WO2018040978A1 - 用于谐波减速器的刚轮、谐波减速器以及机器人 - Google Patents

用于谐波减速器的刚轮、谐波减速器以及机器人 Download PDF

Info

Publication number
WO2018040978A1
WO2018040978A1 PCT/CN2017/098460 CN2017098460W WO2018040978A1 WO 2018040978 A1 WO2018040978 A1 WO 2018040978A1 CN 2017098460 W CN2017098460 W CN 2017098460W WO 2018040978 A1 WO2018040978 A1 WO 2018040978A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
flexible
gear
rigid
harmonic reducer
Prior art date
Application number
PCT/CN2017/098460
Other languages
English (en)
French (fr)
Inventor
汤海舰
周虎
蒋琼艳
谢卫
陈慧玲
欧阳德运
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/328,116 priority Critical patent/US20190186599A1/en
Priority to EP17845280.1A priority patent/EP3508753A4/en
Publication of WO2018040978A1 publication Critical patent/WO2018040978A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0846Intersecting-shaft arrangement of the toothed members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H2055/176Ring gears with inner teeth

Definitions

  • the present disclosure relates to a harmonic reducer, and in particular to a rigid wheel, a harmonic reducer and a robot for a harmonic reducer.
  • Harmonic gear transmission is a new type of transmission that emerged in the late 1950s with the development of aerospace technology. It belongs to the planetary gear transmission with small tooth difference.
  • the harmonic reducer is mainly composed of three basic components: a rigid wheel with an internal ring gear, a flexible wheel with an external ring gear, and a wave generator.
  • the wave generator is usually configured as an input (active), a rigid wheel is fixed, and a flexible wheel is configured as an output.
  • the wave generator is a rod-shaped member which is provided with rolling bearings at both ends to constitute a roller, and is pressed against the inner wall of the flexible wheel by a flexible bearing.
  • the flexible wheel is a thin-walled gear that produces a large elastic deformation.
  • the wave generator is a member that causes the flexible wheel to produce a controlled elastic deformation.
  • the flexible wheel When the wave generator is inserted into the flexible wheel, the flexible wheel is forced to change the profile of the flexible wheel from the original circular shape to the deformed curved surface, and the flexible wheel is near the two ends of the long axis.
  • the teeth are fully meshed with the teeth of the rigid wheel, and the teeth near the ends of the short shaft of the flexible wheel are completely disengaged from the rigid wheel.
  • the teeth of the other sections on the circumference of the flex wheel are in a transitional state of engagement and disengagement.
  • harmonic gear transmission Compared with general gear transmission, harmonic gear transmission has the advantages of high bearing capacity, large transmission ratio, small size, light weight, high precision, low noise, etc., and the structure is simple, the number of parts is small, the installation is simple, and it can be transmitted to the confined space. Sports and power are therefore widely used in electronics, aerospace, robotics and other industries.
  • the conventional harmonic reducer has many of the above advantages, the conventional harmonic reducer still has the following drawbacks: 1.
  • the rigid wheel of the conventional harmonic reducer is generally thick overall, has good rigidity, and is not easily deformed, which makes the wave generator only
  • the gear teeth at the long axis are in meshing state, resulting in low transmission accuracy.
  • the gear teeth of the conventional harmonic reducer are made of metal material. In order to meet the assembly and lubrication requirements, the rigid wheel teeth and the flexible gear teeth There is a certain backlash between them, and as the wear of the gear increases, the backlash gradually increases, causing the harmonic retarder to increase the backlash, affecting the transmission accuracy and transmission stability of the harmonic gear, and even causing harmonics. The reducer has failed.
  • the rigid wheel includes a coaxial flange and just The rigid ring and the flexible ring are axially located between the flange and the flexible ring, and the inner circumference of the flexible ring is provided with a first tooth.
  • the outer diameter of the rigid ring is larger than the outer diameter of the flexible ring.
  • an outer diameter of the rigid ring is larger than a maximum outer diameter of the deformed flexible ring.
  • the rigid ring and the flexible ring are made of different materials.
  • the rigid ring and the flexible ring are made of the same material.
  • the rigid ring has a wall thickness greater than a wall thickness of the flexible ring.
  • Another aspect of the present disclosure is to provide a harmonic reducer with higher transmission accuracy.
  • the present disclosure provides a harmonic reducer including a wave generator, a rigid wheel and a flex wheel as described above, the wave generator being disposed on an inner circumference of the flex wheel A second gear is disposed on the outer peripheral surface, and the first gear meshes with the second gear teeth.
  • the circumference of the first tooth is smaller than the circumference of the second tooth.
  • At least one of the first tooth and the second tooth is made of an engineering plastic.
  • the engineering plastic is polyoxymethylene (POM), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) or polyamide (PA).
  • POM polyoxymethylene
  • PTFE polytetrafluoroethylene
  • PEEK polyetheretherketone
  • PA polyamide
  • the first gear teeth and the second gear teeth are both trapezoidal teeth.
  • the first tooth has a first addendum corner and a first root fillet
  • the second tooth has a second addendum round and a second root fillet
  • the wave generator includes an elliptical cam and a flexible bearing disposed along a contour of the cam.
  • the rigid wheel is a rigid structure except that the portion where the teeth are disposed is a flexible and deformable structure, and the other portion is a rigid structure which is flexible with the cylinder as a whole (hereinafter referred to as "flexible” Compared with the "round wheel"), the rigid wheel of the rigid wheel used in the present disclosure has a small amount of torsional deformation, and does not generate a backlash when twisting like a "flexible rigid wheel".
  • the harmonic retarder of the present disclosure only has a backlash. The backlash caused by the torsional deformation of the cylinder derived from the flexible wheel has a high transmission accuracy.
  • the present disclosure also provides a robot including the harmonic reducer as described above.
  • FIG. 1 is a cross-sectional view of a harmonic reducer of the present disclosure
  • Figure 2 is a cross-sectional view of a trapezoidal tooth used in the present disclosure
  • FIG. 3 and FIG. 4 are schematic diagrams showing the meshing of the teeth before and after deformation of the flexible ring according to the embodiment of the present disclosure
  • Figure 5 is an enlarged view of a portion A of Figure 3;
  • Figure 6 is an enlarged view of a portion B of Figure 4.
  • a rigid wheel 12 for a harmonic reducer includes three portions that are coaxially disposed: a flange 122, a rigid ring 123, and a flexible circle Ring 124.
  • the rigid ring 123 is located between the flange 122 and the flexible ring 124 in the axial direction of the rigid wheel 12.
  • a rigid ring 123 is provided on the end face of the flange 122 for mounting and positioning of the harmonic reducer.
  • the flexible ring 124 is disposed on an end surface of the rigid ring 123, and the inner circumferential surface of the flexible ring 124 is provided with a first tooth 121.
  • the "ring" in the above rigid ring and flexible ring means a ring as described below, the length of the wall of the ring in the axial direction of the ring being greater than the thickness of the wall of the ring in the radial direction of the ring .
  • the present disclosure is not limited thereto, and the length of the wall of the ring may also be less than or equal to the thickness of the wall of the ring.
  • the rigid wheel 12 is rigid except that the portion in which the teeth are disposed is flexible and deformable.
  • the outer diameter of the rigid ring 123 is larger than the outer diameter of the flexible ring 124, and the outer diameter of the rigid ring 123 is larger than the maximum size of the deformed flexible ring 124 in order to avoid interference with the deformation of the flexible ring 124.
  • the rigid ring 123 and the flexible ring 124 may be integrally formed of the same material, or may be made of two different materials, as long as the rigidity of the two is different. In the case where the rigid ring 123 and the flexible ring 124 are made of the same material, as shown in FIG. 1, the wall thickness of the flexible ring 124 may be smaller than the wall thickness of the rigid ring 123.
  • the flexible ring 124 has a thin wall thickness and is easily deformed in the radial direction; the rigid ring 123 has a thick wall thickness to ensure that it has no torsional deformation.
  • a harmonic reducer including a wave generator 11, a rigid wheel 12, and a flex wheel 13 is provided.
  • the wave generator 11 includes an elliptical cam 111 and a flexible bearing 112 which are disposed along the contour of the cam 111.
  • the rigid wheel 12 includes three portions that are coaxially arranged: a flange 122, a rigid ring 123, and a flexible ring 124.
  • the rigid ring 123 is located between the flange 122 and the flexible ring 124 in the axial direction of the rigid wheel 12.
  • a rigid ring 123 is provided on the end face of the flange 122 for mounting and positioning of the harmonic reducer.
  • the flexible ring 124 is disposed on an end surface of the rigid ring 123, and the inner circumferential surface of the flexible ring 124 is provided with a first tooth 121.
  • the flexible bearing 112 is disposed on the inner circumferential surface of the flex wheel 13.
  • the circumference of the first gear 121 is slightly smaller than the circumference of the second gear 131, so when the flexible ring 124 of the rigid wheel 12 used in the present disclosure is in the assembled state, The first gear 121 thereon is pressed by the second gear 131 of the flex wheel 13 in the long axis direction of the wave generator 11, so that the flexible ring 124 is along with the flex wheel 13 in the long axis direction of the wave generator 11.
  • the upper portion is elongated outwardly and shortened inward in the short axis direction of the wave generator 11, thereby forming an approximately elliptical ring shape (as shown in Fig. 4).
  • the rigid wheel 12 is rigid and deformable except for the portion where the teeth are disposed, and the remaining portions (ie, the flange 122 and the rigid ring 123) are rigid and cylindrical.
  • the rigid wheel 12 used in the present disclosure has a small amount of torsional deformation of the cylinder, and does not generate a torsion when it is twisted like a "flexible rigid wheel".
  • the hysteresis, the hysteresis of the harmonic reducer of the present disclosure is only derived from the hysteresis caused by the torsional deformation of the barrel of the flexible wheel 13, and thus has high transmission precision.
  • the rigid ring 123 is used for positioning when the harmonic reducer is installed. Specifically, for example, when the harmonic reducer is mounted to the robot body, the outer circumferential surface of the rigid ring 123 cooperates with the hole wall of the mounting hole on the robot body to achieve radial positioning of the harmonic reducer.
  • the outer diameter of the rigid ring 123 is greater than the outer diameter of the flexible ring 124.
  • the outer diameter of the rigid ring 123 is larger than the maximum size of the deformed flexible ring 124, that is, the outer diameter of the rigid ring 123 is larger than that formed by the deformation of the flexible ring 124. Approximate the outer diameter dimension at the long axis of the elliptical ring.
  • the rigid ring 123 and the flexible ring 124 may be integrally formed of the same material, or may be made of two different materials as long as the rigidity of the two is different.
  • the wall thickness of the flexible ring 124 may be smaller than the wall thickness of the rigid ring 123.
  • the flexible ring 124 has a thin wall thickness and is easily deformed in the radial direction; the rigid ring 123 has a thick wall thickness to ensure that it has no torsional deformation.
  • first gear 121 and the second gear 131 may be made by a worker with self-lubricating properties.
  • the process is made of plastic so that there is no need to leave a back gap between the first tooth 121 and the second gear 131 to meet the lubrication requirement, and the transmission precision and the transmission stability of the harmonic reducer are improved.
  • the first gear teeth 121 and the second gear teeth 131 may also each be made of engineering plastic.
  • the engineering plastic may be polyoxymethylene (POM), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) or polyamide (PA).
  • the first gear teeth 121 and the second gear teeth 131 are both trapezoidal teeth.
  • the circumference of the first gear 121 is slightly smaller than the circumference of the second gear 131, when the flexible ring 124 having the first gear 121 is not deformed, it is theoretically first. There is interference between the gear teeth 121 and the second gear teeth 131 (as shown in Figure 5).
  • the flexible ring 124 of the rigid wheel 12 is deformable. When the first gear 121 is pressed by the second gear 131, the flexible ring 124 changes from a circular shape to an approximately elliptical shape (as shown in the figure).
  • the flexible ring 124 Since the initial state of the flexible ring 124 is circular, there is a tendency to have a resilience to return to a circular shape at a time, so that when the first gear 121 or the second gear 131 wears, the flexible ring 124 rebounds.
  • the first gear teeth 121 thereon are brought into contact with the second gear teeth 131 at all times.
  • the first gear teeth 121 and the second gear teeth 131 all adopt the same isosceles trapezoidal cross section which is gradually enlarged from the top to the root portion, so that the first gear teeth 121 and the second gear teeth 131 form a double side.
  • the resilience of the flexible ring 124 ensures that the backlash moment between the teeth is zero, thereby further reducing the hysteresis of the harmonic reducer and improving the transmission accuracy.
  • the root height hf (0.9 to 1.1)*m
  • the tooth angle ⁇ is 20°.
  • m is the modulus of the trapezoidal tooth.
  • the crest height ha is the radial distance between the index circle d and the addendum circle
  • the root height hf is the radial distance between the index circle d and the root circle.
  • the first tooth 121 has a first addendum 1211 and a first root fillet 1212
  • the second tooth 131 has a second addendum 1311 and a second root fillet 1312.
  • the first addendum fillet 1211 and the second addendum fillet 1311 ensure that the teeth are smooth when engaged and engaged; the first root fillet 1212 and the second root fillet 1312 can improve the teeth Stress conditions reduce stress concentration.
  • a portion of the rigid wheel 12 of the present disclosure is a deformable flexible ring 124 having teeth, which, in combination with the characteristics of the trapezoidal teeth, can ensure that the backlash between the teeth is always made after the teeth are worn.
  • the rigid ring 123 of the rigid wheel 12 for mounting and positioning has sufficient rigidity to prevent a backlash from being generated when twisting like a "flexible rigid wheel”.
  • the harmonic reducer of the present disclosure can automatically adjust the backlash between the teeth and ensure that the backlash between the teeth is zero at all times, thereby reducing the backlash of the harmonic reducer and improving the transmission precision.
  • a robot that employs a harmonic reducer as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Retarders (AREA)

Abstract

一种用于谐波减速器的刚轮、谐波减速器以及机器人。谐波减速器包括波发生器(11)、刚轮(12)和柔轮(13),波发生器(11)设置在柔轮(13)的内周面上,刚轮(12)包括同轴设置的法兰(122)、刚性圆环(123)和柔性圆环(124),柔性圆环(124)的内周面上设置有第一轮齿(121),柔轮(13)的外周面上设置有第二轮齿(131),第一轮齿(121)与第二轮齿(131)啮合。具有该钢轮的谐波减速器能够减小回差,具有较高的传动精度。

Description

用于谐波减速器的刚轮、谐波减速器以及机器人 技术领域
本公开涉及一种谐波减速器,具体地,涉及一种用于谐波减速器的刚轮、谐波减速器以及机器人。
背景技术
谐波齿轮传动是20世纪50年代后期随着航天技术发展出现的一种新型传动,属于少齿差行星齿轮传动。谐波减速器主要由三个基本构件组成:带有内齿圈的刚轮、带有外齿圈的柔轮以及波发生器。作为减速器使用,通常波发生器配置成输入(主动)、刚轮固定、柔轮配置成输出。波发生器是一个杆状部件,其两端装有滚动轴承构成滚轮,与柔轮的内壁通过柔性轴承相互压紧。柔轮为可产生较大弹性变形的薄壁齿轮。波发生器是使柔轮产生可控弹性变形的构件,当波发生器装入柔轮后,通过柔性轴承迫使柔轮的剖面由原先的圆形变成异形曲面,柔轮长轴两端附近的齿与刚轮的齿完全啮合,而柔轮短轴两端附近的齿则与刚轮完全脱开。柔轮圆周上其他区段的齿处于啮合和脱离的过渡状态。当波发生器连续转动时,柔轮的形变不断改变,使柔轮与刚轮的啮合状态也不断改变,由啮入、啮合、啮出、脱开、再啮入,周而复始地进行,从而实现柔轮相对刚轮沿波发生器相反方向的缓慢旋转。
谐波齿轮传动与一般齿轮传动相比,具有承载能力高、传动比大、体积小、重量轻、精度高、噪音小等优点,并且结构简单、零件数量少、安装简单,可向密闭空间传递运动和动力,因此被广泛用于电子、航空航天、机器人等行业。
虽然谐波减速器具有上述诸多优点,但传统的谐波减速器仍然存在以下缺陷:一、传统谐波减速器的刚轮通常整体较厚,刚性好,不易变形,这就使得只有波发生器长轴处的轮齿处于啮合状态,导致传动精度较低;二、传统谐波减速器的齿轮轮齿采用金属材料制成,为了满足装配和润滑的需求,刚轮轮齿与柔轮轮齿之间留有一定的侧隙,且随着齿轮磨损的加剧,该侧隙逐步增大,造成谐波减速器回差增大,影响谐波齿轮的传动精度和传动平稳性,甚至导致谐波减速器失效。
发明内容
本公开的一个方面是提供一种用于谐波减速器的刚轮。刚轮包括同轴设置的法兰、刚 性圆环和柔性圆环,所述刚性圆环沿轴向位于所述法兰和柔性圆环之间,所述柔性圆环的内周面上设置有第一轮齿。
根据本公开的一个实施例,所述刚性圆环的外径大于所述柔性圆环的外径。
根据本公开的一个实施例,所述刚性圆环的外径大于变形后的所述柔性圆环的最大外径。
根据本公开的一个实施例,所述刚性圆环和柔性圆环由不同材料制成。
根据本公开的一个实施例,所述刚性圆环和柔性圆环由相同材料制成。
根据本公开的一个实施例,所述刚性圆环的壁厚大于所述柔性圆环的壁厚。
本公开的另一个方面是提供一种传动精度更高的谐波减速器。
为了实现上述目的,本公开提供一种谐波减速器,包括波发生器、如上所述的刚轮和柔轮,所述波发生器设置在所述柔轮的内周面上所述柔轮的外周面上设置有第二轮齿,所述第一轮齿与第二轮齿啮合。
根据本公开的一个实施例,所述第一轮齿的周节小于所述第二轮齿的周节。
根据本公开的一个实施例,所述第一轮齿和第二轮齿中的至少一者由工程塑料制成。
根据本公开的一个实施例,所述工程塑料为聚甲醛(POM)、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)或聚酰胺(PA)。
根据本公开的一个实施例,所述第一轮齿和第二轮齿均为梯形齿。
根据本公开的一个实施例,所述梯形齿的齿顶高ha=(0.75~0.85)*m,齿根高hf=(0.9~1.1)*m,齿形角Φ在20°~30°之间,其中m为所述梯形齿的模数。
根据本公开的一个实施例,所述第一轮齿具有第一齿顶圆角和第一齿根圆角,所述第二轮齿具有第二齿顶圆角和第二齿根圆角。
根据本公开的一个实施例,波发生器包括椭圆形的凸轮和柔性轴承,柔性轴承沿凸轮的轮廓线设置。
在本公开的谐波减速器中,刚轮除了在布置有轮齿的部分为柔性易变形结构之外,其余部分为刚性结构,与筒体整体为柔性的“刚轮”(以下简称“柔性刚轮”)相比,本公开所采用的刚轮的筒体扭转变形量较小,不会像“柔性刚轮”那样在扭转时产生回差,本公开的谐波减速器的回差只来源于柔轮的筒体扭转变形产生的回差,因此具有较高的传动精度。
本公开还提供一种机器人,该机器人包括如上所述的谐波减速器。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开的谐波减速器的剖视图;
图2是本公开所使用的梯形齿的截面图;
图3和图4分别是在本公开实施例的柔性圆环变形前和变形后,轮齿的啮合示意图;
图5是图3中A部分的放大图;
图6是图4中B部分的放大图。
附图标记说明
11波发生器   111凸轮               112柔性轴承
12刚轮       121第一轮齿           122法兰
123刚性圆环  124柔性圆环           13柔轮
131第二轮齿  1211、1311齿顶圆角    1212、1312齿根圆角
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
如图1所示,根据本公开的一个方面,提供一种用于谐波减速器的刚轮12,刚轮12包括同轴布置的三个部分:法兰122、刚性圆环123和柔性圆环124。刚性圆环123沿刚轮12的轴向位于法兰122和柔性圆环124之间。刚性圆环123设置在法兰122的端面上,用于谐波减速器的安装定位。柔性圆环124设置在刚性圆环123的端面上,柔性圆环124的内周面上设置有第一轮齿121。
上述刚性圆环和柔性圆环中的“圆环”是指如下描述的圆环,圆环的壁的在圆环轴向方向上的长度大于圆环的壁在圆环径向方向上的厚度。但是本公开并不限于此,圆环的壁的长度也可以小于或等于圆环的壁的厚度。
刚轮12除了在布置有轮齿的部分为柔性易变形之外,其余部分(即,法兰122和刚性圆环123)为刚性。刚性圆环123的外径大于柔性圆环124的外径,而且为了避免对柔性圆环124的变形造成干涉,刚性圆环123的外径大于变形后的柔性圆环124的最大尺寸。
刚性圆环123和柔性圆环124可以由相同的材料一体形成,也可以由两种不同的材料分别制成,只要保证二者的刚度不同即可。在刚性圆环123和柔性圆环124由同种材料制成的情况下,如图1所示,柔性圆环124的壁厚可以小于刚性圆环123的壁厚。柔性圆环124的壁厚较薄,易在径向上变形;刚性圆环123的壁厚较厚,保证其无扭转变形。
如图1所示,根据本公开的另一个方面,提供一种谐波减速器,包括波发生器11、刚轮12和柔轮13。其中,波发生器11包括椭圆形的凸轮111和柔性轴承112,柔性轴承112沿凸轮111的轮廓线设置。刚轮12包括同轴布置的三个部分:法兰122、刚性圆环123和柔性圆环124。刚性圆环123沿刚轮12的轴向位于法兰122和柔性圆环124之间。刚性圆环123设置在法兰122的端面上,用于谐波减速器的安装定位。柔性圆环124设置在刚性圆环123的端面上,柔性圆环124的内周面上设置有第一轮齿121。柔轮13的外周面上的第二轮齿131,第一轮齿121与第二轮齿131相互啮合。柔性轴承112设置在柔轮13的内周面上。
在本公开的谐波减速器中,第一轮齿121的周节比第二轮齿131的周节略小,故在本公开所使用的刚轮12的柔性圆环124处于装配状态时,由于其上的第一轮齿121受到柔轮13的第二轮齿131在波发生器11长轴方向上的挤压,使得柔性圆环124随柔轮13一起在波发生器11的长轴方向上向外伸长,而在波发生器11的短轴方向上向内缩短,从而形成一个近似椭圆环的形状(如图4所示)。这就使得不仅椭圆长轴处的轮齿会发生啮合,椭圆短轴与长轴之间的部分轮齿也会发生啮合,使得发生啮合的轮齿数量更多,可承受载荷的齿数也更多,啮合更加充分,传动精度更高。
另外,在本公开的谐波减速器中,刚轮12除了在布置有轮齿的部分为柔性易变形之外,其余部分(即,法兰122和刚性圆环123)为刚性,与筒体整体为柔性的“刚轮”(以下简称“柔性刚轮”)相比,本公开所采用的刚轮12的筒体扭转变形量较小,不会像“柔性刚轮”那样在扭转时产生回差,本公开的谐波减速器的回差只来源于柔轮13的筒体扭转变形产生的回差,因此具有较高的传动精度。
在本公开所采用的刚轮12中,刚性圆环123用于在安装谐波减速器时起定位作用。具体地,例如在将谐波减速器安装到机器人本体上时,刚性圆环123的外周面与机器人本体上的安装孔的孔壁相配合,以实现谐波减速器的径向定位。因此,在本公开中,刚性圆环123的外径大于柔性圆环124的外径。为了避免对柔性圆环124的变形造成干涉,刚性圆环123的外径大于变形后的柔性圆环124的最大尺寸,也就是说,刚性圆环123的外径大于柔性圆环124变形形成的近似椭圆环的长轴处的外径尺寸。
在本公开的谐波减速器中,刚性圆环123和柔性圆环124可以由相同的材料一体形成,也可以由两种不同的材料分别制成,只要保证二者的刚度不同即可。在刚性圆环123和柔性圆环124由同种材料制成的情况下,如图1所示,柔性圆环124的壁厚可以小于刚性圆环123的壁厚。柔性圆环124的壁厚较薄,易在径向上变形;刚性圆环123的壁厚较厚,保证其无扭转变形。
在本公开中,第一轮齿121和第二轮齿131中的至少一个可以由带有自润滑性能的工 程塑料制成,从而使得无需在第一轮齿121和第二轮齿131之间留出侧隙以满足润滑要求,提高谐波减速器的传动精度和传动平稳性。第一轮齿121和第二轮齿131也可以均由工程塑料制成。所述工程塑料可以为聚甲醛(POM)、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)或聚酰胺(PA)。
如图2所示,在本公开的一个实施方式中,第一轮齿121和第二轮齿131均为梯形齿。如图3至图6所示,由于第一轮齿121的周节比第二轮齿131的周节略小,故在具有第一轮齿121的柔性圆环124未变形时,理论上第一轮齿121和第二轮齿131存在干涉(如图5所示)。但本公开中,刚轮12的柔性圆环124是可变形的,当第一轮齿121受到第二轮齿131的挤压时,柔性圆环124由圆形变为近似椭圆形(如图4所示),使得第一轮齿121和第二轮齿131处于零侧隙啮合状态(如图6所示)。由于柔性圆环124的初始状态为圆形,故时刻具有回弹力使其回到圆形的趋势,因此在第一轮齿121或第二轮齿131发生磨损时,柔性圆环124回弹,使得其上的第一轮齿121时刻与第二轮齿131贴合。而在上述实施方式中,第一轮齿121和第二轮齿131均采用相同的、从顶部到根部逐渐扩大的等腰梯形截面,使得第一轮齿121和第二轮齿131形成双侧啮合,柔性圆环124的回弹力可以保证轮齿齿间侧隙时刻为零,从而进一步减小谐波减速器的回差,提高传动精度。
在本公开中,如图2所示,所述梯形齿的齿顶高ha=(0.75~0.85)*m,齿根高hf=(0.9~1.1)*m,齿形角Φ在20°~30°之间,其中,m为所述梯形齿的模数。齿顶高ha为分度圆d到齿顶圆之间的径向距离,齿根高hf为分度圆d到齿根圆之间的径向距离。采用在上述参数范围内的梯形齿作为第一轮齿121和第二轮齿131,能够更好地减小齿间侧隙。
如图2所示,第一轮齿121具有第一齿顶圆角1211和第一齿根圆角1212,第二轮齿131具有第二齿顶圆角1311和第二齿根圆角1312。第一齿顶圆角1211和第二齿顶圆角1311可以保证轮齿在啮入和啮出时顺畅;第一齿根圆角1212和第二齿根圆角1312可以改善轮齿所受的应力状况,减小应力集中。
综上所述,本公开的刚轮12的一部分为有轮齿的可变形的柔性圆环124,结合梯形轮齿的特点,可以保证轮齿磨损后也能时刻使轮齿齿间侧隙为零,刚轮12的用于安装定位的刚性圆环123又具有足够的刚度,不会出现像“柔性刚轮”那样在扭转时产生回差。与现有技术相比,本公开的谐波减速器可以自动调节齿间侧隙,并时刻保证齿间侧隙为零,从而减小谐波减速器的回差,提高传动精度。
根据本公开的再一方面,提供一种机器人,该机器人采用如上所述的谐波减速器。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (15)

  1. 一种用于谐波减速器的刚轮(12),包括同轴设置的法兰(122)、刚性圆环(123)和柔性圆环(124),所述刚性圆环(123)沿轴向位于所述法兰(122)和柔性圆环(124)之间,所述柔性圆环(124)的内周面上设置有第一轮齿(121)。
  2. 根据权利要求1所述的钢轮,其特征在于,所述刚性圆环(123)的外径大于所述柔性圆环(124)的外径。
  3. 根据权利要求2所述的钢轮,其特征在于,所述刚性圆环(123)的外径大于变形后的所述柔性圆环(124)的最大外径。
  4. 根据权利要求1至3中任一项所述的钢轮,其特征在于,所述刚性圆环(123)和柔性圆环(124)由不同材料制成。
  5. 根据权利要求1至3中任一项所述的钢轮,其特征在于,所述刚性圆环(123)和柔性圆环(124)由相同材料制成。
  6. 根据权利要求5所述的钢轮,其特征在于,所述刚性圆环(123)的壁厚大于所述柔性圆环(124)的壁厚。
  7. 一种谐波减速器,包括波发生器(11),如权利要求1至6中任一项所述的刚轮(12)和柔轮(13),所述波发生器(11)设置在所述柔轮(13)的内周面上,所述柔轮(13)的外周面上设置有第二轮齿(131),所述第一轮齿(121)与第二轮齿(131)啮合。
  8. 根据权利要求7所述的谐波减速器,其特征在于,所述第一轮齿(121)的周节小于所述第二轮齿(131)的周节。
  9. 根据权利要求7所述的谐波减速器,其特征在于,所述第一轮齿(121)和第二轮齿(131)中的至少一个由工程塑料制成。
  10. 根据权利要求9所述的谐波减速器,其特征在于,所述工程塑料为聚甲醛(POM)、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)或聚酰胺(PA)。
  11. 根据权利要求7至10中任一项所述的谐波减速器,其特征在于,所述第一轮齿(121)和第二轮齿(131)均为梯形齿。
  12. 根据权利要求11所述的谐波减速器,其特征在于,所述梯形齿的齿顶高ha=(0.75~0.85)*m,齿根高hf=(0.9~1.1)*m,齿形角Φ在20°~30°之间,其中m为所述梯形齿的模数。
  13. 根据权利要求11所述的谐波减速器,其特征在于,所述第一轮齿(121)具有第一齿顶圆角(1211)和第一齿根圆角(1212),所述第二轮齿(131)具有第二齿顶圆角(1311)和第二齿根圆角(1312)。
  14. 根据权利要求7至13中任一项所述的谐波减速器,其特征在于,波发生器(11)包括椭圆形的凸轮(111)和柔性轴承(112),柔性轴承(112)沿凸轮(111)的轮廓线设置。
  15. 一种机器人,其特征在于,包括权利要求7至14中任一项所述的谐波减速器。
PCT/CN2017/098460 2016-08-31 2017-08-22 用于谐波减速器的刚轮、谐波减速器以及机器人 WO2018040978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/328,116 US20190186599A1 (en) 2016-08-31 2017-08-22 Circular spline for harmonic reducer, harmonic reducer and robot
EP17845280.1A EP3508753A4 (en) 2016-08-31 2017-08-22 RIGID GEAR FOR HARMONIC REDUCER, HARMONIC REDUCER AND ROBOT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610799174.8A CN107795662B (zh) 2016-08-31 2016-08-31 用于谐波减速器的刚轮、谐波减速器以及机器人
CN201610799174.8 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040978A1 true WO2018040978A1 (zh) 2018-03-08

Family

ID=61300154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098460 WO2018040978A1 (zh) 2016-08-31 2017-08-22 用于谐波减速器的刚轮、谐波减速器以及机器人

Country Status (4)

Country Link
US (1) US20190186599A1 (zh)
EP (1) EP3508753A4 (zh)
CN (1) CN107795662B (zh)
WO (1) WO2018040978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245768A (zh) * 2019-08-01 2022-03-25 睿信科机器人股份有限公司 机器人关节及机器人

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244258A1 (ja) * 2018-06-19 2019-12-26 株式会社ハーモニック・ドライブ・システムズ 中空型波動歯車装置
JP2020034128A (ja) * 2018-08-31 2020-03-05 セイコーエプソン株式会社 歯車装置、歯車装置ユニットおよびロボット
KR102442871B1 (ko) * 2018-11-16 2022-09-13 가부시키가이샤 하모닉 드라이브 시스템즈 유닛타입의 파동기어장치
CN109667909B (zh) * 2018-12-06 2021-11-02 江苏科技大学 一种具有间隙补偿功能的短筒谐波减速器
JP7262368B2 (ja) * 2019-10-23 2023-04-21 住友重機械工業株式会社 歯車装置のシリーズ、その製造方法及び設計方法
CN111539079B (zh) * 2020-04-20 2022-11-22 上海机器人产业技术研究院有限公司 一种机器人用减速器内特种轴承的仿真方法
CN114263708B (zh) * 2021-12-31 2024-02-06 浙江如川谐波传动科技有限公司 一种谐波减速器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5775178A (en) * 1995-09-29 1998-07-07 Harmonic Drive Systems, Inc. Wave gear device
EP1536160A1 (en) * 2003-11-25 2005-06-01 Sener, Ingenieria Y Sistemas, S.A. Mechanism for transforming a rotational movement into a linear movement
US7891272B2 (en) * 2006-11-14 2011-02-22 Schonlau William J Robotic harmonic flex-drive
CN102734394A (zh) * 2012-06-21 2012-10-17 苏州绿的谐波传动科技有限公司 一种带柔性外轮的谐波减速器
CN105074272A (zh) * 2013-03-27 2015-11-18 株式会社三共制作所 谐波齿轮装置
CN105317941A (zh) * 2014-06-12 2016-02-10 捷奥机械(上海)有限公司 含柔性内轮的波发生器外置式新型谐波传动装置
CN206072245U (zh) * 2016-08-31 2017-04-05 惠州比亚迪实业有限公司 用于谐波减速器的刚轮、谐波减速器以及机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1534229A1 (ru) * 1988-04-04 1990-01-07 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Волнова зубчата передача
US6082222A (en) * 1997-10-27 2000-07-04 Harmonic Drive Systems, Inc. Rigid internal gear of a wave gear drive
DE102008027407B4 (de) * 2008-06-09 2010-07-15 Slongo, Joachim, Dipl.-Ing. Getriebe zur Umsetzung von Bewegungen
CN202732859U (zh) * 2012-06-21 2013-02-13 苏州绿的谐波传动科技有限公司 一种带柔性外轮的谐波减速器
CN203477200U (zh) * 2013-09-06 2014-03-12 上海鑫君传动科技有限公司 一种新型波发生器的谐波减速机
US9322464B2 (en) * 2014-04-02 2016-04-26 Hiwin Technologies Corp. Hollow drive gear reduction mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5775178A (en) * 1995-09-29 1998-07-07 Harmonic Drive Systems, Inc. Wave gear device
EP1536160A1 (en) * 2003-11-25 2005-06-01 Sener, Ingenieria Y Sistemas, S.A. Mechanism for transforming a rotational movement into a linear movement
US7891272B2 (en) * 2006-11-14 2011-02-22 Schonlau William J Robotic harmonic flex-drive
CN102734394A (zh) * 2012-06-21 2012-10-17 苏州绿的谐波传动科技有限公司 一种带柔性外轮的谐波减速器
CN105074272A (zh) * 2013-03-27 2015-11-18 株式会社三共制作所 谐波齿轮装置
CN105317941A (zh) * 2014-06-12 2016-02-10 捷奥机械(上海)有限公司 含柔性内轮的波发生器外置式新型谐波传动装置
CN206072245U (zh) * 2016-08-31 2017-04-05 惠州比亚迪实业有限公司 用于谐波减速器的刚轮、谐波减速器以及机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508753A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245768A (zh) * 2019-08-01 2022-03-25 睿信科机器人股份有限公司 机器人关节及机器人
US11938627B2 (en) 2019-08-01 2024-03-26 Siemens Aktiengesellschaft Robot joint and robot

Also Published As

Publication number Publication date
US20190186599A1 (en) 2019-06-20
EP3508753A1 (en) 2019-07-10
EP3508753A4 (en) 2019-08-28
CN107795662B (zh) 2020-06-19
CN107795662A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2018040978A1 (zh) 用于谐波减速器的刚轮、谐波减速器以及机器人
CN206072245U (zh) 用于谐波减速器的刚轮、谐波减速器以及机器人
US9360098B2 (en) Strain wave drive with improved performance
CN107191570B (zh) 连续共轭杯形或礼帽形谐波齿轮的三圆弧齿廓设计
US20050160856A1 (en) Planetary differential screw type rotary/linear motion converter
US10801585B2 (en) Flexible external gear and strain wave gearing
US11754162B2 (en) Double-flexspline harmonic reducer
US20130312558A1 (en) Wave gear device and flexible externally toothed gear
JP6351724B2 (ja) フラット型波動歯車装置
US20200040981A1 (en) Multiple contact-point flexible bearing applicable to a harmonic drive
CN110914574B (zh) 波动齿轮装置
US11280370B2 (en) Dual-type strain wave gearing
CN104500693A (zh) 刚柔复合滤波齿轮
WO2020056963A1 (zh) 减速器和机器人
EP3575632B1 (en) Wave gear device having 3-dimensional meshing tooth profile
US20210324948A1 (en) Wave generator and strain wave gearing
TWI724170B (zh) 諧波產生器及諧波齒輪裝置
US20160333966A1 (en) Reduction gear and robot
WO2020177156A1 (zh) 一种三次谐波减速器
JP2016217391A (ja) 波動減速機の波動発生装置
US10816073B2 (en) Strain wave gearing
US10066724B2 (en) Strain wave gearing
JP6846980B2 (ja) 玉軸受
JP2022065727A (ja) 波動歯車装置及びアクチュエータ
US20180347668A1 (en) Helical gear device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845280

Country of ref document: EP

Effective date: 20190401