WO2018042539A1 - 円形加速器 - Google Patents
円形加速器 Download PDFInfo
- Publication number
- WO2018042539A1 WO2018042539A1 PCT/JP2016/075460 JP2016075460W WO2018042539A1 WO 2018042539 A1 WO2018042539 A1 WO 2018042539A1 JP 2016075460 W JP2016075460 W JP 2016075460W WO 2018042539 A1 WO2018042539 A1 WO 2018042539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- charged particles
- chopper
- voltage
- slit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/02—Synchrocyclotrons, i.e. frequency modulated cyclotrons
Definitions
- the present invention relates to a circular accelerator that accelerates charged particles to a high energy while orbiting a substantially circular spiral orbit, and more particularly to a source of charged particles.
- a circular accelerator such as a cyclotron or a synchrocyclotron as a device that accelerates charged particles to high energy while orbiting a spiral orbit.
- the cyclotron has an isochronous magnetic field and an AVF cyclotron with a strong and weak magnetic field at a certain angle, a separate sector type cyclotron formed by multiple sector magnets, a weakly focused cyclotron using a weakly focused magnetic field, and a constant magnetic field on a plane.
- An ion source is used to generate charged particles, but in order to reduce the size of the entire apparatus, an internal ion source that generates charged particles that are accelerated by installing the ion source in the accelerator, that is, in the central portion of the accelerator is used. .
- control of the number of accelerated particles is roughly divided into the following three methods.
- This is a method of controlling the number for example, Patent Document 4).
- (1) and (2) have poor stability because they affect the plasma state of the internal ion source, and (3) depends on the energy of the beam at the position to be applied, and a high voltage of at least several kV. Control by a power supply or a magnetic field is required.
- the problem of poor stability is caused by adjusting the number of accelerated particles by adjusting the plasma state in the internal ion source, or by adjusting the voltage intensity of the extraction electrode and the application time. It is generally considered experimentally that it is difficult to reproducibly reproduce the same state once the state of the plasma is changed, and it can be said that changing the number of emitted particles using this is stable. Absent. Changing the parameters of the extraction electrode means changing the state of the plasma surface and disturbing the stability.
- the particles have an energy of 20 keV after one revolution.
- a voltage equivalent to the energy of the particle is required to change the particle trajectory. This is a large-scale apparatus, and a simpler structure is desired.
- the circular accelerator since the circular accelerator has an element for converging the trajectory, the trajectory may return to the original number of acceleration laps even if the trajectory is changed. Therefore, the number of accelerated particles cannot be controlled linearly with the applied voltage intensity.
- An object of the present invention is to provide a circular accelerator that solves the above-described problems and enables a stable control of the number of particles with a simple structure.
- the circular accelerator according to the present invention includes a beam generator that controls the number of particles that are generated and transported to the acceleration electrode at the center, and the charged particles emitted from the beam generator are moved along a spiral orbit by a deflection magnetic field.
- the beam generator faces the ion source, an extraction electrode that extracts charged particles from the ion source, and a charged particle trajectory provided downstream of the extraction electrode.
- a chopper electrode composed of a pair of electrodes and a slit member provided downstream of the chopper electrode and having a slit through which charged particles pass, and charged by changing a voltage applied between the pair of chopper electrodes. It is configured to change the trajectory of particles and control the passage and non-passage of charged particles through the change of the trajectory. .
- the present invention since the number of particles of the charged particles generated in the ion source is controlled by changing the trajectory in the beam generator, the number of stable charged particles accelerated by the circular accelerator is reduced. Control becomes possible.
- FIG. 2 is a schematic top cross-sectional view showing a schematic configuration of a circular accelerator 200 to which the present invention is applied
- FIG. 3 is a schematic side cross-sectional view taken along line AA of FIG.
- a predetermined deflection magnetic field is formed in the vertical direction of FIG. 3 (perpendicular to the plane of FIG. 2) by a deflection electromagnet 9 composed of a pair of coils 7 and a yoke 8 arranged facing each other vertically.
- the charged magnetic particles generated by the beam generator 1 including the ion source are accelerated by the deflection magnetic field, so that the orbit of the charged particles is formed.
- a high frequency is supplied from a high frequency power source 14 and a high frequency acceleration electric field is applied to an acceleration gap 30 formed between the acceleration electrode (D) 10 and the acceleration electrode opposing ground plate (dummy D) 20. Each time charged particles pass through the acceleration gap 30, they are gradually accelerated by this acceleration electric field.
- the configurations of the accelerating electrode 10 and the accelerating electrode counter ground plate 20 are not limited to the configurations shown in FIG. 2 and FIG. It may be. That is, there may be a plurality of acceleration electrodes (di) 10 and acceleration electrode opposing ground plates (dummy days) 20, and any configuration may be used as long as an acceleration electric field is formed.
- Each time the charged particles are accelerated the radius of the orbit of the charged particles gradually increases, that is, the orbit becomes a spiral orbit, and finally the accelerated charged particles are extracted from the exit duct 40 to the outside of the accelerator.
- the spiral trajectory 100 is indicated by a broken line
- the trajectory plane O of the spiral trajectory is indicated by a one-dot chain line.
- the whole accelerator forms a high-frequency cavity 11 and is evacuated by a vacuum device 13 to be evacuated.
- the present invention can be applied to a cyclotron, a synchrocyclotron, and any circular accelerator.
- Cyclotrons include AVF cyclotron, separation sector cyclotron, weakly focused cyclotron, and classical cyclotron.
- FIG. 1 is an enlarged view showing a central part including the beam generator 1 shown in FIG. 2, and is a schematic diagram showing a main part of a circular accelerator according to Embodiment 1 of the present invention.
- FIG. 1 shows an enlarged schematic diagram of the beam generator 1 so that the internal configuration of the beam generator 1 can be understood.
- a chopper electrode 4 having a pair of electrodes facing each other is installed on the track ahead of the extraction electrode 3, that is, downstream of the extraction electrode, so as to generate a DC electric field orthogonal to the track.
- a slit member 5 is installed on the track ahead of the chopper electrode 4, that is, downstream of the chopper electrode 4.
- the ion source 2, the extraction electrode 3, the chopper electrode 4, and the slit member 5 are covered with a shield electrode 6 that is held at a ground potential.
- the chopper electrode 4 is provided with a voltage application / non-application period between the electrodes facing the chopper electrode 4.
- the charged particles are deflected and collide with the slit member 5 through a shielded trajectory 101 (orbit indicated by a broken line in FIG. 1) deviating from the designed spiral trajectory.
- charged particles are not emitted from the beam generator 1.
- the slit member 5 may be provided so that the period during which the voltage of the chopper electrode 4 is applied, that is, the trajectory in which the charged particles are deflected by the chopper electrode 4 passes through the slit 55 of the slit member 5.
- the slit 55 is configured such that charged particles do not pass through and are shielded in a period during which no voltage is applied to the chopper electrode 4, that is, in a trajectory where charged particles are not deflected by the chopper electrode 4.
- the width of the slit 55 may be variable. In this case, the width of the slit 55 can be selected so as to optimize the pulse width and pulse waveform from which the charged particles are emitted by the slit 55 according to the charged particle parameters. Further, since the slit 55 also has a function of shaping the spatial distribution of charged particles emitted from the beam generator 1, that is, the beam shape, the beam shape can be changed by changing the width of the slit 55. .
- an acceleration electric field is formed by a high frequency voltage applied from the high frequency power source 14, and the charged particles emitted from the beam generator 1 are accelerated gap. Accelerates every 30 passes.
- the acceleration electrode 10 that forms the upper acceleration gap 30 and the acceleration electrode 10 that forms the lower acceleration gap 30 are shown as separate electrodes, as shown in FIG.
- the upper acceleration electrode 10 and the lower acceleration electrode 10 in FIG. 1 may be connected. 1 shows that there are two high-frequency power supplies 14, but actually, as shown in FIGS. 2 and 3, high-frequency power is supplied to the acceleration electrode 10 from one high-frequency power supply. .
- FIG. 4 shows the potential for positively charged ions.
- the chopper electrode 4 is an electrode pair, but when no electric field is generated between the electrode pairs, both electrodes in the electrode pair are set to the ground potential. When an electric field is generated between the electrode pair, a DC voltage is applied between the electrode pair.
- One electrode may be set to ground potential, the other electrode may be higher or lower than ground potential, one side may be lower than ground potential, and the other electrode may be higher than ground potential.
- the slit member 5 has a ground potential.
- the chopper electrode 4 may be generated with reference to the ground potential, and the slit member 5 can also be set to the ground potential. Charged particles can be extracted even when the ion source 2 is set to the ground potential and the extraction electrode 3 is set to a positive or negative potential.
- the reference potential of the chopper electrode 4 and the potential of the slit member 5 are set as the extraction electrode potential. Since it is necessary to make them the same and the configuration becomes complicated, it is preferable to set the extraction electrode 3 to the ground potential.
- the shield electrode 6 covering the entire beam generator is preferably set to the ground potential in order to prevent the constituent members of the beam generator 1 from affecting the acceleration electric field as much as possible. Thus, from the point of setting the shield electrode 6 to the ground potential, it is preferable to set the extraction electrode 3 to the ground potential and most of the constituent members of the beam generator 1 to the ground potential.
- FIG. 5 is a schematic diagram showing another configuration of the beam generator 1 of the circular accelerator according to the first embodiment of the present invention, and is a view of the beam generator 1 as viewed from the same direction as FIG.
- the chopper electrode 4 is composed of an electrode pair in which two plate-like electrodes are opposed to each other, but the direction thereof may be provided so as to be opposed to each other with the charged particle trajectory in between.
- the chopper electrode 4 shown in FIG. 1 is provided so that the plate-like electrode surface is perpendicular to the charged particle track surface, but the plate-like electrode surface is the charged particle track surface as shown in FIG. You may provide so that it may become parallel to.
- the charged particles are shielded by the slit member 5, and when there is no electric field by the chopper electrode 4, the charged particles It is sufficient to provide the slit 55 so as to pass through the slit 55.
- the shape of the shield electrode 6 is drawn like a rectangular parallelepiped in FIGS. 1 and 5, it may be any shape as long as it can be shielded, such as a cylindrical shape.
- FIG. 6 and 7 are diagrams for explaining the operation of the circular accelerator of the present invention.
- the circular accelerator is a synchrocyclotron
- the charged particles are accelerated by changing the high-frequency frequency in a certain change pattern.
- FIG. 7 is an enlarged view of the number of accelerator incident particles in FIG. 6, that is, the time of the charged particle numbers a and b emitted from the beam generator, and the portion of the accelerator emitted particle numbers A and B in FIG.
- FIG. 7 The upper diagram of FIG. 7 shows the time change of the voltage applied between the electrode pair of the chopper electrode 4. As shown in the middle part of FIG. 7, charged particles are emitted from the beam generator 1 while no voltage is applied to the chopper electrode 4. The charged particles emitted from the beam generator 1 are accelerated when an electric field is generated in a direction accelerated by the acceleration gap 30 when passing through the acceleration gap 30. Therefore, the charged particles emitted from the circular accelerator are emitted in a pulse manner for each high frequency period.
- the lower diagram of FIG. 7 shows the portions A and B of the number of charged particles emitted from the accelerator in FIG. Note that the number of pulses emitted in one cycle of the high frequency is determined by the arrangement of the electrodes of the circular accelerator.
- the number of charged particles emitted from the beam generator 1, that is, incident on the accelerator can be controlled by the applied voltage period of the chopper electrode 4. Therefore, when the beam generator according to the first embodiment of the present invention is applied to the synchrocyclotron that operates as described above, it is possible to control the number of emitted particles emitted in one high-frequency change pattern. Also in the cyclotron, the number of charged particles that are incident with the same pattern of charged particles as that in the accelerator shown in FIG. By doing so, it is possible to obtain an output of the number of charged particles emitted from the accelerator in the same pattern as in the lower part of FIG.
- the number of charged particles emitted from the ion source 2 is determined by the parameters of the ion source 2 or the voltage of the extraction electrode, and the voltage is further applied to the chopper electrode 4.
- the ratio of particles emitted from the beam generator 1 is determined by a period in which no voltage is applied. That is, the number of particles emitted from the beam generator 1 is determined by the voltage between the ion source 2 and the extraction electrode 3 and the voltage application period or voltage non-application period to the chopper electrode 4.
- the number of emitted particles can be controlled without changing the plasma surface state of the ion source 2 because the parameters of the ion source 2 are not changed.
- the number of emitted particles can be controlled more stably.
- FIG. FIG. 8 is an enlarged schematic diagram showing the configuration of the main part of the circular accelerator according to the second embodiment of the present invention, and FIG.
- the voltage applied between the ion source 2 and the extraction electrode 3 is a DC voltage.
- the voltage is output from the high-frequency power source 14 between the ion source 2 and the extraction electrode 3.
- the high-frequency voltage is applied.
- Other configurations are the same as those of the beam generator according to the first embodiment.
- the potential of the extraction electrode 3 is preferably a ground potential as shown in FIG.
- charged particles are extracted from the ion source 2 during a period when the high-frequency potential is positive or negative depending on whether the charge of the ions is positive or negative.
- charged particles can be emitted in synchronization with the high-frequency phase of the acceleration gap 30.
- the extraction efficiency is lowered because the electric field changes at a high frequency cycle.
- the number of particles extracted from the ion source by changing the magnitude of the high-frequency voltage by controlling the number of particles emitted from the beam generator 1 by the configuration of the chopper electrode 4 and the slit 55.
- the number of particles can be controlled more stably than the conventional method of controlling the particle size.
- FIG. 10 is an enlarged schematic diagram showing the configuration of the main part of the circular accelerator according to the third embodiment of the present invention.
- the slit member 50 also serves as the shield electrode of the previous embodiments. That is, the slit member 50 having the slit 56 is configured to cover and shield the ion source 2, the extraction electrode 3, and the chopper electrode 4.
- the voltage of the chopper electrode 4 is a voltage at which the trajectory of the charged particles becomes the shield trajectory 101
- the charged particles are shielded by the slit member 50 that also serves as the shield electrode.
- the voltage of the chopper electrode 4 is a voltage at which the trajectory of the charged particles becomes a normal trajectory, the charged particles pass through the slit 56.
- FIG. 11 is an enlarged schematic diagram showing another configuration of the main part of the circular accelerator according to the third embodiment of the present invention.
- the shield electrode is removed from the configuration of FIG.
- the shield electrode 6 provided in the first and second embodiments, or the slit member 50 having the function of the shield electrode in FIG. 10 is provided so that the potential of the internal component does not affect the electric field of the acceleration gap as much as possible.
- the function of the shield electrode is not necessarily required when the potential of the acceleration gap on the electric field of the acceleration gap due to the potential of the internal components is small.
- the essential components of the beam generator 1 of the circular accelerator according to the present invention include the ion source 2, the extraction electrode 3, the chopper electrode 4, and the slit member 5 having the slit 55, or the slit member 50 having the slit 56, It is. It is necessary that a voltage for extracting charged particles is applied between the ion source 2 and the extraction electrode 3 and that an electric field for changing the trajectory of the charged particles is generated in the chopper electrode 4.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Abstract
ビーム生成器が、イオン源と、このイオン源から荷電粒子を引き出す引出電極と、この引出電極の下流に設けられ荷電粒子の軌道を挟んで対向する電極対から構成されるチョッパー電極と、このチョッパー電極の下流に設けられ、荷電粒子を通過させるスリットを有するスリット部材とを備え、チョッパー電極の電極対間に印加する電圧を変化させることにより荷電粒子の軌道を変化させ、この軌道の変化により、荷電粒子のスリットの通過、非通過を制御するよう構成されている。
Description
本発明は、荷電粒子を概円形の螺旋軌道を周回させながら高エネルギーまで加速を行なう円形加速器の、特に荷電粒子の発生源に関する。
螺旋軌道を周回させながら荷電粒子を高エネルギーまで加速する装置としてサイクロトロンあるいはシンクロサイクロトロンなどの円形加速器がある。サイクロトロンには等時性磁場と一定の角度毎に磁場強度の強弱があるAVFサイクロトロン、複数のセクター磁石で形成される分離セクター型サイクロトロン、弱収束磁場を用いる弱収束サイクロトロン、平面上に一定磁場を形成する古典的サイクロトロンがある。これらサイクロトロンあるいはシンクロサイクロトロンにおいては、荷電粒子を中心部付近から加速開始させる。荷電粒子を発生させるためにイオン源を用いるが、装置全体を小型化するためには、イオン源を加速器内、すなわち加速器の中心部分に設置し加速する荷電粒子を発生させる内部イオン源が用いられる。
一方、加速された荷電粒子を利用する場合、加速された荷電粒子数を制御する必要がある。特に、荷電粒子を患者の患部である癌に照射して治療する粒子線治療に用いる場合、荷電粒子の照射量を精密に制御する必要がある。
従来のイオン源を内部イオン源として持つ円形加速器において、加速粒子数制御は大きく分けて以下の3種類の方法が考案されている。(1)内部イオン源のプラズマの状態を制御して加速粒子数を制御する方法(例えば特許文献1、特許文献2)、(2)内部イオン源のプラズマに対する引き出し電極のパラメータを制御して加速粒子数を制御する方法(例えば特許文献3)、(3)円形加速器内を周回するビームに対してパルス的に高電圧を印加してビーム軌道を変更させ印加電圧強度を変更する事で加速粒子数を制御する方法(例えば特許文献4)である。このうち、(1)、(2)は内部イオン源のプラズマの状態に影響を与えるために安定性に乏しく、(3)は印加する位置のビームのエネルギーに依存し、少なくとも数kVの高電圧電源や磁場による制御が必要とされる。
安定性に乏しいという問題は、加速粒子数の制御を内部イオン源内のプラズマの状態で調整したり、引き出し電極の電圧強度や印加している時間で調整したりすることで生じる。プラズマは状態を一度変更させると、厳密には同じ状態への再現性が難しいと実験的には一般的に考えられており、これを用いた出射粒子数の変更は安定しているとは言えない。引き出し電極のパラメータを変化させる事はプラズマ表面の状態を変更させる事を意味し、安定性を乱す事になる。
また、加速電圧が10kVの時に1周で2回加速する加速器では、1周後に粒子は20keVのエネルギーを持つ。周回するビームに対してパルス的に高電圧を印加してビーム軌道を変更させ加速粒子数を制御する方法においては、粒子軌道の変更にその粒子のエネルギーと同程度の電圧が必要になる。これは装置として大規模であり、より単純な構造が望まれる。また、円形加速器では軌道を収束させる要素を持つために、軌道変更をしても加速周回回数のうちに軌道が元に戻る事がある。そのために、印加電圧強度に線形的に加速粒子数が制御できない。
本発明は、上記の課題を解決し、単純な構造で、安定な粒子数の制御を可能にする円形加速器を提供することを目的とする。
この発明の円形加速器は、中心部に荷電粒子を発生し加速電極へ輸送する粒子数を制御するビーム生成器を備え、このビーム生成器から出射された荷電粒子を、偏向磁場により螺旋軌道に沿って周回させながら高周波電界によって加速する円形加速器において、ビーム生成器が、イオン源と、このイオン源から荷電粒子を引き出す引出電極と、この引出電極の下流に設けられ荷電粒子の軌道を挟んで対向する電極対から構成されるチョッパー電極と、このチョッパー電極の下流に設けられ、荷電粒子を通過させるスリットを有するスリット部材とを備え、チョッパー電極の電極対間に印加する電圧を変化させることにより荷電粒子の軌道を変化させ、この軌道の変化により、荷電粒子のスリットの通過、非通過を制御するよう構成されている。
この発明によれば、イオン源で発生した荷電粒子を、ビーム生成器内で軌道を変化させることで粒子数を制御するようにしたので、円形加速器で加速される荷電粒子の安定な粒子数の制御が可能となる。
実施の形態1.
まず、図2、図3を用いて、本発明が適用されるサイクロトロンあるいはシンクロサイクロトロンといった、中心に入射された荷電粒子を、偏向磁場により螺旋軌道に沿って周回させながら高周波電界によって加速する円形加速器200の全体の構成、動作を説明する。図2は、本発明が適用される円形加速器200の概略構成を示す上面断面模式図であり、図3は図2のA-A部の側面断面模式図である。
まず、図2、図3を用いて、本発明が適用されるサイクロトロンあるいはシンクロサイクロトロンといった、中心に入射された荷電粒子を、偏向磁場により螺旋軌道に沿って周回させながら高周波電界によって加速する円形加速器200の全体の構成、動作を説明する。図2は、本発明が適用される円形加速器200の概略構成を示す上面断面模式図であり、図3は図2のA-A部の側面断面模式図である。
図3に示すように、上下に対向して配置された一対のコイル7とヨーク8から成る偏向電磁石9により、図3の上下方向(図2の紙面垂直方向)に所定の偏向磁場を形成する。その偏向磁場により、イオン源を含むビーム生成器1で発生した荷電粒子が加速されることにより荷電粒子の周回軌道が形成される。また、高周波電源14から高周波を供給して、加速電極(ディ)10と、加速電極対向接地板(ダミーディ)20との間に形成された加速ギャップ30に高周波の加速電界を印加する。荷電粒子が加速ギャップ30を通過する毎に、この加速電界により徐々に加速される。加速電極10、加速電極対向接地板20の構成は、図2および図3に示す構成に限らず、周回軌道の1周回毎に最低1回加速ギャップを通過できる構成であれば、どのような構成であっても良い。すなわち、加速電極(ディ)10と、加速電極対向接地板(ダミーディ)20の数も複数あっても良く、加速電界が形成されればその実現方法はどのような構成でも良い。荷電粒子が加速される毎に荷電粒子の周回軌道の半径は徐々に大きくなり、すなわち周回軌道は螺旋軌道となって、最後には加速された荷電粒子が出射ダクト40より加速器外部へ取り出される。図2において螺旋軌道100を破線で示し、図3において、螺旋軌道の軌道面Oを一点鎖線で示している。加速器全体が高周波空洞11を形成しており、真空装置13により排気されて内部は真空になっている。
本発明は、サイクロトロン、シンクロサイクロトロン、いずれの円形加速器にも適用可能である。サイクロトロンにはAVFサイクロトロン、分離セクター型サイクロトロン、弱集収束サイクロトロン、古典的サイクロトロンが含まれる。
次に、本発明の要部であるビーム生成器の構成を図1に基づいて説明する。図1は図2に示すビーム生成器1を含む中心部を拡大して示す図であり、本発明の実施の形態1による円形加速器の要部を示す模式図である。図1は、ビーム生成器1の内部構成が解るように、特にビーム生成器1は拡大した内部模式図として示している。引出電極3とイオン源2の間に引出電圧33を印加することにより、イオン源2のイオン引出穴22からイオン、すなわち荷電粒子が引き出される。引出電極3の先の軌道上、すなわち引出電極の下流に、軌道に直交する直流電界を発生させるよう、対向する電極対を有するチョッパー電極4が設置されている。チョッパー電極4の先の軌道上、すなわちチョッパー電極4の下流にはスリット部材5が設置されている。イオン源2、引出電極3、チョッパー電極4、およびスリット部材5は、接地電位に保持されるシールド電極6により覆われている。チョッパー電極4にはチョッパー電極4の対向する電極間には電圧印加、非印加の期間を設ける。チョッパー電極4の電極間に電圧が印加されていない間は、荷電粒子がスリット部材5のスリット55を通過し、シールド電極6に空けられた出射穴66から出射される。チョッパー電極4の電極間に電圧が印加されているときは、荷電粒子は偏向され、設計された螺旋軌道から外れた遮蔽軌道101(図1の破線で示す軌道)を通ってスリット部材5に衝突し、荷電粒子はビーム生成器1から出射されない。
チョッパー電極4の電圧印加されている期間、すなわちチョッパー電極4により荷電粒子が偏向された軌道がスリット部材5のスリット55を通過するようにスリット部材5を設けても良い。この場合、チョッパー電極4に電圧が印加されていない期間、すなわちチョッパー電極4により荷電粒子が偏向されない軌道において荷電粒子が通過せず遮蔽されるようにスリット55を構成する。スリット部材5のスリット55をこのように構成することで、チョッパー電極4に電圧が印加されている期間にビーム生成器1から荷電粒子が出射されるようにできる。このように、チョッパー電極4の電極対間の電圧、すなわちチョッパー電極4の軌道上の電界強度を変化させることで、荷電粒子のスリット55の通過、非通過を制御して、ビーム生成器1から出射される荷電粒子の粒子数を制御することができる。なお、スリット55の幅を可変にしてもよい。この場合、荷電粒子のパラメータにより、スリット55による荷電粒子が出射されるパルスの幅やパルス波形を最適化するよう、スリット55の幅を選択することができる。また、スリット55は、ビーム生成器1から出射される荷電粒子の空間的な分布、すなわちビーム形状を成形する機能も有するため、スリット55の幅を変化させることによりビーム形状を変化させることもできる。
加速電極10と加速電極対向接地板20との間の加速ギャップ30には高周波電源14から印加された高周波電圧による加速電界が形成されており、ビーム生成器1から出射された荷電粒子は加速ギャップ30を通過する毎に加速される。図1では理解しやすいように、上側の加速ギャップ30を形成する加速電極10と下側の加速ギャップ30を形成する加速電極10は、別の電極として示しているが、図2に示すように、図1の上側の加速電極10と下側の加速電極10は繋がっていても良い。また図1では高周波電源14を2個あるように示しているが、実際には図2や図3に示すように1個の高周波電源から加速電極10に高周波電力を供給する構成となっている。
次に、ビーム生成器1を構成する構成部材の電位について図4を参照しながら説明する。イオン源2と引出電極3の間には、直流の電圧を印加するが、図4に示すように、引出電極3を接地電位とする。イオン源2は、荷電粒子が正の電荷のイオンの場合は正の電位とし、荷電粒子が負の電荷のイオンの場合は負の電位とする。図4は正の電荷のイオンの場合の電位を示している。チョッパー電極4は電極対であるが、電極対間に電界を発生させない時は電極対の両電極ともに電位を接地電位とする。電極対間に電界を発生させる時は電極対間に直流の電圧を印加する。片方の電極を接地電位とし、他方の電極を接地電位より高く、あるいは低くしても良いし、片側を接地電位よりも低く、他方の電極を接地電位よりも高くしても良い。スリット部材5は図4に示すように、接地電位とする。
以上のように、引出電極3を接地電位とすることで、チョッパー電極4を接地電位を基準として電界発生させればよく、またスリット部材5も接地電位とすることができる。イオン源2を接地電位とし、引出電極3を正、または負の電位としても荷電粒子を引き出すことができるが、この場合はチョッパー電極4の基準電位およびスリット部材5の電位を引出電極の電位と同じにする必要があり、構成が複雑となるため、引出電極3を接地電位とするのが好ましい。さらに、ビーム生成器全体を覆うシールド電極6は、ビーム生成器1の構成部材が加速電場にできるだけ影響を与えないように設けるため、接地電位とすることが好ましい。このようにシールド電極6を接地電位とする点からも、引出電極3を接地電位として、ビーム生成器1の構成部材の大部分を接地電位とするのが好ましい。
図5は、本発明の実施の形態1による円形加速器のビーム生成器1の別の構成を示す模式図であり、ビーム生成器1を図3と同じ方向、すなわち側面から見た図である。チョッパー電極4は、2枚の板状の電極が対向する電極対で構成されているが、その向きは、荷電粒子の軌道を挟んで対向するように設ければ良い。図1で示したチョッパー電極4は、板状の電極面が荷電粒子の軌道面に対して垂直となるように設けたが、図5のように、板状の電極面が荷電粒子の軌道面に平行となるように設けても良い。いずれの場合も、チョッパー電極4により直流電界が発生し荷電粒子の軌道が遮蔽軌道101となった場合に、荷電粒子がスリット部材5により遮蔽され、チョッパー電極4による電界が無い場合には荷電粒子がスリット55を通過するようにスリット55を設ければ良い。なお、シールド電極6の形状は、図1および図5では直方体のように描かれているが、例えば円筒形状など、シールドできる形状であればどのような形状であっても構わない。
図6および図7は本発明の円形加速器の動作を説明するための線図である。円形加速器がシンクロサイクロトロンの場合、図6の上段の線図に示すように、高周波の周波数をある変化パターンで変化させて荷電粒子を加速させる。高周波の周波数の変化パターンでの変化1回について、図6の中段の線図に示すように、その変化パターンの初期に荷電粒子を入射させることにより、図6の下段の線図に示すように、変化パターンの終期に荷電粒子が加速器から出射される。図7は図6の加速器入射粒子数、すなわちビーム生成器から出射される荷電粒子数a、bの部分の時間を拡大して示し、図6の加速器出射荷電粒子数A、Bの部分を時間拡大して示す図である。図7の上段の線図はチョッパー電極4の電極対間に印加する電圧の時間変化を示している。図7の中段に示すようにチョッパー電極4に電圧が印加されていない間、ビーム生成器1から荷電粒子が出射される。ビーム生成器1から出射された荷電粒子は、加速ギャップ30を通過するときに加速ギャップ30に加速される方向に電界が発生している場合に加速される。したがって、円形加速器から出射される荷電粒子は、高周波の周期毎にパルス的に出射される。図7の下段の線図は図6の加速器出射荷電粒子数のA、Bの部分を時間拡大して示すものである。なお、円形加速器の電極の配置により、高周波の1周期に出射されるパルス数が決まる。また、前述のように、図7とは逆に、チョッパー電極4に電圧が印加されていない間はビーム生成器1から荷電粒子が出射されず、チョッパー電極4に電圧が印加されている間にビーム生成器1から荷電粒子が出射されるように構成することもできる。
本発明の実施の形態1による円形加速器のビーム生成器1では、ビーム生成器1から出射される、すなわち加速器に入射される荷電粒子数をチョッパー電極4の印加電圧期間で制御できる。よって、以上のような動作をするシンクロサイクロトロンに本発明の実施の形態1によるビーム生成器を適用すると、高周波の周波数の変化パターン1回で出射される出射粒子数を制御できる。また、サイクロトロンにおいても、図7と同様のチョッパー電極4の印加電圧の変化に従って、図7と同様の加速器入射荷電粒子のパターンで入射する、すなわちビーム生成器1から出射される荷電粒子数を制御することにより、図7の下段と同様のパターンの加速器出射荷電粒子数の出力を得ることができる。
本発明の実施の形態1による円形加速器では、イオン源2のパラメータもしくは引出電極の電圧で、イオン源2から出射される荷電粒子の粒子数が決まり、さらにチョッパー電極4へ電圧を印加している、あるいは電圧を印加していない期間によりビーム生成器1から出射される粒子の割合が決まる。すなわち、イオン源2と引出電極3の間の電圧と、チョッパー電極4への電圧印加期間または電圧非印加期間とでビーム生成器1から出射される粒子数が決まる。チョッパー電極の電圧印加あるいは非印加の期間で出射粒子数を制御する場合は、イオン源2のパラメータを変化させないため、イオン源2のプラズマ表面の状態を変更させることなく出射粒子数を制御できるためより安定して出射粒子数の制御を行うことができる。
実施の形態2.
図8は、本発明の実施の形態2による円形加速器の要部の構成を示す拡大模式図、図9は、ビーム生成器1の構成部材の電位を説明するための線図である。実施の形態1では、イオン源2と引出電極3の間に印加する電圧を直流電圧としたが、本実施の形態2ではイオン源2と引出電極3との間に、高周波電源14から出力される高周波電圧を印加する構成としている。その他の構成は、実施の形態1によるビーム生成器の構成と同じである。
図8は、本発明の実施の形態2による円形加速器の要部の構成を示す拡大模式図、図9は、ビーム生成器1の構成部材の電位を説明するための線図である。実施の形態1では、イオン源2と引出電極3の間に印加する電圧を直流電圧としたが、本実施の形態2ではイオン源2と引出電極3との間に、高周波電源14から出力される高周波電圧を印加する構成としている。その他の構成は、実施の形態1によるビーム生成器の構成と同じである。
実施の形態1で説明したように、引出電極3の電位は図9のように接地電位とするのが好ましい。この場合、イオンの電荷の正負によって、高周波電位が正あるいは負の期間に荷電粒子がイオン源2より引き出されることになる。この構成によれば、加速ギャップ30の高周波の位相と同期して荷電粒子を出射させることができる。ただし、実施の形態1による直流電界による荷電粒子の引き出しに比較して、電界が高周波の周期で変化するため、引き出しの効率は下がる。実施の形態1で説明したのと同様、チョッパー電極4とスリット55の構成によりビーム生成器1から出射される粒子数を制御することにより、高周波電圧の大きさを変えてイオン源から取り出す粒子数を制御する従来の方法よりも、安定に粒子数を制御することができる。
実施の形態3.
図10は、本発明の実施の形態3による円形加速器の要部の構成を示す拡大模式図である。図10の構成においては、スリット部材50がこれまでの実施の形態のシールド電極を兼ねている。すなわち、スリット56を有するスリット部材50が、イオン源2、引出電極3、チョッパー電極4を覆ってシールドする構成となっている。チョッパー電極4の電圧が、荷電粒子の軌道が遮蔽軌道101となる電圧のときは、シールド電極を兼ねたスリット部材50により荷電粒子が遮蔽される。また、チョッパー電極4の電圧が、荷電粒子の軌道が正規の軌道となる電圧のときは荷電粒子がスリット56を通過するように構成されている。
図10は、本発明の実施の形態3による円形加速器の要部の構成を示す拡大模式図である。図10の構成においては、スリット部材50がこれまでの実施の形態のシールド電極を兼ねている。すなわち、スリット56を有するスリット部材50が、イオン源2、引出電極3、チョッパー電極4を覆ってシールドする構成となっている。チョッパー電極4の電圧が、荷電粒子の軌道が遮蔽軌道101となる電圧のときは、シールド電極を兼ねたスリット部材50により荷電粒子が遮蔽される。また、チョッパー電極4の電圧が、荷電粒子の軌道が正規の軌道となる電圧のときは荷電粒子がスリット56を通過するように構成されている。
図11は、本発明の実施の形態3による円形加速器の要部の別の構成を示す拡大模式図である。図11の構成においては、図1の構成からシールド電極を取り去った構成となっている。実施の形態1および2において設けているシールド電極6、あるいは図10においてシールド電極の機能を有するスリット部材50はその内部の構成部材の電位ができるだけ加速ギャップの電界に影響しないよう設けているが、内部の構成部材の電位による加速ギャップの電界への影響が少ない場合、シールド電極の機能は必ずしも必須ではない。よって、本発明による円形加速器のビーム生成器1としての必須の構成要素は、イオン源2、引出電極3、チョッパー電極4、およびスリット55を有するスリット部材5、またはスリット56を有するスリット部材50、である。イオン源2と引出電極3の間には荷電粒子を引き出すための電圧を印加し、チョッパー電極4には荷電粒子の軌道を変化させるための電界を発生させる構成となっている必要がある。
なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1 ビーム生成器、2 イオン源、3引出電極、4 チョッパー電極、5、50 スリット部材、6 シールド電極、7 コイル、8 ヨーク、9 偏向電磁石、10 加速電極、14 高周波電源、20 加速電極対向接地板、30 加速ギャップ、55、56 スリット、100 螺旋軌道
Claims (8)
- 中心部に荷電粒子を発生するビーム生成器を備え、このビーム生成器から出射された荷電粒子を、偏向磁場により螺旋軌道に沿って周回させながら高周波電界によって加速する円形加速器において、
前記ビーム生成器は、イオン源と、このイオン源から荷電粒子を引き出す引出電極と、この引出電極の下流に設けられ荷電粒子の軌道を挟んで対向する電極対から構成されるチョッパー電極と、このチョッパー電極の下流に設けられ、前記荷電粒子を通過させるスリットを有するスリット部材とを備え、
前記チョッパー電極の電極対間に印加する電圧を変化させることにより荷電粒子の軌道を変化させ、この軌道の変化により、前記荷電粒子の前記スリットの通過、非通過を制御するよう構成されていることを特徴とする円形加速器。 - 前記スリット部材は、前記イオン源、前記引出電極、および前記チョッパー電極を覆うことを特徴とする請求項1に記載の円形加速器。
- 前記イオン源、前記引出電極、前記チョッパー電極、および前記スリット部材を覆うシールド電極を備えたことを特徴とする請求項1に記載の円形加速器。
- 前記チョッパー電極の電極対間に電圧が印加されていないときに、前記荷電粒子が前記スリットを通過し、電圧が印加されたときに、前記荷電粒子が前記スリットを通過しないことを特徴とする請求項1から3のいずれか1項に記載の円形加速器。
- 前記チョッパー電極の電極対間に電圧が印加されたときに、前記荷電粒子が前記スリットを通過し、電圧が印加されていないときに、前記荷電粒子が前記スリットを通過しないことを特徴とする請求項1から3のいずれか1項に記載の円形加速器。
- 前記引出電極の電位は接地電位に維持されていることを特徴とする請求項1から5のいずれか1項に記載の円形加速器。
- 前記イオン源と前記引出電極との間に直流電圧を印加することを特徴とする請求項1から6のいずれか1項に記載の円形加速器。
- 前記イオン源と前記引出電極との間に前記高周波電界と同じ周波数の高周波電圧を印加することを特徴とする請求項1から6のいずれか1項に記載の円形加速器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018536577A JP6532611B2 (ja) | 2016-08-31 | 2016-08-31 | 円形加速器 |
PCT/JP2016/075460 WO2018042539A1 (ja) | 2016-08-31 | 2016-08-31 | 円形加速器 |
TW106102391A TWI615064B (zh) | 2016-08-31 | 2017-01-23 | 圓形加速器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/075460 WO2018042539A1 (ja) | 2016-08-31 | 2016-08-31 | 円形加速器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018042539A1 true WO2018042539A1 (ja) | 2018-03-08 |
Family
ID=61300363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075460 WO2018042539A1 (ja) | 2016-08-31 | 2016-08-31 | 円形加速器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6532611B2 (ja) |
TW (1) | TWI615064B (ja) |
WO (1) | WO2018042539A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025797A (ja) * | 2000-07-13 | 2002-01-25 | Sumijiyuu Kasokuki Service Kk | サイクロトロンのビーム遮断装置及びビームモニタ装置 |
JP2004031115A (ja) * | 2002-06-26 | 2004-01-29 | Matsushita Electric Ind Co Ltd | サイクロトロンで加速するビームの位相幅制限方法および位相幅制限装置 |
JP2015179585A (ja) * | 2014-03-19 | 2015-10-08 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
JP2015179586A (ja) * | 2014-03-19 | 2015-10-08 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
JP2016100207A (ja) * | 2014-11-21 | 2016-05-30 | 株式会社日立製作所 | 荷電粒子ビーム発生装置の運転方法および荷電粒子ビーム発生装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5665721B2 (ja) * | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
JP5597162B2 (ja) * | 2011-04-28 | 2014-10-01 | 三菱電機株式会社 | 円形加速器、および円形加速器の運転方法 |
CN105517629B (zh) * | 2013-08-29 | 2018-05-29 | 三菱电机株式会社 | 粒子射线治疗系统 |
JP6169254B2 (ja) * | 2014-03-25 | 2017-07-26 | 三菱電機株式会社 | 円形加速器、円形加速器の運転方法、および粒子線治療装置 |
-
2016
- 2016-08-31 JP JP2018536577A patent/JP6532611B2/ja active Active
- 2016-08-31 WO PCT/JP2016/075460 patent/WO2018042539A1/ja active Application Filing
-
2017
- 2017-01-23 TW TW106102391A patent/TWI615064B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025797A (ja) * | 2000-07-13 | 2002-01-25 | Sumijiyuu Kasokuki Service Kk | サイクロトロンのビーム遮断装置及びビームモニタ装置 |
JP2004031115A (ja) * | 2002-06-26 | 2004-01-29 | Matsushita Electric Ind Co Ltd | サイクロトロンで加速するビームの位相幅制限方法および位相幅制限装置 |
JP2015179585A (ja) * | 2014-03-19 | 2015-10-08 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
JP2015179586A (ja) * | 2014-03-19 | 2015-10-08 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
JP2016100207A (ja) * | 2014-11-21 | 2016-05-30 | 株式会社日立製作所 | 荷電粒子ビーム発生装置の運転方法および荷電粒子ビーム発生装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018042539A1 (ja) | 2018-11-22 |
TWI615064B (zh) | 2018-02-11 |
JP6532611B2 (ja) | 2019-06-19 |
TW201813457A (zh) | 2018-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10362666B2 (en) | Compac carbon ion LINAC | |
JP2024028745A (ja) | コンパクトな高エネルギーイオン注入システム | |
KR20090071610A (ko) | 의료 치료를 위한 콤팩트 가속기 | |
AU2008261743A1 (en) | Beam transport system and method for linear accelerators | |
US20120126727A1 (en) | Sub-Nanosecond Beam Pulse Radio Frequency Quadrupole (RFQ) Linear Accelerator System | |
Takayama et al. | Induction acceleration of heavy ions in the KEK digital accelerator: Demonstration of a fast-cycling induction synchrotron | |
EP2466997B1 (en) | Method for extracting a charged particle beam using pulse voltage | |
WO2006054528A1 (ja) | イオン注入装置 | |
US11432394B2 (en) | Accelerator and accelerator system | |
Celata et al. | Progress in heavy ion fusion research | |
WO2018042539A1 (ja) | 円形加速器 | |
EP2755455B1 (en) | Beam current variation system for a cyclotron | |
Seidel | Injection and extraction in cyclotrons | |
EP2716141B1 (en) | Particle accelerator and method of reducing beam divergence in the particle accelerator | |
CN116018654A (zh) | 带电粒子束的入射装置及其入射方法 | |
JP2015185245A (ja) | イオン加速器、イオン加速制御方法及び粒子線治療装置 | |
US10842012B2 (en) | Methods and systems for plasma self-compression | |
Pozdeyev et al. | Small Isochronous Ring Project at NSCL | |
JP2023106745A (ja) | 機能結合型セプタム電磁石とそれを用いた加速器、並びに粒子線治療システム | |
WO2017208774A1 (ja) | 加速器および粒子線照射装置 | |
JP2014079300A (ja) | 荷電粒子ビーム照射システム | |
JPH09115700A (ja) | 円形加速器並びにビーム出射方法及び出射装置 | |
Westenskow | High current density beamlets from RF Argon source for heavy ion fusion applications | |
Valek | Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary | |
JPH06302293A (ja) | マイクロ波イオン源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018536577 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16915100 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16915100 Country of ref document: EP Kind code of ref document: A1 |