WO2018043474A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018043474A1
WO2018043474A1 PCT/JP2017/030897 JP2017030897W WO2018043474A1 WO 2018043474 A1 WO2018043474 A1 WO 2018043474A1 JP 2017030897 W JP2017030897 W JP 2017030897W WO 2018043474 A1 WO2018043474 A1 WO 2018043474A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel sheet
strength
martensite
Prior art date
Application number
PCT/JP2017/030897
Other languages
English (en)
French (fr)
Inventor
秀和 南
金子 真次郎
杉原 玲子
和憲 田原
一真 森
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019002337A priority Critical patent/MX2019002337A/es
Priority to KR1020197009227A priority patent/KR102239640B1/ko
Priority to JP2017567817A priority patent/JP6315160B1/ja
Priority to EP17846479.8A priority patent/EP3508601B1/en
Priority to CN201780052863.5A priority patent/CN109642292B/zh
Priority to US16/326,784 priority patent/US11401595B2/en
Publication of WO2018043474A1 publication Critical patent/WO2018043474A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Definitions

  • the present invention relates to a high-strength steel sheet excellent in formability suitable mainly for structural members of automobiles and a method for producing the same, and in particular, has a tensile strength (TS) of 780 MPa or more, has excellent stretch flangeability, and further has a surface of TS. It is intended to obtain a high-strength steel sheet having excellent internal anisotropy.
  • TS tensile strength
  • the shape freezing property of a steel plate is significantly lowered by increasing the strength and thinning of the steel plate. Therefore, in order to cope with this, it is widely performed to design a mold that predicts a shape change after mold release in advance and allows for a shape change amount during press molding.
  • the shape change amount with the shape change as a constant expected amount is greatly displaced from the target, and induces a shape defect.
  • the steel plate which became this shape defect needs reworking, such as carrying out sheet metal processing of each shape after press molding, mass production efficiency will fall remarkably. Therefore, it is required that the variation in TS of the steel sheet be as small as possible.
  • Patent Document 1 in mass%, C: 0.15 to 0.40%, Si: 1.0 to 2.0%, Mn: 1.5 to 2.5 %, P: 0.020% or less, S: 0.0040% or less, Al: 0.01 to 0.1%, N: 0.01% or less, and Ca: 0.0020% or less, with the balance being It has a component composition consisting of Fe and inevitable impurities, and the area ratio to the whole structure is 40 to 70% of the total of ferrite phase and bainite phase, 20 to 50% of martensite phase, and 10 to 30% of residual austenite phase.
  • a high-strength steel sheet having a tensile strength of 900 MPa or more and imparted with excellent elongation, stretch flangeability, and bendability is disclosed.
  • Patent Document 2 in mass%, C: 0.10% to 0.59%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.00%. 1% or less, S: 0.07% or less, Al: 3.0% or less, and N: 0.010% or less, and [Si%] + [Al%] ([X%] is the element X) (Mass%) satisfies 0.7% or more, and the balance has a steel component composed of Fe and inevitable impurities, and the steel sheet structure is an area ratio with respect to the entire steel sheet structure, and the martensite area ratio is 5 to 70%.
  • the amount of retained austenite is 5 to 40%
  • the area ratio of bainitic ferrite in the upper bainite is 5% or more
  • the area ratio of martensite the area ratio of residual austenite
  • the bainitic The total martensite is 40% or more with the area ratio of ferrite. 25% or more of them are tempered martensite
  • the area ratio of polygonal ferrite to the entire steel sheet structure is more than 10% and less than 50%
  • the average grain size is 8 ⁇ m or less
  • a group of adjacent polygonal ferrite grains is 8 ⁇ m or less.
  • the average diameter is 15 ⁇ m or less, and the average C content in the retained austenite is 0.70% by mass or more, resulting in excellent ductility and stretch flangeability.
  • a high-strength steel sheet having a tensile strength of 780 to 1400 MPa is disclosed.
  • Patent Document 3 by mass, C: 0.10 to 0.5%, Si: 1.0 to 3.0%, Mn: 1.5 to 3%, Al: 0.005 to 1 0.0%, P: more than 0% and 0.1% or less, and S: more than 0% and 0.05% or less, with the balance being iron and inevitable impurities, the metal structure of the steel plate being Polygonal ferrite, bainite, tempered martensite, and retained austenite are included, and the area ratio a of the polygonal ferrite is 10 to 50% with respect to the entire metal structure, and the bainite is adjacent to adjacent retained austenite.
  • High temperature zone bainite having an average distance of 1 ⁇ m or more between adjacent carbides, adjacent residual austenite and carbide, and adjacent residual austenite, adjacent carbides, adjacent residual austenite It is composed of a composite structure of low-temperature region-generated bainite whose average distance between the center positions of stenite and carbide is less than 1 ⁇ m, and the area ratio of the high-temperature-region-generated bainite is more than 0% and over 80% with respect to the entire metal structure
  • the total area ratio of the low temperature region bainite and the tempered martensite satisfies 0% to 80% or less with respect to the entire metal structure, and the volume ratio of residual austenite measured by the saturation magnetization method is in the entire metal structure.
  • a high-strength steel sheet having a structure of 5% or more and having a tensile strength of 780 MPa or more and having excellent ductility and excellent low-temperature toughness is disclosed.
  • JP 2014-189868 A Japanese Patent No. 5454745 Japanese Patent No. 5728115
  • Patent Documents 1 to 3 disclose that the workability is excellent in elongation, stretch flangeability and bendability, but all consider the in-plane anisotropy of TS. It has not been.
  • the present invention was developed in view of such circumstances, and by actively utilizing the lower bainite structure and finely dispersing an appropriate amount of retained austenite, it has a TS of 780 MPa or more and has stretch flangeability.
  • An object of the present invention is to provide a high-strength steel sheet that is excellent and has excellent in-plane anisotropy of TS together with its advantageous production method.
  • excellent stretch flangeability means that the value of ⁇ , which is an index of stretch flangeability, is 20% or more regardless of the strength of the steel sheet.
  • being excellent in the in-plane anisotropy of TS means that the value of
  • is obtained by the following equation (1).
  • ⁇ TS ⁇ (TS L -2 ⁇ TS D + TS C ) / 2 (1)
  • TS L, and the TS D and TS C the rolling direction of each steel plate (L direction), 45 ° direction to the rolling direction of the steel sheet (D direction), perpendicular (C direction to the rolling direction of the steel sheet
  • the TS value measured by performing a tensile test at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241 (2011) using JIS No. 5 test specimens collected from three directions).
  • the inventors have conducted intensive studies to develop a high-strength steel sheet having a TS of 780 MPa or more, excellent stretch flangeability, and excellent in-plane anisotropy of TS, and found the following. .
  • a slab whose component composition was appropriately adjusted was hot-rolled after heating, and subjected to hot-rolled sheet annealing as necessary to soften the hot-rolled sheet, and then cold-rolled to obtain Control the cooling after the first annealing in the austenite single-phase region by heating the cold-rolled sheet to suppress the ferrite transformation and pearlite transformation, and the structure before the second annealing is the martensite single-phase structure or bainite single-phase.
  • an appropriate amount of fine retained austenite can be included in the structure after the final annealing.
  • the degree of supercooling of the lower bainite transformation can be appropriately controlled by cooling to the martensite transformation start temperature or lower. .
  • the temperature to the lower bainite generation temperature region it is possible to increase the driving force of the lower bainite transformation and to effectively generate the lower bainite structure.
  • the structure before the second annealing is mainly composed of a martensite single phase structure, a bainite single phase structure, or a structure in which martensite and bainite are mixed, and the degree of supercooling of the lower bainite transformation during the subsequent second annealing.
  • the gist configuration of the present invention is as follows. 1. Ingredient composition is mass%, C: 0.08% to 0.35%, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more and 3.00% or less, P: 0.001% to 0.100%, S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less, with the balance being Fe and inevitable impurities, Steel structure is area ratio, Ferrite is 20% to 50%, Lower bainite is 5% to 40%, Martensite is 1% to 20%, Tempered martensite is 20% or less, In volume ratio, the retained austenite is 5% or more, the average crystal grain size of the retained austenite is 2 ⁇ m or less, A high-strength steel sheet having a microstructure in which the texture of the steel sheet is 3.0 or less in terms of the inverse strength ratio of ⁇ -fiber to ⁇ -fiber.
  • Al 0.01% or more and 1.00% or less
  • Ti 0.005% or more and 0.100% or less
  • Nb 0.005% or more and 0.100% or less
  • V 0.005% or more and 0.100% or less
  • B 0.0001% to 0.0050%
  • Cr 0.05% or more and 1.00% or less
  • Cu 0.05% or more and 1.00% or less
  • Sb 0.0020% or more and 0.2000% or less
  • Ta 0.0010% or more and 0.1000% or less
  • Ca 0.0003% or more and 0.0050% or less
  • a method for producing the high-strength steel sheet according to 1 or 2 The steel slab having the component composition of 1 or 2 is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower, and a coiling temperature of 300 ° C. or higher. After winding at 700 ° C. or less, pickling treatment, or after holding at a temperature range of 450 ° C. to 800 ° C. for 900 s or more and 36000 s or less, cold rolling is performed at a reduction rate of 30% or more, and then obtained.
  • the obtained cold-rolled sheet is subjected to the first annealing treatment at T 1 temperature or more and 950 ° C. or less, and then cooled to at least T 2 temperature under the condition of average cooling rate: 5 ° C./s or more and then cooled to room temperature. And Next, the second annealing treatment is performed by reheating to a temperature range of 740 ° C.
  • T 1 temperature or less T 1 temperature or less
  • the average cooling rate to at least T 2 temperature is set to 8 ° C./s or more
  • the cooling stop temperature (T 3 temperature -150 ° C.) and cooled to above T 3 temperature less then, (T 2 temperature -10 ° C.) and reheated to below the reheating temperature region, and reheating temperature was (cooling stop temperature + 5 ° C.) or higher
  • T 1 Temperature (° C.) 946 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr ] + 400 ⁇ [% Ti]
  • T 2 temperature (° C.) 740 ⁇ 490 ⁇ [% C] ⁇ 100 ⁇ [% Mn] ⁇ 70 ⁇ [% Cr]
  • T 3 temperature (° C.) 445-566 ⁇ [% C] ⁇ 150 ⁇ [% C] ⁇ [% Mn] + 15 ⁇ [% Cr] ⁇ 67.6 ⁇ [% C] ⁇ [% Cr] ⁇ 7. 5 x [% Si]
  • [% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
  • the present invention it is possible to effectively obtain a high-strength steel sheet having a TS of 780 MPa or more, excellent stretch flangeability, and further excellent in-plane anisotropy of TS. Therefore, by applying the high-strength steel plate obtained by the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
  • C 0.08% to 0.35%
  • C is an indispensable element for increasing the strength of the steel sheet and securing a stable retained austenite amount, and is an element necessary for securing the martensite amount and allowing austenite to remain at room temperature. If the C content is less than 0.08%, it is difficult to ensure the strength and workability of the steel sheet.
  • the C content is 0.08% or more and 0.35% or less.
  • they are 0.12% or more and 0.30% or less, More preferably, they are 0.15% or more and 0.26% or less.
  • Si 0.50% to 2.50%
  • Si is an element useful for improving the ductility of a steel sheet by suppressing the formation of carbides and promoting the formation of retained austenite. It is also effective in suppressing the formation of carbides due to decomposition of retained austenite. Furthermore, since it has a high solid solution strengthening ability in ferrite, it contributes to improving the strength of steel. Further, Si dissolved in ferrite has an effect of improving work hardening ability and increasing the ductility of the ferrite itself. In order to obtain such an effect, it is necessary to contain 0.50% or more of Si.
  • the Si amount is set to 0.50% or more and 2.50% or less.
  • they are 0.80% or more and 2.00% or less, More preferably, they are 1.00% or more and 1.80% or less, More preferably, they are 1.20% or more and 1.80% or less.
  • Mn is effective for securing the strength of the steel sheet.
  • the hardenability is improved to facilitate complex organization.
  • Mn has an effect of suppressing the formation of pearlite and bainite during the cooling process, and facilitates transformation from austenite to martensite.
  • the amount of Mn needs to be 1.50% or more.
  • the Mn content is 1.50% or more and 3.00% or less.
  • they are 1.50% or more and 2.70% or less, More preferably, they are 1.80% or more and 2.40% or less.
  • P 0.001% to 0.100%
  • P is an element that has a solid solution strengthening action and can be added according to a desired strength.
  • it is an element effective for complex organization in order to promote ferrite transformation.
  • P amount 0.001% or more.
  • the amount of P exceeds 0.100%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is greatly delayed to impair the quality of galvanizing.
  • impact resistance is deteriorated by embrittlement due to grain boundary segregation. Therefore, the P amount is set to 0.001% or more and 0.100% or less. Preferably it is 0.005% or more and 0.050% or less.
  • the amount of S needs to be 0.0001% or more due to restrictions in production technology. Therefore, the S amount is set to 0.0001% or more and 0.0200% or less. Preferably it is 0.0001% or more and 0.0050% or less.
  • N is an element that greatly deteriorates the aging resistance of steel.
  • the amount of N exceeds 0.0100%, deterioration of aging resistance becomes remarkable, so the amount is preferably as small as possible.
  • the amount of N needs to be 0.0005% or more due to restrictions on production technology. There is. Therefore, the N amount is set to 0.0005% or more and 0.0100% or less. Preferably it is 0.0005% or more and 0.0070% or less.
  • the high-strength steel sheet of the present invention is at least selected from Al, Ti, Nb, V, B, Cr, Cu, Sb, Sn, Ta, Ca, Mg, and REM, if necessary, in addition to the above basic components.
  • One element can be contained alone or in combination.
  • the balance of the component composition of the steel sheet is Fe and inevitable impurities.
  • Al 0.01% or more and 1.00% or less
  • Al is an element effective for suppressing the formation of carbides and promoting the formation of retained austenite. Moreover, it is an element added as a deoxidizer in the steel making process. In order to obtain such effects, the Al amount needs to be 0.01% or more. On the other hand, when the Al content exceeds 1.00%, inclusions in the steel sheet increase and ductility deteriorates. Therefore, the Al content is set to 0.01% or more and 1.00% or less. Preferably they are 0.03% or more and 0.50% or less.
  • Ti, Nb, and V are used during hot rolling or During the annealing, fine precipitates are formed to increase the strength. In order to obtain such an effect, it is necessary to add 0.005% or more of Ti, Nb, and V, respectively. On the other hand, if the Ti, Nb, and V amounts exceed 0.100%, respectively, the moldability deteriorates. Therefore, when Ti, Nb and V are added, their contents are 0.005% or more and 0.100% or less, respectively.
  • B 0.0001% or more and 0.0050% or less B is an element effective for strengthening steel, and the effect of addition is obtained at 0.0001% or more.
  • the B amount is set to 0.0001% or more and 0.0050% or less. Preferably it is 0.0005% or more and 0.0030% or less.
  • Cr 0.05% or more and 1.00% or less
  • Cu 0.05% or more and 1.00% or less
  • Cr and Cu not only play a role as solid solution strengthening elements, but also austenite in the cooling process during annealing. Stabilizes and facilitates complex organization. In order to obtain such an effect, the Cr content and the Cu content must each be 0.05% or more. On the other hand, if both the Cr content and the Cu content exceed 1.00%, the formability of the steel sheet decreases. Therefore, when adding Cr and Cu, the content is 0.05% or more and 1.00% or less, respectively.
  • Sb 0.0020% or more and 0.2000% or less
  • Sn 0.0020% or more and 0.2000% or less
  • Sb and Sn are decarburized in the region of several tens of ⁇ m of the steel sheet surface layer generated by nitriding or oxidation of the steel sheet surface. From the viewpoint of suppressing the above, it is added as necessary. This is because suppressing such nitriding and oxidation prevents the martensite generation amount on the steel sheet surface from decreasing and is effective in ensuring the strength and material stability of the steel sheet. On the other hand, if any of these elements is added excessively exceeding 0.2000%, the toughness is reduced. Therefore, when adding Sb and Sn, the content shall be in the range of 0.0020% or more and 0.2000% or less, respectively.
  • Ta 0.0010% or more and 0.1000% or less Ta, like Ti and Nb, generates alloy carbide and alloy carbonitride to contribute to high strength.
  • Nb carbide and Nb carbonitride partly dissolved in Nb carbide and Nb carbonitride to produce composite precipitates such as (Nb, Ta) (C, N), remarkably suppressing the coarsening of precipitates and strengthening precipitation
  • it is preferable to contain Ta it is preferable to contain Ta.
  • the effect of stabilizing the precipitate described above can be obtained by setting the content of Ta to 0.0010% or more.
  • the effect of stabilizing the precipitate is saturated.
  • the alloy cost increases. Therefore, when Ta is added, the content is within the range of 0.0010% to 0.1000%.
  • Ca, Mg, and REM are elements used for deoxidation In addition, it is an element effective for spheroidizing the shape of sulfide and improving the adverse effect of sulfide on local ductility and stretch flangeability. In order to obtain these effects, 0.0003% or more must be added. However, when Ca, Mg and REM are added in excess of 0.0050%, inclusions and the like are increased to cause defects on the surface and inside. Therefore, when adding Ca, Mg, and REM, the content shall be 0.0003% or more and 0.0050% or less, respectively.
  • the high-strength steel sheet of the present invention has a composite structure in which retained austenite mainly responsible for ductility and lower bainite responsible for strength are dispersed in soft ferrite rich in ductility. Further, in order to ensure sufficient ductility and a balance between strength and ductility, the area ratio of ferrite generated in the second annealing and cooling process needs to be 20% or more. On the other hand, to ensure strength, the area ratio of ferrite needs to be 50% or less.
  • bainite especially lower bainite.
  • the transformation from austenite to bainite occurs over a wide temperature range of approximately 150 to 550 ° C., and there are various types of bainite produced within this temperature range.
  • various bainite was often simply defined as bainite, but in order to obtain the target workability in the present invention, it is necessary to strictly define the bainite structure, It is defined separately for bainite and lower bainite.
  • the upper bainite and the lower bainite are defined as follows.
  • the upper bainite is composed of lath-like bainitic ferrite and residual austenite and / or carbide existing between bainitic ferrite, and there is no fine carbide regularly arranged in lath-like bainitic ferrite. It is a feature.
  • the lower bainite is composed of lath-shaped bainitic ferrite and residual austenite and / or carbides present between the bainitic ferrites in common with the upper bainite. It is characterized by the presence of fine carbides regularly arranged in bainitic ferrite.
  • the upper bainite and the lower bainite are distinguished by the presence or absence of fine carbides regularly arranged in bainitic ferrite. Such a difference in the formation state of carbides in bainitic ferrite greatly affects the concentration of C in retained austenite and the hardness of bainite.
  • the area ratio of the lower bainite when the area ratio of the lower bainite is less than 5%, C concentration to austenite due to the lower bainite transformation does not sufficiently progress in the holding process after the second annealing. The amount of retained austenite that exhibits the effect is reduced. Further, since the fraction of untransformed austenite in the holding process after the second annealing is increased and the fraction of martensite after cooling is increased, TS is increased, but ductility and stretch flangeability are decreased. Therefore, the area ratio of the lower bainite needs to be 5% or more in terms of the area ratio with respect to the entire steel sheet structure.
  • the lower bainite is in the range of 5% to 40% in terms of area ratio.
  • the range is preferably 6% or more and 30% or less, more preferably 7% or more and 25% or less.
  • Tempered martensite is produced in the process of reheating and holding after cooling stop during the second annealing treatment.
  • the amount of tempered martensite exceeds 20% by area ratio, lower bainite
  • the fraction of retained austenite decreases, resulting in a decrease in ductility.
  • the amount of tempered martensite is 20% or less in terms of area ratio, that is, when the martensite generation ratio in the reheating and holding process after the second annealing is 20% or less
  • the holding process after reheating has the effect of promoting the formation of lower bainite. Therefore, the area ratio of tempered martensite is 20% or less, preferably 15% or less. It may be 0%.
  • the area ratio of ferrite and martensite is 1 vol.
  • ferrite has a gray structure (base structure)
  • martensite has a white structure.
  • the area ratios of lower bainite and tempered martensite showing these characteristics were obtained by observing 10 views of a 1.5 ⁇ m square region using TEM, and using the above-mentioned Adobe Photoshop, The area ratio of bainite and tempered martensite) can be calculated for 10 visual fields, and these values can be obtained by averaging.
  • the amount of retained austenite in order to ensure good ductility and a balance between strength and ductility, the amount of retained austenite needs to be 5% or more by volume ratio. In order to ensure better ductility and a balance between strength and ductility, the amount of retained austenite is preferably 8% or more by volume ratio, more preferably 10% or more. Note that the upper limit of the amount of retained austenite is preferably 20% by volume.
  • the volume fraction of retained austenite was determined by measuring the X-ray diffraction intensity after grinding and polishing the steel plate to 1/4 of the plate thickness in the plate thickness direction. For incident X-rays, Co—K ⁇ is used, and the amount of retained austenite is calculated from the intensity ratio of each surface of (200), (220), (311) of austenite to the diffraction intensity of each surface of (200), (211) of ferrite. Calculated.
  • the average crystal grain size of retained austenite is preferably 1.5 ⁇ m or less.
  • the average crystal grain size of retained austenite is observed with 20 fields of view at a magnification of 15000 times using a TEM (transmission electron microscope), and the obtained tissue image is used to obtain an Image- of Media Cybernetics.
  • the area of each retained austenite crystal grain can be determined, the equivalent circle diameter can be calculated, and these values can be averaged.
  • the lower limit of the retained austenite crystal grains to be measured is 10 nm in terms of the equivalent circle diameter from the viewpoint of the measurement limit.
  • microstructure according to the present invention in addition to the above-described ferrite, lower bainite, martensite, tempered martensite and retained austenite, carbides such as pearlite and cementite and other known structures as steel sheets may be included, If these ratios are 5% or less in terms of area ratio, the effects of the present invention are not impaired.
  • ⁇ -fiber is a fiber texture whose ⁇ 110> axis is parallel to the rolling direction
  • ⁇ -fiber is a fiber texture whose ⁇ 111> axis is parallel to the normal direction of the rolling surface.
  • the body-centered cubic metal is characterized in that ⁇ -fiber and ⁇ -fiber are strongly developed by rolling deformation, and these textures remain even after recrystallization annealing.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the texture of the steel sheet exceeds 3.0, the texture is oriented in a specific direction of the steel sheet, and in-plane anisotropy of the mechanical properties, particularly The in-plane anisotropy of TS increases. Therefore, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber in the texture of the steel sheet is set to 3.0 or less, preferably 2.5 or less.
  • the lower limit of the inverse intensity ratio of ⁇ -fiber to ⁇ -fiber is not particularly limited, but is preferably 0.5 or more.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber was about 3.0 to 4.0.
  • this inverse strength ratio can be suitably reduced.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber is 0 after smoothing the surface by wet polishing and buffing using a colloidal silica solution on the plate thickness section (L section) parallel to the rolling direction of the steel sheet. .1 vol. Corrosion with% nital reduces asperities on the sample surface as much as possible, and completely removes the work-affected layer, and then corresponds to 1/4 position of the plate thickness (1/4 of the plate thickness in the depth direction from the steel plate surface).
  • the crystal orientation was measured using SEM-EBSD (Electron Back-Scatter Diffraction; Electron Backscattering Diffraction) method, and the obtained data was ⁇ -fiber using OIM Analysis from AMETEK EDAX. And ⁇ -fiber inverse intensity can be obtained respectively.
  • the high-strength steel sheet of the present invention can be obtained by the following process.
  • the steel slab having the predetermined composition described above is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower, and a coiling temperature of 300 ° C. or higher and 700 ° C. or lower. Wind up with.
  • the steel sheet is kept as it is or in a temperature range of 450 ° C. to 800 ° C. for 900 s or more and 36000 s or less, and then cold-rolled at a rolling reduction of 30% or more.
  • the obtained cold-rolled sheet was subjected to the first annealing treatment at T 1 temperature or more and 950 ° C. or less, and then cooled at least to T 2 temperature under the condition of average cooling rate: 5 ° C./s or more, Cool to room temperature.
  • the second annealing treatment is performed by reheating to a temperature range of 740 ° C. or more and T 1 temperature or less, and the average cooling rate to at least T 2 temperature is set to 8 ° C./s or more, and the cooling stop temperature: (T 3 (Temperature -150 ° C) to T 3 temperature.
  • the high-strength galvanized steel sheet of the present invention can be manufactured by subjecting the above-described high-strength steel sheet to a publicly known galvanizing treatment.
  • the steel slab having the above-described predetermined component composition is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower, and the coiling temperature is set to 300 ° C. It winds up as 700 degrees C or less.
  • Heating temperature of steel slab: 1100 ° C or higher and 1300 ° C or lower Precipitates present in the heating stage of the steel slab are present as coarse precipitates in the finally obtained steel sheet and do not contribute to the strength. Therefore, it is necessary to redissolve the precipitates precipitated during casting.
  • the heating temperature of the steel slab when the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently dissolve the precipitates, and problems such as an increased risk of trouble occurring during hot rolling due to an increase in rolling load arise. There is also a need to scale off defects such as bubbles and segregation in the surface layer of the slab, reduce cracks and irregularities on the steel sheet surface, and achieve a smooth steel sheet surface. Furthermore, when the precipitate produced
  • the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab needs to be 1300 ° C. or lower. Therefore, the heating temperature of the slab is set to 1100 ° C. or higher and 1300 ° C. or lower. Preferably they are 1150 degreeC or more and 1280 degrees C or less, More preferably, they are 1150 degreeC or more and 1250 degrees C or less.
  • the finish rolling outlet temperature is less than 800 ° C.
  • the rolling load increases, the rolling load increases, the reduction rate of the austenite in the non-recrystallized state increases, an abnormal texture develops, and the final product
  • the in-plane anisotropy becomes remarkable, and not only the uniformity of the material and the material stability are impaired, but also the ductility itself is lowered. Therefore, it is necessary to set the finish rolling outlet temperature of hot rolling to 800 ° C. or higher and 1000 ° C. or lower. Preferably it is the range of 820 degreeC or more and 950 degrees C or less.
  • the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but it can also be manufactured by an ingot-making method or a thin slab casting method.
  • the steel slab is not cooled to room temperature.
  • Energy-saving processes such as direct feed rolling and direct rolling that are rolled immediately after application can also be applied without problems.
  • the slab is made into a sheet bar by rough rolling under normal conditions. However, if the heating temperature is lowered, the sheet is heated using a bar heater before finishing rolling in order to prevent problems during hot rolling. It is preferred to heat the bar.
  • Winding temperature after hot rolling 300 ° C to 700 ° C
  • the coiling temperature after hot rolling exceeds 700 ° C.
  • the crystal grain size of ferrite in the hot-rolled sheet structure increases, and it becomes difficult to ensure the desired strength and ductility of the final annealed sheet.
  • the coiling temperature after hot rolling is less than 300 ° C.
  • the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity decreases.
  • the coiling temperature after hot rolling needs to be 300 ° C. or higher and 700 ° C. or lower.
  • they are 400 degreeC or more and 650 degrees C or less, More preferably, they are 400 degreeC or more and 600 degrees C or less.
  • rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling.
  • part or all of the finish rolling may be lubricated rolling.
  • Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material.
  • the hot-rolled steel sheet thus manufactured is pickled. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality in the final high-strength steel sheet.
  • the pickling may be performed once or may be divided into a plurality of times.
  • the steel sheet is kept as it is or at a temperature range of 450 ° C. to 800 ° C. for 900 s to 36000 s, and then cold rolling is performed at a reduction ratio of 30% or more.
  • the first annealing treatment in a temperature range of T 1 temperature or more and 950 ° C. or less, it is cooled to at least T 2 temperature under the condition of average cooling rate: 5 ° C./s or more and then cooled to room temperature.
  • Heat treatment temperature range and holding time after hot-rolled plate pickling treatment holding for 900 s to 36000 s in a temperature range of 450 ° C. to 800 ° C.
  • the heat treatment temperature range is less than 450 ° C. or the heat treatment holding time is less than 900 s, since tempering after hot rolling is insufficient, it becomes a non-uniform structure in which ferrite, bainite and martensite are mixed during subsequent cold rolling. Under the influence of the hot rolled sheet structure, uniform refinement becomes insufficient.
  • the ratio of coarse martensite increases in the structure of the final annealed sheet, resulting in a non-uniform structure, resulting in decreased ductility, stretch flangeability and material stability (in-plane anisotropy) of the final annealed sheet.
  • productivity may be adversely affected.
  • the heat treatment temperature range exceeds 800 ° C., it becomes a non-uniform and hardened coarse two-phase structure of ferrite and martensite or pearlite, and becomes a non-uniform structure before cold rolling.
  • the ratio of coarse martensite may increase, and the ductility, stretch flangeability and material stability of the final annealed sheet may also decrease. Therefore, the heat treatment temperature range after the hot-rolled sheet pickling treatment needs to be 450 ° C. or higher and 800 ° C. or lower, and the holding time needs to be 900 seconds or longer and 36000 seconds or shorter.
  • the rolling reduction during cold rolling needs to be 30% or more. Preferably it is 35% or more, more preferably 40% or more.
  • count of a rolling pass and the rolling reduction for every pass the effect of this invention can be acquired, without being specifically limited.
  • T 1 temperature means Ac 3 point.
  • the holding time for the first annealing treatment is not particularly limited, but is preferably in the range of 10 s to 1000 s.
  • T 2 temperature means the upper bainite transformation start temperature. Therefore, after the first annealing treatment, the average cooling rate to at least the T 2 temperature is set to 5 ° C./s or more. Preferably it is 8 degreeC / s or more, More preferably, it is 10 degreeC / s or more, More preferably, it is 15 degreeC / s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is industrially possible up to about 80 ° C./s.
  • the average cooling rate in the low temperature range is not particularly defined, and any cooling such as gas jet cooling, mist cooling, water cooling, and air cooling may be used.
  • the pickling may be performed according to a conventional method.
  • the average cooling rate to room temperature or the overaging zone exceeds 80 ° C./s, the steel sheet shape may be deteriorated, so the average cooling rate is 80 ° C./s or less. Preferably there is.
  • the structure before the second annealing treatment is mainly composed of a martensite single phase structure, a bainite single phase structure, or a structure in which martensite and bainite are mixed.
  • lower bainite can be effectively generated in the cooling, reheating and holding processes after the second annealing described later.
  • a martensite single phase structure or a bainite single phase structure or a mixed structure of martensite and bainite formed by the first annealing process and the subsequent cooling process forms a fine structure.
  • the formed retained austenite also has a fine structure.
  • the average crystal grain size of the retained austenite obtained by the present invention is preferably about 0.1 to 1.5 ⁇ m.
  • the holding time of the second annealing treatment is not particularly limited, but is preferably 10 s or more and 1000 s or less.
  • the average cooling rate to at least the T 2 temperature is 8 ° C./s or more.
  • the average cooling rate to at least the T 2 temperature is 8 ° C./s or more.
  • it is 10 degrees C / s or more, More preferably, it is 15 degrees C / s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is industrially possible up to about 80 ° C./s. It is not particular limitation on the cooling rate to the cooling stop temperature to be described later from the T 2 temperature.
  • the cooling stop temperature after the second annealing treatment is set to (T 3 temperature ⁇ 150 ° C.) or more and T 3 temperature or less.
  • the T 3 temperature means the martensitic transformation start temperature.
  • the reheating temperature is set to (cooling stop temperature after the second annealing process + 5 ° C.) or more and (T 2 temperature ⁇ 10 ° C.) or less. If the reheating temperature is less than 150 ° C., it is difficult to form lower bainite. Therefore, the reheating temperature is preferably (cooling stop temperature after the second annealing process + 5 ° C.) or higher and 150 ° C. or higher.
  • the holding time in the reheating temperature range is set to 10 seconds or more.
  • the residence time exceeds 1000 s, the volume ratio of retained austenite does not increase, and a significant improvement in ductility is not confirmed, and the saturation tends to be saturated. Therefore, the holding time in the reheating temperature range is 1000 s or less. It is preferable.
  • the cooling after the holding does not need to be specified, and may be cooled to a desired temperature by any method.
  • the desired temperature is preferably about room temperature.
  • the galvanizing alloying treatment when the alloying treatment is performed at a temperature exceeding 600 ° C., untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be secured, and El may be lowered. Therefore, when the galvanizing alloying treatment is performed, it is preferable to perform the galvanizing alloying treatment in a temperature range of 470 ° C. or more and 600 ° C. or less. Moreover, you may perform an electrogalvanization process. Also, the amount of plating is preferably 20 to 80 g / m 2 (double-sided plating) per side, and the alloyed hot-dip galvanized steel sheet (GA) is subjected to alloying treatment so that the Fe concentration in the plating layer is 7 to 15 mass. % Is preferable.
  • the reduction ratio of the skin pass rolling after the heat treatment is preferably in the range of 0.1% to 2.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 2.0%, this is made the upper limit of a favorable range.
  • Skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
  • Other manufacturing method conditions are not particularly limited, but from the viewpoint of productivity, a series of treatments such as annealing, hot dip galvanization, alloying treatment of galvanization, etc. are performed by CGL (Continuous Galvanizing) which is a hot dip galvanizing line. Line). After hot dip galvanization, wiping is possible to adjust the amount of plating.
  • conditions, such as plating other than the above-mentioned conditions can depend on the conventional method of hot dip galvanization.
  • Example 1 Steel having the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was heated under the conditions shown in Table 2 and hot-rolled, and then pickled. Nos. 1 to 11, 13 to 25, 27, 29, 31, 32, 34 to 39, 41, 43, and 44 are subjected to hot-rolled sheet heat treatment. Nos. 31, 32, 34 to 39, 41, 43, and 44 were subjected to pickling treatment after heat treatment of the hot-rolled sheet. Next, after cold rolling under the conditions shown in Table 2, annealing was performed twice under the conditions shown in Table 3 to obtain a high-strength cold-rolled steel sheet (CR).
  • CR high-strength cold-rolled steel sheet
  • GI hot-dip galvanized steel sheets
  • GA galvannealed steel sheets
  • EG electrogalvanized steel sheets
  • the hot dip galvanizing bath uses a zinc bath containing Al: 0.14% by mass or 0.19% by mass in GI, and uses a zinc bath containing Al: 0.14% by mass in GA.
  • GA electrogalvanized steel sheets
  • GA made Fe density
  • T 1 Temperature was determined using the following equation.
  • T 1 temperature (° C.) 946 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr] +400 x [% Ti]
  • T 1 temperature means Ac 3 point
  • T 2 temperature means upper bainite transformation start temperature
  • T 3 temperature means martensite transformation start temperature
  • the high-strength cold-rolled steel plate (CR), hot-dip galvanized steel plate (GI), alloyed hot-dip galvanized steel plate (GA), and electrogalvanized steel plate (EG) obtained as described above were used as test steels and mechanically. Characteristics were evaluated. The mechanical properties were evaluated by performing a tensile test and a hole expansion test as follows.
  • the length of the tensile test piece is 3 in the rolling direction of the steel plate (L direction), 45 ° direction (D direction) with respect to the rolling direction of the steel plate, and 3 ° direction (C direction) perpendicular to the rolling direction of the steel plate.
  • TS tensile strength
  • El total elongation
  • the hole expansion test was conducted in accordance with JIS Z 2256 (2010). After each steel plate obtained was cut to 100 mm ⁇ 100 mm, a hole with a diameter of 10 mm was punched out with a clearance of 12% ⁇ 1%, and then it was suppressed with a wrinkle holding force of 9 ton (88.26 kN) using a die with an inner diameter of 75 mm. , Push the 60 ° conical punch into the hole, measure the hole diameter at the crack initiation limit, find the limit hole expansion rate: ⁇ (%) from the following formula, and determine the hole expandability from the value of this limit hole expansion rate evaluated.
  • D f hole diameter at crack initiation (mm) D 0 is the initial hole diameter (mm).
  • which is an index of stretch flangeability, is 20% or more regardless of the strength of the steel sheet was determined to be good.
  • the area ratio of ferrite (F), lower bainite (LB), martensite (M) and tempered martensite (TM), volume ratio and average crystal grain size of retained austenite (RA), Determined the inverse strength ratio of ⁇ -fiber to ⁇ -fiber at the position of the steel sheet thickness 1 ⁇ 4.
  • Table 4 shows the results of examining the steel sheet structure of each steel sheet thus obtained.
  • Table 5 shows the measurement results for the mechanical properties of each steel plate.
  • TS is 780 MPa or more, excellent in ductility and stretch flangeability, has a balance between high strength and ductility, and excellent in in-plane anisotropy of TS. Yes.
  • any one or more of strength, ductility, stretch flangeability, balance between strength and ductility, and in-plane anisotropy of TS is inferior.
  • this invention is not limited by the description which makes a part of indication of this invention by this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.
  • the equipment for performing the heat treatment on the steel sheet is not particularly limited.
  • the present invention it is possible to produce a high-strength steel sheet having a TS of 780 MPa or more, excellent stretch flangeability, and excellent in-plane anisotropy of TS. Further, by applying the high-strength steel plate obtained according to the manufacturing method of the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.

Abstract

成分組成を、質量%で、C:0.08%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる組成とし、また鋼組織を、面積率で、フェライトが20%以上50%以下、下部ベイナイトが5%以上40%以下、マルテンサイトが1%以上20%以下、焼戻しマルテンサイトが20%以下で、かつ体積率で、残留オーステナイトが5%以上、上記残留オーステナイトの平均結晶粒径が2μm以下とし、さらに鋼板の集合組織を、α-fiberに対するγ-fiberのインバース強度比が3.0以下のミクロ組織とすることにより、780MPa以上のTSを有し、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板を提供する。

Description

高強度鋼板およびその製造方法
 本発明は、主に自動車の構造部材に好適な成形性に優れた高強度鋼板およびその製造方法に関し、特に780MPa以上の引張強度(TS)を有し、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板を得ようとするものである。
 近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSを780MPa以上としつつも板厚は薄い高強度鋼板を、自動車構造部材に適用する動きが積極的に進められている。加えて、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。
 しかしながら、一般的に鋼板の高強度化は成形性の低下を招くため、高強度と優れた成形性を両立させることは難しく、高強度と優れた成形性を併せ持つ鋼板が望まれていた。
 また、鋼板は、鋼板の高強度化、薄肉化によって、形状凍結性が著しく低下する。そこで、これに対応するため、プレス成形時に、離型後の形状変化を予め予測して、形状変化量を見込んだ金型を設計することが広く行われている。
 しかしながら、鋼板のTSが大きく変化した場合、形状変化を一定の見込み量とした形状変化量は、目標とのズレが大きくなってしまい、形状不良を誘発する。そして、この形状不良となった鋼板は、プレス成形後に、一個一個の形状を板金加工する等の手直しが必要となるため、量産効率を著しく低下させることとなる。そのため、鋼板のTSのバラツキは可能な限り小さくすることが要求されている。
 上記の要求に応えるものとして、例えば特許文献1には、質量%で、C:0.15~0.40%、Si:1.0~2.0%、Mn:1.5~2.5%、P:0.020%以下、S:0.0040%以下、Al:0.01~0.1%、N:0.01%以下およびCa:0.0020%以下を含有し、残部がFe及び不可避不純物からなる成分組成を有し、組織全体に対する面積比率で、フェライト相とベイナイト相の合計が40~70%、マルテンサイト相が20~50%、残留オーステナイト相が10~30%である組織とすることにより、引張強度900MPa以上で、かつ優れた伸び、伸びフランジ性、曲げ性を付与した高強度鋼板が開示されている。
 また、特許文献2には、質量%で、C:0.10%以上0.59%以下、Si:3.0%以下、Mn:0.5%以上3.0%以下、P:0.1%以下、S:0.07%以下、Al:3.0%以下およびN:0.010%以下を含有し、かつ[Si%]+[Al%]([X%]は元素Xの質量%)が0.7%以上を満足し、残部はFeおよび不可避不純物の組成からなる鋼成分を有し、鋼板組織を、鋼板組織全体に対する面積率で、マルテンサイトの面積率を5~70%、残留オーステナイトの量を5~40%、上部ベイナイト中のベイニティックフェライトの面積率を5%以上とし、かつ上記マルテンサイトの面積率と、上記残留オーステナイトの面積率と、上記ベイニティックフェライトの面積率との合計を40%以上として、上記マルテンサイトのうち25%以上を焼戻しマルテンサイトとし、ポリゴナルフェライトの鋼板組織全体に対する面積率を10%超50%未満で、かつその平均粒径を8μm以下として、隣接するポリゴナルフェライト粒からなる一群のフェライト粒をポリゴナルフェライト粒群としたとき、その平均直径を15μm以下、さらに上記残留オーステナイト中の平均C量を0.70質量%以上である組織とすることにより、延性および伸びフランジ性に優れ、かつ引張強さが780~1400MPaである高強度鋼板が開示されている。
 さらに、特許文献3には、質量%で、C:0.10~0.5%、Si:1.0~3.0%、Mn:1.5~3%、Al:0.005~1.0%、P:0%超0.1%以下、およびS:0%超0.05%以下を満足し、残部が鉄および不可避不純物からなる鋼板であって、該鋼板の金属組織は、ポリゴナルフェライト、ベイナイト、焼戻しマルテンサイト、および残留オーステナイトを含み、前記ポリゴナルフェライトの面積率aが金属組織全体に対して10~50%であり、前記ベイナイトは、隣接する残留オーステナイト同士、隣接する炭化物同士、隣接する残留オーステナイトと炭化物の中心位置間距離の平均間隔が1μm以上である高温域生成ベイナイトと、隣接する残留オーステナイト同士、隣接する炭化物同士、隣接する残留オーステナイトと炭化物の中心位置間距離の平均間隔が1μm未満である低温域生成ベイナイトとの複合組織で構成されており、前記高温域生成ベイナイトの面積率が金属組織全体に対して0%超80%以下、前記低温域生成ベイナイトと前記焼戻しマルテンサイトとの合計面積率が金属組織全体に対して0%超80%以下を満足し、飽和磁化法で測定した残留オーステナイトの体積率が金属組織全体に対して5%以上である組織を有し、引張強度が780MPa以上の高強度鋼板について、良好な延性を有すると共に、低温靭性に優れた特性を有する高強度鋼板が開示されている。
特開2014-189868号公報 特許第5454745号公報 特許第5728115号公報
 しかしながら、特許文献1~3に記載の高強度鋼板は、加工性のうち、伸び、伸びフランジ性および曲げ性に優れることを開示しているが、いずれもTSの面内異方性については考慮されていない。
 本発明は、かかる事情に鑑み開発されたもので、下部ベイナイト組織を積極的に活用し、適正量の残留オーステナイトを微細に分散させることで、780MPa以上のTSを有しつつ、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板を、その有利な製造方法と共に提供することを目的とする。
 なお、本発明において、伸びフランジ性に優れるとは、伸びフランジ性の指標であるλの値が鋼板の強度に関係なく20%以上であることを意味する。
 また、TSの面内異方性に優れるとは、TSの面内異方性の指標である│ΔTS│の値が50MPa以下であることを意味する。なお、│ΔTS│は次式(1)で求められる。
  │ΔTS│=(TSL-2×TSD+TSC)/2・・・・(1)
 ただし、TSL、TSDおよびTSCとは、それぞれ鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向から採取したJIS5号試験片を用いて、JIS Z 2241(2011年)の規定に準拠して、クロスヘッド速度10mm/分で引張試験を行って測定したTSの値である。
 発明者らは、780MPa以上のTSを有し、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板を開発すべく、鋭意検討を重ねたところ、以下のことを見出した。
(1)成分組成を適正に調整したスラブを、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施して熱延板を軟質化させたのち、冷間圧延し、得られた冷延板を加熱してオーステナイト単相域での1回目の焼鈍後に制御冷却を行い、フェライト変態およびパーライト変態を抑制して、2回目焼鈍前の組織をマルテンサイト単相組織、もしくはベイナイト単相組織、もしくはマルテンサイトとベイナイトが混在した組織を主体とすることにより、最終焼鈍後の組織に微細な残留オーステナイトを適正量含ませることが可能である。
(2)また、フェライト+オーステナイト二相域での2回目の焼鈍後の冷却過程で、マルテンサイト変態開始温度以下まで冷却することにより、下部ベイナイト変態の過冷度を適正に制御することができる。その結果、その後に下部ベイナイト生成温度域まで昇温することで、下部ベイナイト変態の駆動力を増大させて、下部ベイナイト組織を効果的に生成させることが可能である。
 このように、2回目焼鈍前の組織を、マルテンサイト単相組織、もしくはベイナイト単相組織、もしくはマルテンサイトとベイナイトが混在した組織を主体とし、その後の2回目焼鈍時に下部ベイナイト変態の過冷度を適正に制御することで、下部ベイナイト組織の積極的な活用を可能ならしめ、同時に、残留オーステナイトの微細分散化を図ることが可能となる。
 その結果、780MPa以上のTSを有しつつ、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板の製造が可能となる。
 本発明は、上記知見に基づいて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%で、
  C:0.08%以上0.35%以下、
  Si:0.50%以上2.50%以下、
  Mn:1.50%以上3.00%以下、
  P:0.001%以上0.100%以下、
  S:0.0001%以上0.0200%以下および
  N:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなり、
 鋼組織が、面積率で、
フェライトが20%以上50%以下、
下部ベイナイトが5%以上40%以下、
マルテンサイトが1%以上20%以下、
焼戻しマルテンサイトが20%以下であり、
 体積率で、残留オーステナイトが5%以上、上記残留オーステナイトの平均結晶粒径が2μm以下であり、
 かつ、鋼板の集合組織が、α-fiberに対するγ-fiberのインバース強度比で、3.0以下であるミクロ組織を有する、高強度鋼板。
2.前記1に記載の高強度鋼板に、さらに、質量%で、
  Al:0.01%以上1.00%以下、
  Ti:0.005%以上0.100%以下、
  Nb:0.005%以上0.100%以下、
  V:0.005%以上0.100%以下、
  B:0.0001%以上0.0050%以下、
  Cr:0.05%以上1.00%以下、
  Cu:0.05%以上1.00%以下、
  Sb:0.0020%以上0.2000%以下、
  Sn:0.0020%以上0.2000%以下、
  Ta:0.0010%以上0.1000%以下、
  Ca:0.0003%以上0.0050%以下、
  Mg:0.0003%以上0.0050%以下および
  REM:0.0003%以上0.0050%以下
のうちから選ばれる少なくとも1種の元素を含有する高強度鋼板。
3.前記1または2に記載の高強度鋼板を製造する方法であって、
 前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下で熱間圧延し、巻取温度を300℃以上700℃以下で巻き取り、酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の時間保持したのち、30%以上の圧下率で冷間圧延を施し、ついで得られた冷延板を、T1温度以上950℃以下で1回目の焼鈍処理を施したのち、少なくともT2温度までを平均冷却速度:5℃/s以上の条件で冷却したのち、室温まで冷却し、
 ついで、740℃以上T1温度以下の温度域まで再加熱して2回目の焼鈍処理を施し、さらに少なくともT2温度までの平均冷却速度を8℃/s以上として、冷却停止温度:(T3温度-150℃)以上T3温度以下まで冷却し、ついで、(T2温度-10℃)以下の再加熱温度域まで再加熱し、かつ、再加熱温度は(冷却停止温度+5℃)以上とし、該再加熱温度域で10s以上の時間保持する、高強度鋼板の製造方法。
                記
1温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+400×[%Ti]
2温度(℃)=740-490×[%C]-100×[%Mn]-70×[%Cr]
3温度(℃)=445-566×[%C]-150×[%C]×[%Mn]+15×[%Cr]-67.6×[%C]×[%Cr]-7.5×[%Si]
 但し、[%X]は、鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
4.前記1または2に記載の高強度鋼板の表面に、亜鉛めっき層を有する高強度亜鉛めっき鋼板。
 本発明によれば、780MPa以上のTSを有し、伸びフランジ性に優れ、さらに、TSの面内異方性に優れる高強度鋼板を効果的に得ることができる。
 従って、本発明により得られた高強度鋼板を、例えば自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。
 以下、本発明を具体的に説明する。
 まず、本発明において、高強度鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。
[C:0.08%以上0.35%以下]
 Cは、鋼板の高強度化および安定した残留オーステナイト量を確保するのに必要不可欠な元素であり、マルテンサイト量の確保および室温でオーステナイトを残留させるために必要な元素である。
 C量が0.08%未満では、鋼板の強度と加工性を確保することが難しい。一方、C量が0.35%を超えると、鋼板の脆化や遅れ破壊の懸念が生じ、また、溶接部および熱影響部の硬化が著しく溶接性が劣化する。従って、C量は0.08%以上0.35%以下とする。好ましくは0.12%以上0.30%以下、より好ましくは0.15%以上0.26%以下である。
[Si:0.50%以上2.50%以下]
 Siは、炭化物の生成を抑制し、残留オーステナイトの生成を促進することで、鋼板の延性を向上させるのに有用な元素である。また、残留オーステナイトが分解することによる炭化物の生成を抑制するのにも有効である。さらに、フェライト中で高い固溶強化能を有するため、鋼の強度向上に寄与する。また、フェライトに固溶したSiは、加工硬化能を向上させて、フェライト自身の延性を高める効果がある。
 こうした効果を得るには、Si量を0.50%以上含有する必要がある。一方、Si量が2.50%を超えると、フェライト中への固溶量の増加による加工性、靭性の劣化を招き、また、赤スケール等の発生による表面性状の劣化や、溶融めっきを施す場合には、めっき付着性および密着性の劣化を引き起こす。従って、Si量は0.50%以上2.50%以下とする。好ましくは0.80%以上2.00%以下、より好ましくは1.00%以上1.80%以下、さらに好ましくは1.20%以上1.80%以下である。
[Mn:1.50%以上3.00%以下]
 Mnは、鋼板の強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、冷却過程でのパーライトやベイナイトの生成を抑制する作用があり、オーステナイトからマルテンサイトへの変態を容易にする。こうした効果を得るには、Mn量を1.50%以上にする必要がある。一方、Mn量が3.00%を超えると、板厚方向のMn偏析が顕著となって、材質安定性の低下を招く。また、鋳造性の劣化などを引き起こす。従って、Mn量は1.50%以上3.00%以下とする。好ましくは1.50%以上2.70%以下、より好ましくは1.80%以上2.40%以下である。
[P:0.001%以上0.100%以下]
 Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を大幅に遅延させて亜鉛めっきの品質を損なう。また、粒界偏析により脆化することによって耐衝撃性を劣化させる。従って、P量は0.001%以上0.100%以下とする。好ましくは0.005%以上0.050%以下である。
[S:0.0001%以上0.0200%以下]
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、鋼中含有量は0.0200%以下とする必要がある。一方、生産技術上の制約からは、S量を0.0001%以上にする必要がある。従って、S量は0.0001%以上0.0200%以下とする。好ましくは0.0001%以上0.0050%以下である。
[N:0.0005%以上0.0100%以下]
 Nは、鋼の耐時効性を最も大きく劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となるため、その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。従って、N量は0.0005%以上0.0100%以下とする。好ましくは0.0005%以上0.0070%以下である。
 本発明の高強度鋼板は、上記の基本成分に加え、必要に応じて、Al、Ti、Nb、V、B、Cr、Cu、Sb、Sn、Ta、Ca、MgおよびREMうちから選ばれる少なくとも1種の元素を、単独または複合して含有させることができる。なお、鋼板の成分組成の残部は、Feおよび不可避的不純物である。
[Al:0.01%以上1.00%以下]
 Alは、炭化物の生成を抑制し、残留オーステナイトの生成を促進するのに有効な元素である。また、製鋼工程で脱酸剤として添加される元素である。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が1.00%を超えると、鋼板中の介在物が多くなり延性を劣化させる。従って、Al量は0.01%以上1.00%以下とする。好ましくは0.03%以上0.50%以下である。
Ti:0.005%以上0.100%以下、Nb:0.005%以上0.100%以下、V:0.005%以上0.100%以下
 Ti、NbおよびVは、熱間圧延時あるいは焼鈍時に微細な析出物を形成して強度を上昇させる。こうした効果を得るためには、Ti、NbおよびVは、それぞれ0.005%以上添加する必要がある。一方、Ti、NbおよびV量が、それぞれ0.100%を超えると、成形性が低下する。従って、Ti、NbおよびVを添加する場合、それらの含有量はそれぞれ0.005%以上0.100%以下とする。
B:0.0001%以上0.0050%以下
 Bは、鋼の強化に有効な元素であり、その添加効果は、0.0001%以上で得られる。一方、Bは0.0050%を超えて過剰に添加すると、マルテンサイトの面積率が過大となって、著しい強度上昇による延性の低下の懸念が生じる。従って、B量は0.0001%以上0.0050%以下とする。好ましくは0.0005%以上0.0030%以下である。
Cr:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下
 CrおよびCuは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイトを安定化し、複合組織化を容易にする。こうした効果を得るには、Cr量およびCu量は、それぞれ0.05%以上にする必要がある。一方、Cr量も、Cu量も1.00%を超えると、鋼板の成形性が低下する。従って、CrおよびCuを添加する場合、その含有量はそれぞれ0.05%以上1.00%以下とする。
Sb:0.0020%以上0.2000%以下、Sn:0.0020%以上0.2000%以下
 SbおよびSnは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制する観点から、必要に応じて添加する。このような窒化や酸化を抑制すると、鋼板表面におけるマルテンサイトの生成量が減少するのを防止して、鋼板の強度や材質安定性の確保に有効だからである。一方で、これらいずれの元素についても、0.2000%を超えて過剰に添加すると靭性の低下を招く。従って、SbおよびSnを添加する場合、その含有量は、それぞれ0.0020%以上0.2000%以下の範囲内とする。
Ta:0.0010%以上0.1000%以下
 Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成して、析出物の粗大化を著しく抑制し、析出強化による鋼板の強度向上への寄与率を安定化させる効果があると考えられる。そのため、Taを含有することが好ましい。
 ここで、前述の析出物安定化の効果は、Taの含有量を0.0010%以上とすることで得られる一方で、Taを過剰に添加しても、析出物安定化効果が飽和する上に、合金コストが増加する。従って、Taを添加する場合、その含有量は、0.0010%以上0.1000%以下の範囲内とする。
Ca:0.0003%以上0.0050%以下、Mg:0.0003%以上0.0050%以下およびREM:0.0003%以上0.0050%以下
 Ca、MgおよびREMは、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、局部延性および伸びフランジ性への硫化物の悪影響を改善するために有効な元素である。これらの効果を得るためには、それぞれ0.0003%以上の添加が必要である。しかしながら、Ca、MgおよびREMは、0.0050%を超えて過剰に添加すると、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こす。従って、Ca、MgおよびREMを添加する場合、その含有量はそれぞれ0.0003%以上0.0050%以下とする。
 次に、本発明の高強度鋼板のミクロ組織について説明する。
[フェライトの面積率:20%以上50%以下]
 本発明において、極めて重要な発明構成要件である。本発明の高強度鋼板は、延性に富む軟質なフェライト中に、主として延性を担う残留オーステナイトと強度を担う下部ベイナイトとを分散させた複合組織からなる。また、十分な延性および強度と延性のバランスを確保するため、2回目の焼鈍および冷却過程に生成するフェライトの面積率を20%以上にする必要がある。一方、強度確保のため、フェライトの面積率を50%以下にする必要がある。
[下部ベイナイトの面積率:5%以上40%以下]
 本発明において、極めて重要な発明構成要件である。
 ベイナイトの生成は、未変態オーステナイト中のCを濃化させ、加工時に高ひずみ域でTRIP効果を発現できる残留オーステナイトを得るために必要である。また、高強度化のためには、ベイナイト自体の強度を上昇させることも有効であり、上部ベイナイトと比較して、下部ベイナイトの方が高強度化に有利である。
 以下に、ベイナイト、特に下部ベイナイトについて説明する。オーステナイトからベイナイトへの変態は、およそ150~550℃の広い温度範囲にわたって起こり、この温度範囲内で生成するベイナイトには種々のものが存在する。従来技術では、このような種々のベイナイトを単にベイナイトと規定する場合が多かったが、本発明で目標とする加工性を得るためには、ベイナイト組織を厳密に規定する必要があることから、上部ベイナイトと下部ベイナイトに分けて規定する。
 ここに、上部ベイナイトおよび下部ベイナイトは次のように定義する。
 上部ベイナイトは、ラス状のベイニティックフェライトと、ベイニッティクフェライトの間に存在する残留オーステナイトおよび/または炭化物とからなり、ラス状のベイニティックフェライト中に規則正しく並んだ細かな炭化物が存在しないことが特徴である。一方、下部ベイナイトは、ラス状のベイニティックフェライトと、ベイニッティクフェライトの間に存在する残留オーステナイトおよび/または炭化物とからなることは、上部ベイナイトと共通するが、下部ベイナイトでは、ラス状のベイニティックフェライト中に規則正しく並んだ細かな炭化物が存在することが特徴である。
 すなわち、上部ベイナイトと下部ベイナイトとは、ベイニティックフェライト中における規則正しく並んだ細かな炭化物の有無によって区別される。このようなベイニティックフェライト中における炭化物の生成状態の差異は、残留オーステナイト中へのCの濃化、およびベイナイトの硬さに大きな影響を与える。
 本発明において、下部ベイナイトの面積率が5%未満の場合は、2回目焼鈍後の保持過程において、下部ベイナイト変態によるオーステナイトへのC濃化が十分に進まないため、加工時に高ひずみ域でTRIP効果を発現する残留オーステナイト量が減少する。また、2回目焼鈍後の保持過程での未変態オーステナイトの分率が上昇し、冷却後のマルテンサイトの分率が上昇するため、TSは上昇するものの、延性および伸びフランジ性が低下する。そのため、下部ベイナイトの面積率は、鋼板組織全体に対する面積率で5%以上が必要である。一方、下部ベイナイトの面積率が40%を超えると、延性に有利なフェライトの分率が低下するため、TSは上昇するもののElは減少することから、40%以下とする。従って、下部ベイナイトは、面積率で5%以上40%以下の範囲とする。好ましくは6%以上30%以下の範囲、より好ましくは7%以上25%以下の範囲である。
[マルテンサイトの面積率:1%以上20%以下]
 本発明では、鋼板の強度確保のため、面積率で1%以上のマルテンサイトを必要とする。一方、良好な延性を確保するためには、面積率でマルテンサイトを20%以下にする必要がある。なお、より良好な延性および伸びフランジ性を確保するためには、マルテンサイトの面積率は15%以下とすることが好ましい。
[焼戻しマルテンサイトの面積率:20%以下]
 焼戻しマルテンサイトは、2回目の焼鈍処理中における冷却停止後の再加熱および保持の過程で生じるものであるが、本発明において、焼戻しマルテンサイトの量が面積率で20%を超えると、下部ベイナイトの生成割合が減少し、結果として、残留オーステナイトの分率が減少するため、延性が低下してしまう。この点、焼戻しマルテンサイトの量を面積率で20%以下とした場合、すなわち2回目焼鈍後の再加熱および保持過程におけるマルテンサイトの生成割合を20%以下とした場合、再加熱後の保持過程における下部ベイナイトの生成を促進させる効果がある。従って、焼戻しマルテンサイトの面積率は20%以下とし、好ましくは15%以下とする。0%であってもよい。
 なお、フェライトおよびマルテンサイトの面積率は、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、1vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて3000倍の倍率で3視野観察し、得られた組織画像を、Adobe Systems社のAdobe Photoshopを用いて、構成相(フェライトおよびマルテンサイト)の面積率を3視野分算出し、それらの値を平均して求めることができる。また、上記の組織画像において、フェライトは灰色の組織(基地組織)、またマルテンサイトは白色の組織を呈している。
 また、SEM観察では、下部ベイナイトと焼戻しマルテンサイトは、いずれも、灰色の基地に微細な白色の炭化物が析出した組織を呈するため、これらの区別をすることは困難である。そこで、下部ベイナイトと焼戻しマルテンサイトは、TEM(Transmission Electron Microscopy)を用いて、炭化物のバリアント形態を観察することで区別した。なお、下部ベイナイトの炭化物形態は、下部組織内部で一方向に規則的に析出した単一バリアントであるのに対し、焼戻しマルテンサイトの炭化物は、下部組織内部で析出方向がランダムなマルチバリアントである。これらの特徴を示す下部ベイナイトと焼戻しマルテンサイトの面積率は、TEMを用いて1.5μm四方の領域を10視野観察し、得られた組織画像を、前記Adobe Photoshopを用いて、構成相(下部ベイナイトおよび焼戻しマルテンサイト)の面積率を10視野分算出し、それらの値を平均して求めることができる。
[残留オーステナイトの体積率:5%以上]
 本発明では、良好な延性および強度と延性のバランスを確保するため、残留オーステナイトの量は体積率で5%以上にする必要がある。より良好な延性および強度と延性のバランスを確保するためには、残留オーステナイトの量は体積率で8%以上とすることが好ましく、さらに好ましくは10%以上である。なお、残留オーステナイト量の上限は体積率で20%とすることが好ましい。
 なお、残留オーステナイトの体積率は、鋼板を板厚方向に板厚の1/4まで研削・研磨し、X線回折強度測定により求めた。入射X線には、Co-Kαを用い、フェライトの(200)、(211)各面の回折強度に対するオーステナイトの(200)、(220)、(311)各面の強度比から残留オーステナイト量を計算した。
[残留オーステナイトの平均結晶粒径:2μm以下]
 残留オーステナイトの結晶粒の微細化は、鋼板の延性および材質安定性の向上に寄与する。そのため、良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。より良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を1.5μm以下とすることが好ましい。
 なお、本発明では、残留オーステナイトの平均結晶粒径を、TEM(透過型電子顕微鏡)を用いて15000倍の倍率で20視野観察し、得られた組織画像を用いて、Media Cybernetics社のImage-Proを用いて各々の残留オーステナイト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して求めることができる。なお、測定対象とする残留オーステナイト結晶粒の下限は、測定限界の観点から円相当直径で10nmとする。
 また、本発明に従うミクロ組織では、上記したフェライト、下部ベイナイト、マルテンサイト、焼戻しマルテンサイトおよび残留オーステナイト以外に、パーライト、セメンタイト等の炭化物やその他鋼板の組織として公知のもの含まれる場合があるが、これらの割合が面積率で5%以下であれば、本発明の効果が損なわれることはない。
 次に、鋼板の集合組織について説明する。
[α-fiberに対するγ-fiberのインバース強度比:3.0以下]
 α-fiberとは<110>軸が圧延方向に平行な繊維集合組織であり、また、γ-fiberとは<111>軸が圧延面の法線方向に平行な繊維集合組織である。体心立方金属では、圧延変形によりα-fiberおよびγ-fiberが強く発達し、再結晶焼鈍後もこれらの集合組織が残存するという特徴がある。
 本発明において、鋼板の集合組織のα-fiberに対するγ-fiberのインバース強度比が3.0を超えると、鋼板の特定方向に集合組織が配向し、機械的特性の面内異方性、特にTSの面内異方性が大きくなる。従って、鋼板の集合組織のα-fiberに対するγ-fiberのインバース強度比は3.0以下とし、好ましくは2.5以下とする。
 なお、α-fiberに対するγ-fiberのインバース強度比の下限についてはとくに制限はないが0.5以上とするのが好ましい。
 なお、従来の一般的な製造方法で得られる高強度鋼板では、α-fiberに対するγ-fiberのインバース強度比は3.0~4.0程度であったが、本発明に従い1回目の焼鈍においてオーステナイト単相域で焼鈍を施すことによって、このインバース強度比を好適に低減することができる。
 なお、α-fiberに対するγ-fiberのインバース強度比は、鋼板の圧延方向に平行な板厚断面(L断面)を湿式研磨およびコロイダルシリカ溶液を用いたバフ研磨により表面を平滑化した後、0.1vol.%ナイタールで腐食することで、試料表面の凹凸を極力低減し、かつ加工変質層を完全に除去し、ついで板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM-EBSD(Electron Back-Scatter Diffraction;電子線後方散乱回折)法を用いて結晶方位を測定し、得られたデータを、AMETEK EDAX社のOIM Analysisを用いて、α-fiberおよびγ-fiberのインバース強度をそれぞれ求めることにより、算出することができる。
 次に、製造方法について説明する。
 本発明の高強度鋼板は、次に述べる工程により得ることができる。
 上述した所定の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下で熱間圧延し、巻取温度を300℃以上700℃以下で巻き取る。ついで、酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の間保持したのち、30%以上の圧下率で冷間圧延を施す。ついで、得られた冷延板を、T1温度以上950℃以下で1回目の焼鈍処理を施したのち、少なくともT2温度までを平均冷却速度:5℃/s以上の条件で冷却したのち、室温まで冷却する。ついで、740℃以上T1温度以下の温度域まで再加熱して2回目の焼鈍処理を施し、さらに少なくともT2温度までの平均冷却速度を8℃/s以上として、冷却停止温度:(T3温度-150℃)以上T3温度以下まで冷却する。ついで、(T2温度-10℃)以下の再加熱温度域まで再加熱し、かつ、再加熱温度は(冷却停止温度+5℃)以上とし、該再加熱温度域で10s以上の時間保持する。
 また、本発明の高強度亜鉛めっき鋼板は、上述した高強度鋼板に、公知公用の亜鉛めっき処理を施すことにより製造することができる。
 以下、各製造工程について説明する。
 本発明では、前述した所定の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下で熱間圧延し、巻取温度を300℃以上700℃以下として巻き取る。
[鋼スラブの加熱温度:1100℃以上1300℃以下]
 鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出した析出物を再溶解させる必要がある。
 ここに、鋼スラブの加熱温度が1100℃未満では、析出物の十分な溶解が困難であって、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する必要性もある。さらに、鋳造時に生成した析出物が再溶解せず、粗大な析出物として残る場合、延性および伸びフランジ性が低下する問題も生じる。しかも、効果的に残留オーステナイトを生成できず、延性が低下する懸念がある。従って、鋼スラブの加熱温度は1100℃以上にする必要がある。一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。
 従って、スラブの加熱温度は1100℃以上1300℃以下とする。好ましくは1150℃以上1280℃以下、さらに好ましくは1150℃以上1250℃以下である。
[仕上げ圧延出側温度:800℃以上1000℃以下]
 加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にあり、また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性や伸びフランジ性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。
 一方、仕上げ圧延出側温度が800℃未満では圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶状態での圧下率が高くなり、異常な集合組織が発達し、最終製品における面内異方性が顕著となり、材質の均一性や材質安定性が損なわれるだけでなく、延性そのものも低下する。
 従って、熱間圧延の仕上げ圧延出側温度を800℃以上1000℃以下にする必要がある。好ましくは820℃以上950℃以下の範囲である。
 なお、鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。また、スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低めにした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。
[熱間圧延後の巻取温度:300℃以上700℃以下]
 熱間圧延後の巻取温度が700℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなり、最終焼鈍板の所望の強度および延性の確保が困難となる。一方、熱間圧延後の巻取温度が300℃未満では、熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する。また、マルテンサイトを主体とする硬質な熱延板に冷間圧延を施すと、マルテンサイトの旧オーステナイト粒界に沿った微小な内部割れ(脆性割れ)が生じやすく、また最終焼鈍板の粒径が微細化し硬質相分率が増大するため、最終焼鈍板の延性および伸びフランジ性が低下する。従って、熱間圧延後の巻取温度を300℃以上700℃以下にする必要がある。好ましくは400℃以上650℃以下、より好ましくは400℃以上600℃以下である。
 なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
 このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板における良好な化成処理性やめっき品質の確保のために重要である。また酸洗は、一回でも良いし、複数回に分けても良い。
 上記の酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の時間保持したのち、圧下率:30%以上で冷間圧延を施す。
 ついで、T1温度以上950℃以下の温度域で1回目の焼鈍処理を施したのち、少なくともT2温度までを平均冷却速度:5℃/s以上の条件で冷却したのち、室温まで冷却する。
[熱延板酸洗処理後の熱処理温度域と保持時間:450℃以上800℃以下の温度域で900s以上36000s以下の時間保持]
 熱処理温度域が450℃未満または熱処理保持時間が900s未満の場合、熱延後の焼戻しが不十分なため、その後の冷間圧延時にフェライト、ベイナイトおよびマルテンサイトが混在した不均一な組織となり、かかる熱延板組織の影響を受けて、均一微細化が不十分となる。その結果、最終焼鈍板の組織において、粗大なマルテンサイトの割合が増加し、不均一な組織となって、最終焼鈍板の延性、伸びフランジ性および材質安定性(面内異方性)が低下する場合がある。
 一方、熱処理保持時間が36000s超の場合は、生産性に悪影響を及ぼす場合がある。また、熱処理温度域が800℃を超える場合は、フェライトとマルテンサイトまたはパーライトの不均一かつ硬質化した粗大な2相組織となって、冷間圧延前に不均一な組織となり、最終焼鈍板の粗大なマルテンサイトの割合が増加して、やはり最終焼鈍板の延性、伸びフランジ性および材質安定性が低下する場合がある。
 従って、熱延板酸洗処理後の熱処理温度域は450℃以上800℃以下とし、保持時間は900s以上36000s以下とする必要がある。
[冷間圧延時の圧下率:30%以上]
 冷間圧延時の圧下率が30%に満たない場合には、引き続く焼鈍時において、オーステナイトへの逆変態の核となる粒界や転位の単位体積あたりの総数が減少し、上述した最終のミクロ組織を得ることが困難になる。そして、ミクロ組織に不均一が生じると、鋼板の延性および面内異方性は低下する。従って、冷間圧延時の圧下率は30%以上にする必要がある。好ましくは35%以上、より好ましくは40%以上である。なお、圧延パスの回数、各パス毎の圧下率については、とくに限定されることなく本発明の効果を得ることができる。また、上記圧下率の上限に特に限定はないが、工業上80%程度とするのが好ましい。
[1回目の焼鈍処理の温度域:T1温度以上950℃以下]
 1回目の焼鈍温度域がT1温度未満の場合、この熱処理はフェライトとオーステナイトの2相域での熱処理になるため、最終組織にフェライトとオーステナイトの2相域で生成したフェライト(ポリゴナルフェライト)を多く含み、微細な残留オーステナイトが所望量生成されず、良好な強度と延性のバランスの確保が困難となる。一方、1回目の焼鈍温度が950℃を超えた場合、焼鈍中のオーステナイトの結晶粒が粗大化して、最終的に微細な残留オーステナイトが生成されずに、やはり良好な強度と延性のバランスの確保が困難となり、生産性が低下する。ここに、T1温度とはAc3点を意味する。
 なお、1回目の焼鈍処理の保持時間は、特に限定はしないが10s以上1000s以下の範囲が好ましい。
[1回目の焼鈍処理後のT2温度までの平均冷却速度:5℃/s以上]
 1回目の焼鈍処理後、少なくともT2温度までの平均冷却速度が5℃/s未満では、冷却中にフェライトおよびパーライトが生成されるため、2回目の焼鈍前組織において、マルテンサイト単相組織、もしくはベイナイト単相組織、もしくはマルテンサイトとベイナイトが混在した組織が得られずに、最終的に微細な残留オーステナイトが所望量生成されないため、良好な強度と延性のバランスの確保が困難となる。また、鋼板の材質安定性(面内異方性)が損なわれることにもなる。ここに、T2温度とは上部ベイナイト変態開始温度を意味する。
 従って、1回目の焼鈍処理後、少なくともT2温度までの平均冷却速度は5℃/s以上とする。好ましくは8℃/s以上、より好ましくは10℃/s以上、さらに好ましくは15℃/s以上である。なお、上記平均冷却速度の上限に特に限定は無いが、工業的に可能なのは80℃/s程度までである。
 なお、T2温度より低温域での平均冷却速度については特に制限はなく、室温まで冷却する。また、過時効帯を通過させる処理を施してもよい。なお、その温度域での冷却方法は特に規定せず、ガスジェット冷却、ミスト冷却、水冷、空冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。なお、特に限定する必要はないが、室温または過時効帯までの平均冷却速度が80℃/sを超えると、鋼板形状が悪化する可能性があるため、平均冷却速度が80℃/s以下であることが好ましい。
 以上述べた1回目の焼鈍処理、およびその後の冷却処理を施すことで、2回目の焼鈍処理前の組織を、マルテンサイト単相組織もしくはベイナイト単相組織もしくはマルテンサイトとベイナイトが混在した組織を主体とすることにより、後述する2回目の焼鈍後の冷却、再加熱および保持過程において、下部ベイナイトを効果的に生成させることができる。これにより、微細な残留オーステナイトの適正量の確保が可能となり、良好な延性の確保が可能になる。
 すなわち、上記した1回目の焼鈍処理、およびその後の冷却処理により生成される、マルテンサイト単相組織もしくはベイナイト単相組織もしくはマルテンサイトとベイナイトの混在組織は微細な組織を形成することから、その後に形成される残留オーステナイトも微細な組織となるのである。ここに、本発明により得られる残留オーステナイトの平均結晶粒径は0.1~1.5μm程度であるのが好ましい。
[2回目の焼鈍処理の温度域:740℃以上T1温度以下]
 2回目の焼鈍温度における加熱温度が740℃未満の場合は、焼鈍中に十分な量のオーステナイトを確保できず、最終的に所望のマルテンサイトの面積率と残留オーステナイトの体積率が確保されないため、本発明で所望する強度の確保と、良好な強度と延性のバランスの確保とが困難となる。一方、2回目の焼鈍温度がT1温度を超えた場合は、オーステナイト単相の温度域になるため、最終的に微細な残留オーステナイトが所望量生成されずに、やはり良好な強度と延性のバランスの確保が困難となる。なお、2回目の焼鈍処理の保持時間は、特に限定はしないが、10s以上1000s以下が好ましい。
[2回目の焼鈍処理後のT2温度までの平均冷却速度:8℃/s以上]
 2回目の焼鈍処理後、少なくともT2温度までの平均冷却速度が8℃/s未満では、冷却中にフェライトの粗大化だけでなく、パーライトの生成が生じるため、最終的に微細な残留オーステナイトが所望量生成されず、良好な強度と延性のバランスの確保が困難となる。また、鋼板の材質安定性が損なわれることにもなる。従って、2回目の焼鈍処理後、少なくともT2温度までの平均冷却速度は8℃/s以上とする。好ましくは10℃/s以上、より好ましくは15℃/s以上である。なお、上記平均冷却速度の上限に特に限定は無いが、工業的に可能なのは、80℃/s程度までである。なお、T2温度から後述する冷却停止温度までの冷却速度については特に制限はない。
[2回目の焼鈍処理後の冷却停止温度:(T3温度-150℃)以上T3温度以下]
 本発明において、極めて重要な制御因子である。この冷却は、T3温度以下まで冷却することで、再加熱後の保持工程で生成する下部ベイナイト変態の過冷度を上昇させるものである。ここで、2回目の焼鈍処理後の冷却停止温度の下限が(T3温度-150℃)未満では、未変態オーステナイトが、この時点でほとんどすべてマルテンサイト化するために、所望の下部ベイナイトおよび残留オーステナイト量が確保できない。一方、2回目の焼鈍処理後の冷却停止温度の上限がT3温度を超えると、下部ベイナイト量および残留オーステナイト量が本発明の規定量を確保できなくなる。従って、2回目の焼鈍処理後の冷却停止温度は、(T3温度-150℃)以上T3温度以下とする。ここに、T3温度とはマルテンサイト変態開始温度を意味する。
[再加熱温度:(2回目の焼鈍処理後の冷却停止温度+5℃)以上(T2温度-10℃)以下]
 本発明において、極めて重要な制御因子である。再加熱温度が(T2温度-10℃)を超えると、上部ベイナイトが生成するため、所望の強度の確保が困難となる。一方、再加熱温度が(2回目の焼鈍処理後の冷却停止温度+5℃)未満では、下部ベイナイト変態の駆動力が確保できず、所望の下部ベイナイトおよび残留オーステナイト量を確保することができない。従って、再加熱温度は(2回目の焼鈍処理後の冷却停止温度+5℃)以上(T2温度-10℃)以下とする。なお、上記再加熱温度が150℃未満では下部ベイナイトの生成が困難となるため、再加熱温度は(2回目の焼鈍処理後の冷却停止温度+5℃)以上かつ150℃以上とすることが好ましい。
[再加熱温度域での保持時間:10s以上]
 上記再加熱温度域での保持時間が10s未満では、オーステナイトへのC濃化が進行する時間が不十分となって、最終的に所望の残留オーステナイトの体積率の確保が困難になる。従って、上記再加熱温度域での保持時間は10s以上とする。一方、1000sを超えて滞留した場合、残留オーステナイトの体積率は増加せずに、延性の顕著な向上は確認されず飽和傾向となるため、上記再加熱温度域での保持時間は1000s以下とすることが好ましい。
 保持後の冷却はとくに規定する必要がなく、任意の方法により所望の温度に冷却してよい。なお、上記所望の温度は、室温程度が望ましい。
[亜鉛めっき処理]
 溶融亜鉛めっき処理を施すときは、前記焼鈍処理を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施した後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10質量%以上0.23質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、Elが低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。また、めっき付着量は片面あたり20~80g/m2(両面めっき)が好ましく、合金化溶融亜鉛めっき鋼板(GA)は、合金化処理を施すことによりめっき層中のFe濃度を7~15質量%とすることが好ましい。
 熱処理後のスキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが良好範囲の下限となる。また、2.0%を超えると、生産性が著しく低下するので、これを良好範囲の上限とする。
 スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。溶融亜鉛めっき後は、めっきの目付け量を調整するために、ワイピングが可能である。なお、上記した条件以外のめっき等の条件は、溶融亜鉛めっきの常法に依ることができる。
(実施例1)
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを、表2に示した条件で加熱して熱間圧延後、酸洗処理を施し、表2に示したNo.1~11、13~25、27、29、31、32、34~39、41、43、44は熱延板熱処理を施し、さらに、その中から、No.31、32、34~39、41、43、44は熱延板熱処理後に酸洗処理を施した。
 次いで、表2に示した条件で冷間圧延した後、表3に示した条件で2回の焼鈍処理を施し、高強度冷延鋼板(CR)を得た。
 さらに、一部の高強度冷延鋼板(CR)に亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)などを得た。溶融亜鉛めっき浴は、GIでは、Al:0.14質量%または0.19質量%含有亜鉛浴を使用し、また、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は470℃とした。めっき付着量は、GIでは、片面あたり72g/m2または45g/m2(両面めっき)とし、また、GAでは、片面あたり45g/m2(両面めっき)とした。また、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。
 なお、T1温度(℃)は、以下の式を用いて求めた。
1温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+400×[%Ti]
 また、T2温度(℃)は、
2温度(℃)=740-490×[%C]-100×[%Mn]-70×[%Cr]
 さらに、T3温度(℃)は、
3温度(℃)=445-566×[%C]-150×[%C]×[%Mn]+15×[%Cr]-67.6×[%C]×[%Cr]-7.5×[%Si]
によって算出することができる。なお、[%X]は鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
 なお、T1温度はAc3点、T2温度は上部ベイナイト変態開始温度、T3温度はマルテンサイト変態開始温度を意味する。
 以上のようにして得られた高強度冷延鋼板(CR)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)を供試鋼として、機械的特性を評価した。機械的特性は、以下のように引張試験および穴広げ試験を行い評価した。
 引張試験は、引張試験片の長手が、鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強度)およびEl(全伸び)を測定した。なお、本発明で、TSの面内異方性に優れるとは、TSの面内異方性の指標である│ΔTS│の値が50MPa以下の場合を良好と判断した。
 穴広げ試験は、JIS Z 2256(2010年)に準拠して行った。得られた各鋼板を100mm×100mmに切断後、クリアランス12%±1%で直径10mmの穴を打ち抜いた後、内径75mmのダイスを用いてしわ押さえ力9ton(88.26kN)で抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、下記の式から、限界穴広げ率:λ(%)を求め、この限界穴広げ率の値から穴広げ性を評価した。
  限界穴広げ率:λ(%)={(Df-D0)/D0}×100
 ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。なお、本発明では、伸びフランジ性の指標である限界穴広げ率:λの値が鋼板の強度に関係なく20%以上の場合を良好と判断した。
 また、前述した方法にしたがって、フェライト(F)、下部ベイナイト(LB)、マルテンサイト(M)および焼戻しマルテンサイト(TM)の面積率、残留オーステナイト(RA)の体積率と平均結晶粒径、さらには鋼板の板厚1/4位置におけるα-fiberに対するγ-fiberのインバース強度比を求めた。
 かくして得られた各鋼板の鋼板組織について調べた結果を表4に示す。また、各鋼板の機械的特性についての測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明例では、TSが780MPa以上であり、延性と伸びフランジ性に優れ、高い強度と延性のバランスを有し、かつ、TSの面内異方性にも優れている。一方、比較例では、強度、延性、伸びフランジ性、強度と延性のバランス、TSの面内異方性のいずれか一つ以上が劣っている。
 以上、本発明の実施の形態について説明したが、本発明は、本実施の形態による本発明の開示の一部をなす記述により限定されるものではない。すなわち、本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。例えば、上記した製造方法における一連の熱処理においては、熱履歴条件さえ満足すれば、鋼板に熱処理を施す設備等は特に限定されるものではない。
 本発明によれば、780MPa以上のTSを有し、伸びフランジ性に優れ、さらにTSの面内異方性に優れる高強度鋼板の製造が可能になる。また、本発明の製造方法に従って得られた高強度鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。

Claims (4)

  1.  成分組成が、質量%で、
      C:0.08%以上0.35%以下、
      Si:0.50%以上2.50%以下、
      Mn:1.50%以上3.00%以下、
      P:0.001%以上0.100%以下、
      S:0.0001%以上0.0200%以下および
      N:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなり、
     鋼組織が、面積率で、
    フェライトが20%以上50%以下、
    下部ベイナイトが5%以上40%以下、
    マルテンサイトが1%以上20%以下、
    焼戻しマルテンサイトが20%以下であり、
     体積率で、残留オーステナイトが5%以上、上記残留オーステナイトの平均結晶粒径が2μm以下であり、
     かつ、鋼板の集合組織が、α-fiberに対するγ-fiberのインバース強度比で、3.0以下であるミクロ組織を有する、高強度鋼板。
  2.  請求項1に記載の高強度鋼板に、さらに、質量%で、
      Al:0.01%以上1.00%以下、
      Ti:0.005%以上0.100%以下、
      Nb:0.005%以上0.100%以下、
      V:0.005%以上0.100%以下、
      B:0.0001%以上0.0050%以下、
      Cr:0.05%以上1.00%以下、
      Cu:0.05%以上1.00%以下、
      Sb:0.0020%以上0.2000%以下、
      Sn:0.0020%以上0.2000%以下、
      Ta:0.0010%以上0.1000%以下、
      Ca:0.0003%以上0.0050%以下、
      Mg:0.0003%以上0.0050%以下および
      REM:0.0003%以上0.0050%以下
    のうちから選ばれる少なくとも1種の元素を含有する高強度鋼板。
  3.  請求項1または2に記載の高強度鋼板を製造する方法であって、
     請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下で熱間圧延し、巻取温度を300℃以上700℃以下で巻き取り、酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の時間保持したのち、30%以上の圧下率で冷間圧延を施し、ついで得られた冷延板を、T1温度以上950℃以下で1回目の焼鈍処理を施したのち、少なくともT2温度までを平均冷却速度:5℃/s以上の条件で冷却したのち、室温まで冷却し、
     ついで、740℃以上T1温度以下の温度域まで再加熱して2回目の焼鈍処理を施し、さらに少なくともT2温度までの平均冷却速度を8℃/s以上として、冷却停止温度:(T3温度-150℃)以上T3温度以下まで冷却し、ついで、(T2温度-10℃)以下の再加熱温度域まで再加熱し、かつ、再加熱温度は(冷却停止温度+5℃)以上とし、該再加熱温度域で10s以上の時間保持する、高強度鋼板の製造方法。
                    記
    温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+400×[%Ti]
    温度(℃)=740-490×[%C]-100×[%Mn]-70×[%Cr]
    温度(℃)=445-566×[%C]-150×[%C]×[%Mn]+15×[%Cr]-67.6×[%C]×[%Cr]-7.5×[%Si]
    [%X]は鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
  4.  請求項1または2に記載の高強度鋼板の表面に、亜鉛めっき層を有する高強度亜鉛めっき鋼板。
PCT/JP2017/030897 2016-08-31 2017-08-29 高強度鋼板およびその製造方法 WO2018043474A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019002337A MX2019002337A (es) 2016-08-31 2017-08-29 Lamina de acero de alta resistencia y metodo para su fabricacion.
KR1020197009227A KR102239640B1 (ko) 2016-08-31 2017-08-29 고강도 강판 및 그의 제조 방법
JP2017567817A JP6315160B1 (ja) 2016-08-31 2017-08-29 高強度鋼板およびその製造方法
EP17846479.8A EP3508601B1 (en) 2016-08-31 2017-08-29 High-strength steel plate and production method thereof
CN201780052863.5A CN109642292B (zh) 2016-08-31 2017-08-29 高强度钢板及其制造方法
US16/326,784 US11401595B2 (en) 2016-08-31 2017-08-29 High-strength steel sheet and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169725 2016-08-31
JP2016169725 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043474A1 true WO2018043474A1 (ja) 2018-03-08

Family

ID=61309182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030897 WO2018043474A1 (ja) 2016-08-31 2017-08-29 高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11401595B2 (ja)
EP (1) EP3508601B1 (ja)
JP (1) JP6315160B1 (ja)
KR (1) KR102239640B1 (ja)
CN (1) CN109642292B (ja)
MX (1) MX2019002337A (ja)
WO (1) WO2018043474A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187993A (zh) * 2020-02-11 2020-05-22 包头钢铁(集团)有限责任公司 一种高强度高低温韧性输气管道压缩机配套稀土法兰用钢及其生产工艺
CN111206180A (zh) * 2020-02-11 2020-05-29 包头钢铁(集团)有限责任公司 一种高低温韧性抗酸性腐蚀输气管道稀土法兰用钢及其生产工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032300B2 (ja) * 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032299B2 (ja) * 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
US11401595B2 (en) 2016-08-31 2022-08-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
JP6315044B2 (ja) 2016-08-31 2018-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN113122769B (zh) * 2019-12-31 2022-06-28 宝山钢铁股份有限公司 低硅低碳当量吉帕级复相钢板/钢带及其制造方法
MX2022008303A (es) * 2020-01-30 2022-08-08 Nippon Steel Corp Lamina de acero laminada en caliente y metodo de produccion de la misma.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096344A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
WO2012133540A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2014043631A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal 細粒鋼板の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256560A (en) 1975-11-05 1977-05-10 Keisuke Honda Fish finder allowing discrimination of fish type
JPS5943157B2 (ja) 1982-10-29 1984-10-19 工業技術院長 ピキア属菌によるソルビト−ルの製造法
JP4510488B2 (ja) 2004-03-11 2010-07-21 新日本製鐵株式会社 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
JP5862591B2 (ja) 2013-03-28 2016-02-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR101753511B1 (ko) * 2013-08-02 2017-07-19 제이에프이 스틸 가부시키가이샤 고강도 고영률 강판 및 그 제조 방법
JP5737485B1 (ja) 2013-08-02 2015-06-17 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
JP5821912B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP5728115B1 (ja) 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
JP5943156B1 (ja) 2014-08-07 2016-06-29 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN107075627B (zh) 2014-08-07 2021-08-06 杰富意钢铁株式会社 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法
CN106574340B (zh) * 2014-08-07 2018-04-10 杰富意钢铁株式会社 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法
JP6032300B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032299B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032298B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
US11008632B2 (en) 2016-03-31 2021-05-18 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
US11401595B2 (en) 2016-08-31 2022-08-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
JP6315044B2 (ja) 2016-08-31 2018-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096344A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
WO2012133540A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2014043631A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal 細粒鋼板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187993A (zh) * 2020-02-11 2020-05-22 包头钢铁(集团)有限责任公司 一种高强度高低温韧性输气管道压缩机配套稀土法兰用钢及其生产工艺
CN111206180A (zh) * 2020-02-11 2020-05-29 包头钢铁(集团)有限责任公司 一种高低温韧性抗酸性腐蚀输气管道稀土法兰用钢及其生产工艺

Also Published As

Publication number Publication date
JPWO2018043474A1 (ja) 2018-08-30
CN109642292B (zh) 2021-11-12
KR20190044105A (ko) 2019-04-29
CN109642292A (zh) 2019-04-16
EP3508601A4 (en) 2019-07-10
US11401595B2 (en) 2022-08-02
EP3508601A1 (en) 2019-07-10
MX2019002337A (es) 2019-05-16
JP6315160B1 (ja) 2018-04-25
US20190226067A1 (en) 2019-07-25
EP3508601B1 (en) 2020-03-18
KR102239640B1 (ko) 2021-04-12

Similar Documents

Publication Publication Date Title
US11578381B2 (en) Production method for high-strength steel sheet
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5369663B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6315160B1 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6032300B2 (ja) 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP6304456B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2016021198A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6032298B2 (ja) 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032299B2 (ja) 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP6372632B1 (ja) 高強度鋼板およびその製造方法
WO2018092735A1 (ja) 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017567817

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009227

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017846479

Country of ref document: EP

Effective date: 20190401