WO2018040778A1 - 蓄电池内阻检测装置、检测方法及蓄电池状态监测系统 - Google Patents

蓄电池内阻检测装置、检测方法及蓄电池状态监测系统 Download PDF

Info

Publication number
WO2018040778A1
WO2018040778A1 PCT/CN2017/093714 CN2017093714W WO2018040778A1 WO 2018040778 A1 WO2018040778 A1 WO 2018040778A1 CN 2017093714 W CN2017093714 W CN 2017093714W WO 2018040778 A1 WO2018040778 A1 WO 2018040778A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
internal resistance
pulse
pulse discharge
Prior art date
Application number
PCT/CN2017/093714
Other languages
English (en)
French (fr)
Inventor
唐国华
王超
彭雁飞
孙炜鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018040778A1 publication Critical patent/WO2018040778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the invention relates to the technical field of energy storage battery management, in particular to a battery internal resistance detecting device, a detecting method and a battery state monitoring system.
  • the methods for measuring the internal resistance of the battery that have been applied include a DC large current discharge method, an AC injection method, and a DC small current discharge method.
  • the DC high-current discharge method generally measures the relatively accurate internal resistance once, but the damage to the battery itself is too large.
  • the AC injection method is susceptible to radio wave interference, and the repeated measurement accuracy is not high.
  • the DC small current discharge method can avoid the defects of the above two methods and realize the measurement of the internal resistance of the battery.
  • the distortion of the collected data may occur during a single discharge process, thereby affecting the authenticity and accuracy of the internal resistance measured by the DC small current discharge method.
  • the current method of measuring the internal resistance of the battery is required to improve the authenticity and accuracy of measuring the internal resistance under the premise of ensuring the damage of the battery.
  • the purpose of the embodiments of the present invention is to provide a battery internal resistance detecting device, a detecting method, and a battery state monitoring system, which solve the technical problem of improving the authenticity and accuracy of measuring internal resistance under the premise of reducing battery damage.
  • an embodiment of the present invention provides a battery internal resistance detecting device including: a discharge unit connected to the battery, configured to discharge the battery, wherein a discharge current is within a preset range; and a discharge control unit, Connected to the discharge unit, configured to control the discharge unit to be turned on multiple times and closed after a preset time, and perform multiple pulse discharge on the battery a data acquisition unit, connected to the battery, configured to acquire a current value and a voltage value during pulse discharge of the battery in real time; a data processing unit connected to the data acquisition unit and configured to be according to the voltage The value of the battery and the value of the current, as well as the number of pulse discharges, calculate the internal resistance of the battery.
  • the detecting device performs multiple pulse discharges on the battery, and keeps the discharge current within a preset range. Under the premise of ensuring that the damage of the battery to the battery is low, the internal resistance of the battery is measured to reduce the internal resistance of the battery. The impact of the collected data enhances the authenticity and accuracy of the battery internal resistance measurement.
  • An embodiment of the present invention further provides a battery state monitoring system, comprising: a state detecting module configured to detect state information of the battery; a communication module configured to receive state information of the battery and transmit; and a background terminal configured to process And receiving the state information of the battery; wherein the state detecting module comprises the battery internal resistance detecting device.
  • the embodiment of the present invention further provides a method for detecting internal resistance of a battery, comprising: controlling a discharge unit to be turned on a plurality of times and turning off after a preset time, and performing a plurality of pulse discharges on the battery, wherein the preset current is within a preset range; The current value and the voltage value during the pulse discharge of the battery are acquired in real time; and the internal resistance of the battery is calculated according to the voltage value and the current value, and the number of times of the pulse discharge.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores one or more programs executable by a computer, and when the one or more programs are executed by the computer, the computer is executed as described above.
  • a battery internal resistance detecting method is provided.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • FIG. 1 is a schematic structural diagram of a battery internal resistance detecting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another battery internal resistance detecting device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another battery internal resistance detecting device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a battery state detecting system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for detecting internal resistance of a battery according to an embodiment of the present invention.
  • an embodiment of the present invention provides a battery internal resistance detecting apparatus 100, including:
  • the discharge unit 101 is connected to the battery 105 and configured to discharge the battery 105, wherein the discharge current is within a preset range;
  • the discharge control unit 102 is connected to the discharge unit 101, and is configured to control the discharge unit 101 to be turned on multiple times and closed after a preset time, and perform multiple pulse discharges on the battery 105;
  • the data collection unit 103 is connected to the battery 105 and configured to acquire a current value and a voltage value during pulse discharge of the battery 105 in real time;
  • a data processing unit 104 connected to the data collection unit 103, configured to be according to the The battery value and the current value, as well as the number of pulse discharges, calculate the internal resistance of the battery.
  • the battery is subjected to multiple pulse discharges, and the discharge current is kept within a preset range.
  • the internal resistance of the battery is measured to measure the internal resistance of the battery. The impact of the collected data enhances the authenticity and accuracy of the battery internal resistance measurement.
  • FIG. 2 is a schematic structural diagram of another battery internal resistance detecting device according to an embodiment of the present invention.
  • an embodiment of the present invention provides a battery internal resistance detecting apparatus 100, including:
  • the discharge unit 101 is connected to the battery 105 and configured to discharge the battery 105, wherein the discharge current is within a preset range;
  • the discharge control unit 102 is connected to the discharge unit 101, and is configured to control the discharge unit 101 to be turned on multiple times and closed after a preset time, and perform multiple pulse discharges on the battery 105;
  • the data collection unit 103 is connected to the battery 105 and configured to acquire a current value and a voltage value during pulse discharge of the battery 105 in real time;
  • the data processing unit 104 is connected to the data acquisition unit 103 and configured to calculate the internal resistance of the battery according to the voltage value and the current value and the number of pulse discharges.
  • the discharge current is not more than 10A.
  • the lower the current the lower the damage to the battery.
  • a better effect can be obtained by controlling the discharge current within 10A.
  • the discharge unit 101 includes a switching device 1011 and a power resistor 1012 matched with the battery.
  • the first end of the power resistor 1012 is connected in series with the first end of the switching device 1011, and the second end of the power resistor 1012 is
  • the second end of the switch device 1011 is respectively connected to two ends of the battery 105, the third end of the switch device 1011 is connected to the discharge control unit 102, and the discharge control unit 102 is turned on when the switch device 1011 is turned on.
  • the battery 105 is discharged, and when the discharge control unit turns off the switching device, the battery 105 is stopped.
  • the switching device is MOS tube or triode.
  • the selection of the power resistor 1012 needs to match the battery power.
  • the discharge load power resistance of the 2V battery is preferably 0.25 ⁇ to 1 ⁇
  • the discharge load power resistance of the 12V battery is preferably 2 to 12 ⁇ .
  • the number of batteries can be one or more.
  • the discharge unit 101 is plural, and each of the discharge units 101 is connected in parallel with one storage battery 105.
  • the discharge control unit 102 controls the discharge unit 101 to pulse discharge the battery 105 not less than three times. Multiple repeated discharges can effectively avoid the influence of the characteristics of the internal components of the battery on the data during the collection and discharge process. Generally speaking, the more the number of repetitions, the smaller the influence.
  • the discharge control unit 102 controls the discharge unit 101 to be turned on for a preset time of not less than 0.5 s.
  • a preset time of not less than 0.5 s.
  • changes in relevant parameters often require a certain reaction time. If the time is too short, it is prone to a situation in which the parameters are still changed in the future, which is not conducive to the accuracy of the measurement results.
  • the data acquisition unit 103 includes an AC-coupled sampling circuit, that is, an AC sampling circuit.
  • the AC sampling circuit is connected to the positive and negative terminals of the battery 105 by two independent detection lines, wherein the AC-coupled AC adopts a capacitive coupling manner.
  • the data processing unit 104 can calculate the internal resistance of the battery in the following two ways:
  • the internal resistance value of the primary pulse discharge is calculated as an internal resistance of the battery according to an internal resistance value of each pulse discharge of the battery and an average value of the number of discharges of the battery.
  • the method for calculating the battery resistance by the data processing unit 104 includes, but is not limited to, the above two modes.
  • the median value of the internal resistance value of each pulse discharge may also be taken as the internal resistance of the battery, and the specific calculation method is not specifically described herein. limited.
  • the battery internal resistance detecting device 100 further includes a power conversion unit 106 connected to the discharge control unit 102 and the data processing unit 104, respectively, to ensure the discharge control unit 102 and data in the battery internal resistance detecting device 100.
  • the power conversion unit may employ a DC-DC conversion.
  • the voltage is boosted to the required operating voltage, and when the battery 105 voltage is higher than the discharge.
  • the required operating voltage of the control unit 102 and the data processing unit 104 is reduced, the voltage is stepped down to the desired operating voltage.
  • the discharge control unit 102 can discharge the battery by a preset fixed period, and start measuring the internal resistance of the battery.
  • the fixed period is not less than 12h.
  • a battery internal resistance detecting device includes: a discharge unit connected to the battery, configured to discharge the battery, wherein a discharge current is within a preset range; a discharge control unit, and the discharge a unit connection, configured to control the discharge unit to be turned on multiple times and closed after a preset time, and perform multiple pulse discharges on the battery; the data collection unit is respectively connected to the battery, and is set to acquire the real-time The battery performs a current value and a voltage value during the pulse discharge; the data processing unit is connected to the data acquisition unit, and is configured to calculate the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge.
  • the detecting device performs multiple pulse discharges on the battery, and keeps the discharge current within a preset range. Under the premise of ensuring that the damage of the battery to the battery is low, the internal resistance of the battery is measured to reduce the internal resistance of the battery. The impact of the collected data enhances the authenticity and accuracy of the battery internal resistance measurement.
  • the battery state monitoring system 400 includes:
  • a status detecting module 401 configured to detect status information of the battery
  • the communication module 402 is configured to receive status information of the battery and transmit the status information to the background terminal 403;
  • a background terminal 403 configured to process the received status information of the battery
  • the state detecting module includes any of the battery internal resistance detecting devices shown in FIG. 1 to FIG.
  • the state detecting module 401 further includes, but is not limited to, a temperature detecting device and/or a voltage detecting device, and the specific composition thereof may be determined according to battery state information that the user needs to monitor.
  • the temperature detecting device and/or the voltage detecting device includes filtering and signal processing circuits for at least 10 bits of A/D sampling.
  • the communication module 402 can adopt wireless communication mode, preferably, adopts Zigbee radio frequency signal communication, and can be a built-in antenna, which is suitable for occasions with low cost and short distance, and can also be an external antenna, suitable for occasions with long transmission distance and shielding. . It is of course not excluded to use wireless communication methods such as LoRa, 433 MHz or WIFI in some embodiments.
  • the communication module 402 can include one or more concentrators that are cascaded to enable status monitoring of multiple batteries.
  • the background terminal 403 may save the status information or perform other processing.
  • the communication module 402 uses the TCP/IP access network to transmit data to the background terminal.
  • the background terminal 403 analyzes and saves the data, and publishes the data through the web.
  • the webpage can be accessed to view the site. Battery status.
  • a battery state monitoring system includes: a state detecting module configured to detect state information of the battery; a communication module configured to receive state information of the battery and transmit; and a background terminal configured to process And receiving the state information of the battery; wherein the state detecting module comprises the battery internal resistance detecting device.
  • the monitoring system performs multiple pulse discharges on the battery, and keeps the discharge current within a preset range. Under the premise of ensuring that the damage of the battery to the battery is low, the internal resistance of the battery is measured to reduce the internal resistance of the battery. The impact of the collected data enhances the authenticity and accuracy of the battery internal resistance measurement.
  • FIG. 5 is a flowchart of a method for detecting internal resistance of a battery according to an embodiment of the present invention, as shown in FIG. 5, including:
  • the step of calculating the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge comprises: calculating a voltage value according to a last pulse discharge process in the multiple pulse discharge Calculating a first voltage change amplitude of the last pulse discharge in the multiple pulse discharge, and calculating the battery according to the first voltage change amplitude and the current value before the end of the last pulse discharge in the multiple pulse discharge Internal resistance.
  • the step of calculating the internal resistance of the battery according to the voltage value and the current value, and the number of pulse discharges comprises: calculating a second voltage change of each pulse discharge according to a voltage value during each pulse discharge process Amplitude, calculating an internal resistance value of each pulse discharge of the battery according to the second voltage change amplitude and the current value before the end of each pulse discharge, according to the internal resistance value of each pulse discharge of the battery and the The number of times of pulse discharge is calculated as an average value of the internal resistance of the battery.
  • the method for calculating the battery resistance includes, but is not limited to, the above two methods.
  • the median value of the internal resistance value of each pulse discharge may be taken as the internal resistance of the battery.
  • the specific calculation method is not specifically limited herein.
  • the battery internal resistance detecting method is implemented by any of the battery internal resistance detecting devices shown in FIG. 1 to FIG. 3 .
  • the battery internal resistance detecting device For a specific implementation manner, refer to the implementation manner of the battery internal resistance detecting device, and details are not described herein again.
  • the method for detecting internal resistance of a battery includes: controlling the discharge unit to be turned on multiple times and turning off after a preset time, performing multiple pulse discharges on the battery, wherein the preset current is within a preset range Calculating a current value and a voltage value during pulse discharge of the battery in real time; calculating the current value according to the voltage value and the current value, and the number of pulse discharges Battery internal resistance.
  • the method performs multiple pulse discharges on the battery, and keeps the discharge current within a preset range. Under the premise of ensuring that the damage of the battery to the battery is low, the internal characteristics of the battery internal device are reduced. The impact of data acquisition enhances the authenticity and accuracy of battery internal resistance measurements.
  • the internal resistance of the battery is calculated based on the voltage value and current value, and the number of pulse discharges.
  • the step of calculating, by the program, the internal resistance of the battery according to the voltage value and current value, and the number of pulse discharges comprising:
  • the current value before the end of the last pulse discharge in the secondary pulse discharge calculates the internal resistance of the battery.
  • the step of calculating, by the program, the internal resistance of the battery according to the voltage value and current value, and the number of pulse discharges comprising:
  • the internal resistance value is calculated as an internal resistance of the battery according to an internal resistance value of each pulse discharge of the battery and a number of times of the pulse discharge.
  • the storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the discharge unit is controlled to be turned on for a plurality of times and is turned off after a preset time, and the battery is subjected to multiple pulse discharges, wherein the discharge current is within a preset range;
  • the storage medium is further configured to store program code for performing the step of: calculating the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge, comprising:
  • the storage medium is further configured to store program code for performing the step of: calculating the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge, comprising:
  • the internal resistance value of the pulse discharge is calculated as an average value according to the internal resistance value of each pulse discharge of the battery and the number of pulse discharges of the battery. The internal resistance of the battery.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the foregoing program is used to perform the following steps:
  • the discharge unit is controlled to be turned on for a plurality of times and is turned off after a preset time, and the battery is subjected to multiple pulse discharges, wherein the discharge current is within a preset range;
  • the foregoing program is configured to perform the following steps: the step of calculating the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge, includes:
  • the foregoing program is configured to perform the following steps: the step of calculating the internal resistance of the battery according to the voltage value and the current value, and the number of times of the pulse discharge, includes:
  • the internal resistance value of the pulse discharge is calculated as an internal resistance of the battery according to an internal resistance value of each pulse discharge of the battery and an average value of the number of discharges of the battery.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • a battery internal resistance detecting device which performs a plurality of pulse discharges on a battery, and keeps the discharge current within a preset range, and reduces the damage degree of the battery to a low degree under the premise of ensuring that the damage to the battery is low.
  • the influence of the internal characteristics of the battery internal device on the data collected during the internal resistance measurement of the battery enhances the authenticity and accuracy of the internal resistance measurement of the battery.

Abstract

一种蓄电池内阻检测装置、检测方法及蓄电池状态监测系统,检测装置(100)包括:放电单元(101),与蓄电池(105)连接,设置为对蓄电池(105)进行放电,其中放电电流在预设范围内;放电控制单元(102),与放电单元(101)连接,设置为多次控制放电单元(101)导通并于预设时间后关闭,对蓄电池(105)进行多次脉冲放电;数据采集单元(103),分别与蓄电池(105)连接,设置为实时获取对蓄电池(105)进行脉冲放电过程中的电流值和电压值;数据处理单元(104),与数据采集单元(103)连接,设置为根据电压值和电流值,以及脉冲放电的次数,计算蓄电池(105)内阻。该技术方案在保证放电对蓄电池(105)的损伤程度较低的前提下,增强蓄电池(105)内阻测量的真实性和精确度。

Description

蓄电池内阻检测装置、检测方法及蓄电池状态监测系统 技术领域
本发明涉及储能电池管理技术领域,特别涉及蓄电池内阻检测装置、检测方法及蓄电池状态监测系统。
背景技术
蓄电池作为供电系统的后备电源,在通信、银行、电源、交通、金融等领域得到了广泛应用,其健康情况与稳定性直接影响这些领域关键系统的稳定与安全。由于电池的内阻与它本身容量有着密切联系,因而最重要且最能反映蓄电池当前状态的是电池内阻。目前,已被应用的测量电池内阻方法有直流大电流放电法、交流注入法和直流小电流放电法。直流大电流放电法一般放电一次即可测得相对准确的内阻,但对蓄电池本身的损伤过大。交流注入法易受到电波干扰,重复测量精度不高。相对而言,直流小电流放电法可避免上述两种方法的缺陷,实现对蓄电池内阻的测量。但由于蓄电池内部器件的自身特性,且小电流放电时的电压变化小,一次放电过程中可能出现采集数据失真的情形,从而影响直流小电流放电法测量的内阻的真实性和精确性。可见,目前测量蓄电池内阻的方式在保证减小蓄电池损伤的前提下测量内阻的真实性和精确性有待提高。
发明内容
本发明实施例的目的在于提供一种蓄电池内阻检测装置、检测方法及蓄电池状态监测系统,解决了减小蓄电池损伤的前提下提高测量内阻的真实性和精确性的技术问题。
为了达到上述目的,本发明实施例提供一种蓄电池内阻检测装置包括:放电单元,与所述蓄电池连接,设置为对所述蓄电池进行放电,其中放电电流在预设范围内;放电控制单元,与所述放电单元连接,设置为多次控制所述放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放 电;数据采集单元,与所述蓄电池连接,设置为实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;数据处理单元,与所述数据采集单元连接,设置为根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。该检测装置通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
本发明实施例还提供一种蓄电池状态监测系统包括:状态检测模块,设置为检测所述蓄电池的状态信息;通讯模块,设置为接收所述蓄电池的状态信息并传输;以及后台终端,设置为处理所述接收到的所述蓄电池的状态信息;其中,所述状态检测模块包括上述蓄电池内阻检测装置。
本发明实施例还提供一种蓄电池内阻检测方法,包括多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中预设电流在预设范围内;实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如上述提供的一种蓄电池内阻检测方法。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
上述技术方案中的一个技术方案具有如下优点或有益效果:
通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种蓄电池内阻检测装置的结构示意图;
图2为本发明实施例提供的另一种蓄电池内阻检测装置的结构示意图;
图3为本发明实施例提供的另一种蓄电池内阻检测装置的结构示意图;
图4为本发明实施例提供的一种蓄电池状态检测系统的结构示意图;
图5为本发明实施例提供的一种蓄电池内阻检测方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,本发明实施例提供一种蓄电池内阻检测装置100,包括:
放电单元101,与所述蓄电池105连接,设置为对所述蓄电池105进行放电,其中,放电电流在预设范围内;
放电控制单元102,与所述放电单元101连接,设置为多次控制所述放电单元101导通并于预设时间后关闭,对所述蓄电池105进行多次脉冲放电;
数据采集单元103,与所述蓄电池105连接,设置为实时获取对所述蓄电池105进行脉冲放电过程中的电流值和电压值;
数据处理单元104,与所述数据采集单元103连接,设置为根据所述 电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
本实施例通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
图2为本发明实施例提供的另一种蓄电池内阻检测装置的结构示意图。
如图2所示,本发明实施例提供一种蓄电池内阻检测装置100,包括:
放电单元101,与所述蓄电池105连接,设置为对所述蓄电池105进行放电,其中所述放电电流在预设范围内;
放电控制单元102,与所述放电单元101连接,设置为多次控制所述放电单元101导通并于预设时间后关闭,对所述蓄电池105进行多次脉冲放电;
数据采集单元103,与所述蓄电池105连接,设置为实时获取对所述蓄电池105进行脉冲放电过程中的电流值和电压值;
数据处理单元104,与所述数据采集单元103连接,设置为根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
为减小放电对蓄电池本身的损坏,优选的,放电电流不大于10A。理论上,电流越小对蓄电池的伤害程度越低。本实施例中,将放电电流控制在10A以内则能够获得较好的效果。
放电单元101包括开关装置1011和与所述蓄电池电量匹配的功率电阻1012,所述功率电阻1012的第一端与所述开关装置1011第一端串联,所述功率电阻1012的第二端与所述开关装置1011第二端分别接入所述蓄电池105的两端,所述开关装置1011的第三端与所述放电控制单元102连接,所述放电控制单元102导通所述开关装置1011时,对所述蓄电池105进行放电,所述放电控制单元关闭所述开关装置时,对所述蓄电池105停止放电。
为减小开关阻抗的影响测量结果的准确性,优选的,所述开关装置为 MOS管或三极管。
功率电阻1012的选择需要与蓄电池电量相匹配,例如,2V电池的放电负载功率电阻优选为0.25Ω~1Ω,12V电池的的放电负载功率电阻优选为2~12Ω。
蓄电池的数量可以为一个或多个。为简化和方便接线,优选的,所述蓄电池105为多个时,所述放电单元101为多个,且每个放电单元101并联一个蓄电池105。
优选的,放电控制单元102控制放电单元101对所述蓄电池105脉冲放电的次数不少于3次。多次重复放电能有效避免蓄电池内部器件的特性对采集放电过程中的数据的影响,一般而言,重复次数越多,影响越小。
优选的,放电控制单元102控制放电单元101导通的预设时间不小于0.5s。在瞬间放电过程中,相关参数的变化往往需要一定反应时间。如果时间太短,则容易发生参数还未来得及发生变化的情形,不利于测量结果的准确性。
数据采集单元103包括交流耦合采样电路,即AC采样电路,AC采样电路采用两根独立的检测线分别与蓄电池105的正负极相连,其中交流耦合AC采用电容耦合方式。
优选的,数据处理单元104可采用以下两种方式计算蓄电池内阻:
其一,用于根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻;
其二,根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述蓄电池脉冲放电次数计算平均值作为所述蓄电池的内阻。
当然,数据处理单元104计算蓄电池电阻的方法包括但不限定于上述两种方式,例如还可以取每一次脉冲放电的内阻值的中值作为蓄电池内阻,其具体计算方法此处不做具体限定。
优选的,如图3所示,蓄电池内阻检测装置100还包括分别与放电控制单元102和数据处理单元104连接的电源变换单元106,以保证蓄电池内阻检测装置100内放电控制单元102和数据处理单元104的工作电压的稳定性。例如,电源变换单元可采用DC-DC变换,当蓄电池105电压低于放电控制单元102和数据处理单元104的所需工作电压时,则升压至所需工作电压,当蓄电池105电压高于放电控制单元102和数据处理单元104的所需工作电压时,则降压至所需工作电压。
由于电池内阻变化缓慢,放电控制单元102可预设固定周期对蓄电池放电,启动对蓄电池内阻的测量。例如,固定周期不少于12h。
本发明实施例提供的一种蓄电池内阻检测装置包括:放电单元,与所述蓄电池连接,设置为对所述蓄电池进行放电,其中放电电流在预设范围内;放电控制单元,与所述放电单元连接,设置为多次控制所述放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电;数据采集单元,分别与所述蓄电池连接,设置为实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;数据处理单元,与所述数据采集单元连接,设置为根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。该检测装置通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
图4为本发明实施例提供的一种蓄电池状态检测系统的结构示意图,如图4所示,蓄电池状态监测系统400包括:
状态检测模块401,设置为检测所述蓄电池的状态信息;
通讯模块402,设置为接收所述蓄电池的状态信息并传输至后台终端 403;
以及后台终端403,设置为处理所述接收到的所述蓄电池的状态信息;
其中,所述状态检测模块包括图1至图3所示任一蓄电池内阻检测装置。
优选的,状态检测模块401还包括但不限于温度检测装置和/或电压检测装置,其具体组成可根据用户需要监测的蓄电池状态信息而定。该温度检测装置和/或电压检测装置包含滤波和信号处理电路,至少10bit以上A/D采样。
通讯模块402可以采用无线通讯方式,优选的,采用Zigbee射频信号通讯,可以是内置天线,适用于低成本距离短的场合,也可以是外置天线,适用于传输距离较远以及有屏蔽的场合。当然也不排除在一些实施例中使用LoRa、433MHz或者WIFI等无线通讯方式。
通讯模块402可包括一个或多个集中器,多个集中器进行级联,以实现对多个蓄电池的状态监测。
后台终端403接收到蓄电池的状态信息后,可对该状态信息进行保存或进行其他处理。例如通讯模块402采用TCP/IP接入网络,将数据传送给后台终端,后台终端403收到数据后进行分析处理和保存,通过web将数据发布出去,用户认证通过后就可访问网页查看现场每节蓄电池状态。
本发明实施例提供的一种蓄电池状态监测系统包括:状态检测模块,设置为检测所述蓄电池的状态信息;通讯模块,设置为接收所述蓄电池的状态信息并传输;以及后台终端,设置为处理所述接收到的所述蓄电池的状态信息;其中,所述状态检测模块包括上述蓄电池内阻检测装置。该监测系统通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
图5为本发明实施例提供的一种蓄电池内阻检测方法的流程图,如图 5所示,包括:
S501、多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中放电电流在预设范围内;
S502、实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
S503、根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
优选的,所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
优选的,所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述脉冲放电的次数计算平均值作为所述蓄电池的内阻。
当然,计算蓄电池电阻的方法包括但不限定于上述两种方式,例如还可以取每一次脉冲放电的内阻值的中值作为蓄电池内阻,其具体计算方法此处不做具体限定。
上述蓄电池内阻检测方法由图1至图3所示的任一蓄电池内阻检测装置实现,其具体的实施方式可以参见上述蓄电池内阻检测装置的实施方式,此处不再赘述。
本发明实施例提供的一种蓄电池内阻检测方法,包括:多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中预设电流在预设范围内;实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;根据所述电压值和电流值,以及脉冲放电的次数,计算所述 蓄电池内阻。该方法通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一计算机可读取介质中,该程序在执行时,包括以下步骤:
多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电;
实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
优选的,所述程序执行的根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤,包括:
根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
优选的,所述程序执行的根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤,包括:
根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述脉冲放电的次数计算平均值作为所述蓄电池的内阻。
所述的存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中放电电流在预设范围内;
S2,实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
S3,根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
S1,根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
S1,根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述蓄电池脉冲放电次数计算平均值作为所述蓄 电池的内阻。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中放电电流在预设范围内;
S2,实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
S3,根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
可选地,在本实施例中,上述程序用于执行以下步骤:所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
S1,根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
可选地,在本实施例中,上述程序用于执行以下步骤:所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
S1,根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述蓄电池脉冲放电次数计算平均值作为所述蓄电池的内阻。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例提供一种蓄电池内阻检测装置,通过对蓄电池进行多次脉冲放电,且使得放电电流保持在预设范围内,在保证放电对蓄电池的损伤程度较低的前提下,减小蓄电池内部器件自身特性对蓄电池内阻测量过程中采集数据的影响,增强蓄电池内阻测量的真实性和精确度。

Claims (11)

  1. 一种蓄电池内阻检测装置,包括:
    放电单元,与所述蓄电池连接,设置为对所述蓄电池进行放电,其中放电电流在预设范围内;
    放电控制单元,与所述放电单元连接,设置为多次控制所述放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电;
    数据采集单元,与所述蓄电池连接,设置为实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
    数据处理单元,与所述数据采集单元连接,设置为根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
  2. 根据权利要求1所述的检测装置,其中,所述数据处理单元,设置为根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
  3. 根据权利要求1所述的装置,其中,所述数据处理单元,设置为根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述蓄电池脉冲放电次数计算平均值作为所述蓄电池的内阻。
  4. 根据权利要求1所述的装置,其中,所述放电单元包括开关装置和与所述蓄电池电量匹配的功率电阻,所述功率电阻的第一端与所述开关装置第一端串联,所述功率电阻的第二端与所述开关装置第二端分别接入所述蓄电池的两端,所述开关装置的第三端与所述放电控制单元连接,所述放电控制单元导通所述开关装置时,对所述蓄电池进行放电,所述放电控制单元关闭所述开关装置时,对所述蓄电池停止放电。
  5. 根据权利要求4所述的装置,其中,所述开关装置为MOS管或三 极管。
  6. 根据权利要求1至5任一所述的装置,其中,所述蓄电池为多个时,所述放电单元为多个,且每个放电单元并联一个蓄电池。
  7. 一种蓄电池状态在线监测系统,包括:
    状态检测模块,设置为检测所述蓄电池的状态信息;
    通讯模块,设置为接收所述蓄电池的状态信息并传输至后台终端;
    以及后台终端,设置为处理所述接收到的所述蓄电池的状态信息;
    其中,所述状态检测模块包括权利要求1至6任一所述蓄电池内阻检测装置。
  8. 一种蓄电池内阻检测方法,包括:
    多次控制放电单元导通并于预设时间后关闭,对所述蓄电池进行多次脉冲放电,其中放电电流在预设范围内;
    实时获取对所述蓄电池进行脉冲放电过程中的电流值和电压值;
    根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻。
  9. 根据权利要求8所述的方法,其中,所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
    根据所述多次脉冲放电中的最后一次脉冲放电过程中的电压值计算所述多次脉冲放电中的最后一次脉冲放电的第一电压变化幅度,根据所述第一电压变化幅度和所述多次脉冲放电中的最后一次脉冲放电结束前的电流值计算出所述蓄电池的内阻。
  10. 根据权利要求8所述的方法,其中,所述根据所述电压值和电流值,以及脉冲放电的次数,计算所述蓄电池内阻的步骤包括:
    根据每一次脉冲放电过程中的电压值计算每一次脉冲放电的第二电压变化幅度,根据所述第二电压变化幅度和所述每一次脉冲放电结束前的电流值计算所述蓄电池每一次脉冲放电的内阻值,根据所述蓄电池每一次脉冲放电的内阻值与所述蓄电池脉冲放电次数计算平均值作为所述蓄电 池的内阻。
  11. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求8至10中任一项所述的方法。
PCT/CN2017/093714 2016-08-30 2017-07-20 蓄电池内阻检测装置、检测方法及蓄电池状态监测系统 WO2018040778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610767165.0 2016-08-30
CN201610767165.0A CN107783047A (zh) 2016-08-30 2016-08-30 蓄电池内阻检测装置、检测方法及蓄电池状态监测系统

Publications (1)

Publication Number Publication Date
WO2018040778A1 true WO2018040778A1 (zh) 2018-03-08

Family

ID=61300021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093714 WO2018040778A1 (zh) 2016-08-30 2017-07-20 蓄电池内阻检测装置、检测方法及蓄电池状态监测系统

Country Status (2)

Country Link
CN (1) CN107783047A (zh)
WO (1) WO2018040778A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927601A (zh) * 2019-11-29 2020-03-27 西安锐驰电器有限公司 蓄电池内阻检测系统及方法
CN112731165A (zh) * 2020-12-10 2021-04-30 中国西安卫星测控中心 卫星蓄电池电流数据异常类型识别方法及装置
CN115856676A (zh) * 2023-02-28 2023-03-28 国网山西省电力公司晋中供电公司 基于远程监控平台的蓄电池组在线冲击检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646184B (zh) * 2018-04-17 2020-11-13 深圳供电局有限公司 一种基于蓄电池放电初期特征的内部损伤探测装置及方法
CN111426969A (zh) * 2018-12-21 2020-07-17 中兴通讯股份有限公司 电池内阻检测的方法及装置、电池老化检测的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163467A (zh) * 2011-12-15 2013-06-19 北汽福田汽车股份有限公司 动力电池组的一致性评价方法
CN203490346U (zh) * 2013-10-23 2014-03-19 天津现代合信科技有限公司 一种蓄电池在线监测系统
WO2014143443A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Active measurement of battery equivalent series resistance
US20140322575A1 (en) * 2013-04-24 2014-10-30 Apple Inc. Multiple conductive tabs for facilitating current flow in batteries
CN105026944A (zh) * 2013-03-07 2015-11-04 古河电气工业株式会社 二次电池状态检测装置及二次电池状态检测方法
CN105092977A (zh) * 2015-06-05 2015-11-25 郑贵林 蓄电池内阻测量方法和电路、健康状态检测方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202661604U (zh) * 2012-03-30 2013-01-09 保定市讯通万捷节能科技有限公司 基于多脉冲小电流放电法的蓄电池在线监测装置
CN104635053A (zh) * 2015-03-16 2015-05-20 银联商务有限公司 一种蓄电池内阻测量装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163467A (zh) * 2011-12-15 2013-06-19 北汽福田汽车股份有限公司 动力电池组的一致性评价方法
CN105026944A (zh) * 2013-03-07 2015-11-04 古河电气工业株式会社 二次电池状态检测装置及二次电池状态检测方法
WO2014143443A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Active measurement of battery equivalent series resistance
US20140322575A1 (en) * 2013-04-24 2014-10-30 Apple Inc. Multiple conductive tabs for facilitating current flow in batteries
CN203490346U (zh) * 2013-10-23 2014-03-19 天津现代合信科技有限公司 一种蓄电池在线监测系统
CN105092977A (zh) * 2015-06-05 2015-11-25 郑贵林 蓄电池内阻测量方法和电路、健康状态检测方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927601A (zh) * 2019-11-29 2020-03-27 西安锐驰电器有限公司 蓄电池内阻检测系统及方法
CN112731165A (zh) * 2020-12-10 2021-04-30 中国西安卫星测控中心 卫星蓄电池电流数据异常类型识别方法及装置
CN112731165B (zh) * 2020-12-10 2023-10-24 中国西安卫星测控中心 卫星蓄电池电流数据异常类型识别方法及装置
CN115856676A (zh) * 2023-02-28 2023-03-28 国网山西省电力公司晋中供电公司 基于远程监控平台的蓄电池组在线冲击检测系统

Also Published As

Publication number Publication date
CN107783047A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2018040778A1 (zh) 蓄电池内阻检测装置、检测方法及蓄电池状态监测系统
CN204479723U (zh) 锂电池充放电特性标定仪
US9570934B2 (en) Lithium battery auto-depassivation system and method
CN106405428B (zh) 一种蓄电池充放电曲线采样系统及方法
CN105548905A (zh) 一种电池电量的测试方法和系统
US9322884B2 (en) Impedance analyzing device
US11169216B2 (en) Information processing apparatus, method and non-transitory computer-readable storage medium
US10298033B2 (en) Information processing method, smart battery, terminal and computer storage medium
US20130179103A1 (en) Battery analysis device and method thereof
CN104267258B (zh) 一种利用不完全s变换的谐波瞬时功率计算方法
CN101034137B (zh) 电池截止放电电压测量及修正方法
CN103217649A (zh) 一种电量显示的方法、装置和移动设备
JP2011519260A (ja) インピーダンスを動的に制御して電力供給を最大にする方法及び装置
CN205562768U (zh) 四端子测量电池电阻的设备
CN104730336B (zh) 频率检测装置及频率检测方法
CN114184870A (zh) 非侵入式负荷识别方法及设备
CN109273781B (zh) 电芯监测方法和电芯监测装置
JP2015042031A5 (zh)
CN109193670A (zh) 一种自供电电路的保护装置及方法
CN105425166A (zh) 一种电池电量检测方法及装置
CN107656213A (zh) 一种电池芯的智能测试方法及系统
CN203324400U (zh) 一种用电器能耗计量系统
CN203607846U (zh) 充电电池保护电路
CN202471837U (zh) 一种电池内阻测量电路
CN115015632A (zh) 谐波电压失真的纠正方法、装置、计算机设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845081

Country of ref document: EP

Kind code of ref document: A1