飞行。
在本申请的另一些实施例中,步骤103中的根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定第一飞行器的飞行姿态,包括:如果在所述第一飞行器的周边范围内存在目标飞行器,则获取所述目标飞行器的飞行方向,并确定所述第一飞行器的飞行方向为与所述目标飞行器的飞行方向相同。例如若目标飞行器向右飞行,则控制第一飞行器也向右飞行,使二者的飞行路线一致。
在本申请的另一些实施例中,步骤103中的根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定第一飞行器的飞行姿态,包括:根据判断结果确定在第一飞行器的周边环境中没有发现目标飞行器,确定所述飞行器的飞行姿态为预设的飞行姿态。例如,可以预先确定如果在第一飞行器的周边环境中没有发现目标飞行器情况下,第一飞行器的飞 行姿态,并将相应的数据预先存储在飞行器中。
本申请实施例中,飞行器按照所确定的飞行姿态飞行之后,飞行控制装置可以每隔一段时间调整一次所述第一飞行器的飞行姿态。例如,飞行控制装置可以周期性的调整第一飞行器的飞行姿态,调整周期可以设置为比如5次/秒,10次/秒等等。飞行控制装置每次根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的当前判断结果调整第一飞行器的飞行姿态,这例如可以包括:
E1、根据当前判断结果确定在第一飞行器的后方环境中没有发现目标飞行器;
E2、获取在当前判断结果之前的历史判断结果(例如上次判断结果)中第一飞行器的后方环境中是否发现目标飞行器;
E3、若根据历史判断结果确定在第一飞行器的后方环境中发现目标飞行器,则根据历史判断结果对第一飞行器的飞行姿态调整方式调整第一飞行器的飞行姿态;
E4、若根据历史判断结果确定在第一飞行器的后方环境中没有发现目标飞行器,则控制第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行。
其中,在前述步骤D1至步骤D4的实现方式中,对第一飞行器的后方环境中发现目标飞行器时的解决方案,在此处实施例中描述了第一飞行器的后方环境中没有发现目标飞行器时对第一飞行器的调整方案。本申请实施例中,飞行控制装置调整第一飞行器的飞行姿态是周期性的控制行为,在当前调整过程之前还存在历史调整过程,调整周期可以设置,比如5次/秒,10次/秒等等,则在当前判断结果中没有发现目标飞行器时还可以结合历史判断结果来确定在当前调整过程中该如何调整第一飞行器的飞行姿态。具体的,可以获取在当前判断结果之前的历史判断结果中第一飞行器的后方环境中是否发现目标飞行器,若根据历史判断结果确定在第一飞行器的后方环境中发现目标飞行器,则根据历史判断结果对第一飞行器的飞行姿态调整方式调整第一飞行器的飞行姿态,即跟随上一次的飞行姿态调整方式来继续调整第一飞行器的飞行姿态,例如上一次的飞行姿态调整方式可以如前述步骤D1至步骤D4 所示的实施例。若根据历史判断结果确定在第一飞行器的后方环境中没有发现目标飞行器,则控制第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,因此当本次判断结果以及上次判断结果都没有发现目标飞行器时,可以采用随意调整第一飞行器的飞行姿态的方式,控制第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,此处不能向后方向飞行,以免增加和目标飞行器碰撞的风险。此外,本领域的技术人员可以理解,虽然上文对第一飞行器的后方环境中是否发现目标飞行器进行了描述,该原理同样适用于其它方向。
在本申请的一些实施例中,飞行参数还包括:预设的飞行边界,飞行边界包括如下信息中的至少一种:最大飞行距离、最高飞行高度和最低飞行高度。在这种实现场景下,第一飞行器按照所确定或调整的飞行姿态飞行之后,本申请实施例提供的飞行器的飞行控制方法还包括:
F1、判断按照所述飞行姿态飞行的第一飞行器是否到达飞行边界;
F2、若第一飞行器到达飞行边界,改变第一飞行器的飞行姿态使第一飞行器返回飞行边界内。
其中,用户通过移动终端向第一飞行器发送了飞行边界的各种参数时,那么在第一飞行器的飞行过程中还需要对第一飞行器的飞行位置进行检测,若第一飞行器到达飞行边界,则需要改变第一飞行器的飞行姿态使第一飞行器返回飞行边界内,从而实现对第一飞行器按照飞行边界进行实时自动调整,而不需要用户进行手工操控。
进一步的,在本申请的一些实施例中,步骤F2改变第一飞行器的飞行姿态使第一飞行器返回飞行边界内,包括:
F21、控制第一飞行器向上方向飞行并向后方向飞行,或者向下方向飞行并向后方向飞行,或者向上方向飞行并向右方向飞行,或者向下方向飞行并向右方向飞行,或者向上方向飞行并向左方向飞行,或者向下方向飞行并向左方向飞行;
F22、判断第一飞行器向上方向飞行是否到达最高飞行高度,若是,控制第一飞行器向下飞行;
F23、判断第一飞行器向下方向飞行是否到达最低飞行高度,若是,控制 第一飞行器向上飞行。
其中,在改变第一飞行器的飞行姿态从而控制第一飞行器返回飞行边界内的实现方案中,可以有多种实现方式,只需要第一飞行器不越过用户提前设置的飞行边界即可。当第一飞行器的飞行距离达到最大飞行距离时,可以执行步骤F21,并且在步骤F21中改变第一飞行器的飞行高度之后还需要判断出是否超过最高、最低的飞行高度,从而再次改变第一飞行器的飞行高度,以避免高度越界,实现对第一飞行器按照飞行边界进行实时自动调整,而不需要用户进行手工操控。
通过以上实施例对本申请实施例的描述可知,第一飞行器可以根据移动终端发送的第一飞行控制指令和飞行参数启动人工智能自动飞行模式,并飞行至预设的飞行高度后进行悬停状态,因此第一飞行器可以不需要用户的实时操控就可以自动起飞,本申请实施例中还可以判断在第一飞行器的周边范围内是否存在目标飞行器,并根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定或调整第一飞行器的飞行姿态。从而第一飞行器的飞行过程与目标飞行器紧密相关,从而可以实现第一飞行器和目标飞行器的共同飞行,实现至少两个飞行器之间的共同飞行。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行具体说明。接下来以前述的飞行器具体为无人机为例进行说明,例如前述的第一飞行器为自动寻路飞行的无人机,目标飞行器为由用户进操控的无人机。本申请实施例能较大程度上提升无人机的用户体验,从而丰富无人机的应用场景。无人机1V1情况下的AI寻路需要两台无人机一起进行,一台无人机由用户操控,一台无人机根据本申请实施例描述的飞行控制方法进行自己寻路飞行,无需用户操控。
请参阅图2-a所示,为本申请实施例提供的飞行器的一种飞行控制实现方案示意图。无人机1V1情况下的AI寻路包括如下几部分:用户手机设定进行AI自动飞行模式;手机APP将飞行控制指令发送到飞行控制装置;飞行控制装置进入AI自动飞行模式;无人机根据AI算法自动飞行;用户手机取消AI自动飞行模式;手机通知飞行控制装置退出AI自动飞行模式;无人机自动悬停后降落。
1.用户手机设定进入AI自动飞行模式,是指用户在使用手机打开AI自动飞行模式,并设置好无人机的可飞范围:最高、最低飞行高度,和可以飞行的最大距离参数,完成初始化工作。
2.完成设置后,手机端APP通过MavLink协议将控制指令和相关参数发送到飞行控制装置。
3.无人机的飞行控制装置收到控制指令和参数数据后,进入到AI自动寻路飞行模式,并根据无人机视觉系统提供的数据,执行不同的AI算法。
3.1无人机进入AI自动飞行模式后,几秒后起飞进入预定高度(时间及高度可以设置),并悬停在设置高度上。
3.2无人机的飞行控制装置根据视觉系统判断后面是否发现有无人机目标,如图2-b所示,为本申请实施例提供的飞行器的自动寻路实现方案示意图。如果发现无人机,则执行AI算法1;如果没有发现无人机,则执行AI算法2;由算法计算出飞行动作。AI算法1如图2-c所示,AI算法2如图2-d所示。
3.2.1AI算法1:先判断后方无人机的飞行方向,如果后方无人机是向左/向右飞来,则选择向右/左边方向飞行(相反方向飞行),并随机改变一次高度飞行。如果后方无人机向前飞来,则选择向前或随机左右飞行(不选择向后飞行,有可能会撞上后方无人机),并有概率的随机改变一次高度。
然后进行安全边界检查,如果没有达到可以飞行的边界,则算法完成。如果达到可以飞行的边界,随机向下或向上飞行,并向飞行边界的相反方向飞行一段距离(即从边界位置折返回来)。如果在向下或向上飞行时,达到最低/最高飞行高度,则先向上/向下飞行一段距离,再向飞行边界相反方向飞行一段距离。
3.2.2AI算法2:先判断上一次视觉系统是否发现无人机,如果上一次计算没有发现无人机,则从前,左,右三个方向中随机选择一个方向进行飞行(不选择后方,有可能会撞上后方无人机)。如果上一次计算时发现后方无人机,本次计算没有发现后方无人机,则按上一次的方向飞行,并随机改变一次高度。
然后进行安全边界检查,如果没有达到可以飞行的边界,则算法完成。如果达到可以飞行的边界,随机向下或向上飞行,并向飞行边界的相反方向 飞行一段距离(即从边界位置折返回来),如果在向下或向上飞行时,达到最低/最高飞行高度,则先向上/向下飞行一段距离,再向飞行边界相反方向飞行一段距离。
3.3在一定范围内随机一个时间值(如3~5秒),由飞行控制装置执行此飞行动作。
3.4完成此动作后,如果收到退出AI自动飞行模式指令,则退出AI自动飞行模式;否则继续进行算法计算下一飞行动作。
4.用户手机设定退出AI自动飞行模式,机端APP通过MavLink协议将控制指令发送到无人机飞行控制装置,飞行控制装置收到控制指令后,退出AI自动飞行模式。
5.无人机根据预先设置进入悬停状态,等待一定时间后,如果没有用户控制信号,则自己降落或返航到起飞点。
无人机在飞行的过程中,对用户输入保持优先响应,用户可以打断无人机的自动飞行,自行控制无人机的飞行,这样可以优先保障无人机的安全,避免无人机碰撞等异常情况发生。
本申请实施例通过无人机AI寻路算法,可以自动计算飞行动作,并控制无人机进行自动飞行;解决了无人机飞行一定需要用户操控的问题,创意性的提出两个无人机一起飞行,一个由用户控制,一个用AI寻路算法控制的解决方案,较大程度上提升无人机在可玩性方面的体验,从而丰富无人机的应用场景。采用无人机AI寻路算法,飞行控制装置将根据相关的参数和视觉数据自行计算下一个需要飞行的动作,并执行此飞行动作。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供对应实施上述方案的相关装置。
请参阅图3-a所示,本申请实施例提供的一种飞行控制装置300,可以包 括:获取模块301、飞行模式控制模块302、目标跟踪模块303,其中,
获取模块301,用于获取移动终端发送的第一飞行控制指令和飞行参数,所述第一飞行控制指令用于控制第一飞行器进入人工智能自动飞行模式,所述飞行参数包括预设的飞行高度;
飞行模式控制模块302,用于响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度;
目标跟踪模块303,用于判断在所述第一飞行器的周边范围内是否存在目标飞行器,并根据对所述第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定所述第一飞行器的飞行姿态。
在本申请的一些实施例中,飞行模式控制模块302根据所述第一飞行控制指令控制所述第一飞行器启动人工智能自动飞行模式,并根据所述飞行参数控制所述第一飞行器飞行至所述预设的飞行高度后进行悬停状态。
在本申请的一些实施例中,请参阅图3-b所示,目标跟踪模块303,包括:
图像采集模块3031,用于采集所述第一飞行器的周边环境图像;
目标判断模块3032,用于根据所述周边环境图像判断在所述第一飞行器的周边范围内是否存在目标飞行器。
在本申请的一些实施例中,所述图像采集模块3031,具体用于按照所述第一飞行器的摄像头的当前视角方向采集所述第一飞行器的前方环境图像,然后调整所述第一飞行器的摄像头视角方向,从而采集到所述第一飞行器的后方环境图像、左方环境图像和右方环境图像。
在本申请的一些实施例中,第一飞行器处于悬停状态时图像采集模块3031采集所述第一飞行器的周边环境图像。
在本申请的一些实施例中,请参阅图3-c所示,所述目标跟踪模块303,包括:
第一目标飞行器监测模块3033,用于如果根据上述判断结果确定在所述第一飞行器的后方环境中发现所述目标飞行器,则获取所述目标飞行器的飞行方向;
第一飞行控制模块3034,用于若所述目标飞行器从所述第一飞行器的左方向飞向所述第一飞行器,则控制所述第一飞行器向右方向飞行,并改变所 述第一飞行器的飞行高度;若所述目标飞行器从所述第一飞行器的右方向飞向所述第一飞行器,则控制所述第一飞行器向左方向飞行,并改变所述第一飞行器的飞行高度;若所述目标飞行器向所述第一飞行器的前方向飞向所述第一飞行器,则控制所述第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,并改变所述第一飞行器的飞行高度。
在本申请的一些实施例中,请参阅图3-d所示,所述目标跟踪模块303,包括:
第二目标飞行器监测模块3035,用于根据当前判断结果确定在所述第一飞行器的周边范围内有没有发现所述目标飞行器;
历史判断结果获取模块3036,用于若第二目标飞行器监测模块3035根据当前判断结果确定在所述第一飞行器的周边范围内没有发现所述目标飞行器,则获取在当前判断结果之前的上次判断结果中所述第一飞行器的周边范围内是否发现所述目标飞行器;
第二飞行控制模块3037,用于若根据所述上次判断结果确定在所述第一飞行器的周边范围内发现所述目标飞行器,则根据所述上次判断结果对所述第一飞行器的飞行姿态调整方式调整所述第一飞行器的飞行姿态;
第三飞行控制模块3038,用于在根据所述上次判断结果确定在所述第一飞行器的周边范围内没有发现所述目标飞行器时,控制所述第一飞行器的飞行方向。例如,若在所述第一飞行器的后方环境中没有发现所述目标飞行器,则控制所述第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行。
在本申请的一些实施例中,所述飞行参数还包括:预设的飞行边界,所述飞行边界包括如下信息中的至少一种:最大飞行距离、最高飞行高度和最低飞行高度。请参阅图3-e所示,所述飞行控制装置300还包括:飞行边界控制模块304,用于所述目标跟踪模块303根据对所述第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定所述第一飞行器的飞行姿态之后,判断所述第一飞行器是否到达所述飞行边界;若所述第一飞行器到达所述飞行边界,改变所述第一飞行器的飞行姿态。
在本申请的一些实施例中,所述飞行边界控制模块304,具体用于控制所述第一飞行器向上方向飞行并向后方向飞行,或者向下方向飞行并向后方向 飞行,或者向上方向飞行并向右方向飞行,或者向下方向飞行并向右方向飞行,或者向上方向飞行并向左方向飞行,或者向下方向飞行并向左方向飞行;判断所述第一飞行器向上方向飞行是否到达所述最高飞行高度,若是,控制所述第一飞行器向下飞行;判断所述第一飞行器向下方向飞行是否到达所述最低飞行高度,若是,控制所述第一飞行器向上飞行。
在本申请的一些实施例中,所述获取模块301,还用于获取所述移动终端发送的第二飞行控制指令,所述第二飞行控制指令用于控制所述第一飞行器取消人工智能自动飞行模式;
所述飞行模式控制模块302,还用于根据所述第二飞行控制指令控制所述第一飞行器退出所述人工智能自动飞行模式,控制所述第一飞行器进入悬停状态。
在本申请的一些实施例中,请参阅图3-f所示,所述飞行控制装置300还包括:
能量检测模块305,用于获取所述第一飞行器的电池电量,判断所述第一飞行器的电池电量是否小于预置的阈值;
第四飞行控制模块306,用于若所述电池电量小于阈值,控制所述第一飞行器降落;若所述电池电量大于或等于阈值,控制所述第一飞行器返航到起飞点。
通过以上对本申请实施例的描述可知,第一飞行器可以根据移动终端发送的第一飞行控制指令和飞行参数启动人工智能自动飞行模式,并飞行至预设的飞行高度后进行悬停状态,因此第一飞行器可以不需要用户的实时操控就可以自动起飞,本申请实施例中还可以判断在第一飞行器的周边范围内是否存在目标飞行器,并根据对第一飞行器的周边范围是否存在目标飞行器进行判断后得到的判断结果确定或调整第一飞行器的飞行姿态。从而第一飞行器的飞行过程与目标飞行器紧密相关,从而可以实现第一飞行器和目标飞行器的共同飞行,实现至少两个飞行器之间的共同飞行。
请参阅图4,本申请实施例提供一种飞行控制装置400,能够实现图3-a至图3-e所示实施例中飞行控制装置的功能。飞行控制装置400包括:
相互连接的输入装置401、输出装置402、至少一个处理器403及至少一 个存储器404;其中,存储器404可以是短暂存储或持久存储。存储在存储器404的程序可以包括一个或一个以上模块,每个模块可以包括对飞行控制装置中的一系列指令操作。更进一步地,中央处理器403可以设置为与存储器404通信,在飞行控制装置400上执行存储器404中的一系列指令操作。
飞行控制装置400还可以包括一个或一个以上电源,一个或一个以上有线或无线网络接口,一个或一个以上输入输出接口,和/或,一个或一个以上操作系统,上述实施例中由飞行控制装置所执行的方法步骤可以基于该图4所示的飞行控制装置结构。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
综上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制; 尽管参照上述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种飞行器的飞行控制方法,包括:
    获取移动终端发送的第一飞行控制指令和飞行参数,所述飞行参数包括预设的飞行高度;
    响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度;
    判断在所述第一飞行器的周边范围内是否存在目标飞行器;
    根据所述判断结果确定所述第一飞行器的飞行姿态。
  2. 根据权利要求1所述的方法,其中,所述判断在所述第一飞行器的周边范围内是否存在目标飞行器,包括:
    采集所述第一飞行器的周边环境图像;
    根据所述周边环境图像判断在所述第一飞行器的周边范围内是否存在目标飞行器。
  3. 根据权利要求2所述的方法,其中,所述采集所述第一飞行器的周边环境图像,包括:
    按照所述第一飞行器的摄像头的当前视角方向采集所述第一飞行器的前方环境图像,然后调整所述第一飞行器的摄像头视角方向,从而采集到所述第一飞行器的后方环境图像、左方环境图像和右方环境图像。
  4. 根据权利要求2所述的方法,其中,所述第一飞行器飞行至所述预设的飞行高度后进入悬停状态,
    其中,采集所述第一飞行器的周边环境图像包括:
    采集所述第一飞行器处于所述悬停状态时的周边环境图像。
  5. 根据权利要求1所述的方法,其中,所述根据所述判断结果确定所述第一飞行器的飞行姿态,包括:
    如果在所述第一飞行器的周边范围内存在目标飞行器,则获取所述目标 飞行器的飞行方向;
    确定所述第一飞行器的飞行方向为与所述目标飞行器的飞行方向相同。
  6. 根据权利要求1所述的方法,其中,所述根据所述判断结果确定所述第一飞行器的飞行姿态,包括:
    如果在所述第一飞行器的后方环境中发现所述目标飞行器,则获取所述目标飞行器的飞行方向;
    若所述目标飞行器从所述第一飞行器的左方向飞向所述第一飞行器,则控制所述第一飞行器向右方向飞行,并改变所述第一飞行器的飞行高度;
    若所述目标飞行器从所述第一飞行器的右方向飞向所述第一飞行器,则控制所述第一飞行器向左方向飞行,并改变所述第一飞行器的飞行高度;
    若所述目标飞行器向所述第一飞行器的前方向飞向所述第一飞行器,则控制所述第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,并改变所述第一飞行器的飞行高度。
  7. 根据权利要求1所述的方法,其中,所述根据所述判断结果确定所述第一飞行器的飞行姿态,包括:
    如果在所述第一飞行器的周边范围中不存在目标飞行器,确定所述第一飞行器的飞行姿态为预设的飞行姿态。
  8. 根据权利要求1所述的方法,还包括通过下述操作每隔一段时间调整一次所述第一飞行器的飞行姿态:
    若根据当前判断结果确定在所述第一飞行器的周边范围内没有发现所述目标飞行器,
    则获取在当前判断结果之前的上次判断结果中所述第一飞行器的周边范围内是否发现所述目标飞行器;
    若根据所述上次判断结果确定在所述第一飞行器的周边范围内发现所述目标飞行器,则根据所述上次判断结果对所述第一飞行器的飞行姿态调整方式调整所述第一飞行器的飞行姿态。
  9. 根据权利要求1所述的方法,其中,所述飞行参数还包括:预设的飞行边界,所述飞行边界包括最大飞行距离、最高飞行高度和最低飞行高度其中的至少一个;
    所述根据判断结果确定所述第一飞行器的飞行姿态之后,所述方法还包括:
    判断所述第一飞行器是否到达所述飞行边界;
    若所述第一飞行器到达所述飞行边界,改变所述第一飞行器的飞行姿态。
  10. 根据权利要求9所述的方法,其中,所述改变所述第一飞行器的飞行姿态包括:
    控制所述第一飞行器向上方向飞行并向后方向飞行,或者向下方向飞行并向后方向飞行,或者向上方向飞行并向右方向飞行,或者向下方向飞行并向右方向飞行,或者向上方向飞行并向左方向飞行,或者向下方向飞行并向左方向飞行;
    判断所述第一飞行器向上方向飞行是否到达所述最高飞行高度,若是,控制所述第一飞行器向下飞行;
    判断所述第一飞行器向下方向飞行是否到达所述最低飞行高度,若是,控制所述第一飞行器向上飞行。
  11. 根据权利要求1所述的方法,还包括:
    获取所述移动终端发送的第二飞行控制指令;
    根据所述第二飞行控制指令控制所述第一飞行器进入悬停状态。
  12. 根据权利要求1所述的方法,还包括控制所述第一飞行器从所述预设的飞行高度开始按照所述飞行姿态进行飞行。
  13. 根据权利要求1所述的方法,其中所述飞行姿态包括飞行速度、飞行高度、飞行方向中的至少一个。
  14. 根据权利要求1所述的方法,还包括根据所述第一飞行控制指令控制所述第一飞行器启动人工智能自动飞行模式。
  15. 一种飞行控制装置,包括:
    获取模块,用于获取移动终端发送的第一飞行控制指令和飞行参数,所述飞行参数包括预设的飞行高度;
    飞行模式控制模块,用于响应所述第一飞行控制指令控制所述第一飞行器飞行至所述预设的飞行高度;
    目标跟踪模块,用于判断在所述第一飞行器的周边范围内是否存在目标飞行器,并根据所述判断结果确定所述第一飞行器的飞行姿态。
  16. 根据权利要求15所述的飞行控制装置,其中,所述目标跟踪模块,包括:
    图像采集模块,用于采集所述第一飞行器的周边环境图像;
    目标判断模块,用于根据所述周边环境图像判断在所述第一飞行器的周边范围内是否存在目标飞行器。
  17. 根据权利要求16所述的飞行控制装置,其中,所述图像采集模块,还用于按照所述第一飞行器的摄像头的当前视角方向采集所述第一飞行器的前方环境图像,然后调整所述第一飞行器的摄像头视角方向,从而采集到所述第一飞行器的后方环境图像、左方环境图像和右方环境图像。
  18. 根据权利要求15所述的飞行控制装置,其中,所述目标跟踪模块,包括:
    第一目标飞行器监测模块,用于如果在所述第一飞行器的后方环境中发现所述目标飞行器,则获取所述目标飞行器的飞行方向;
    第一飞行控制模块,用于若所述目标飞行器从所述第一飞行器的左方向飞向所述第一飞行器,则控制所述第一飞行器向右方向飞行,并改变所述第一飞行器的飞行高度;若所述目标飞行器从所述第一飞行器的右方向飞向所 述第一飞行器,则控制所述第一飞行器向左方向飞行,并改变所述第一飞行器的飞行高度;若所述目标飞行器向所述第一飞行器的前方向飞向所述第一飞行器,则控制所述第一飞行器向前方向飞行,或向右方向飞行,或向左方向飞行,并改变所述第一飞行器的飞行高度。
  19. 根据权利要求15所述的飞行控制装置,其中,所述目标跟踪模块,包括:
    历史判断结果获取模块,用于若根据当前判断结果确定在所述第一飞行器的周边范围内没有发现所述目标飞行器,则获取在当前判断结果之前的上次判断结果中所述第一飞行器的周边范围内是否发现所述目标飞行器;
    第二飞行控制模块,用于若根据所述上次判断结果确定在所述第一飞行器的周边范围内发现所述目标飞行器,则根据所述上次判断结果对所述第一飞行器的飞行姿态调整方式调整所述第一飞行器的飞行姿态。
  20. 根据权利要求15所述的飞行控制装置,其中,所述飞行参数还包括:预设的飞行边界,所述飞行边界包括最大飞行距离、最高飞行高度和最低飞行高度其中的至少一个;
    所述飞行控制装置还包括:飞行边界控制模块,用于所述目标跟踪模块根据所述判断结果确定所述第一飞行器的飞行姿态之后,判断所述第一飞行器是否到达所述飞行边界;若所述第一飞行器到达所述飞行边界,改变所述第一飞行器的飞行姿态。
  21. 根据权利要求20所述的飞行控制装置,其中,所述飞行边界控制模块,还用于控制所述第一飞行器向上方向飞行并向后方向飞行,或者向下方向飞行并向后方向飞行,或者向上方向飞行并向右方向飞行,或者向下方向飞行并向右方向飞行,或者向上方向飞行并向左方向飞行,或者向下方向飞行并向左方向飞行;判断所述第一飞行器向上方向飞行是否到达所述最高飞行高度,若是,控制所述第一飞行器向下飞行;判断所述第一飞行器向下方向飞行是否到达所述最低飞行高度,若是,控制所述第一飞行器向上飞行。
  22. 根据权利要求15所述的飞行控制装置,其中,
    所述获取模块,还用于获取所述移动终端发送的第二飞行控制指令;
    所述飞行模式控制模块,还用于根据所述第二飞行控制指令控制所述第一飞行器进入悬停状态。
  23. 一种飞行控制装置,包括:
    一个或多个处理器;和
    存储器,所述存储器存储有程序指令,所述指令当由所述一个或多个处理器执行时,配置所述装置执行根据权利要求1-14中任一项所述的方法。
  24. 一种非暂态计算机可读存储介质,存储有程序指令,所述指令当由计算装置的处理器执行时,配置所述装置执行根据权利要求1-14中任一项所述的方法。
PCT/CN2017/100837 2016-09-09 2017-09-07 一种飞行器的飞行控制方法和飞行控制装置 WO2018045976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/006,600 US10795379B2 (en) 2016-09-09 2018-06-12 Flight control method and flight control apparatus for aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610814711.1A CN106168807B (zh) 2016-09-09 2016-09-09 一种飞行器的飞行控制方法和飞行控制装置
CN201610814711.1 2016-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/006,600 Continuation US10795379B2 (en) 2016-09-09 2018-06-12 Flight control method and flight control apparatus for aircraft

Publications (1)

Publication Number Publication Date
WO2018045976A1 true WO2018045976A1 (zh) 2018-03-15

Family

ID=57376263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100837 WO2018045976A1 (zh) 2016-09-09 2017-09-07 一种飞行器的飞行控制方法和飞行控制装置

Country Status (3)

Country Link
US (1) US10795379B2 (zh)
CN (1) CN106168807B (zh)
WO (1) WO2018045976A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168807B (zh) * 2016-09-09 2018-01-09 腾讯科技(深圳)有限公司 一种飞行器的飞行控制方法和飞行控制装置
US10409276B2 (en) * 2016-12-21 2019-09-10 Hangzhou Zero Zero Technology Co., Ltd. System and method for controller-free user drone interaction
CN110525650B (zh) * 2016-12-22 2021-05-25 深圳市大疆创新科技有限公司 无人机及其控制方法
US11496884B2 (en) 2017-05-03 2022-11-08 Qualcomm Incorporated Exchanging a message including drone-coupled capability information between a drone-coupled user equipment and a component of a terrestrial wireless communication subscriber network
CN107544073A (zh) * 2017-08-29 2018-01-05 北醒(北京)光子科技有限公司 一种飞行器探测方法及高度控制方法
CN109739254B (zh) * 2018-11-20 2021-11-09 国网浙江省电力有限公司信息通信分公司 一种电力巡检中采用视觉图像定位的无人机及其定位方法
CN114417730B (zh) * 2022-01-27 2022-09-16 哈尔滨逐宇航天科技有限责任公司 基于集成神经网络的飞行器滑翔段飞行范围在线预示方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148729A1 (ja) * 2010-05-25 2011-12-01 三菱重工業株式会社 移動機械の移動方法
CN104298248A (zh) * 2014-10-08 2015-01-21 南京航空航天大学 旋翼无人机精确视觉定位定向方法
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN205015741U (zh) * 2015-10-15 2016-02-03 杨珊珊 一种伴飞无人机航拍系统及其控制台和无人机
CN105892472A (zh) * 2015-02-13 2016-08-24 Lg电子株式会社 移动终端及其控制方法
CN106168807A (zh) * 2016-09-09 2016-11-30 腾讯科技(深圳)有限公司 一种飞行器的飞行控制方法和飞行控制装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL112237A (en) * 1994-01-18 1998-03-10 Honeywell Inc System and method for evading threats to aircraft
FR2787587B1 (fr) * 1998-12-18 2001-10-05 Sextant Avionique Procede pour l'elaboration en temps reel de trajectoires pour un aeronef
FR2789771B1 (fr) * 1999-02-12 2001-06-08 Sextant Avionique Procede pour la generation d'une trajectoire horizontale d'evitement de zones dangereuses pour un aeronef
FR2810146A1 (fr) * 2000-06-09 2001-12-14 Thomson Csf Procede d'elaboration d'une trajectoire d'evitement dans le plan horizontal pour aeronef en vue de la resolution d'un conflit de trafic
US6665063B2 (en) * 2001-09-04 2003-12-16 Rosemount Aerospace Inc. Distributed laser obstacle awareness system
US7194353B1 (en) * 2004-12-03 2007-03-20 Gestalt, Llc Method and system for route planning of aircraft using rule-based expert system and threat assessment
US9437112B1 (en) * 2012-05-18 2016-09-06 Garmin International, Inc. Depiction of relative motion of air traffic via an air traffic display
US20160241767A1 (en) 2015-02-13 2016-08-18 Lg Electronics Inc. Mobile terminal and method for controlling the same
NO343441B1 (en) * 2015-02-20 2019-03-11 FLIR Unmanned Aerial Systems AS Depth measurement system
US9830829B1 (en) * 2015-08-17 2017-11-28 Rockwell Collins, Inc. Management system and methods for implementing aircraft intentions harmonization
CN205540284U (zh) * 2016-04-06 2016-08-31 成都普蓝特科技有限公司 一种用于无人机的联合控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148729A1 (ja) * 2010-05-25 2011-12-01 三菱重工業株式会社 移動機械の移動方法
CN104298248A (zh) * 2014-10-08 2015-01-21 南京航空航天大学 旋翼无人机精确视觉定位定向方法
CN105892472A (zh) * 2015-02-13 2016-08-24 Lg电子株式会社 移动终端及其控制方法
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN205015741U (zh) * 2015-10-15 2016-02-03 杨珊珊 一种伴飞无人机航拍系统及其控制台和无人机
CN106168807A (zh) * 2016-09-09 2016-11-30 腾讯科技(深圳)有限公司 一种飞行器的飞行控制方法和飞行控制装置

Also Published As

Publication number Publication date
CN106168807B (zh) 2018-01-09
CN106168807A (zh) 2016-11-30
US20180373271A1 (en) 2018-12-27
US10795379B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
WO2018045976A1 (zh) 一种飞行器的飞行控制方法和飞行控制装置
US20220083078A1 (en) Method for controlling aircraft, device, and aircraft
US10845805B2 (en) Velocity control for an unmanned aerial vehicle
US9102406B2 (en) Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays
KR102254491B1 (ko) 지능형 영상 분석 모듈을 탑재한 자율비행 드론
US20200019189A1 (en) Systems and methods for operating unmanned aerial vehicle
US20190220039A1 (en) Methods and system for vision-based landing
WO2020244649A1 (zh) 一种避障方法、装置和电子设备
US20170351254A1 (en) Unmanned aerial vehicle control system
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
CN106483980B (zh) 一种无人机跟随飞行的控制方法、装置及系统
WO2018187916A1 (zh) 云台随动控制方法及控制设备
JP2019507924A (ja) Uav軌道を調整するシステム及び方法
CN108163203B (zh) 一种拍摄控制方法、装置及飞行器
EP3889544B1 (en) Depth image processing method and device, and unmanned aerial vehicle
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2020135795A1 (zh) 一种图像显示方法、装置和电子设备
CN106527458B (zh) 一种飞行器的空翻动作实现方法和装置
CA3014963A1 (en) Unmanned aerial vehicles
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
CN108475064B (zh) 用于设备控制的方法、设备和计算机可读存储介质
KR20190101142A (ko) 드론 시스템 및 드론 안전비행 제어 방법
Nowshin et al. Designing and Implementation of a Multi-purpose Quadcopter
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质
KR20220081147A (ko) 드론 제어 플랫폼 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848149

Country of ref document: EP

Kind code of ref document: A1