WO2018045668A1 - Module de haut-parleur - Google Patents

Module de haut-parleur Download PDF

Info

Publication number
WO2018045668A1
WO2018045668A1 PCT/CN2016/111106 CN2016111106W WO2018045668A1 WO 2018045668 A1 WO2018045668 A1 WO 2018045668A1 CN 2016111106 W CN2016111106 W CN 2016111106W WO 2018045668 A1 WO2018045668 A1 WO 2018045668A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
sound absorbing
absorbing particles
speaker module
speaker
Prior art date
Application number
PCT/CN2016/111106
Other languages
English (en)
Chinese (zh)
Inventor
曹晓东
刘金利
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2018045668A1 publication Critical patent/WO2018045668A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present invention relates to the field of speaker technology, and in particular to a speaker module.
  • the speaker module is an indispensable component in electro-acoustic products.
  • the speaker module is usually composed of a casing and a speaker unit, and the speaker unit divides the inner cavity of the module casing into two chambers of a front sound chamber and a rear sound chamber.
  • a sound absorbing member is usually added in the rear sound chamber, and the sound absorbing member absorbs part of the sound energy, which is equivalent to expanding the volume of the rear cavity, thereby Achieve the effect of reducing the module F0.
  • the conventional sound absorbing members are foamed foams such as polyurethane foams and melamine foams.
  • a porous material such as activated carbon, natural zeolite powder, active silica, molecular sieve or according to a specific type and ratio
  • the mixture is filled into the rear acoustic cavity, and the special physical pore structure inside the porous material is used to realize rapid adsorption-desorption of the gas in the rear acoustic cavity, thereby achieving the effect of virtually increasing the resonance space of the acoustic cavity after the speaker.
  • the porous material In the process of processing and molding, the porous material inevitably uses an adhesive to bond raw materials such as powder into a desired structural shape.
  • the use of the adhesive affects the pore structure in the porous material, which may cause clogging and failure, thereby causing a decrease in material attraction performance.
  • a speaker module comprising:
  • module housing having a receiving cavity
  • a speaker assembly disposed in the accommodating cavity, the speaker assembly dividing the accommodating cavity into a rear acoustic cavity and a front sounding zone;
  • Non-foaming sound absorbing particles having a multi-stage pore structure, the non-foaming sound absorbing particles having pores of three different pore size ranges of micropores, mesopores and macropores, the non-foaming sound absorbing particles being filled in the rear acoustic cavity,
  • the foamed sound absorbing particles are composed of fine particles of zeolite raw powder;
  • the non-foaming sound absorbing particles have a binder, and the binder accounts for 0.1 to 1% by mass of the non-foaming sound absorbing particles, and the binder is doped with an effective bonding element.
  • the adhesive is an organic binder.
  • the effective bonding element is an effective bonding functional group.
  • the effective bonding element is a doping element.
  • the adhesive is doped with an auxiliary agent, and the auxiliary agent contains an effective bonding element.
  • the auxiliary agent is an organic auxiliary agent, and the auxiliary agent is incorporated with an effective bonding functional group.
  • the doping element is at least one of boron, iron, titanium, potassium, calcium, tin, antimony, bismuth, magnesium, sodium, and titanium.
  • the doping element is a rare earth element.
  • the adhesive includes at least one of a silicone adhesive, an inorganic silicone adhesive, an acrylic adhesive, a urethane adhesive, and an epoxy resin adhesive.
  • the non-foaming sound absorbing particles have a spherical or spheroidal structure, and the non-foaming sound absorbing particles have an aspect ratio of less than 1.5 and a particle size ranging from 0.15 to 0.45 mm.
  • the inventors of the present invention have found that in the prior art, since the adhesive is required to be used in the processing of the porous sound absorbing material, reducing the amount of the adhesive used may cause a decrease in structural stability of the particles, which may occur easily. Problems such as breakage and powdering. Therefore, those skilled in the art usually do not It is considered to improve the performance of the porous attracting material by reducing the amount of the binder. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a schematic structural view of a non-foaming sound absorbing particle provided by an embodiment of the present invention
  • FIG. 2 is a schematic view showing the microstructure of non-foaming sound absorbing particles provided by an embodiment of the present invention.
  • the invention provides a speaker module, which comprises a module casing, a speaker assembly and non-foaming sound absorbing particles.
  • the invention improves the non-foaming sound absorption by adjusting the proportion of the adhesive contained in the non-foaming sound absorbing particles. Adsorption and desorption properties of the particles. Further, the acoustic performance of the speaker module is improved.
  • the module housing has a receiving cavity for receiving various components of the speaker module.
  • the speaker assembly is disposed in the receiving cavity to divide the receiving cavity into a front sounding zone and a rear sounding cavity.
  • the speaker assembly generally includes a vibrating assembly that drives the vibrating assembly to vibrate to emit sound, and a sound that is transmitted from the front sounding area to the outside, the rear sound chamber for absorbing sound propagating from the back side of the vibrating assembly, and capable of Plays the role of strengthening the bass.
  • the non-foaming sound absorbing particles 1 are filled in the rear acoustic cavity, and Fig. 1 shows the structure of the non-foaming sound absorbing particles 1 which are stacked together when filled in the rear acoustic cavity.
  • the non-foaming sound absorbing particles 1 have a multi-stage pore structure inside, and when the surrounding air pressure changes, the pore structure therein can adsorb air or desorb air, thereby absorbing sound and balancing air pressure.
  • the non-foaming sound absorbing particles 1 have pores of three different pore size ranges of micropores 21, mesopores 22 and macropores, wherein the micropores 21 have the smallest pore size range, and can be selected from 0.3 to 0.9 nm. between.
  • the pores of the micropores 21 are used for adsorbing and desorbing air molecules, and in the non-foaming sound absorbing particles 1 mainly function to absorb sound and enlarge the virtual space of the sound chamber.
  • the pore size of the mesopores 22 is larger than the pore diameter of the micropores 21, and the pore size range is selected to be between 2 and 40 nanometers.
  • the micropores 21 are communicated around the mesopores 22.
  • the mesopores 22 mainly serve to introduce air into the micropores 21 or to quickly discharge the air in the micropores 21.
  • the mesopores 22 themselves can also be used to some extent.
  • the action of adsorbing and desorbing air cooperates with the micropores 21 to exert a sound absorbing effect.
  • the macropore has a larger aperture than the mesopores 22, and the macropores communicate with the mesopores 22 and the micropores 21.
  • the macropores function to rapidly introduce outside air into the mesopores 22 and the micropores 21, or The air adsorbed in the holes 22 and the micro holes 21 is led to the outside.
  • the non-foaming sound absorbing particles may be composed of the zeolite raw powder particles 11 bonded.
  • the non-foaming sound absorbing particles provided by the present invention have an adhesive agent in which an effective bonding element is incorporated to improve the bonding action of the bonding agent. Accordingly, it is possible to reduce the amount of the binder in the non-foaming sound absorbing particles, that is, to bond the zeolite raw powder particles 11 into When the type is used, the amount of the binder can be reduced.
  • the binder accounts for 0.1-1% by mass of the non-foaming sound absorbing particles.
  • the amount of the binder in the non-foaming sound absorbing particles is large, for example, the content is more than 10%, it will inevitably cause clogging of the microporous structure in the particles, thereby reducing the total amount of air that the particles can effectively adsorb.
  • the present invention reduces the influence of the binder on the effective adsorption amount by incorporating an effective bonding element into the adhesive to minimize the amount of the binder.
  • the adhesive may be a silicone adhesive, an inorganic silicone adhesive, an acrylic adhesive, a polyurethane adhesive or a ring.
  • the oxygen resin-based adhesive or the adhesive may contain a component such as silicon oxide.
  • one skilled in the art can select one or more of the above four kinds of adhesives according to the desired sound absorption effect, particle strength and the like of the non-foaming sound absorbing particles, and the type of the adhesive. Adjust with the amount.
  • the present invention provides an effective bonding element that can be incorporated, and can combine and match various effective bonding elements provided below according to actual performance requirements.
  • the adhesive is an organic binder
  • the effective bonding element may be an effective bonding functional group.
  • the effective bonding functional group which actually produces the bonding effect can be doped into the segment of the organic binder, thereby greatly improving the bonding property of the bonding agent and reducing the amount of the bonding agent.
  • the effective bonding element may also be a doping element
  • the doping elements that may be employed in different embodiments of the present invention include: boron, iron, titanium, potassium, calcium, tin, antimony, antimony, magnesium, Sodium, titanium.
  • One or more of the above doping elements may be selected as an effective bonding element to be incorporated into the binder depending on the kind of the binder, the properties of the non-foaming sound absorbing particles, and the like.
  • the above various doping elements can be used in an organic binder, and can also be applied to other types of binders, such as inorganic binders, which are not limited by the present invention.
  • the doping element may be a rare earth element.
  • the binder may be doped with an auxiliary agent during the bonding process.
  • the auxiliary agent may include a coagulant, an antifoaming agent, a homogenizing agent and the like according to the bonding environment and the process.
  • the auxiliary agent may also contain an effective bonding element.
  • an organic preparation is included in the adjuvant, an effective bonding functional group may be incorporated into the segment of the auxiliary; or the above doping element may be incorporated into the auxiliary.
  • the above-mentioned zeolite raw powder particles for bonding to form non-foaming sound absorbing particles may be prepared by mixing an aluminosilicate-free material, a templating agent, and an auxiliary material, followed by hydrothermal crystallization.
  • the non-foaming sound absorbing particles formed are non-aluminosilicate zeolite particles.
  • the crystal structure formed by the aluminosilicate-free silicate is more stable, and without the influence of the aluminum element, the failure of the micropores to be desorbed can be reduced.
  • the particle size range of the non-foaming sound absorbing particles may be between 0.05 and 1 mm.
  • the particles have a spherical structure as a whole, or a spherical ellipsoid or an irregular spherical structure.
  • the non-foaming sound absorbing particles have a particle size ranging from 0.15 to 0.45 mm and an overall aspect ratio of the particles of less than 1.5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

La présente invention porte sur un module de haut-parleur. Le module de haut-parleur comprend : un boîtier de module, ledit boîtier de module ayant une chambre de réception ; un ensemble haut-parleur, ledit ensemble haut-parleur étant agencé dans ladite chambre de réception et l'ensemble haut-parleur divisant la chambre de réception en une cavité acoustique arrière et une cavité acoustique avant ; une particule d'absorption acoustique sans mousse ayant une structure de pore hiérarchique, ladite particule d'absorption acoustique sans mousse étant remplie dans ladite cavité acoustique arrière et la particule d'absorption acoustique sans mousse étant constituée par liaison adhésive de microparticules de poudre brute de zéolite ; les particules d'absorption acoustique sans mousse ont des canaux de pore ayant trois diamètres de pore différents : des micropores, des mésopores et des macropores ; lesdites particules d'absorption acoustique sans mousse ayant un adhésif ; le rapport en masse dudit adhésif dans les particules d'absorption acoustique sans mousse étant de 0,1 à 1 %. L'un des effets techniques de la présente invention est d'améliorer les propriétés acoustiques du module de haut-parleur. (Fig. 2)
PCT/CN2016/111106 2016-09-06 2016-12-20 Module de haut-parleur WO2018045668A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610805805.2A CN106231515A (zh) 2016-09-06 2016-09-06 扬声器模组
CN201610805805.2 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018045668A1 true WO2018045668A1 (fr) 2018-03-15

Family

ID=58074489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111106 WO2018045668A1 (fr) 2016-09-06 2016-12-20 Module de haut-parleur

Country Status (2)

Country Link
CN (1) CN106231515A (fr)
WO (1) WO2018045668A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024156A (zh) * 2021-03-16 2021-06-25 镇江贝斯特新材料有限公司 具有层状孔道结构的声学增强材料块及其制作方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162468A (zh) * 2016-08-31 2016-11-23 歌尔股份有限公司 扬声器模组
CN106231511A (zh) * 2016-08-31 2016-12-14 歌尔股份有限公司 扬声器模组
CN106231515A (zh) * 2016-09-06 2016-12-14 歌尔股份有限公司 扬声器模组
CN110817863A (zh) * 2019-12-09 2020-02-21 歌尔股份有限公司 活性炭吸音颗粒以及发声装置
CN114827799A (zh) * 2021-01-28 2022-07-29 镇江贝斯特新材料有限公司 多孔块状材料及其应用、降低风噪的电子装置及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046104A (en) * 1989-11-30 1991-09-03 Cambridge Soundworks, Inc. Loudspeaker system
CN105013436A (zh) * 2010-08-23 2015-11-04 楼氏电子亚洲有限公司 声音改进的扬声器系统
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN105872920A (zh) * 2016-04-19 2016-08-17 碗海鹰 一种用于扬声器的吸音材料
CN106231515A (zh) * 2016-09-06 2016-12-14 歌尔股份有限公司 扬声器模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152783A1 (fr) * 2007-06-12 2008-12-18 Panasonic Corporation Haut-parleur multivoix
CN102390843B (zh) * 2011-08-02 2013-05-01 复旦大学 三维连通多级孔道结构沸石分子筛材料及其制备方法
US8687836B2 (en) * 2012-08-31 2014-04-01 Bose Corporation Loudspeaker system
CN105142074B (zh) * 2015-08-19 2019-03-12 歌尔股份有限公司 扬声器模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046104A (en) * 1989-11-30 1991-09-03 Cambridge Soundworks, Inc. Loudspeaker system
CN105013436A (zh) * 2010-08-23 2015-11-04 楼氏电子亚洲有限公司 声音改进的扬声器系统
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN105872920A (zh) * 2016-04-19 2016-08-17 碗海鹰 一种用于扬声器的吸音材料
CN106231515A (zh) * 2016-09-06 2016-12-14 歌尔股份有限公司 扬声器模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024156A (zh) * 2021-03-16 2021-06-25 镇江贝斯特新材料有限公司 具有层状孔道结构的声学增强材料块及其制作方法与应用
CN113024156B (zh) * 2021-03-16 2023-05-26 镇江贝斯特新材料股份有限公司 具有层状孔道结构的声学增强材料块及其制作方法与应用

Also Published As

Publication number Publication date
CN106231515A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018045668A1 (fr) Module de haut-parleur
WO2018040394A1 (fr) Module de haut-parleur
WO2018040392A1 (fr) Module de haut-parleur
WO2018040393A1 (fr) Module de haut-parleur
WO2018120697A1 (fr) Dispositif d'absorption acoustique pour dispositif de génération de son, son procédé de préparation et module de dispositif de génération de son
CN108298559B (zh) 分子筛及应用该分子筛的吸音材料和扬声器
WO2021135877A1 (fr) Particule absorbant le son, appareil de production de son, et dispositif électronique
CN109448688A (zh) 一种活性炭吸音材料和发声装置
CN109511056A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109660924A (zh) 活性炭吸音颗粒和发声装置
WO2020134376A1 (fr) Matériau insonorisant et boîtier de haut-parleur
CN109511057A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN111135772A (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
CN109511058A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109640237A (zh) 一种活性炭吸音材料和发声装置
CN109874089B (zh) 二氧化硅气凝胶吸音材料和发声装置
CN111179897A (zh) 一种活性炭吸音材料、发声装置以及电子设备
WO2024103562A1 (fr) Matériau d'absorption de son, appareil de production de son et dispositif électronique
CN109935224A (zh) 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
JP2017123647A (ja) 空気吸着剤を備えるマイクロスピーカー
CN206413183U (zh) 发声装置的吸音件和发声装置模组
CN109963243A (zh) 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN110012383A (zh) 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN109678392B (zh) 二氧化硅气凝胶吸音材料和发声装置
CN113347539B (zh) 一种吸音材料及扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915602

Country of ref document: EP

Kind code of ref document: A1