WO2018041150A1 - Ap放置 - Google Patents
Ap放置 Download PDFInfo
- Publication number
- WO2018041150A1 WO2018041150A1 PCT/CN2017/099721 CN2017099721W WO2018041150A1 WO 2018041150 A1 WO2018041150 A1 WO 2018041150A1 CN 2017099721 W CN2017099721 W CN 2017099721W WO 2018041150 A1 WO2018041150 A1 WO 2018041150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal strength
- sampling point
- point
- effective
- sampling
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/003—Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- WLAN Wireless Local Area Network
- AP Access Point
- FIG. 1 is a schematic view of a positioning area shown in an exemplary embodiment of the present application.
- FIG. 2 is a schematic diagram of a sampling point matrix shown in an exemplary embodiment of the present application.
- FIG. 3 is a schematic diagram showing signal strengths generated by an AP at each sampling point when calculating a maximum effective signal strength and a maximum effective point according to an exemplary embodiment of the present application;
- FIG. 4 is a flow chart showing a process of placing an AP at a sampling point according to an exemplary embodiment of the present application
- FIG. 5 is a schematic diagram showing signal strengths generated by an AP at each sampling point when calculating a new effective signal strength, adding an invalid signal strength, and adding a new effective point according to an exemplary embodiment of the present application;
- FIG. 6 is a schematic diagram showing signal strength generated by AP1 at a sampling point when there is overlapping signal coverage, according to an exemplary embodiment of the present application
- FIG. 7 is a schematic diagram showing signal strength generated by AP1 at a sampling point when there is an obstacle occlusion according to an exemplary embodiment of the present application.
- Figure 8 is the signal strength of the sample point after placing AP2 in Figure 7.
- FIG. 9 is a schematic structural diagram of hardware of an AP placement device according to an exemplary embodiment of the present application.
- FIG. 10 is a schematic structural diagram of an AP placement apparatus according to an exemplary embodiment of the present application.
- FIG. 11 is another schematic structural diagram of an AP placement apparatus according to an exemplary embodiment of the present application.
- first, second, third, etc. may be used to describe various information in this application, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information without departing from the scope of the present application.
- second information may also be referred to as the first information.
- word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
- the AP can be placed in a honeycomb hexagon or square starting from the center point of the coverage area.
- the side length of a hexagon or a square is a fixed value, and is calculated by parameters such as the signal strength of the AP, the number of online users, and the bandwidth.
- the above method may cause the following problems: the boundary area cannot be well covered by the signal; most of the coverage of the AP placed in the boundary area falls outside the coverage area, causing waste and the like.
- an area that requires WLAN coverage is referred to as an effective area
- an area other than the effective area is referred to as an invalid area.
- an area that requires WLAN coverage is referred to as an effective area
- an area other than the effective area is referred to as an invalid area.
- a limited area outside the effective area 12 is usually selected as invalid.
- Area 11 the invalid area does not require WLAN coverage.
- the WLAN planning is performed on the positioning area including the effective area and the invalid area, and the determination needs to be placed.
- the location of the AP is an example in which the effective area and the positioning area are rectangular areas. The specific shape of the effective area and the positioning area is not limited in the embodiment of the present application.
- sampling is performed in the positioning area 10 as shown in FIG. 1 according to the preset sampling interval I, and a sampling point matrix as shown in FIG. 2 is obtained.
- the sampling point matrix includes a plurality of sampling points distributed in a matrix.
- the sample point matrix includes a plurality of sample points 20 located in the inactive area 11 and the active area 12.
- the preset sampling interval I may be set according to the actual area of the effective area.
- the preset sampling interval I may be set to a value within a range of 0.5 meters to 5 meters.
- the positioning area may be a rectangular area having a length of M+2r and a width of N+2r, where r represents an AP signal. Cover the radius.
- the sampling point matrix at this time is one Matrix.
- the invalid area is a limited area surrounding the effective area.
- the AP when the total number of users that can be accommodated in the effective area is large, the AP needs to be arranged densely, which is the case of high-density coverage. In other words, the more users are required to be accommodated, the denser the AP is arranged, so that when the effective area is known as a rectangular area of M ⁇ N, the total number of users that can be accommodated in the effective area is Sum, which can be accommodated by a single AP.
- the signal coverage radius r of the AP satisfies the following formula (1):
- the signal coverage radius r of the AP may be a signal coverage radius determined by the AP according to its own capability.
- the above sampling operation can be performed on the map of the positioning area.
- E max is the signal intensity generated by the AP placed at a certain sampling point at each sampling point. The maximum value of the sum.
- the signal strength generated by the AP at the sampling point can be actually calculated, that is, the actual signal strength value calculated according to the signal strength of the AP, the signal coverage radius r, the distance between the sampling point and the AP, etc.
- the maximum value of the sum of the signal strengths is not necessarily obtained based on the true signal strength value.
- the signal strength generated by the AP at each sampling point can be represented as a schematic value.
- a schematic value as shown in FIG. 3 can be used, that is, the schematic value only needs to reflect the farther from the sampling point where the AP is placed.
- the smaller the signal strength, the greater the sum of the signal strengths is also expressed as a schematic value.
- the maximum value of the sum of the signal intensities is merely a theoretical maximum that can be achieved by the AP without any interference.
- the maximum value may be a schematic value or a true signal strength value determined from the AP. This embodiment is not limited.
- the calculation of the maximum effective signal strength is related to the signal coverage capability of the AP itself and the sampling interval, etc., whether or not the AP is placed in the effective area to calculate the maximum value or placed in the invalid area to calculate the maximum value. Not relevant.
- the AP is placed in the effective area, so that the coverage of the AP is within the currently determined sampling point matrix, and there is no interference within the signal coverage of the AP (eg, no The obstacle, and thus the sum of the signal strengths produced by the AP at each sampling point is the maximum of the sum of the signal strengths, ie the maximum effective signal strength.
- the AP can also be placed at the edge of the sampling point matrix.
- the coverage portion of the AP is outside the sampling point matrix, and the sampling range should be temporarily expanded according to the signal coverage range of the AP and the sampling interval, so that The signal coverage of the AP is within the expanded sampling range to calculate the maximum effective signal strength.
- sampling range is expanded only when the maximum effective signal strength is calculated, but when the effective signal strength is newly added and the invalid signal strength is newly added, the sampling point matrix determined according to the effective area and the invalid area is still used. Calculation.
- each sample point in the sample point matrix can be traversed, for example, traversing in order from left to right and top to bottom. Of course, it can also be traversed from right to left and from bottom to top. In general, traversal can be started from the boundary of the effective area, so as to better ensure that the AP signal is better covered at the boundary between the effective area and the invalid area.
- Step S401 assuming that an AP is placed on the to-be-placed sampling point, and calculating an added effective signal strength E eff and adding a new invalid signal strength E inv ;
- the sampling point of the AP that is not placed is used as the sampling point of the AP to be placed, and may also be referred to as a first sampling point.
- the new effective signal strength E eff is the sum of the newly added signal strength E generated by the AP at the sampling point located in the effective area, and the newly added invalid signal strength E inv is generated by the AP at the sampling point located in the invalid area. Add the sum of the signal strengths E.
- Step S402 determining whether the preset condition is satisfied according to the newly added effective signal strength E eff and the newly added invalid signal strength E inv calculated in step S401, and if yes, executing step S403; otherwise, executing step S404;
- the above preset conditions are:
- T represents a preset effective signal strength ratio threshold
- F represents a preset invalid signal strength ratio threshold.
- the values of T and F can be preset according to actual needs. For example, T can be preset to 70%, and F can be preset to 20%.
- Step S403 placing an AP at the sampling point, and updating the signal strength of the sampling point for each sampling point covered by the signal of the AP; and then exiting the process.
- the method for updating the signal strength of the sampling point for each sampling point covered by the signal of the AP may be: if the signal strength of the sampling point is locally saved, the saved signal of the sampling point is saved.
- the intensity is updated to the current value and the maximum value in E1, wherein the current value is the signal strength locally saved by the sampling point before the update; if the signal strength of the sampling point is not saved locally, the signal of the sampling point is saved.
- the intensity is E1, where E1 represents the signal strength produced by the AP at the sampling point.
- the sampling point covered by the AP to be placed may also be referred to as a second sampling point.
- Step S404 the AP is not placed on the sampling point, and then the flow is exited.
- the maximum effective point C max may also be calculated in step S401, where C max is the total number of sampling points covered by the signal of the AP placed at the sampling point.
- Cmax may be the total number of sample points covered by the signal of the AP used to calculate the maximum effective signal strength.
- the number of sampling points covered by the AP signal is the most effective.
- the maximum effective point number is independent of whether the covered sample point is in the valid area or the invalid area.
- Bit C add where the new valid point C add is the number of sample points in all the sample points in the active area covered by the signal of the AP, which are not covered by the signal of the placed AP.
- step S402 according to the newly added effective signal strength E eff , the newly added invalid signal strength E inv , and the newly added effective point number C add , it is determined whether the preset condition is met, and the preset condition at this time may be:
- G indicates the preset new effective point ratio threshold.
- the value of G can also be preset according to actual requirements. For example, G can be preset to 70%.
- the currently traversed sampling point is the black-filled sampling point in FIG. 5, and the new effective is assumed to be assumed when the AP to be placed is placed at the sampling point.
- the above preset condition is satisfied, and therefore, the AP is placed at the sampling point.
- the ratio is greater than the preset new effective point ratio threshold, which can further prevent the AP from repeatedly covering the sampling point and reduce the coverage conflict.
- step S401 when calculating the newly added effective signal strength and adding the invalid signal strength in step S401, it is necessary to calculate the AP to be placed (that is, when traversing each sampling point in the sampling point matrix, it is to be placed at the sampling point currently traversed. AP) in The newly added signal strength E generated at the sampling point needs to consider the overlapping of signal coverage and obstacle occlusion of multiple APs. The calculation method of the signal strength E in these cases will be described below.
- the method for calculating the new signal strength E generated by the AP to be placed at the sampling point is as follows:
- E1 represents the signal strength of the AP to be placed at the sampling point
- E2 represents the signal strength of the locally stored sample point
- the sampling point is only within the signal coverage of the AP to be placed, and the newly added signal strength E generated by the AP to be placed at the sampling point satisfies the following formula (3) ):
- the AP to be placed is recorded as AP1 as an example.
- the sampling point currently traversed is a black-filled sampling point, and the filled black sampling point of the unplaced AP is selected as the AP 1 to be placed. Sampling point.
- the new effective signal strength E eff When the new effective signal strength E eff is calculated, the new signal strength E generated by the AP to be placed at the sampling point is used, so that the AP to be placed is closer to the previously placed AP, and the waiting for the AP can be made.
- the newly added effective signal strength E eff of the placed AP is small and cannot reach the preset effective signal strength ratio threshold T, thereby avoiding signal interference caused by the AP being placed and the previously placed AP being placed too close.
- the signal strength E1 generated by the AP to be placed at the sampling point is the attenuation signal strength value after being occluded by the obstacle.
- the signal strength value is subtracted from the attenuation value corresponding to the obstacle, and the attenuated signal intensity value is obtained.
- the signal strength is represented by a schematic value
- the signal strength of the attenuation can be calculated according to a certain ratio. For example, the range of the indicated value is 0 to 5, and the range of the actual calculated value is 0 to 90, and the signal strength after the attenuation is obtained.
- the indicated value is Multiply by the actual calculated value of the attenuated signal strength.
- the added signal strength is also small. Therefore, the ratio of the newly added effective signal strength divided by the maximum effective signal strength is greater than the preset effective signal strength ratio.
- the threshold value ensures that the coverage of the AP signal can be guaranteed even if there is occlusion of the obstacle.
- the signal strength may also be referred to as a field strength.
- the signal strength generated by the AP at the sampling point is also the field strength generated by the AP at the sampling point, and the maximum effective signal strength is also placed at a certain
- the maximum value of the sum of the field strengths generated by the APs at the sampling points at each sampling point may also be referred to as the maximum effective field strength.
- the newly added effective signal strength may also be referred to as the newly added effective field strength, and the new invalid signal strength is also added. It can be called new invalid field strength, and the added signal strength can also be called new field strength.
- the sampling point matrix is selected in the positioning area including the effective area that needs WLAN coverage and the invalid area outside the effective area according to the preset sampling interval, and the AP is not selected.
- the sample point is used as a sampling point of the AP to be placed, and it is determined whether the relevant parameter calculated when the unplaced AP is placed at the sampling point satisfies a preset condition, and the AP is placed at the sampling point when the preset condition is met, thereby being able to Ensure full coverage of the active area and save costs.
- the method is closer to the real scene and more practical.
- the present application also provides an embodiment of the AP placement device.
- FIG. 9 is a hardware structural diagram of an AP placement device according to some embodiments of the present disclosure.
- the device 500 can include a processor 510 and a machine readable storage medium 520.
- the processor 510 and the machine readable storage medium 520 can communicate via the system bus 530. And, by reading and executing the machine executable instructions corresponding to the AP placement logic 60 stored in the machine readable storage medium 520, the processor 510 can perform the EVPN and public network interworking methods described above.
- the machine-readable storage medium 520 referred to herein can be any electronic, magnetic, optical, or other physical storage device that can contain or store information such as executable instructions, data, and the like.
- the machine readable storage medium 92 may be a RAM (Random Access Memory), a volatile memory, a nonvolatile memory, a flash memory, a storage drive (such as a hard disk drive), a solid state drive, or any type of A storage disk (such as a compact disc, a DVD, etc.), or a similar storage medium, or a combination thereof.
- the AP placement device 60 includes the following modules: a sampling module 601, a pre-calculation module 602, a placement calculation module 603, and a placement module 604, where:
- the sampling module 601 is configured to perform sampling in the positioning area according to the preset sampling interval to obtain a sampling point matrix, where the positioning area includes: an effective area that requires WLAN coverage of the wireless local area network and an invalid area outside the effective area;
- a pre-calculation module 602 configured to calculate a maximum effective signal strength, wherein the maximum effective signal strength is a maximum value of a sum of signal strengths generated by APs placed at the sampling points at respective sampling points;
- a placement calculation module 603 configured to sequentially select a sampling point of the AP from which the AP is not placed as the first sampling point of the AP to be placed, and calculate a new time when the AP to be placed is placed on the first sampling point.
- Increasing effective signal strength and adding a new invalid signal strength wherein the newly added effective signal strength is a sum of new signal strengths generated by the AP to be placed at each of the sampling points located in the effective area, the new Increasing the invalid signal strength is the sum of the newly added signal strengths generated by the AP to be placed on each of the sampling points located in the invalid area;
- a placement module 604 configured to: when the predetermined condition is met, the AP to be placed is placed on the first sampling point, where the preset condition includes: the added effective signal strength is divided by the maximum valid signal The ratio obtained by the intensity is greater than a preset effective signal strength ratio threshold, and the ratio of the newly added invalid signal strength divided by the maximum effective signal strength is less than The default invalid signal strength ratio threshold is preset.
- the pre-calculation module 602 is further configured to calculate a maximum effective point, wherein the maximum effective point is a total number of sampling points covered by the signal of the AP for calculating the maximum effective signal strength;
- the placement calculation module 603 is further configured to calculate a new effective point when the AP is placed on the first sampling point, where the newly added effective point is located in the effective area covered by the signal of the AP. The number of sampling points in all sampling points that have not been covered by the signal of the placed AP;
- the preset condition further includes: the ratio obtained by dividing the newly added effective point by the maximum effective point is greater than a preset new effective point ratio threshold.
- the placement calculation module 603 calculates a new signal strength E generated by the AP at the second sampling point by using a method, where the second sampling point is a sampling point covered by the AP to be placed:
- E1 represents the signal strength generated by the AP to be placed at the second sampling point
- E2 represents the signal strength at the second sample point saved.
- the signal strength E1 generated by the AP to be placed at the second sampling point is attenuated by the obstacle. After the signal strength value.
- the AP placement device 60 further includes: a signal strength update module 605, where:
- the signal strength update module 605 is configured to: after determining that the preset condition is met, for each second sampling point covered by the AP to be placed, if the signal strength of the second mining point is locally saved, the saved The signal strength of the second sampling point is updated to the current saved value and the maximum value in E1. If the signal strength of the second sampling point is not saved locally, the signal strength of the second sampling point is saved as E1, where E1 Indicates the signal strength at which the signal of the AP to be placed is placed at the second sampling point at the first sampling point.
- the positioning area is a rectangular area having a length of M+2r and a width of N+2r, wherein r represents the signal coverage radius of a single AP, p represents the number of users that a single AP can accommodate, and Sum represents the total number of users that need to be accommodated in the active area.
- the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present application. Those of ordinary skill in the art can understand and implement without any creative effort.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种AP放置方法及设备。在该方法中,按照预设采样间距,在定位区域内进行采样得到采样点矩阵,其中,所述定位区域包括:需要无线局域网WLAN覆盖的有效区域和所述有效区域外的无效区域;计算最大有效信号强度;依次从所述采样点矩阵中选择一个未放置AP的采样点作为待放置AP的第一采样点,计算在该第一采样点上放置所述待放置AP时的新增有效信号强度和新增无效信号强度,其中,当确定满足预设条件时,在该第一采样点上放置该待放置AP。
Description
相关申请的交叉引用
本专利申请要求于2016年8月30日提交的、申请号为201610762357.2、发明名称为“AP放置方法及装置”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
WLAN(Wireless Local Area Network,无线局域网)技术是当今通信领域的热点之一,和有线网络相比,WLAN的启动和实施相对简单,维护的成本低廉,一般只要安放一个或多个接入点(Access Point,AP)就可建立覆盖整个建筑或地区的局域网络。
图1是本申请一示例性实施例示出的定位区域的示意图;
图2是本申请一示例性实施例示出的采样点矩阵的示意图;
图3是本申请一示例性实施例示出的计算最大有效信号强度和最大有效点位时,AP在各个采样点上产生的信号强度的示意图;
图4是本申请一示例性实施例示出的在采样点上放置AP过程的流程图;
图5是本申请一示例性实施例示出的计算新增有效信号强度、新增无效信号强度和新增有效点位时,AP在各个采样点上产生的信号强度的示意图;
图6是本申请一示例性实施例示出的当存在信号覆盖范围重叠时,AP1在采样点上产生的信号强度的示意图;
图7是本申请一示例性实施例示出的当存在障碍物遮挡时,AP1在采样点上产生的信号强度的示意图;
图8是在图7中放置AP2后采样点的信号强度
的示意图;
图9是本申请一示例性实施例示出的AP放置设备的硬件结构示意图;
图10是本申请一示例性实施例示出的AP放置装置的一种结构示意图;
图11是本申请一示例性实施例示出的AP放置装置的另一种结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在......时”或“当......时”或“响应于确定”。
在实际实施过程中,在WLAN构建之前需要先根据实际需求进行网络规划,其中的一个重点就是计算AP的摆放位置。可从覆盖区域的中心点开始,以蜂窝状的六边形或正方形进行AP摆放。六边形或正方形的边长是固定值,通过AP的信号强度、在线用户数、带宽等参数计算得到。但是,上述方法可能会导致以下问题:边界区域不能得到很好的信号覆盖;放置在边界区域的AP的大部分覆盖范围落在覆盖区域之外,造成了浪费等。
本申请以下实施例中提供了AP放置方法、设备及装置。本申请以下实施例中,将需要WLAN覆盖的区域称为有效区域,将有效区域之外的区域称为无效区域,例如,如图1所示,通常会选取有效区域12外部的有限区域作为无效区域11,无效区域不需要WLAN覆盖。本申请实施例中,会在包含有效区域和无效区域的定位区域上进行WLAN规划,确定需要放置
AP的位置。以下以该有效区域和定位区域为长方形区域为例进行说明,本申请实施例不限定有效区域和定位区域的具体形状。
首先,按照预设采样间距I,在如图1所示的定位区域10内进行采样,得到如图2所示的采样点矩阵。其中,所述采样点矩阵包括呈矩阵式分布的多个采样点。例如,如图2所示,该采样点矩阵包括位于无效区域11和有效区域12中的多个采样点20。再如,需要对体育场进行WLAN覆盖时,该体育场为有效区域,选取体育场外部的有限区域为无效区域。上述预设采样间距I可以根据有效区域的实际面积进行设置,例如,预设采样间距I可以设置为0.5米~5米范围内的一个值。
在一实施例中,通常,当有效区域为长度是M、宽度是N的长方形区域时,定位区域可以为长度是M+2r、宽度是N+2r的长方形区域,其中,r表示AP的信号覆盖半径。此时的采样点矩阵为一个的矩阵。此时,无效区域为包围有效区域的有限区域。
在实际实施过程中,在要求有效区域能够容纳的用户总数较大时,需要将AP布置得比较密集,这就是高密度覆盖的情况。换句话说,要求容纳的用户总数越多,AP布置得越密集,这样,当已知有效区域为M×N的长方形区域,要求有效区域内能容纳的用户总数为Sum,单个AP能容纳的用户数为p时,AP的信号覆盖半径r满足以下公式(1):
这样,r越小,AP布置的就越密集,从而确保了有效区域内能够容纳的用户总数可以达到实际要求。例如,当M×N=1000,Sum=2000,p=64时,按照公式(1)计算得到r=3.19。
反之,在要求有效区域能够容纳的用户总数较小时,需要将AP布置得比较稀疏,这就是低密度覆盖的情况。此时,AP的信号覆盖半径r采用AP根据本身能力确定的信号覆盖半径即可。
在实际的网络规划过程中,可以在定位区域的地图上进行上述采样操作。
然后,开始在采样点矩阵中的采样点上放置AP之前,需要先计算最大有效信号强度Emax,其中,Emax为放置在某一采样点上的AP在各个采样点上产生的信号强度的总和的最大值。
例如,如图3所示,假设在填充黑色的采样点上放置AP,该AP的信号覆盖范围全部位于有效区域内、并且该信号覆盖范围内不存在障碍物,此时,该AP在各个采样点上产生的
信号强度的总和就是最大有效信号强度Emax。在实际计算过程中,AP在采样点上产生的信号强度可以采用实际计算值,即,根据AP的信号强度、信号覆盖半径r、采样点与AP的距离等计算出的实际信号强度值;也可以采用如图3所示的示意值,即,示意值只需体现出距离AP越远的采样点上的信号强度越小即可,例如,如图3所示,AP所在的采样点上的信号强度为5,随着距离的逐渐变远,采样点上的信号强度逐渐衰减为4、3、2、1,直至为0。在采用如图3所示的示意值表示采样点上的信号强度时,可计算出Emax=113。
需要说明的是,由于各个采样点的信号强度并不一定采用为AP的真实信号强度值进行表示,因而信号强度的总和的最大值并不一定是根据真实信号强度值得到的。例如,AP在各个采样点上产生的信号强度可以表示为一示意值,例如,可以采用如图3所示的示意值,即,示意值只需体现出距离放置AP越远的采样点上的信号强度越小即可,则,信号强度总和的最大值也表示为示意值。因而,信号强度的总和的最大值仅仅是表征AP在没有任何干扰的情况下所能达到的理论的最大值。该最大值可以是一种示意值,也可能是根据AP确定的真实信号强度值。本实施例并不加以限定。
另外,应当理解的是,由于计算最大有效信号强度是与AP本身的信号覆盖能力以及采样间距等相关,但与是否将该AP放置在有效区域去计算最大值或者放置在无效区域内计算最大值并不相关。因而,计算最大有效信号强度时,可以假定AP放置在有效区域内,从而使得AP的覆盖范围在当前确定的采样点矩阵之内,并且,在AP的信号覆盖范围内无任何干扰(例如,无障碍物),进而计算的AP在各个采样点上产生的信号强度的总和为信号强度总和的最大值,即最大有效信号强度。
当然,也可以将AP放置在采样点矩阵的边缘处,此时,该AP的覆盖范围部分在采样点矩阵之外,则应当根据AP的信号覆盖范围以及采样间距等临时扩大采样范围,以使AP的信号覆盖范围在扩大后的采样范围之内,进而计算最大有效信号强度。
需要明确的是,仅仅是在计算最大有效信号强度时扩大采样范围,但在后续计算新增有效信号强度以及新增无效信号强度等时,仍然以根据有效区域和无效区域确定的采样点矩阵进行计算。
之后,即可遍历采样点矩阵中的每一个采样点,例如,按照从左到右、从上到下的顺序进行遍历,当然,也可以从右到左,从下到上的顺序进行遍历,一般来说,可以从有效区域的边界处开始进行遍历,从而更好的保证在有效区域与无效区域的边界处更好的被AP信号覆盖。
针对每一个采样点执行如图4所示的步骤:
步骤S401,假设在该待放置采样点上放置AP,计算新增有效信号强度Eeff和新增无效信号强度Einv;
在本步骤中,该未放置AP的采样点作为待放置AP的采样点,也可以称为第一采样点。
其中,新增有效信号强度Eeff为该AP在位于有效区域的采样点上产生的新增信号强度E的总和,新增无效信号强度Einv为该AP在位于无效区域的采样点上产生的新增信号强度E的总和。
步骤S402,根据步骤S401中计算得到的新增有效信号强度Eeff和新增无效信号强度Einv,判断是否满足预设条件,若是,则执行步骤S403,否则,执行步骤S404;
其中,上述预设条件是:
其中,T表示预设有效信号强度比例阈值,F表示预设无效信号强度比例阈值。在实际实施过程中,T、F的值可以根据实际需求进行预设,例如,T可以预设为70%,F可以预设为20%。
步骤S403,在该采样点上放置AP,针对被该AP的信号覆盖的每一个采样点,可更新该采样点的信号强度;之后退出本流程。
在步骤S403中,针对被该AP的信号覆盖的每一个采样点,更新该采样点的信号强度的方法可以是:若本地保存有该采样点的信号强度,则将保存的该采样点的信号强度更新为当前值和E1中的最大值,其中,该当前值即为该采样点在更新前本地保存的的信号强度;若本地没有保存该采样点的信号强度,则保存该采样点的信号强度为E1,其中,E1表示该AP在该采样点上产生的信号强度。
在本实施例中,该待放置AP所覆盖的采样点也可以称为第二采样点。
步骤S404,不在该采样点上放置AP,之后退出本流程。
另外,在另一种实施例的方法中,在步骤S401还可以计算最大有效点位Cmax,其中,Cmax为放置在采样点上的AP的信号覆盖的采样点总数。
在一实施例中,Cmax可为用于计算所述最大有效信号强度的AP的信号覆盖的采样点总数。如图3所示,在计算最大有效信号强度时,得到的最大有效信号强度为Emax=113,根据图3可以看出,此时AP的信号所覆盖的采样点位数,即为最大有效点位数Cmax=57。其中,最大有效点位数与覆盖的采样点是否位于有效区域还是无效区域是无关的。这样,在遍历采样点矩阵中的每一个采样点,针对每一个采样点执行如图4所示的步骤时,还需要计算在假设该采样点上放置该待放置的AP时的新增有效点位Cadd,其中,新增有效点位Cadd为被该AP的信号覆盖的位于有效区域的所有采样点中,未被已放置AP的信号覆盖过的采样点的数量。
后续,在步骤S402中,根据新增有效信号强度Eeff、新增无效信号强度Einv、以及新增有效点位数Cadd,判断是否满足预设条件,此时的预设条件可以是:
其中,G表示预设新增有效点位比例阈值,G的值也可以根据实际需求进行预设,例如,G可以预设为70%。
例如,在采用如图3所示的示意值表示采样点上的信号强度时,计算出最大有效信号强度Emax=113,最大有效点位Cmax=57。后续,遍历采样点矩阵中的每一个采样点时,假设当前遍历到的采样点为图5中的填充黑色的采样点,计算出假设在该采样点上放置待放置的AP时的新增有效信号强度Eeff=69、新增无效信号强度Einv=44、以及新增有效点位Cadd=30;在步骤S402中判断出:
即,满足上述预设条件,因此,在该采样点上放置AP。
通过限定新增有效点位除以最大有效点位得到的比值大于预设新增有效点位比例阈值,可以进一步的防止AP的重复覆盖采样点,减小覆盖冲突。
另外,在步骤S401中计算新增有效信号强度和新增无效信号强度时,需要计算待放置AP(即,遍历采样点矩阵中的每一个采样点时,欲放置在当前遍历到的采样点上的AP)在
采样点上产生的新增信号强度E,此时,需要考虑多个AP的信号覆盖范围重叠和障碍物遮挡等情况。以下分别对这些情况下的信号强度E的计算方法进行介绍。
(一)多个AP的信号覆盖范围重叠
此时,计算待放置AP在采样点上产生的新增信号强度E的方法如下:
判断本地是否保存有该采样点的信号强度,若是,说明该采样点不仅位于待放置AP的信号覆盖范围内,还位于之前已放置的AP的信号覆盖范围内,则此时,该待放置AP在该采样点上产生的新增信号强度E满足以下公式(2):
其中,E1表示该待放置AP在该采样点上产生的信号强度,E2表示本地保存的该采样点的信号强度。
否则,若本地没有保存该采样点的信号强度,说明该采样点仅在该待放置AP的信号覆盖范围内,该待放置AP在该采样点上产生的新增信号强度E满足以下公式(3):
E=E1 (3)
本实施例具体的针对多个AP的信号覆盖范围重叠的情况下,对如何计算新增信号强度E进行说明。
例如,如图6所示,以待放置的AP记为AP1为例进行说明,当前遍历到的采样点为填充黑色的采样点,该未放置AP的填充黑色采样点被选为待放置AP1的采样点。对于被AP1的信号覆盖的填充左斜线的采样点,若本地已经保存有该采样点的信号强度,说明该采样点还位于之前已放置的AP的信号覆盖范围内,其中,本地保存的该采样点的信号强度E2=1。由于AP1在该采样点上产生的信号强度E1=3大于本地保存的该采样点的信号强度E2=1,AP1在该采样点上产生的新增信号强度E=3-1=2。进一步的,在此基础上,在该采样点上布置AP1之后,则在步骤S403中会将本地保存的该采样点的信号强度更新为E1=3和E2=1中的最大值3。
若本地没有保存该采样点的信号强度,说明该采样点尚未被之前已放置的AP的信号覆盖过,AP1在该采样点上产生的新增信号强度E就等于E1=3。进一步的,在此基础上,在该采样点上布置AP1之后,则在步骤S403中会将该采样点的信号强度更新为E1=3。
在计算新增有效信号强度Eeff时,使用的是待放置AP在采样点上产生的新增信号强度E,这样,待放置AP与之前已放置的AP比较靠近的情况下,可以使得该待放置AP的新增有效信号强度Eeff较小而无法达到预设有效信号强度比例阈值T,从而避免了由于待放置AP与之前已放置的AP放置过近而导致的信号干扰。
(二)障碍物遮挡了AP的信号
当待放置AP的信号覆盖范围内存在障碍物时,该待放置AP在采样点上产生的信号强度E1为经过该障碍物遮挡后的衰减的信号强度值。
由于每种材质的障碍物均具有对应的衰减值,因而将信号强度值减去障碍物对应的衰减值,即可得到衰减后的信号强度值。当采用示意值表示信号强度时,可以按照一定比例计算得到衰减后的信号强度示意值,例如,示意值的范围为0~5,实际计算值的范围为0~90,则衰减后的信号强度示意值为乘以衰减后的信号强度实际计算值。
如图7所示,当遍历到填充黑色的采样点,若在该采样点上放置AP1,则经过如图7中竖线所示的障碍物的遮挡后,AP1在填充左斜线的采样点上产生的信号强度E1衰减为1。
后续,如图8所示,当遍历到填充右斜线的采样点,若进一步的在该采样点上放置AP2,由于AP2在填充左斜线的采样点上产生的信号强度为2,2大于1,因此,填充左斜线的采样点的信号强度为2。
在此基础上,在该采样点上真正放置AP2之后,则在步骤S403中会将该采样点的信号强度更新为E1=2。
由图7和图8可以看出,当存在障碍物遮挡时,新增的信号强度也很小,因此,限定新增有效信号强度除以最大有效信号强度得到的比值大于预设有效信号强度比例阈值,可以保证即使存在障碍物的遮挡,依然能够保证AP信号的覆盖性能。
在本发明实施例中,信号强度也可称为场强,例如,AP在采样点上产生的信号强度也为AP在该采样点上产生的场强,最大有效信号强度也为放置在某一采样点上的AP在各个采样点上产生的场强的总和的最大值,也可称为最大有效场强,新增有效信号强度也可称为新增有效场强,新增无效信号强度也可称为新增无效场强,新增信号强度也可称为新增场强。
本申请上述实施例的方法中,按照预设采样间距,在包括需要WLAN覆盖的有效区域和有效区域外的无效区域的定位区域内,进行采样得到采样点矩阵,依次选择未放置AP的采
样点作为待放置AP的采样点,判断将该未放置AP放置在采样点时计算出的相关参数是否满足预设条件,在满足预设条件时才会在该采样点上放置AP,从而能够确保对有效区域的全面覆盖、并且能够节约成本。
另外,上述方法中考虑了多个AP的信号覆盖范围重叠、障碍物遮挡、以及高密度覆盖的情况,因此,本方法更接近真实场景,更有实用价值。
与前述AP放置方法的实施例相对应,本申请还提供了AP放置装置的实施例。
参见图9,图9为本申请一些实施例提供的AP放置设备的硬件结构图。该设备500可包括处理器510以及机器可读存储介质520。其中,处理器510和机器可读存储介质520可经由系统总线530通信。并且,通过读取并执行机器可读存储介质520中存储的与AP放置逻辑60对应的机器可执行指令,处理器510可执行上文所述的EVPN与公网互通的方法。
本文提到的机器可读存储介质520可以是任何电子、磁性、光学或其他物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,所述机器可读存储介质92可以是RAM(Random Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。
请参考图10,从功能上划分,该AP放置装置60中包括以下模块:采样模块601、预先计算模块602、放置计算模块603和放置模块604,其中:
采样模块601,用于按照预设采样间距,在定位区域内进行采样得到采样点矩阵,其中,所述定位区域包括:需要无线局域网WLAN覆盖的有效区域和所述有效区域外的无效区域;
预先计算模块602,用于计算最大有效信号强度,其中,所述最大有效信号强度为放置在采样点上的AP在各个采样点上产生的信号强度的总和的最大值;
放置计算模块603,用于依次从所述采样点矩阵中选择一个未放置AP的采样点作为待放置AP的第一采样点,计算在该第一采样点上放置所述待放置AP时的新增有效信号强度和新增无效信号强度,其中,所述新增有效信号强度为该待放置AP在位于所述有效区域的各个所述采样点上产生的新增信号强度的总和,所述新增无效信号强度为该待放置AP在位于所述无效区域的各个所述采样点上产生的新增信号强度的总和;
放置模块604,用于当确定满足预设条件时,在该第一采样点上放置该待放置AP,其中,所述预设条件包括:所述新增有效信号强度除以所述最大有效信号强度得到的比值大于预设有效信号强度比例阈值,所述新增无效信号强度除以所述最大有效信号强度得到的比值小于
预设无效信号强度比例阈值。
在一实施例中,预先计算模块602,还用于计算最大有效点位,其中,所述最大有效点位为用于计算所述最大有效信号强度的AP的信号覆盖的采样点总数;
放置计算模块603,还用于计算在该第一采样点上放置AP时的新增有效点位,其中,所述新增有效点位为被该AP的信号覆盖的位于所述有效区域内的所有采样点中,未被已放置AP的信号所覆盖过的采样点的数量;
所述预设条件还包括:所述新增有效点位除以所述最大有效点位得到的比值大于预设新增有效点位比例阈值。
在一实施例中,放置计算模块603通过以下方法计算AP在第二采样点上产生的新增信号强度E,其中,第二采样点为所述待放置AP所覆盖的采样点:
若本地没有保存该第二采样点的信号强度,则E=E1;
其中,E1表示该待放置AP在该第二采样点上产生的信号强度;
E2表示保存的该第二采样点上的信号强度。
在一实施例中,当所述待放置AP与所述第二采样点之间存在障碍物时,该待放置AP在所述第二采样点上产生的信号强度E1为经过该障碍物的衰减后的信号强度值。
另外,如图11所示,该AP放置装置60中还包括:信号强度更新模块605,其中:
信号强度更新模块605,用于在确定满足所述预设条件之后,针对被该待放置AP覆盖的每一个第二采样点,若本地保存有该第二采点的信号强度,则将所保存的该第二采样点的信号强度更新为当前保存值和E1中的最大值,若本地没有保存该第二采样点的信号强度,则保存该第二采样点的信号强度为E1,其中,E1表示在该第一采样点上放置了该待放置AP的信号在该第二采样点上的信号强度。
其中,当有效区域为长度是M、宽度是N的长方形区域时,定位区域为长度是M+2r、宽度是N+2r的长方形区域,其中,r表示单个AP的信号覆盖半径,p表示单个AP能容纳的用户数,Sum表示有效区域内需要容纳的用户总数。
上述装置中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (12)
- 一种接入点AP放置方法,包括:按照预设采样间距,在定位区域内进行采样得到采样点矩阵,其中,所述定位区域包括:需要无线局域网WLAN覆盖的有效区域和所述有效区域外的无效区域;计算最大有效信号强度,其中,所述最大有效信号强度为放置在采样点上的AP在各个采样点上产生的信号强度的总和的最大值;依次从所述采样点矩阵中选择一个未放置AP的采样点作为待放置AP的第一采样点,计算在该第一采样点上放置所述待放置AP时的新增有效信号强度和新增无效信号强度,其中,所述新增有效信号强度为该待放置AP在位于所述有效区域的各个所述采样点上产生的新增信号强度的总和,所述新增无效信号强度为该待放置AP在位于所述无效区域的各个所述采样点上产生的新增信号强度的总和;当确定满足预设条件时,在该第一采样点上放置该待放置AP,其中,所述预设条件包括:所述新增有效信号强度除以所述最大有效信号强度得到的比值大于预设有效信号强度比例阈值,所述新增无效信号强度除以所述最大有效信号强度得到的比值小于预设无效信号强度比例阈值。
- 根据权利要求1所述的方法,还包括:计算最大有效点位,其中,所述最大有效点位为用于计算所述最大有效信号强度的AP的信号覆盖的采样点总数;计算在该第一采样点上放置AP时的新增有效点位,其中,所述新增有效点位为被该AP的信号覆盖的位于所述有效区域内的所有采样点中,未被已放置AP的信号所覆盖过的采样点的数量;所述预设条件还包括:所述新增有效点位除以所述最大有效点位得到的比值大于预设新增有效点位比例阈值。
- 根据权利要求3所述的方法,其中,当待放置AP的信号覆盖范围内存在障碍物时,该待放置AP在所述第二采样点上产生的信号强度E1为经过该障碍物的衰减后的信号强度值。
- 根据权利要求1所述的方法,其中,在确定满足所述预设条件之后,还包括:针对被该待放置AP的信号覆盖的每一个第二采样点,若本地保存有该第二采样点的信号强度,则将所保存的该第二采样点的信号强度更新为所述保存的第二采样点的信号强度值和E1中的最大值,若本地没有保存该第二采样点的信号强度,则保存该第二采样点的信号强度为E1,其中,E1表示在该待放置AP在该第二采样点上的信号强度。
- 一种接入点AP放置设备,所述设备包括:处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:按照预设采样间距,在定位区域内进行采样得到采样点矩阵,其中,所述定位区域包括:需要无线局域网WLAN覆盖的有效区域和所述有效区域外的无效区域;计算最大有效信号强度,其中,所述最大有效信号强度为放置在采样点上的AP在各个采样点上产生的信号强度的总和的最大值;依次从所述采样点矩阵中选择一个未放置AP的采样点作为待放置AP的第一采样点,计算在该第一采样点上放置所述待放置AP时的新增有效信号强度和新增无效信号强度,其中,所述新增有效信号强度为该待放置AP在位于所述有效区域的各个所述采样点上产生的新增信号强度的总和,所述新增无效信号强度为该待放置AP在位于所述无效区域的各个所述采样点上产生的新增信号强度的总和;当确定满足预设条件时,在该第一采样点上放置该待放置AP,其中,所述预设条件包括:所述新增有效信号强度除以所述最大有效信号强度得到的比值大于预设有效信号强度比例阈值,所述新增无效信号强度除以所述最大有效信号强度得到的比值小于预设无效信号强度比例阈值。
- 根据权利要求7所述的设备,其中,所述处理器进一步被所述机器可执行指令促使:计算最大有效点位,其中,所述最大有效点位为用于计算所述最大有效信号强度的AP的信号覆盖的采样点总数;计算在该第一采样点上放置AP时的新增有效点位,其中,所述新增有效点位为被该AP的信号覆盖的位于所述有效区域内的所有采样点中,未被已放置AP的信号所覆盖过的采样点的数量;则,所述预设条件还包括:所述新增有效点位除以所述最大有效点位得到的比值大于预设新增有效点位比例阈值。
- 根据权利要求7所述的设备,其中,当待放置AP的信号覆盖范围内存在障碍物时,该待放置AP在所述第二采样点上产生的信号强度E1为经过该障碍物的衰减后的信号强度值。
- 根据权利要求7所述的设备,其中,所述处理器进一步被所述机器可执行指令促使:针对被该待放置AP的信号覆盖的每一个第二采样点,若本地保存有该第二采样点的信号强度,则将所保存的该第二采样点的信号强度更新为所述保存的第二采样点的信号强度值和E1中的最大值,若本地没有保存该第二采样点的信号强度,则保存该第二采样点的信号强度为E1,其中,E1表示在该待放置AP在该第二采样点上的信号强度。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019511722A JP6741863B2 (ja) | 2016-08-30 | 2017-08-30 | Ap配置 |
US16/329,148 US10939303B2 (en) | 2016-08-30 | 2017-08-30 | Placing access point |
EP17845452.6A EP3509339B1 (en) | 2016-08-30 | 2017-08-30 | Ap placement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610762357.2A CN107786986B (zh) | 2016-08-30 | 2016-08-30 | Ap放置方法及装置 |
CN201610762357.2 | 2016-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018041150A1 true WO2018041150A1 (zh) | 2018-03-08 |
Family
ID=61300070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/099721 WO2018041150A1 (zh) | 2016-08-30 | 2017-08-30 | Ap放置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10939303B2 (zh) |
EP (1) | EP3509339B1 (zh) |
JP (1) | JP6741863B2 (zh) |
CN (1) | CN107786986B (zh) |
WO (1) | WO2018041150A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114697976B (zh) * | 2022-02-25 | 2023-12-22 | 成都市联洲国际技术有限公司 | 确定室内网路分布的方法、装置、设备及存储介质 |
CN114554395A (zh) * | 2022-03-03 | 2022-05-27 | 上海维智卓新信息科技有限公司 | 定位精度预测方法、装置、信号源布局确定方法及装置 |
KR102619807B1 (ko) * | 2022-04-04 | 2024-01-02 | 한양대학교 산학협력단 | 무선 전력 통신 네트워크에서 디바이스의 최소 출력량을 최대화하는 머신러닝 방법 및 시스템 |
CN115209427B (zh) * | 2022-09-16 | 2022-11-22 | 长沙迪迈数码科技股份有限公司 | 井下uwb定位基站优化布置方法、装置及设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7315743B1 (en) * | 2004-12-02 | 2008-01-01 | Motorola, Inc. | Method and apparatus for site, frequency, and backhaul planning for access points |
CN102056180A (zh) * | 2009-10-27 | 2011-05-11 | 华为技术有限公司 | 一种无线局域网接入点部署方案的获得方法及系统 |
CN102083081A (zh) * | 2009-11-30 | 2011-06-01 | 中国移动通信集团广东有限公司 | 检测无线网络过覆盖的方法及系统 |
CN102547758A (zh) * | 2011-12-21 | 2012-07-04 | 上海工程技术大学 | 一种wlan接入点部署方法 |
CN105554774A (zh) * | 2014-10-31 | 2016-05-04 | 富士通株式会社 | 无线网络部署方法、装置和系统 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08214363A (ja) * | 1995-02-01 | 1996-08-20 | Hitachi Ltd | 移動無線通信における屋内基地局配置方法および屋内基地局配置システム |
US6496700B1 (en) * | 1996-04-04 | 2002-12-17 | At&T Wireless Services, Inc. | Method for determining organization parameters in a wireless communication system |
US6680924B2 (en) * | 2000-12-14 | 2004-01-20 | Carnegie Mellon University | Method for estimating signal strengths |
JP4819303B2 (ja) * | 2002-10-23 | 2011-11-24 | 日本電気株式会社 | 移動通信システムにおける基地局設置設計方法及び基地局設置設計装置並びにプログラム |
US20040214583A1 (en) * | 2003-03-28 | 2004-10-28 | Graham Joseph Milton | Method and apparatus for forecasting growth of wireless telecommunications systems |
US20060094375A1 (en) * | 2004-11-03 | 2006-05-04 | Mcginley Robert | Portable survey inspection device |
US8620342B2 (en) * | 2006-10-10 | 2013-12-31 | Broadcom Corporation | Sensing RF environment to determine geographic location of cellular base station |
JP4616315B2 (ja) * | 2007-08-13 | 2011-01-19 | 株式会社エヌ・ティ・ティ・ドコモ | エリア推定システム、エリア推定方法及びエリア推定装置 |
US20100150027A1 (en) * | 2008-04-04 | 2010-06-17 | Peter Atwal | Systems and methods of planning and deploying an ad hoc mobile wireless network |
US8125917B2 (en) * | 2008-10-10 | 2012-02-28 | Avaya Inc. | Optimisation of transmission parameters of access points in wireless networks |
US20100103868A1 (en) * | 2008-10-27 | 2010-04-29 | At&T Mobility Ii Llc | Method for modeling wireless network coverage under line-of-sight conditions |
KR101176215B1 (ko) * | 2008-12-11 | 2012-08-22 | 한국전자통신연구원 | 무선측위용 액세스포인트 배치 장치 및 그 방법 |
JP5456735B2 (ja) * | 2011-08-26 | 2014-04-02 | 日本電信電話株式会社 | 置局設計方法、置局設計プログラムおよび置局設計装置 |
CN104285159A (zh) * | 2012-03-15 | 2015-01-14 | 诺基亚公司 | 支持存储信息的更新 |
WO2014011145A1 (en) * | 2012-07-09 | 2014-01-16 | Hewlett-Packard Development Company, L.P. | Site model selection for a wireless access point |
US9648502B2 (en) * | 2012-08-15 | 2017-05-09 | Trimble Navigation Limited | System for tailoring wireless coverage to a geographic area |
WO2014029892A1 (en) * | 2012-08-24 | 2014-02-27 | Actix Gmbh | Method for joint and coordinated load balancing and coverage and capacity optimization in cellular communication networks |
CN102932803B (zh) * | 2012-10-22 | 2015-04-01 | 华为技术有限公司 | 自动布放无线接入装置的方法和设备 |
GB2516284A (en) * | 2013-07-18 | 2015-01-21 | Here Global Bv | Method and apparatus for classifying access points in a radio map |
CN103442378B (zh) * | 2013-08-16 | 2016-06-01 | 武汉飞沃网络有限公司 | 一种无线局域网络ap布设的优化方法 |
CN103428710A (zh) * | 2013-09-02 | 2013-12-04 | 汉庭科技(苏州)有限公司 | 无线网络覆盖方法及无线网络 |
EP2957922B1 (en) * | 2014-06-16 | 2017-07-26 | Fujitsu Limited | Locating mobile users in emergency |
TWI544822B (zh) * | 2014-12-17 | 2016-08-01 | 緯創資通股份有限公司 | 訊號強度分佈建立方法及無線定位系統 |
-
2016
- 2016-08-30 CN CN201610762357.2A patent/CN107786986B/zh active Active
-
2017
- 2017-08-30 JP JP2019511722A patent/JP6741863B2/ja active Active
- 2017-08-30 WO PCT/CN2017/099721 patent/WO2018041150A1/zh unknown
- 2017-08-30 US US16/329,148 patent/US10939303B2/en active Active
- 2017-08-30 EP EP17845452.6A patent/EP3509339B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7315743B1 (en) * | 2004-12-02 | 2008-01-01 | Motorola, Inc. | Method and apparatus for site, frequency, and backhaul planning for access points |
CN102056180A (zh) * | 2009-10-27 | 2011-05-11 | 华为技术有限公司 | 一种无线局域网接入点部署方案的获得方法及系统 |
CN102083081A (zh) * | 2009-11-30 | 2011-06-01 | 中国移动通信集团广东有限公司 | 检测无线网络过覆盖的方法及系统 |
CN102547758A (zh) * | 2011-12-21 | 2012-07-04 | 上海工程技术大学 | 一种wlan接入点部署方法 |
CN105554774A (zh) * | 2014-10-31 | 2016-05-04 | 富士通株式会社 | 无线网络部署方法、装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107786986A (zh) | 2018-03-09 |
US20190208425A1 (en) | 2019-07-04 |
CN107786986B (zh) | 2020-02-11 |
US10939303B2 (en) | 2021-03-02 |
EP3509339B1 (en) | 2021-07-21 |
EP3509339A4 (en) | 2019-07-24 |
JP6741863B2 (ja) | 2020-08-19 |
EP3509339A1 (en) | 2019-07-10 |
JP2019526982A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018041150A1 (zh) | Ap放置 | |
KR101616486B1 (ko) | 모바일 디바이스 포지셔닝 | |
CN108303098B (zh) | 机器人路径规划方法及设备 | |
CN104115525B (zh) | 检测网络中的相邻接入点 | |
WO2016119606A1 (zh) | 一种无线接入点的定位方法及装置 | |
CN107517461A (zh) | 一种用于对用户设备进行无线连接预授权的方法与设备 | |
CN109413661A (zh) | 一种计算站距的方法及装置 | |
CN112468984B (zh) | 一种电力无线专网基站选址方法及相关设备 | |
US9317527B2 (en) | Method and apparatus for region sampling and estimation in location based networks | |
KR101338001B1 (ko) | 단말 장치 및 상기 단말 장치의 액세스 포인트 접속 방법 | |
US10885257B1 (en) | Routing congestion based on via spacing and pin density | |
KR101414415B1 (ko) | 모바일 네트워크의 데이터 사용 예측 | |
JP2018511229A (ja) | モバイル環境におけるピアツーピアネットワーク接続性 | |
Jia et al. | On distributed localization for road sensor networks: A game theoretic approach | |
KR102382187B1 (ko) | BLE 비콘 기반 WiFi 접속을 위한 장치 및 방법 | |
RU2610587C2 (ru) | Способ пространственного хранения объекта посредством гибкой иерархической структуры и постоянный носитель информации | |
WO2021189363A1 (zh) | 停车场服务区域的确定方法、装置、设备以及存储介质 | |
KR102282933B1 (ko) | 도시 개발 패턴이 반영된 도시모델 생성 장치 | |
CN108898862A (zh) | 红绿灯路口的确定方法、装置及电子设备 | |
CN113538465A (zh) | 方正不规则多边形区域的自动划分方法、装置和存储介质 | |
CN106528246A (zh) | 应用冻结的方法及装置 | |
KR102654777B1 (ko) | 도시 개발 패턴이 반영된 도시모델 생성 장치 | |
CN108718281B (zh) | 一种融合多种通信方式的节点接入方法及装置 | |
JP2017010495A (ja) | シミュレーションシステムおよびシミュレーション方法 | |
JP2020036269A (ja) | 電波伝搬推定装置、電波伝搬推定方法および電波伝搬推定プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845452 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511722 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017845452 Country of ref document: EP Effective date: 20190401 |