WO2018042516A1 - Mechanical switch testing method and testing device therefor - Google Patents
Mechanical switch testing method and testing device therefor Download PDFInfo
- Publication number
- WO2018042516A1 WO2018042516A1 PCT/JP2016/075328 JP2016075328W WO2018042516A1 WO 2018042516 A1 WO2018042516 A1 WO 2018042516A1 JP 2016075328 W JP2016075328 W JP 2016075328W WO 2018042516 A1 WO2018042516 A1 WO 2018042516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mechanical switch
- current
- circuit
- source circuit
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/333—Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
Definitions
- Embodiments of the present invention relate to a test method and a test apparatus for verifying the breaking performance of a mechanical switch used for a DC circuit breaker.
- DC circuit breakers are used to interrupt system faults.
- a direct current circuit breaker responsible for system protection from a short circuit accident of a direct current system for example, a hybrid direct current circuit breaker including a mechanical switch and a semiconductor circuit breaker connected in parallel to the switch is used.
- this type of DC circuit breaker 119 includes a semiconductor circuit breaker 122 and a protective lightning arrester 123 connected in parallel to a normal energization unit composed of a mechanical switch 120 and a load commutation device 121. Composed.
- a DC current is passed through the mechanical switch 120 and the load commutation device 121 to detect the occurrence of a short circuit accident, and then the load commutation device 121 passes the current path through the semiconductor circuit breaker. 122. After the fault current completely flows to the semiconductor circuit breaker 122, the fault current is interrupted by the semiconductor circuit breaker 122, and the DC system that suppresses the generated recovery voltage by the protective lightning arrester 123 is protected.
- the fault current is transferred to the semiconductor circuit breaker 122 by the load commutation device 121, and the current i2 increases in the circuit breaker 122. Then, at time (d), the transition of the energization path is completed, the mechanical switch 120 is not energized, and the fault current continues to flow through the semiconductor circuit breaker 122 until time (g).
- the semiconductor breaker 122 starts to cut off the accident current, and the capacitor of the snubber circuit in the semiconductor breaker 122 is charged, whereby the voltage V between the terminals of the DC breaker 119 starts to rise. Thereafter, at time (f), the inter-terminal voltage V reaches the operation start voltage of the protective lightning arrester 123 connected in parallel to the semiconductor breaker 122, and the current i3 starts to flow through the lightning arrester 123.
- the DC circuit breaker protects the system from accidents in cooperation with mechanical switches and semiconductor circuit breakers.
- a DC circuit breaker test method is made to solve the above-described problems, and is a mechanical switch that verifies the breaking performance of a mechanical switch used in a DC circuit breaker. It is an object of the present invention to provide a test method for a vessel and a test apparatus therefor.
- the mechanical switch testing method of the present embodiment is used for a DC circuit breaker for verifying the breaking performance by using a test apparatus including a current source circuit and a voltage source circuit.
- a test method for a mechanical switch wherein current is supplied from the current source circuit to the mechanical switch, the mechanical switch is opened, and current is supplied from the current source circuit to the mechanical switch. And a recovery voltage is applied from the voltage source circuit to the mechanical switch after a predetermined time has elapsed.
- the mechanical switch test device of the present embodiment is a mechanical switch test device used for a DC circuit breaker, and a current source circuit for supplying a current to the mechanical switch, A voltage source circuit that applies a recovery voltage to the mechanical switch, the current source circuit supplying a current to the mechanical switch, the current supply unit, and the mechanical switch And a switch provided in parallel with the current supply unit.
- the resistor is provided in series between the current supply unit and the current supply unit.
- FIG. 1 is a circuit diagram illustrating a configuration of a test device for a mechanical switch according to the present embodiment.
- the test device of the mechanical switch 1 is a device that tests the breaking performance of the mechanical switch 1 to be tested.
- the mechanical switch 1 is a device that has a physical contact made of a conductor or the like, and switches between a conductive state and a cut-off state by the contact of the contact.
- This mechanical switch 1 is a switch used for a DC circuit breaker, and is a switch that constitutes a DC circuit breaker that is connected in parallel with a semiconductor circuit breaker and blocks a direct current.
- Examples of the direct current system in which the direct current circuit breaker is used include direct current power transmission systems such as long-distance power transmission and between electric power companies, direct current distribution such as buildings and large commercial facilities, and direct current systems such as electric railways.
- the test device for the mechanical switch 1 includes a current source circuit A, a voltage source circuit B, and a control unit (not shown) for controlling these circuits A and B.
- the said control part is connected with the current source circuit A and the voltage source circuit B, and controls the connection or interruption
- FIG. The current source circuit A and the voltage source circuit B are connected in parallel to the mechanical switch 1 to be tested.
- the current source circuit A is a circuit for supplying an accident current and supplies current to the mechanical switch 1.
- the current source circuit A includes a short-circuit generator 2, a protective circuit breaker 3, a closing switch 4, a reactor 5, an auxiliary circuit breaker 6, a resistor 7, a surge absorber 8, and an opening / closing switch 10.
- the short-circuit generator 2 is a generator that generates a short-circuit current, and is a current supply unit that supplies current equivalent to an accident current to the mechanical switch 1.
- the short circuit current generated from the short circuit generator 2 is an alternating current.
- the short-circuit current generated in the short-circuit generator 2 is output to the mechanical switch 1 via the reactor 5 connected in series to the short-circuit generator 2.
- a protective circuit breaker 3 and a closing switch 4 are provided between the short-circuit generator 2 and the mechanical switch 1.
- the input switch 4 is a switch for connecting the short-circuit generator 2 to the test circuit, and switches between connection and disconnection of the short-circuit generator 2 to the mechanical switch 1 to be tested.
- the protective circuit breaker 3 is a circuit breaker that blocks AC short-circuit current flowing in the current source circuit A. The protective circuit breaker 3 cuts off at the current zero point of this AC short-circuit current.
- the auxiliary circuit breaker 6 is connected in series with the short-circuit generator 2 and switches between connection and disconnection between the mechanical switch 1 and the short-circuit generator 2 to be tested.
- the auxiliary circuit breaker 6 is a mechanical circuit breaker having a contact made of, for example, a conductor. When the auxiliary circuit breaker 6 is in the on state, current can be supplied from the short-circuit generator 2 to the mechanical switch 1, and when the auxiliary circuit breaker 6 is in the break state, the current source circuit A is mechanically opened and closed. It can be separated from the vessel 1.
- the resistor 7 is provided in series between the short-circuit generator 2 and the mechanical switch 1.
- the resistor 7 is provided between the auxiliary circuit breaker 6 and the mechanical switch 1.
- the surge absorber 8 is provided in parallel with the mechanical switch 1 and is connected to the auxiliary circuit breaker 6.
- the surge absorber 8 absorbs a surge that occurs when the auxiliary circuit breaker 6 is interrupted.
- the surge absorber 8 includes a resistor 8a and a capacitor 8b connected in series.
- the capacitor 8b absorbs the surge through the resistor 8a and facilitates the interruption by the auxiliary circuit breaker 6.
- the open / close switch 10 is a switch that branches between the short-circuit generator 2 and the resistor 7 and is provided in parallel with the short-circuit generator 2 and the mechanical switch 1.
- the energization path of the current source circuit A is switched by opening / closing the open / close switch 10. That is, if the open / close switch 10 is in the open state, the current source circuit A is one closed circuit to which the configurations 1 to 7 can be connected. If the open / close switch 10 is in the closed state, the configurations 1 to 5 and 10 are One closed circuit that can be connected.
- the voltage source circuit B is a circuit for applying a recovery voltage, and applies a recovery voltage to the mechanical switch 1. More specifically, the voltage source circuit B applies a DC voltage corresponding to the DC circuit breaker rated peak value between the terminals of the mechanical switch 1 that has been opened.
- the voltage source circuit B includes a voltage source capacitor 12, a charging device 11, a start switch 13, a reactor 14, a resistor 15, and a capacitor 16.
- the voltage source capacitor 12 is a DC capacitor serving as a voltage source for the voltage source circuit B.
- the voltage source capacitor 10 applies a recovery voltage to the mechanical switch 1 via the reactor 14 when the start switch 13 is in the on state.
- the voltage source capacitor 10 has a capacity for supplying a part of a short-circuit current at the time of a system fault in a DC system provided with a DC circuit breaker provided with the mechanical switch 1.
- the recovery voltage may be used in combination with another capacitor for adjusting the transient recovery voltage.
- the charging device 11 is a device that is connected in parallel with the voltage source capacitor 12 and charges the voltage source capacitor 12.
- the start switch 13 is a device that switches on and off the voltage application from the voltage source capacitor 12.
- the voltage source circuit B includes a transient oscillation circuit (LCR circuit) using the voltage source capacitor 12 as a DC voltage source. That is, the reactor 14, the resistor 15, and the capacitor 16 are connected in series to the voltage source capacitor 12, and constitute a transient vibration circuit. This transient vibration circuit adjusts the voltage applied to the mechanical switch 1 by generating a transient phenomenon. For this reason, the recovery voltage applied to the mechanical switch 1 by the voltage source circuit B is a high-frequency voltage.
- LCR circuit transient oscillation circuit
- the capacitor 16 is a voltage adjusting capacitor that adjusts the voltage supplied by the voltage source capacitor 12.
- the capacitor 16 is a capacitor that is used in combination with the voltage source capacitor 12 to adjust the voltage applied to the mechanical switch 1 when a DC system fault occurs.
- FIG. 2 is a waveform diagram of an accident current flowing through the mechanical switch 1 to be tested and a voltage applied between the terminals of the mechanical switch 1.
- the mechanical switch 1, the protective circuit breaker 3, and the auxiliary circuit breaker 6 are closed, and the closing switch 4, the open / close switch 10, and the start switch 13 are open.
- the short-circuit generator 2 is in an excited state at a predetermined voltage in advance, and the voltage source capacitor 12 is in a state charged to a predetermined voltage by the charging device 11.
- the mechanical switch 1 and the auxiliary circuit breaker 6 are opened. This opening is performed, for example, until the alternating current supplied by the short-circuit generator 2 reaches its peak. Since both the mechanical switch 1 and the auxiliary circuit breaker 6 are devices having mechanical contacts, an arc is generated between the terminals of the mechanical switch 1 and the auxiliary circuit breaker 6 even when the circuit is opened. The current continues to flow between the terminals until time (d).
- the accidental current from the short-circuit generator 2 is transferred from the auxiliary circuit breaker 6 and the mechanical switch 1 to the open / close switch 10 by closing the open / close switch 10, and the auxiliary switch 10.
- the current supply from the current source circuit A to the mechanical switch 1 is stopped.
- the voltage source capacitor 12, the reactor 14, the resistance 15 and a voltage having a frequency determined by the capacitor 16 are applied to the mechanical switch 1.
- the time from time (d) to time (e) is the time when a system failure occurs in a DC circuit breaker equipped with a mechanical switch 1 and a semiconductor circuit breaker provided in parallel with the mechanical switch 1 used in the DC system. This is the time corresponding to the time when current flows only through the circuit breaker. In other words, it is a time during which no current flows and no voltage is applied to the mechanical switch 1.
- the arc energy applied between the terminals of the mechanical switch 1 from time (b) to time (d) and the voltage between the terminals of the mechanical switch 1 applied after time (e) are DC.
- the performance of the mechanical switch 1 can be evaluated by making it equal to or greater than the arc energy applied between the terminals of the mechanical switch and the voltage applied between the terminals in the event of a system failure.
- the current corresponding to the accident current is supplied by the short-circuit generator 2 so as to rise toward the peak of the AC current.
- the AC current You may supply the electric current equivalent to an accident electric current so that it may fall from a peak.
- the mechanical switch 1 and the auxiliary circuit breaker 6 are opened at the timing when the AC current falls from the peak (time (b)), and the open / close switch 10 is closed at the timing when the AC current reaches the current zero point (time (d)).
- the resistor 7 and the open / close switch 10 need not be provided in the current source circuit A.
- the recovery voltage waveform applied between the terminals of the mechanical switch 1 is not limited to the waveform of FIG. That is, the time from the time (e) when the start switch 13 is closed to the time (h) when the voltage peak value is reached, and the voltage peak value are applied between the terminals of the mechanical switch at the time of the DC system fault. It is sufficient if the voltage can be simulated. For example, a waveform that rises linearly to the voltage peak value from time (e) to time (h) and then falls may be used.
- the test method for the mechanical switch 1 is a mechanical switch used for a DC circuit breaker for verifying the breaking performance using a test apparatus including a current source circuit A and a voltage source circuit B.
- This is a test method for the device 1, supplying current from the current source circuit A to the mechanical switch 1, opening the mechanical switch 1, and stopping supply of current from the current source circuit A to the mechanical switch 1.
- the recovery voltage is applied from the voltage source circuit B to the mechanical switch 1 after a predetermined time has elapsed.
- the breaking performance of the mechanical switch 1 used in the DC breaker is evaluated. That is, when the mechanical switch 1 constitutes a DC circuit breaker together with a semiconductor circuit breaker connected in parallel with the switch 1, when the DC circuit breaker is actually used, Since a current flows through the semiconductor circuit breaker and the current is interrupted by the semiconductor circuit breaker, there is a time during which no current flows through the mechanical switch 1 and no voltage is applied. In this respect, according to the test method of the present embodiment, the time when the current and voltage are not supplied to the switch 1 after the mechanical switch 1 is cut off can be reproduced. The interruption
- the fault current supplied to the mechanical switch 1 is such that the arc energy applied between the terminals of the mechanical switch 1 is equivalent to or greater than the arc energy applied between the terminals of the mechanical switch 1 in a DC system fault. Therefore, it is not necessary for the current source circuit A to supply a direct current that flows to the direct current system in a steady state. Since the voltage source circuit B only needs to apply a voltage corresponding to the recovery voltage after interruption of the fault current, it is sufficient to provide a transient vibration circuit with a simple configuration including a capacitor, a reactor, and a resistor in the test apparatus.
- a test apparatus for evaluating the performance of the mechanical switch 1 alone can be obtained without using a semiconductor circuit breaker. There is no need to prepare a site for capital investment or equipment placement, and there is an economic advantage.
- the current source circuit A supplies an alternating current descending from the peak to the mechanical switch 1, opens the mechanical switch 1 until the alternating current reaches the current zero point from the peak, and the alternating current is the current zero point. At this point, the current supply to the mechanical switch 1 is stopped.
- the current source circuit A supplies an alternating current to the mechanical switch 1, opens the mechanical switch 1 until the alternating current reaches its peak, and then switches from the current source circuit A to the mechanical switch 1.
- the current supply was stopped.
- the breaking performance of the mechanical switch can be tested in a manner that simulates the actual occurrence of an accident in which the current increases, so that the breaking performance can be more accurately evaluated.
- the test device for the mechanical switch 1 is a test device for the mechanical switch 1 used in a DC circuit breaker, and a current source circuit that supplies current to the mechanical switch 1 A and a voltage source circuit B that applies a recovery voltage to the mechanical switch 1, and the current source circuit A includes a short-circuit generator 2 that supplies current to the mechanical switch 1, and a short-circuit generator A resistor 7 provided in series between the mechanical switch 1 and the mechanical switch 1, and a switch 10 provided in parallel with the short-circuit generator 2, branching between the short-circuit generator 2 and the resistor 7, I was prepared to.
- the machine is generated when the semiconductor circuit breaker used for the DC circuit breaker is interrupted between the time after the current is supplied to the mechanical switch 1 by the current source circuit A and the time when the recovery voltage is applied by the voltage source circuit B. Since it is possible to provide a time simulating that current and voltage are not supplied to the type switch, the breaking performance of the mechanical switch 1 alone used in the DC circuit breaker can be tested.
- the above-described test method may be realized by providing a control unit, or the switches of the circuits A and B may be turned on or off by an operator.
- the control unit is a computer having a recording medium in which a program for sequence management is stored, and by executing the program, each device of each of the circuits A and B has a predetermined timing. To output a connection or disconnection command.
- a current supply unit that supplies current to the mechanical switch 1 using an LC resonance circuit may be configured.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
Provided are a mechanical switch testing method and a testing device therefor for verifying the interruption capability of a mechanical switch used in a direct current circuit breaker. The testing method uses the testing device, which is equipped with a current source circuit A and a voltage source circuit B, to verify the interruption capability of the mechanical switch 1 used in the direct current circuit breaker, the method comprising supplying a current from the current source circuit A to the mechanical switch 1, opening the mechanical switch 1, stopping the current supply from the current source circuit A to the mechanical switch 1, and, after a predetermined time has elapsed, applying a return voltage from the voltage source circuit B to the mechanical switch 1.
Description
本発明の実施形態は、直流遮断器に用いられる機械式開閉器の遮断性能を検証するための試験方法及びその試験装置に関する。
Embodiments of the present invention relate to a test method and a test apparatus for verifying the breaking performance of a mechanical switch used for a DC circuit breaker.
直流送電システムなどの直流系統には、系統事故を遮断するため直流遮断器が用いられる。直流系統の短絡事故からの系統保護を担う直流遮断器としては、例えば、機械式開閉器と当該開閉器に対して並列接続された半導体遮断器とを備えたハイブリッド形直流遮断器が用いられる。この種の直流遮断器119は、図3に示すように、機械式開閉器120と負荷転流装置121からなる通常時の通電部に、半導体遮断器122と保護避雷器123がそれぞれ並列接続されて構成される。
In DC systems such as DC transmission systems, DC circuit breakers are used to interrupt system faults. As a direct current circuit breaker responsible for system protection from a short circuit accident of a direct current system, for example, a hybrid direct current circuit breaker including a mechanical switch and a semiconductor circuit breaker connected in parallel to the switch is used. As shown in FIG. 3, this type of DC circuit breaker 119 includes a semiconductor circuit breaker 122 and a protective lightning arrester 123 connected in parallel to a normal energization unit composed of a mechanical switch 120 and a load commutation device 121. Composed.
上記の直流遮断器119において、通常時は、機械式開閉器120と負荷転流装置121に直流電流を通電させ、短絡事故発生を検知した後、負荷転流装置121によって通電経路を半導体遮断器122へと移行させる。事故電流が完全に半導体遮断器122へ流れるようになった後、半導体遮断器122にて事故電流を遮断し、発生する回復電圧を保護避雷器123によって抑制する直流系統を保護する。
In the DC circuit breaker 119 described above, normally, a DC current is passed through the mechanical switch 120 and the load commutation device 121 to detect the occurrence of a short circuit accident, and then the load commutation device 121 passes the current path through the semiconductor circuit breaker. 122. After the fault current completely flows to the semiconductor circuit breaker 122, the fault current is interrupted by the semiconductor circuit breaker 122, and the DC system that suppresses the generated recovery voltage by the protective lightning arrester 123 is protected.
ここで、図4を用いて短絡事故発生から事故電流を遮断するまでの過程を説明する。時刻(a)にて直流系統で短絡事故が発生すると、機械式開閉器120の通電電流i1は上昇し始める。時刻(b)にて短絡事故発生を検知し、直流遮断器119に短絡事故電流の遮断指令が送られると、機械式開閉器120が開路し始め、機械式開閉器120の端子間には時刻(d)までの間アークが発生し電流は流れ続ける。
Here, the process from the occurrence of a short circuit accident to the interruption of the accident current will be described with reference to FIG. When a short circuit accident occurs in the DC system at time (a), the energization current i1 of the mechanical switch 120 starts to increase. When occurrence of a short circuit accident is detected at time (b) and a short circuit accident current interruption command is sent to the DC circuit breaker 119, the mechanical switch 120 starts to open, and the time between the terminals of the mechanical switch 120 is Until (d), an arc is generated and current continues to flow.
時刻(c)から時刻(d)にかけて事故電流は負荷転流装置121により半導体遮断器122へ通電経路を移行し、当該遮断器122に通電電流i2が上昇する。そして、時刻(d)には、当該通電経路の移行が完了し、機械式開閉器120に通電しなくなり、半導体遮断器122には事故電流が時刻(g)まで流れ続ける。
From time (c) to time (d), the fault current is transferred to the semiconductor circuit breaker 122 by the load commutation device 121, and the current i2 increases in the circuit breaker 122. Then, at time (d), the transition of the energization path is completed, the mechanical switch 120 is not energized, and the fault current continues to flow through the semiconductor circuit breaker 122 until time (g).
時刻(e)にて半導体遮断器122は事故電流の遮断を始め、半導体遮断器122内のスナバ回路のコンデンサが充電されることにより、直流遮断器119の端子間電圧Vは上昇を始める。その後、時刻(f)にて端子間電圧Vが半導体遮断器122に並列接続された保護避雷器123の動作開始電圧に達し、当該避雷器123に電流i3が流れ始める。
At time (e), the semiconductor breaker 122 starts to cut off the accident current, and the capacitor of the snubber circuit in the semiconductor breaker 122 is charged, whereby the voltage V between the terminals of the DC breaker 119 starts to rise. Thereafter, at time (f), the inter-terminal voltage V reaches the operation start voltage of the protective lightning arrester 123 connected in parallel to the semiconductor breaker 122, and the current i3 starts to flow through the lightning arrester 123.
そして、時刻(g)にて半導体遮断器122での遮断が完了した後、保護避雷器123に流れる電流は、時刻(h)にて端子間電圧Vが回復電圧波高値を迎え、その後時刻(i)にて電圧抑制を終えるまで流れ続ける。
And after interruption | blocking by the semiconductor circuit breaker 122 is completed at the time (g), as for the electric current which flows into the protective lightning arrester 123, the voltage V between terminals reaches a recovery voltage peak value at the time (h), and time (i ) Continue to flow until the voltage suppression is finished.
上記のように、直流遮断器は、機械式開閉器や半導体遮断器等との連携により系統を事故から保護する。
As described above, the DC circuit breaker protects the system from accidents in cooperation with mechanical switches and semiconductor circuit breakers.
ところで、上記のような直流遮断器が、直流系統の事故遮断に必要な遮断性能を有することを確認する必要がある。上記のようなハイブリッド形直流遮断器の場合、従来から、直流遮断器全体の遮断性能を評価する試験方法が知られている。
By the way, it is necessary to confirm that the DC circuit breaker as described above has the interruption performance necessary for accident interruption of the DC system. In the case of the hybrid type DC circuit breaker as described above, conventionally, a test method for evaluating the breaking performance of the entire DC circuit breaker is known.
しかし、直流遮断器に用いられる機械式開閉器に必要な責務を機械式開閉器単体で評価する試験方法は知られておらず、直流遮断器全体を試験対象として遮断性能を試験するしかなかった。そのため、直流遮断器による遮断失敗による原因がどの構成によるものかの究明が困難であるという問題があった。
However, there is no known test method for evaluating the responsibilities required for a mechanical switch used in a DC circuit breaker alone, and the circuit breaker performance must be tested for the entire DC circuit breaker. . For this reason, there is a problem that it is difficult to find out which configuration causes the failure due to the DC circuit breaker.
本発明の実施形態に係る直流遮断器の試験方法は、上記のような課題を解決するためになされたものであり、直流遮断器に用いられる機械式開閉器の遮断性能を検証する機械式開閉器の試験方法及びその試験装置を提供することを目的とする。
A DC circuit breaker test method according to an embodiment of the present invention is made to solve the above-described problems, and is a mechanical switch that verifies the breaking performance of a mechanical switch used in a DC circuit breaker. It is an object of the present invention to provide a test method for a vessel and a test apparatus therefor.
上記の目的を達成するために、本実施形態の機械式開閉器の試験方法は、電流源回路と電圧源回路とを備える試験装置を用いて遮断性能を検証するための直流遮断器に用いられる機械式開閉器の試験方法であって、前記電流源回路から前記機械式開閉器に電流を供給し、前記機械式開閉器を開にし、前記電流源回路から前記機械式開閉器への電流供給を停止し、所定時間経過後に前記電圧源回路から前記機械式開閉器に回復電圧を印加すること、を特徴とする。
In order to achieve the above object, the mechanical switch testing method of the present embodiment is used for a DC circuit breaker for verifying the breaking performance by using a test apparatus including a current source circuit and a voltage source circuit. A test method for a mechanical switch, wherein current is supplied from the current source circuit to the mechanical switch, the mechanical switch is opened, and current is supplied from the current source circuit to the mechanical switch. And a recovery voltage is applied from the voltage source circuit to the mechanical switch after a predetermined time has elapsed.
また、本実施形態の機械式開閉器の試験装置は、直流遮断器に用いられる機械式開閉器の試験装置であって、前記機械式開閉器に対して電流を供給する電流源回路と、前記機械式開閉器に対して回復電圧を印加する電圧源回路と、を備え、前記電流源回路は、前記機械式開閉器に電流を供給する電流供給部と、前記電流供給部と前記機械式開閉器との間に直列に設けられた抵抗と、前記電流供給部と前記抵抗との間で分岐して、前記電流供給部と並列に設けられたスイッチと、を備えることを特徴とする。
Further, the mechanical switch test device of the present embodiment is a mechanical switch test device used for a DC circuit breaker, and a current source circuit for supplying a current to the mechanical switch, A voltage source circuit that applies a recovery voltage to the mechanical switch, the current source circuit supplying a current to the mechanical switch, the current supply unit, and the mechanical switch And a switch provided in parallel with the current supply unit. The resistor is provided in series between the current supply unit and the current supply unit.
[1-1.構成]
以下では、図1及び図2を参照しつつ、本実施形態に係る機械式開閉器の試験方法及びその試験方法に用いる試験装置について説明する。図1は、本実施形態に係る機械式開閉器の試験装置の構成を示す回路図である。 [1-1. Constitution]
Below, the test method of the mechanical switch which concerns on this embodiment, and the test apparatus used for the test method are demonstrated, referring FIG.1 and FIG.2. FIG. 1 is a circuit diagram illustrating a configuration of a test device for a mechanical switch according to the present embodiment.
以下では、図1及び図2を参照しつつ、本実施形態に係る機械式開閉器の試験方法及びその試験方法に用いる試験装置について説明する。図1は、本実施形態に係る機械式開閉器の試験装置の構成を示す回路図である。 [1-1. Constitution]
Below, the test method of the mechanical switch which concerns on this embodiment, and the test apparatus used for the test method are demonstrated, referring FIG.1 and FIG.2. FIG. 1 is a circuit diagram illustrating a configuration of a test device for a mechanical switch according to the present embodiment.
機械式開閉器1の試験装置は、試験対象となる機械式開閉器1の遮断性能を試験する装置である。機械式開閉器1は、導体などからなる物理的な接点を有し、当該接点が接離することで導通状態及び遮断状態を切り替える機器である。この機械式開閉器1は、直流遮断器に用いられる開閉器であり、半導体遮断器と並列接続されて、直流電流を遮断する直流遮断器を構成する開閉器である。なお、直流遮断器が用いられる直流系統は、例えば、長距離送電や電力会社間などの直流送電系統や、ビルや大型商業施設などの直流配電、電気鉄道等の直流系統などが挙げられる。
The test device of the mechanical switch 1 is a device that tests the breaking performance of the mechanical switch 1 to be tested. The mechanical switch 1 is a device that has a physical contact made of a conductor or the like, and switches between a conductive state and a cut-off state by the contact of the contact. This mechanical switch 1 is a switch used for a DC circuit breaker, and is a switch that constitutes a DC circuit breaker that is connected in parallel with a semiconductor circuit breaker and blocks a direct current. Examples of the direct current system in which the direct current circuit breaker is used include direct current power transmission systems such as long-distance power transmission and between electric power companies, direct current distribution such as buildings and large commercial facilities, and direct current systems such as electric railways.
図1に示すように、機械式開閉器1の試験装置は、電流源回路A、電圧源回路B、及びこれらの回路A,Bを制御する制御部(不図示)を備える。当該制御部は、電流源回路A及び電圧源回路Bと接続されており、各回路A、Bの構成要素の接続又は遮断のタイミングを制御する。電流源回路A及び電圧源回路Bは、試験対象となる機械式開閉器1に並列接続される。
As shown in FIG. 1, the test device for the mechanical switch 1 includes a current source circuit A, a voltage source circuit B, and a control unit (not shown) for controlling these circuits A and B. The said control part is connected with the current source circuit A and the voltage source circuit B, and controls the connection or interruption | blocking timing of the component of each circuit A and B. FIG. The current source circuit A and the voltage source circuit B are connected in parallel to the mechanical switch 1 to be tested.
電流源回路Aは、事故電流供給用の回路であり、機械式開閉器1に対して電流を供給する。電流源回路Aは、短絡発電機2、保護遮断器3、投入スイッチ4、リアクトル5、補助遮断器6、抵抗7、サージ吸収部8、開閉スイッチ10を含み構成される。
The current source circuit A is a circuit for supplying an accident current and supplies current to the mechanical switch 1. The current source circuit A includes a short-circuit generator 2, a protective circuit breaker 3, a closing switch 4, a reactor 5, an auxiliary circuit breaker 6, a resistor 7, a surge absorber 8, and an opening / closing switch 10.
短絡発電機2は、短絡電流を発生させる発電機であり、機械式開閉器1に事故電流相当の電流を供給する電流供給部である。短絡発電機2から発生される短絡電流は交流電流である。短絡発電機2で発生した短絡電流は、短絡発電機2に直列接続されたリアクトル5を介して機械式開閉器1に対して出力される。
The short-circuit generator 2 is a generator that generates a short-circuit current, and is a current supply unit that supplies current equivalent to an accident current to the mechanical switch 1. The short circuit current generated from the short circuit generator 2 is an alternating current. The short-circuit current generated in the short-circuit generator 2 is output to the mechanical switch 1 via the reactor 5 connected in series to the short-circuit generator 2.
短絡発電機2と機械式開閉器1との間には、保護遮断器3と投入スイッチ4とが設けられている。投入スイッチ4は、短絡発電機2を試験回路に接続するための開閉器であり、試験対象となる機械式開閉器1に対する短絡発電機2の接続と遮断を切り替える。保護遮断器3は、電流源回路Aに流れる交流の短絡電流の遮断を行う遮断器である。保護遮断器3は、この交流の短絡電流の電流零点で遮断を行う。
A protective circuit breaker 3 and a closing switch 4 are provided between the short-circuit generator 2 and the mechanical switch 1. The input switch 4 is a switch for connecting the short-circuit generator 2 to the test circuit, and switches between connection and disconnection of the short-circuit generator 2 to the mechanical switch 1 to be tested. The protective circuit breaker 3 is a circuit breaker that blocks AC short-circuit current flowing in the current source circuit A. The protective circuit breaker 3 cuts off at the current zero point of this AC short-circuit current.
補助遮断器6は、短絡発電機2と直列に接続されており、試験対象である機械式開閉器1と短絡発電機2との接続と遮断とを切り替える。補助遮断器6は、例えば導体からなる接点を有する機械式の遮断器である。補助遮断器6が投入状態にあるときは、機械式開閉器1に短絡発電機2から電流を供給可能であり、補助遮断器6が遮断状態にあるときは、電流源回路Aが機械式開閉器1から切り離し可能である。
The auxiliary circuit breaker 6 is connected in series with the short-circuit generator 2 and switches between connection and disconnection between the mechanical switch 1 and the short-circuit generator 2 to be tested. The auxiliary circuit breaker 6 is a mechanical circuit breaker having a contact made of, for example, a conductor. When the auxiliary circuit breaker 6 is in the on state, current can be supplied from the short-circuit generator 2 to the mechanical switch 1, and when the auxiliary circuit breaker 6 is in the break state, the current source circuit A is mechanically opened and closed. It can be separated from the vessel 1.
抵抗7は、短絡発電機2と機械式開閉器1との間にこれらと直列接続されて設けられている。ここでは、抵抗7は、補助遮断器6と機械式開閉器1との間に設けられる。サージ吸収部8は、機械式開閉器1と並列に設けられ、補助遮断器6と接続される。サージ吸収部8は、補助遮断器6で遮断された際に発生するサージを吸収する。サージ吸収部8は、抵抗8aとコンデンサ8bとが直列接続されてなり、コンデンサ8bが抵抗8aを介してサージを吸収し、補助遮断器6による遮断をしやすくする。
The resistor 7 is provided in series between the short-circuit generator 2 and the mechanical switch 1. Here, the resistor 7 is provided between the auxiliary circuit breaker 6 and the mechanical switch 1. The surge absorber 8 is provided in parallel with the mechanical switch 1 and is connected to the auxiliary circuit breaker 6. The surge absorber 8 absorbs a surge that occurs when the auxiliary circuit breaker 6 is interrupted. The surge absorber 8 includes a resistor 8a and a capacitor 8b connected in series. The capacitor 8b absorbs the surge through the resistor 8a and facilitates the interruption by the auxiliary circuit breaker 6.
開閉スイッチ10は、短絡発電機2と抵抗7との間で分岐して、短絡発電機2及び機械式開閉器1と並列に設けられたスイッチである。開閉スイッチ10の開閉により電流源回路Aの通電経路を切り替える。すなわち、開閉スイッチ10が開状態であれば、電流源回路Aはその構成1~7が接続可能な一つの閉回路となり、開閉スイッチ10が閉状態であれば、その構成1~5、10が接続可能な一つの閉回路となる。
The open / close switch 10 is a switch that branches between the short-circuit generator 2 and the resistor 7 and is provided in parallel with the short-circuit generator 2 and the mechanical switch 1. The energization path of the current source circuit A is switched by opening / closing the open / close switch 10. That is, if the open / close switch 10 is in the open state, the current source circuit A is one closed circuit to which the configurations 1 to 7 can be connected. If the open / close switch 10 is in the closed state, the configurations 1 to 5 and 10 are One closed circuit that can be connected.
電圧源回路Bは、回復電圧印加用の回路であり、機械式開閉器1に対して回復電圧を印加する。より具体的には、電圧源回路Bは、開路となった機械式開閉器1の端子間に直流遮断器定格波高値相当の直流電圧を印加する。電圧源回路Bは、電圧源コンデンサ12、充電装置11、始動スイッチ13、リアクトル14、抵抗15及びコンデンサ16を含み構成される。
The voltage source circuit B is a circuit for applying a recovery voltage, and applies a recovery voltage to the mechanical switch 1. More specifically, the voltage source circuit B applies a DC voltage corresponding to the DC circuit breaker rated peak value between the terminals of the mechanical switch 1 that has been opened. The voltage source circuit B includes a voltage source capacitor 12, a charging device 11, a start switch 13, a reactor 14, a resistor 15, and a capacitor 16.
電圧源コンデンサ12は、電圧源回路Bの電圧源となる直流コンデンサである。電圧源コンデンサ10は、始動スイッチ13が投入状態である場合に、リアクトル14を介して機械式開閉器1に対して回復電圧を印加する。電圧源コンデンサ10は、機械式開閉器1を備えた直流遮断器が設けられた直流系統における系統事故時の短絡電流の一部を供給する容量を有する。また、回復電圧は、他のコンデンサを過渡回復電圧の調整用として併用しても良い。
The voltage source capacitor 12 is a DC capacitor serving as a voltage source for the voltage source circuit B. The voltage source capacitor 10 applies a recovery voltage to the mechanical switch 1 via the reactor 14 when the start switch 13 is in the on state. The voltage source capacitor 10 has a capacity for supplying a part of a short-circuit current at the time of a system fault in a DC system provided with a DC circuit breaker provided with the mechanical switch 1. The recovery voltage may be used in combination with another capacitor for adjusting the transient recovery voltage.
充電装置11は、電圧源コンデンサ12と並列接続され、電圧源コンデンサ12を充電する装置である。始動スイッチ13は、電圧源コンデンサ12からの電圧印加のオンとオフを切り替える機器である。
The charging device 11 is a device that is connected in parallel with the voltage source capacitor 12 and charges the voltage source capacitor 12. The start switch 13 is a device that switches on and off the voltage application from the voltage source capacitor 12.
電圧源回路Bは、電圧源コンデンサ12を直流電圧源として、過渡振動回路(LCR回路)を備える。すなわち、電圧源コンデンサ12に対して、リアクトル14、抵抗15及びコンデンサ16が直列に接続されており、過渡振動回路を構成する。この過渡振動回路は、過渡現象を発生させて機械式開閉器1に印加する電圧を調整する。このため、電圧源回路Bが機械式開閉器1に印加する回復電圧は、高周波電圧である。
The voltage source circuit B includes a transient oscillation circuit (LCR circuit) using the voltage source capacitor 12 as a DC voltage source. That is, the reactor 14, the resistor 15, and the capacitor 16 are connected in series to the voltage source capacitor 12, and constitute a transient vibration circuit. This transient vibration circuit adjusts the voltage applied to the mechanical switch 1 by generating a transient phenomenon. For this reason, the recovery voltage applied to the mechanical switch 1 by the voltage source circuit B is a high-frequency voltage.
コンデンサ16は、電圧源コンデンサ12が供給する電圧を調整する電圧調整用コンデンサである。ここでは、コンデンサ16は、電圧源コンデンサ12と併用して直流系統事故時に機械式開閉器1に印加される電圧を調整するコンデンサである。
The capacitor 16 is a voltage adjusting capacitor that adjusts the voltage supplied by the voltage source capacitor 12. Here, the capacitor 16 is a capacitor that is used in combination with the voltage source capacitor 12 to adjust the voltage applied to the mechanical switch 1 when a DC system fault occurs.
[1-2.試験方法]
本実施形態に係る機械式開閉器1の試験方法について、図1及び図2を用いて説明する。図2は、試験対象となる機械式開閉器1に流れる事故電流と当該機械式開閉器1の端子間に印加される電圧波形図である。 [1-2. Test method]
A test method for themechanical switch 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 2 is a waveform diagram of an accident current flowing through the mechanical switch 1 to be tested and a voltage applied between the terminals of the mechanical switch 1.
本実施形態に係る機械式開閉器1の試験方法について、図1及び図2を用いて説明する。図2は、試験対象となる機械式開閉器1に流れる事故電流と当該機械式開閉器1の端子間に印加される電圧波形図である。 [1-2. Test method]
A test method for the
まず、試験開始時は、機械式開閉器1、保護遮断器3、及び補助遮断器6は閉路状態であり、投入スイッチ4、開閉スイッチ10、及び始動スイッチ13は開路状態である。短絡発電機2は、予め所定電圧での励磁状態にあり、電圧源コンデンサ12は充電装置11により所定電圧まで充電された状態にある。
First, at the start of the test, the mechanical switch 1, the protective circuit breaker 3, and the auxiliary circuit breaker 6 are closed, and the closing switch 4, the open / close switch 10, and the start switch 13 are open. The short-circuit generator 2 is in an excited state at a predetermined voltage in advance, and the voltage source capacitor 12 is in a state charged to a predetermined voltage by the charging device 11.
図2に示すように、時刻(a)において投入スイッチ4を閉路にすると、短絡発電機2から供給された交流電流はリアクトル5及び抵抗7によりその電流の大きさが調整され機械式開閉器1に交流電流が供給される。
As shown in FIG. 2, when the closing switch 4 is closed at time (a), the magnitude of the AC current supplied from the short-circuit generator 2 is adjusted by the reactor 5 and the resistor 7, and the mechanical switch 1. Is supplied with an alternating current.
次に、時刻(b)において機械式開閉器1及び補助遮断器6を開路にする。この開路は、例えば短絡発電機2が供給する交流電流がそのピークになるまでに行う。機械式開閉器1及び補助遮断器6はいずれも機械式の接点を有する機器であるため、開路にしても機械式開閉器1と補助遮断器6のそれぞれの端子間にアークが発生し、これらの端子間で電流は時刻(d)まで流れ続ける。
Next, at time (b), the mechanical switch 1 and the auxiliary circuit breaker 6 are opened. This opening is performed, for example, until the alternating current supplied by the short-circuit generator 2 reaches its peak. Since both the mechanical switch 1 and the auxiliary circuit breaker 6 are devices having mechanical contacts, an arc is generated between the terminals of the mechanical switch 1 and the auxiliary circuit breaker 6 even when the circuit is opened. The current continues to flow between the terminals until time (d).
そして、時刻(d)において、開閉スイッチ10を閉路にすることにより短絡発電機2からの事故電流は、補助遮断器6及び機械式開閉器1から開閉スイッチ10へと通電経路を移行し、補助遮断器6及び機械式開閉器1には電流が流れなくなる。補助遮断器6と機械式開閉器1との間に抵抗7が設けられており、より低抵抗な開閉スイッチ10へ電流が流れるからである。この時刻(d)において、電流源回路Aから機械式開閉器1への電流供給が停止する。
At time (d), the accidental current from the short-circuit generator 2 is transferred from the auxiliary circuit breaker 6 and the mechanical switch 1 to the open / close switch 10 by closing the open / close switch 10, and the auxiliary switch 10. No current flows through the circuit breaker 6 and the mechanical switch 1. This is because a resistor 7 is provided between the auxiliary circuit breaker 6 and the mechanical switch 1, and a current flows to the switch 10 having a lower resistance. At this time (d), the current supply from the current source circuit A to the mechanical switch 1 is stopped.
機械式開閉器1に電流が流れなくなる時刻(d)から所定時間経過後の時刻(e)において、電圧源回路Bの始動スイッチ13を閉路にすることにより、電圧源コンデンサ12、リアクトル14、抵抗15、及びコンデンサ16によって決まる周波数の電圧が機械式開閉器1に印加される。ここで時刻(d)から時刻(e)までの時間は、直流系統に用いられる、機械式開閉器1及びこれと並列に設けられた半導体遮断器を備えた直流遮断器において、系統事故時に半導体遮断器にのみ電流が流れる時間に相当する時間である。換言すれば、機械式開閉器1に電流も流れず電圧も印加されない時間である。
By closing the start switch 13 of the voltage source circuit B at a time (e) after a lapse of a predetermined time from the time (d) at which no current flows to the mechanical switch 1, the voltage source capacitor 12, the reactor 14, the resistance 15 and a voltage having a frequency determined by the capacitor 16 are applied to the mechanical switch 1. Here, the time from time (d) to time (e) is the time when a system failure occurs in a DC circuit breaker equipped with a mechanical switch 1 and a semiconductor circuit breaker provided in parallel with the mechanical switch 1 used in the DC system. This is the time corresponding to the time when current flows only through the circuit breaker. In other words, it is a time during which no current flows and no voltage is applied to the mechanical switch 1.
そして、上記のように機械式開閉器1に電圧が印加された後、時刻(h)にて電圧波高値を迎える。その後、電圧を低下させた後に電圧源回路Bを停止して試験を終了する。
Then, after the voltage is applied to the mechanical switch 1 as described above, the voltage peak value is reached at time (h). Thereafter, after the voltage is lowered, the voltage source circuit B is stopped and the test is terminated.
以上の実施過程において、時刻(b)から時刻(d)にかけて機械式開閉器1の端子間に加わるアークエネルギー及び時刻(e)以降に印加される機械式開閉器1の端子間電圧が、直流系統の事故時において機械式開閉器の端子間に加わるアークエネルギー及び当該端子間に印加される電圧と等価又はそれ以上にすることにより、機械式開閉器1の性能を評価することができる。
In the above implementation process, the arc energy applied between the terminals of the mechanical switch 1 from time (b) to time (d) and the voltage between the terminals of the mechanical switch 1 applied after time (e) are DC. The performance of the mechanical switch 1 can be evaluated by making it equal to or greater than the arc energy applied between the terminals of the mechanical switch and the voltage applied between the terminals in the event of a system failure.
なお、ここにいうアークエネルギーとは、機械式開閉器1の端子間に印加される電圧V、機械式開閉器1に流れる電流I、並びに電圧V及び電流Iが供給される時間tを乗算した電力量(P=V・I・t)である。
The arc energy here is multiplied by the voltage V applied between the terminals of the mechanical switch 1, the current I flowing through the mechanical switch 1, and the time t during which the voltage V and the current I are supplied. It is electric energy (P = V * I * t).
図2では、短絡発電機2により交流電流のピークに向かって上昇するように事故電流相当の電流を供給したが、機械式開閉器1に要求されるアークエネルギーが供給できれば良いため、交流電流のピークから下がるように事故電流相当の電流を供給しても良い。例えば、交流電流のピークから下がるタイミング(時刻(b))で機械式開閉器1及び補助遮断器6を開路にし、交流電流が電流零点になるタイミング(時刻(d))で開閉スイッチ10を閉路にしても良い。なお、この場合、電流源回路Aに抵抗7及び開閉スイッチ10は設けなくても良い。時刻(b)から時刻(d)の間で機械式開閉器1及び補助遮断器6にアーク通電が生じたとしても、交流電流の電流零点でアークも消滅するので、電流及び電圧が機械式開閉器1に供給されなくなり、通電経路を移行させる必要がないからである。
In FIG. 2, the current corresponding to the accident current is supplied by the short-circuit generator 2 so as to rise toward the peak of the AC current. However, since the arc energy required for the mechanical switch 1 can be supplied, the AC current You may supply the electric current equivalent to an accident electric current so that it may fall from a peak. For example, the mechanical switch 1 and the auxiliary circuit breaker 6 are opened at the timing when the AC current falls from the peak (time (b)), and the open / close switch 10 is closed at the timing when the AC current reaches the current zero point (time (d)). Anyway. In this case, the resistor 7 and the open / close switch 10 need not be provided in the current source circuit A. Even if arc conduction occurs in the mechanical switch 1 and the auxiliary circuit breaker 6 between time (b) and time (d), the arc also disappears at the current zero point of the alternating current, so the current and voltage are mechanically switched. This is because it is not supplied to the container 1 and there is no need to shift the energization path.
また、機械式開閉器1の端子間に印加する回復電圧波形は、図2の波形に限定されない。すなわち、始動スイッチ13を閉路にする時刻(e)から電圧波高値となる時刻(h)までの時間と、当該電圧波高値が、直流系統事故時における機械式開閉器の端子間に印加される電圧を模擬できれば良く、例えば、時刻(e)から時刻(h)まで図2と異なり直線的に電圧波高値まで上昇し、その後下降するような波形としても良い。
Further, the recovery voltage waveform applied between the terminals of the mechanical switch 1 is not limited to the waveform of FIG. That is, the time from the time (e) when the start switch 13 is closed to the time (h) when the voltage peak value is reached, and the voltage peak value are applied between the terminals of the mechanical switch at the time of the DC system fault. It is sufficient if the voltage can be simulated. For example, a waveform that rises linearly to the voltage peak value from time (e) to time (h) and then falls may be used.
[1-3.効果]
(1)本実施形態の機械式開閉器1の試験方法は、電流源回路Aと電圧源回路Bとを備える試験装置を用いて遮断性能を検証するための直流遮断器に用いられる機械式開閉器1の試験方法であって、電流源回路Aから機械式開閉器1に電流を供給し、機械式開閉器1を開にし、電流源回路Aから機械式開閉器1への電流供給を停止し、所定時間経過後に電圧源回路Bから機械式開閉器1に回復電圧を印加するようにした。 [1-3. effect]
(1) The test method for themechanical switch 1 according to the present embodiment is a mechanical switch used for a DC circuit breaker for verifying the breaking performance using a test apparatus including a current source circuit A and a voltage source circuit B. This is a test method for the device 1, supplying current from the current source circuit A to the mechanical switch 1, opening the mechanical switch 1, and stopping supply of current from the current source circuit A to the mechanical switch 1. The recovery voltage is applied from the voltage source circuit B to the mechanical switch 1 after a predetermined time has elapsed.
(1)本実施形態の機械式開閉器1の試験方法は、電流源回路Aと電圧源回路Bとを備える試験装置を用いて遮断性能を検証するための直流遮断器に用いられる機械式開閉器1の試験方法であって、電流源回路Aから機械式開閉器1に電流を供給し、機械式開閉器1を開にし、電流源回路Aから機械式開閉器1への電流供給を停止し、所定時間経過後に電圧源回路Bから機械式開閉器1に回復電圧を印加するようにした。 [1-3. effect]
(1) The test method for the
これにより、直流遮断器に用いられる機械式開閉器1の遮断性能を評価することができる。すなわち、機械式開閉器1が、当該開閉器1と並列接続される半導体遮断器とともに直流遮断器を構成する場合、直流遮断器の実際の使用時においては、機械式開閉器1の遮断後は半導体遮断器に電流が流れ、当該半導体遮断器によって電流が遮断されることとなるため、この間機械式開閉器1には電流が流れず、かつ、電圧も印加されない時間が生じる。この点、本実施形態の試験方法によれば、機械式開閉器1の遮断後の、当該開閉器1に電流及び電圧が供給されない時間を再現することができるため、直流遮断器の一部として組み込まれる機械式開閉器1そのものの遮断性能を検出することができる。
Thereby, it is possible to evaluate the breaking performance of the mechanical switch 1 used in the DC breaker. That is, when the mechanical switch 1 constitutes a DC circuit breaker together with a semiconductor circuit breaker connected in parallel with the switch 1, when the DC circuit breaker is actually used, Since a current flows through the semiconductor circuit breaker and the current is interrupted by the semiconductor circuit breaker, there is a time during which no current flows through the mechanical switch 1 and no voltage is applied. In this respect, according to the test method of the present embodiment, the time when the current and voltage are not supplied to the switch 1 after the mechanical switch 1 is cut off can be reproduced. The interruption | blocking performance of the mechanical switch 1 itself incorporated can be detected.
その結果、従来は、直流遮断器全体でしか遮断性能を評価できなかったため、当該遮断器による遮断が失敗したときに、どの構成機器が遮断失敗の原因かを究明するのに時間を要していたが、本実施形態の試験方法によれば、その構成機器である機械式開閉器1単独の遮断性能を試験することができるため、原因究明に要する時間を短縮化することも可能となる。また、アーク通電の後の機械式開閉器1の電極間の絶縁性能は時間経過とともに回復していくものであるため、機械式開閉器1の電極間の絶縁性能の向上に対する負担を軽くすることができる利点もある。
As a result, conventionally, it was only possible to evaluate the breaking performance of the entire DC breaker, and when breaking by the breaker failed, it took time to investigate which component device caused the failure. However, according to the test method of the present embodiment, it is possible to test the breaking performance of the mechanical switch 1 alone, which is a component device thereof, so that it is possible to shorten the time required for investigating the cause. In addition, since the insulation performance between the electrodes of the mechanical switch 1 after the arc energization is restored over time, the burden on the improvement of the insulation performance between the electrodes of the mechanical switch 1 should be reduced. There is also an advantage that can be.
なお、機械式開閉器1に供給する事故電流は、機械式開閉器1の端子間にかかるアークエネルギーが、直流系統事故において機械式開閉器1の端子間にかかるアークエネルギーと等価又はそれ以上となるように供給すれば足りるため、電流源回路Aが直流系統に定常時に流れる直流電流を供給する必要はない。また、電圧源回路Bは事故電流遮断後の回復電圧相当の電圧のみを印加すれば良いので、コンデンサ、リアクトル、及び抵抗を備えた簡単な構成の過渡振動回路を試験装置に設ければ足りる。従って、短絡発電機などの一般的な交流遮断器の大電力試験設備を有していれば、半導体遮断器を用いることなく機械式開閉器1単体の性能を評価する試験装置を得ることができ、設備投資や設備配置の敷地などを別途準備する必要がなく、経済的な利点がある。
The fault current supplied to the mechanical switch 1 is such that the arc energy applied between the terminals of the mechanical switch 1 is equivalent to or greater than the arc energy applied between the terminals of the mechanical switch 1 in a DC system fault. Therefore, it is not necessary for the current source circuit A to supply a direct current that flows to the direct current system in a steady state. Since the voltage source circuit B only needs to apply a voltage corresponding to the recovery voltage after interruption of the fault current, it is sufficient to provide a transient vibration circuit with a simple configuration including a capacitor, a reactor, and a resistor in the test apparatus. Therefore, if a general AC circuit breaker high power test facility such as a short circuit generator is provided, a test apparatus for evaluating the performance of the mechanical switch 1 alone can be obtained without using a semiconductor circuit breaker. There is no need to prepare a site for capital investment or equipment placement, and there is an economic advantage.
(2)電流源回路Aは、ピークから下降する交流電流を機械式開閉器1に供給し、交流電流がピークから電流零点となるまでに機械式開閉器1を開にし、交流電流が電流零点となる時点で機械式開閉器1への電流供給を停止するようにした。
(2) The current source circuit A supplies an alternating current descending from the peak to the mechanical switch 1, opens the mechanical switch 1 until the alternating current reaches the current zero point from the peak, and the alternating current is the current zero point. At this point, the current supply to the mechanical switch 1 is stopped.
これにより、比較的簡単に交流電流の供給及び停止が可能であるので、簡便に機械式開閉器1の遮断性能を試験することができる。
This makes it possible to relatively easily supply and stop an alternating current, so that the breaking performance of the mechanical switch 1 can be easily tested.
(3)電流源回路Aは、交流電流を機械式開閉器1に供給し、交流電流のピークとなるまでに、機械式開閉器1を開にし、電流源回路Aから機械式開閉器1への電流供給を停止するようにとした。これにより、電流が上昇する実際の事故発生を模擬した形で機械式開閉器の遮断性能を試験できるので、より正確な遮断性能の評価をすることができる。
(3) The current source circuit A supplies an alternating current to the mechanical switch 1, opens the mechanical switch 1 until the alternating current reaches its peak, and then switches from the current source circuit A to the mechanical switch 1. The current supply was stopped. As a result, the breaking performance of the mechanical switch can be tested in a manner that simulates the actual occurrence of an accident in which the current increases, so that the breaking performance can be more accurately evaluated.
(4)本実施形態の機械式開閉器1の試験装置は、直流遮断器に用いられる機械式開閉器1の試験装置であって、機械式開閉器1に対して電流を供給する電流源回路Aと、機械式開閉器1に対して回復電圧を印加する電圧源回路Bと、を備え、電流源回路Aは、機械式開閉器1に電流を供給する短絡発電機2と、短絡発電機2と機械式開閉器1との間に直列に設けられた抵抗7と、短絡発電機2と抵抗7との間で分岐して、短絡発電機2と並列に設けられた開閉スイッチ10と、を備えるようにした。
(4) The test device for the mechanical switch 1 according to the present embodiment is a test device for the mechanical switch 1 used in a DC circuit breaker, and a current source circuit that supplies current to the mechanical switch 1 A and a voltage source circuit B that applies a recovery voltage to the mechanical switch 1, and the current source circuit A includes a short-circuit generator 2 that supplies current to the mechanical switch 1, and a short-circuit generator A resistor 7 provided in series between the mechanical switch 1 and the mechanical switch 1, and a switch 10 provided in parallel with the short-circuit generator 2, branching between the short-circuit generator 2 and the resistor 7, I was prepared to.
これにより、電流源回路Aによる機械式開閉器1への電流供給後から電圧源回路Bによる回復電圧印加までの間に、直流遮断器に用いられる半導体遮断器での遮断の際に生じる、機械式開閉器に電流及び電圧が供給されないことを模擬した時間を設けることができるので、直流遮断器に用いられる機械式開閉器1単独の遮断性能を試験することができる。
As a result, the machine is generated when the semiconductor circuit breaker used for the DC circuit breaker is interrupted between the time after the current is supplied to the mechanical switch 1 by the current source circuit A and the time when the recovery voltage is applied by the voltage source circuit B. Since it is possible to provide a time simulating that current and voltage are not supplied to the type switch, the breaking performance of the mechanical switch 1 alone used in the DC circuit breaker can be tested.
[2.その他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 [2. Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof, as long as they are included in the scope and gist of the invention.
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 [2. Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof, as long as they are included in the scope and gist of the invention.
他の実施形態としては、上記の試験方法を、制御部を設けて実現しても良いし、作業員により各回路A、Bのスイッチの投入又は遮断を行っても良い。制御部を設ける場合、当該制御部は、シーケンス管理するためのプログラムが記憶された記録媒体を有するコンピュータであり、当該プログラムを実行することで、各回路A、Bのそれぞれの機器に所定のタイミングで接続又は遮断の指令を出力する。
As other embodiments, the above-described test method may be realized by providing a control unit, or the switches of the circuits A and B may be turned on or off by an operator. When the control unit is provided, the control unit is a computer having a recording medium in which a program for sequence management is stored, and by executing the program, each device of each of the circuits A and B has a predetermined timing. To output a connection or disconnection command.
上記実施形態の短絡発電機2に代えて、LC共振回路を用いて機械式開閉器1に電流を供給する電流供給部を構成してもよい。
Instead of the short-circuit generator 2 of the above embodiment, a current supply unit that supplies current to the mechanical switch 1 using an LC resonance circuit may be configured.
1 機械式開閉器
A 電流源回路
2 短絡発電機
3 保護遮断器
4 投入スイッチ
5 リアクトル
6 補助遮断器
7 抵抗
8 サージ吸収部
8a 抵抗
8b コンデンサ
B 電圧源回路
11 充電装置
12 電圧源コンデンサ
13 始動スイッチ
14 リアクトル
15 抵抗
16 コンデンサ DESCRIPTION OFSYMBOLS 1 Mechanical switch A Current source circuit 2 Short circuit generator 3 Protective circuit breaker 4 Input switch 5 Reactor 6 Auxiliary circuit breaker 7 Resistance 8 Surge absorption part 8a Resistance 8b Capacitor B Voltage source circuit 11 Charging device 12 Voltage source capacitor 13 Start switch 14 Reactor 15 Resistor 16 Capacitor
A 電流源回路
2 短絡発電機
3 保護遮断器
4 投入スイッチ
5 リアクトル
6 補助遮断器
7 抵抗
8 サージ吸収部
8a 抵抗
8b コンデンサ
B 電圧源回路
11 充電装置
12 電圧源コンデンサ
13 始動スイッチ
14 リアクトル
15 抵抗
16 コンデンサ DESCRIPTION OF
Claims (4)
- 電流源回路と電圧源回路とを備える試験装置を用いて遮断性能を検証するための直流遮断器に用いられる機械式開閉器の試験方法であって、
前記電流源回路から前記機械式開閉器に電流を供給し、
前記機械式開閉器を開にし、
前記電流源回路から前記機械式開閉器への電流供給を停止し、
所定時間経過後に前記電圧源回路から前記機械式開閉器に回復電圧を印加すること、
を特徴とする機械式開閉器の試験方法。 A test method for a mechanical switch used in a DC circuit breaker for verifying a breaking performance using a test device including a current source circuit and a voltage source circuit,
Supplying current from the current source circuit to the mechanical switch;
Open the mechanical switch,
Stopping the current supply from the current source circuit to the mechanical switch;
Applying a recovery voltage from the voltage source circuit to the mechanical switch after elapse of a predetermined time;
Test method for mechanical switches characterized by - 前記電流源回路は、ピークから下降する交流電流を前記機械式開閉器に供給し、
前記交流電流が前記ピークから電流零点となるまでに前記機械式開閉器を開にし、
前記交流電流が前記電流零点となる時点で前記機械式開閉器への電流供給を停止すること、
を特徴とする請求項1記載の機械式開閉器の試験方法。 The current source circuit supplies an alternating current descending from a peak to the mechanical switch,
Open the mechanical switch until the alternating current reaches the current zero point from the peak,
Stopping the current supply to the mechanical switch when the alternating current reaches the current zero point;
The method for testing a mechanical switch according to claim 1. - 前記電流源回路は、交流電流を前記機械式開閉器に供給し、
前記交流電流のピークとなるまでに、前記機械式開閉器を開にし、前記電流源回路から前記機械式開閉器への電流供給を停止すること、
を特徴とする請求項1記載の機械式開閉器の試験方法。 The current source circuit supplies an alternating current to the mechanical switch,
Opening the mechanical switch until the peak of the alternating current and stopping the current supply from the current source circuit to the mechanical switch;
The method for testing a mechanical switch according to claim 1. - 直流遮断器に用いられる機械式開閉器の試験装置であって、
前記機械式開閉器に対して電流を供給する電流源回路と、
前記機械式開閉器に対して回復電圧を印加する電圧源回路と、
を備え、
前記電流源回路は、
前記機械式開閉器に電流を供給する電流供給部と、
前記電流供給部と前記機械式開閉器との間に直列に設けられた抵抗と、
前記電流供給部と前記抵抗との間で分岐して、前記電流供給部と並列に設けられたスイッチと、
を備えることを特徴とする機械式開閉器の試験装置。 A test device for a mechanical switch used in a DC circuit breaker,
A current source circuit for supplying current to the mechanical switch;
A voltage source circuit for applying a recovery voltage to the mechanical switch;
With
The current source circuit is:
A current supply for supplying current to the mechanical switch;
A resistor provided in series between the current supply unit and the mechanical switch;
A switch branched between the current supply unit and the resistor, and provided in parallel with the current supply unit;
An apparatus for testing a mechanical switch, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/075328 WO2018042516A1 (en) | 2016-08-30 | 2016-08-30 | Mechanical switch testing method and testing device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/075328 WO2018042516A1 (en) | 2016-08-30 | 2016-08-30 | Mechanical switch testing method and testing device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018042516A1 true WO2018042516A1 (en) | 2018-03-08 |
Family
ID=61300310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075328 WO2018042516A1 (en) | 2016-08-30 | 2016-08-30 | Mechanical switch testing method and testing device therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018042516A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111856180A (en) * | 2020-07-08 | 2020-10-30 | 北京电力设备总厂有限公司 | Device and method for testing electromagnetic interference of high-voltage isolating switch on-off |
CN116609650A (en) * | 2023-07-17 | 2023-08-18 | 西安高压电器研究院股份有限公司 | Direct current transfer test system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5280476A (en) * | 1975-12-26 | 1977-07-06 | Tokyo Shibaura Electric Co | Dc breaker equivalent tester |
JPS5757267A (en) * | 1980-09-24 | 1982-04-06 | Hitachi Ltd | Combined equivalent testing apparatus for dc breaker |
JP2002509335A (en) * | 1997-12-15 | 2002-03-26 | エービービー アクチボラゲット | Electrical switching device and method for performing electrical disconnection of a load |
JP2003115242A (en) * | 2001-10-03 | 2003-04-18 | Toshiba Corp | Breaker testing circuit |
JP2015056389A (en) * | 2013-09-13 | 2015-03-23 | 株式会社東芝 | Tester of dc circuit breaker and method of testing thereof |
-
2016
- 2016-08-30 WO PCT/JP2016/075328 patent/WO2018042516A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5280476A (en) * | 1975-12-26 | 1977-07-06 | Tokyo Shibaura Electric Co | Dc breaker equivalent tester |
JPS5757267A (en) * | 1980-09-24 | 1982-04-06 | Hitachi Ltd | Combined equivalent testing apparatus for dc breaker |
JP2002509335A (en) * | 1997-12-15 | 2002-03-26 | エービービー アクチボラゲット | Electrical switching device and method for performing electrical disconnection of a load |
JP2003115242A (en) * | 2001-10-03 | 2003-04-18 | Toshiba Corp | Breaker testing circuit |
JP2015056389A (en) * | 2013-09-13 | 2015-03-23 | 株式会社東芝 | Tester of dc circuit breaker and method of testing thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111856180A (en) * | 2020-07-08 | 2020-10-30 | 北京电力设备总厂有限公司 | Device and method for testing electromagnetic interference of high-voltage isolating switch on-off |
CN111856180B (en) * | 2020-07-08 | 2022-11-08 | 北京电力设备总厂有限公司 | Device and method for testing electromagnetic interference of high-voltage isolating switch on-off |
CN116609650A (en) * | 2023-07-17 | 2023-08-18 | 西安高压电器研究院股份有限公司 | Direct current transfer test system and method |
CN116609650B (en) * | 2023-07-17 | 2023-10-20 | 西安高压电器研究院股份有限公司 | Direct current transfer test system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12132303B2 (en) | DC circuit breaker with an alternating commutating circuit | |
CN108075449B (en) | System and method for protecting solid state power controllers | |
CN110073229B (en) | Test device of direct current breaker | |
KR101550374B1 (en) | High-voltage DC circuit breaker | |
JP6645758B2 (en) | DC breaker test method | |
KR101506581B1 (en) | High-voltage DC circuit breaker | |
KR101658539B1 (en) | Direct Current Circuit Breaker and Method Using The Same | |
US10403449B2 (en) | Direct-current circuit breaker | |
JP2016213179A (en) | DC circuit breaker and method of use | |
KR20150078491A (en) | High-voltage DC circuit breaker | |
KR101630093B1 (en) | High-voltage DC circuit breaker | |
WO2015037223A1 (en) | Device for testing dc circuit breaker and testing method therefor | |
KR101641511B1 (en) | Device for interrupting DC current and method the same | |
WO2015040862A1 (en) | Test device for dc circuit breaker and testing method using test device for dc circuit breaker | |
US9851403B2 (en) | Safety device and method for an electric installation | |
CN111712982A (en) | Fault handling | |
WO2018042516A1 (en) | Mechanical switch testing method and testing device therefor | |
JPH03202793A (en) | Testing apparatus for circuit breaker | |
KR102298168B1 (en) | Micro Protective Device and Method thereof and Artificial Fault Generator for the Micro Smart Grid Simulator and, Micro Performance Evaluation System of the Micro Protective Device | |
JP2016213123A (en) | Tester of dc circuit breaker and test method thereof | |
Bhatta et al. | Detecting High-Impedance Fault with Z-Source Circuit Breakers in Smart Grids | |
CN110118929B (en) | Testing device and testing method for cut-off equipment | |
Amaral et al. | On the application of a power electronics-based arc-flash suppressor | |
Jovcic et al. | Modelling and Comparison of Common Functionalities of HVDC Circuit Breakers | |
Bui-Van et al. | Performance of series-compensated line circuit breakers under delayed current-zero conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16915077 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16915077 Country of ref document: EP Kind code of ref document: A1 |