WO2018043781A1 - Electrolyte comprising organic active material for redox flow battery and redox flow battery using same - Google Patents

Electrolyte comprising organic active material for redox flow battery and redox flow battery using same Download PDF

Info

Publication number
WO2018043781A1
WO2018043781A1 PCT/KR2016/009966 KR2016009966W WO2018043781A1 WO 2018043781 A1 WO2018043781 A1 WO 2018043781A1 KR 2016009966 W KR2016009966 W KR 2016009966W WO 2018043781 A1 WO2018043781 A1 WO 2018043781A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
redox flow
flow battery
active material
organic active
Prior art date
Application number
PCT/KR2016/009966
Other languages
French (fr)
Korean (ko)
Inventor
진창수
연순화
전명석
신경희
이범석
박세국
박천범
소재영
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US15/546,454 priority Critical patent/US10522863B2/en
Publication of WO2018043781A1 publication Critical patent/WO2018043781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery electrolyte comprising an organic active material and a redox flow battery using the same, and more particularly, an electrolyte solution for a redox flow battery in which an organic compound that can be used as a single active material in a positive electrode and a negative electrode is dissolved in a water-soluble solvent. And a redox flow battery using the same.
  • Renewable energy is classified into solar energy, biomass, wind power, hydropower, fuel cell, coal liquefaction, gasification, marine energy, waste energy and others, not coal, oil, nuclear power and natural gas. It refers to a flowable fuel mixed with materials, but is actually an energy source that replaces petroleum.
  • Various renewable energy has a great advantage to generate energy without polluting the environment, but the disadvantage is that the energy quality is not good due to the output fluctuation according to the geographical conditions and the natural environment.
  • energy storage devices that can store the remaining power and provide elasticity when needed are emerging as the most suitable means, and large-capacity long-term storage devices are in the spotlight.
  • redox flow batteries oxidize redox couples and active materials that are dissolved in electrolyte, unlike conventional secondary batteries storing electrical energy in electrodes containing active materials. It is a secondary battery using a reduction reaction. Due to the characteristics of the redox flow battery, the stack responsible for the output and the electrolyte part for the capacity are separated from each other, and thus the capacity and output can be freely designed. Unlike other cells, the redox flow battery does not change the structure of the electrode itself because only the redox reaction is performed by the exchange of electrons from the electrode, and since the electrode and the active material are separated, side reaction between the two materials is prevented. It is excellent in stability and lifespan compared to other rechargeable batteries.
  • Electrolyte one of the key materials of redox flow batteries, is used by dissolving active materials having different oxidation states in water-soluble and non-aqueous solvents.
  • a variety of redox flow battery is configured according to the type of active material, it is divided into aqueous and non-aqueous electrolyte according to the type of solvent.
  • the electrolyte solution containing such an active material must have a fast reactivity and reversibility with the electrode, and in order to increase the energy density, it must have a wide potential window and high solubility.
  • the electromotive force of the redox flow battery is determined by the difference between the standard electrode potentials E o of the redox couple constituting the positive and negative electrolytes.
  • the main water-based redox couples developed so far are Fe / Cr, V / V, V / Br, Zn / Br, Zn / Ce and the like.
  • Fe / Cr used as an active material of the early redox flow battery has been limited in its use due to the permeation of the active material through the separator and the corrosion of the electrolyte.
  • Vanadium redox flow cells were developed in 1980 by Maria Skyllas-Kazacos in Australia. . Vanadium has various oxidation values, so that both the positive and negative electrodes can be applied as a single material.
  • vanadium which is a single active material
  • the vanadium active material is permeated through the separator to recover the capacity through rebalancing even if the battery capacity decreases. It has a big advantage.
  • the water-soluble vanadium active material has a disadvantage of low energy density due to low voltage and solubility.
  • vanadium precipitation occurs at the cathodes V (II, III) at low temperatures below 0 ° C, and vanadium pentoxide (V 2 O 5 ) Precipitates.
  • V (II, III) vanadium pentoxide
  • V 2 O 5 vanadium pentoxide
  • the vanadium used as the active material of the flow battery has a large price fluctuation according to the export volume as China accounts for 40% of the world's reserves, and the patent technology for the vanadium active material and the flow battery using the same is restricted in its use. This follows.
  • the present invention provides a redox flow battery electrolyte comprising an organic active material having high solubility and potential and a redox flow battery using the same.
  • the present invention comprises a supporting electrolyte, an aqueous solvent and an organic active material
  • the organic active material is alkyl viologene dihalide, 4,4-bipyridine ), Pyrazine (pyrazine) and quinoxaline (quinoxaline)
  • a redox flow battery characterized in that it comprises one or more selected from the group consisting of.
  • the organic active material may be an active material that can use a single positive electrode and a negative electrode.
  • the alkyl group of the alkyl viologen dihalide may be selected from the group consisting of ethyl, methyl, propyl, butyl, heptyl and diheptyl, but is not limited thereto.
  • the alkyl viologen dihalide may be an alkyl viologen diiodide or an alkyl viologen diperchlorate. More preferably, it may be ethyl viologene diiodide or ethyl viologene diperchlorate.
  • the organic active material may be present in an electrolyte at a concentration of 0.005 M to 0.3 M, more preferably at a concentration of 0.01 M.
  • the supporting electrolyte may be selected from the group consisting of H 2 SO 4 , Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and LiCl, may be present in the electrolyte at a concentration of 0.5 M to 3 M, more preferably. Preferably at a concentration of 1 M.
  • the aqueous solvent examples include water, a hydrophilic solvent, or a mixed solvent of water and a hydrophilic solvent.
  • the hydrophilic solvent may include one or more selected from the group consisting of methanol, ethanol, methyl alcohol, isopropyl alcohol, ethylene glycol and diethylene glycol.
  • the present invention is a positive electrode cell comprising a positive electrode and a positive electrode electrolyte;
  • a cathode cell comprising a cathode and a cathode electrolyte;
  • a separator between the anode cell and the cathode cell, wherein the cathode electrolyte and the cathode electrolyte include a supporting electrolyte, an aqueous solvent, and an organic active material, and the organic active material is an alkyl viologen dihalide.
  • It provides a redox flow battery, characterized in that selected from the group consisting of viologene dihalide, 4,4-bipyridine, pyrazine and quinoxaline.
  • the separator may be an anion exchange membrane or a porous membrane.
  • the electrolyte solution according to the present invention is an aqueous electrolyte solution in which an active material is dissolved in an aqueous solvent, and thus has a low risk of fire or explosion and is excellent in stability.
  • an organic compound applicable as a single active material to the positive electrode and the negative electrode, there is an advantage that the capacity can be recovered through the mixture even if the capacity of the battery is reduced by permeation of the active material through the separator.
  • FIG. 1 is a schematic diagram of (a) a cyclic voltammogram and (b) a three-electrode system.
  • FIG. 2 shows a cyclic voltammetry curve of ethyl viologen diiodide in an aqueous solvent containing various supporting electrolytes.
  • FIG. 7 is a schematic diagram schematically showing a configuration of a redox flow battery.
  • 9 is a charge / discharge test of an Ethyl viologen diiodide redox flow battery to which a FAP-375-PP separator is applied, (a) when the current density is 10 mA / cm 2 , and (b) when 5 mA / cm 2 is used. (c) shows the potential change over time, current efficiency, energy efficiency and potential efficiency at 1 mA / cm 2 , and (d) results of discharge capacity, current efficiency, energy efficiency and potential efficiency according to the number of charge and discharge cycles. to be.
  • FIG. 10 is a charge / discharge test of a Pyrazine-NaI redox flow battery, and shows results of current capacity and potential measured according to the number of charge / discharge cycles.
  • Example Containing an organic active material Redox Flow Manufacture of electrolyte for battery
  • an active material and a supporting electrolyte were added to an aqueous solvent to prepare an electrolyte solution.
  • the types and concentrations of the organic active material, the supporting electrolyte, and the solvent used are shown in Table 1, and the electrochemical characteristics of the electrolyte prepared by the cyclic voltammetry and the charge / discharge test were performed.
  • Cyclic voltammetry was used for electrochemical characterization of the electrolyte prepared in Example.
  • the cyclic voltammetry method is a commonly used electrochemical measurement method in which a current-potential curve is obtained by scanning a triangular wave at a constant speed through the electrode potential of the working electrode.
  • the method of recording a current flowing in a potential-current curve when the potential is changed in proportion to time is called a potential sweep method.
  • a cyclic voltammetry method This is used in the electrochemical field to qualitatively grasp the reaction occurring on the surface of the electrode such as the potential at which the reaction occurs, the speed of the reaction, and the reactivity of the reaction product.
  • E pa means the oxidized peak potential
  • E pc means the cathodic peak potential
  • E p / 2 ((E pa + E pc ) / 2) is the average of both peak potentials.
  • I pa means an oxidized peak current (Anodic peak current)
  • I pc means a reduced peak current (Cathodic peak current) (Fig. 1 (a)).
  • the magnitude of the redox current or peak current is proportional to the square of the scan rate.
  • the cyclic voltammetry used in the present invention was conducted with a three-electrode system.
  • the electrode in which the electrode reaction to be measured is called a working electrode.
  • a glass carbon electrode with a diameter of 3 mm was used, and the reference electrode was Ag / AgCl and the counter electrode.
  • Silver platinum wire (platinum wire) was used (Fig. 1 (b)).
  • each electrolyte was prepared by adding 0.01 M of Ethyl viologen diiodide and the supporting electrolytes of Table 1 and NaCl and KCl as supporting electrolytes. At this time, only K 2 SO 4 0.5 M was added, the remaining support electrolyte was added 1 M concentration.
  • Each electrode was placed in the prepared electrolyte and then connected to a potentiostat / galvanostat for cyclic voltammetry experiments. The scan rate indicative of the potential ⁇ phase velocity was given at 100 mV / s.
  • ethyl viologen is a compound containing 4,4'-bipyridinium, and has three oxidation states of EVD 2+ , EVD + , and EVD 0 .
  • the redox reaction of EVD 2+ ⁇ EVD + occurs at E 1
  • the redox potential of EVD + ⁇ EVD 0 occurs at E 2 .
  • Ethyl viologen diperchlorate showed a reversible redox reaction at the cathode potential, and the results are shown in FIG.
  • the difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 3.
  • a 0.2 M EVD active material was dissolved in a 1 M LiCl supporting electrolyte and an aqueous solvent to prepare an electrolyte.
  • An electrolyte was injected into the cathode and the cathode in the same amount of 3 ml, and then a redox flow battery was manufactured in the configuration as shown in FIG. 7. It was.
  • the separator was an anion exchange membrane (Fumatech, FAP-450 (thickness). 50 ⁇ m), FAP-375-PP (thickness 70 ⁇ m)) was used.
  • the battery was charged and discharged at room temperature (25 ° C.) using a Maccor 4000 Maccor company.
  • the charging and discharging voltage range was charged and discharged with the upper limit voltage 1.65 V and the lower limit voltage 0 V, and the current density was continuously charged and discharged at 10, 5, and 1 mA / cm 2 .
  • the current efficiency was 96.0% when the current density was 5 mA / cm 2 , but the energy efficiency and the potential efficiency were 74.9% and 83.2 at 1 mA / cm 2 , respectively. The highest percentage came out.
  • the discharge capacity was similar to that of the battery using the FAP-450 separator (FIG. 9).
  • the battery was charged and discharged at room temperature (25 ° C.) using a Maccor 4000 Maccor company.
  • the charging and discharging voltage range was charged and discharged with an upper limit voltage of 2 V and a lower limit voltage of 0.8 V to 1.2 V.
  • the current density was continuously charged and discharged at 40 mA / cm 2 .

Abstract

The present invention relates to an electrolyte comprising organic active material for a redox flow battery and a redox flow battery using the same and, more specifically, to an electrolyte method for a redox flow battery, the electrolyte being obtained by dissolving, in an aqueous solvent, an organic compound usable as a single active material in a positive electrode and a negative electrode, and to a redox flow battery using the same. The electrolyte according to the present invention is an aqueous electrolyte in which an active material is dissolved in an aqueous solvent, and thus has a low risk of fire or explosion, leading to excellent safety. In addition, the electrolyte has an advantage in that, by applying an organic compound applicable as a single active material in the positive and negative electrodes, the recovery of battery capacity can be achieved through the mixing of liquids even though the battery capacity is reduced through the penetration of the active material through a separator.

Description

유기 활물질을 포함하는 레독스 플로우 전지용 전해액 및 이를 이용한 레독스 플로우 전지Redox flow battery electrolyte comprising an organic active material and redox flow battery using the same
본 발명은 유기 활물질을 포함하는 레독스 플로우 전지용 전해액 및 이를 이용한 레독스 플로우 전지에 관한 것으로, 더욱 자세하게는 양극 및 음극에 단일 활물질로 사용할 수 있는 유기 화합물을 수용성 용매에 용해시킨 레독스 플로우 전지용 전해액과 이를 이용한 레독스 플로우 전지에 관한 것이다. The present invention relates to a redox flow battery electrolyte comprising an organic active material and a redox flow battery using the same, and more particularly, an electrolyte solution for a redox flow battery in which an organic compound that can be used as a single active material in a positive electrode and a negative electrode is dissolved in a water-soluble solvent. And a redox flow battery using the same.
전 세계적으로 에너지 사용이 증가함에 따라 에너지원인 화석연료의 사용량이 점차적으로 증가하고 있다. 이러한 화석연료 사용은 기후 변화 및 환경오염을 초래하여 전 세계 적인 문제로 대두되고 있으며, 이에 대한 해결방안으로 신재생에너지(Renewable energy) 및 에너지 저장장치(Energy Storage System)를 이용하여 효율적인 전력사용을 도모하고 있다.As energy use increases worldwide, the use of fossil fuels, an energy source, is gradually increasing. The use of fossil fuels is a global problem due to climate change and environmental pollution. As a solution to this problem, efficient power use is made possible by using renewable energy and energy storage system. We are planning.
신재생에너지란 석탄, 석유, 원자력 및 천연가스가 아닌 태양에너지, 바이오 매스, 풍력, 소수력, 연료전지, 석탄의 액화, 가스화, 해양에너지, 폐기물에너지 및 기타로 구분되고 있고 이외에도 지열, 수소, 석탄에 의한 물질을 혼합한 유동성 연료를 의미하나, 실질적으로는 석유를 대체하는 에너지원을 말한다. 다양한 신재생에너지는 환경을 오염시키지 않고 에너지를 발전할 수 있는 큰 장점을 가지고 있으나, 지리적 조건 및 자연환경에 따라 출력 변동에 의한 에너지 품질이 좋지 못한 것이 단점으로 대두되고 있다. 이러한 문제를 해결하기 위해서는 남은 전력을 저장하였다가 필요한 시기에 탄력적으로 공급이 가능한 에너지 저장장치가 가장 적합한 수단으로 떠오르고 있으며, 특히 대용량 장주기용 저장장치가 각광을 받고 있다. Renewable energy is classified into solar energy, biomass, wind power, hydropower, fuel cell, coal liquefaction, gasification, marine energy, waste energy and others, not coal, oil, nuclear power and natural gas. It refers to a flowable fuel mixed with materials, but is actually an energy source that replaces petroleum. Various renewable energy has a great advantage to generate energy without polluting the environment, but the disadvantage is that the energy quality is not good due to the output fluctuation according to the geographical conditions and the natural environment. In order to solve this problem, energy storage devices that can store the remaining power and provide elasticity when needed are emerging as the most suitable means, and large-capacity long-term storage devices are in the spotlight.
다양한 종류의 에너지 저장장치 중, 레독스 플로우 전지는 기존 이차전지가 활물질이 포함되어 있는 전극에 전기에너지를 저장하는 것과는 다르게 전해액에 용해되어 있는 레독스 커플, 활물질(Redox Couple, Active Material)의 산화 환원 반응을 이용하는 이차전지이다. 레독스 플로우 전지 특성상 출력을 담당하는 스택과 용량을 담당하는 전해액부가 독립적으로 떨어져 있어, 용량과 출력을 자유롭게 설계 할 수 있는 장점을 가지고 있다. 레독스 플로우 전지는 다른 전지와 다르게 전극에서의 전자의 주고 받음에 의한 산화 환원 반응만이 이루어지기 때문에 전극 자체의 구조 변화가 없고, 전극과 활물질이 분리되어 있어 두 물질간의 부반응(side reaction)이 없어 안정성과 수명이 다른 이차전지에 비해 뛰어나다. 레독스 플로우 전지의 핵심 소재중 하나인 전해액은 산화상태가 다른 활물질을 수용성, 비수용성 용매에 용해하여 사용한다. 이때 활물질의 종류에 따라 다양한 레독스 플로우 전지가 구성되며, 용매의 종류에 따라 수계 및 비수계 전해질로 구분된다. 이러한 활물질을 포함한 전해액의 요구조건으로는 전극과의 빠른 반응성 및 가역성을 가지고 있어야 하며, 에너지 밀도를 높이기 위해서는 넓은 전위(potential window) 및 높은 용해도를 가져야 한다. 레독스 플로우 전지의 기전력은 양극 전해액과 음극 전해액을 구성하고 있는 레독스 커플의 표준전극전위 Eo의 차이에 의해서 결정되며, 지금까지 개발된 주요 수계 레독스 커플은 Fe/Cr, V/V, V/Br, Zn/Br, Zn/Ce 등이 있다.Among the various types of energy storage devices, redox flow batteries oxidize redox couples and active materials that are dissolved in electrolyte, unlike conventional secondary batteries storing electrical energy in electrodes containing active materials. It is a secondary battery using a reduction reaction. Due to the characteristics of the redox flow battery, the stack responsible for the output and the electrolyte part for the capacity are separated from each other, and thus the capacity and output can be freely designed. Unlike other cells, the redox flow battery does not change the structure of the electrode itself because only the redox reaction is performed by the exchange of electrons from the electrode, and since the electrode and the active material are separated, side reaction between the two materials is prevented. It is excellent in stability and lifespan compared to other rechargeable batteries. Electrolyte, one of the key materials of redox flow batteries, is used by dissolving active materials having different oxidation states in water-soluble and non-aqueous solvents. At this time, a variety of redox flow battery is configured according to the type of active material, it is divided into aqueous and non-aqueous electrolyte according to the type of solvent. The electrolyte solution containing such an active material must have a fast reactivity and reversibility with the electrode, and in order to increase the energy density, it must have a wide potential window and high solubility. The electromotive force of the redox flow battery is determined by the difference between the standard electrode potentials E o of the redox couple constituting the positive and negative electrolytes. The main water-based redox couples developed so far are Fe / Cr, V / V, V / Br, Zn / Br, Zn / Ce and the like.
한편, 레독스 플로우 전지의 발달은 초기 1974년 미국 NASA(National Aeronautics and Space Administration)에서 Fe/Cr계 활물질을 이용하여 우주항공용으로 개발이 시작되었다. 초기 레독스 플로우 전지의 활물질로 사용된 Fe/Cr은 분리막을 통한 활물질 투과, 그리고 전해질에 대한 부식성 문제로 사용에 제약이 있었다.Meanwhile, the development of the redox flow battery began in the early 1974 for the aerospace using Fe / Cr based active materials in the US National Aeronautics and Space Administration (NASA). Fe / Cr used as an active material of the early redox flow battery has been limited in its use due to the permeation of the active material through the separator and the corrosion of the electrolyte.
이후 많은 연구자들은 안정성이 우수하고 전극과의 가역적인 전기화학 반응을 할 수 있는 레독스 커플에 대한 연구를 진행하였으며, 이후 1980년 호주의 Maria Skyllas-Kazacos 연구진에 의해서 바나듐 레독스 플로우 전지가 개발 되었다. 바나듐은 다양한 산화가를 가지고 있어 양극 및 음극 모두 단일 물질로 적용이 가능하고, 단일 활물질인 바나듐을 사용할 경우 분리막을 통해 바나듐 활물질이 투과되어 전지 용량이 감소하더라도 혼액(rebalancing)을 통해 용량을 회복할 수 있는 큰 장점을 가지고 있다. 그러나 수용성 바나듐 활물질은 낮은 전압과 용해도를 갖고 있어 에너지 밀도가 낮다는 단점을 가지고 있다. 에너지 밀도를 높이기 위해서 바나듐 활물질의 농도를 높일 경우 0℃ 이하의 낮은 온도에서는 음극 V(II, III)에서 바나듐 석출이 발생하고, 작동온도 40℃ 이상에서는 양극에서 오산화 바나듐(V2O5)이 석출된다. 플로우 전지 시스템에서 석출물이 발생할 경우 전해액의 흐름을 방해하여 스택 내부 압력이 증가되어 누수가 발생되며, 바나듐 석출물에 의해 전지 용량이 감소된다. 또한 흐름전지의 활물질로 사용되는 바나듐은 중국이 전 세계 매장량 40%를 차지함에 따라 수출 양에 따른 가격 변동이 크며, 또한 바나듐 활물질 및 이를 사용하는 플로우 전지에 대한 특허기술이 해외에 있어 사용에 제약이 따른다. Since then, many researchers have studied redox couples with excellent stability and reversible electrochemical reactions with electrodes.Vanadium redox flow cells were developed in 1980 by Maria Skyllas-Kazacos in Australia. . Vanadium has various oxidation values, so that both the positive and negative electrodes can be applied as a single material. When using vanadium, which is a single active material, the vanadium active material is permeated through the separator to recover the capacity through rebalancing even if the battery capacity decreases. It has a big advantage. However, the water-soluble vanadium active material has a disadvantage of low energy density due to low voltage and solubility. If the concentration of the vanadium active material is increased to increase the energy density, vanadium precipitation occurs at the cathodes V (II, III) at low temperatures below 0 ° C, and vanadium pentoxide (V 2 O 5 ) Precipitates. When precipitates occur in the flow battery system, the flow of the electrolyte is interrupted to increase the internal pressure of the stack, and leakage occurs, and the battery capacity is reduced by the vanadium precipitates. In addition, the vanadium used as the active material of the flow battery has a large price fluctuation according to the export volume as China accounts for 40% of the world's reserves, and the patent technology for the vanadium active material and the flow battery using the same is restricted in its use. This follows.
[선행기술문헌] 대한민국 공개특허 제10-2014-0016298호[Patent Document] Republic of Korea Patent Publication No. 10-2014-0016298
본 발명은, 높은 용해도와 전위를 갖는 유기 활물질을 포함하는 레독스 플로우 전지용 전해액 및 이를 이용한 레독스 플로우 전지를 제공한다.The present invention provides a redox flow battery electrolyte comprising an organic active material having high solubility and potential and a redox flow battery using the same.
상기 목적을 달성하기 위하여, 본 발명은 지지 전해질, 수계 용매 및 유기 활물질을 포함하고, 상기 유기 활물질은 알킬 비올로겐 다이할라이드(alkyl viologene dihalide), 4,4-바이피리딘(4,4-bipyridine), 피라진(pyrazine) 및 퀴녹살린(quinoxaline)으로 구성된 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 레독스 플로우 전지용 전해액을 제공한다.In order to achieve the above object, the present invention comprises a supporting electrolyte, an aqueous solvent and an organic active material, the organic active material is alkyl viologene dihalide, 4,4-bipyridine ), Pyrazine (pyrazine) and quinoxaline (quinoxaline) provides an electrolyte solution for a redox flow battery, characterized in that it comprises one or more selected from the group consisting of.
상기 유기 활물질은 양극 및 음극을 단일로 사용할 수 있는 활물질일 수 있다. The organic active material may be an active material that can use a single positive electrode and a negative electrode.
상기 알킬 비올로겐 다이할라이드의 알킬기는 에틸, 메틸, 프로필, 부틸, 헵틸 및 다이헵틸로 구성된 군에서 선택될 수 있으나, 이에 국한되는 것은 아니다.The alkyl group of the alkyl viologen dihalide may be selected from the group consisting of ethyl, methyl, propyl, butyl, heptyl and diheptyl, but is not limited thereto.
상기 알킬 비올로겐 다이할라이드는 알킬 비올로겐 다이아이오다이드 또는 알킬 비올로겐 다이퍼클로레이트일 수 있다. 더욱 바람직하게는 에틸 비올로겐 다이아이오다이드(ethyl viologene diiodide) 또는 에틸 비올로겐 다이퍼클로레이트(ethyl viologene diperchlorate)일 수 있다. The alkyl viologen dihalide may be an alkyl viologen diiodide or an alkyl viologen diperchlorate. More preferably, it may be ethyl viologene diiodide or ethyl viologene diperchlorate.
상기 유기 활물질은 전해액 중에 0.005 M ~ 0.3 M의 농도로 존재할 수 있으며, 더욱 바람직하게는 0.01M의 농도로 존재할 수 있다.The organic active material may be present in an electrolyte at a concentration of 0.005 M to 0.3 M, more preferably at a concentration of 0.01 M.
상기 지지 전해질은 H2SO4, Li2SO4, Na2SO4, K2SO4 및 LiCl로 구성된 군에서 선택될 수 있고, 전해액 중에 0.5 M ~ 3 M의 농도로 존재할 수 있으며, 더욱 바람직하게는 1 M의 농도로 존재할 수 있다.The supporting electrolyte may be selected from the group consisting of H 2 SO 4 , Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and LiCl, may be present in the electrolyte at a concentration of 0.5 M to 3 M, more preferably. Preferably at a concentration of 1 M.
상기 수계 용매로는 물, 친수성 용매 또는, 물과 친수성 용매의 혼합 용매를 들 수 있다. 여기서 친수성 용매는 메탄올, 에탄올, 메틸알코올, 이소프로필알코올, 에틸렌글리콜 및 디에틸렌글리콜로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.Examples of the aqueous solvent include water, a hydrophilic solvent, or a mixed solvent of water and a hydrophilic solvent. Here, the hydrophilic solvent may include one or more selected from the group consisting of methanol, ethanol, methyl alcohol, isopropyl alcohol, ethylene glycol and diethylene glycol.
또한 본 발명은 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 음극 셀 사이에 분리막을 포함하는 레독스 플로우 전지로서, 상기 양극 전해액 및 음극 전해액은 지지 전해질, 수계 용매 및 유기 활물질을 포함하고, 상기 유기 활물질은 알킬 비올로겐 다이할라이드(alkyl viologene dihalide), 4,4-바이피리딘(4,4-bipyridine), 피라진(pyrazine) 및 퀴녹살린(quinoxaline)으로 구성된 군에서 선택되는 것을 특징으로 하는 레독스 플로우 전지를 제공한다.In addition, the present invention is a positive electrode cell comprising a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And a separator between the anode cell and the cathode cell, wherein the cathode electrolyte and the cathode electrolyte include a supporting electrolyte, an aqueous solvent, and an organic active material, and the organic active material is an alkyl viologen dihalide. It provides a redox flow battery, characterized in that selected from the group consisting of viologene dihalide, 4,4-bipyridine, pyrazine and quinoxaline.
상기 분리막은 음이온 교환막 또는 다공성막일 수 있다.The separator may be an anion exchange membrane or a porous membrane.
전해액에 관한 구체적 내용은 위에서 설명한 바와 같다.Details of the electrolyte are as described above.
본 발명에 따른 전해액은, 수계 용매에 활물질을 용해시킨 수계 전해액인 바, 화재나 폭발에 대한 위험성이 적어 안정성이 뛰어나다. 또한 양극 및 음극에 단일 활물질로 적용 가능한 유기 화합물을 적용함으로써 분리막을 통한 활물질 투과로 전지의 용량이 감소하더라도 혼액을 통해 용량을 회복할 수 있는 장점이 있다. 또한 기존의 플로우 전지(all vanadium, Zn/Br)에 비해 활물질의 원가를 줄일 수 있으며, 석출물 발생 등과 같은 기존 바나듐 활물질이 갖는 문제점을 개선할 있다.The electrolyte solution according to the present invention is an aqueous electrolyte solution in which an active material is dissolved in an aqueous solvent, and thus has a low risk of fire or explosion and is excellent in stability. In addition, by applying an organic compound applicable as a single active material to the positive electrode and the negative electrode, there is an advantage that the capacity can be recovered through the mixture even if the capacity of the battery is reduced by permeation of the active material through the separator. In addition, it is possible to reduce the cost of the active material compared to the conventional flow battery (all vanadium, Zn / Br), it is possible to improve the problems with the existing vanadium active material, such as generation of precipitates.
도 1은 (a) 순환전압전류 곡선 및 (b) 3전극 시스템에 대한 개략도이다. 1 is a schematic diagram of (a) a cyclic voltammogram and (b) a three-electrode system.
도 2는 다양한 지지전해질이 포함된 수계 용매에서 에틸 비올로겐 다이아이오다이드(ethyl viologen diiodide)의 순환전압전류 곡선을 나타낸 것이다.FIG. 2 shows a cyclic voltammetry curve of ethyl viologen diiodide in an aqueous solvent containing various supporting electrolytes.
도 3은 다양한 지지전해질이 포함된 수계 용매에서 Ethyl viologen diperchlorate의 순환전압전류 곡선을 나타낸 것이다.3 shows a cyclic voltammetry curve of Ethyl viologen diperchlorate in an aqueous solvent containing various supporting electrolytes.
도 4는 다양한 지지전해질이 포함된 수계 용매에서 4,4-Bipyridine의 순환전압전류 곡선을 나타낸 것이다.4 shows a cyclic voltammetry curve of 4,4-Bipyridine in an aqueous solvent containing various supporting electrolytes.
도 5는 다양한 지지전해질이 포함된 수계 용매에서 Pyrazine의 순환전압전류 곡선을 나타낸 것이다.5 shows a cyclic voltammetry curve of Pyrazine in an aqueous solvent containing various supporting electrolytes.
도 6은 다양한 지지전해질이 포함된 수계 용매에서 Quinoxaline의 순환전압전류 곡선을 나타낸 것이다.6 Quinoxaline's cyclic voltammograms are shown in aqueous solvents containing various supporting electrolytes.
도 7은 레독스 플로우 전지의 구성을 간략히 나타낸 개략도이다.7 is a schematic diagram schematically showing a configuration of a redox flow battery.
도 8은 FAP-450 분리막을 적용한 Ethyl viologen diiodide 레독스 플로우 전지를 충방전 테스트한 것으로, (a) 전류밀도가 10 mA/cm2일 때, (b) 5 mA/cm2일 때, (c) 1 mA/cm2일 때 시간에 따른 전위 변화, 전류 효율, 에너지 효율 및 전위 효율을 나타낸 것이고, (d) 충방전 횟수에 따른 방전 용량, 전류 효율, 에너지 효율 및 전위 효율을 나타낸 결과이다. 8 is a charge and discharge test of an Ethyl viologen diiodide redox flow battery to which a FAP-450 separator is applied, (a) when the current density is 10 mA / cm 2 , (b) when 5 mA / cm 2 , and (c ) It shows the potential change over time, current efficiency, energy efficiency and potential efficiency at 1 mA / cm 2 , and (d) the discharge capacity, current efficiency, energy efficiency and potential efficiency according to the number of charge and discharge cycles.
도 9는 FAP-375-PP 분리막을 적용한 Ethyl viologen diiodide 레독스 플로우 전지를 충방전 테스트한 것으로, (a) 전류밀도가 10 mA/cm2일 때, (b) 5 mA/cm2일 때, (c) 1 mA/cm2일 때 시간에 따른 전위 변화, 전류 효율, 에너지 효율 및 전위 효율을 나타낸 것이고, (d) 충방전 횟수에 따른 방전 용량, 전류 효율, 에너지 효율 및 전위 효율을 나타낸 결과이다. 9 is a charge / discharge test of an Ethyl viologen diiodide redox flow battery to which a FAP-375-PP separator is applied, (a) when the current density is 10 mA / cm 2 , and (b) when 5 mA / cm 2 is used. (c) shows the potential change over time, current efficiency, energy efficiency and potential efficiency at 1 mA / cm 2 , and (d) results of discharge capacity, current efficiency, energy efficiency and potential efficiency according to the number of charge and discharge cycles. to be.
도 10은 Pyrazine-NaI 레독스 플로우 전지를 충방전 테스트한 것으로, 충방전 횟수별로 측정한 전류용량 및 전위를 나타낸 결과이다. FIG. 10 is a charge / discharge test of a Pyrazine-NaI redox flow battery, and shows results of current capacity and potential measured according to the number of charge / discharge cycles.
[부호의 설명][Description of the code]
110: 엔드 플레이트 120: 카본 전극110: end plate 120: carbon electrode
130: 분리막 140: 플로우 프레임130: separator 140: flow frame
150: 그래파이트 플레이트 160: 전극 집전체150: graphite plate 160: electrode current collector
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서 이하의 실시예에 의해 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples. The objects, features and advantages of the present invention will be readily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced herein are provided to sufficiently convey the spirit of the present invention to those skilled in the art. Therefore, the present invention should not be limited by the following examples.
실시예Example : 유기 활물질을 포함하는 : Containing an organic active material 레독스Redox 플로우Flow 전지용 전해액 제조 Manufacture of electrolyte for battery
본 발명에 사용된 유기 활물질을 포함한 전해액은 수계용매에 활물질과 지지전해질을 첨가하여 전해액을 제조하였다. 이때 사용된 유기활물질과 지지전해질 그리고 용매의 종류와 농도는 표 1에 나타내었으며, 순환전압전류법 및 충방전 테스트를 통해 제조된 전해액의 전기화학적 특성 분석을 진행하였다.In the electrolyte solution including the organic active material used in the present invention, an active material and a supporting electrolyte were added to an aqueous solvent to prepare an electrolyte solution. The types and concentrations of the organic active material, the supporting electrolyte, and the solvent used are shown in Table 1, and the electrochemical characteristics of the electrolyte prepared by the cyclic voltammetry and the charge / discharge test were performed.
[표 1]TABLE 1
레독스 플로우 전지용 전해액 제조에 사용한 활물질, 지지전해질 및 용매의 종류 및 농도Types and Concentrations of Active Material, Supporting Electrolyte, and Solvent Used to Prepare Redox Flow Battery Electrolyte
Figure PCTKR2016009966-appb-I000001
Figure PCTKR2016009966-appb-I000001
실험예 1: 순환전압전류법에 의한 산화환원 반응 확인Experimental Example 1: Confirmation of redox reaction by cyclic voltammetry
실시예에서 제조한 전해액의 전기화학적 특성분석을 위하여 순환전압전류법(Cyclic Voltammetry, CV)을 이용하였다. 순환전압전류법은 일반적으로 많이 사용하는 전기화학적 측정방법으로서 작용전극의 전극전위를 일정 속도의 삼각파를 주사하여 전류-전위곡선을 얻는 방법이다. 시간에 비례하여 전위를 변화시킬 때에 흐르는 전류를 전위-전류 곡선으로 기록하는 방법을 전위주사법(potential sweep method)라고 하는데, 반복해서 전위를 인가하는 경우 순환전압전류법이라고 부른다. 이것은 반응이 일어나는 전위, 반응의 빠르기, 반응생성물의 반응성 등 전극표면에서 일어나고 있는 반응을 정성적으로 파악할 수 있는 것으로서 전기화학분야에 이용되고 있다. Cyclic voltammetry (CV) was used for electrochemical characterization of the electrolyte prepared in Example. The cyclic voltammetry method is a commonly used electrochemical measurement method in which a current-potential curve is obtained by scanning a triangular wave at a constant speed through the electrode potential of the working electrode. The method of recording a current flowing in a potential-current curve when the potential is changed in proportion to time is called a potential sweep method. When the potential is repeatedly applied, it is called a cyclic voltammetry method. This is used in the electrochemical field to qualitatively grasp the reaction occurring on the surface of the electrode such as the potential at which the reaction occurs, the speed of the reaction, and the reactivity of the reaction product.
CV 측정시 Epa는 산화 봉우리 전위(anodic peak potential), Epc는 환원 봉우리 전위(cathodic peak potential)을 의미하며 Ep/2((Epa+Epc)/2)는 양 봉우리 전위들의 평균값을 나타낸다. 또한 Ipa는 산화 봉우리 전류(Anodic peak current), Ipc는 환원 봉우리 전류(Cathodic peak current)를 의미한다(도 1의 (a)). 가역반응의 경우 산화 환원 전류나 봉우리 전류의 크기는 주사속도(scan rate)의 제곱에 비례한다. Ep/2의절대 값이 클수록 레독스 플로우 전지에 사용되는 활물질의 고전위가 유리하며, 산화/환원 봉우리 전류 값의 비율(Ipa/Ipc)이 1에 근접할수록 가역반응에 가깝다.In the CV measurement, E pa means the oxidized peak potential, E pc means the cathodic peak potential, and E p / 2 ((E pa + E pc ) / 2) is the average of both peak potentials. Indicates. In addition, I pa means an oxidized peak current (Anodic peak current), I pc means a reduced peak current (Cathodic peak current) (Fig. 1 (a)). In the case of reversible reactions, the magnitude of the redox current or peak current is proportional to the square of the scan rate. The higher the absolute value of E p / 2, the higher the potential of the active material used in the redox flow battery, and the closer the ratio of the oxidation / reduction peak current value (I pa / I pc ) to 1, the closer to the reversible reaction.
본 발명에 이용된 순환전압전류법은 3전극 시스템으로 실험을 진행하였다. 측정대상의 전극반응이 일어나는 전극을 작업전극(Working electrode)라고 하는데, 본 실험에서는 직경 3 mm의 glass carbon 전극을 사용하였으며, 기준전극(Reference electrode)은 Ag/AgCl을 그리고 상대전극(counter electrode)은 백금선(platinum wire)을 사용하였다(도 1의 (b)).The cyclic voltammetry used in the present invention was conducted with a three-electrode system. The electrode in which the electrode reaction to be measured is called a working electrode. In this experiment, a glass carbon electrode with a diameter of 3 mm was used, and the reference electrode was Ag / AgCl and the counter electrode. Silver platinum wire (platinum wire) was used (Fig. 1 (b)).
1-1: Ethyl viologen diiodide의 CV 측정1-1: CV Measurement of Ethyl viologen diiodide
Ethyl viologen diiodide의 산화환원 반응 및 표준 전극 전위 Eo를 확인하기 위해 Ethyl viologen diiodide 0.01 M과 표 1의 지지전해질과 더불어 NaCl 및 KCl을 지지전해질로 첨가한 각각의 전해액을 제조하였다. 이 때, K2SO4만 0.5 M을 첨가하였고, 나머지 지지전해질은 1 M 농도를 첨가하였다. 제조된 전해액에 각각의 전극들을 위치시킨 다음 포텐시오스테이트(potentiostat)/갈바노스테이트(galvanostat)에 연결하여 순환전압전류법 실험을 진행하였다. 전위 ◎기 속도를 나타내는 주사속도(scan rate)는 100 mV/s으로 주어졌다. In order to confirm the redox reaction and the standard electrode potential E o of ethyl viologen diiodide, each electrolyte was prepared by adding 0.01 M of Ethyl viologen diiodide and the supporting electrolytes of Table 1 and NaCl and KCl as supporting electrolytes. At this time, only K 2 SO 4 0.5 M was added, the remaining support electrolyte was added 1 M concentration. Each electrode was placed in the prepared electrolyte and then connected to a potentiostat / galvanostat for cyclic voltammetry experiments. The scan rate indicative of the potential 기 phase velocity was given at 100 mV / s.
실험 결과, 모든 전해액의 음극 전위와 양극 전위에서 산화 환원 봉우리가 나타났다(도 2). 이를 통해, 본 발명의 전해액은 가역적인 산화 환원 반응을 보이는 것을 확인할 수 있었다. 산화/환원 봉우리 전위의 차이 및 봉우리 전위의 평균값은 표 2와 같이 나타났다.As a result, redox peaks were observed at the cathode potential and the anode potential of all the electrolyte solutions (FIG. 2). Through this, it was confirmed that the electrolyte of the present invention showed a reversible redox reaction. The difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 2.
[표 2]TABLE 2
Figure PCTKR2016009966-appb-I000002
Figure PCTKR2016009966-appb-I000002
반응 메커니즘을 살펴보면 ethyl viologen은 4,4’-비피리디늄을 포함하는 화합물로 EVD2+, EVD+, EVD0의 세 가지 산화상태를 갖고 있으며, 음극 전위에서의 산화 환원 반응이 나타난다. 이 때, EVD2+ ↔ EVD+의 산화 환원 반응은 E1에서 일어나며, EVD+ ↔ EVD0의 산화환원 전위는 E2에서 일어난다.In terms of the reaction mechanism, ethyl viologen is a compound containing 4,4'-bipyridinium, and has three oxidation states of EVD 2+ , EVD + , and EVD 0 . At this time, the redox reaction of EVD 2+ ↔ EVD + occurs at E 1 , and the redox potential of EVD + ↔ EVD 0 occurs at E 2 .
Figure PCTKR2016009966-appb-I000003
Figure PCTKR2016009966-appb-I000003
또한 viologen diiodide 화합물의 diiodide 반응은 양극 전위에서 산화 환원 반응이 나타나며 반응식은 다음과 같다.In addition, the diiodide reaction of viologen diiodide compound showed redox reaction at the anode potential.
I3 - + 2e- ↔ 3I- I 3 - + 2e- ↔ 3I -
1-2:1-2: Ethyl viologen diperchlorate의 CV 측정CV measurement of ethyl viologen diperchlorate
Ethyl viologen diperchlorate의 산화 환원 반응 및 표준 전극 전위 Eo을 확인하기 위해 실험예 1-1과 동일한 조건으로 전해액을 제조하고 실험을 진행하였다. In order to confirm the redox reaction and the standard electrode potential E o of ethyl viologen diperchlorate, an electrolyte solution was prepared under the same conditions as in Experimental Example 1-1, and the experiment was performed.
실험 결과, Ethyl viologen diperchlorate는 음극 전위에서 가역적인 산화 환원 반응이 나타났으며, 그 결과를 도 3에 나타내었다. 산화/환원 봉우리 전위의 차이 및 봉우리 전위의 평균값은 표 3과 같이 나타났다. As a result, Ethyl viologen diperchlorate showed a reversible redox reaction at the cathode potential, and the results are shown in FIG. The difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 3.
[표 3]TABLE 3
Figure PCTKR2016009966-appb-I000004
Figure PCTKR2016009966-appb-I000004
1-3:1-3: 4,4- Bipyridine의 CV 측정CV measurement of 4,4-bipyridine
4,4-Bipyridine의 산화 환원 반응 및 표준 전극 전위 Eo을 확인하기 위해 실험예 1-1과 동일한 조건으로 전해액을 제조하고 실험을 진행하였다. In order to confirm the redox reaction of 4,4-Bipyridine and the standard electrode potential E o , an electrolyte solution was prepared under the same conditions as in Experimental Example 1-1, and the experiment was performed.
실험 결과, 4,4-Bipyridine은 음극 전위에서 가역적인 산화 환원 반응이 나타났으며, 그 결과를 도 4에 나타내었다. 산화/환원 봉우리 전위의 차이 및 봉우리 전위의 평균값은 표 4와 같이 나타났다. As a result, 4,4-Bipyridine showed a reversible redox reaction at the cathode potential, the results are shown in FIG. The difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 4.
[표 4]TABLE 4
Figure PCTKR2016009966-appb-I000005
Figure PCTKR2016009966-appb-I000005
1-4:1-4: Pyrazine의 CV 측정CV measurement of Pyrazine
Pyrazine의 산화 환원 반응 및 표준 전극 전위 Eo을 확인하기 위해 실험예 1-1과 동일한 조건으로 전해액을 제조하고 실험을 진행하였다. In order to confirm the redox reaction of Pyrazine and the standard electrode potential E o , an electrolyte was prepared under the same conditions as in Experimental Example 1-1, and the experiment was performed.
실험 결과, Pyrazine은 음극 전위에서 가역적인 산화 환원 반응이 나타났으며, 그 결과를 도 5에 나타내었다. 산화/환원 봉우리 전위의 차이 및 봉우리 전위의 평균값은 표 5와 같이 나타났다.As a result, Pyrazine showed a reversible redox reaction at the cathode potential, and the results are shown in FIG. 5. The difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 5.
[표 5]TABLE 5
Figure PCTKR2016009966-appb-I000006
Figure PCTKR2016009966-appb-I000006
1-5:1-5: Quinoxaline의Quinoxaline CVCV 측정 Measure
Quinoxaline의 산화 환원 반응 및 표준 전극 전위 Eo을 확인하기 위해 실험예 1-1과 동일한 조건으로 전해액을 제조하고 실험을 진행하였다. In order to confirm the redox reaction and the standard electrode potential E o of quinoxaline, an electrolyte solution was prepared under the same conditions as in Experimental Example 1-1 and the experiment was conducted.
실험 결과, Quinoxaline은 H2SO4및 Li2SO4를 제외한 나머지 지지전해질을 사용한 전해액에서는 음극 전위에서 가역적인 산화 환원 반응이 나타났으며, 그 결과를 도 6에 나타내었다. 산화/환원 봉우리 전위의 차이 및 봉우리 전위의 평균값은 표 6과 같이 나타났다.As a result, Quinoxaline showed a reversible redox reaction at the negative electrode potential in the electrolyte solution using the supporting electrolyte except H 2 SO 4 and Li 2 SO 4 , and the results are shown in FIG. 6. The difference between the oxidation / reduction peak potentials and the average value of the peak potentials are shown in Table 6.
[표 6]TABLE 6
Figure PCTKR2016009966-appb-I000007
Figure PCTKR2016009966-appb-I000007
실험예 2: 레독스 플로우 전지의 충방전 테스트Experimental Example 2: Charge / Discharge Test of Redox Flow Battery
2-1: Ethyl viologen diiodide의 충방전 테스트2-1: Charge-Discharge Test of Ethyl viologen diiodide
0.2 M의 EVD 활물질을 1 M의 LiCl 지지전해질과 수계 용매에 용해하여 전해액을 제조하였으며, 양극과 음극에 3 ml씩 동일한 양으로 전해액을 주입한 후 도 7과 같은 구성으로 레독스 플로우 전지를 제작하였다. 이 때 양극셀 및 음극셀에 사용된 전극은 12 cm2의 면적을 가지는 카본 펠트전극(Toyobo, XF-30A, t=4 mm)을 사용하였으며, 분리막은 음이온 교환막(Fumatech, FAP-450(두께 50 ㎛), FAP-375-PP(두께 70 ㎛))을 사용하였다. 그 후, 상온(25oC)에서 Maccor사의 Maccor 4000을 사용하여 전지의 충방전을 진행하였다. 충방전 전압 범위는 상한 전압 1.65 V 하한 전압 0 V로 충방전을 진행하였으며, 전류밀도는 10, 5, 1 mA/cm2에서 연속적으로 충방전을 수행하였다. A 0.2 M EVD active material was dissolved in a 1 M LiCl supporting electrolyte and an aqueous solvent to prepare an electrolyte. An electrolyte was injected into the cathode and the cathode in the same amount of 3 ml, and then a redox flow battery was manufactured in the configuration as shown in FIG. 7. It was. In this case, a carbon felt electrode (Toyobo, XF-30A, t = 4 mm) having an area of 12 cm 2 was used for the anode and cathode cells, and the separator was an anion exchange membrane (Fumatech, FAP-450 (thickness). 50 μm), FAP-375-PP (thickness 70 μm)) was used. Thereafter, the battery was charged and discharged at room temperature (25 ° C.) using a Maccor 4000 Maccor company. The charging and discharging voltage range was charged and discharged with the upper limit voltage 1.65 V and the lower limit voltage 0 V, and the current density was continuously charged and discharged at 10, 5, and 1 mA / cm 2 .
실험 결과, FAP-450 분리막을 사용한 전지에서, 전류 밀도가 10 mA/cm2일 때 전류 효율이 96.0%로 가장 높게 나왔으나, 5 mA/cm2에서 63.0%로 에너지 효율이 가장 높게 나왔고, 전위 효율은 1 mA/cm2에서 72.7%로 가장 높게 나왔다. 방전 용량은 충방전 횟수가 지속됨에도 불구하고 20 mAh대에서 크게 벗어나지 않았다(도 8).Experimental results showed that the current efficiency was the highest at 96.0% when the current density was 10 mA / cm 2 in the cell using the FAP-450 membrane, but the highest energy efficiency was obtained at 53.0 mA / cm 2 at 63.0%. The efficiency was highest with 72.7% at 1 mA / cm 2 . The discharge capacity did not deviate significantly from the 20 mAh band even though the number of charge and discharge cycles continued (FIG. 8).
한편, FAP-375-PP 분리막을 사용한 전지에서는 전류 밀도가 5 mA/cm2일 때 전류 효율이 96.0%로 가장 높게 나왔으나, 에너지 효율 및 전위 효율은 1 mA/cm2에서 각각 74.9% 및 83.2%로 가장 높게 나왔다. 방전 용량은 FAP-450 분리막을 사용한 전지와 유사하게 나타났다(도 9).On the other hand, in the battery using the FAP-375-PP separator, the current efficiency was 96.0% when the current density was 5 mA / cm 2 , but the energy efficiency and the potential efficiency were 74.9% and 83.2 at 1 mA / cm 2 , respectively. The highest percentage came out. The discharge capacity was similar to that of the battery using the FAP-450 separator (FIG. 9).
2-2: Pyrazine-NaI의 충방전 테스트 2-2: Charge / Discharge Test of Pyrazine-NaI
실험예 1-4와 같이 pyrazine은 음극에서 산화환원 반응을 보였으므로, 0.3 M의 pryazine 및 2 M의 NaCl 지지전해질을 수용성 용매에 용해하여 음극 전해액으로 사용하였고, 0.3 M NaI와 2 M NaCl을 수용성 용매에 용해하여 양극 전해액으로 사용하였다. 제조된 전해액은 각각 양극과 음극에 3 ml씩 동일한 양으로 전해액을 주입한 후 도 8과 같은 구성으로 레독스 플로우 전지를 제작하였다. 이 때 양극셀 및 음극셀에 사용된 전극은 12 cm2의 면적을 가지는 카본 펠트전극(Toyobo, XF-30A, t=4 mm)을 사용하였으며, 분리막은 다공성막인 celgard 3501을 사용하였다. 그 후, 상온(25oC)에서 Maccor사의 Maccor 4000을 사용하여 전지의 충방전을 진행하였다. 충방전 전압 범위는 상한 전압 2 V 하한 전압 0.8 V ~ 1.2 V로 충방전을 진행하였으며, 전류밀도는 40 mA/cm2에서 연속적으로 충방전을 수행하였다. Since pyrazine showed redox reaction in the negative electrode as in Experimental Example 1-4, 0.3 M pryazine and 2 M NaCl supporting electrolyte were dissolved in an aqueous solvent and used as a negative electrode electrolyte, and 0.3 M NaI and 2 M NaCl were water-soluble. It was dissolved in a solvent and used as a positive electrolyte solution. The prepared electrolyte was injected into the electrolyte in the same amount of 3 ml each of the positive electrode and the negative electrode, and then a redox flow battery was manufactured with the configuration as shown in FIG. 8. In this case, a carbon felt electrode (Toyobo, XF-30A, t = 4 mm) having an area of 12 cm 2 was used as the electrode for the anode cell and the cathode cell, and the separator was a celgard 3501 porous membrane. Thereafter, the battery was charged and discharged at room temperature (25 ° C.) using a Maccor 4000 Maccor company. The charging and discharging voltage range was charged and discharged with an upper limit voltage of 2 V and a lower limit voltage of 0.8 V to 1.2 V. The current density was continuously charged and discharged at 40 mA / cm 2 .
실험 결과, 충방전 횟수가 증가함에 따라 전지의 최대 용량은 감소하였으나, 최대 전위는 2.0 V를 유지하는 것을 확인할 수 있었다(도 10).As a result, as the number of charge and discharge increased, the maximum capacity of the battery was reduced, but it was confirmed that the maximum potential was maintained at 2.0 V (FIG. 10).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

  1. 지지 전해질, 수계 용매 및 유기 활물질을 포함하고,A supporting electrolyte, an aqueous solvent, and an organic active material,
    상기 유기 활물질은 알킬 비올로겐 다이할라이드(alkyl viologene dihalide), 4,4-바이피리딘(4,4-bipyridine), 피라진(pyrazine) 및 퀴녹살린(quinoxaline)으로 구성된 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 레독스 플로우 전지용 전해액.The organic active material includes at least one selected from the group consisting of alkyl viologene dihalide, 4,4-bipyridine, pyrazine and quinoxaline. The electrolyte solution for redox flow batteries characterized by the above-mentioned.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 유기 활물질은 양극 및 음극을 단일로 사용할 수 있는 활물질인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The organic active material is a redox flow battery electrolyte, characterized in that the active material that can be used as a single cathode.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 알킬 비올로겐 다이할라이드의 알킬기는 에틸, 메틸, 프로필, 부틸, 헵틸 및 다이헵틸로 구성된 군에서 선택되는 것을 특징으로 하는 레독스 플로우 전지용 전해액.The alkyl group of the alkyl viologen dihalide is selected from the group consisting of ethyl, methyl, propyl, butyl, heptyl and diheptyl electrolyte for redox flow battery.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 알킬 비올로겐 다이할라이드는 알킬 비올로겐 다이아이오다이드 또는 알킬 비올로겐 다이퍼클로레이트인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The alkyl viologen dihalide is an alkyl viologen diiodide or an alkyl viologen diperchlorate.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 알킬 비올로겐 다이할라이드는 에틸 비올로겐 다이아이오다이드(ethyl viologene diiodide) 또는 에틸 비올로겐 다이퍼클로레이트(ethyl viologene diperchlorate)인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The alkyl viologen dihalide is ethyl viologene diiodide (ethyl viologene diiodide) or ethyl viologene diperchlorate (ethyl viologene diperchlorate), characterized in that the electrolyte for redox flow battery.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 유기 활물질은 전해액 중에 0.005 M ~ 0.3 M의 농도로 존재하는 것을 특징으로 하는 레독스 플로우 전지용 전해액.The organic active material is a redox flow battery electrolyte, characterized in that present in a concentration of 0.005 M ~ 0.3 M in the electrolyte.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 지지 전해질은 H2SO4, Li2SO4, Na2SO4, K2SO4 및 LiCl로 구성된 군에서 선택되는 것을 특징으로 하는 레독스 플로우 전지용 전해액.The supporting electrolyte is selected from the group consisting of H 2 SO 4 , Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and LiCl electrolyte for redox flow battery.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 지지 전해질은 전해액 중에 0.5 M ~ 3 M의 농도로 존재하는 것을 특징으로 하는 레독스 플로우 전지용 전해액. The supporting electrolyte is a redox flow battery electrolyte, characterized in that present in a concentration of 0.5 M ~ 3 M.
  9. 양극 및 양극 전해액을 포함하는 양극 셀;A cathode cell comprising an anode and an anode electrolyte solution;
    음극 및 음극 전해액을 포함하는 음극 셀; 및A cathode cell comprising a cathode and a cathode electrolyte; And
    상기 양극 셀과 음극 셀 사이에 분리막을 포함하는 레독스 플로우 전지로서,A redox flow battery comprising a separator between the positive cell and the negative cell,
    상기 양극 전해액 및 음극 전해액은 지지 전해질, 수계 용매 및 유기 활물질을 포함하여 구성되고,The positive electrode electrolyte and the negative electrode electrolyte comprises a supporting electrolyte, an aqueous solvent and an organic active material,
    상기 유기 활물질은 알킬 비올로겐 다이할라이드(alkyl viologene dihalide), 4,4-바이피리딘(4,4-bipyridine), 피라진(pyrazine) 및 퀴녹살린(quinoxaline)으로 구성된 군에서 선택되는 것을 특징으로 하는 레독스 플로우 전지.The organic active material is selected from the group consisting of alkyl viologene dihalide, 4,4-bipyridine, pyrazine and quinoxaline. Redox flow battery.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 분리막은 음이온 교환막 또는 다공성막인 것을 특징으로 하는 레독스 플로우 전지.The separator is a redox flow battery, characterized in that an anion exchange membrane or a porous membrane.
PCT/KR2016/009966 2016-08-31 2016-09-06 Electrolyte comprising organic active material for redox flow battery and redox flow battery using same WO2018043781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/546,454 US10522863B2 (en) 2016-08-31 2016-09-06 Electrolyte solution for redox flow battery containing organic active material and redox flow battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160111270A KR101937783B1 (en) 2016-08-31 2016-08-31 Electrolyte for redox flow battery electrolyte contaning organic active material and redox flow battery using the same
KR10-2016-0111270 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043781A1 true WO2018043781A1 (en) 2018-03-08

Family

ID=61309415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009966 WO2018043781A1 (en) 2016-08-31 2016-09-06 Electrolyte comprising organic active material for redox flow battery and redox flow battery using same

Country Status (3)

Country Link
US (1) US10522863B2 (en)
KR (1) KR101937783B1 (en)
WO (1) WO2018043781A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230178784A1 (en) * 2020-05-14 2023-06-08 Ohio State Innovation Foundation Redox relay flow batteries and methods of making the same
FR3127337B1 (en) * 2021-09-23 2023-11-10 Ifp Energies Now Circulation batteries with a negolyte based on viologen and a hydro-alcoholic solvent.
DE102022109429A1 (en) 2022-04-19 2023-10-19 Volkswagen Aktiengesellschaft Method for producing a battery with a heater and a battery with a heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140030572A1 (en) * 2012-07-27 2014-01-30 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US20140370405A1 (en) * 2012-02-28 2014-12-18 Uchicago Argonne, Llc Organic non-aqueous cation-based redox flow batteries
US20150236543A1 (en) * 2014-02-18 2015-08-20 Massachusetts Institute Of Technology Materials for use with aqueous redox flow batteries and related methods and sysytems
KR20160008089A (en) * 2014-07-09 2016-01-21 (주) 레드초이스 Organic electrolyte for redox flow battery, method for producing the same and redox flow battery having the same
US20160308233A1 (en) * 2015-04-17 2016-10-20 Battelle Memorial Institute Aqueous electrolytes for redox flow battery systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117720A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Secondary battery
WO2012114315A1 (en) 2011-02-25 2012-08-30 Ecole Polytechnique Federale De Lausanne (Epfl) Improved redox couple for electrochemical and optoelectronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370405A1 (en) * 2012-02-28 2014-12-18 Uchicago Argonne, Llc Organic non-aqueous cation-based redox flow batteries
US20140030572A1 (en) * 2012-07-27 2014-01-30 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US20150236543A1 (en) * 2014-02-18 2015-08-20 Massachusetts Institute Of Technology Materials for use with aqueous redox flow batteries and related methods and sysytems
KR20160008089A (en) * 2014-07-09 2016-01-21 (주) 레드초이스 Organic electrolyte for redox flow battery, method for producing the same and redox flow battery having the same
US20160308233A1 (en) * 2015-04-17 2016-10-20 Battelle Memorial Institute Aqueous electrolytes for redox flow battery systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, TIANBIAO ET AL.: "A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte", ADVANCED ENERGY MATERIALS, vol. 6, no. 3, 4 February 2016 (2016-02-04), pages 1 - 8, XP055322386 *

Also Published As

Publication number Publication date
KR101937783B1 (en) 2019-01-14
US20180277876A1 (en) 2018-09-27
US10522863B2 (en) 2019-12-31
KR20180024649A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
CN103000924B (en) Organic phase dual flow battery
Takada et al. Solid-state lithium battery with graphite anode
CN108630458B (en) Aqueous electrolyte and application thereof
CN110867587B (en) Neutral water system mixed liquid flow battery with high power and long service life based on pyridylphenoxazine
WO2018043781A1 (en) Electrolyte comprising organic active material for redox flow battery and redox flow battery using same
CN110247113A (en) A kind of capacity increasing function type electrolyte and its preparation method and application
CN109546182B (en) Water phase system organic flow battery system based on salt cavern
CN105098232A (en) All-solid-state polymer electrolyte and preparation method and application thereof
CN107946624A (en) A kind of water system full stress-strain flow battery and its construction method and application based on indigo derivative
KR20190012413A (en) Hybrid redox flow battery and use thereof
AU2022219026A1 (en) Electrical regeneration of electrolytes
CN113328092A (en) Aqueous all-organic secondary battery based on oxazine compounds with multiple oxidation states
Li et al. Development and Challenges of Biphasic Membrane‐Less Redox Batteries
CN110474051B (en) Application of common dye rhodamine B as organic anode material of lithium ion battery
Zheng et al. Research Progress of Electrochemical Energy Storage Materials
CN1690694A (en) Reagent for lithiation reaction, preparation method and use thereof
CN110336029A (en) A kind of negative electrode material, cathode and kalium ion battery
CN113066992B (en) Alkaline aqueous single flow battery based on double-metal MOF positive electrode and organic matter negative electrode
WO2020071723A2 (en) Seawater battery system based on photoelectrode, and spontaneous photocharging method
CN106129406B (en) A kind of photovoltaic energy storage lithium ion battery
CN105470513A (en) Electrode active material for lithium ion battery and lithium ion battery
CN108511790A (en) One kind being based on PP14NTF2The preparation of electrolyte Dual-ion cell and test method
CN112993355B (en) Organic flow battery
WO2023103313A1 (en) Aqueous iodine-based battery based on multi-electron transfer
KR20180125183A (en) Flow battery having excellent charge and discharge characteristics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15546454

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915261

Country of ref document: EP

Kind code of ref document: A1