WO2018045823A1 - 基于金属-空气电池组成的在线ups后备电源系统 - Google Patents

基于金属-空气电池组成的在线ups后备电源系统 Download PDF

Info

Publication number
WO2018045823A1
WO2018045823A1 PCT/CN2017/093091 CN2017093091W WO2018045823A1 WO 2018045823 A1 WO2018045823 A1 WO 2018045823A1 CN 2017093091 W CN2017093091 W CN 2017093091W WO 2018045823 A1 WO2018045823 A1 WO 2018045823A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
metal
air battery
inverter
management system
Prior art date
Application number
PCT/CN2017/093091
Other languages
English (en)
French (fr)
Inventor
王旭
Original Assignee
东深金属燃料动力实验室有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东深金属燃料动力实验室有限责任公司 filed Critical 东深金属燃料动力实验室有限责任公司
Publication of WO2018045823A1 publication Critical patent/WO2018045823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection

Definitions

  • the present invention relates to the field of energy technologies, and in particular, to an online UPS backup power system based on a metal-air battery.
  • UPS backup power supply system is required in a place such as an iron tower base station, a computer room, a data exchange center, a hospital operating room, a radio station, a television station, an experimental device, and a test instrument, which must ensure uninterrupted supply of electric energy.
  • UPS backup power systems are mostly powered by lead-acid batteries. Due to the limited energy and life of lead-acid batteries, it is necessary to replace lead-acid batteries frequently, resulting in a large consumption of human and material resources.
  • the present invention proposes an online UPS backup power supply system based on a metal-air battery, which not only greatly reduces the operating cost of such an uninterrupted supply of electric energy, but also saves time and effort.
  • the technical problem to be solved by the invention is to provide a UPS backup power supply system based on a metal-air battery system.
  • an online UPS backup power supply system based on a metal-air battery comprising a management system, a starting battery pack, a metal-air battery system, an isolation module, an inverter or a DC voltage regulator module and a switch power supply;
  • Corresponding signal output end and input end of the management system are respectively connected with the corresponding signal input end and signal output end of the metal-air battery system, the starting battery pack and the inverter or DC voltage regulator module, and are used for monitoring metal - air battery system, starting battery pack and voltage or current of inverter or DC voltage regulator module, and implementing hybrid control of metal-air battery system, starting battery pack and inverter or DC voltage regulator module;
  • the corresponding signal input end is further connected to the corresponding signal output end of the commercial power source for monitoring the voltage and current of the commercial power;
  • the signal input end and the signal output end of the starting battery pack are respectively connected with the corresponding signal output end and the input end of the management system, and the voltage and current signals of the starting battery pack are transmitted to the management system, and are accepted by the management system.
  • Corresponding control signal; the corresponding power output end of the starting battery pack is respectively connected with the corresponding power input end of the management system and the isolation module, and the power is transmitted to the management system and the isolation module;
  • the signal input end and the signal output end of the metal-air battery system are respectively connected with corresponding signal output ends and input ends of the management system, and the voltage and current signals of the metal-air battery system are transmitted to the management system, and accepted.
  • the relevant control signal sent by the management system; the corresponding power output end of the metal-air battery system is connected to the corresponding power input end of the isolation module, and the power is transmitted to the isolation module;
  • the power input end of the isolation module is respectively connected to the power output end of the starting battery pack and the metal-air battery system; the power output end of the isolation module is connected to the power input end of the inverter or the DC voltage regulator module, and the battery is activated.
  • the power output from the group or metal-air battery system is delivered to the inverter or DC voltage regulator module;
  • the signal input end and the signal output end of the inverter or DC voltage regulator module are respectively connected with the corresponding signal output end and the input end of the management system, and the voltage and current signals of the inverter or the DC voltage regulator module are transmitted to the management.
  • the system receives and receives relevant control signals from the management system; the power input end of the inverter or DC voltage regulator module is connected to the power output end of the isolation module, and the power input end of the inverter or DC voltage regulator module and the corresponding power input of the switching power supply Connected to the end.
  • the corresponding power input end of the switching power supply is respectively connected to the inverter or the DC voltage regulator module and the power output end of the utility power; the power output end of the switching power supply is connected to the power input end of the power device, and the power is continuously provided. Output to powered devices.
  • the online UPS backup power system based on the metal-air battery is operated as follows:
  • the management system When the management system detects that the utility power is in the normal power supply state, the management system controls the metal-air battery system not to start, and the switching power supply supplies the utility power to the power consumption equipment, and the utility power supplies the power equipment;
  • the management system When the management system detects that the utility power is in the power-off state, the management system controls the metal-air battery system to start immediately, and the management system controls the startup battery pack to supply power to the inverter or the DC voltage regulator module through the isolation module. Or the DC voltage regulator module outputs the power outputted from the battery pack to the switching power source, and the switching power source supplies power to the power device; when the management system detects that the power output of the metal-air battery system reaches a predetermined value, the management system controls the metal.
  • the air battery system supplies power to the inverter or DC voltage regulator module through the isolation module, and the inverter or DC voltage regulator module outputs the power outputted by the metal-air battery system to the switching power supply, and the switching power supply supplies power to the power supply device; At this point, the management system controls the startup battery pack to no longer supply power to the inverter or DC voltage regulator module.
  • the online UPS backup power supply system based on the metal-air battery further includes a lead-acid battery pack, and the corresponding power input end and the output end of the switching power supply are respectively connected to the power output end and the input end of the lead-acid battery pack
  • the signal output end of the lead-acid battery pack is connected to the corresponding signal input end of the management system, and transmits the voltage and current signals of the lead-acid battery pack to the management system, and receives relevant control signals from the management system; the lead-acid battery pack
  • the corresponding power output end and the input end are also respectively connected to corresponding power input ends and output ends of the switching power supply.
  • the management system When the management system detects that the utility power is in the power-off state, and the management system detects that the lead-acid battery pack is in the normal power output state, the management system controls the metal-air battery system not to start, and the lead-acid battery pack outputs the power to the switching power supply. Then, the switching power source outputs the electric energy to the electric equipment, and the lead acid battery pack supplies power to the electric equipment;
  • the management system will control the metal-air battery system to start immediately; when the management system detects that the power output of the metal-air battery system reaches a predetermined value, then the control is controlled by the metal.
  • the air battery system supplies power to the inverter or DC voltage regulator module through the isolation module.
  • the inverter or DC voltage regulator module outputs the power output from the metal-air battery system to the switching power supply, and the switching power supply supplies power to the power supply device. At this point, the lead-acid battery pack no longer outputs power to the switching power supply.
  • the isolation module ensures startup before the power output of the metal-air battery system has reached a predetermined value.
  • the battery pack supplies power to the inverter or DC voltage regulator module in one direction; when the power output of the metal-air battery system reaches a predetermined value, the isolation module controls the one-way power supply to the inverter or the DC voltage regulator module by the metal-air battery system. At this point, starting the battery pack no longer supplies power to the inverter or DC voltage regulator module.
  • the inverter or the DC voltage regulator module When the inverter or the DC voltage regulator module adopts an inverter function, the inverter or the DC voltage regulator module outputs the power outputted by the isolation module to the switching power supply in an alternating current form; when the inverter or the DC voltage regulator module adopts the DC stability When the function is pressed, the inverter or DC voltage regulator module outputs the electric energy output from the isolation module to the switching power supply in the form of direct current.
  • the metal-air battery system includes an aluminum-air battery system, a zinc-air battery system, a magnesium-air battery system, or a lithium-air battery system.
  • the boot battery pack includes a lithium ion battery pack or a lead acid battery pack.
  • the online UPS backup power supply system based on the metal-air battery disclosed in the invention can greatly reduce the running cost of the uninterrupted supply place of the electric energy, and saves time and labor.
  • FIG. 1 is a schematic structural diagram of an online UPS backup power supply system based on a metal-air battery according to a preferred embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of an on-line UPS backup power supply system based on a metal-air battery configured with a lead-acid battery pack in a preferred embodiment 2 of the present invention.
  • a preferred embodiment of the present invention is to design an online UPS backup power system based on a metal-air battery, including a management system 1, a startup battery pack 2, a metal-air battery system 3, and an isolation module 4. Inverter or DC voltage regulator module 5 and switching power supply 6. among them:
  • a management system 1 the output end and the input end of the corresponding signal of the management system and the corresponding signal input end and signal output end of the metal-air battery system 3, the boot battery pack 2, and the inverter or DC voltage regulator module 5, respectively Connected to monitor the voltage and current of the metal-air battery system 3, start the battery pack 2 and the inverter or DC voltage regulator module 5, and implement the metal-air battery system 3, start the battery pack 2 and inverter or DC Hybrid control of the voltage regulator module 5.
  • the corresponding signal input end of the management system is also connected to the corresponding signal output end of the utility power for monitoring the voltage and current of the commercial power.
  • the battery pack 2 is activated, and the signal input end and the signal output end of the starter battery pack are respectively connected to the corresponding signal output end and the input end of the management system 1, and the voltage and current signals of the start battery pack are transmitted to the management system. And accept the relevant control signals issued by the management system.
  • the corresponding power output end of the starting battery pack is further connected to the corresponding power input end of the management system 1 and the isolation module 4, respectively, and the power is transmitted to the management system and the isolation module;
  • a metal-air battery system 3 wherein the signal input end and the signal output end of the metal-air battery system 3 are respectively The corresponding signal output end of the management system 1 is connected to the input end, and the voltage and current signals of the metal-air battery system 3 are transmitted to the management system 1, and the relevant control signals sent by the management system 1 are accepted.
  • the corresponding power output end of the metal-air battery system 3 is also connected to the corresponding power input end of the isolation module 4, the power of the metal-air battery system 3 is delivered to the isolation module 4;
  • the isolating module 4 the power input end of the isolating module 4 is connected to the power output end of the starting battery pack 2 and the metal-air battery system 3, respectively.
  • the isolation module 4 ensures that the battery pack 2 is activated to supply power to the inverter or the DC voltage regulator module 5 in one direction.
  • the isolation module 4 controls the one-way power supply to the inverter or the DC voltage regulator module 5 by the metal-air battery system 3, and at this time, the battery pack 2 is no longer reversed.
  • the variable or DC voltage regulator module 5 is powered.
  • the power output end of the isolation module 4 is also connected to the power input end of the inverter or the DC voltage regulator module 5, and the power output from the battery pack 2 or the metal-air battery system 3 is sent to the inverter or the DC voltage regulator.
  • Inverter or DC voltage regulator module 5 the signal input end and the signal output end of the inverter or DC voltage regulator module 5 are respectively connected with the corresponding signal output end and the input end of the management system 1 to be inverting or direct current
  • the voltage and current signals of the voltage regulator module are transmitted to the management system 1 and receive relevant control signals from the management system 1.
  • the power input end of the inverter or DC voltage regulator module 5 is connected to the power output end of the isolation module 4, and the power output end of the inverter or DC voltage regulator module 5 is connected to the corresponding power input end of the switching power supply 6.
  • the inverter function the inverter or DC voltage regulator module 5 outputs the electric energy output from the isolation module 4 to the switching power supply 6 in the form of an alternating current.
  • the inverter or DC voltage regulator module 5 outputs the power outputted by the isolation module 4 to the switching power supply 6 in the form of direct current;
  • the switching power supply 6, the corresponding power input end of the switching power supply 6 is respectively connected to the power output end of the commercial power supply 9, the inverter or the DC voltage regulation module 5. Furthermore, the power output of the switching power supply is connected to the power input of the consumer 7 and the electrical energy is supplied to the consumer 7 without interruption.
  • the electric power device 7 is connected to the electric energy output end of the switching power supply 6 .
  • Electrical equipment includes tower base stations, computer room equipment, data exchange center equipment, hospital operating room equipment, radio equipment, television equipment, various monitoring equipment, airport equipment, railway equipment, laboratory equipment and test equipment.
  • the operation mode of the online UPS backup power system composed of the metal-air battery is as follows:
  • the management system 1 when the management system 1 detects that the commercial power supply 9 is in the normal power supply state, the management system 1 controls the metal-air battery system 3 not to be activated, and the switching power supply 6 supplies the commercial power supply 9 to the power consumption device 7, which is powered by the utility power. Powered by the electrical device 7.
  • the management system 1 When the management system 1 detects that the commercial power 9 is in the power-off state, the management system 1 controls the metal-air battery system 3 to start immediately, and the management system 1 controls the startup battery pack 2 to unidirectionally supply the inverter or the DC through the isolation module 4.
  • the voltage regulator module 5 supplies power, and the inverter or DC voltage regulator module 5 outputs the power outputted from the battery pack 2 to the switching power source 6, and is powered by the switching power supply. 6 is powered by the powered device 7.
  • the management system 1 When the management system 1 detects that the power output of the metal-air battery system 3 reaches a predetermined value, the management system 1 controls the metal-air battery system 3 to supply power to the inverter or the DC voltage regulator module 5 through the isolation module 4, and inverts Or the DC voltage regulator module 5 outputs the power output from the metal-air battery system 3 to the switching power source 6, and the switching power source 6 supplies power to the power device 7. At this time, the management system 1 controls the startup battery pack 2 to no longer output power to the inverter or DC voltage regulator module 5.
  • a preferred embodiment 2 of the present invention is an on-line UPS backup power supply system based on a metal-air battery equipped with a lead-acid battery pack, which may be a user's existing USP power supply.
  • the online UPS backup power system based on the metal-air battery includes a management system 1, a startup battery pack 2, a metal-air battery system 3, an isolation module 4, an inverter or a DC voltage regulator module 5, Switching power supply 6 and lead acid battery pack 8.
  • a management system 1 a corresponding signal output end and an input end of the management system 1 respectively corresponding to the metal-air battery system 3, the boot battery pack 2, and the corresponding signal input end and signal output of the inverter or DC voltage regulator module 5 Terminal phase connection for monitoring the voltage and current of the metal-air battery system 3, starting the battery pack 2 and the inverter or DC voltage regulator module 5, and implementing the metal-air battery system 3, starting the battery pack 2 and the inverter or Hybrid control of the DC voltage regulator module 5.
  • the corresponding signal input ends of the management system 1 are also respectively connected to the corresponding signal output ends of the mains 9 and the lead-acid battery 8 for monitoring the voltage and current of the mains 9 and the lead-acid battery 8 .
  • the battery pack 2 is activated, and the signal input end and the signal output end of the boot battery pack 2 are respectively connected with the corresponding signal output end and the input end of the management system 1 to transmit the voltage and current signals of the start battery pack 2 to the management.
  • System 1 accepts the relevant control signals issued by the management system 1.
  • the corresponding power output end of the starting battery pack 2 is also connected to the corresponding power input end of the management system 1 and the isolation module 4, respectively, and the power is supplied to the management system and the isolation module.
  • a metal-air battery system 3 wherein a signal input end and a signal output end of the metal-air battery system 3 are respectively connected to corresponding signal output ends and input ends of the management system 1, and the voltage of the metal-air battery system 3 is The current signal is transmitted to the management system 1 and receives relevant control signals from the management system 1.
  • the corresponding power output of the metal-air battery system 3 is also connected to the corresponding power input of the isolation module 4 and supplies the electrical energy to the isolation module 4.
  • the isolating module 4 the power input end of the isolating module 4 is connected to the power output end of the starting battery pack 2 and the metal-air battery system 3, respectively.
  • the isolation module 4 ensures that the battery pack is activated to supply power to the inverter or the DC voltage regulator module 5 in one direction.
  • the isolation module controls the one-way power supply to the inverter or the DC voltage regulator module 5 by the metal-air battery system 3, and at this time, the battery pack 3 is no longer activated. Or DC voltage regulator module 5 power supply.
  • the corresponding power output end of the isolation module 4 is also connected to the power input end of the inverter or the DC voltage regulator module 5, and the battery pack 2 or the metal-air battery system 3 output is activated.
  • the electrical energy is delivered to the inverter or DC voltage regulator module 5.
  • Inverter or DC voltage regulator module 5 the signal input end and the signal output end of the inverter or DC voltage regulator module 5 are respectively connected with the corresponding signal output end and the input end of the management system 1 to be inverting or direct current
  • the voltage and current signals of the voltage stabilizing module 5 are transmitted to the management system 1 and receive relevant control signals from the management system 1.
  • the power input end of the inverter or DC voltage regulator module 5 is connected to the power output end of the isolation module 4, and the power output end of the inverter or DC voltage regulator module 5 is connected to the corresponding power input end of the switching power supply 6.
  • the inverter function is adopted, the inverter or DC voltage regulator module 5 outputs the electric energy output from the isolation module 4 to the switching power supply 6 in the form of an alternating current.
  • the DC voltage stabilization function the inverter or DC voltage regulator module 5 outputs the power outputted by the isolation module 4 to the switching power supply 6 in the form of direct current.
  • the corresponding power input end of the switching power supply 6 is connected to the corresponding power output end of the main power 9, the inverter or the DC voltage regulator module 5 and the lead-acid battery pack 8, respectively.
  • the corresponding power output end of the switching power supply 6 is also connected to the corresponding power input end of the power-consuming device 7 and the lead-acid battery pack 8, respectively, to ensure uninterrupted power output to the powered device 7.
  • the commercial power supply 9 can also charge the lead acid battery 8 through the switching power supply 6.
  • the electric power device 7 is connected to the electric energy output end of the switching power supply 6 .
  • Electrical equipment includes tower base stations, computer room equipment, data exchange center equipment, hospital operating room equipment, radio equipment, television equipment, various monitoring equipment, airport equipment, railway equipment, laboratory equipment and test equipment.
  • the lead-acid battery pack 8, the signal output end of the lead-acid battery pack 8 is connected to the corresponding signal input end of the management system 1, and transmits the voltage and current signals of the lead-acid battery pack 3 to the management system 1, and receives the management system 1 The relevant control signal is issued.
  • the corresponding power output end and the input end of the lead-acid battery pack 3 are also respectively connected to the corresponding power input end and output end of the switching power supply 6.
  • the operation mode of the online UPS backup power system composed of the metal-air battery is as follows:
  • the management system 1 when the management system 1 detects that the commercial power 9 is in the power-off state, and the management system 1 detects that the lead-acid battery pack 8 is in the normal power output state, the management system 1 controls the metal-air battery system 3 not to start.
  • the lead-acid battery pack 8 outputs electric energy to the switching power supply 6, and then the switching power supply 6 outputs the electric energy to the electric-powered device 7, at which time the lead-acid battery pack 8 supplies power to the electric device.
  • the management system 1 Once the management system 1 detects that the power output of the lead-acid battery pack 8 is near insufficient, the management system 1 will control the metal-air battery system 3 to start immediately.
  • the control metal-air battery system 3 supplies power to the inverter or the DC voltage regulator module 5 through the isolation module 4, and the inverter or the DC stabilizes.
  • the pressure module 5 outputs the electric energy output from the metal-air battery system 3 to the switching power supply 6, and the switching power supply 6 supplies power to the electric equipment 7. At this time, the lead-acid battery pack 8 no longer outputs electric energy to the switching power supply 6.
  • the management system uses a controller chip, and the controller chip can adopt the following types of single-chip microcomputer:
  • the starting battery pack can be a lithium ion battery pack or a lead acid battery pack.
  • Lithium-ion batteries are available with the following products:
  • Lead-acid batteries are available with the following products:
  • the metal-air battery system may be an aluminum-air battery system or a zinc-air battery system or a magnesium-air battery system or a lithium-air battery system.
  • the aluminum-air battery system can be selected from the products of STK-24-01-8, STK-24H-02-16 and STK-48-01-8 produced by Deyang Dongshen New Energy Technology Co., Ltd.
  • the isolation module is mainly composed of a diode, and the following manufacturers and models of diodes can be selected:
  • the inverter or DC voltage regulator module can be selected from the following manufacturers and models:

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于金属-空气电池组成的在线UPS后备电源系统,包括管理系统(1)、启动电池组(2)、金属-空气电池系统(3)、隔离模块(4)、逆变或直流稳压模块(5)和开关电源(6);管理系统(1)对应信号的输出端和输入端分别与金属-空气电池系统(3)、启动电池组(2)和逆变或直流稳压模块(5)的信号输入端和信号输出端相连接;启动电池组(2)的电能输出端与管理系统(1)和隔离模块(4)的电能输入端相连;金属-空气电池系统(3)的电能输出端与隔离模块(4)的电能输入端相连;隔离模块(4)的电能输出端与逆变或直流稳压模块(5)的电能输入端相连;开关电源(6)的电能输入端与逆变或直流稳压模块(5)和市电(9)的电能输出端相连。能够大幅度降低供电运行成本,而且省时省力。

Description

基于金属-空气电池组成的在线UPS后备电源系统
技术领域本发明属于能源技术领域,特别涉及一种基于金属-空气电池组成的在线UPS后备电源系统。
背景技术在铁塔基站、机房、数据交流中心、医院手术室、电台、电视台、实验设备及测试仪器等这类必须保证电能不间断供应的场所,均需设置UPS后备电源系统。目前,UPS后备电源系统大多采用铅酸电池供电。由于铅酸电池的比能量及寿命所限,需要经常更换铅酸电池,造成人力物力的大量消耗。
为解决现有技术的不足,本发明提出了一种基于金属-空气电池组成的在线UPS后备电源系统,不仅大幅度降低了这类必须保证电能不间断供应场所的运行成本,而且省时省力。
发明内容发明所要解决的技术问题是,提供一种基于金属-空气电池系统的UPS后备电源系统。
本发明所采用的技术方案是:一种基于金属-空气电池组成的在线UPS后备电源系统,包括管理系统、启动电池组、金属-空气电池系统、隔离模块、逆变或直流稳压模块和开关电源;
所述管理系统的对应信号输出端和输入端分别与所述的金属-空气电池系统、启动电池组和逆变或直流稳压模块的对应信号输入端和信号输出端相连接,用于监控金属-空气电池系统、启动电池组和逆变或直流稳压模块的电压和电流,并实现对金属-空气电池系统、启动电池组和逆变或直流稳压模块的混合控制;所述管理系统的对应信号输入端还与所述的市电的对应信号输出端相连接,用于监控市电的电压、电流;
所述启动电池组的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将启动电池组的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;所述启动电池组的对应电能输出端分别与管理系统和隔离模块的对应电能输入端相连,将电能输送给管理系统和隔离模块;
所述金属-空气电池系统的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将金属-空气电池系统的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;金属-空气电池系统的对应电能输出端与隔离模块的对应电能输入端相连,并将电能输送给隔离模块;
所述隔离模块的电能输入端分别与启动电池组和金属-空气电池系统的电能输出端相连;所述隔离模块的电能输出端与逆变或直流稳压模块的电能输入端相连,将启动电池组或者金属-空气电池系统输出的电能输送至逆变或直流稳压模块;
所述逆变或直流稳压模块的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将逆变或直流稳压模块的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;逆变或直流稳压模块的电能输入端与隔离模块的电能输出端相连,逆变或直流稳压模块的电能输出端与开关电源的对应电能输入端相连。
所述开关电源的对应电能输入端分别与逆变或直流稳压模块和市电的电能输出端相连;所述开关电源的电能输出端与用电设备的电能输入端相连,不间断地将电能输出给用电设备。
所述的基于金属-空气电池组成的在线UPS后备电源系统,其运行方式如下:
当管理系统监测到市电处于正常供电状态时,管理系统控制金属-空气电池系统不启动,开关电源将市电输送给用电设备,由市电为用电设备供电;
当管理系统监测到市电处于断电状态的同时,管理系统控制金属-空气电池系统立即启动的同时,管理系统控制启动电池组通过隔离模块单向给逆变或直流稳压模块供电,逆变或直流稳压模块将启动电池组输出的电能输出给开关电源,并由开关电源为用电设备供电;当管理系统监测到金属-空气电池系统的电能输出达到预定值时,则管理系统控制金属-空气电池系统通过隔离模块单向给逆变或直流稳压模块供电,逆变或直流稳压模块将金属-空气电池系统输出的电能输出给开关电源,并由开关电源为用电设备供电;此时管理系统控制启动电池组不再对逆变或直流稳压模块供电。
所述的基于金属-空气电池组成的在线UPS后备电源系统,还包括铅酸电池组,所述开关电源的对应电能输入端和输出端还分别与铅酸电池组的电能输出端和输入端相连;所述铅酸电池组的信号输出端与管理系统的对应信号输入端相连,将铅酸电池组的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;铅酸电池组的对应电能输出端和输入端还分别与开关电源的对应电能输入端和输出端相连。
当管理系统监测到市电处于断电状态时,且管理系统监测到铅酸电池组处于正常电能输出状态时,管理系统控制金属-空气电池系统不启动,由铅酸电池组输出电能给开关电源,再由开关电源将电能输出给用电设备,此时由铅酸电池组为用电设备供电;
一旦管理系统监测到铅酸电池组的电能输出接近不足时,管理系统将控制金属-空气电池系统立即启动;当管理系统监测到金属-空气电池系统的电能输出达到预定值时,则控制由金属-空气电池系统通过隔离模块单向给逆变或直流稳压模块供电,逆变或直流稳压模块将金属-空气电池系统输出的电能输出给开关电源,并由开关电源为用电设备供电,此时铅酸电池组不再给开关电源输出电能。
更佳的是,所述金属-空气电池系统的电能输出尚未达到预定值之前,隔离模块保证启动 电池组单向对逆变或直流稳压模块供电;当金属-空气电池系统的电能输出达到预定值时,隔离模块则控制由金属-空气电池系统单向对逆变或直流稳压模块供电,此时启动电池组不再对逆变或直流稳压模块供电。
所述逆变或直流稳压模块采用逆变功能时,该逆变或直流稳压模块将隔离模块输出的电能以交流电形式输出给开关电源;当所述逆变或直流稳压模块采用直流稳压功能时,该逆变或直流稳压模块将隔离模块输出的电能以直流电形式输出给开关电源。
所述的金属-空气电池系统包括铝-空气电池系统、锌-空气电池系统、镁-空气电池系统或者锂-空气电池系统。
所述的启动电池组包括锂离子电池组或者铅酸电池组。
本发明公开的一种基于金属-空气电池组成的在线UPS后备电源系统,可大幅度降低需要电能不间断供应场所的运行成本,而且省时省力。
附图说明:
图1是本发明优选实施例一中所述基于金属-空气电池组成的在线UPS后备电源系统的结构示意图;
图2是本发明优选实施例二中配置有铅酸电池组的基于金属-空气电池组成的在线UPS后备电源系统中的结构示意图。
具体实施方式下面,结合各附图所示之优选实施例进一步阐述本发明。
参见图1,本发明的优选实施例一是,设计一种基于金属-空气电池组成的在线UPS后备电源系统,包括管理系统1、启动电池组2、金属-空气电池系统3、隔离模块4、逆变或直流稳压模块5和开关电源6。其中:
管理系统1,所述管理系统对应信号的输出端和输入端分别与所述的金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的对应信号输入端和信号输出端相连接,用于监控金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的电压和电流,并实现对金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的混合控制。此外,所述管理系统的对应信号输入端还与市电的对应信号输出端相连接,用于监控市电的电压和电流。
启动电池组2,所述启动电池组的信号输入端和信号输出端分别与所述管理系统1的对应信号输出端和输入端相连接,将启动电池组的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号。此外,启动电池组的对应电能输出端还分别与管理系统1和隔离模块4的对应电能输入端相连,将电能输送给管理系统和隔离模块;
金属-空气电池系统3,所述金属-空气电池系统3的信号输入端和信号输出端分别与所述 管理体统1的对应信号输出端和输入端相连接,将金属-空气电池系统3的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。此外,金属-空气电池系统3的对应电能输出端还与隔离模块4的对应电能输入端相连,将金属-空气电池系统3的电能输送给隔离模块4;
隔离模块4,所述隔离模块4的电能输入端分别与启动电池组2和金属-空气电池系统3的电能输出端相连。在金属-空气电池系统3的电能输出尚未达到预定值之前,隔离模块4保证启动电池组2单向对逆变或直流稳压模块5供电。当金属-空气电池系统3的电能输出达到预定值时,隔离模块4则控制由金属-空气电池系统3单向对逆变或直流稳压模块5供电,此时启动电池组2不再对逆变或直流稳压模块5供电。此外,所述隔离模块4的电能输出端还与逆变或直流稳压模块5的电能输入端相连,将启动电池组2或者金属-空气电池系统3输出的电能输送至逆变或直流稳压模块5;
逆变或直流稳压模块5,所述逆变或直流稳压模块5的信号输入端和信号输出端分别与所述管理体统1的对应信号输出端和输入端相连接,将逆变或直流稳压模块的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。此外,逆变或直流稳压模块5的电能输入端与隔离模块4的电能输出端相连,逆变或直流稳压模块5的电能输出端与开关电源6的对应电能输入端相连。当采用逆变功能时,逆变或直流稳压模块5将隔离模块4输出的电能以交流电形式输出给开关电源6。当采用直流稳压功能时,逆变或直流稳压模块5将隔离模块4输出的电能以直流电形式输出给开关电源6;
开关电源6,所述开关电源6的对应电能输入端分别与市电9、逆变或直流稳压模块5的电能输出端相连。此外,开关电源的电能输出端与用电设备7的电能输入端相连,不间断地将电能输送给用电设备7。
用电设备7,所述用电设备7的电能输入端与开关电源6的电能输出端相连。用电设备包括铁塔基站、机房设备、数据交流中心设备、医院手术室设备、电台设备、电视台设备、各种监测设备、机场设备、铁路设备、实验设备及测试仪器。
本例中,所述金属-空气电池组成的在线UPS后备电源系统的运行方式如下:
参见图1,当管理系统1监测到市电9处于正常供电状态时,管理系统1控制金属-空气电池系统3不启动,开关电源6将市电9输送给用电设备7,由市电为用电设备7供电。
当管理系统1监测到市电9处于断电状态的同时,管理系统1控制金属-空气电池系统3立即启动的同时,管理系统1控制启动电池组2通过隔离模块4单向给逆变或直流稳压模块5供电,逆变或直流稳压模块5将启动电池组2输出的电能输出给开关电源6,并由开关电源 6为用电设备7供电。当管理系统1监测到金属-空气电池系统3的电能输出达到预定值时,则管理系统1控制金属-空气电池系统3通过隔离模块4单向给逆变或直流稳压模块5供电,逆变或直流稳压模块5将金属-空气电池系统3输出的电能输出给开关电源6,并由开关电源6为用电设备7供电。此时管理系统1控制启动电池组2不再输出电能给逆变或直流稳压模块5。
本发明的优选实施例二:是配备铅酸电池组的基于金属-空气电池组成的在线UPS后备电源系统,所述铅酸电池组可以是使用者的现有USP电源。
参见图2,所述基于金属-空气电池组成的在线UPS后备电源系统,包括有管理系统1、启动电池组2、金属-空气电池系统3、隔离模块4、逆变或直流稳压模块5、开关电源6和铅酸电池组8。
管理系统1,所述管理系统1的对应信号输出端和输入端分别与所述的金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的对应信号输入端和信号输出端相连接,用于监控金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的电压、电流,并实现对金属-空气电池系统3、启动电池组2和逆变或直流稳压模块5的混合控制。此外,所述管理系统1的对应信号输入端还分别与所述市电9和铅酸电池组8的对应信号输出端相连接,用于监控市电9和铅酸电池组8的电压、电流。
启动电池组2,所述启动电池组2的信号输入端和信号输出端分别与所述管理体统1的对应信号输出端和输入端相连接,将启动电池组2的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。此外,启动电池组2的对应电能输出端还分别与管理系统1和隔离模块4的对应电能输入端相连,将电能输送给管理系统和隔离模块。
金属-空气电池系统3,所述金属-空气电池系统3的信号输入端和信号输出端分别与所述管理体统1的对应信号输出端和输入端相连接,将金属-空气电池系统3的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。此外,金属-空气电池系统3的对应电能输出端还与隔离模块4的对应电能输入端相连,并将电能输送给隔离模块4。
隔离模块4,所述隔离模块4的电能输入端分别与启动电池组2和金属-空气电池系统3的电能输出端相连。在金属-空气电池系统3的电能输出尚未达到预定值之前,隔离模块4保证启动电池组单向对逆变或直流稳压模块5供电。当金属-空气电池系统3的电能输出达到预定值时,隔离模块则控制由金属-空气电池系统3单向对逆变或直流稳压模块5供电,此时启动电池组3不再对逆变或直流稳压模块5供电。此外,所述隔离模块4的对应电能输出端还与逆变或直流稳压模块5的电能输入端相连,将启动电池组2或者金属-空气电池系统3输出 的电能输送至逆变或直流稳压模块5。
逆变或直流稳压模块5,所述逆变或直流稳压模块5的信号输入端和信号输出端分别与所述管理体统1的对应信号输出端和输入端相连接,将逆变或直流稳压模块5的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。此外,逆变或直流稳压模块5的电能输入端与隔离模块4的电能输出端相连,逆变或直流稳压模块5的电能输出端与开关电源6的对应电能输入端相连。当采用逆变功能时,逆变或直流稳压模块5将隔离模块4输出的电能以交流电形式输出给开关电源6。当采用直流稳压功能时,逆变或直流稳压模块5将隔离模块4输出的电能以直流电形式输出给开关电源6。
开关电源6,所述开关电源6的对应电能输入端分别与市电9、逆变或直流稳压模块5以及铅酸电池组8的对应电能输出端相连。开关电源6的对应电能输出端还分别与用电设备7和铅酸电池组8的对应电能输入端相连,保证不间断地将电能输出给用电设备7。在市电9处于正常供电状态时,市电9还可以通过开关电源6给铅酸电池8充电。
用电设备7,所述用电设备7的电能输入端与开关电源6的电能输出端相连。用电设备包括铁塔基站、机房设备、数据交流中心设备、医院手术室设备、电台设备、电视台设备、各种监测设备、机场设备、铁路设备、实验设备及测试仪器。
铅酸电池组8,所述铅酸电池组8的信号输出端与管理系统1的对应信号输入端相连,将铅酸电池组3的电压、电流信号传输给管理系统1,并接受管理系统1发出的相关控制信号。铅酸电池组3的对应电能输出端和输入端还分别与开关电源6的对应电能输入端和输出端相连。
本实施例中,所述金属-空气电池组成的在线UPS后备电源系统的运行方式如下:
参见图2,当管理系统1监测到市电9处于断电状态时,且管理系统1监测到铅酸电池组8处于正常电能输出状态时,管理系统1控制金属-空气电池系统3不启动,由铅酸电池组8输出电能给开关电源6,再由开关电源6将电能输出给用电设备7,此时由铅酸电池组8为用电设备供电。一旦管理系统1监测到铅酸电池组8的电能输出接近不足时,管理系统1将控制金属-空气电池系统3立即启动。当管理系统1监测到金属-空气电池系统3的电能输出达到预定值时,则控制金属-空气电池系统3通过隔离模块4单向给逆变或直流稳压模块5供电,逆变或直流稳压模块5将金属-空气电池系统3输出的电能输出给开关电源6,并由开关电源6为用电设备7供电。此时铅酸电池组8不再给开关电源6输出电能。
上述公开的各实施例中,基于金属-空气电池系统的UPS后备电源系统中,所述的管理系统采用控制器芯片,所述控制器芯片可以采用如下型号的单片机:
Figure PCTCN2017093091-appb-000001
所述的启动电池组可以选用锂离子电池组或者铅酸电池组。锂离子电池可选用如下产品:
公司 型号
中航锂电(洛阳)有限公司 CA100
三星 45173115
LG 6164226
ATL 2614891
力神 2614891
比克 2614891
铅酸电池可选用如下产品:
公司 型号
超威 6-DZM-20
松下 LC-P12100ST
南都 6-FM-100
南都 GFM-600P
所述的金属-空气电池系统可选用铝-空气电池系统或者锌-空气电池系统或者镁-空气电池系统或者锂-空气电池系统。
铝-空气电池系统可以选用德阳东深新能源科技有限公司生产的型号为STK-24-01-8、STK-24H-02-16、STK-48-01-8的产品。
所述隔离模块主要由二极管构成,可选用如下厂家和型号的二极管:
浙整半导体:MDK55-600
上海奇亿半导体:MDK55-600
所述逆变或直流稳压模块可选用以下厂家和型号的产品:
明纬:TS-3000-248B
明纬:TS-3000-244B
明纬:SD-1000L-48
博优:BP5000-2S
博优:BP3000

Claims (8)

  1. 一种基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    包括管理系统、启动电池组、金属-空气电池系统、隔离模块、逆变或直流稳压模块和开关电源;
    所述管理系统对应信号的输出端和输入端分别与所述的金属-空气电池系统、启动电池组和逆变或直流稳压模块的对应信号输入端和信号输出端相连接,用于监控金属-空气电池系统、启动电池组和逆变或直流稳压模块的电压和电流,并实现对金属-空气电池系统、启动电池组和逆变或直流稳压模块的混合控制;所述管理系统的对应信号输入端还与所述的市电的对应信号输出端相连接,用于监控市电的电压、电流;
    所述启动电池组的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将启动电池组的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;所述启动电池组的对应电能输出端分别与管理系统和隔离模块的对应电能输入端相连,将电能输送给管理系统和隔离模块;
    所述金属-空气电池系统的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将金属-空气电池系统的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;金属-空气电池系统的对应电能输出端与隔离模块的对应电能输入端相连,并将电能输送给隔离模块;
    所述隔离模块的电能输入端分别与启动电池组和金属-空气电池系统的电能输出端相连;所述隔离模块的对应电能输出端与逆变或直流稳压模块的电能输入端相连,将启动电池组或者金属-空气电池系统输出的电能输送至逆变或直流稳压模块;
    所述逆变或直流稳压模块的信号输入端和信号输出端分别与所述管理体统的对应信号输出端和输入端相连接,将逆变或直流稳压模块的电压、电流信号传输给管理系统,并接受管理系统发出的相关控制信号;逆变或直流稳压模块的电能输入端与隔离模块的电能输出端相连,逆变或直流稳压模块的电能输出端与开关电源的对应电能输入端相连;
    所述开关电源的对应电能输入端分别与逆变或直流稳压模块和市电的电能输出端相连;所述开关电源的电能输出端与用电设备的电能输入端相连,不间断地将电能输出给用电设备。
  2. 如权利要求1所述的基于金属-空气电池组成的在线UPS后备电源系统,其运行方式如下:
    当管理系统监测到市电处于正常供电状态时,管理系统控制金属-空气电池系统不启动,开关电源将市电输送给用电设备,由市电为用电设备供电;
    当管理系统监测到市电处于断电状态的同时,管理系统控制金属-空气电池系统立即启动,与此同时管理系统控制启动电池组通过隔离模块单向给逆变或直流稳压模块供电,逆变 或直流稳压模块将启动电池组输出的电能输出给开关电源,并由开关电源为用电设备供电;当管理系统监测到金属-空气电池系统的电能输出达到预定值时,管理系统控制金属-空气电池系统通过隔离模块单向给逆变或直流稳压模块供电,逆变或直流稳压模块将金属-空气电池系统输出的电能输出给开关电源,并由开关电源为用电设备供电;此时管理系统控制启动电池组不再给逆变或直流稳压模块供电。
  3. 如权利要求1所述的基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    还包括铅酸电池组,所述开关电源的对应电能输入端和输出端分别与铅酸电池组的电能输出端和输入端相连;所述铅酸电池组的信号输出端与管理系统的对应信号输入端相连,将铅酸电池组的电压和电流信号传输给管理系统,并接受管理系统发出的相关控制信号;铅酸电池组的对应电能输出端和输入端分别与开关电源的对应电能输入端和输出端相连。
  4. 如权利要求3所述的基于金属-空气电池组成的在线UPS后备电源系统,其运行方式如下:
    当管理系统监测到市电处于断电状态时,且管理系统监测到铅酸电池组处于正常电能输出状态时,管理系统控制金属-空气电池系统不启动,由铅酸电池组输出电能给开关电源,再由开关电源将电能输出给用电设备,此时由铅酸电池组为用电设备供电;
    一旦管理系统监测到铅酸电池组的电能输出接近不足时,管理系统控制金属-空气电池系统立即启动;当管理系统监测到金属-空气电池系统的电能输出达到预定值时,管理系统控制金属-空气电池系统通过隔离模块单向给逆变或直流稳压模块供电,逆变或直流稳压模块将金属-空气电池系统输出的电能输出给开关电源,并由开关电源为用电设备供电,此时铅酸电池组不再给开关电源输出电能。
  5. 如权利要求1或3所述的基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    在所述金属-空气电池系统的电能输出尚未达到预定值之前,隔离模块保证启动电池组单向对逆变或直流稳压模块供电;当金属-空气电池系统的电能输出达到预定值时,隔离模块则控制由金属-空气电池系统单向对逆变或直流稳压模块供电,此时启动电池组不再对逆变或直流稳压模块供电。
  6. 如权利要求1或3所述的基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    所述逆变或直流稳压模块采用逆变功能时,该逆变或直流稳压模块将隔离模块输出的电能以交流电形式输出给开关电源;当所述逆变或直流稳压模块采用直流稳压功能时,该逆变或直流稳压模块将隔离模块输出的电能以直流电形式输出给开关电源。
  7. 如权利要求1或3所述的基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    所述的金属-空气电池系统包括铝-空气电池系统或者锌-空气电池系统或者镁-空气电 池系统或者锂-空气电池系统。
  8. 如权利要求1或3所述的基于金属-空气电池组成的在线UPS后备电源系统,其特征在于:
    所述的启动电池组包括锂离子电池组或者铅酸电池组。
PCT/CN2017/093091 2016-09-06 2017-07-17 基于金属-空气电池组成的在线ups后备电源系统 WO2018045823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610804050.4 2016-09-06
CN201610804050.4A CN107086658B (zh) 2016-09-06 2016-09-06 基于金属-空气电池组成的在线ups后备电源系统

Publications (1)

Publication Number Publication Date
WO2018045823A1 true WO2018045823A1 (zh) 2018-03-15

Family

ID=59615012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093091 WO2018045823A1 (zh) 2016-09-06 2017-07-17 基于金属-空气电池组成的在线ups后备电源系统

Country Status (2)

Country Link
CN (1) CN107086658B (zh)
WO (1) WO2018045823A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474134A (zh) * 2019-07-31 2019-11-19 广州道动新能源有限公司 一种铝空气电池单体、系统及不间断电源系统
US12068635B2 (en) 2022-05-13 2024-08-20 Schneider Electric It Corporation Modular power system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130185B (zh) * 2020-01-16 2021-07-20 易航时代(北京)科技有限公司 一种组合供电系统及供电控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228728A (ja) * 2006-02-23 2007-09-06 Nippon Oil Corp 燃料電池を用いた非常電源システム
CN102624053A (zh) * 2012-03-22 2012-08-01 华中科技大学 一种可持续供电的不间断电源系统
CN103545911A (zh) * 2013-10-25 2014-01-29 广东易事特电源股份有限公司 一种双输入智能供电的不间断电源系统
CN103825332A (zh) * 2014-03-06 2014-05-28 江苏绿遥燃料电池系统制造有限公司 一种有效保护燃料电池减少储能电池数量的直流输出系统
CN105914870A (zh) * 2016-06-01 2016-08-31 上海应用技术学院 一种基于激活式电池和风光互补供电系统的通信基站备用电源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121044A (en) * 1990-07-19 1992-06-09 Luz Electric Fuel Israel, Ltd. Electrical energy system
CN1870384A (zh) * 2005-05-27 2006-11-29 上海鸿宝企业发展有限公司 应急电源
CN102412576B (zh) * 2011-12-09 2013-11-06 广西工学院 自行式中型房车电力系统及其实现供电的方法
CN102624084A (zh) * 2012-04-07 2012-08-01 三科电器集团有限公司 专用消防应急电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228728A (ja) * 2006-02-23 2007-09-06 Nippon Oil Corp 燃料電池を用いた非常電源システム
CN102624053A (zh) * 2012-03-22 2012-08-01 华中科技大学 一种可持续供电的不间断电源系统
CN103545911A (zh) * 2013-10-25 2014-01-29 广东易事特电源股份有限公司 一种双输入智能供电的不间断电源系统
CN103825332A (zh) * 2014-03-06 2014-05-28 江苏绿遥燃料电池系统制造有限公司 一种有效保护燃料电池减少储能电池数量的直流输出系统
CN105914870A (zh) * 2016-06-01 2016-08-31 上海应用技术学院 一种基于激活式电池和风光互补供电系统的通信基站备用电源系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474134A (zh) * 2019-07-31 2019-11-19 广州道动新能源有限公司 一种铝空气电池单体、系统及不间断电源系统
US12068635B2 (en) 2022-05-13 2024-08-20 Schneider Electric It Corporation Modular power system

Also Published As

Publication number Publication date
CN107086658A (zh) 2017-08-22
CN107086658B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US20230202343A1 (en) Low-voltage battery charging system and method
US8841798B2 (en) Method, apparatus for emergency power supply and device associated thereto
TWI477017B (zh) 避免電池浮充之控制系統、供電系統及方法
CN103532191B (zh) 一种吸尘器的双组电池组充电系统及其充电方法
EP2790292B1 (en) Temporary back-up power system and temporary back-up power method
WO2018045823A1 (zh) 基于金属-空气电池组成的在线ups后备电源系统
CN105529797A (zh) 超级电容和电池复合的供电系统及其供电方法
KR20130098079A (ko) 변전소 내 전원공급 제어 장치 및 그 방법
CN104882936B (zh) 一种通信储能电源系统
CN103683435A (zh) 移动式电源的稳压稳频ups与智能充电一体化方法
CN104617652A (zh) 用于便携式终端的电池供电装置
US11418229B2 (en) Wireless switch control device and method
TW202005225A (zh) 雙電壓雙電池行動電力調控系統
CN211744131U (zh) 一种可超长待机的智能型不间断电源
TWI463721B (zh) 具多模式之電池管理系統及其切換方法
CN206452178U (zh) 零待机功耗开关电路
CN220156281U (zh) 不断电更换电池的装置及通信设备
CN215681884U (zh) 电动挖掘机电源控制电路及电动挖掘机
CN204424934U (zh) 一种ups电源
TWM642975U (zh) 不斷電供電系統
CN220896363U (zh) 配电设备及配电系统
CN221227208U (zh) 供电电路、电源和不间断电源
CN210898560U (zh) 市电并容的智能型电池系统
CN208272696U (zh) 供电装置及精密空调
CN206117279U (zh) 微型不间断供电单元及匹配使用的适配器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847996

Country of ref document: EP

Kind code of ref document: A1