WO2018043423A1 - Illuminating optical system, lithography device, and article manufacturing method - Google Patents

Illuminating optical system, lithography device, and article manufacturing method Download PDF

Info

Publication number
WO2018043423A1
WO2018043423A1 PCT/JP2017/030779 JP2017030779W WO2018043423A1 WO 2018043423 A1 WO2018043423 A1 WO 2018043423A1 JP 2017030779 W JP2017030779 W JP 2017030779W WO 2018043423 A1 WO2018043423 A1 WO 2018043423A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical system
light
illuminance
integrator
Prior art date
Application number
PCT/JP2017/030779
Other languages
French (fr)
Japanese (ja)
Inventor
広美 須田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020197008164A priority Critical patent/KR102212855B1/en
Priority to CN201780051936.9A priority patent/CN109643069B/en
Publication of WO2018043423A1 publication Critical patent/WO2018043423A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving

Definitions

  • the present invention relates to an illumination optical system, a lithography apparatus, and an article manufacturing method.
  • an illumination optical system including a rod-type optical integrator.
  • the illumination light from the secondary light source formed according to the number of internal reflections in the rod can be overlapped at the rod exit end to make the illuminance distribution uniform on the rod exit surface. it can.
  • Patent Document 1 has a configuration in which a plurality of light amount adjustment units provided corresponding to a plurality of secondary light source images are arranged at positions that are optically conjugate with the exit surface of the rod-type optical integrator. Is disclosed.
  • the illuminance distribution correction amount on the illuminated surface is fixed. It becomes. Therefore, it has been difficult to correct illuminance non-uniformity (hereinafter referred to as “illuminance unevenness”) unique to each machine, which occurs due to the film formation state of the antireflection film, assembly accuracy, and the like. Further, when the optical element deteriorates after long-term use of the apparatus and the illuminance unevenness changes with time, it is necessary to replace the adjustment unit as appropriate.
  • an illumination optical system that illuminates an illuminated surface using light from a light source, the optical integrator disposed between the light source and the illuminated surface, and the optical integrator And an optical filter having an adjustment unit that adjusts the intensity of light incident on the optical integrator.
  • the adjustment unit is provided at least in the first region, and the position of the adjustment unit in a direction perpendicular to the optical axis of the illumination optical system Illumination optical system and changes the illuminance on the illuminated surface is provided by changing.
  • the figure which shows the structure of exposure apparatus The schematic diagram which shows the relationship between an adjustment part and a secondary light source.
  • emission end surface The figure which shows the example of arrangement
  • action of an optical filter The figure explaining the correction method of illumination intensity nonuniformity.
  • the flowchart which shows the correction
  • action of an optical filter The figure explaining the effect
  • correction method of illumination intensity nonuniformity The figure explaining the correction method of illumination intensity nonuniformity.
  • action of an optical filter The figure explaining the effect
  • action of an optical filter The figure explaining the effect
  • FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 according to the present embodiment.
  • the exposure apparatus 100 is used, for example, in a lithography process in a semiconductor device manufacturing process, and exposes (transfers) an image of a pattern formed on a reticle R (mask) onto a wafer W that is a substrate. It is an exposure apparatus.
  • the Z axis is taken along the normal direction of the wafer W, and the X axis and the Y axis are taken in directions perpendicular to each other in a plane parallel to the wafer W surface.
  • the exposure apparatus 100 includes an illumination optical system 101, a reticle stage 102, a projection optical system 103, a wafer stage 104, and a control unit 105.
  • the illumination optical system 101 adjusts light (light flux) from the discharge lamp 1 that is a light source to illuminate the reticle R that is an illuminated area.
  • the discharge lamp 1 can be, for example, an ultrahigh pressure mercury lamp that supplies light such as i-line (wavelength 365 nm).
  • a KrF excimer laser that supplies light with a wavelength of 248 nm, an ArF excimer laser that supplies light with a wavelength of 193 nm, and an F2 laser that supplies light with a wavelength of 157 nm may be used.
  • a charged particle beam such as an X-ray or an electron beam may be used as the light source.
  • the reticle R is an original plate made of, for example, quartz glass on which a pattern to be transferred (for example, a circuit pattern) is formed on the wafer W.
  • the reticle stage 102 holds the reticle R and is movable in the X and Y axis directions.
  • the projection optical system 103 projects the light that has passed through the reticle R onto the wafer W at a predetermined magnification.
  • the wafer W is a substrate made of, for example, single crystal silicon and having a resist (photosensitive material) coated on the surface thereof.
  • the wafer stage 104 holds the wafer W via a wafer chuck (not shown) and is movable in the respective axial directions of X, Y, and Z (which may include ⁇ x, ⁇ y, and ⁇ z that are the respective rotation directions). .
  • the wafer stage 104 can be driven by a wafer stage drive unit 114.
  • the illumination optical system 101 includes an elliptical mirror 2, a first relay optical system 3, an optical integrator 4, and a second relay optical system 5 in order from the discharge lamp 1 toward the reticle R that is an illuminated area.
  • the elliptical mirror 2 is a condensing mirror that condenses the light (light flux) emitted from the discharge lamp 1 at the second focal position F2.
  • the light emitting part in the bulb part of the discharge lamp 1 is arranged in the vicinity of the first focal point F1 of the elliptical mirror 2, for example.
  • the first relay optical system 3 as an imaging optical system includes a lens front group 3a (first lens) composed of one or more lenses and a lens rear group 3b (second lens) composed of one or more lenses. Including.
  • the front lens group 3a converts light from the light source into parallel light.
  • the rear lens group 3 b condenses the light that has been converted into parallel light by the rear lens group 3 a onto the incident end face 4 a of the optical integrator 4.
  • the second focal position F2 and the incident end face 4a of the optical integrator 4 are optically conjugate.
  • the optical axis of the illumination optical system 101 particularly the optical system including the first relay optical system 3, the optical integrator 4, and the second relay optical system 5, is set to the Z-axis direction.
  • the optical integrator 4 is a rod-type optical integrator that reflects incident light on the inner surface and forms a plurality of secondary light source images corresponding to the number of reflections.
  • the shape of the optical integrator 4 is, for example, a quadrangular prism. That is, the shape of the incident end surface and the exit end surface parallel to the XY plane of the optical integrator 4 is a rectangle similar to the illuminated surface. However, such a shape is merely an example, and does not hinder the application of a member having the same function as the optical integrator 4.
  • the optical integrator 4 may be composed of a hollow rod that forms a reflective surface inside.
  • the cross-sectional shape of the incident end surface 4a and the exit end surface 4b of the optical integrator 4 on the XY plane may be a polygon other than a quadrangle.
  • an optical filter 6 is arranged in the vicinity of the reticle R, that is, the conjugate plane S1 conjugate with the wafer W, perpendicular to the optical axis.
  • the optical filter 6 is configured to be movable two-dimensionally along the XY plane, and the movement is performed by, for example, the filter driving unit 7.
  • the optical filter 6 is included in the first relay optical system 3 and can be disposed between the lens front group 3a and the lens rear group 3b.
  • the optical filter 6 has a plurality of adjustment units that adjust the intensity of light incident on the optical integrator 4 provided corresponding to the number of secondary light source images formed by the optical integrator 4. The optical action of the optical filter 6 will be described in detail later.
  • the rear lens group 3b is disposed at a position away from the position of the virtual image plane S2 of the secondary light source formed by the optical integrator 4 by a focal length, and the illumination light emitted almost parallel to the optical axis from the optical filter 6 is The light is once condensed on the virtual image plane S2.
  • the incident end face 4a of the optical integrator 4 is disposed in the vicinity of the virtual image plane S2.
  • the illumination light collected by the rear lens group 3b is reflected a plurality of times on the inner surface of the optical integrator 4 and emitted.
  • Illumination light emitted from the optical integrator 4 is emitted as if traveling from a virtual image of a discrete secondary light source corresponding to the number of reflections. For this reason, the angle of the illumination light emitted from the optical integrator 4 corresponds to the emission angle of the illumination light from the virtual image of the secondary light source arranged on the virtual image plane S2.
  • the exit end surface 4b of the optical integrator 4 is superimposed and illuminated uniformly by a plurality of light source images arranged on the virtual image plane S2.
  • the light emitted from the emission end surface 4b of the optical integrator 4 is transmitted through the second relay optical system 5, and then illuminates the reticle R, which is the illuminated surface.
  • the second relay optical system 5 includes a lens front group 5a composed of a single lens or a plurality of lenses for converting light from the emission end face 4b of the optical integrator 4 into parallel light.
  • the lens front group 5a is configured to be movable in the optical axis direction (Z-axis direction) of the second relay optical system 5.
  • the second relay optical system 5 further includes a lens rear group 5b composed of a single lens or a plurality of lenses for condensing the light that has been converted into parallel light by the lens front group 5a onto the surface to be illuminated.
  • the lens front unit 5a is moved by the lens driving unit 51. By moving the lens front group 5a in the optical axis direction, the distortion can be changed while substantially not changing the focal length. With this action, the peripheral illuminance can be increased or decreased by the movement of the lens front group 5a.
  • the exit end surface 4b of the optical integrator 4 is disposed at the front focal position of the lens front group 5a, and the exit end surface 4b of the optical integrator 4 is optically conjugate with the reticle R that is the illuminated surface. It has become. Strictly speaking, the position of the injection end face 4b may be slightly shifted from the conjugate in order to avoid the transfer of foreign matter on the injection end face 4b of the optical integrator 4. Then, the light emitted from the reticle R, that is, the image of the mask pattern, is transferred onto the wafer W via the projection optical system 103.
  • the illuminance distribution measuring unit 115 measures the illuminance distribution on the reticle R that is the surface to be illuminated.
  • the control unit 105 controls the discharge lamp 1, the filter driving unit 7, the lens driving unit 51, the wafer stage driving unit 114, and the illuminance distribution measuring unit 115.
  • the control unit 105 can include a storage unit 105a that stores various data necessary for control.
  • FIG. 2 is a diagram schematically illustrating a relationship between a plurality of adjustment units provided on the optical filter and a plurality of secondary light sources formed by the optical integrator 4.
  • FIG. 2 shows an optical path of illumination light emitted from the optical filter 6 in parallel to the optical axis.
  • the adjustment unit 60 on the optical axis provided on the optical filter 6 adjusts the intensity of the light beam from the secondary light source 40 that is not reflected by the inner surface of the optical integrator 4.
  • a pair of adjustment units 61 a and 61 b adjacent to both outer sides of the adjustment unit 60 adjust the intensity of the light beam from the secondary light source images 41 a and 41 b that are reflected once by the inner surface of the optical integrator 4.
  • a pair of adjustment units 62 a and 62 b adjacent to both outer sides of the adjustment units 61 a and 61 b adjust the intensity of the light beam from the secondary light source images 42 a and 42 b reflected twice by the inner surface of the optical integrator 4. According to such a configuration, the transmittance can be controlled independently for each of the light beams of the plurality of secondary light sources formed by the optical integrator 4.
  • the adjusting units 60, 61a, 61b, 62a, 62b are disposed in the vicinity of the conjugate surface S1 conjugate with the emission end surface 4b of the optical integrator 4. Accordingly, the shape of one adjustment unit corresponds to the illumination area on the reticle R or the wafer W in FIG. 1, and the transmittance distribution of the adjustment units 60, 61 a, 61 b, 62 a, 62 b is on the wafer W. It is reflected in the illuminance distribution of the illumination area.
  • FIG. 3A is a diagram for explaining the imaging relationship between each adjustment unit in the optical filter 6 and the exit end face 4b of the optical integrator 4.
  • FIG. 4 the light beam from the adjacent secondary light source is inverted. For this reason, when the direction of the image formed on the exit end face 4b of the optical integrator 4 is “F”, the images of the adjacent adjustment units are opposite to each other and are in a mirror image relationship with each other.
  • FIG. 3B is a schematic view of the optical filter 6 disposed in the vicinity of the conjugate plane S1 as viewed from the incident side.
  • a pattern filter or a light shielding member
  • the plurality of pattern filters constituting the plurality of adjustment units are arranged at predetermined positions on the optical filter corresponding to the mirror image relationship in the plurality of secondary light source images of the optical integrator 4.
  • the optical filter 6 includes a plurality of first regions A and B and a plurality of second regions that are regions other than the first region.
  • the plurality of first areas A and B are areas in which images in the same direction are formed on the emission end face 4 b of the optical integrator 4.
  • the plurality of second regions are regions where an image having a mirror image relationship with the image of the first region is formed on the emission end face 4 b of the optical integrator 4.
  • rectangular pattern filters 6A and 6B are arranged on the surface of the optical filter 6 in the plurality of first regions A and B, corresponding to the plurality of secondary light source images of the optical integrator 4, respectively. Yes. Note that the pattern filters 6A and 6B may be arranged in at least a part of the plurality of first regions A and B instead of all of the first regions A and B.
  • each pattern filter portion has an effect as shown in FIGS. 4A and 4B. ing.
  • FIG. 4C representing the sum of FIGS. 4A and 4B, approximately.
  • an optical filter having an effect of increasing the illuminance in the vicinity as in the present embodiment is effective in correcting the illuminance distribution.
  • the light beam incident on the optical integrator 4 is adjusted so as to have an illuminance distribution symmetric with respect to the optical axis.
  • the effective light source distribution on the illuminated surface is symmetric with respect to the chief ray, so that no image shift occurs with respect to defocusing. Thereby, exposure with good telecentricity can be realized.
  • the illumination light incident on the optical integrator 4 has an asymmetric illuminance distribution with respect to the optical axis, the symmetry of the effective light source distribution is lost, and the image performance is affected in the form of a telecentricity shift.
  • the telecentricity shift hardly occurs.
  • two types of pattern filters 6A and 6B are used as the adjustment unit.
  • one type of pattern is approximately proportional to the square of the image height. It is also possible to create an illuminance distribution.
  • the illuminance unevenness in FIG. 5A is decomposed into an inclined illuminance unevenness as shown in FIG. 5B and an illuminance unevenness in which the illuminance decreases as it goes to the periphery as shown in FIG. 5C. can do. These can be separated from each other by calculating the average illuminance and inclination component by image height from the illuminance distribution.
  • the optical filter 6 of this embodiment has an effect of increasing the illuminance at the peripheral portion in proportion to the square of the image height.
  • the incident end face 4a of the optical integrator 4 is equivalent to the illuminated surface and is a normalized XY coordinate system
  • a is a constant.
  • the pattern filters 6A and 6B of the optical filter 6 are disposed in at least a part of the plurality of first regions A and B in which images in the same direction are formed on the exit end face 4b of the optical integrator 4.
  • the optical filter 6 is movable in a direction along the plurality of first regions A and B and the plurality of second regions which are other regions, that is, a direction along the XY plane. That is, it is possible to change the position of the optical filter 6 in a direction (X direction or Y direction) perpendicular to the optical axis (Z axis) of the illumination optical system.
  • the optical filter 6 is moved in the direction along the XY plane, the effects of the illuminance distribution change on the illuminated surface provided by the pattern filters 6A and 6B are not canceled out.
  • FIG. 6 is a flowchart showing a correction procedure for inclined uneven illuminance.
  • the control unit 105 calculates illuminance unevenness on the illuminated surface based on the illuminance distribution data measured by the illuminance distribution measuring unit 115 (illuminance unevenness measurement 1). If the maximum value of the illuminance value on the surface to be illuminated is Smax and the minimum value is Smin, the illuminance unevenness S is calculated by the following equation, for example.
  • control unit 105 moves the optical filter 6 by a predetermined distance ⁇ in the X direction in S602, and measures illuminance unevenness on the illuminated surface in S603 (illuminance unevenness measurement 2).
  • control unit 105 moves the optical filter 6 by a predetermined distance ⁇ in the Y direction in S604, and measures the illuminance unevenness on the illuminated surface in S605 (illuminance unevenness measurement 3).
  • control unit 105 calculates the amount of change in illuminance unevenness from the results of the illuminance unevenness measurements 1, 2, and 3, and stores the change in the storage unit 105a. This change amount corresponds to the inclination of the above-described inclined illuminance distribution.
  • control unit 105 calculates the movement direction and the movement amount of the optical filter 6 based on the change amount calculated in S606. Then, the control unit 105 causes the filter driving unit 7 to move the optical filter 6 by the calculated movement amount in the calculated direction.
  • the control unit 105 again measures the illuminance unevenness on the surface to be illuminated (illuminance unevenness measurement 4), and confirms whether the illuminance unevenness is within a predetermined allowable range in S610. If the illuminance unevenness is within the allowable range, the process ends. On the other hand, if the illuminance unevenness is not within the allowable range, the process proceeds to S611, the result of the illuminance unevenness measurement 4 is fed back, and the process returns to S607 to recalculate the moving direction and the moving amount of the optical filter 6.
  • the peripheral illuminance correction amount is adjusted.
  • the second relay optical system 5 has a configuration in which the distortion is changed while the focal length is not substantially changed by moving the lens front group 5a in the optical axis direction. Thereby, the peripheral illuminance can be increased or decreased by the movement of the lens front group 5a.
  • the control unit 105 obtains the amount of change in illuminance at the outermost peripheral portion of the illuminated surface when the illuminance distribution measurement unit 115 moves the lens front group 5a by a predetermined distance ⁇ in the optical axis direction. Is stored in the storage unit 105a (illuminance unevenness measurement 1). Note that S701 may be performed in advance by simulation or the like.
  • the control unit 105 calculates the amount of movement of the lens front group 5a in the optical axis direction based on the amount of change.
  • step S ⁇ b> 703 the control unit 105 causes the lens driving unit 51 to move the lens front group 5 a in the optical axis direction by the calculated movement amount.
  • the control unit 105 again obtains the amount of change in illuminance at the outermost peripheral portion of the illuminated surface when the lens front group 5a is moved by a predetermined distance ⁇ in the optical axis direction (illuminance unevenness measurement 2), and S705. Then, it is confirmed whether the fluctuation amount is within a predetermined allowable range. If the fluctuation amount is within the allowable range, the process ends. On the other hand, if the fluctuation amount is not within the allowable range, the process proceeds to S706, the result of the illuminance unevenness measurement 2 is fed back, the process returns to S703, and the movement amount of the optical filter 6 is recalculated.
  • control unit 105 feedback-controls the movement amount of the optical filter 6 so that the illuminance unevenness calculated from the illuminance distribution measured by the illuminance distribution measurement unit 115 falls within the allowable range.
  • control procedure of FIG. 6 and the control procedure of FIG. 7 performed by the control unit 105 may be executed in series along a time series, or may be executed in parallel.
  • each element can be driven to the optimum position by calling the execution result from the storage unit 105a.
  • the procedures as shown in FIGS. 6 and 7 can be omitted, and the correction of the inclined uneven illuminance and the concentric uneven illuminance (illuminance unevenness symmetric to the optical axis) can be performed quickly.
  • the control procedure shown in FIGS. 6 and 7 may be executed again to correct the inclined illuminance unevenness and the concentric illuminance unevenness (illuminance unevenness symmetric to the optical axis). .
  • an optical filter is arranged in the vicinity of an incident surface of an optical integrator in which a plurality of microlenses are two-dimensionally arranged at a predetermined pitch.
  • the optical filter has a light amount adjustment unit that can adjust the amount of transmitted light in a plurality of regions respectively corresponding to a plurality of microlenses constituting the optical integrator. Even with such a configuration, it is possible to control illuminance unevenness by moving the optical filter along the XY plane.
  • the rod-type optical integrator according to the present embodiment is lower in cost.
  • the arrangement position of each adjustment unit is determined by utilizing the imaging relationship as shown in FIG. 3A.
  • the plurality of adjustment units are arranged so that the direction of the image of each adjustment unit formed on the exit end face of the rod-type optical integrator is the same by the light transmitted through each of the plurality of adjustment units. Placed on top. Thereby, illuminance unevenness control is possible.
  • FIG. 3C is a schematic view of the optical filter 6 according to the present embodiment as viewed from the incident side.
  • rectangular pattern filters 6 ⁇ / b> C are arranged in a plurality of first regions C corresponding to a plurality of secondary light source images of the optical integrator 4, and a rectangular pattern filter 6 ⁇ / b> D is a plurality of rectangular pattern filters 6 ⁇ / b> D.
  • the pattern filters 6C and 6D may be arranged in at least a part of the plurality of first regions C and the plurality of second regions D, respectively.
  • the plurality of first regions C are regions in which images in the same direction are formed on the emission end surface 4 b of the optical integrator 4.
  • the plurality of second regions D are regions where images having a mirror image relationship with the images of the plurality of first regions C are formed on the emission end face 4 b of the optical integrator 4.
  • the pattern filter 6C has the effect of increasing the illuminance at the peripheral portion of the illuminated surface approximately in proportion to the square of the image height as shown in FIG. 8A.
  • the pattern filter 6D has the opposite characteristic, that is, the effect of lowering the illuminance at the peripheral portion approximately in proportion to the square of the image height as shown in FIG. 8B.
  • the combination of the pattern filters 6C and 6D is configured to cancel the effects of the illuminance distribution change.
  • the incident end surface 4a of the optical integrator 4 is equivalent to an illuminated surface and is a normalized XY coordinate system
  • a is a constant.
  • the configuration of the adjustment unit as in this embodiment is effective for correcting the illuminance distribution.
  • the pattern filter 6C in the present embodiment has an effect that the illuminance distribution changes approximately in proportion to the cube of the image height as shown in FIG. 10A.
  • the pattern filter 6D has the opposite characteristic, that is, an effect that the illuminance distribution changes approximately in proportion to the cube of the image height as shown in FIG. 10B.
  • the combination of the pattern filters 6C and 6D is configured to cancel the effects of the illuminance distribution change.
  • a is a constant.
  • the secondary shape illuminance distribution as shown in FIG. 11A can be corrected to be flat as shown in FIG. 11B.
  • the configuration of the adjustment unit as in this embodiment is effective for illuminance distribution correction. Even if the illuminance distribution to be corrected is a third-order or higher order shape, illuminance unevenness correction can be performed by appropriately setting the transmittance distribution of the pattern filter.
  • the article manufacturing method according to the embodiment of the present invention is suitable for manufacturing an article such as a micro device such as a semiconductor device or an element having a fine structure.
  • the article manufacturing method of this embodiment uses a lithography apparatus (such as an exposure apparatus, an imprint apparatus, or a drawing apparatus) to transfer an original pattern to a substrate, and processes the substrate on which the pattern has been transferred in this process. Including the step of. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like).
  • the article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

Abstract

Provided is an illuminating optical system that illuminates, using light emitted from a light source, a surface to be illuminated. This illuminating optical system has: an optical integrator that is disposed between a light source and a surface to be illuminated; and an optical filter having an adjustment unit that adjusts the intensity of light to be inputted to the optical integrator. The optical integrator is a rod-type optical integrator that reflects inputted light by an internal surface. The illuminating optical system changes the position of the adjustment unit in the direction perpendicular to the optical axis of the illuminating optical system, thereby changing illuminance on the surface to be illuminated.

Description

照明光学系、リソグラフィ装置、及び物品製造方法Illumination optical system, lithographic apparatus, and article manufacturing method
 本発明は、照明光学系、リソグラフィ装置、及び物品製造方法に関する。 The present invention relates to an illumination optical system, a lithography apparatus, and an article manufacturing method.
 マスクに形成されたパターンをレジスト等の感光性材料が塗布された基板に投影する露光装置においては、マスク面や基板面等の被照明面における照度均一性の向上が求められている。照度均一性を向上させる手法として、ロッド型オプティカルインテグレータを備えた照明光学系を用いることが知られている。ロッド型オプティカルインテグレータを用いることで、ロッド内の内面反射回数に応じて形成した二次光源からの照明光をロッド射出端で重畳させることにより、ロッド射出面での照度分布を均一化することができる。 In an exposure apparatus that projects a pattern formed on a mask onto a substrate coated with a photosensitive material such as a resist, improvement in illuminance uniformity on an illuminated surface such as a mask surface or a substrate surface is required. As a technique for improving the illuminance uniformity, it is known to use an illumination optical system including a rod-type optical integrator. By using a rod-type optical integrator, the illumination light from the secondary light source formed according to the number of internal reflections in the rod can be overlapped at the rod exit end to make the illuminance distribution uniform on the rod exit surface. it can.
 しかし、ロッド型オプティカルインテグレータを備えた照明光学系においては、光学系の汚れや偏心、反射防止膜ムラなど様々な要因に起因して、結果的に被照明面上の照度分布に不均一性が認められる場合がある。この課題に対して、特許文献1は、ロッド型オプティカルインテグレータの射出面と光学的に共役な関係となる位置に複数の二次光源像に対応して設けた複数の光量調整部を配置した構成を開示している。 However, in an illumination optical system equipped with a rod-type optical integrator, non-uniformity in the illumination distribution on the illuminated surface results as a result of various factors such as dirt and decentering of the optical system and unevenness of the antireflection film. May be allowed. In response to this problem, Patent Document 1 has a configuration in which a plurality of light amount adjustment units provided corresponding to a plurality of secondary light source images are arranged at positions that are optically conjugate with the exit surface of the rod-type optical integrator. Is disclosed.
 しかし、特許文献1に開示された照明光学系では、被照明面に集光する角度分布(以下「有効光源分布」という。)が決定されると、被照明面上の照度分布補正量は固定となる。したがって、反射防止膜の成膜状態や組立精度などにより発生する各機体固有の照度不均一性(以下「照度ムラ」という。)を補正することは困難であった。また、装置を長期間使用して光学素子が劣化し、照度ムラが経時変化した場合は、調整部を適宜交換する必要があった。 However, in the illumination optical system disclosed in Patent Document 1, when the angle distribution (hereinafter referred to as “effective light source distribution”) to be collected on the illuminated surface is determined, the illuminance distribution correction amount on the illuminated surface is fixed. It becomes. Therefore, it has been difficult to correct illuminance non-uniformity (hereinafter referred to as “illuminance unevenness”) unique to each machine, which occurs due to the film formation state of the antireflection film, assembly accuracy, and the like. Further, when the optical element deteriorates after long-term use of the apparatus and the illuminance unevenness changes with time, it is necessary to replace the adjustment unit as appropriate.
特開2000-269114号JP 2000-269114 A
 本発明の一側面によれば、光源からの光を用いて被照明面を照明する照明光学系であって、前記光源と前記被照明面との間に配置されたオプティカルインテグレータと、前記オプティカルインテグレータに入射される光の強度を調整する調整部を有する光学フィルタとを有し、前記オプティカルインテグレータは、入射した光を内面で反射させるロッド型オプティカルインテグレータであり、前記光学フィルタは、前記ロッド型オプティカルインテグレータの射出端面で互いに同じ向きの像が形成される複数の第1領域と、前記射出端面で前記像に対して鏡像の関係を有する像が形成される複数の第2領域とを含み、前記調整部は、少なくとも前記第1領域に設けられており、前記照明光学系の光軸に垂直な方向における前記調整部の位置を変更することにより前記被照明面における照度を変更することを特徴とする照明光学系が提供される。 According to one aspect of the present invention, there is provided an illumination optical system that illuminates an illuminated surface using light from a light source, the optical integrator disposed between the light source and the illuminated surface, and the optical integrator And an optical filter having an adjustment unit that adjusts the intensity of light incident on the optical integrator. A plurality of first regions in which images in the same direction are formed on the exit end face of the integrator; and a plurality of second regions in which an image having a mirror image relationship with the image is formed on the exit end surface, The adjustment unit is provided at least in the first region, and the position of the adjustment unit in a direction perpendicular to the optical axis of the illumination optical system Illumination optical system and changes the illuminance on the illuminated surface is provided by changing.
露光装置の構成を示す図。The figure which shows the structure of exposure apparatus. 調整部と二次光源との関係を示す模式図。The schematic diagram which shows the relationship between an adjustment part and a secondary light source. 調整部とオプティカルインテグレータ射出端面との結像関係を示す図。The figure which shows the imaging relationship of an adjustment part and an optical integrator injection | emission end surface. 光学フィルタ上の調整部の配置例を示す図。The figure which shows the example of arrangement | positioning of the adjustment part on an optical filter. 光学フィルタ上の調整部の配置例を示す図。The figure which shows the example of arrangement | positioning of the adjustment part on an optical filter. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 照度ムラの補正方法を説明する図。The figure explaining the correction method of illumination intensity nonuniformity. 照度ムラの補正方法を説明する図。The figure explaining the correction method of illumination intensity nonuniformity. 照度ムラの補正方法を説明する図。The figure explaining the correction method of illumination intensity nonuniformity. 傾斜状の照度ムラの補正手順を示すフローチャート。The flowchart which shows the correction | amendment procedure of inclined illumination intensity nonuniformity. 光軸対称な照度ムラの補正手順を示すフローチャート。The flowchart which shows the correction | amendment procedure of illumination intensity nonuniformity symmetrical to an optical axis. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 照度ムラの補正方法を説明する図。The figure explaining the correction method of illumination intensity nonuniformity. 照度ムラの補正方法を説明する図。The figure explaining the correction method of illumination intensity nonuniformity. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter. 光学フィルタの作用を説明する図。The figure explaining the effect | action of an optical filter.
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、以下の実施形態は本発明の実施の具体例を示すにすぎない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決のために必須のものであるとは限らない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, The following embodiment shows only the specific example of implementation of this invention. Moreover, not all combinations of features described in the following embodiments are indispensable for solving the problems of the present invention.
 <第1実施形態>
 図1は、本実施形態に係る露光装置100の構成を示す概略図である。露光装置100は、例えば、半導体デバイスの製造工程におけるリソグラフィ工程で用いられるものであり、レチクルR(マスク)に形成されているパターンの像を基板であるウエハW上に露光(転写)する投影型露光装置である。図1において、ウエハWの法線方向に沿ってZ軸をとり、ウエハW面と平行な面内で互いに垂直な方向にX軸とY軸をとっている。露光装置100は、照明光学系101と、レチクルステージ102と、投影光学系103と、ウエハステージ104と、制御部105とを備える。
<First Embodiment>
FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 according to the present embodiment. The exposure apparatus 100 is used, for example, in a lithography process in a semiconductor device manufacturing process, and exposes (transfers) an image of a pattern formed on a reticle R (mask) onto a wafer W that is a substrate. It is an exposure apparatus. In FIG. 1, the Z axis is taken along the normal direction of the wafer W, and the X axis and the Y axis are taken in directions perpendicular to each other in a plane parallel to the wafer W surface. The exposure apparatus 100 includes an illumination optical system 101, a reticle stage 102, a projection optical system 103, a wafer stage 104, and a control unit 105.
 照明光学系101は、光源である放電ランプ1からの光(光束)を調整して、被照明領域であるレチクルRを照明する。放電ランプ1は、例えば、i線(波長365nm)等の光を供給する超高圧水銀ランプでありうる。また、これに限らず、例えば248nmの波長の光を供給するKrFエキシマレーザ、193nmの波長の光を供給するArFエキシマレーザ、157nmの波長の光を供給するF2レーザを用いてもよい。また、照明光学系101および投影光学系103が反射屈折系あるいは反射系で構成される場合には、光源にはX線や電子線等の荷電粒子線を用いてもよい。 The illumination optical system 101 adjusts light (light flux) from the discharge lamp 1 that is a light source to illuminate the reticle R that is an illuminated area. The discharge lamp 1 can be, for example, an ultrahigh pressure mercury lamp that supplies light such as i-line (wavelength 365 nm). For example, a KrF excimer laser that supplies light with a wavelength of 248 nm, an ArF excimer laser that supplies light with a wavelength of 193 nm, and an F2 laser that supplies light with a wavelength of 157 nm may be used. Further, when the illumination optical system 101 and the projection optical system 103 are configured by a catadioptric system or a reflective system, a charged particle beam such as an X-ray or an electron beam may be used as the light source.
 レチクルRは、ウエハW上に転写されるべきパターン(例えば回路パターン)が形成された、例えば石英ガラス製の原版である。レチクルステージ102は、レチクルRを保持してX、Yの各軸方向に可動である。投影光学系103は、レチクルRを通過した光を所定の倍率でウエハW上に投影する。ウエハWは、表面上にレジスト(感光性材料)が塗布された、例えば単結晶シリコンからなる基板である。ウエハステージ104は、不図示のウエハチャックを介してウエハWを保持し、X、Y、Z(それぞれの回転方向であるωx、ωy、ωzを含む場合もある)の各軸方向に可動である。ウエハステージ104は、ウエハステージ駆動部114により駆動されうる。 The reticle R is an original plate made of, for example, quartz glass on which a pattern to be transferred (for example, a circuit pattern) is formed on the wafer W. The reticle stage 102 holds the reticle R and is movable in the X and Y axis directions. The projection optical system 103 projects the light that has passed through the reticle R onto the wafer W at a predetermined magnification. The wafer W is a substrate made of, for example, single crystal silicon and having a resist (photosensitive material) coated on the surface thereof. The wafer stage 104 holds the wafer W via a wafer chuck (not shown) and is movable in the respective axial directions of X, Y, and Z (which may include ωx, ωy, and ωz that are the respective rotation directions). . The wafer stage 104 can be driven by a wafer stage drive unit 114.
 照明光学系101は、放電ランプ1から被照明領域であるレチクルRに向かって順に、楕円鏡2と、第1リレー光学系3と、オプティカルインテグレータ4と、第2リレー光学系5とを含む。楕円鏡2は、放電ランプ1から放射された光(光束)を第2焦点位置F2に集光する集光鏡である。放電ランプ1のバルブ部内の発光部は、例えば楕円鏡2の第1焦点F1の近傍に配置されている。結像光学系としての第1リレー光学系3は、単数又は複数のレンズからなるレンズ前群3a(第1レンズ)と、単数又は複数のレンズからなるレンズ後群3b(第2レンズ)とを含む。レンズ前群3aは、光源からの光を平行光にする。レンズ後群3bは、レンズ後群3aによって平行光とされた光をオプティカルインテグレータ4の入射端面4aに集光する。これらレンズ前群3aとレンズ後群3bとによって、第2焦点位置F2とオプティカルインテグレータ4の入射端面4aとが光学的に共役となっている。本実施形態において、照明光学系101、特に、第1リレー光学系3とオプティカルインテグレータ4と第2リレー光学系5を含む光学系の光軸はZ軸方向としている。 The illumination optical system 101 includes an elliptical mirror 2, a first relay optical system 3, an optical integrator 4, and a second relay optical system 5 in order from the discharge lamp 1 toward the reticle R that is an illuminated area. The elliptical mirror 2 is a condensing mirror that condenses the light (light flux) emitted from the discharge lamp 1 at the second focal position F2. The light emitting part in the bulb part of the discharge lamp 1 is arranged in the vicinity of the first focal point F1 of the elliptical mirror 2, for example. The first relay optical system 3 as an imaging optical system includes a lens front group 3a (first lens) composed of one or more lenses and a lens rear group 3b (second lens) composed of one or more lenses. Including. The front lens group 3a converts light from the light source into parallel light. The rear lens group 3 b condenses the light that has been converted into parallel light by the rear lens group 3 a onto the incident end face 4 a of the optical integrator 4. By the lens front group 3a and the lens rear group 3b, the second focal position F2 and the incident end face 4a of the optical integrator 4 are optically conjugate. In the present embodiment, the optical axis of the illumination optical system 101, particularly the optical system including the first relay optical system 3, the optical integrator 4, and the second relay optical system 5, is set to the Z-axis direction.
 本実施形態において、オプティカルインテグレータ4は、入射した光を内面で反射させその反射回数に対応して複数の二次光源像を形成するロッド型オプティカルインテグレータである。オプティカルインテグレータ4の形状は、例えば四角柱である。すなわち、オプティカルインテグレータ4のXY平面と平行な、入射端面及び射出端面の形状は、被照明面と相似の長方形となっている。もっとも、そのような形状は例示であって、オプティカルインテグレータ4と同様の作用を持つ部材の適用を妨げるものではない。例えば、オプティカルインテグレータ4は内部に反射面を形成する中空ロッドより構成されてもよい。また、オプティカルインテグレータ4の入射端面4a及び射出端面4bのXY平面での断面形状は四角形以外の多角形でもよい。 In this embodiment, the optical integrator 4 is a rod-type optical integrator that reflects incident light on the inner surface and forms a plurality of secondary light source images corresponding to the number of reflections. The shape of the optical integrator 4 is, for example, a quadrangular prism. That is, the shape of the incident end surface and the exit end surface parallel to the XY plane of the optical integrator 4 is a rectangle similar to the illuminated surface. However, such a shape is merely an example, and does not hinder the application of a member having the same function as the optical integrator 4. For example, the optical integrator 4 may be composed of a hollow rod that forms a reflective surface inside. Further, the cross-sectional shape of the incident end surface 4a and the exit end surface 4b of the optical integrator 4 on the XY plane may be a polygon other than a quadrangle.
 放電ランプ1とオプティカルインテグレータ4との間において、レチクルRすなわちウエハWと共役な共役面S1の近傍に、光学フィルタ6が、光軸と垂直に配置される。光学フィルタ6は、XY平面に沿って2次元的に移動可能に構成され、その移動は、例えばフィルタ駆動部7によって行われる。光学フィルタ6は、例えば、図1に示されるように、第1リレー光学系3に含まれ、レンズ前群3aとレンズ後群3bと間に配置されうる。光学フィルタ6は、オプティカルインテグレータ4によって形成される二次光源像の数に対応して設けられる、オプティカルインテグレータ4に入射される光の強度を調整する複数の調整部を有する。光学フィルタ6の光学的作用については後ほど詳しく説明する。 Between the discharge lamp 1 and the optical integrator 4, an optical filter 6 is arranged in the vicinity of the reticle R, that is, the conjugate plane S1 conjugate with the wafer W, perpendicular to the optical axis. The optical filter 6 is configured to be movable two-dimensionally along the XY plane, and the movement is performed by, for example, the filter driving unit 7. For example, as shown in FIG. 1, the optical filter 6 is included in the first relay optical system 3 and can be disposed between the lens front group 3a and the lens rear group 3b. The optical filter 6 has a plurality of adjustment units that adjust the intensity of light incident on the optical integrator 4 provided corresponding to the number of secondary light source images formed by the optical integrator 4. The optical action of the optical filter 6 will be described in detail later.
 レンズ後群3bは、オプティカルインテグレータ4によって形成される二次光源の虚像面S2の位置から焦点距離だけ離れた位置に配置されており、光学フィルタ6から光軸にほぼ平行に射出した照明光は、一旦この虚像面S2に集光することになる。 The rear lens group 3b is disposed at a position away from the position of the virtual image plane S2 of the secondary light source formed by the optical integrator 4 by a focal length, and the illumination light emitted almost parallel to the optical axis from the optical filter 6 is The light is once condensed on the virtual image plane S2.
 オプティカルインテグレータ4の入射端面4aは、虚像面S2の近傍に配置されている。レンズ後群3bによって集光された照明光は、オプティカルインテグレータ4の内面で複数回反射されて射出する。オプティカルインテグレータ4から射出される照明光は、あたかも反射回数に対応する離散的な二次光源の虚像から向かうように射出する。このため、オプティカルインテグレータ4から射出する照明光の角度は、虚像面S2に配置される二次光源の虚像からの照明光の射出角度に相当している。 The incident end face 4a of the optical integrator 4 is disposed in the vicinity of the virtual image plane S2. The illumination light collected by the rear lens group 3b is reflected a plurality of times on the inner surface of the optical integrator 4 and emitted. Illumination light emitted from the optical integrator 4 is emitted as if traveling from a virtual image of a discrete secondary light source corresponding to the number of reflections. For this reason, the angle of the illumination light emitted from the optical integrator 4 corresponds to the emission angle of the illumination light from the virtual image of the secondary light source arranged on the virtual image plane S2.
 オプティカルインテグレータ4の射出端面4bは、虚像面S2に配置される複数の光源像によって重畳され、一様に照明される。オプティカルインテグレータ4の射出端面4bを発した光は、第2リレー光学系5を透過した後、被照明面であるレチクルRを照明する。第2リレー光学系5は、オプティカルインテグレータ4の射出端面4bからの光を平行光にする単数又は複数のレンズからなるレンズ前群5aを含む。レンズ前群5aは、第2リレー光学系5の光軸方向(Z軸方向)に移動可能に構成されている。第2リレー光学系5は、更に、レンズ前群5aで平行光とされた光を被照明面へ集光する単数又は複数のレンズからなるレンズ後群5bを含む。レンズ前群5aの移動はレンズ駆動部51により行われる。レンズ前群5aを光軸方向に移動させることで、実質的に焦点距離を変えないようにしつつディストーションを変化させることができる。この作用により、レンズ前群5aの移動によって、周辺照度を上下させることが可能となっている。 The exit end surface 4b of the optical integrator 4 is superimposed and illuminated uniformly by a plurality of light source images arranged on the virtual image plane S2. The light emitted from the emission end surface 4b of the optical integrator 4 is transmitted through the second relay optical system 5, and then illuminates the reticle R, which is the illuminated surface. The second relay optical system 5 includes a lens front group 5a composed of a single lens or a plurality of lenses for converting light from the emission end face 4b of the optical integrator 4 into parallel light. The lens front group 5a is configured to be movable in the optical axis direction (Z-axis direction) of the second relay optical system 5. The second relay optical system 5 further includes a lens rear group 5b composed of a single lens or a plurality of lenses for condensing the light that has been converted into parallel light by the lens front group 5a onto the surface to be illuminated. The lens front unit 5a is moved by the lens driving unit 51. By moving the lens front group 5a in the optical axis direction, the distortion can be changed while substantially not changing the focal length. With this action, the peripheral illuminance can be increased or decreased by the movement of the lens front group 5a.
 本実施形態において、レンズ前群5aの前側焦点位置にオプティカルインテグレータ4の射出端面4bが配置されており、更にオプティカルインテグレータ4の射出端面4bは、被照明面であるレチクルRと光学的に共役となっている。なお厳密には、オプティカルインテグレータ4の射出端面4b上の異物が転写されるのを避けるため、射出端面4bの位置を共役から少しずらしてもよい。そして、レチクルRを射出した光、すなわち、マスクパターンの像は、投影光学系103を介してウエハW上に転写されることになる。 In the present embodiment, the exit end surface 4b of the optical integrator 4 is disposed at the front focal position of the lens front group 5a, and the exit end surface 4b of the optical integrator 4 is optically conjugate with the reticle R that is the illuminated surface. It has become. Strictly speaking, the position of the injection end face 4b may be slightly shifted from the conjugate in order to avoid the transfer of foreign matter on the injection end face 4b of the optical integrator 4. Then, the light emitted from the reticle R, that is, the image of the mask pattern, is transferred onto the wafer W via the projection optical system 103.
 照度分布計測部115は、被照明面であるレチクルRにおける照度分布を計測する。制御部105は、放電ランプ1、フィルタ駆動部7、レンズ駆動部51、ウエハステージ駆動部114、照度分布計測部115を制御する。制御部105は、制御に必要な各種データを記憶する記憶部105aを含みうる。 The illuminance distribution measuring unit 115 measures the illuminance distribution on the reticle R that is the surface to be illuminated. The control unit 105 controls the discharge lamp 1, the filter driving unit 7, the lens driving unit 51, the wafer stage driving unit 114, and the illuminance distribution measuring unit 115. The control unit 105 can include a storage unit 105a that stores various data necessary for control.
 次に、光学フィルタ6の光学的作用について説明する。図2は、光学フィルタ上に設けられる複数の調整部と、オプティカルインテグレータ4によって形成される複数の二次光源との関係を模式的に示す図である。図2は、光学フィルタ6から光軸に平行に射出する照明光の光路を示している。光学フィルタ6上に設けられた光軸上の調整部60は、オプティカルインテグレータ4の内面で反射されない二次光源40からの光束の強度を調整する。また、調整部60の両外側に隣接する一対の調整部61a、61bは、オプティカルインテグレータ4の内面で1回反射される二次光源像41a、41bからの光束の強度を調整する。さらに、調整部61a、61bの両外側に隣接する一対の調整部62a、62bは、オプティカルインテグレータ4の内面で2回反射される二次光源像42a、42bからの光束の強度を調整する。このような構成によれば、オプティカルインテグレータ4によって形成された複数の二次光源それぞれの光束に対して独立に透過率を制御することができる。 Next, the optical action of the optical filter 6 will be described. FIG. 2 is a diagram schematically illustrating a relationship between a plurality of adjustment units provided on the optical filter and a plurality of secondary light sources formed by the optical integrator 4. FIG. 2 shows an optical path of illumination light emitted from the optical filter 6 in parallel to the optical axis. The adjustment unit 60 on the optical axis provided on the optical filter 6 adjusts the intensity of the light beam from the secondary light source 40 that is not reflected by the inner surface of the optical integrator 4. A pair of adjustment units 61 a and 61 b adjacent to both outer sides of the adjustment unit 60 adjust the intensity of the light beam from the secondary light source images 41 a and 41 b that are reflected once by the inner surface of the optical integrator 4. Further, a pair of adjustment units 62 a and 62 b adjacent to both outer sides of the adjustment units 61 a and 61 b adjust the intensity of the light beam from the secondary light source images 42 a and 42 b reflected twice by the inner surface of the optical integrator 4. According to such a configuration, the transmittance can be controlled independently for each of the light beams of the plurality of secondary light sources formed by the optical integrator 4.
 調整部60、61a、61b、62a、62bは、オプティカルインテグレータ4の射出端面4bと共役な共役面S1の近傍に配置されている。したがって、1つの調整部の形状は、図1のレチクルR又はウエハW上での照明領域と対応しており、調整部60、61a、61b、62a、62bの透過率分布は、ウエハW上での照明領域の照度分布に反映されることになる。 The adjusting units 60, 61a, 61b, 62a, 62b are disposed in the vicinity of the conjugate surface S1 conjugate with the emission end surface 4b of the optical integrator 4. Accordingly, the shape of one adjustment unit corresponds to the illumination area on the reticle R or the wafer W in FIG. 1, and the transmittance distribution of the adjustment units 60, 61 a, 61 b, 62 a, 62 b is on the wafer W. It is reflected in the illuminance distribution of the illumination area.
 図3Aは、光学フィルタ6における各調整部とオプティカルインテグレータ4の射出端面4bとの結像関係を説明する図である。オプティカルインテグレータ4では、隣り合う二次光源からの光束が反転する。このため、オプティカルインテグレータ4の射出端面4bで形成される像の向きが「F」となるとき、隣り合う調整部の像は逆向きとなり、互いに鏡像関係となっている。 FIG. 3A is a diagram for explaining the imaging relationship between each adjustment unit in the optical filter 6 and the exit end face 4b of the optical integrator 4. FIG. In the optical integrator 4, the light beam from the adjacent secondary light source is inverted. For this reason, when the direction of the image formed on the exit end face 4b of the optical integrator 4 is “F”, the images of the adjacent adjustment units are opposite to each other and are in a mirror image relationship with each other.
 図3Bは、共役面S1の近傍に配置される光学フィルタ6を入射側から見た模式図である。ここでは、調整部としてパターンフィルタ(または遮光部材)が用いられている。本実施形態において、複数の調整部を構成する複数のパターンフィルタは、オプティカルインテグレータ4の複数の二次光源像における鏡像関係に対応した、光学フィルタ上の所定の位置に配置されている。光学フィルタ6は、複数の第1領域A,Bと、第1領域を除く領域である複数の第2領域とを含む。ここで、複数の第1領域A,Bは、オプティカルインテグレータ4の射出端面4bで互いに同じ向きの像が形成される領域である。また、複数の第2領域は、オプティカルインテグレータ4の射出端面4bで第1領域の像に対して鏡像の関係を有する像が形成される領域である。本実施形態において、光学フィルタ6の表面には、オプティカルインテグレータ4の複数の二次光源像に対応して、長方形のパターンフィルタ6A,6Bがそれぞれ、複数の第1領域A,Bに配置されている。なお、パターンフィルタ6A,6Bは、複数の第1領域A,Bの全てではなく少なくとも一部の領域に配置されていてもよい。 FIG. 3B is a schematic view of the optical filter 6 disposed in the vicinity of the conjugate plane S1 as viewed from the incident side. Here, a pattern filter (or a light shielding member) is used as the adjustment unit. In the present embodiment, the plurality of pattern filters constituting the plurality of adjustment units are arranged at predetermined positions on the optical filter corresponding to the mirror image relationship in the plurality of secondary light source images of the optical integrator 4. The optical filter 6 includes a plurality of first regions A and B and a plurality of second regions that are regions other than the first region. Here, the plurality of first areas A and B are areas in which images in the same direction are formed on the emission end face 4 b of the optical integrator 4. The plurality of second regions are regions where an image having a mirror image relationship with the image of the first region is formed on the emission end face 4 b of the optical integrator 4. In the present embodiment, rectangular pattern filters 6A and 6B are arranged on the surface of the optical filter 6 in the plurality of first regions A and B, corresponding to the plurality of secondary light source images of the optical integrator 4, respectively. Yes. Note that the pattern filters 6A and 6B may be arranged in at least a part of the plurality of first regions A and B instead of all of the first regions A and B.
 本実施形態では、パターンフィルタ6A,6Bとして、大きさの異なる円形状のパターンフィルタを配置することで、各パターンフィルタ部分に図4(A),(B)に示されるような効果を持たせている。各パターンフィルタの径や透過率、配置を適切にすることで、最終的に被照明面において、図4(A),(B)の総和を表す図4(C)のように、近似的に像高の2乗に比例して被照明面の周辺部の照度を上げる効果が得られる。 In the present embodiment, by arranging circular pattern filters having different sizes as the pattern filters 6A and 6B, each pattern filter portion has an effect as shown in FIGS. 4A and 4B. ing. By appropriately adjusting the diameter, transmittance, and arrangement of each pattern filter, finally, on the surface to be illuminated, as shown in FIG. 4C representing the sum of FIGS. 4A and 4B, approximately. An effect of increasing the illuminance at the periphery of the illuminated surface in proportion to the square of the image height can be obtained.
 一般に、投影露光装置の照明光学系において、被照明面における開口数の均一性と照度分布の均一性を両立させようとすると、レンズに用いられる反射防止膜の角度特性により周辺の照度が低下する傾向にある。そのため、本実施形態のように周辺の照度を上げる作用を有する光学フィルタは照度分布の補正に有効である。 In general, in an illumination optical system of a projection exposure apparatus, when trying to achieve both the uniformity of the numerical aperture on the surface to be illuminated and the uniformity of the illuminance distribution, the ambient illuminance decreases due to the angular characteristics of the antireflection film used for the lens. There is a tendency. For this reason, an optical filter having an effect of increasing the illuminance in the vicinity as in the present embodiment is effective in correcting the illuminance distribution.
 また、オプティカルインテグレータ4に入射する光束は、光軸に対して対称な照度分布を持つように調整してある。これにより、被照明面の有効光源分布は主光線に対して対称になるため、デフォーカスに対して像ズレが生じない。これにより、良好なテレセントリシティでの露光が実現されうる。 Further, the light beam incident on the optical integrator 4 is adjusted so as to have an illuminance distribution symmetric with respect to the optical axis. As a result, the effective light source distribution on the illuminated surface is symmetric with respect to the chief ray, so that no image shift occurs with respect to defocusing. Thereby, exposure with good telecentricity can be realized.
 仮に、オプティカルインテグレータ4に入射する照明光が光軸に対して非対称な照度分布を持つ場合には、有効光源分布の対称性が失われ、テレセントリシティのズレという形で像性能へ影響が及ぶ。しかし本実施形態によれば、パターンフィルタの配置を光軸対称にしているのでテレセントリシティのズレがほとんど生じない。 If the illumination light incident on the optical integrator 4 has an asymmetric illuminance distribution with respect to the optical axis, the symmetry of the effective light source distribution is lost, and the image performance is affected in the form of a telecentricity shift. . However, according to the present embodiment, since the arrangement of the pattern filter is symmetric with respect to the optical axis, the telecentricity shift hardly occurs.
 本実施形態では、調整部としてパターンフィルタ6A、6Bの2種類を使用したが、例えば、微細なドットパターンの密度を変えるなどにより、1種類のパターンで近似的に像高の2乗に比例した照度分布を作ることも可能である。 In this embodiment, two types of pattern filters 6A and 6B are used as the adjustment unit. However, for example, by changing the density of fine dot patterns, one type of pattern is approximately proportional to the square of the image height. It is also possible to create an illuminance distribution.
 以下では、図5Aに示されるような照度ムラの補正方法について説明する。図5Aの照度ムラは、図5Bに示されるような傾斜状の照度ムラと、図5Cに示されるような、光軸対称な円弧状をなし、周辺に行くほど照度が下がる照度ムラとに分解することができる。これらは、照度分布から像高別平均照度および傾斜成分を算出することより分離できる。 Hereinafter, a method for correcting illuminance unevenness as shown in FIG. 5A will be described. The illuminance unevenness in FIG. 5A is decomposed into an inclined illuminance unevenness as shown in FIG. 5B and an illuminance unevenness in which the illuminance decreases as it goes to the periphery as shown in FIG. 5C. can do. These can be separated from each other by calculating the average illuminance and inclination component by image height from the illuminance distribution.
 まず、図5Bの傾斜状の照度ムラの補正方法について説明する。前述したように本実施形態の光学フィルタ6は像高のほぼ2乗に比例して周辺部の照度を上げる効果を持つ。このとき、オプティカルインテグレータ4の入射端面4aを、被照明面相当とし、正規化されたXY座標系とすれば、光学フィルタ6による照度分布調整の効果zは、z=a(x+y)と書ける。ここで、aは定数である。 First, a method of correcting the inclined illuminance unevenness in FIG. 5B will be described. As described above, the optical filter 6 of this embodiment has an effect of increasing the illuminance at the peripheral portion in proportion to the square of the image height. At this time, if the incident end face 4a of the optical integrator 4 is equivalent to the illuminated surface and is a normalized XY coordinate system, the effect z of the illuminance distribution adjustment by the optical filter 6 is z = a (x 2 + y 2 ). Can be written. Here, a is a constant.
 光学フィルタ6のパターンフィルタ6A、6Bは、オプティカルインテグレータ4の射出端面4bで互いに同じ向きの像が形成される複数の第1領域A,Bの少なくとも一部に配置されている。光学フィルタ6は、複数の第1領域A,Bと、それ以外の領域である複数の第2領域とに沿う方向、すなわちXY平面に沿う方向に移動可能である。つまり、照明光学系の光軸(Z軸)に垂直な方向(X方向又はY方向)における光学フィルタ6の位置を変更することが可能である。ここで、光学フィルタ6をXY平面に沿う方向に移動させても、パターンフィルタ6A、6Bによって与えられる被照明面での照度分布変化の効果が互いに打ち消されることはない。 The pattern filters 6A and 6B of the optical filter 6 are disposed in at least a part of the plurality of first regions A and B in which images in the same direction are formed on the exit end face 4b of the optical integrator 4. The optical filter 6 is movable in a direction along the plurality of first regions A and B and the plurality of second regions which are other regions, that is, a direction along the XY plane. That is, it is possible to change the position of the optical filter 6 in a direction (X direction or Y direction) perpendicular to the optical axis (Z axis) of the illumination optical system. Here, even if the optical filter 6 is moved in the direction along the XY plane, the effects of the illuminance distribution change on the illuminated surface provided by the pattern filters 6A and 6B are not canceled out.
 したがって、光学フィルタ6をX方向及びY方向に所定距離δ移動したときの光学フィルタ6による照度分布調整の効果z’は、z’=a((x+δ)+(y+δ))と書ける。ここで、aは定数である。つまり、δに依存したx、yの1次の項が発生するため、傾斜状の照度分布を発生させることができる。 Therefore, the effect z ′ of the illuminance distribution adjustment by the optical filter 6 when the optical filter 6 is moved by the predetermined distance δ in the X direction and the Y direction can be written as z ′ = a ((x + δ) 2 + (y + δ) 2 ). Here, a is a constant. That is, since the first-order terms of x and y depending on δ are generated, an inclined illuminance distribution can be generated.
 図6は、傾斜状の照度ムラの補正手順を示すフローチャートである。S601において、制御部105は、照度分布計測部115で計測された照度分布データに基づき、被照明面での照度ムラを計算する(照度ムラ測定1)。被照明面での照度値の最大値をSmax、最小値をSminとすると、照度ムラSは例えば次式により算出される。
S=(Smax-Smin)/(Smax+Smin)
 その後、制御部105は、S602で光学フィルタ6をX方向に所定距離δ移動させ、S603で被照明面での照度ムラを測定する(照度ムラ測定2)。次に、制御部105は、S604で光学フィルタ6をY方向に所定距離δ移動させて、S605で被照明面での照度ムラを測定する(照度ムラ測定3)。その後、制御部105は、S606で、照度ムラ測定1,2,3の結果から照度ムラの変化量を計算し、記憶部105aに記憶する。この変化量が、上記した傾斜状の照度分布の傾きに対応する。
FIG. 6 is a flowchart showing a correction procedure for inclined uneven illuminance. In step S601, the control unit 105 calculates illuminance unevenness on the illuminated surface based on the illuminance distribution data measured by the illuminance distribution measuring unit 115 (illuminance unevenness measurement 1). If the maximum value of the illuminance value on the surface to be illuminated is Smax and the minimum value is Smin, the illuminance unevenness S is calculated by the following equation, for example.
S = (Smax−Smin) / (Smax + Smin)
Thereafter, the control unit 105 moves the optical filter 6 by a predetermined distance δ in the X direction in S602, and measures illuminance unevenness on the illuminated surface in S603 (illuminance unevenness measurement 2). Next, the control unit 105 moves the optical filter 6 by a predetermined distance δ in the Y direction in S604, and measures the illuminance unevenness on the illuminated surface in S605 (illuminance unevenness measurement 3). Thereafter, in step S606, the control unit 105 calculates the amount of change in illuminance unevenness from the results of the illuminance unevenness measurements 1, 2, and 3, and stores the change in the storage unit 105a. This change amount corresponds to the inclination of the above-described inclined illuminance distribution.
 次にS607で、制御部105は、S606で算出した変化量に基づいて、光学フィルタ6の移動方向と移動量を計算する。そして、制御部105は、フィルタ駆動部7により光学フィルタ6を、計算された方向へ計算された移動量、移動させる。 Next, in S607, the control unit 105 calculates the movement direction and the movement amount of the optical filter 6 based on the change amount calculated in S606. Then, the control unit 105 causes the filter driving unit 7 to move the optical filter 6 by the calculated movement amount in the calculated direction.
 その後、S609で再度、制御部105は、被照明面での照度ムラを測定し(照度ムラ測定4)、S610で、その照度ムラが所定の許容範囲内に収まっているかを確認する。ここで照度ムラが許容範囲内に収まっていれば、処理は終了する。一方、照度ムラが許容範囲内に収まっていなければ、処理はS611に進み、照度ムラ測定4の結果をフィードバックし、S607に戻って、光学フィルタ6の移動方向と移動量を再計算する。 Thereafter, in S609, the control unit 105 again measures the illuminance unevenness on the surface to be illuminated (illuminance unevenness measurement 4), and confirms whether the illuminance unevenness is within a predetermined allowable range in S610. If the illuminance unevenness is within the allowable range, the process ends. On the other hand, if the illuminance unevenness is not within the allowable range, the process proceeds to S611, the result of the illuminance unevenness measurement 4 is fed back, and the process returns to S607 to recalculate the moving direction and the moving amount of the optical filter 6.
 次に、図5Cの光軸対称な照度ムラの補正方法について、図7のフローチャートを参照して説明する。光軸対称な照度ムラが発生した場合は、周辺照度補正量を調整することになる。上記したように、第2リレー光学系5は、レンズ前群5aを光軸方向に移動させることで、実質的に焦点距離を変えないようにしつつディストーションを変化させる構成を備えている。これにより、レンズ前群5aの移動によって、周辺照度を上下させることが可能となっている。 Next, a method of correcting illuminance unevenness that is symmetric with respect to the optical axis in FIG. 5C will be described with reference to the flowchart in FIG. When illuminance unevenness symmetric to the optical axis occurs, the peripheral illuminance correction amount is adjusted. As described above, the second relay optical system 5 has a configuration in which the distortion is changed while the focal length is not substantially changed by moving the lens front group 5a in the optical axis direction. Thereby, the peripheral illuminance can be increased or decreased by the movement of the lens front group 5a.
 制御部105は、S701で、照度分布計測部115により、レンズ前群5aを光軸方向に所定距離Δ移動させたときの被照明面の最外周部の照度の変化量を求め、この変化量を記憶部105aに記憶させる(照度ムラ測定1)。なお、このS701は、シミュレーション等により前もって行われてもよい。S702で、制御部105は、この変化量に基づいて、レンズ前群5aの光軸方向への移動量を計算する。S703で、制御部105は、レンズ駆動部51により、レンズ前群5aを光軸方向に、計算された移動量、移動させる。 In S701, the control unit 105 obtains the amount of change in illuminance at the outermost peripheral portion of the illuminated surface when the illuminance distribution measurement unit 115 moves the lens front group 5a by a predetermined distance Δ in the optical axis direction. Is stored in the storage unit 105a (illuminance unevenness measurement 1). Note that S701 may be performed in advance by simulation or the like. In S702, the control unit 105 calculates the amount of movement of the lens front group 5a in the optical axis direction based on the amount of change. In step S <b> 703, the control unit 105 causes the lens driving unit 51 to move the lens front group 5 a in the optical axis direction by the calculated movement amount.
 その後、S704で再度、制御部105は、レンズ前群5aを光軸方向に所定距離Δ移動させたときの被照明面の最外周部の照度の変化量を求め(照度ムラ測定2)、S705で、その変動量が所定の許容範囲内に収まっているかを確認する。ここで変動量が許容範囲内に収まっていれば、処理は終了する。一方、変動量が許容範囲内に収まっていなければ、処理はS706に進み、照度ムラ測定2の結果をフィードバックし、S703に戻って、光学フィルタ6の移動量を再計算する。このように、制御部105は、照度分布計測部115により計測された照度分布から計算される照度ムラが許容範囲内に収まるように光学フィルタ6の移動量をフィードバック制御する。
以上説明した、図6の制御手順に従う光学フィルタ6の移動と、図7の制御手順に従うレンズ前群の駆動との両方を行うことによって、より精密な補正を行うことができる。このとき、制御部105による図6の制御手順と図7の制御手順は時系列に沿って、直列に実行してもよいし、並列に実行してもよい。
Thereafter, in S704, the control unit 105 again obtains the amount of change in illuminance at the outermost peripheral portion of the illuminated surface when the lens front group 5a is moved by a predetermined distance Δ in the optical axis direction (illuminance unevenness measurement 2), and S705. Then, it is confirmed whether the fluctuation amount is within a predetermined allowable range. If the fluctuation amount is within the allowable range, the process ends. On the other hand, if the fluctuation amount is not within the allowable range, the process proceeds to S706, the result of the illuminance unevenness measurement 2 is fed back, the process returns to S703, and the movement amount of the optical filter 6 is recalculated. As described above, the control unit 105 feedback-controls the movement amount of the optical filter 6 so that the illuminance unevenness calculated from the illuminance distribution measured by the illuminance distribution measurement unit 115 falls within the allowable range.
By performing both the movement of the optical filter 6 according to the control procedure of FIG. 6 and the driving of the front lens group according to the control procedure of FIG. 7 described above, more precise correction can be performed. At this time, the control procedure of FIG. 6 and the control procedure of FIG. 7 performed by the control unit 105 may be executed in series along a time series, or may be executed in parallel.
 なお、図6の制御手順と図7の制御手順それぞれの実行結果は、記憶部105aに記憶されうる。同一照明条件で再度実行される際には、記憶部105aから実行結果を呼び出して各要素を最適位置に駆動させることができる。これにより、図6、図7のような手順を省略して、速やかに傾斜状の照度ムラおよび同心円状の照度ムラ(光軸対称な照度ムラ)の補正を行うことができる。 Note that the execution results of the control procedure of FIG. 6 and the control procedure of FIG. 7 can be stored in the storage unit 105a. When it is executed again under the same illumination conditions, each element can be driven to the optimum position by calling the execution result from the storage unit 105a. Thereby, the procedures as shown in FIGS. 6 and 7 can be omitted, and the correction of the inclined uneven illuminance and the concentric uneven illuminance (illuminance unevenness symmetric to the optical axis) can be performed quickly.
 また、照明光学系が長期間使用されると、装置内のいずれかのレンズの透過率が劣化し、回転非対称な傾斜状の照度ムラが発生することが考えられる。このような場合にも、図6および図7の制御手順を再度実行することで、傾斜状の照度ムラおよび同心円状の照度ムラ(光軸対称な照度ムラ)の補正を行うようにしてもよい。 Further, when the illumination optical system is used for a long period of time, it is considered that the transmittance of any lens in the apparatus is deteriorated, and rotationally asymmetric inclined uneven illumination is generated. Even in such a case, the control procedure shown in FIGS. 6 and 7 may be executed again to correct the inclined illuminance unevenness and the concentric illuminance unevenness (illuminance unevenness symmetric to the optical axis). .
 なお、例えば、特開2001-135564号公報では、複数の微小レンズが2次元的に所定のピッチで配列されたオプティカルインテグレータの入射面近傍に、光学フィルタを配置している。光学フィルタは、オプティカルインテグレータを構成する複数の微小レンズに各々対応した複数の領域の透過光量を調整できる光量調整部を有している。このような構成によっても、光学フィルタをXY平面内に沿って移動することで照度ムラの制御が可能である。 For example, in Japanese Patent Application Laid-Open No. 2001-135564, an optical filter is arranged in the vicinity of an incident surface of an optical integrator in which a plurality of microlenses are two-dimensionally arranged at a predetermined pitch. The optical filter has a light amount adjustment unit that can adjust the amount of transmitted light in a plurality of regions respectively corresponding to a plurality of microlenses constituting the optical integrator. Even with such a configuration, it is possible to control illuminance unevenness by moving the optical filter along the XY plane.
 しかし、複数の微小レンズが2次元的に所定のピッチで配列されたオプティカルインテグレータは、一般的に高価であるため、本実施形態によるロッド型オプティカルインテグレータの方が低コストである。ロッド型オプティカルインテグレータを用いた本実施形態の構成によれば、図3Aに示されたような結像関係となることを利用して各調整部の配置箇所が決定される。具体的には、複数の調整部は、複数の調整部の各々を透過した光によってロッド型オプティカルインテグレータの射出端面に形成される各調整部の像の向きが同じ向きになるように、光学フィルタ上に配置される。これにより照度ムラ制御が可能である。 However, since the optical integrator in which a plurality of microlenses are two-dimensionally arranged at a predetermined pitch is generally expensive, the rod-type optical integrator according to the present embodiment is lower in cost. According to the configuration of the present embodiment using the rod-type optical integrator, the arrangement position of each adjustment unit is determined by utilizing the imaging relationship as shown in FIG. 3A. Specifically, the plurality of adjustment units are arranged so that the direction of the image of each adjustment unit formed on the exit end face of the rod-type optical integrator is the same by the light transmitted through each of the plurality of adjustment units. Placed on top. Thereby, illuminance unevenness control is possible.
 <第2実施形態>
 次に、第2実施形態に係る照明光学系について説明する。装置の概略構成は図1と同様である。図3Cは、本実施形態に係る光学フィルタ6を入射側から見た模式図である。この光学フィルタ6の表面には、オプティカルインテグレータ4の複数の二次光源像に対応して、長方形のパターンフィルタ6Cが、複数の第1領域Cに配置され、長方形のパターンフィルタ6Dが、複数の第2領域Dに配置されている。なお、パターンフィルタ6C,6Dはそれぞれ、複数の第1領域Cおよび複数の第2領域Dの全てではなく少なくとも一部の領域に配置されていてもよい。ここで、複数の第1領域Cは、オプティカルインテグレータ4の射出端面4bで互いに同じ向きの像が形成される領域である。また、複数の第2領域Dは、オプティカルインテグレータ4の射出端面4bで複数の第1領域Cの像に対して鏡像の関係を有する像が形成される領域である。
Second Embodiment
Next, an illumination optical system according to the second embodiment will be described. The schematic configuration of the apparatus is the same as that shown in FIG. FIG. 3C is a schematic view of the optical filter 6 according to the present embodiment as viewed from the incident side. On the surface of the optical filter 6, rectangular pattern filters 6 </ b> C are arranged in a plurality of first regions C corresponding to a plurality of secondary light source images of the optical integrator 4, and a rectangular pattern filter 6 </ b> D is a plurality of rectangular pattern filters 6 </ b> D. Arranged in the second region D. Note that the pattern filters 6C and 6D may be arranged in at least a part of the plurality of first regions C and the plurality of second regions D, respectively. Here, the plurality of first regions C are regions in which images in the same direction are formed on the emission end surface 4 b of the optical integrator 4. The plurality of second regions D are regions where images having a mirror image relationship with the images of the plurality of first regions C are formed on the emission end face 4 b of the optical integrator 4.
 本実施形態では、パターンフィルタ6Cには、図8Aのような、近似的に像高の2乗に比例して被照明面の周辺部の照度を上げる効果を持たせている。また、パターンフィルタ6Dには、その逆の特性、すなわち図8Bのような、近似的に像高の2乗に比例して周辺部の照度を下げる効果を持たせている。このようなパターンフィルタ6C、6Dの組み合わせにより、全体としては照度分布変化の効果が互いに打ち消されるように構成されている。 In the present embodiment, the pattern filter 6C has the effect of increasing the illuminance at the peripheral portion of the illuminated surface approximately in proportion to the square of the image height as shown in FIG. 8A. The pattern filter 6D has the opposite characteristic, that is, the effect of lowering the illuminance at the peripheral portion approximately in proportion to the square of the image height as shown in FIG. 8B. As a whole, the combination of the pattern filters 6C and 6D is configured to cancel the effects of the illuminance distribution change.
 以下、図9Aのような傾斜状の照度ムラの補正方法について説明する。オプティカルインテグレータ4入射端面4aを、被照明面相当とし、正規化されたXY座標系とすれば、光学フィルタ6の効果zは、簡単のためX方向1次元だけ表すと、z=ax-ax=0となり、照度分布に影響しない。ここで、aは定数である。 Hereinafter, a method of correcting the uneven illuminance as shown in FIG. 9A will be described. If the incident end surface 4a of the optical integrator 4 is equivalent to an illuminated surface and is a normalized XY coordinate system, the effect z of the optical filter 6 is expressed as z = ax 2 −ax for the sake of simplicity and expressed only in one dimension in the X direction. 2 = 0 and does not affect the illuminance distribution. Here, a is a constant.
 光学フィルタ6をX方向に所定距離δ移動したときの効果z’は、パターンフィルタ6C、6Dではδの方向が変わるため、z’=a(x+δ)-a(x-δ)と書ける。つまり、δに依存したxの1次の項が発生するため、傾斜状の照度分布を発生させることができる。 The effect z ′ when the optical filter 6 is moved by a predetermined distance δ in the X direction can be written as z ′ = a (x + δ) 2 −a (x−δ) 2 because the direction of δ changes in the pattern filters 6C and 6D. . That is, since a first-order term of x depending on δ is generated, an inclined illuminance distribution can be generated.
 本実施形態においても、図6のフローチャートと同様の手順を実行することにより、傾斜状の照度ムラを図9Bのように平坦になるよう補正することができる。このように、もともと2次形状の周辺照度低下が小さく、傾斜状の照度ムラが支配的な場合においては、本実施形態のような調整部の構成が照度分布の補正に有効である。 Also in this embodiment, by executing the same procedure as that in the flowchart of FIG. 6, it is possible to correct the uneven illumination unevenness so as to be flat as shown in FIG. 9B. Thus, when the secondary illuminance decrease of the secondary shape is originally small and the inclined illuminance unevenness is dominant, the configuration of the adjustment unit as in this embodiment is effective for correcting the illuminance distribution.
 <第3実施形態>
 次に、第3実施形態に係る照明光学系について説明する。本実施形態では、第2実施形態におけるパターンフィルタ6C、6Dの効果が異なる。本実施形態におけるパターンフィルタ6Cには、図10Aのような、近似的に像高の3乗に比例して照度分布が変わるような効果を持たせている。また、パターンフィルタ6Dには、その逆の特性、すなわち図10Bのような、近似的に像高の3乗に比例して照度分布が変わるような効果を持たせている。このようなパターンフィルタ6C、6Dの組み合わせにより、全体としては照度分布変化の効果が互いに打ち消されるように構成されている。
<Third Embodiment>
Next, an illumination optical system according to the third embodiment will be described. In the present embodiment, the effects of the pattern filters 6C and 6D in the second embodiment are different. The pattern filter 6C in the present embodiment has an effect that the illuminance distribution changes approximately in proportion to the cube of the image height as shown in FIG. 10A. The pattern filter 6D has the opposite characteristic, that is, an effect that the illuminance distribution changes approximately in proportion to the cube of the image height as shown in FIG. 10B. As a whole, the combination of the pattern filters 6C and 6D is configured to cancel the effects of the illuminance distribution change.
 第2実施形態と同様、光学フィルタ6の効果zは、X方向1次元だけ表すと、z=ax-ax=0となり、照度分布に影響しない。ここで、aは定数である。 As in the second embodiment, the effect z of the optical filter 6 is expressed as z = ax 3 −ax 3 = 0 in only one dimension in the X direction, and does not affect the illuminance distribution. Here, a is a constant.
 光学フィルタ6をX方向に所定距離δ移動したときの効果z’は、パターンフィルタ6C、6Dではδの方向が変わるため、z’=a(x+δ)-a(x-δ)となる。本実施形態では、δに依存したxの2次の項が発生するため、同心円状の2次の照度分布を発生させることができる。 The effect z ′ when the optical filter 6 is moved by a predetermined distance δ in the X direction is z ′ = a (x + δ) 3 −a (x−δ) 3 because the direction of δ changes in the pattern filters 6C and 6D. . In the present embodiment, since a quadratic term of x depending on δ is generated, a concentric secondary illuminance distribution can be generated.
 本実施形態においても、図6のフローチャートと同様の手順を実行することにより、図11Aのような2次形状の照度分布を、図11Bのように平坦になるよう補正することができる。このように、もともと傾斜状の照度ムラがなく、同心円状の2次の照度ムラが支配的な場合においては、本実施形態のような調整部の構成が照度分布補正に有効である。
なお、補正したい照度分布が3次以降の高次形状であっても、パターンフィルタの透過率分布を適宜設定することにより、照度ムラ補正が可能である。
Also in the present embodiment, by executing the same procedure as in the flowchart of FIG. 6, the secondary shape illuminance distribution as shown in FIG. 11A can be corrected to be flat as shown in FIG. 11B. As described above, when there is originally no inclined illuminance unevenness and concentric secondary illuminance unevenness is dominant, the configuration of the adjustment unit as in this embodiment is effective for illuminance distribution correction.
Even if the illuminance distribution to be corrected is a third-order or higher order shape, illuminance unevenness correction can be performed by appropriately setting the transmittance distribution of the pattern filter.
 以上の各実施形態によれば、照度ムラの補正性能の向上に有利な技術が提供される。 According to each of the above embodiments, a technique advantageous in improving the correction performance of uneven illuminance is provided.
 <物品製造方法の実施形態>
 本発明の実施形態における物品製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品製造方法は、上記のリソグラフィ装置(露光装置やインプリント装置、描画装置など)を用いて基板に原版のパターンを転写する工程と、かかる工程でパターンが転写された基板を加工する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of article manufacturing method>
The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing an article such as a micro device such as a semiconductor device or an element having a fine structure. The article manufacturing method of this embodiment uses a lithography apparatus (such as an exposure apparatus, an imprint apparatus, or a drawing apparatus) to transfer an original pattern to a substrate, and processes the substrate on which the pattern has been transferred in this process. Including the step of. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like). The article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年8月30日提出の日本国特許出願特願2016-168546を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2016-168546 filed on Aug. 30, 2016, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  光源からの光を用いて被照明面を照明する照明光学系であって、
     前記光源と前記被照明面との間に配置されたオプティカルインテグレータと、
     前記オプティカルインテグレータに入射される光の強度を調整する調整部を有する光学フィルタと、
     を有し、
     前記オプティカルインテグレータは、入射した光を内面で反射させるロッド型オプティカルインテグレータであり、
     前記光学フィルタは、前記ロッド型オプティカルインテグレータの射出端面で互いに同じ向きの像が形成される複数の第1領域と、前記射出端面で前記像に対して鏡像の関係を有する像が形成される複数の第2領域とを含み、
     前記調整部は、少なくとも前記第1領域に設けられており、
     前記照明光学系の光軸に垂直な方向における前記調整部の位置を変更することにより前記被照明面における照度を変更する
     ことを特徴とする照明光学系。
    An illumination optical system that illuminates a surface to be illuminated using light from a light source,
    An optical integrator disposed between the light source and the illuminated surface;
    An optical filter having an adjustment unit for adjusting the intensity of light incident on the optical integrator;
    Have
    The optical integrator is a rod-type optical integrator that reflects incident light on its inner surface,
    The optical filter includes a plurality of first regions in which images in the same direction are formed on the exit end face of the rod-type optical integrator, and a plurality of images in which an image having a mirror image relationship with the image is formed on the exit end face. And a second region of
    The adjustment unit is provided at least in the first region,
    The illumination optical system, wherein the illuminance on the illuminated surface is changed by changing the position of the adjustment unit in a direction perpendicular to the optical axis of the illumination optical system.
  2.  前記調整部は、前記第2領域には設けられず、前記複数の第1領域に設けられている、ことを特徴とする請求項1に記載の照明光学系。 2. The illumination optical system according to claim 1, wherein the adjusting unit is not provided in the second region, but is provided in the plurality of first regions.
  3.  前記調整部は、前記複数の第1領域と前記複数の第2領域とに配置され、
     前記第1領域の前記調整部によって調整される前記被照明面における照度分布の特性と、前記第2領域の前記調整部によって調整される前記被照明面における照度分布の特性とが異なる
     ことを特徴とする請求項1に記載の照明光学系。
    The adjustment unit is disposed in the plurality of first regions and the plurality of second regions,
    The characteristic of the illuminance distribution on the illuminated surface adjusted by the adjusting unit in the first region is different from the characteristic of the illuminance distribution on the illuminated surface adjusted by the adjusting unit in the second region. The illumination optical system according to claim 1.
  4.  前記光源と前記オプティカルインテグレータとの間に配置され、前記光源からの光を前記オプティカルインテグレータへ導く第1リレー光学系を更に有し、
     前記第1リレー光学系は、光源からの光を平行光にする第1レンズと、該第1レンズによって平行光とされた光を前記オプティカルインテグレータの入射端面に集光する第2レンズとを含み、
     前記光学フィルタは、前記第1レンズと前記第2レンズとの間に配置される
    ことを特徴とする請求項1に記載の照明光学系。
    A first relay optical system that is disposed between the light source and the optical integrator and guides the light from the light source to the optical integrator;
    The first relay optical system includes a first lens that collimates light from a light source, and a second lens that condenses the light that has been collimated by the first lens onto the incident end surface of the optical integrator. ,
    The illumination optical system according to claim 1, wherein the optical filter is disposed between the first lens and the second lens.
  5.  前記被照明面における照度分布を計測する計測部を更に有し、
     前記計測部により計測された前記照度分布に基づいて前記光学フィルタの位置を変更する
     ことを特徴とする請求項1に記載の照明光学系。
    It further has a measuring unit that measures the illuminance distribution on the illuminated surface,
    The illumination optical system according to claim 1, wherein the position of the optical filter is changed based on the illuminance distribution measured by the measurement unit.
  6.  前記光学フィルタの駆動を制御する制御部を更に有し、
     前記制御部は、前記計測部により計測された前記照度分布から計算される照度ムラが許容範囲内に収まるように前記光学フィルタの駆動をフィードバック制御する
     ことを特徴とする請求項5に記載の照明光学系。
    A control unit for controlling the driving of the optical filter;
    The illumination according to claim 5, wherein the control unit feedback-controls driving of the optical filter so that illuminance unevenness calculated from the illuminance distribution measured by the measurement unit is within an allowable range. Optical system.
  7.  前記オプティカルインテグレータと前記被照明面との間に配置され、前記オプティカルインテグレータの前記射出端面からの光を前記被照明面へ導く第2リレー光学系を更に有し、
     前記第2リレー光学系は、前記オプティカルインテグレータの前記射出端面からの光を平行光にする第3レンズであって前記第2リレー光学系の光軸方向に移動可能に構成された第3レンズを含み、
     前記制御部は、更に、前記計測部により計測された前記照度分布から計算される照度ムラが許容範囲内に収まるように前記第3レンズの駆動をフィードバック制御する
     ことを特徴とする請求項6に記載の照明光学系。
    A second relay optical system that is disposed between the optical integrator and the illuminated surface and guides light from the exit end surface of the optical integrator to the illuminated surface;
    The second relay optical system is a third lens that collimates light from the exit end face of the optical integrator and is configured to be movable in the optical axis direction of the second relay optical system. Including
    The control unit further feedback-controls driving of the third lens so that illuminance unevenness calculated from the illuminance distribution measured by the measurement unit falls within an allowable range. The illumination optical system described.
  8.  原版のパターンを基板に形成するリソグラフィ装置であって、
     前記原版を照明する請求項1に記載の照明光学系と、
     前記パターンを前記基板に投影する投影光学系と、
     を含むことを特徴とするリソグラフィ装置。
    A lithographic apparatus for forming an original pattern on a substrate,
    The illumination optical system according to claim 1, which illuminates the original plate;
    A projection optical system for projecting the pattern onto the substrate;
    A lithographic apparatus comprising:
  9.  請求項8に記載のリソグラフィ装置を用いてパターンを基板に形成する工程と、
     前記工程で前記パターンが形成された基板を加工する工程と、
     を含み、加工された基板から物品を得ることを特徴とする物品製造方法。
    Forming a pattern on a substrate using the lithographic apparatus according to claim 8;
    Processing the substrate on which the pattern is formed in the step;
    An article manufacturing method comprising obtaining an article from a processed substrate.
PCT/JP2017/030779 2016-08-30 2017-08-28 Illuminating optical system, lithography device, and article manufacturing method WO2018043423A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197008164A KR102212855B1 (en) 2016-08-30 2017-08-28 Illumination optical system, lithographic apparatus, and article manufacturing method
CN201780051936.9A CN109643069B (en) 2016-08-30 2017-08-28 Illumination optical system, lithographic apparatus and article manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168546A JP6761306B2 (en) 2016-08-30 2016-08-30 Illumination optics, lithography equipment, and article manufacturing methods
JP2016-168546 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018043423A1 true WO2018043423A1 (en) 2018-03-08

Family

ID=61300901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030779 WO2018043423A1 (en) 2016-08-30 2017-08-28 Illuminating optical system, lithography device, and article manufacturing method

Country Status (5)

Country Link
JP (1) JP6761306B2 (en)
KR (1) KR102212855B1 (en)
CN (1) CN109643069B (en)
TW (1) TWI645261B (en)
WO (1) WO2018043423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711879B (en) * 2018-05-01 2020-12-01 日商佳能股份有限公司 Control device, lithography apparatus, and method of manufacturing article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700960B (en) * 2019-05-29 2020-08-01 財團法人國家實驗研究院 Light source adjusting method, light source system and computer program product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319321A (en) * 1997-03-14 1998-12-04 Nikon Corp Illuminator, projection aligner using illuminator, production of device using the projection aligner and production of the projection aligner
WO1999036832A1 (en) * 1998-01-19 1999-07-22 Nikon Corporation Illuminating device and exposure apparatus
WO2000057459A1 (en) * 1999-03-24 2000-09-28 Nikon Corporation Exposure method and apparatus
JP2001135564A (en) * 1999-11-05 2001-05-18 Canon Inc Projection aligner
JP2001135560A (en) * 1999-11-04 2001-05-18 Nikon Corp Illuminating optical device, exposure, and method of manufacturing micro-device
US20010046039A1 (en) * 1999-03-16 2001-11-29 Nikon Corporation Illumination apparatus, exposure apparatus and exposure method
US20080111983A1 (en) * 2005-01-14 2008-05-15 Carl Zeiss Smt Ag Illumination System for a Microlithographic Projection Exposure Apparatus
JP2010097975A (en) * 2008-10-14 2010-04-30 Nikon Corp Correction unit, illumination optical system, exposure apparatus, and device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440458B2 (en) * 1993-06-18 2003-08-25 株式会社ニコン Illumination device, pattern projection method, and semiconductor element manufacturing method
JP3259657B2 (en) * 1997-04-30 2002-02-25 キヤノン株式会社 Projection exposure apparatus and device manufacturing method using the same
JP2000269114A (en) 1999-03-16 2000-09-29 Nikon Corp Illuminating device, aligner and exposure method
US6919951B2 (en) * 2001-07-27 2005-07-19 Canon Kabushiki Kaisha Illumination system, projection exposure apparatus and device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319321A (en) * 1997-03-14 1998-12-04 Nikon Corp Illuminator, projection aligner using illuminator, production of device using the projection aligner and production of the projection aligner
WO1999036832A1 (en) * 1998-01-19 1999-07-22 Nikon Corporation Illuminating device and exposure apparatus
US20010046039A1 (en) * 1999-03-16 2001-11-29 Nikon Corporation Illumination apparatus, exposure apparatus and exposure method
WO2000057459A1 (en) * 1999-03-24 2000-09-28 Nikon Corporation Exposure method and apparatus
JP2001135560A (en) * 1999-11-04 2001-05-18 Nikon Corp Illuminating optical device, exposure, and method of manufacturing micro-device
JP2001135564A (en) * 1999-11-05 2001-05-18 Canon Inc Projection aligner
US20080111983A1 (en) * 2005-01-14 2008-05-15 Carl Zeiss Smt Ag Illumination System for a Microlithographic Projection Exposure Apparatus
JP2010097975A (en) * 2008-10-14 2010-04-30 Nikon Corp Correction unit, illumination optical system, exposure apparatus, and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711879B (en) * 2018-05-01 2020-12-01 日商佳能股份有限公司 Control device, lithography apparatus, and method of manufacturing article

Also Published As

Publication number Publication date
KR20190040294A (en) 2019-04-17
CN109643069B (en) 2021-07-27
JP2018036425A (en) 2018-03-08
CN109643069A (en) 2019-04-16
TW201820045A (en) 2018-06-01
KR102212855B1 (en) 2021-02-05
JP6761306B2 (en) 2020-09-23
TWI645261B (en) 2018-12-21

Similar Documents

Publication Publication Date Title
JP3459773B2 (en) Projection exposure apparatus and device manufacturing method
TWI437267B (en) A projection optical system, an exposure apparatus, and a device manufacturing method
JP2002033272A (en) Method and device for exposure and device manufacturing method
WO2018043423A1 (en) Illuminating optical system, lithography device, and article manufacturing method
WO1999036832A1 (en) Illuminating device and exposure apparatus
US7242457B2 (en) Exposure apparatus and exposure method, and device manufacturing method using the same
JP2002110529A (en) Projection aligner and method of manufacturing micro device by using the same
JP2009032747A (en) Scanning stepper and device manufacturing method
JP6015930B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2005012169A (en) Exposure apparatus and device manufacturing method
US20050030638A1 (en) Aberration correction optical system
WO2000057459A1 (en) Exposure method and apparatus
TW201807508A (en) Exposure device, exposure method and product manufacturing method capable of ensuring the size of the device and a wide exposure area
TWI662376B (en) Exposure device, exposure method, and article manufacturing method
JP2011003714A (en) Exposure method, mask and method of manufacturing device
JP6544972B2 (en) Illumination optical apparatus and device manufacturing method
WO2021044797A1 (en) Exposure device, and method for manufacturing article
JP6970548B2 (en) Illumination optics, exposure equipment, and article manufacturing methods
US11762298B2 (en) Exposure apparatus and method of manufacturing article
JP2005079470A (en) Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
CN107807494B (en) Illumination optical system, exposure apparatus, and article manufacturing method
JP6570298B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5653182B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4307039B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP2016206247A (en) Illumination optical system and exposure apparatus as well as device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008164

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17846428

Country of ref document: EP

Kind code of ref document: A1