WO2018045779A1 - 一种太赫兹成像系统及太赫兹安检装置 - Google Patents

一种太赫兹成像系统及太赫兹安检装置 Download PDF

Info

Publication number
WO2018045779A1
WO2018045779A1 PCT/CN2017/085542 CN2017085542W WO2018045779A1 WO 2018045779 A1 WO2018045779 A1 WO 2018045779A1 CN 2017085542 W CN2017085542 W CN 2017085542W WO 2018045779 A1 WO2018045779 A1 WO 2018045779A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
imaging system
module
security device
radiation
Prior art date
Application number
PCT/CN2017/085542
Other languages
English (en)
French (fr)
Inventor
谭易东
潘奕
李辰
丁庆
Original Assignee
深圳市太赫兹系统设备有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹系统设备有限公司, 华讯方舟科技有限公司 filed Critical 深圳市太赫兹系统设备有限公司
Publication of WO2018045779A1 publication Critical patent/WO2018045779A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Definitions

  • the invention belongs to the technical field of security inspection, and in particular relates to a terahertz imaging system and a terahertz security inspection device.
  • An object of the present invention is to provide a terahertz imaging system and a terahertz security device, which aims to solve the problem that the existing security inspection technology mostly uses X-ray detectors to perform safety inspection on the human body or the baggage. , high energy consumption, poor transmission and slow detection speed.
  • a terahertz imaging system includes:
  • a terahertz radiation module that radiates terahertz waves
  • an radiant surface of the terahertz radiation module modulating the terahertz wave into a terahertz wave of a preset frequency and covering the optical chopper that radiates to the object to be tested;
  • the photosensitive surface is located on the image focal plane of the imaging objective, and the minimum side length of the photosensitive surface is greater than or equal to the maximum side length of the imaging area of the imaging objective, which will carry the complex dielectric function information too Hertz wave , a terahertz detection module that converts to an analog current signal;
  • the present invention also provides a terahertz security device, comprising:
  • a terahertz imaging system as described above is mechanically coupled to the security device body for transmitting radiation through the object to be tested of the security device body to obtain digital image data of the object to be tested.
  • the present invention has the beneficial effects of:
  • the object to be measured is irradiated by irradiating the terahertz wave, the radiation is small, the energy consumption is low, the ionization effect on the human body or the biological tissue can be effectively reduced, the non-destructive detection of the human body or the biological tissue can be performed, and the radiation damage can be reduced.
  • the physical properties of the object to be tested can be accurately determined according to the complex dielectric function information of the object to be tested, and the high-risk objects such as metals, drugs, and explosives can be effectively identified. .
  • FIG. 1 is a schematic structural diagram of a terahertz imaging system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a terahertz imaging system according to Embodiment 2 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the terahertz imaging system includes a terahertz radiation module 10, an optical chopper 20, an imaging objective lens 30, a terahertz detection module 40, and a signal processing module 50.
  • the direction of the arrow indicates the direction of transmission of the terahertz wave or the direction of signal flow.
  • the terahertz radiation module 10 is used to radiate terahertz waves.
  • the terahertz radiation module 10 radiates a terahertz wave having a wavelength in the range of 3 mm to 3 (V m ).
  • the terahertz radiation module 10 may be a titanium sapphire femtosecond laser or a Gunn diode laser.
  • the optical chopper 20 is located on the radiating surface of the terahertz radiation module 10 for modulating the terahertz wave radiated by the terahertz radiation module 10 into a terahertz wave of a predetermined frequency and covering radiation to the object to be tested 01.
  • the overlay radiation specifically means that the terahertz wave modulated by the optical chopper 20 can completely cover the surface of the object to be tested.
  • the preset frequency may be in the range of 100 GHz to 10 THZ.
  • the object to be tested 01 may be any organic or inorganic substance, such as: human body, animals and plants, metal, fabric, and the like.
  • the imaging objective lens 30 focuses the terahertz wave passing through the object to be measured 01 and carrying the complex dielectric function information of the object to be tested 01 to its image focal plane.
  • the object focal plane of the imaging objective lens 30 passes through the object to be tested 01, so that the object to be tested 01 can be imaged directly on the photosensitive surface of the terahertz detecting module 40.
  • the imaging objective lens 30 is actually a convex lens for focusing the transmissive terahertz wave passing through the object to be tested 01 on its image focal plane so that the terahertz detection module 40 can detect Complete and clear signal of the object to be tested.
  • the complex dielectric function information refers to information including spatial distribution data of a complex dielectric function of an item to be tested.
  • the complex dielectric function is a complex expression of the dielectric function of a substance having light absorption. Since some substances have light absorbing properties (that is, light is absorbed by the material to absorb a part of the light to cause light loss), the plural form is used to indicate the The dielectric function of a substance, the real part representing the dielectric constant of the substance, The imaginary part is related to the light absorption properties of the substance.
  • the intensity and phase information of the reflection or projection terahertz wave after the terahertz wave radiating the object includes the spatial distribution data of the complex dielectric function of the object, and the objects of different properties have different complex dielectric functions. Therefore, terahertz waves can be used to radiate objects to detect objects of different nature.
  • the photosensitive surface of the terahertz detection module 40 is located at the image focal plane of the imaging objective 30, and the minimum side length of the photosensitive surface is greater than or equal to the maximum side length of the imaging area of the imaging objective for carrying the The terahertz wave of the complex dielectric function information is converted into an analog current signal.
  • the minimum side length of the photosensitive surface of the photosensitive surface is greater than or equal to the maximum side length of the imaging area of the imaging objective, specifically, the imaging signal of the object to be tested 01 can be just the terahertz detection module 40.
  • the photosensitive surface is received at one time without progressive scanning, saving imaging time.
  • the terahertz detection module 40 may be a CCD hybrid focal plane detector whose photosensitive surface is composed of a Schottky barrier diode array.
  • the Schottky barrier diode array has a spectral response range of 0.2 ⁇ m to 1.1 ⁇ m.
  • an appropriately sized Schottky barrier diode array may be selected according to the cross-sectional area of the object to be detected that needs to be detected.
  • the photosensitive surface of the terahertz detection module 40 is a 50x50 Schottky barrier diode array.
  • the signal processing module 50 is coupled to the terahertz detection module 40 for processing the analog current signal into digital image data.
  • the object to be measured is scanned by radiating the terahertz wave, the radiation is small, the energy consumption is low, the ionization effect on the human body or the biological tissue can be effectively reduced, and the human body or the biological tissue can be non-destructively tested to reduce the radiation.
  • Injury illuminating the object to be measured by covering, and using the terahertz detection module whose minimum side length of the photosensitive surface is greater than or equal to the maximum side length of the imaging area of the imaging objective, to obtain the detection signal of the object to be tested, and the primary radiation is The complete detection data of the object to be tested can be obtained, and the detection efficiency is high.
  • the physical properties of the object to be tested can be accurately determined according to the complex dielectric function information of the object to be tested. It can effectively identify high-risk items such as metals, drugs and explosives.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the terahertz imaging system provided by this embodiment further includes a cluster on the basis of the first embodiment.
  • the focus lens 60, the display module 70, and the storage module 80, the signal processing module 50 includes a signal amplifying unit 51, an analog to digital converting unit 52, and an image processing unit 53.
  • the focus lens 60 is disposed on the radiation surface of the optical chopper 20 for focusing the terahertz wave radiated by the optical chopper 20 onto the object to be tested 01.
  • the focusing lens 60 is actually a convex lens that acts as a light converging effect.
  • the display module 70 is coupled to the signal processing module 50 for processing digital image data after processing.
  • display module 70 is a liquid crystal or LED display.
  • the storage module 80 is connected to the signal processing module 50 for storing the analog current signal before processing or the digital image data after processing.
  • storage module 80 can be any non-volatile physical storage disk.
  • the signal amplifying unit 51 is connected to the terahertz detecting module 40 for performing signal amplification on the analog current signal.
  • the signal amplifying unit 51 may be any analog signal amplifying device.
  • the analog to digital conversion unit 52 is coupled to the signal amplifying unit 51 for converting the amplified analog current signal into a digital signal.
  • analog to digital conversion unit 52 can be an analog to digital converter.
  • the image processing unit 53 is coupled to the analog to digital conversion unit 52 for processing the digital signal into digital image data.
  • the image processing unit may be an image processing chip.
  • the terahertz security device provided in this embodiment includes a security device body, the above-described terahertz imaging system (not shown), and an alarm.
  • the main body of the security device is a human security door or a baggage security machine.
  • the terahertz imaging system is disposed in mechanical connection with the inside of the security device body, and performs transmissive radiation on the object to be tested through the main body of the security device to obtain digital image data of the object to be tested, terahertz imaging.
  • the display module of the system displays the digital image data of the object to be measured for the relevant staff to check whether there are prohibited items prohibited in the object to be tested.
  • the alarm is disposed on the main body of the security device, and is connected to the terahertz detection module, and the digital image is detected The data is abnormal, flashing and an alarm is issued.
  • the terahertz security device may further comprise a computer host connected to the terahertz imaging system for controlling the terahertz imaging system, and the alarm device may also be connected to the computer host to be controlled by the computer.
  • the host controls the automatic alarm, or the operator manually controls the computer to control the alarm.
  • This embodiment provides a terahertz security device including a terahertz imaging system, which can perform physical inspection on human bodies, animals and plants, and the like, and has a small amount of radiation, which reduces radiation damage; and can utilize explosives, drugs, and guns. Waiting for the light absorption characteristics of the terahertz band to effectively identify prohibited items such as explosives, drugs, guns, etc.; able to acquire terahertz images of objects at one time, without the need for progressive scanning, improving detection efficiency; able to penetrate clothes, cartons Non-metallic and non-polar materials such as plastics, which only image metal and polar materials, can effectively detect dangerous goods.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种太赫兹成像系统及太赫兹安检装置,其中,太赫兹成像系统包括:太赫兹辐射模块(10);将太赫兹辐射模块(10)辐射的太赫兹波调制为预设频率的太赫兹波并覆盖式辐射至待测物体(01)的光学斩波器(20);将携带有待测物体(01)的复介电函数信息的太赫兹波聚焦于其像方焦平面的成像物镜(30);感光面的最小边长大于或等于成像物镜(30)的成像区域的最大边长,将携带有复介电函数信息的太赫兹波转换为模拟电流信号的太赫兹探测模块(40);以及与太赫兹探测模块(40)连接的信号处理模块(50)。该太赫兹成像系统及太赫兹安检装置可以对人体或生物组织进行无损检测,减小辐射伤害,一次辐射即可获得待测物体(01)的完整检测数据,检测效率高,可有效识别金属、毒品、炸药等高危物品。

Description

一种太赫兹成像系统及太赫兹安检装置
技术领域
[0001] 本发明属于安检技术领域, 尤其涉及一种太赫兹成像系统及太赫兹安检装置。
背景技术
[0002] 随着公共交通工具的不断发展, 在地铁站、 机场、 火车站等人流密集的地方实 行安检制度, 检测人们随身携带的行李物品的安全性, 成为保证良好的社会治 安的重要手段。
[0003] 然而, 现有的安检技术大多利用 X射线探测仪等对人体或行李进行安全检査, 其能耗较高、 辐射较大且对人体具有较大伤害、 透射性差且无法准确识别出金 属、 毒品、 炸药等高危物品。 此外, X射线探测仪中的成像器件体积较小, 只能 对人体或行李进行局部扫描, 然后拼接扫描图像, 检测速度较慢。 因此, 现有 的安检技术存在能耗高、 辐射大、 透射性差及检测速度慢的问题。
技术问题
[0004] 本发明的目的在于提供一种太赫兹成像系统及太赫兹安检装置, 旨在解决现有 的安检技术大多利用 X射线探测仪等对人体或行李进行安全检査所存在的辐射较 大、 能耗较高、 透射性差及检测速度较慢的问题。
问题的解决方案
技术解决方案
[0005] 本发明是这样实现的, 一种太赫兹成像系统, 其包括:
[0006] 辐射太赫兹波的太赫兹辐射模块;
[0007] 位于所述太赫兹辐射模块的辐射面, 将所述太赫兹波调制为预设频率的太赫兹 波并覆盖式辐射至待测物体的光学斩波器;
[0008] 将穿过所述待测物体且携带有所述待测物体的复介电函数信息的太赫兹波成像 于其像方焦平面的成像物镜;
[0009] 感光面位于所述成像物镜的像方焦平面, 并且感光面的最小边长大于或等于所 述成像物镜的成像区域的最大边长, 将携带有所述复介电函数信息的太赫兹波 、 转换为模拟电流信号的太赫兹探测模块; 以及
[0010] 与所述太赫兹探测模块连接, 将所述模拟电流信号处理为数字图像数据的信号 处理模块。
[0011] 本发明还提供一种太赫兹安检装置, 其包括:
[0012] 安检装置主体; 以及
[0013] 与所述安检装置主体机械连接, 对通过所述安检装置主体的待测物体进行透射 式辐射, 以获取所述待测物体的数字图像数据的如上所述的太赫兹成像系统。 发明的有益效果
有益效果
[0014] 本发明与现有技术相比, 其有益效果在于:
[0015] 通过辐射太赫兹波来对待测物体进行扫描, 辐射小、 能耗低, 可有效减小对人 体或生物组织电离影响, 可以对人体或生物组织进行无损检测, 减小辐射伤害
[0016] 通过覆盖式辐射待测物体, 并采用感光面的最小边长大于或等于所述成像物镜 的成像区域的最大边长的太赫兹探测模块, 来获取待测物体的检测信号, 一次 辐射即可获得待测物体的完整检测数据, 检测效率高;
[0017] 通过获取携带有物体的复介电函数信息的太赫兹波, 可根据待测物体的复介电 函数信息准确判断待测物体的物理性质, 可有效识别金属、 毒品、 炸药等高危 物品。
对附图的简要说明
附图说明
[0018] 图 1是本发明实施例一提供的太赫兹成像系统的结构示意图;
[0019] 图 2是本发明实施例二提供的太赫兹成像系统的结构示意图。
本发明的实施方式
[0020] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本发明, 并不用于限定本发明。
[0021] 实施例一:
[0022] 如图 1所示, 本实施例提供的太赫兹成像系统, 其包括太赫兹辐射模块 10、 光 学斩波器 20、 成像物镜 30、 太赫兹探测模块 40和信号处理模块 50, 图中箭头方 向表示太赫兹波传输方向或者信号流向。
[0023] 太赫兹辐射模块 10用于辐射太赫兹波。
[0024] 在具体应用中, 太赫兹辐射模块 10所述辐射的太赫兹波的波长范围为 3mm~3(V m。
[0025] 在一实施例中, 太赫兹辐射模块 10可选用钛蓝宝石飞秒激光器或耿氏二极管激 光器。
[0026] 光学斩波器 20位于太赫兹辐射模块 10的辐射面, 用于将太赫兹辐射模块 10辐射 的太赫兹波调制为预设频率的太赫兹波并覆盖式辐射至待测物体 01。
[0027] 本实施例中, 覆盖式辐射具体是指, 将光学斩波器 20调制后的太赫兹波能够完 全覆盖待测物体表面。
[0028] 在具体应用中, 所述预设频率的可以在 100GHZ~10THZ范围内。
[0029] 在具体应用中, 待测物体 01可以为任意有机或无机物, 例如: 人体、 动植物、 金属、 织物等。
[0030] 成像物镜 30将穿过待测物体 01且携带有待测物体 01的复介电函数信息的太赫兹 波聚焦于其像方焦平面。
[0031] 本实施例中, 成像物镜 30的物方焦平面穿过待测物体 01, 以使待测物体 01可以 刚好成像于太赫兹探测模块 40的感光面。
[0032] 在具体应用中, 成像物镜 30实际上是一个凸透镜, 用于将穿过待测物体 01的透 射太赫兹波聚焦在其像方焦平面上, 以使太赫兹探测模块 40可以探测到完整清 晰的待测物体信号。
[0033] 本实施例中, 所述复介电函数信息是指, 包含待测物品的复介电函数的空间分 布数据的信息。 复介电函数是存在光吸收的物质的介电函数的复数表达形式, 由于某些物质具有光吸收性质 (即光通过该物质会被吸收一部分导致光损耗) , 因此要用复数形式来表示该物质的介电函数, 实部表示该物质的介电常数, 虚部则与该物质的光吸收性质有关。
[0034] 在实际应用中, 太赫兹波辐射物体后的反射或者投射太赫兹波的强度和相位信 息包含了物体的复介电函数的空间分布数据, 不同性质的物体具有不同的复介 电函数, 因此, 可以用太赫兹波辐射物体来检测出不同性质的物体。
[0035] 太赫兹探测模块 40的感光面位于成像物镜 30的像方焦平面, 并且感光面的最小 边长大于或等于所述成像物镜的成像区域的最大边长, 用于将携带有所述复介 电函数信息的太赫兹波转换为模拟电流信号。
[0036] 本实施例中, 感光面的感光面最小边长大于或等于所述成像物镜的成像区域的 最大边长, 具体是指待测物体 01的成像信号能刚好被太赫兹探测模块 40的感光 面一次性接收, 而不用逐行扫描, 节约成像吋间。
[0037] 在一实施例中, 太赫兹探测模块 40可以选用 CCD混合焦平面探测器, 其感光面 由肖特基势垒二极管阵列组成。
[0038] 本实施例中, 肖特基势垒二极管阵列的光谱响应范围为 0.2μηι~1.1μιη。
[0039] 在具体应用中, 可根据需要探测的待测物体的截面积大小, 选用适当大小的肖 特基势垒二极管阵列。
[0040] 在一实施例中, 太赫兹探测模块 40的感光面为 50x50的肖特基势垒二极管阵列
[0041] 信号处理模块 50与太赫兹探测模块 40连接, 用于将所述模拟电流信号处理为数 字图像数据。
[0042] 本实施例通过辐射太赫兹波来对待测物体进行扫描, 辐射小、 能耗低, 可有效 减小对人体或生物组织电离影响, 可以对人体或生物组织进行无损检测, 减小 辐射伤害; 通过覆盖式辐射待测物体, 并采用感光面的最小边长大于或等于所 述成像物镜的成像区域的最大边长的太赫兹探测模块, 来获取待测物体的检测 信号, 一次辐射即可获得待测物体的完整检测数据, 检测效率高; 通过获取携 带有物体的复介电函数信息的太赫兹波, 可根据待测物体的复介电函数信息准 确判断待测物体的物理性质, 可有效识别金属、 毒品、 炸药等高危物品。
[0043] 实施例二:
[0044] 如图 2所示, 本实施例提供的太赫兹成像系统, 在实施例一的基础上还包括聚 焦透镜 60、 显示模块 70和存储模块 80, 信号处理模块 50包括信号放大单元 51、 模数转换单元 52和图像处理单元 53。
[0045] 聚焦透镜 60设置在光学斩波器 20的辐射面, 用于将光学斩波器 20辐射的太赫兹 波聚焦到待测物体 01上。
[0046] 在具体应用中, 聚焦透镜 60实际上是一个凸透镜, 起到光汇聚作用。
[0047] 显示模块 70与信号处理模块 50连接, 用于对处理之后的数字图像数据。 在具体 应用中, 显示模块 70为液晶或 LED显示屏。
[0048] 存储模块 80与信号处理模块 50连接, 用于保存处理之前的模拟电流信号或处理 之后的数字图像数据。
[0049] 在具体应用中, 存储模块 80可以为任意非易失性物理存储盘。
[0050] 信号放大单元 51与太赫兹探测模块 40连接, 用于对所述模拟电流信号进行信号 放大。
[0051] 在具体应用中, 信号放大单元 51可以为任意的模拟信号放大器件。
[0052] 模数转换单元 52与信号放大单元 51连接, 用于将放大后的所述模拟电流信号转 换为数字信号。
[0053] 在具体应用中, 模数转换单元 52可以为模数转换器。
[0054] 图像处理单元 53与模数转换单元 52连接, 用于将所述数字信号处理为数字图像 数据。
[0055] 在具体应用中, 图像处理单元可以为图像处理芯片。
[0056] 实施例三:
[0057] 本实施例提供的太赫兹安检装置, 其包括安检装置主体、 上述的太赫兹成像系 统 (图中未示出) 和报警器。
[0058] 在具体应用中, 安检装置主体为人体安检门或行李安检机。
[0059] 在具体应用中, 太赫兹成像系统设置在安检装置主体的内部与其机械连接, 对 通过安检装置主体的待测物体进行透射式辐射, 以获取待测物体的数字图像数 据, 太赫兹成像系统的显示模块则对待测物体的数字图像数据进行显示, 以供 相关工作人员査看, 待测物体中是否有禁止携带的违禁物品。
[0060] 报警器设置于安检装置主体上, 与太赫兹探测模块连接, 在检测到的数字图像 数据异常吋, 闪烁并发出警报。
[0061] 在具体应用中, 太赫兹安检装置还可以包括与太赫兹成像系统连接的电脑主机 , 用于相关工作人员对太赫兹成像系统进行控制, 报警器也可以与电脑主机连 接, 以受电脑主机控制自动报警, 或者由工作人员手动操控电脑主机来控制报 警器报警。
[0062] 本实施例通过提供一种包括太赫兹成像系统的太赫兹安检装置, 可对人体、 动 植物等有机活物进行安检, 辐射量小, 降低了辐射伤害; 能够利用炸药、 毒品 、 枪支等在太赫兹波段的光吸收特征, 来有效鉴别炸药、 毒品、 枪支等违禁物 品; 能够一次性获取物体的太赫兹图像, 不需要逐行扫描, 提高了检测效率; 能够穿透衣物、 纸盒、 塑料等非金属和非极性材料, 仅对金属和极性材料成像 , 可有效检测危险物品。
[0063] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种太赫兹成像系统, 其特征在于, 所述太赫兹成像系统包括: 辐射太赫兹波的太赫兹辐射模块;
位于所述太赫兹辐射模块的辐射面, 将所述太赫兹波调制为预设频率 的太赫兹波并覆盖式辐射至待测物体的光学斩波器;
将穿过所述待测物体且携带有所述待测物体的复介电函数信息的太赫 兹波成像于其像方焦平面的成像物镜;
感光面位于所述成像物镜的像方焦平面, 并且感光面的最小边长大于 或等于所述成像物镜的成像区域的最大边长, 将携带有所述复介电函 数信息的太赫兹波转换为模拟电流信号的太赫兹探测模块; 以及 与所述太赫兹探测模块连接, 将所述模拟电流信号处理为数字图像数 据的信号处理模块。
[权利要求 2] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述太赫兹成像 系统还包括设置在所述光学斩波器辐射面, 将所述光学斩波器辐射的 太赫兹波聚焦到所述待测物体的聚焦透镜。
[权利要求 3] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述太赫兹辐射 模块为钛蓝宝石飞秒激光器或耿氏二极管激光器。
[权利要求 4] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述太赫兹探测 模块为 CCD混合焦平面探测器, 所述太赫兹探测模块的感光面由肖特 基势垒二极管阵列组成。
[权利要求 5] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述信号处理模 块包括:
与所述太赫兹探测模块连接, 对所述模拟电流信号进行信号放大的信 号放大单元;
与所述信号放大单元连接, 将放大后的所述模拟电流信号转换为数字 信号的模数转换单元; 以及
与所述模数转换单元连接, 将所述数字信号处理为数字图像数据的图 像处理单元。
[权利要求 6] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述太赫兹成像 系统还包括与所述信号处理模块连接, 以显示所述数字图像数据的显 示模块。
[权利要求 7] 如权利要求 1所述的太赫兹成像系统, 其特征在于, 所述太赫兹成像 系统还包括与所述信号处理模块连接, 以存储所述数字图像数据的存 储模块。
[权利要求 8] —种太赫兹安检装置, 其特征在于, 所述太赫兹安检装置包括: 安检装置主体; 以及
与所述安检装置主体机械连接, 对通过所述安检装置主体的待测物体 进行透射式辐射, 以获取所述待测物体的数字图像数据的如权利要求 1~7任一项所述的太赫兹成像系统。
[权利要求 9] 如权利要求 8所述的太赫兹安检装置, 其特征在于, 所述太赫兹安检 装置还包括设置于所述安检装置主体上, 与所述太赫兹探测模块连接 , 在所述数字图像数据异常吋, 闪烁并发出警报的报警器。
[权利要求 10] 如权利要求 8或 9所述的太赫兹安检装置, 其特征在于, 所述安检装置 主体为人体安检门或行李安检机。
PCT/CN2017/085542 2016-09-09 2017-05-23 一种太赫兹成像系统及太赫兹安检装置 WO2018045779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610816019.2A CN106353834B (zh) 2016-09-09 2016-09-09 一种太赫兹成像系统及太赫兹安检装置
CN201610816019.2 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045779A1 true WO2018045779A1 (zh) 2018-03-15

Family

ID=57859138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085542 WO2018045779A1 (zh) 2016-09-09 2017-05-23 一种太赫兹成像系统及太赫兹安检装置

Country Status (2)

Country Link
CN (1) CN106353834B (zh)
WO (1) WO2018045779A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126176A (zh) * 2019-12-30 2021-07-16 清华大学 太赫兹波安检系统及方法
CN113848193A (zh) * 2021-09-23 2021-12-28 上海亨临光电科技有限公司 一种被动式太赫兹人体安检图像提取方法
US11237103B2 (en) 2018-05-31 2022-02-01 Socovar Sec Electronic device testing system, electronic device production system including same and method of testing an electronic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353834B (zh) * 2016-09-09 2019-05-03 深圳市太赫兹系统设备有限公司 一种太赫兹成像系统及太赫兹安检装置
CN108107016A (zh) * 2016-11-24 2018-06-01 北京遥感设备研究所 一种低损耗高隔离度太赫兹准光反射成像系统
CN108303709A (zh) * 2018-01-17 2018-07-20 深圳翠博微系统有限公司 一种太赫兹头盔式成像仪
CN108267418B (zh) * 2018-03-30 2023-12-05 北京农业信息技术研究中心 基于太赫兹层析技术的种子内部形态获取方法及装置
CN109142267B (zh) * 2018-09-07 2021-11-16 北京华航无线电测量研究所 一种实时太赫兹成像装置及方法
CN109187418B (zh) * 2018-10-12 2021-10-26 贵州民族大学 太赫兹成像仪
CN108957577A (zh) * 2018-10-19 2018-12-07 天和防务技术(北京)有限公司 通道式太赫兹安检装置及安检方法
CN109471198B (zh) * 2018-12-29 2023-11-28 清华大学 一种全极化毫米波/太赫兹探测计、包括其在内的图像识别装置及其方法
CN113125455A (zh) * 2019-12-30 2021-07-16 北京华航无线电测量研究所 一种太赫兹准光检测装置及非金属管道检测系统和方法
CN111323385B (zh) * 2020-03-03 2021-12-28 中国科学院物理研究所 一种太赫兹相机、太赫兹成像系统及应用
CN112505798B (zh) * 2020-11-27 2022-07-01 河北雄安太芯电子科技有限公司 基于太赫兹的物体检测方法
CN115951421B (zh) * 2023-02-21 2023-10-17 安徽中科太赫兹科技有限公司 一种通道式太赫兹主动成像人体安检仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710430A (en) * 1995-02-15 1998-01-20 Lucent Technologies Inc. Method and apparatus for terahertz imaging
US20090072146A1 (en) * 2007-09-18 2009-03-19 Honeywell International Inc. Correlated ghost imager
CN102721468A (zh) * 2012-06-26 2012-10-10 西安理工大学 一种太赫兹波探测器
CN104280786A (zh) * 2014-10-31 2015-01-14 河北联合大学 太赫兹成像旅客行李快速安检系统及其检测危险物品方法
CN106353834A (zh) * 2016-09-09 2017-01-25 深圳市太赫兹系统设备有限公司 一种太赫兹成像系统及太赫兹安检装置
CN206114926U (zh) * 2016-09-09 2017-04-19 深圳市太赫兹系统设备有限公司 一种太赫兹成像系统及太赫兹安检装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0321628D0 (en) * 2003-09-15 2003-10-15 Council Cent Lab Res Councils Millimetre and sub-millimetre imaging device
US20100160774A1 (en) * 2004-03-17 2010-06-24 Ali Dabiri Method and apparatus for non-invasive cancerous tissue diagnosis and tomography using terahertz imaging
CN101975754A (zh) * 2010-09-26 2011-02-16 首都师范大学 消除位相误差的反射式太赫兹光谱分析方法
CN102004080A (zh) * 2010-09-26 2011-04-06 首都师范大学 透射式不依赖参考光的太赫兹光谱分析方法
CN103178150B (zh) * 2013-03-13 2016-04-13 上海交通大学 天线耦合太赫兹探测器
CN103926199B (zh) * 2014-04-16 2016-08-31 黄晓鹏 危险品检测方法
CN203929627U (zh) * 2014-04-17 2014-11-05 中国计量学院 固体蛋白质热稳定性太赫兹谱检测仪
CN103954802B (zh) * 2014-05-13 2016-02-03 中国科学技术大学 长波长扫描近场显微分析系统
CN105866773B (zh) * 2016-05-16 2018-04-06 吉林大学 大功率太赫兹连续波二维成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710430A (en) * 1995-02-15 1998-01-20 Lucent Technologies Inc. Method and apparatus for terahertz imaging
US20090072146A1 (en) * 2007-09-18 2009-03-19 Honeywell International Inc. Correlated ghost imager
CN102721468A (zh) * 2012-06-26 2012-10-10 西安理工大学 一种太赫兹波探测器
CN104280786A (zh) * 2014-10-31 2015-01-14 河北联合大学 太赫兹成像旅客行李快速安检系统及其检测危险物品方法
CN106353834A (zh) * 2016-09-09 2017-01-25 深圳市太赫兹系统设备有限公司 一种太赫兹成像系统及太赫兹安检装置
CN206114926U (zh) * 2016-09-09 2017-04-19 深圳市太赫兹系统设备有限公司 一种太赫兹成像系统及太赫兹安检装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11237103B2 (en) 2018-05-31 2022-02-01 Socovar Sec Electronic device testing system, electronic device production system including same and method of testing an electronic device
CN113126176A (zh) * 2019-12-30 2021-07-16 清华大学 太赫兹波安检系统及方法
CN113848193A (zh) * 2021-09-23 2021-12-28 上海亨临光电科技有限公司 一种被动式太赫兹人体安检图像提取方法

Also Published As

Publication number Publication date
CN106353834A (zh) 2017-01-25
CN106353834B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2018045779A1 (zh) 一种太赫兹成像系统及太赫兹安检装置
WO2020134320A1 (zh) 便携式太赫兹安检设备
WO2016197278A1 (zh) 一种主动式太赫兹人体安检系统装置及调整方法
US20090195435A1 (en) Hand-held device and method for detecting concealed weapons and hidden objects
CN104280786A (zh) 太赫兹成像旅客行李快速安检系统及其检测危险物品方法
CN105021627B (zh) 光学薄膜及元件表面激光损伤的高灵敏快速在线探测方法
CN206114926U (zh) 一种太赫兹成像系统及太赫兹安检装置
JP2006084275A (ja) 爆発物等の探知方法および装置
CN105607140A (zh) 太赫兹波快速旋转扫描成像系统及方法
JP2009075107A (ja) 相関ゴースト撮像装置
TWI640760B (zh) 郵件檢測裝置及郵件檢測方法
CN107193051A (zh) 一种太赫兹传送带检测系统
Cui et al. Experiment studies on two-dimension terahertz raster scan imaging
Zhong et al. Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS
KR101141040B1 (ko) 서브-테라헤르츠 액티브 실시간 이미징 시스템 및 그 방법
Petkie et al. Nondestructive terahertz imaging for aerospace applications
CN111257960A (zh) 一种自动跟踪扫描快速通道式太赫兹安检设备
CN105181697A (zh) 一种连续波太赫兹实时水印成像检测装置及其方法
US20220171259A1 (en) Imaging apparatus, method for controlling imaging apparatus, and non-transitory computer readable storage
CN114877994A (zh) 红外太赫兹光谱仪
Zhigang et al. Experimental study on terahertz imaging technique in nondestructive inspection
Yao et al. 1.63-THz transmission imaging experiment by use of a pyroelectric camera array
Downes et al. High-speed THz imaging for production line monitoring
Bell et al. Standoff liquid CW detection
CN105606534B (zh) 太赫兹近场信号转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847952

Country of ref document: EP

Kind code of ref document: A1