WO2018045626A1 - 基于超像素级信息融合的高光谱图像的分类方法及系统 - Google Patents

基于超像素级信息融合的高光谱图像的分类方法及系统 Download PDF

Info

Publication number
WO2018045626A1
WO2018045626A1 PCT/CN2016/104661 CN2016104661W WO2018045626A1 WO 2018045626 A1 WO2018045626 A1 WO 2018045626A1 CN 2016104661 W CN2016104661 W CN 2016104661W WO 2018045626 A1 WO2018045626 A1 WO 2018045626A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
dimensional
feature data
pixel
hyperspectral
Prior art date
Application number
PCT/CN2016/104661
Other languages
English (en)
French (fr)
Inventor
贾森
邓彬
邓琳
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018045626A1 publication Critical patent/WO2018045626A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/254Fusion techniques of classification results, e.g. of results related to same input data

Definitions

  • the invention belongs to the field of image processing, and in particular relates to a method and a system for classifying hyperspectral images based on super pixel level information fusion.
  • the present invention relates to a technique for classifying ground matter using hyperspectral images.
  • the hyperspectral image is a multispectral image data obtained by a remote sensing sensor on a material of interest on the ground in the visible, near-infrared, mid-infrared and thermal infrared bands of the electromagnetic spectrum.
  • the large increase in spectral resolution and dimensionality of hyperspectral images makes more accurate and fine classification possible.
  • hyperspectral characteristics and classification research There are two main difficulties in hyperspectral characteristics and classification research: First, high dimensionality makes the accuracy and difficulty of small sample classification improve, that is, the so-called "dimensional disaster" phenomenon; second, the high dimensionality of the band makes the calculation amount Extremely large, and the strong correlation between the bands increases redundancy, which can have an effect if not processed effectively.
  • multi-task classification methods are also widely adopted.
  • the multi-task classification method is mainly manifested in two aspects.
  • One is the classification by combining multiple classifiers. This method considers that different classifiers have different decision-making performances, and the combined use can reduce the variance of classification accuracy, thereby improving The performance of the classification system.
  • Another aspect is the classification of multiple features. This method adaptively complements the differences between features by different descriptions of various features, making the discriminating ability of the categories stronger.
  • the existing dimensionality reduction methods can be divided into two categories: one is based on transformation methods, such as principal component analysis (PCA), orthogonal subspace projection (OSP), regular analysis (CA), discrete wavelet transform (DWT), Schrödinger feature map (SE) and so on.
  • PCA principal component analysis
  • OSP orthogonal subspace projection
  • CA regular analysis
  • DWT discrete wavelet transform
  • SE Schrödinger feature map
  • the disadvantage is that the original characteristics of the image are changed.
  • the other type is based on non-transformation, such as band selection, data source partitioning, and so on.
  • the non-transformation-based dimension reduction method is to select and divide the image after examining the overall characteristics of the image. Its advantage is to maintain the original characteristics of the image; the disadvantage is that the image after band selection still cannot meet the actual classification effect.
  • a multi-dimensional Gabor feature extraction method is used to selectively obtain a variety of hyperspectral data features, and then the sparse representation is used to encode and reconstruct the reconstructed errors of each feature, and then the reconstruction errors of each feature are linearly weighted. Convergence. Finally, the classification is performed by the reconstructed reconstruction error.
  • the Gabor features are fused in the classification stage, and the classification accuracy is improved.
  • the extracted Gabor features still have great redundancy, and the multi-task classification using the sparse representation method makes the computational complexity extremely high. It is difficult to complete the classification of a large number of pixels in a short time.
  • the method of data dimensionality reduction combined with air spectrum has also achieved certain scientific research results.
  • the super-pixel is applied to the Schrödinger feature mapping method to reduce the dimensionality of the hyperspectral data, which speeds up the dimensionality reduction.
  • due to the single feature it is difficult to achieve the classification accuracy requirement of small samples by using the super-pixel-level dimensionality reduction.
  • the technical problem to be solved by the present invention is to provide a classification method of hyperspectral image based on super pixel level information fusion.
  • the method and system aim to solve the problem that the existing classification method has high computational complexity, low classification accuracy and large redundancy between bands.
  • the present invention provides a method for classifying hyperspectral images based on super pixel level information fusion, comprising the following steps:
  • Filter generation step generating a plurality of two-dimensional Gabor filters
  • Gabor feature extraction step convolving each of the Gabor filters with each band in the hyperspectral image, and performing a magnitude calculation on the convolution operation result to obtain a plurality of Gabor feature blocks;
  • Hyperspectral image superpixel segmentation step superpixel segmentation of the hyperspectral image to obtain a plurality of superpixels
  • a super-pixel feature data calculation step performing average calculation on each of the super-pixels and each of the Gabor feature blocks to obtain a plurality of super-pixel feature data of a first dimension;
  • a super-pixel space coordinate calculation step calculating each coordinate value of each of the super-pixels and the hyperspectral image to obtain one spatial coordinate data set;
  • a data dimensionality reduction step performing dimension reduction on each of the super-pixel feature data of the first dimension and the Schrodinger feature mapping method using the spatial spectrum data set, respectively, from the first dimension to the second dimension, Obtaining a plurality of super-pixel feature data of the second dimension;
  • a hyperspectral feature data generating step reconstructing each of the second-dimensional super-pixel feature data and the spatial coordinate data set by using a natural neighbor interpolation method to obtain a plurality of three-dimensional hyperspectral feature data;
  • Multi-task support vector machine classification step performing multi-task support vector machine classification for each of the three-dimensional hyperspectral feature data.
  • the Gabor feature extraction step includes:
  • Each of the two-dimensional Gabor filters is convoluted with each of the bands of the hyperspectral image, and the convolution operation result is subjected to amplitude calculation according to the following formula to obtain a plurality of Gabor feature blocks:
  • Represents a number of two-dimensional Gabor filter sets, Representing the tth Gabor filter, (x, y) represents a corresponding binary coordinate variable when performing a convolution operation on a two-dimensional plane, and R represents the hyperspectral image, wherein ⁇ represents each wavelength band of the hyperspectral image, l represents the width of the hyperspectral image, m represents the length of the hyperspectral image, B represents the number of bands of the hyperspectral image, ie the height of the hyperspectral image, l ⁇ m ⁇ B represents In three dimensions, ⁇ M t , t 1, 2, .., X ⁇ represents a number of Gabor feature block sets, and M t represents the tth Gabor feature block, where t represents the number and X is a positive integer.
  • n corresponds to M t to perform the mean calculation to obtain the n-th B-dimensional vector.
  • S i represents the i-th superpixel
  • n represents the number of superpixels
  • B dimension represents the first dimension
  • N t represents the t-th super pixel feature data
  • each of the superpixels S i includes a plurality of pixels
  • the super pixel spatial coordinate calculation step includes: performing coordinate mean calculation on each of the superpixels S i and the hyperspectral image R, respectively, to obtain an n ⁇ 2 dimensional spatial coordinate data set C; wherein, C represents Spatial coordinate data set,
  • the data dimensionality reduction step comprises: each of the super pixel feature data N t and the spatial coordinate data set C respectively using a Schrodinger feature mapping method combined with the spatial spectrum to perform feature dimensionality reduction, from B dimension to K dimension, to obtain K dimension
  • the hyperspectral feature data generating step includes: reconstructing each of the super pixel feature data D t and the spatial coordinate data set C using a natural neighbor interpolation method, corresponding to the original hyperspectral image to complement the pixel values of all spatial coordinates.
  • the classification process for g is as follows:
  • the invention also provides a classification system for hyperspectral image based on super pixel level information fusion, the system comprising:
  • Filter generation module for generating a plurality of two-dimensional Gabor filters
  • a Gabor feature extraction module configured to convolve each of the Gabor filters with each of the bands in the hyperspectral image, and perform a magnitude calculation on the convolution operation result to obtain a plurality of Gabor feature blocks;
  • Hyperspectral image superpixel segmentation module for superpixel segmentation of the hyperspectral image to obtain a plurality of superpixels
  • a super-pixel feature data calculation module configured to perform mean value calculation on each of the super-pixels and each of the Gabor feature blocks, to obtain a plurality of super-pixel feature data of a first dimension
  • a super-pixel space coordinate calculation module configured to perform coordinate mean calculation for each of the super-pixels and the hyperspectral image, to obtain one spatial coordinate data set;
  • the data dimension reduction module is configured to reduce the dimension of each of the first dimension of the super pixel feature data and the spatial coordinate data set by using the Schrodinger feature mapping method, and reduce the dimension from the first dimension to the second dimension. Dimension, obtaining a plurality of super-pixel feature data of the second dimension;
  • a hyperspectral feature data generating module configured to respectively superpixel feature data of each of the second dimensions and the null The inter-coordinate data set is reconstructed using natural neighbor interpolation to obtain several three-dimensional hyperspectral feature data;
  • Multi-task support vector machine classification module used to perform multi-task support vector machine classification for each of the three-dimensional hyperspectral feature data.
  • the Gabor feature extraction module is specifically configured to:
  • Each of the two-dimensional Gabor filters is convoluted with each of the bands of the hyperspectral image, and the convolution operation result is subjected to amplitude calculation according to the following formula to obtain a plurality of Gabor feature blocks:
  • Represents a number of two-dimensional Gabor filter sets, Representing the tth Gabor filter, (x, y) represents a corresponding binary coordinate variable when performing a convolution operation on a two-dimensional plane, and R represents the hyperspectral image, wherein ⁇ represents each wavelength band of the hyperspectral image, l represents the width of the hyperspectral image, m represents the length of the hyperspectral image, B represents the number of bands of the hyperspectral image, ie the height of the hyperspectral image, l ⁇ m ⁇ B represents In three dimensions, ⁇ M t , t 1, 2, .., X ⁇ represents a number of Gabor feature block sets, and M t represents the tth Gabor feature block, where t represents the number and X is a positive integer.
  • n corresponds to M t to perform the mean calculation to obtain the n-th B-dimensional vector.
  • S i represents the i-th superpixel
  • n represents the number of superpixels
  • B dimension represents the first dimension
  • N t represents the t-th super pixel feature data
  • each of the superpixels S i includes a plurality of pixels
  • the super-pixel spatial coordinate calculation module is specifically configured to: perform coordinate mean calculation on each of the super-pixels S i and the hyperspectral image R, respectively, to obtain an n ⁇ 2-dimensional spatial coordinate data set C; wherein C represents a collection of spatial coordinate data,
  • the data dimension reduction module is specifically configured to: each of the super pixel feature data N t and the spatial coordinate data set C respectively use the Schrodinger feature mapping method combined with the space spectrum to perform feature dimensionality reduction, from B dimension to K dimension, and obtain K
  • the hyperspectral feature data generating module is specifically configured to: each of the super pixel feature data D t and the spatial coordinate data set C are reconstructed by using a natural neighbor interpolation method, and the original hyperspectral image is complemented by all the spatial coordinates.
  • the invention has the following advantages:
  • the present invention adopts a multi-task support vector machine classification method, which greatly reduces the computational complexity
  • the present invention adopts the characteristics of the two-dimensional Gabor combined with the super-pixel space spectrum combined Schrödinger feature drop. Dimension method with higher classification accuracy.
  • the Gabor feature block used in the present invention contains more abundant local change information, and the data dimensionality reduction method is used to reduce the redundant information between the bands.
  • FIG. 1 is a schematic flowchart of a method for classifying hyperspectral images based on super pixel level information fusion according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of filters of different frequencies and directions according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of acquiring Gabor features according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a result of convolving an image of a certain band of hyperspectral signals by a Gabor filter according to an embodiment of the present invention
  • FIG. 5 is a schematic plan view of dividing a hyperspectral image into superpixels by using a SLIC method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of classification of a multitasking support vector machine
  • FIG. 7 is a schematic diagram of a classification system for hyperspectral image based on super pixel level information fusion according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for classifying hyperspectral images based on super pixel level information fusion, as shown in FIG. 1 , including the following steps:
  • Step S101 Generate a plurality of two-dimensional Gabor filters.
  • the following method is used to generate a Gabor filter, and the formula for generating the Gabor filter is:
  • FIG. 2 is a schematic diagram of filters of 24 different frequencies and directions generated by an embodiment of the present invention.
  • step S101 uses the above method to generate a Gabor filter, but the invention is not limited.
  • the Gabor filter in step S101 can generate a filter frequency by using different forms such as Log-Gabor.
  • the parameters and the number of angles can also be adjusted.
  • the Gabor response used in the present invention can also be replaced by other forms such as amplitude, phase, and the like.
  • Step S102 convolving each of the Gabor filters with each of the bands in the hyperspectral image, and performing a magnitude calculation on the convolution operation result to obtain a plurality of Gabor feature blocks;
  • step S101 each of the two-dimensional Gabor filters and each of the bands of the hyperspectral image are convoluted separately, and the convolution operation result is obtained according to the following formula. Operation, get 24 Gabor feature blocks:
  • FIG. 3 and FIG. 4 the schematic diagram of the Gabor feature acquisition obtained in step S102 and the result of convolving the image of a certain band of hyperspectral signals by the Gabor filter provided by the embodiment of the present invention are shown.
  • Step S103 performing superpixel segmentation on the hyperspectral image to obtain a plurality of superpixels
  • the SLIC method is used to segment the hyperspectral image in the embodiment of the present invention, and the present invention is not limited.
  • Step S103 can also be implemented by using entropy-based superpixel segmentation or the like.
  • FIG. 5 it is a schematic diagram of a plane for dividing a hyperspectral image into superpixels by using the SLIC method according to an embodiment of the present invention.
  • Step S104 Performing an average calculation on each of the superpixels and each of the Gabor feature blocks to obtain a plurality of superpixel feature data of a first dimension;
  • n corresponds to M t to perform the mean calculation to obtain the n-th B-dimensional vector.
  • S i represents the i-th superpixel
  • n represents the number of superpixels
  • B dimension represents the first dimension
  • N t represents the t-th super-pixel feature data; wherein each of the super-pixels S i includes a plurality of pixels.
  • Step S105 Perform coordinate average calculation on each of the superpixels and the hyperspectral image to obtain one spatial coordinate data set.
  • each of the superpixels S i and the hyperspectral image R are respectively subjected to coordinate mean calculation to obtain one n ⁇ 2 dimensional spatial coordinate data set C; wherein C represents a spatial coordinate data set,
  • Step S106 Perform feature dimension reduction on each of the super-pixel feature data of the first dimension and the Schrodinger feature mapping method that uses the spatial spectrum of the spatial coordinate data set, and reduce the dimension from the first dimension to the second dimension to obtain a plurality of Super pixel feature data of the second dimension.
  • each of the super-pixel feature data N t and the spatial coordinate data set C are combined with the Schrodinger feature mapping method of the spatial spectrum to perform feature reduction, from B-dimensional to K-dimensional, and the K-dimensional super is obtained.
  • Step S107 reconstructing each of the super-pixel feature data of the second dimension and the spatial coordinate data set by using a natural neighbor interpolation method to obtain a plurality of three-dimensional hyperspectral feature data.
  • each of the super pixel feature data D t and the spatial coordinate data set C are reconstructed by using the natural neighbor interpolation method, and the original hyperspectral image is complemented by the pixel values of all the spatial coordinates to obtain the three-dimensional hyperspectral feature data.
  • l ⁇ m ⁇ K represents three dimensions
  • G t represents the t-th three-dimensional hyperspectral feature data.
  • Step S108 Perform multi-task support vector machine classification on each of the three-dimensional hyperspectral feature data.
  • FIG. 6 is a schematic diagram of classification of the multitask support vector machine obtained in step S108 according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a classification system for hyperspectral image based on super pixel level information fusion, and the system includes:
  • a filter generating module 701 configured to generate a plurality of two-dimensional Gabor filters
  • the Gabor feature extraction module 702 is configured to perform a convolution operation on each of the Gabor filters and each of the hyperspectral images, and perform a magnitude calculation on the convolution operation result to obtain a plurality of Gabor feature blocks;
  • a hyperspectral image superpixel segmentation module 703 configured to perform superpixel segmentation on the hyperspectral image to obtain a plurality of superpixels
  • the super pixel feature data calculation module 704 is configured to perform mean calculation on each of the super pixels and each of the Gabor feature blocks to obtain a plurality of super pixel feature data of a first dimension;
  • a super-pixel space coordinate calculation module 705 configured to perform coordinate mean calculation for each of the super-pixels and the hyperspectral image, to obtain one spatial coordinate data set;
  • the data dimension reduction module 706 is configured to perform dimension reduction on the feature of each of the first dimension of the super pixel feature data and the spatial coordinate data set using the space spectrum to reduce the dimension, from the first dimension to the first dimension Two dimensions, obtaining a plurality of super-pixel feature data of the second dimension;
  • the hyperspectral feature data generating module 707 is configured to reconstruct each of the second-dimensional super-pixel feature data and the spatial coordinate data set by using a natural neighbor interpolation method to obtain a plurality of three-dimensional hyperspectral feature data;
  • the multi-task support vector machine classification module 708 is configured to perform multi-task support vector machine classification for each of the three-dimensional hyperspectral feature data.
  • the Gabor feature extraction module 702 is specifically configured to: perform a convolution operation on each of the two-dimensional Gabor filters and each of the hyperspectral images, and perform a convolution operation according to the following formula. Perform the amplitude calculation to obtain several Gabor feature blocks:
  • Represents a number of two-dimensional Gabor filter sets, Representing the tth Gabor filter, (x, y) represents a corresponding binary coordinate variable when performing a convolution operation on a two-dimensional plane, and R represents the hyperspectral image, wherein ⁇ represents each wavelength band of the hyperspectral image, l represents the width of the hyperspectral image, m represents the length of the hyperspectral image, B represents the number of bands of the hyperspectral image, ie the height of the hyperspectral image, l ⁇ m ⁇ B represents In three dimensions, ⁇ M t , t 1, 2, .., X ⁇ represents a number of Gabor feature block sets, and M t represents the tth Gabor feature block, where t represents the number and X is a positive integer.
  • n corresponds to M t to perform the mean calculation to obtain the n-th B-dimensional vector.
  • S i represents the i-th superpixel
  • n represents the number of superpixels
  • the B dimension represents the first dimension
  • N t represents the t-th super-pixel feature data; wherein each of the super-pixels S i includes a plurality of pixels.
  • the super pixel space coordinate calculation module 705 is specifically configured to: perform coordinate mean calculation on each of the super pixels S i and the hyperspectral image R, respectively, to obtain an n ⁇ 2 dimensional spatial coordinate data set C; , C represents a collection of spatial coordinate data,
  • the data dimension reduction module 706 is specifically configured to: each of the super pixel feature data N t and the spatial coordinate data set C respectively use the Schrodinger feature mapping method combined with the space spectrum to perform feature dimensionality reduction, from B dimension to K dimension,
  • the hyperspectral feature data generating module 707 is specifically configured to: each of the super pixel feature data D t and the spatial coordinate data set C are reconstructed by using a natural neighbor interpolation method, and the original hyperspectral image is complemented by all the spatial coordinates.
  • X ⁇ represents a number of three-dimensional hyperspectral feature data sets
  • l ⁇ m ⁇ K represents three dimensions
  • G t represents the t-th three-dimensional hyperspectral feature data.
  • the first data set was Indian Pines, which was acquired by a AVIRIS hyperspectral sensor from a test site in Indiana, USA.
  • the image size was 145*145 with a total of 21025 pixels, a total of 224 bands, which were removed in practical applications. 4 zero bands and 35 hybrid bands, with 185 bands remaining.
  • the spatial resolution of the image is approximately 20 m.
  • the data includes 16 feature categories with a total of 10249 labeled sample points.
  • the second data is Salinas, which was collected by the AVIRIS sensor over the Salinas Valley in California. There are a total of 512*217 samples, including 54129 samples, including 16 types of features, and the rest are background. Since the pollution has removed 20 spectral segments, the remaining 204.
  • the third data is PaviaU, which is obtained by the ROSIS sensor from Pavia in northern Italy.
  • the spatial resolution is 1.3m per pixel, the size is 610*340, a total of 103 bands, including 9 types of features.
  • the present invention can achieve an accuracy of 91.75%, and the accuracy of the traditional support vector machine kernel method is 70.11%.
  • the accuracy of the super-pixel Schrödinger feature map feature extraction plus the support vector machine kernel is obtained.
  • the classification method of morphological feature extraction plus support vector machine kernel is 81.18%, and the accuracy of sparse representation method of Gabor feature extraction plus multi-task is 83.00%.
  • the comparison shows that the method of the invention far exceeds the traditional classification method in classification accuracy.
  • the present invention adopts a method based on multi-task support vector machine classification, which greatly reduces the computational complexity; the present invention adopts a Schrodinger feature dimension reduction method based on two-dimensional Gabor multi-features combined with super-pixel optical spectrum combining. , with higher classification accuracy; the Gabor feature block used in the present invention contains more abundant local change information, and the data dimensionality reduction method is used to reduce the redundant information between the bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明适用于图像处理领域,提供了一种基于超像素级信息融合的高光谱图像的分类方法及系统,旨在解决现有的分类方法计算复杂度高、分类精度较低以及波段间存在较大冗余的问题。所述方法包括下述步骤:滤波器生成步骤、Gabor特征提取步骤、高光谱图像超像素分割步骤、超像素特征数据计算步骤、超像素空间坐标计算步骤、数据降维步骤、高光谱特征数据生成步骤以及多任务支持向量机分类步骤。

Description

基于超像素级信息融合的高光谱图像的分类方法及系统 技术领域
本发明属于图像处理领域,尤其涉及一种基于超像素级信息融合的高光谱图像的分类方法及系统。
背景技术
本发明涉及到的是一种利用高光谱图像对地面物质进行分类的技术。高光谱图像是由遥感传感器在电磁波谱的可见光,近红外,中红外和热红外波段范围内,从地面上感兴趣的物质上获取的多光谱影像数据。高光谱图像光谱分辨率和维数的大量增加使得更精确和精细的分类成为可能。然而,高光谱特性和分类研究中主要存在以下两个难点:一是高维使得提高小样本分类的精度及其困难,即所谓的“维数灾难”现象;二是波段维数高使得计算量极具增大,而且波段间的强相关性增加了冗余性,如果不进行有效处理,会对结果有影响。
传统的分类方法(K近邻,支持向量机,基于稀疏表示的分类)在高光谱上只利用光谱数据直接进行分类,无法满足实际的分类效果。为了解决以上难点,谱域-空域结合的高光谱图像分类技术应运而生。鉴于高光谱图像具备空间、光谱信息,像素之间隐藏着丰富的有助于分类的信号变化信息,一个有效的方法就是希望能够提取出更强鉴别力的空间-光谱组合特征,从而提高分类精度。
当前,除了结合谱域-空域来提高分类性能,多任务的分类方法也被广泛采纳。多任务的分类方法主要表现在两个方面,一个是联合多种分类器进行的分类,该种方法认为不同的分类器具有不同的决策性能,综合在一起使用可以减少分类精度的方差,从而提高分类系统的性能。另一个方面则是联合多种特征进行的分类,该种方法通过各种特征的不同描述,自适应的补足特征之间的差异,使得对类别的判别能力更强。
然而,单纯的使用上述方法无法排除高光谱图像波段之间的冗余性,当前,解决以上问题的主要方法就是使用数据降维。现有的降维方法可以分为两类:一类是基于变换的方法,如主成分分析(PCA)、正交子空间投影(OSP)、正则分析(CA)、离散小波变换(DWT),薛定谔特征映射(SE)等。基于变换的降维方式,其优点是可以经过若干变换直接将高维数据降低到低维甚至一维,并且在降维过程中还可以融合空间与光谱信息,得到分辨力更强的特征,从而为分类精度的提高提供了可能;缺点就是改变了图像原有的特性。另一类是基于非变换的,如波段选择,数据源划分等。基于非变换的降维方式是在考察图像整体特点之后对图像进行选择和划分的,它的优点是保持了图像原有的特性;缺点就是波段选择后的图像仍然无法满足实际的分类效果。
目前,多任务的分类技术已经取得了一定的科研成果。采用了三维Gabor特征提取的方法选择性的得到多种高光谱数据特征,然后分别使用稀疏表示进行编码并重构得到各特征的重构误差,再将各特征的重构误差以线性加权的方式进行融合。最后,通过融合后的重构误差进行分类。该方法在分类阶段对各Gabor特征进行了融合,提高了分类精度,但提取出的Gabor特征仍然具备极大的冗余性,而且使用稀疏表示的方法进行多任务分类使得计算复杂度极高,短时内难以完成大量像素的分类。
除了多任务的分类技术,采用空谱结合的数据降维的方法也取得了一定的科研成果。使用超像素作用于薛定谔特征映射方法来对高光谱数据进行降维,加快了降维速度,但却由于特征单一,使用超像素级的降维难以达到小样本的分类精度要求。
发明内容
本发明所要解决的技术问题在于提供一种基于超像素级信息融合的高光谱图像的分类方 法及系统,旨在解决现有的分类方法计算复杂度高、分类精度较低以及波段间存在较大冗余的问题。
为解决上述技术问题,本发明是这样实现的,本发明提供了一种基于超像素级信息融合的高光谱图像的分类方法,包括下述步骤:
滤波器生成步骤:生成若干个二维的Gabor滤波器;
Gabor特征提取步骤:将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
高光谱图像超像素分割步骤:对所述高光谱图像进行超像素分割,得到若干个超像素;
超像素特征数据计算步骤:将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
超像素空间坐标计算步骤:将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合;
数据降维步骤:将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据;
高光谱特征数据生成步骤:将每一个所述第二维度的超像素特征数据分别与所述空间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据;
多任务支持向量机分类步骤:对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
进一步地,所述Gabor特征提取步骤包括:
将每一个所述二维Gabor滤波器与所述高光谱图像的每一个波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到若干个Gabor特征块:
Figure PCTCN2016104661-appb-000001
其中,
Figure PCTCN2016104661-appb-000002
表示若干个二维Gabor滤波器集合,
Figure PCTCN2016104661-appb-000003
表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
Figure PCTCN2016104661-appb-000004
λ表示所述高光谱图像的每一波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,X}表示若干个Gabor特征块集合,Mt表示第t个Gabor特征块,其中t表示个数,X为正整数。
进一步地,所述超像素特征数据计算步骤包括:{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到若干个n×B维的超像素特征数据集合{Nt,t=1,2,..,X};
在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
其中,{Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,X}表示若干个n×B维的超像素特征数据集合,
Figure PCTCN2016104661-appb-000005
Nt表示第t个超像素特征数据;
其中,所述每一个超像素Si均包含若干个像素;
所述超像素空间坐标计算步骤包括:将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
Figure PCTCN2016104661-appb-000006
所述数据降维步骤包括:每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到若干个K维的超像素特征数据集合{Dt,t=1,2,..,X};
其中,{Dt,t=1,2,..,X}表示维度为K的超像素特征数据集合,K表示所述第二维度,
Figure PCTCN2016104661-appb-000007
Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空间坐标数据集合仍是C。
进一步地,所述高光谱特征数据生成步骤包括:每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到若干个三维高光谱特征数据集合{Gt,t=1,2,..,X};
其中,{Gt,t=1,2,..,X}表示若干个三维的高光谱特征数据集合,
Figure PCTCN2016104661-appb-000008
l×m×K表示三维,Gt表示第t个三维的高光谱特征数据;
所述多任务支持向量机分类包括:将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,X}表示X个维度为K的像素特征数据集合,那么对g的分类过程如下:
(1)对训练数据{G1t,t=1,2,..,X}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,X};
(2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
(3)高光谱图像样本g的类别预测公式为:
Figure PCTCN2016104661-appb-000009
本发明还提供了一种基于超像素级信息融合的高光谱图像的分类系统,所述系统包括:
滤波器生成模块:用于生成若干个二维的Gabor滤波器;
Gabor特征提取模块:用于将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
高光谱图像超像素分割模块:用于对所述高光谱图像进行超像素分割,得到若干个超像素;
超像素特征数据计算模块:用于将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
超像素空间坐标计算模块:用于将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合;
数据降维模块:用于将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据;
高光谱特征数据生成模块:用于将每一个所述第二维度的超像素特征数据分别与所述空 间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据;
多任务支持向量机分类模块:用于对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
进一步地,所述Gabor特征提取模块具体用于:
将每一个所述二维Gabor滤波器与所述高光谱图像的每一个波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到若干个Gabor特征块:
Figure PCTCN2016104661-appb-000010
其中,
Figure PCTCN2016104661-appb-000011
表示若干个二维Gabor滤波器集合,
Figure PCTCN2016104661-appb-000012
表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
Figure PCTCN2016104661-appb-000013
λ表示所述高光谱图像的每一波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,X}表示若干个Gabor特征块集合,Mt表示第t个Gabor特征块,其中t表示个数,X为正整数。
进一步地,所述超像素特征数据计算模块具体用于:{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到若干个n×B维的超像素特征数据集合{Nt,t=1,2,..,X};
在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
其中,{Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,X}表示若干个n×B维的超像素特征数据集合,
Figure PCTCN2016104661-appb-000014
Nt表示第t个超像素特征数据;
其中,所述每一个超像素Si均包含若干个像素;
所述超像素空间坐标计算模块具体用于:将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
Figure PCTCN2016104661-appb-000015
所述数据降维模块具体用于:每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到若干个K维的超像素特征数据集合{Dt,t=1,2,..,X};
其中,{Dt,t=1,2,..,X}表示维度为K的超像素特征数据集合,K表示所述第二维度,
Figure PCTCN2016104661-appb-000016
Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空间坐标数据集合仍是C。
进一步地,所述高光谱特征数据生成模块具体用于:每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到若干个三维高光谱特征数据集合 {Gt,t=1,2,..,X};
其中,{Gt,t=1,2,..,X}表示若干个三维的高光谱特征数据集合,
Figure PCTCN2016104661-appb-000017
l×m×K表示三维,Gt表示第t个三维的高光谱特征数据;
所述多任务支持向量机分类模块具体用于:将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,X}表示X个维度为K的像素特征数据集合,那么对g的分类过程如下:
(1)对训练数据{G1t,t=1,2,..,X}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,X};
(2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
(3)高光谱图像样本g的类别预测公式为:
Figure PCTCN2016104661-appb-000018
本发明与现有技术相比,有益效果在于:
针对现有的多任务稀疏表示分类方法计算复杂且计算量大的缺点,本发明采用基于多任务支持向量机分类的方法,大大降低了计算的复杂度;
针对现有的光谱数据在超像素级使用空谱结合的薛定谔降维后小样本分类精度不高的问题,本发明采用基于二维Gabor的多种特征结合超像素的空谱结合的薛定谔特征降维方法,具有更高的分类精度。
针对现有的波段间存在极大的冗余性问题,本发明使用的Gabor特征块包含了更加丰富的局部变化信息,使用数据降维的方法减少了波段之间的冗余信息。
附图说明
图1是本发明实施例提供的基于超像素级信息融合的高光谱图像的分类方法流程示意图;
图2是本发明实施例提供的不同频率和方向的滤波器示意图;
图3是本发明实施例提供的Gabor特征获取示意图;
图4是本发明实施例提供的Gabor滤波器对高光谱某一波段的图像进行卷积的结果示意图;
图5是本发明实施例提供的使用SLIC方法将高光谱图像分割成超像素的平面示意图;
图6是多任务支持向量机分类示意图;
图7是本发明实施例提供的基于超像素级信息融合的高光谱图像的分类系统示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种基于超像素级信息融合的高光谱图像的分类方法,如图1所示,包括下述步骤:
步骤S101:生成若干个二维的Gabor滤波器。
在本发明实施例中,采用了以下方法生成Gabor滤波器,生成Gabor滤波器的公式为:
Figure PCTCN2016104661-appb-000019
其中,x′=xcosθv+ysinθv,y′=-xsinθv+ycosθv,a=0.9589fu,b=1.1866fu,fu表示Gabor滤波器的频率,θv表示Gabor滤波器的方向,(x,y)表示Gabor滤波器对应的二元变量。
本发明实施例设计了4个fu=[0.03589,0.09473,0.25,0.6577]和6个θv=[0,40,80,120,160,180],按照上述生成Gabor滤波器的公式计算共生成了24个二维的Gabor滤波器
Figure PCTCN2016104661-appb-000020
其中,
Figure PCTCN2016104661-appb-000021
表示24个二维Gabor滤波器集合,
Figure PCTCN2016104661-appb-000022
表示第t个Gabor滤波器。如图2所示,为本发明实施例生成的24个不同频率和方向的滤波器示意图。
在本发明实施例中,步骤S101采用了上述方法生成Gabor滤波器,但并不能限定本发明,步骤S101中的Gabor滤波器,可以采用比如Log-Gabor等不同的形式,生成滤波器的频率、角度等参数、个数也可以调整,本发明所采用的Gabor响应也可以通过幅值、相位等其他形式代替。
步骤S102:将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
本发明实施例根据步骤S101的结果,将每一个所述二维Gabor滤波器与所述高光谱图像的每一个波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到24个Gabor特征块:
Figure PCTCN2016104661-appb-000023
其中,
Figure PCTCN2016104661-appb-000024
表示24个二维Gabor滤波器集合,
Figure PCTCN2016104661-appb-000025
表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
Figure PCTCN2016104661-appb-000026
λ表示所述高光谱图像的每一个波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,24}表示24个Gabor特征块集合,Mt表示第t个Gabor特征块。
如图3和图4所示,为本发明实施例提供的在步骤S102得到的Gabor特征获取示意图和Gabor滤波器对高光谱某一波段的图像进行卷积的结果示意图。
步骤S103:对所述高光谱图像进行超像素分割,得到若干个超像素;
本发明实施例使用SLIC(simple linear iterative clustering,简单线性迭代聚类)的超像素分割方法对高光谱图像进行分割,得到分割图,该分割图包含n个超像素{Si,i=1,2,..,n}。
在本发明实施例中使用SLIC方法对高光谱图像进行分割,并不能限定本发明,步骤S103还可以使用基于熵率的超像素分割等方法实现。如图5所示,为本发明实施例提供的使用SLIC方法将高光谱图像分割成超像素的平面示意图。
步骤S104:将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
本发明实施例中,{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到24个n×B维的超像素特征数据集合{Nt,t=1,2,..,24}。
在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进 行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
其中,{Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,24}表示24个n×B维的超像素特征数据集合,
Figure PCTCN2016104661-appb-000027
Nt表示第t个超像素特征数据;其中,所述每一个超像素Si均包含若干个像素。
步骤S105:将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合。
本发明实施例将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
Figure PCTCN2016104661-appb-000028
步骤S106:将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据。
本发明实施例中,将每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到24个K维的超像素特征数据集合{Dt,t=1,2,..,24};
其中,{Dt,t=1,2,..,24}表示维度为K的超像素特征数据集合,K表示所述第二维度,
Figure PCTCN2016104661-appb-000029
Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空间坐标数据集合仍是C。
步骤S107:将每一个所述第二维度的超像素特征数据分别与所述空间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据。
本发明实施例中,每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到24个三维高光谱特征数据集合{Gt,t=1,2,..,24}。
其中,{Gt,t=1,2,..,24}表示24个三维的高光谱特征数据集合,
Figure PCTCN2016104661-appb-000030
l×m×K表示三维,Gt表示第t个三维的高光谱特征数据。
步骤S108:对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
本发明实施例中,将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,24}表示24个维度为K的像素特征数据集合,那么对g的分类过程如下:
(1)对训练数据{G1t,t=1,2,..,24}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,24};
(2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
(3)高光谱图像样本g的类别预测公式为:
Figure PCTCN2016104661-appb-000031
如图6所示,为本发明实施例提供的在步骤S108得到的多任务支持向量机分类示意图。
如图7所示,本发明实施例还提供了一种基于超像素级信息融合的高光谱图像的分类系统,所述系统包括:
滤波器生成模块701:用于生成若干个二维的Gabor滤波器;
Gabor特征提取模块702:用于将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
高光谱图像超像素分割模块703:用于对所述高光谱图像进行超像素分割,得到若干个超像素;
超像素特征数据计算模块704:用于将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
超像素空间坐标计算模块705:用于将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合;
数据降维模块706:用于将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据;
高光谱特征数据生成模块707:用于将每一个所述第二维度的超像素特征数据分别与所述空间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据;
多任务支持向量机分类模块708:用于对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
进一步地,所述Gabor特征提取模块702具体用于:将每一个所述二维Gabor滤波器与所述高光谱图像的每一波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到若干个Gabor特征块:
Figure PCTCN2016104661-appb-000032
其中,
Figure PCTCN2016104661-appb-000033
表示若干个二维Gabor滤波器集合,
Figure PCTCN2016104661-appb-000034
表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
Figure PCTCN2016104661-appb-000035
λ表示所述高光谱图像的每一波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,X}表示若干个Gabor特征块集合,Mt表示第t个Gabor特征块,其中t表示个数,X为正整数。
进一步地,所述超像素特征数据计算模块704具体用于:{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到若干个n×B维的超像素特征数据集合{Nt,t=1,2,..,X}。
在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
其中,{Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,X}表示若干 个n×B维的超像素特征数据集合,
Figure PCTCN2016104661-appb-000036
Nt表示第t个超像素特征数据;其中,所述每一个超像素Si均包含若干个像素。
所述超像素空间坐标计算模块705具体用于:将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
Figure PCTCN2016104661-appb-000037
所述数据降维模块706具体用于:每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到若干个K维的超像素特征数据集合{Dt,t=1,2,..,X}。
其中,{Dt,t=1,2,..,X}表示维度为K的超像素特征数据集合,K表示所述第二维度,
Figure PCTCN2016104661-appb-000038
Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空间坐标数据集合仍是C。
进一步地,所述高光谱特征数据生成模块707具体用于:每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到若干个三维高光谱特征数据集合{Gt,t=1,2,..,X;其中,{Gt,t=1,2,..,X}表示若干个三维的高光谱特征数据集合,
Figure PCTCN2016104661-appb-000039
l×m×K表示三维,Gt表示第t个三维的高光谱特征数据。
所述多任务支持向量机分类模块708具体用于:将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,X}表示X个维度为K的像素特征数据集合,那么对g的分类过程如下:
(1)对训练数据{G1t,t=1,2,..,X}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,X};
(2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
(3)高光谱图像样本g的类别预测公式为:
Figure PCTCN2016104661-appb-000040
在本发明实施例中,采用了三个真实的高光谱数据集。
第一个数据集是Indian Pines,是由AVIRIS高光谱传感器从美国印第安纳州的一块测试地上获得的,该图像大小为145*145共21025个像素,一共有224个波段,在实际应用时去掉了4个零波段和35个杂波段,剩余185个波段。图像的空间分辨率约为20m.该数据包括16个地物类别,共10249个有标记样本点。
第二个数据是Salinas,该数据是由AVIRIS传感器在加利福尼亚萨利纳斯山谷的上空采集,总共有512*217个样本,其中地物共54129个样本,包含16类地物,其余为背景,由于污染去掉了20个谱段,剩余204个。
第三个数据是PaviaU,该数据是由ROSIS传感器从意大利北部的帕维亚上空得到的,其空间分辨率为1.3m每像素,大小为610*340,共103个波段,包含9类地物,总共207400个样本,其中地物42776个,背景164624个。
以每类15个训练样本的PaviaU数据为例,本发明能够达到91.75%的精度,传统的支持向量机核方法精度为70.11%,超像素的薛定谔特征映射特征提取加支持向量机核的方法精度为85.25%,形态学特征提取加支持向量机核的分类方法为精度为81.18%,Gabor特征提取加多任务的稀疏表示方法精度为83.00%。对比表明,本发明的方法在分类精度上远远超过传统的分类方法。
综上所述,本发明采用基于多任务支持向量机分类的方法,大大降低了计算的复杂度;本发明采用基于二维Gabor的多种特征结合超像素的空谱结合的薛定谔特征降维方法,具有更高的分类精度;本发明使用的Gabor特征块包含了更加丰富的局部变化信息,使用数据降维的方法减少了波段之间的冗余信息。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于超像素级信息融合的高光谱图像的分类方法,其特征在于,所述分类方法包括下述步骤:
    滤波器生成步骤:生成若干个二维的Gabor滤波器;
    Gabor特征提取步骤:将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
    高光谱图像超像素分割步骤:对所述高光谱图像进行超像素分割,得到若干个超像素;
    超像素特征数据计算步骤:将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
    超像素空间坐标计算步骤:将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合;
    数据降维步骤:将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据;
    高光谱特征数据生成步骤:将每一个所述第二维度的超像素特征数据分别与所述空间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据;
    多任务支持向量机分类步骤:对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
  2. 如权利要求1所述的基于超像素级信息融合的高光谱图像的分类方法,其特征在于,所述Gabor特征提取步骤包括:
    将每一个所述二维Gabor滤波器与所述高光谱图像的每一个波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到若干个Gabor特征块:
    Figure PCTCN2016104661-appb-100001
    其中,
    Figure PCTCN2016104661-appb-100002
    表示若干个二维Gabor滤波器集合,
    Figure PCTCN2016104661-appb-100003
    表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
    Figure PCTCN2016104661-appb-100004
    λ表示所述高光谱图像的每一波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,X}表示若干个Gabor特征块集合,Mt表示第t个Gabor特征块,其中t表示个数,X为正整数。
  3. 如权利要求2所述的基于超像素级信息融合的高光谱图像的分类方法,其特征在于:
    所述超像素特征数据计算步骤包括:{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到若干个n×B维的超像素特征数据集合{Nt,t=1,2,..,X};
    在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
    其中,(Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,X}表示若干个n×B维的超像素特征数据集合,
    Figure PCTCN2016104661-appb-100005
    Nt表示第t个超像素特征数据;
    其中,所述每一个超像素Si均包含若干个像素;
    所述超像素空间坐标计算步骤包括:将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
    Figure PCTCN2016104661-appb-100006
    所述数据降维步骤包括:每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到若干个K维的超像素特征数据集合{Dt,t=1,2,..,X};
    其中,{Dt,t=1,2,..,X}表示维度为K的超像素特征数据集合,K表示所述第二维度,
    Figure PCTCN2016104661-appb-100007
    Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空间坐标数据集合仍是C。
  4. 如权利要求3所述的基于超像素级信息融合的高光谱图像的分类方法,其特征在于:
    所述高光谱特征数据生成步骤包括:每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到若干个三维高光谱特征数据集合{Gt,t=1,2,..,X};
    其中,{Gt,t=1,2,..,X}表示若干个三维的高光谱特征数据集合,
    Figure PCTCN2016104661-appb-100008
    l×m×K表示三维,Gt表示第t个三维的高光谱特征数据;
    所述多任务支持向量机分类包括:将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,X}表示X个维度为K的像素特征数据集合,那么对g的分类过程如下:
    (1)对训练数据{G1t,t=1,2,..,X}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,X};
    (2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
    (3)高光谱图像样本g的类别预测公式为:
    Figure PCTCN2016104661-appb-100009
  5. 一种基于超像素级信息融合的高光谱图像的分类系统,其特征在于,所述系统包括:
    滤波器生成模块:用于生成若干个二维的Gabor滤波器;
    Gabor特征提取模块:用于将每一个所述Gabor滤波器分别与高光谱图像中的每一个波段进行卷积运算,并对卷积运算结果进行取幅值运算,得到若干个Gabor特征块;
    高光谱图像超像素分割模块:用于对所述高光谱图像进行超像素分割,得到若干个超像素;
    超像素特征数据计算模块:用于将每一个所述超像素与每一个所述Gabor特征块分别进行均值计算,得到若干个第一维度的超像素特征数据;
    超像素空间坐标计算模块:用于将每一个所述超像素与所述高光谱图像分别进行坐标均值计算,得到1个空间坐标数据集合;
    数据降维模块:用于将每一个所述第一维度的超像素特征数据分别与所述空间坐标数据 集合使用空谱结合的薛定谔特征映射方法进行特征降维,从第一维度降到第二维度,得到若干个第二维度的超像素特征数据;
    高光谱特征数据生成模块:用于将每一个所述第二维度的超像素特征数据分别与所述空间坐标数据集合使用自然邻点插值法进行重构,得到若干个三维高光谱特征数据;
    多任务支持向量机分类模块:用于对所述每一个三维高光谱特征数据分别进行多任务的支持向量机分类。
  6. 如权利要求5所述的基于超像素级信息融合的高光谱图像的分类系统,其特征在于,所述Gabor特征提取模块具体用于:
    将每一个所述二维Gabor滤波器与所述高光谱图像的每一波段分别进行卷积运算,并对卷积运算结果根据下述公式进行取幅值运算,得到若干个Gabor特征块:
    Figure PCTCN2016104661-appb-100010
    其中,
    Figure PCTCN2016104661-appb-100011
    表示若干个二维Gabor滤波器集合,
    Figure PCTCN2016104661-appb-100012
    表示第t个Gabor滤波器,(x,y)表示在二维平面进行卷积运算时对应的二元坐标变量,R表示所述高光谱图像,其中
    Figure PCTCN2016104661-appb-100013
    λ表示所述高光谱图像的每一波段,l表示高光谱图像的宽度,m表示高光谱图像的长度,B表示高光谱图像的波段数,即高光谱图像的高度,l×m×B表示三维,{Mt,t=1,2,..,X}表示若干个Gabor特征块集合,Mt表示第t个Gabor特征块,其中t表示个数,X为正整数。
  7. 如权利要求6所述的基于超像素级信息融合的高光谱图像的分类系统,其特征在于:
    所述超像素特征数据计算模块具体用于:{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt分别进行均值计算,得到n×B维的超像素特征数据Nt,最终共得到若干个n×B维的超像素特征数据集合{Nt,t=1,2,..,X};
    在{Si,i=1,2,..,n}集合对应每一个Gabor特征块Mt进行均值计算时,S1对应Mt进行均值计算得到第1个B维的向量,S2对应Mt进行均值计算得到第2个B维的向量,S3对应Mt进行均值计算得到第3个B维的向量,依次类推至Sn对应Mt进行均值计算得到第n个B维的向量,最终共得到n个B维的向量,即n×B维的超像素特征数据Nt
    其中,{Si,i=1,2,..,n}表示对高光谱图像进行超像素分割得到的若干个超像素集合,Si表示第i个超像素,n表示超像素的个数;B维表示所述第一维度,{Nt,t=1,2,..,X}表示若干个n×B维的超像素特征数据集合,
    Figure PCTCN2016104661-appb-100014
    Nt表示第t个超像素特征数据;
    其中,所述每一个超像素Si均包含若干个像素;
    所述超像素空间坐标计算模块具体用于:将所述每一个超像素Si分别与所述高光谱图像R进行坐标均值计算,得到1个n×2维的空间坐标数据集合C;其中,C表示空间坐标数据集合,
    Figure PCTCN2016104661-appb-100015
    所述数据降维模块具体用于:每一个超像素特征数据Nt分别与空间坐标数据集合C使用空谱结合的薛定谔特征映射的方法进行特征降维,从B维降到K维,得到K维的超像素特征数据Dt,最终共得到若干个K维的超像素特征数据集合{Dt,t=1,2,..,X};
    其中,{Dt,t=1,2,..,X}表示维度为K的超像素特征数据集合,K表示所述第二维度,
    Figure PCTCN2016104661-appb-100016
    Dt表示第t个K维的超像素特征数据;所述每一个超像素特征数据Dt所对应的空 间坐标数据集合仍是C。
  8. 如权利要求7所述的基于超像素级信息融合的高光谱图像的分类系统,其特征在于:
    所述高光谱特征数据生成模块具体用于:每一个超像素特征数据Dt分别和空间坐标数据集合C使用自然邻点插值法进行重构,对应原高光谱图像补足所有空间坐标的像素值,得到三维高光谱特征数据Gt,最终共得到若干个三维高光谱特征数据集合{Gt,t=1,2,..,X};
    其中,{Gt,t=1,2,..,X}表示若干个三维的高光谱特征数据集合,
    Figure PCTCN2016104661-appb-100017
    l×m×K表示三维,Gt表示第t个三维的高光谱特征数据;
    所述多任务支持向量机分类模块具体用于:将每一个高光谱特征数据Gt划分为训练数据G1t和测试数据G2t,g表示一个原始高光谱图像测试数据样本,其中g∈R,gt表示Gt当中与g同一位置坐标的像素特征数据,gt维度为K,{gt∈G2t,t=1,2,..,X}表示X个维度为K的像素特征数据集合,那么对g的分类过程如下:
    (1)对训练数据{G1t,t=1,2,..,X}使用概率输出的支持向量机方法进行模型训练,得到概率输出模型{Modelt,t=1,2,..,X};
    (2)使用概率输出模型Modelt对数据gt进行类别概率输出,得到gt属于每一个类别的概率{Pt(i),i=1,2,..,C},其中C为类别总数;
    (3)高光谱图像样本g的类别预测公式为:
    Figure PCTCN2016104661-appb-100018
PCT/CN2016/104661 2016-09-07 2016-11-04 基于超像素级信息融合的高光谱图像的分类方法及系统 WO2018045626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610810465.2 2016-09-07
CN201610810465.2A CN106469316B (zh) 2016-09-07 2016-09-07 基于超像素级信息融合的高光谱图像的分类方法及系统

Publications (1)

Publication Number Publication Date
WO2018045626A1 true WO2018045626A1 (zh) 2018-03-15

Family

ID=58230161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104661 WO2018045626A1 (zh) 2016-09-07 2016-11-04 基于超像素级信息融合的高光谱图像的分类方法及系统

Country Status (2)

Country Link
CN (1) CN106469316B (zh)
WO (1) WO2018045626A1 (zh)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985357A (zh) * 2018-06-29 2018-12-11 湖南理工学院 基于图像特征的集合经验模态分解的高光谱图像分类方法
CN109598284A (zh) * 2018-10-23 2019-04-09 广东交通职业技术学院 一种基于大间隔分布和空间特征的高光谱图像分类方法
CN110008844A (zh) * 2019-03-12 2019-07-12 华南理工大学 一种融合slic算法的kcf长期手势跟踪方法
CN110188821A (zh) * 2019-05-30 2019-08-30 安徽机电职业技术学院 多参数边缘保持滤波和多特征学习的高光谱图像分类方法
CN110222773A (zh) * 2019-06-10 2019-09-10 西北工业大学 基于不对称分解卷积网络的高光谱图像小样本分类方法
CN110490270A (zh) * 2019-08-27 2019-11-22 大连海事大学 一种基于空间信息自适应处理的高光谱图像分类方法
CN110516614A (zh) * 2019-08-29 2019-11-29 大连海事大学 一种基于子空间投影的高光谱图像分类方法
CN110516754A (zh) * 2019-08-30 2019-11-29 大连海事大学 一种基于多尺度超像元分割的高光谱图像分类方法
CN110807387A (zh) * 2019-10-25 2020-02-18 山东师范大学 一种基于高光谱图像特征的对象分类方法及系统
CN110852371A (zh) * 2019-11-06 2020-02-28 辽宁工程技术大学 基于累积变异比的集成超限学习机高光谱图像分类方法
CN110879953A (zh) * 2018-09-06 2020-03-13 华南农业大学 植物类别识别方法及系统
CN111079797A (zh) * 2019-11-25 2020-04-28 贝壳技术有限公司 一种图像分类的方法、装置和存储介质
CN111144463A (zh) * 2019-12-17 2020-05-12 中国地质大学(武汉) 一种基于残差子空间聚类网络的高光谱图像聚类方法
CN111242056A (zh) * 2020-01-16 2020-06-05 陕西师范大学 一种最大-最小距离嵌入的无监督高光谱图像分类方法
CN111274869A (zh) * 2020-01-07 2020-06-12 中国地质大学(武汉) 基于并行注意力机制残差网进行高光谱图像分类的方法
CN111401428A (zh) * 2020-03-12 2020-07-10 Oppo广东移动通信有限公司 一种图像分类方法、装置、电子设备和存储介质
CN111460966A (zh) * 2020-03-27 2020-07-28 中国地质大学(武汉) 基于度量学习和近邻增强的高光谱遥感图像分类方法
CN111476287A (zh) * 2020-04-02 2020-07-31 中国人民解放军战略支援部队信息工程大学 一种高光谱影像小样本分类方法及装置
CN111639587A (zh) * 2020-05-27 2020-09-08 西安电子科技大学 基于多尺度谱空卷积神经网络的高光谱图像分类方法
CN111695636A (zh) * 2020-06-15 2020-09-22 北京师范大学 一种基于图神经网络的高光谱图像分类方法
CN111723731A (zh) * 2020-06-18 2020-09-29 西安电子科技大学 基于空谱卷积核的高光谱图像分类方法、存储介质及设备
CN111860654A (zh) * 2020-07-22 2020-10-30 河南大学 一种基于循环神经网络的高光谱图像分类方法
CN111967182A (zh) * 2020-07-24 2020-11-20 天津大学 一种用于光谱分析的基于混合标记的高光谱建模方法
CN111967516A (zh) * 2020-08-14 2020-11-20 西安电子科技大学 一种逐像素分类方法、存储介质及分类设备
CN112052758A (zh) * 2020-08-25 2020-12-08 西安电子科技大学 基于注意力机制和循环神经网络的高光谱图像分类方法
CN112101271A (zh) * 2020-09-23 2020-12-18 台州学院 一种高光谱遥感影像分类方法及装置
CN112819959A (zh) * 2021-01-22 2021-05-18 哈尔滨工业大学 高光谱图像和激光雷达数据本征高光谱点云生成方法
CN112837293A (zh) * 2021-02-05 2021-05-25 中国科学院西安光学精密机械研究所 基于高斯函数典型关联分析的高光谱图像变化检测方法
CN112884040A (zh) * 2021-02-19 2021-06-01 北京小米松果电子有限公司 训练样本数据的优化方法、系统、存储介质及电子设备
CN113065518A (zh) * 2021-04-25 2021-07-02 中国电子科技集团公司第二十八研究所 基于lbp特征的超像素空谱多核高光谱图像分类方法
CN113139513A (zh) * 2021-05-14 2021-07-20 辽宁工程技术大学 基于超像素轮廓和改进pso-elm的空谱主动学习高光谱分类方法
CN113205143A (zh) * 2021-05-10 2021-08-03 郑州轻工业大学 耦合空谱特征的多尺度超像素高光谱遥感图像分类方法
CN113255698A (zh) * 2021-06-03 2021-08-13 青岛星科瑞升信息科技有限公司 用于高光谱影像空间特征提取的超像素级自适应ssa方法
CN113343900A (zh) * 2021-06-28 2021-09-03 中国电子科技集团公司第二十八研究所 基于cnn与超像素结合的组合核遥感影像目标检测方法
CN113723255A (zh) * 2021-08-24 2021-11-30 中国地质大学(武汉) 一种高光谱影像分类方法和存储介质
CN113963207A (zh) * 2021-10-21 2022-01-21 江南大学 基于空谱信息特征引导融合网络的高光谱图像分类方法
CN113989525A (zh) * 2021-12-24 2022-01-28 湖南大学 自适应随机块卷积核网络的高光谱中药材鉴别方法
CN114187479A (zh) * 2021-12-28 2022-03-15 河南大学 一种基于空谱特征联合的高光谱图像分类方法
CN114332534A (zh) * 2021-12-29 2022-04-12 山东省科学院海洋仪器仪表研究所 一种高光谱图像小样本分类方法
CN114663790A (zh) * 2022-05-24 2022-06-24 济宁德信测绘有限公司 一种智能遥感测绘方法及系统
CN114882291A (zh) * 2022-05-31 2022-08-09 南京林业大学 基于高光谱图像像素块机器学习的籽棉地膜识别分类方法
CN115795225A (zh) * 2022-12-09 2023-03-14 四川威斯派克科技有限公司 一种近红外光谱校正集的筛选方法及装置
CN116030352A (zh) * 2023-03-29 2023-04-28 山东锋士信息技术有限公司 融合多尺度分割和超像素分割的长时序土地利用分类方法
CN116486160A (zh) * 2023-04-25 2023-07-25 北京卫星信息工程研究所 基于光谱重建的高光谱遥感图像分类方法、设备及介质
CN116522690A (zh) * 2023-07-03 2023-08-01 航天宏图信息技术股份有限公司 新一代海洋卫星水色水温扫描仪科学数据仿真方法及装置
CN116758361A (zh) * 2023-08-22 2023-09-15 中国铁路设计集团有限公司 基于空间与光谱联合特征的工程岩组遥感分类方法及系统
CN116784075A (zh) * 2023-06-12 2023-09-22 淮阴工学院 一种基于ros的多光谱无人机智能定点施肥方法及施肥装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107194936B (zh) * 2017-05-24 2021-02-02 哈尔滨工业大学 基于超像素联合稀疏表示的高光谱图像目标检测方法
CN107633216B (zh) * 2017-09-07 2021-02-23 深圳大学 高光谱遥感图像的三维表面空谱联合特征编码方法及装置
CN108345892B (zh) * 2018-01-03 2022-02-22 深圳大学 一种立体图像显著性的检测方法、装置、设备及存储介质
CN108664986B (zh) * 2018-01-16 2020-09-04 北京工商大学 基于lp范数正则化的多任务学习图像分类方法及系统
CN109101977B (zh) * 2018-06-27 2022-09-20 深圳大学 一种基于无人机的数据处理的方法及装置
CN109472199B (zh) * 2018-09-29 2022-02-22 深圳大学 一种图像融合分类的方法及装置
CN109492593B (zh) * 2018-11-16 2021-09-10 西安电子科技大学 基于主成分分析网络和空间坐标的高光谱图像分类方法
CN109711269B (zh) * 2018-12-03 2023-06-20 辽宁工程技术大学 一种基于3d卷积谱空特征融合的高光谱图像分类算法
CN110084809B (zh) * 2019-05-06 2021-03-16 成都医云科技有限公司 糖尿病视网膜疾病数据处理方法、装置及电子设备
CN110189328B (zh) * 2019-06-11 2021-02-23 北华航天工业学院 一种卫星遥感图像处理系统及其处理方法
CN110569873A (zh) * 2019-08-02 2019-12-13 平安科技(深圳)有限公司 图像识别模型训练方法、装置以及计算机设备
CN111079544B (zh) * 2019-11-21 2022-09-16 湖南理工学院 一种基于加权联合最近邻的多任务稀疏表示检测方法
CN115761518B (zh) * 2023-01-10 2023-04-11 云南瀚哲科技有限公司 一种基于遥感图像数据的作物分类方法
CN117315381B (zh) * 2023-11-30 2024-02-09 昆明理工大学 一种基于二阶有偏随机游走的高光谱图像分类方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100208951A1 (en) * 2009-02-13 2010-08-19 Raytheon Company Iris recognition using hyper-spectral signatures
CN104392454A (zh) * 2014-12-03 2015-03-04 复旦大学 高光谱遥感图像空谱结合分类框架下的基于地物类别隶属度评分的合并方法
CN105184314A (zh) * 2015-08-25 2015-12-23 西安电子科技大学 基于像素聚类的wrapper式高光谱波段选择方法
CN105654098A (zh) * 2016-03-23 2016-06-08 深圳大学 一种高光谱遥感图像的分类方法及其系统
CN105740799A (zh) * 2016-01-27 2016-07-06 深圳大学 基于三维Gabor特征选择的高光谱遥感图像分类方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952499B1 (en) * 1998-10-19 2005-10-04 The United States Of America As Represented By The Secretary Of The Air Force Aspire (autonomous spatial pattern identification and recognition algorithm)
US7756342B2 (en) * 2004-09-20 2010-07-13 The United States Of America As Represented By The Secretary Of The Navy Method for image data processing
CN102819568B (zh) * 2012-07-18 2015-03-11 哈尔滨工程大学 基于地形采样点位置的海底地形数据建立方法
CN104036289A (zh) * 2014-06-05 2014-09-10 哈尔滨工程大学 一种基于空间-光谱特征和稀疏表达的高光谱图像分类方法
CN104809471B (zh) * 2015-04-27 2019-01-15 哈尔滨工程大学 一种基于空间光谱信息的高光谱图像残差融合分类方法
CN105069478B (zh) * 2015-08-19 2018-04-17 西安电子科技大学 基于超像素张量稀疏编码的高光谱遥感地物分类方法
CN105512661B (zh) * 2015-11-25 2019-02-26 中国人民解放军信息工程大学 一种基于多模态特征融合的遥感影像分类方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100208951A1 (en) * 2009-02-13 2010-08-19 Raytheon Company Iris recognition using hyper-spectral signatures
CN104392454A (zh) * 2014-12-03 2015-03-04 复旦大学 高光谱遥感图像空谱结合分类框架下的基于地物类别隶属度评分的合并方法
CN105184314A (zh) * 2015-08-25 2015-12-23 西安电子科技大学 基于像素聚类的wrapper式高光谱波段选择方法
CN105740799A (zh) * 2016-01-27 2016-07-06 深圳大学 基于三维Gabor特征选择的高光谱遥感图像分类方法及系统
CN105654098A (zh) * 2016-03-23 2016-06-08 深圳大学 一种高光谱遥感图像的分类方法及其系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, HAO: "The Research of Classification Techniques for Hyperspectral Remote Sensing Image Data", CHINA DOCTORAL DISSERTATIONS, 31 October 2004 (2004-10-31), pages 82 *

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985357B (zh) * 2018-06-29 2023-10-20 湖南理工学院 基于图像特征的集合经验模态分解的高光谱图像分类方法
CN108985357A (zh) * 2018-06-29 2018-12-11 湖南理工学院 基于图像特征的集合经验模态分解的高光谱图像分类方法
CN110879953A (zh) * 2018-09-06 2020-03-13 华南农业大学 植物类别识别方法及系统
CN109598284A (zh) * 2018-10-23 2019-04-09 广东交通职业技术学院 一种基于大间隔分布和空间特征的高光谱图像分类方法
CN110008844A (zh) * 2019-03-12 2019-07-12 华南理工大学 一种融合slic算法的kcf长期手势跟踪方法
CN110188821A (zh) * 2019-05-30 2019-08-30 安徽机电职业技术学院 多参数边缘保持滤波和多特征学习的高光谱图像分类方法
CN110222773A (zh) * 2019-06-10 2019-09-10 西北工业大学 基于不对称分解卷积网络的高光谱图像小样本分类方法
CN110222773B (zh) * 2019-06-10 2023-03-24 西北工业大学 基于不对称分解卷积网络的高光谱图像小样本分类方法
CN110490270A (zh) * 2019-08-27 2019-11-22 大连海事大学 一种基于空间信息自适应处理的高光谱图像分类方法
CN110490270B (zh) * 2019-08-27 2022-11-04 大连海事大学 一种基于空间信息自适应处理的高光谱图像分类方法
CN110516614A (zh) * 2019-08-29 2019-11-29 大连海事大学 一种基于子空间投影的高光谱图像分类方法
CN110516754B (zh) * 2019-08-30 2022-11-01 大连海事大学 一种基于多尺度超像元分割的高光谱图像分类方法
CN110516754A (zh) * 2019-08-30 2019-11-29 大连海事大学 一种基于多尺度超像元分割的高光谱图像分类方法
CN110807387A (zh) * 2019-10-25 2020-02-18 山东师范大学 一种基于高光谱图像特征的对象分类方法及系统
CN110852371B (zh) * 2019-11-06 2023-04-18 辽宁工程技术大学 基于累积变异比的集成超限学习机高光谱图像分类方法
CN110852371A (zh) * 2019-11-06 2020-02-28 辽宁工程技术大学 基于累积变异比的集成超限学习机高光谱图像分类方法
CN111079797B (zh) * 2019-11-25 2022-02-25 贝壳技术有限公司 一种图像分类的方法、装置和存储介质
CN111079797A (zh) * 2019-11-25 2020-04-28 贝壳技术有限公司 一种图像分类的方法、装置和存储介质
CN111144463B (zh) * 2019-12-17 2024-02-02 中国地质大学(武汉) 一种基于残差子空间聚类网络的高光谱图像聚类方法
CN111144463A (zh) * 2019-12-17 2020-05-12 中国地质大学(武汉) 一种基于残差子空间聚类网络的高光谱图像聚类方法
CN111274869A (zh) * 2020-01-07 2020-06-12 中国地质大学(武汉) 基于并行注意力机制残差网进行高光谱图像分类的方法
CN111242056B (zh) * 2020-01-16 2023-03-10 陕西师范大学 一种最大-最小距离嵌入的无监督高光谱图像分类方法
CN111242056A (zh) * 2020-01-16 2020-06-05 陕西师范大学 一种最大-最小距离嵌入的无监督高光谱图像分类方法
CN111401428A (zh) * 2020-03-12 2020-07-10 Oppo广东移动通信有限公司 一种图像分类方法、装置、电子设备和存储介质
CN111460966B (zh) * 2020-03-27 2024-02-02 中国地质大学(武汉) 基于度量学习和近邻增强的高光谱遥感图像分类方法
CN111460966A (zh) * 2020-03-27 2020-07-28 中国地质大学(武汉) 基于度量学习和近邻增强的高光谱遥感图像分类方法
CN111476287A (zh) * 2020-04-02 2020-07-31 中国人民解放军战略支援部队信息工程大学 一种高光谱影像小样本分类方法及装置
CN111639587A (zh) * 2020-05-27 2020-09-08 西安电子科技大学 基于多尺度谱空卷积神经网络的高光谱图像分类方法
CN111639587B (zh) * 2020-05-27 2023-03-24 西安电子科技大学 基于多尺度谱空卷积神经网络的高光谱图像分类方法
CN111695636A (zh) * 2020-06-15 2020-09-22 北京师范大学 一种基于图神经网络的高光谱图像分类方法
CN111695636B (zh) * 2020-06-15 2023-07-14 北京师范大学 一种基于图神经网络的高光谱图像分类方法
CN111723731B (zh) * 2020-06-18 2023-09-29 西安电子科技大学 基于空谱卷积核的高光谱图像分类方法、存储介质及设备
CN111723731A (zh) * 2020-06-18 2020-09-29 西安电子科技大学 基于空谱卷积核的高光谱图像分类方法、存储介质及设备
CN111860654B (zh) * 2020-07-22 2024-02-02 河南大学 一种基于循环神经网络的高光谱图像分类方法
CN111860654A (zh) * 2020-07-22 2020-10-30 河南大学 一种基于循环神经网络的高光谱图像分类方法
CN111967182B (zh) * 2020-07-24 2024-04-02 天津大学 一种用于光谱分析的基于混合标记的高光谱建模方法
CN111967182A (zh) * 2020-07-24 2020-11-20 天津大学 一种用于光谱分析的基于混合标记的高光谱建模方法
CN111967516A (zh) * 2020-08-14 2020-11-20 西安电子科技大学 一种逐像素分类方法、存储介质及分类设备
CN111967516B (zh) * 2020-08-14 2024-02-06 西安电子科技大学 一种逐像素分类方法、存储介质及分类设备
CN112052758A (zh) * 2020-08-25 2020-12-08 西安电子科技大学 基于注意力机制和循环神经网络的高光谱图像分类方法
CN112052758B (zh) * 2020-08-25 2023-05-23 西安电子科技大学 基于注意力机制和循环神经网络的高光谱图像分类方法
CN112101271A (zh) * 2020-09-23 2020-12-18 台州学院 一种高光谱遥感影像分类方法及装置
CN112819959A (zh) * 2021-01-22 2021-05-18 哈尔滨工业大学 高光谱图像和激光雷达数据本征高光谱点云生成方法
CN112837293B (zh) * 2021-02-05 2023-02-14 中国科学院西安光学精密机械研究所 基于高斯函数典型关联分析的高光谱图像变化检测方法
CN112837293A (zh) * 2021-02-05 2021-05-25 中国科学院西安光学精密机械研究所 基于高斯函数典型关联分析的高光谱图像变化检测方法
CN112884040B (zh) * 2021-02-19 2024-04-30 北京小米松果电子有限公司 训练样本数据的优化方法、系统、存储介质及电子设备
CN112884040A (zh) * 2021-02-19 2021-06-01 北京小米松果电子有限公司 训练样本数据的优化方法、系统、存储介质及电子设备
CN113065518A (zh) * 2021-04-25 2021-07-02 中国电子科技集团公司第二十八研究所 基于lbp特征的超像素空谱多核高光谱图像分类方法
CN113205143A (zh) * 2021-05-10 2021-08-03 郑州轻工业大学 耦合空谱特征的多尺度超像素高光谱遥感图像分类方法
CN113139513A (zh) * 2021-05-14 2021-07-20 辽宁工程技术大学 基于超像素轮廓和改进pso-elm的空谱主动学习高光谱分类方法
CN113139513B (zh) * 2021-05-14 2023-11-10 辽宁工程技术大学 基于超像素轮廓和改进pso-elm的空谱主动学习高光谱分类方法
CN113255698A (zh) * 2021-06-03 2021-08-13 青岛星科瑞升信息科技有限公司 用于高光谱影像空间特征提取的超像素级自适应ssa方法
CN113343900A (zh) * 2021-06-28 2021-09-03 中国电子科技集团公司第二十八研究所 基于cnn与超像素结合的组合核遥感影像目标检测方法
CN113723255B (zh) * 2021-08-24 2023-09-01 中国地质大学(武汉) 一种高光谱影像分类方法和存储介质
CN113723255A (zh) * 2021-08-24 2021-11-30 中国地质大学(武汉) 一种高光谱影像分类方法和存储介质
CN113963207A (zh) * 2021-10-21 2022-01-21 江南大学 基于空谱信息特征引导融合网络的高光谱图像分类方法
CN113963207B (zh) * 2021-10-21 2024-03-29 江南大学 基于空谱信息特征引导融合网络的高光谱图像分类方法
CN113989525A (zh) * 2021-12-24 2022-01-28 湖南大学 自适应随机块卷积核网络的高光谱中药材鉴别方法
CN114187479A (zh) * 2021-12-28 2022-03-15 河南大学 一种基于空谱特征联合的高光谱图像分类方法
CN114332534B (zh) * 2021-12-29 2024-03-29 山东省科学院海洋仪器仪表研究所 一种高光谱图像小样本分类方法
CN114332534A (zh) * 2021-12-29 2022-04-12 山东省科学院海洋仪器仪表研究所 一种高光谱图像小样本分类方法
CN114663790A (zh) * 2022-05-24 2022-06-24 济宁德信测绘有限公司 一种智能遥感测绘方法及系统
CN114882291A (zh) * 2022-05-31 2022-08-09 南京林业大学 基于高光谱图像像素块机器学习的籽棉地膜识别分类方法
CN114882291B (zh) * 2022-05-31 2023-06-06 南京林业大学 基于高光谱图像像素块机器学习的籽棉地膜识别分类方法
CN115795225B (zh) * 2022-12-09 2024-01-23 四川威斯派克科技有限公司 一种近红外光谱校正集的筛选方法及装置
CN115795225A (zh) * 2022-12-09 2023-03-14 四川威斯派克科技有限公司 一种近红外光谱校正集的筛选方法及装置
CN116030352A (zh) * 2023-03-29 2023-04-28 山东锋士信息技术有限公司 融合多尺度分割和超像素分割的长时序土地利用分类方法
CN116486160A (zh) * 2023-04-25 2023-07-25 北京卫星信息工程研究所 基于光谱重建的高光谱遥感图像分类方法、设备及介质
CN116486160B (zh) * 2023-04-25 2023-12-19 北京卫星信息工程研究所 基于光谱重建的高光谱遥感图像分类方法、设备及介质
CN116784075A (zh) * 2023-06-12 2023-09-22 淮阴工学院 一种基于ros的多光谱无人机智能定点施肥方法及施肥装置
CN116522690A (zh) * 2023-07-03 2023-08-01 航天宏图信息技术股份有限公司 新一代海洋卫星水色水温扫描仪科学数据仿真方法及装置
CN116522690B (zh) * 2023-07-03 2023-09-19 航天宏图信息技术股份有限公司 新一代海洋卫星水色水温扫描仪科学数据仿真方法及装置
CN116758361B (zh) * 2023-08-22 2023-10-27 中国铁路设计集团有限公司 基于空间与光谱联合特征的工程岩组遥感分类方法及系统
CN116758361A (zh) * 2023-08-22 2023-09-15 中国铁路设计集团有限公司 基于空间与光谱联合特征的工程岩组遥感分类方法及系统

Also Published As

Publication number Publication date
CN106469316B (zh) 2020-02-21
CN106469316A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2018045626A1 (zh) 基于超像素级信息融合的高光谱图像的分类方法及系统
Xia et al. A novel improved deep convolutional neural network model for medical image fusion
Yuan et al. Dual-clustering-based hyperspectral band selection by contextual analysis
Jia et al. Superpixel-based multitask learning framework for hyperspectral image classification
Jiao et al. Multiscale representation learning for image classification: A survey
Li et al. Multidimensional local binary pattern for hyperspectral image classification
Nanni et al. General purpose (GenP) bioimage ensemble of handcrafted and learned features with data augmentation
CN111460966B (zh) 基于度量学习和近邻增强的高光谱遥感图像分类方法
Huang et al. Spatial-spectral local discriminant projection for dimensionality reduction of hyperspectral image
Yuan et al. ROBUST PCANet for hyperspectral image change detection
Jia et al. Shearlet-based structure-aware filtering for hyperspectral and LiDAR data classification
CN104240187A (zh) 图像去噪装置及图像去噪方法
Sun et al. Multiscale low-rank spatial features for hyperspectral image classification
Haq et al. 3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution.
Wang et al. Classification of high spatial resolution remote sensing images based on decision fusion
Li et al. Texture analysis of remote sensing imagery with clustering and Bayesian inference
CN108520210A (zh) 基于小波变换和局部线性嵌入的人脸识别方法
Rigamonti et al. On the relevance of sparsity for image classification
CN116310452B (zh) 一种多视图聚类方法及系统
Mohite et al. 3D local circular difference patterns for biomedical image retrieval
Tu et al. Texture pattern separation for hyperspectral image classification
Bozkurt et al. Multi-scale directional-filtering-based method for follicular lymphoma grading
Kavitha et al. Joint spectral-spatial feature using deep 3-D CNN for hyperspectral images
Tian et al. Multiple feature learning based on edge-preserving features for hyperspectral image classification
Chitaliya et al. Comparative analysis using fast discrete Curvelet transform via wrapping and discrete Contourlet transform for feature extraction and recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 03.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16915560

Country of ref document: EP

Kind code of ref document: A1