WO2018040620A1 - 射频消融电极装置 - Google Patents

射频消融电极装置 Download PDF

Info

Publication number
WO2018040620A1
WO2018040620A1 PCT/CN2017/085173 CN2017085173W WO2018040620A1 WO 2018040620 A1 WO2018040620 A1 WO 2018040620A1 CN 2017085173 W CN2017085173 W CN 2017085173W WO 2018040620 A1 WO2018040620 A1 WO 2018040620A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bundle
radio frequency
frequency ablation
probe tube
Prior art date
Application number
PCT/CN2017/085173
Other languages
English (en)
French (fr)
Inventor
肖波
秦杰
唐为忠
翟博
Original Assignee
迈德医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈德医疗科技(上海)有限公司 filed Critical 迈德医疗科技(上海)有限公司
Publication of WO2018040620A1 publication Critical patent/WO2018040620A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00964Features of probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Definitions

  • the invention belongs to the technical field of medical instruments, and in particular relates to a radio frequency ablation electrode device.
  • Radiofrequency ablation is a physical therapy that uses radio frequency current to excite high-speed oscillations of ions in tissues to collide with each other and generate high heat to dehydrate tumor cells and tissues to form local coagulation necrosis.
  • Radiofrequency ablation of tumors also depends on the biological characteristics of the tumor tissue itself. Due to the defects in anatomical histology, tumor tissue has the characteristics of insufficient blood supply, hypoxia, warmth and heat resistance, which provides a theoretical basis for radiofrequency ablation. Tumor tissue can not dissipate heat after absorbing heat energy, and the internal temperature rise can exceed 5 ⁇ 9 °C in healthy tissue, sometimes even as high as 10-11 °C, and it can be maintained for a long time.
  • the selective action of radiofrequency energy on cancerous tissues can achieve the goal of killing cancerous tissues without damaging normal tissues. Radiofrequency energy can also change the acidity around the tumor cells, lower the pH, enhance the lysosomal enzyme activity, and accelerate the destruction of malignant tumor cells by lysosomes.
  • RF energy is more destructive to tumor cells with strong DNA synthesis because the DNA synthesis phase is sensitive to heat.
  • cancer cells normal tissues, embryos and maternal tissues, bones or stones and soft tissues, there are differences in sensitivity to RF energy.
  • Different biological tissues produce different biological effects, which provides a prerequisite for radiofrequency ablation for solid tumors such as liver cancer, breast cancer, and malignant bone tumors.
  • J 1/4 ⁇ r2 (J is current intensity; I is current intensity; r is distance)]
  • most of the RF current is in the narrow range of the electrode 1-2mm
  • the whole is completely converted into heat energy, thus causing the local current density to be too high, resulting in local tissue temperature too high, carbonization and vaporization, blocking the conduction of radio frequency current, so that the tumor lesion can not be effectively ablated, Therefore, repeated ablation is required during the operation, which increases the difficulty of operation and the operation time.
  • the disclosure date is November 23, 2011, the application number is 201120079822.5, the Chinese utility model patent entitled “Tower type multi-layer probe radio frequency ablation electrode device for liver tumor treatment” discloses a radio frequency ablation electrode device, the radio frequency
  • the ablation electrode assembly employs a multi-layered tower probe structure that provides a larger probe opening range, deeper contact with the tumor, and increased volume of contact with the tumor.
  • radiofrequency ablation requires the formation of a current loop
  • the use of such a radiofrequency ablation electrode also requires the placement of a specific ground electrode outside the human skin, and the RF energy forms a current loop between the radiofrequency ablation electrode and the human body-ground electrode.
  • the disadvantage of this device is that the distance between the radiofrequency ablation electrode and the ground electrode is large, and the radio frequency current needs to pass through the normal tissue of the human body, and the radio frequency energy consumption is large, and the radio frequency energy will accumulate in the normal tissue of the human body, causing the patient to be unwell and may lead to the patient. Sustained fever within a few weeks after radiofrequency ablation.
  • the present invention provides a radio frequency ablation electrode device to solve the problem that the radio frequency energy consumption is large during the operation of the radio frequency ablation electrode device, and the radio frequency energy is accumulated in the normal tissue of the human body, causing the patient to be unwell.
  • a radio frequency ablation electrode device comprising a radio frequency generating device, an electrode sleeve, a probe tube, a first electrode bundle, a second electrode bundle and an operating handle;
  • the tube is fixed on the operating handle, the probe tube is disposed in the inner cavity of the electrode sleeve, and is movable relative to the electrode sleeve along the extending direction of the electrode sleeve;
  • the first electrode bundle is fixed to the probe tube away from the operation One end of the handle, the second electrode bundle is fixed at one end of the probe tube adjacent to the operation handle;
  • the first electrode bundle is insulated from the second electrode bundle;
  • the first electrode bundle is loaded with a first voltage,
  • the second electrode beam is loaded with a second voltage, the first electrode beam and the second electrode beam are applied to a human body load, the human body load is human diseased tissue;
  • the first electrode beam, the second electrode beam and the human body A current loop is formed between the diseased tissues, and the first electrode beam and the second electrode
  • the beneficial effects of the present invention are: the first electrode bundle and the second electricity
  • the pole beam is insulated; the first electrode beam is loaded with a first voltage, the second electrode beam is loaded with a second voltage, the first electrode beam and the second electrode beam are applied to a human body load, and the human body load is a human body a diseased tissue; a current loop is formed between the first electrode beam, the second electrode beam, and the human diseased tissue, and the radio frequency ablation electrode device of the present invention causes the radio frequency current to be between the first electrode beam, the second electrode beam, and the human diseased tissue Conduction, RF current does not need to pass through the normal tissue of the human body, reducing the radio frequency current conduction distance, thereby reducing the RF energy consumption, avoiding the accumulation of RF energy in the normal tissues of the human body, and improving the patient's comfort.
  • the current density of the first electrode beam and the second electrode beam of the present invention are the same, which reduces the heat loss effect of the first electrode beam and the second electrode beam during operation, and avoids the first electrode bundle and The second electrode beam affects the surgical effect due to unequal current density during radiofrequency ablation.
  • the first electrode beam of the present invention has a first working surface area
  • the second electrode beam has a second working surface area; the first working surface area is equal to the second working surface area.
  • the first electrode bundle includes a first electrode needle
  • the second electrode bundle includes a second electrode needle
  • the material of the first electrode needle or the second electrode needle is a good conductor, and the good conductor It is selected from metal or graphene.
  • the first electrode bundle includes a first electrode needle
  • the second electrode bundle includes a second electrode needle
  • the first electrode needle or the second electrode needle includes an insulating body and is coated on the insulation a conductive coating on the surface of the solid, the material of the insulating body being selected from at least one of ceramic, polymer, rubber, the material of the conductive coating being a good conductor, and the good conductor being selected from the group consisting of metal or graphene.
  • the metal is selected from at least one of stainless steel, silver, nickel alloy, titanium alloy or nickel titanium alloy to reduce heat loss in current conduction.
  • the probe tube has a first electrode beam connecting portion and a second electrode beam connecting portion, and an insulating member is disposed between the first electrode beam connecting portion and the second electrode beam connecting portion, the insulating The component insulates the first electrode bundle and the second electrode bundle from each other.
  • the insulating member includes an insulating tube and an insulating rubber ring, and the insulating tube is in the probe Extending inside the tube, the insulating rubber ring is covered on the outer side of the insulating rubber ring and exposed from the probe tube wall, and the insulating member integrally insulates the first electrode bundle and the second electrode bundle from each other and forms the radio frequency
  • the positive electrode and the negative electrode of the ablation electrode device are provided with a wire hole, and the insulated wire of the positive electrode or the negative electrode of the radio frequency ablation electrode device is connected to the first electrode beam through the wire hole.
  • the probe tube includes a first probe tube having a first electrode bundle connection portion and a second probe tube having a second electrode bundle
  • the connecting portion, the first electrode bundle connecting portion and the outer surface of the first probe tube are provided with an insulating layer that insulates the first electrode bundle and the second electrode bundle from each other.
  • a distance between the first electrode beam connecting portion and the second electrode beam connecting portion along the extending direction of the probe tube is 0 to 10 cm, so that the first electrode beam and the second electrode beam are
  • the RF current conduction distance adapts to the size of the tumor, ensures that the RF current is conducted inside the tumor tissue, and avoids the problem that the normal tissue of the human body absorbs excessive RF energy and causes the patient to be unwell.
  • the bending direction of the first electrode needle after deployment is the same as the bending direction of the second electrode needle after deployment, and the radio frequency ablation device of the radio frequency ablation device is doubled compared with the single-layer radio frequency ablation device during radiofrequency ablation. Increased and shortened the operation time.
  • the bending direction of the first electrode needle after being unfolded is opposite to the bending direction after the second electrode needle is deployed.
  • the periphery of the tumor tissue wrapped by the radiofrequency ablation device of the present invention is preferentially damaged. In order to cut off the supply of nutrients in the core area of the tumor, thereby killing the tumor cells, and effectively activate the human immune mechanism to remove the remaining tumor cells in the human body.
  • the shape of the first electrode beam or the second electrode beam is conformed to a tumor boundary, and the shape of the first electrode beam or the second electrode beam is selected from the group consisting of an umbrella shape, a claw shape, a trumpet shape, and a wave shape. At least one.
  • the cross section of the electrode needles of the first electrode bundle and the second electrode bundle of the present invention is selected from at least one of a polygon, a circle, an ellipse, and a circle-like shape.
  • the electrode needle of the first electrode beam and the electrode needle of the second electrode beam are sequentially arranged around the axis with the axis of the electrode sleeve as an axis, thereby improving the space utilization inside the electrode sleeve.
  • the probe tube is a hollow structure, and the temperature sensing sensor is disposed in the cavity of the probe tube. Device.
  • the temperature measuring sensor can feedback the temperature change in the region of 0 to 1 cm of the probe tube in real time, so as to achieve accurate monitoring and control of the heat damage temperature.
  • FIG. 1 is a schematic view showing the radio frequency ablation electrode device in a non-operating state in the first embodiment
  • FIG. 2 is a schematic view showing the first electrode bundle and the second electrode bundle of the radio frequency ablation electrode device in the first embodiment in an umbrella shape;
  • FIG. 3 is a schematic view of the first electrode beam and the second electrode beam of the radio frequency ablation electrode device of the first embodiment when it is flared;
  • FIG. 4 is a cross-sectional view showing the arrangement of the first electrode beam and the second electrode beam of the radio frequency ablation electrode device in the electrode sleeve in the first embodiment
  • FIG. 5 is a schematic diagram of a radio frequency ablation electrode device disclosed in Embodiment 2;
  • FIG. 6 is a schematic diagram of a radio frequency ablation electrode device disclosed in Embodiment 3.
  • FIG. 7 is a schematic diagram of a radio frequency ablation electrode device disclosed in Embodiment 4.
  • FIG. 8 is a schematic diagram of a radio frequency ablation electrode device disclosed in Embodiment 5.
  • FIG. 9 is a cross-sectional view showing an electrode sleeve of a radio frequency ablation electrode device disclosed in Embodiment 2 or Embodiment 3;
  • FIG. 10 is a cross-sectional view showing an electrode sleeve of a radio frequency ablation electrode device disclosed in Embodiment 4 and Embodiment 5;
  • Figure 11 is a cross-sectional view showing an electrode sleeve of a preferred embodiment of the radio frequency ablation electrode device of the sixth embodiment
  • FIG. 12 is a cross-sectional view showing an electrode sleeve of another preferred embodiment of the radio frequency ablation electrode device of Embodiment 6;
  • Figure 13 is a cross-sectional view showing the insulating member in the embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a prior art radiofrequency ablation electrode device for performing radiofrequency ablation of a liver tumor
  • FIG. 15 is a schematic diagram of a radiofrequency ablation electrode device according to an embodiment of the present invention for performing radiofrequency ablation of a liver tumor.
  • the present embodiment provides a radio frequency ablation electrode device including an electrode cannula 100, a probe tube 200, a first electrode bundle 301, a second electrode bundle 302, and an operating handle 500; 100 is fixed on the operating handle 500, the probe tube 200 is disposed in the inner cavity of the electrode sleeve 100, and is movable relative to the electrode sleeve 100 along the extending direction of the electrode sleeve 100; the first electrode bundle 301 is fixed At a side of the probe tube 200 away from the operating handle 500, the second electrode bundle 302 is fixed at one end of the probe tube 200 adjacent to the operating handle 500; the first electrode bundle 301 and the second electrode bundle 302 is insulated; in operation, the first electrode bundle 301 is loaded with a first voltage, the second electrode bundle 302 is loaded with a second voltage, and the first electrode bundle 301 and the second electrode bundle 302 are applied to a human body load,
  • the human body load is a human diseased tissue; a current loop is formed between the first electrode beam 301,
  • the radio frequency ablation electrode device of the embodiment transmits the radio frequency current between the first electrode beam, the second electrode beam and the human diseased tissue, and the radio frequency current does not need to pass through the normal tissue of the human body, thereby reducing the radio frequency current conduction distance, thereby reducing the radio frequency energy. Consumption, avoiding the accumulation of radio frequency energy in normal tissues of the human body, improving patient comfort. Further, the current density of the first electrode beam 301 and the second electrode beam 302 in the present invention are the same, thereby reducing the first electrode beam 301 and the second electrode beam 302 at work. The heat damage effect is poor, and the problem that the first electrode beam 301 and the second electrode beam 302 affect the surgical effect due to unequal current density during radiofrequency ablation is avoided.
  • the probe tube 200 has a first electrode beam connecting portion and a second electrode beam connecting portion, and the direction between the first electrode beam connecting portion and the second electrode beam connecting portion along the extending direction of the probe tube
  • the distance is 0-10 cm, so that the radio frequency current conduction distance between the first electrode beam and the second electrode beam is adapted to the size of the tumor, ensuring that the radio frequency current is conducted inside the tumor tissue, and the normal tissue absorption of the human body is avoided.
  • the RF energy causes problems with the patient's physical discomfort.
  • the distance between the first electrode beam connecting portion and the second electrode beam connecting portion along the extending direction of the probe tube is 0.
  • the first electrode bundle 301 is fixed to the probe tube 200.
  • the fixing method is welding, and the outer side of the connection point of the first electrode bundle 301 and the probe tube 200 is provided with an insulating member 201, and the second electrode bundle 302 is fixed to the outside of the insulating member 201 in a fixing manner by welding or snap connection.
  • the distance between the tip end of the first electrode needle and the second electrode needle of the present invention is less than 1 cm.
  • the radio frequency ablation electrode device of the embodiment transmits the radio frequency current between the first electrode beam, the second electrode beam and the human diseased tissue, so that the conduction distance of the radio frequency current is reduced from 10-20 cm to less than 10 cm in the prior art. Increased RF energy utilization, improved RF ablation efficiency and reduced patient discomfort.
  • the human diseased tissue is a tumor.
  • the tumor includes one or more of a lung tumor, a liver tumor, a thyroid tumor, or a breast tumor.
  • the shape of the first electrode bundle or the second electrode bundle is at least one selected from the group consisting of an umbrella shape, a claw shape, a flare shape, and a wave shape.
  • the shape of the first electrode bundle 301 and the second electrode bundle 302 after unfolding is an umbrella shape or a trumpet shape, and the electrode needles have the same bending direction.
  • the first electrode needle and the second electrode needle have a cross section selected from at least one of a quadrangle, a circle, and an ellipse.
  • the cross section of the first electrode needle and the second electrode needle is selected from a quadrilateral shape, preferably an isosceles trapezoid, and the four corners of the isosceles trapezoid are chamfered.
  • the upper base of the isosceles trapezoid and the lengths of the two waists are equal, and the length of the upper base is equal to 1/2 of the length of the lower base. As shown in FIG.
  • the electrode pins of the first electrode bundle 301 are sequentially arranged around the axis with the axis of the electrode sleeve 100 as an axis, thereby improving the internal space of the electrode sleeve 100. Utilization rate.
  • the first electrode beam is wound around the axis about one axis, and the electrode pins of the second electrode beam 302 are arranged outside the first electrode bundle 301 and the first electrode bundle 301 and An insulating member 201 is disposed between the second electrode bundles 302.
  • the number of the first electrode needles in the present invention is 8-16
  • the number of the second electrode needles is 8-16
  • the distance between the ends of the first electrode needles is less than 1 cm
  • the end of the second electrode needle The spacing is less than 1cm
  • the tumor tissue is heated evenly during the radiofrequency ablation operation, the heat damage efficiency is improved, the heat loss and omission can be reduced, the number of supplemental heat damage is reduced, the patient's discomfort is reduced, and the work efficiency is improved. , shortened the operation time.
  • the number of the first electrode pins and the number of the second electrode pins of the present invention may be the same or different.
  • the number of electrode pins of the first electrode bundle 301 and the second electrode bundle 302 is eight.
  • the distance from the first electrode beam connecting portion to the second electrode beam connecting portion in the embodiment is 3 to 5 cm, and the first electrode bundle is fixed at one end of the probe tube away from the operating handle 500.
  • the second electrode bundle is fixed at one end of the operation handle 500 adjacent to the probe tube, and an insulating member 201 is disposed between the first electrode bundle connecting portion and the second electrode bundle connecting portion, and the insulating member 201
  • the first electrode bundle 301 and the second electrode bundle 302 are insulated from each other; the first electrode bundle 301 is loaded with a first voltage, the second electrode bundle 302 is loaded with a second voltage, and the first electrode bundle 301 is coupled to the second
  • the electrode beam 302 acts on a human body load, and the human body load is a human diseased tissue; a current loop is formed between the first electrode beam 301, the second electrode beam 302, and the human diseased tissue.
  • the radio frequency ablation electrode device of the embodiment transmits the radio frequency current between the first electrode beam, the second electrode beam and the human diseased tissue, and the radio frequency current in the working process of the radio frequency ablation electrode device in the embodiment does not need to pass through the human body.
  • the organization reduces the radio frequency energy consumption, improves the patient's comfort, and can effectively avoid the problem of continuous fever after surgery.
  • the first electrode bundle 301 of the present embodiment has a first working surface area
  • the second electrode bundle 302 has a second working surface area; the first working surface area is equal to the second working surface area.
  • the first working surface area refers to a surface area in which the first electrode beam 301 can generate a heat damage effect portion
  • the second working surface area refers to a surface area in which the second electrode beam 302 can generate a heat damage effect portion
  • the first A working surface area equal to the second working surface area means that the difference between the first working surface area and the second working surface area is less than ⁇ 3%.
  • the first electrode bundle 301 includes a first electrode needle
  • the second electrode bundle 302 includes a second electrode needle
  • the material of the first electrode needle or the second electrode needle is a good conductor.
  • the good conductor is selected from stainless steel.
  • the probe tube of this embodiment has a first electrode beam connecting portion and a second electrode beam connecting portion, and an insulating member 201 is disposed between the first electrode beam connecting portion and the second electrode beam connecting portion, and the insulating member
  • the first electrode bundle 301 and the second electrode bundle 302 are insulated from each other.
  • the insulating component of the embodiment includes an insulating tube 221 and an insulating rubber ring 211.
  • the insulating tube 221 extends inside the probe tube 200, and the insulating rubber ring 211 covers the insulating layer.
  • the outer side of the tube is exposed from the wall of the probe tube, and the insulating member 201 integrally insulates the first electrode bundle 301 and the second electrode bundle 302 from each other and forms a positive electrode and a negative electrode of the radio frequency ablation electrode device, the insulation
  • a wire hole is disposed in the tube, and the insulated wire of the positive electrode or the negative electrode of the radio frequency ablation electrode device is connected to the first electrode beam through the wire hole.
  • the probe tube includes a first probe tube and a second probe tube, the first probe tube having a first electrode bundle connection portion, and the second probe tube Having a second electrode bundle connecting portion, the first electrode bundle connecting portion and an outer surface of the first probe tube are provided with an insulating layer, the insulating layer connecting the first electrode bundle and the second electrode bundle to each other insulation.
  • the first probe tube and the second probe tube are hollow structures, and a temperature measuring sensor is disposed in the hollow cavity of the probe tube. The temperature measuring sensor can feedback the temperature change in the region of 0 to 1 cm immediately adjacent to the first probe tube and the second probe tube in real time, so as to achieve accurate monitoring and control of the heat damage temperature.
  • the shapes of the first electrode bundle 301 and the second electrode bundle 302 after unfolding are all umbrella-shaped, and the bending directions of the electrode needles are the same after deployment, and the radio frequency of the radio frequency ablation device during radiofrequency ablation The ablation efficiency is multiplied by the single-layer radiofrequency ablation device, which shortens the operation time.
  • the bending direction of the first electrode needle after deployment is opposite to the bending direction of the second electrode needle after deployment, and when performing radiofrequency ablation of the tumor, priority is given to The periphery of the tumor tissue wrapped by the radiofrequency ablation device is thermally destroyed to cut off the nutrient supply in the core region of the tumor, thereby killing the tumor cells, and effectively activating the human immune mechanism to remove the remaining tumor cells in the human body.
  • the working surface areas of the first electrode beam 301 and the second electrode beam 302 are kept the same to avoid a large current difference between the first electrode beam 301 and the second electrode beam 302, resulting in overheating of one pole. Cold, affecting the surgical effect; in addition, the first electrode beam 301 and the second electrode beam 302 of the present example form a two-layer structure, and the radio frequency ablation efficiency is doubled with respect to the single layer structure.
  • the electrode needles of the first electrode bundle 301 and the second electrode bundle 302 are in an isosceles trapezoid, and the four corners of the isosceles trapezoid are chamfered.
  • the upper base of the isosceles trapezoid and the lengths of the two waists are equal, and the length of the upper base is equal to 1/2 of the length of the lower base, and the electrode needle and the second electrode bundle of the first electrode bundle 301 are
  • the electrode pins of 302 are sequentially arranged with the axis of the electrode cannula 100 as an axis, and are arranged one turn around the axis.
  • the number of electrode pins of the first electrode bundle 301 and the second electrode bundle 302 is eight.
  • the electrode needles of the embodiment are designed to have an isosceles trapezoidal cross section, and are arranged in series around the axis, thereby improving the space utilization inside the electrode sleeve 100, increasing the number of electrode pins, and making the electrode needle ends.
  • the distance is less than 1cm, the tumor tissue is heated evenly during the radiofrequency ablation operation, which improves the heat damage efficiency, reduces the heat loss and omission, reduces the number of supplemental heat damage, reduces the patient's discomfort, and improves the work efficiency. Shortened the operation time.
  • the difference between this embodiment and the second embodiment is that the first electrode bundle includes a first electrode needle, and the second electrode bundle includes a second electrode needle, and the first electrode needle or the
  • the second electrode needle includes an insulating body and a conductive coating coated on the surface of the insulating body.
  • the material of the insulating body of the present invention is selected from at least one of ceramic, polymer, and rubber. Specifically, the embodiment The material of the insulating body is selected from ceramics.
  • the material of the conductive coating of the present invention is a good conductor, and the good conductor is selected from metal or graphene.
  • the good conductor in the embodiment is selected from the group consisting of silver and First electrode of the embodiment
  • the needle or the second electrode needle is composed of a ceramic material and a silver coating layer, thereby avoiding the problem that the first electrode needle or the second electrode needle is too low in hardness and the puncture force is small, and the excellent electrical conductivity and thermal conductivity of the silver are utilized.
  • the anti-bacterial and anti-inflammatory properties that is, the radiofrequency ablation effect is improved, and the wound infection is prevented, and the surgical effect is improved.
  • the first electrode bundle 301 and the second electrode bundle 302 of the present embodiment have a flared shape, and the electrode needles of the first electrode bundle 301 and the second electrode bundle 302 have a hollow needle-like structure.
  • a temperature measuring sensor is arranged to feedback the temperature of the heat damaged area in real time, and the electromagnetic frequency of the radio frequency ablation is adjusted according to the temperature feedback condition to realize the radio frequency ablation temperature. Precise control.
  • the temperature measuring sensor can feedback the temperature change in the region of 0 to 1 cm of the electrode needle in real time, so as to achieve accurate monitoring and control of the heat damage temperature.
  • the difference between the radio ablation device of the present embodiment and the second embodiment is that the first electrode beam 301 of the present embodiment has an umbrella structure after being unfolded, and the second electrode beam 302 is flared and has a flared structure.
  • the tumor tissue can be wrapped to thermally damage the periphery of the tumor tissue, and the nutrient supply of the tumor cells in the core region of the tumor is cut off, and the immune mechanism of the human body can be effectively activated, and the human immune cells are killed. Participating tumor cells.
  • the radio frequency ablation electrode device of the embodiment is suitable for a large tumor tissue, so the distance from the first electrode beam connecting portion to the second electrode beam connecting portion is 5 to 10 cm.
  • the cross-sections of the electrode pins of the first electrode beam 301 and the second electrode beam 302 in this embodiment are both designed as an isosceles trapezoidal structure, and the four corners of the isosceles trapezoid are provided with chamfers.
  • the said The upper base of the waist trapezoid and the length of the two waists are equal, and the length of the upper base is equal to 1/2 of the length of the lower base, and the electrode needle of the first electrode bundle 301 and the electrode needle of the second electrode bundle 302 are
  • the axial center of the electrode cannula 100 is sequentially arranged in the axial direction, and is arranged in two rotations around the axis.
  • the number of electrode needles of the first electrode bundle 301 and the second electrode bundle 302 described in this embodiment is 16.
  • This embodiment improves the space utilization inside the electrode sleeve 100, further increases the number of arrangement of the electrode pins, so that the distance between the ends of the electrode pins is less than 1 cm, and the range of radio frequency ablation is larger, and the radio frequency is performed.
  • the ablation operation the tumor tissue is heated evenly, the heat damage efficiency is improved, the heat loss and omission are reduced, the number of supplemental heat damage is reduced, the patient's discomfort is reduced, the work efficiency is improved, and the operation time is shortened.
  • the radiofrequency ablation electrode device is used to preferentially damage the periphery of the tumor tissue to cut off the nutrient supply in the core region of the tumor, the operation time is short, and the human immune mechanism can be effectively activated to kill the remaining tumor cells.
  • the radio ablation device and method provided by the embodiment avoids the problem that the heat-damaged residue adheres to the surface of the electrode needle after the radio ablation time is long, which affects the radio frequency current conduction.
  • the difference between the radio frequency ablation device of the present embodiment and the fourth embodiment is that the second electrode beam 302 of the present embodiment has a claw-shaped structure after being unfolded, and the first electrode beam 301 is still an umbrella structure after being deployed.
  • the first electrode beam 301 and the second electrode beam 302 are expanded to have a larger area for radiofrequency ablation heat damage, and a larger volume of tumor tissue can be wrapped to thermally damage the periphery of the tumor tissue, and the tumor core region tumor is cut off.
  • the nutrient supply of the cells can effectively activate the human immune mechanism and kill the participating tumor cells by means of human immune cells.
  • the radio frequency ablation device of the present embodiment processes the electrode needle of the first electrode beam 301 or the second electrode beam 302 into a hollow structure on the basis of the fourth embodiment or the fifth embodiment.
  • the cross section of the hollow cavity may be circular or polygonal.
  • the cavity is provided with a sensor for monitoring the temperature change of the electrode needle and the heat-damaged area during the radiofrequency ablation process, and adjusting the radio frequency ablation electromagnetic frequency according to the temperature feedback condition to achieve precise control of the radio frequency ablation temperature.
  • FIG. 14 and FIG. 15 respectively show schematic diagrams of the radiofrequency ablation device of the prior art and the embodiment of the present invention when performing liver tumor radiofrequency ablation surgery.
  • 101 is an electrode needle of a radio frequency ablation device in the prior art
  • 501 is an electrode handle of a radio frequency ablation device in the prior art
  • 600 is a human skin
  • 700 is a ground electrode
  • 800 is a current line flowing through the human body
  • 15 , 800 is a radio frequency ablation electrode device according to an embodiment of the present invention, flowing through the human body during operation Current line.
  • the radio frequency current during the operation of the radio frequency ablation electrode device does not need to pass through the normal tissue of the human body, which is greatly reduced.
  • the RF current conduction distance reduces the RF energy consumption, avoids the accumulation of RF energy in the normal tissues of the human body, and improves the patient's comfort.
  • the distance from the first electrode beam connecting portion to the second electrode beam connecting portion is 2 to 5 cm.
  • the present invention can provide different radio frequency ablation electrode devices according to the tumor size, so that the first electrode beam
  • the radio frequency current conduction distance between the second electrode beam and the second electrode beam is adapted to the size of the tumor, ensuring that the radio frequency current is conducted inside the tumor tissue, thereby avoiding the problem that the normal tissue of the human body absorbs excessive radio frequency energy and causes the patient to be unwell.
  • the working current density of the first electrode beam and the second electrode beam are the same in the embodiment of the present invention, which reduces the heat loss effect of the first electrode beam and the second electrode beam during operation, and avoids The first electrode beam and the second electrode beam affect the surgical effect due to unequal current density during radiofrequency ablation.
  • the difference between the radio ablation device of the present embodiment and the third embodiment is that the first electrode beam 301 or the second electrode beam 302 of the present embodiment has a wave-shaped structure after being developed, and the wavy structure refers to the first electrode bundle 301 or The ends of the electrode needles after the second electrode bundle 302 is unfolded are alternately located on the circumference of two circles of unequal diameters, so that the shape of the first electrode bundle or the second electrode bundle is conformed to the tumor boundary, and the embodiment is
  • the radiofrequency ablation device can be used for radiofrequency ablation of tumor tissue of different shapes and sizes when used, and does not require repeated replacement of different sizes of radiofrequency ablation devices during reoperation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种射频消融电极装置,包括射频发生装置、电极套管(100)、探针管(200)、第一电极束(301)、第二电极束(302)和操作手柄(500);电极套管(100)固定在操作手柄(500)上,探针管(200)设置在电极套管(100)的内腔,并且可沿电极套管(100)的延伸方向相对电极套管(100)进行移动;第一电极束(301)固定在探针管(200)远离操作手柄(500)的一端,第二电极束(302)固定在探针管(200)靠近操作手柄(500)的一端;第一电极束(301)与第二电极束(302)绝缘;第一电极束(301)加载第一电压,第二电极束(302)加载第二电压,第一电极束(301)与第二电极束(302)作用于人体病变组织;第一电极束(301)、第二电极束(302)和人体病变组织之间形成电流回路,第一电极束(301)和第二电极束(302)的工作电流密度相同。该装置在工作过程中降低了射频能量的消耗,减少病人身体的不适和术后持续发热的问题。

Description

射频消融电极装置 技术领域
本发明属于医疗器械技术领域,尤其涉及一种射频消融电极装置。
背景技术
射频消融治疗(radiofrequency ablation,RFA)是利用射频电流激发组织中的离子高速振荡相互碰撞、摩擦而产生高热使肿瘤组织细胞、组织脱水形成局部性凝固坏死治疗肿瘤的一种物理疗法。
射频消融治疗肿瘤还取决于肿瘤组织自身的生物学特性。肿瘤组织由于在解剖组织学上的缺陷,存在供血不足,缺氧,偏暖,不耐热等特点,为射频消融治疗提供了理论基础。肿瘤组织吸收热能后无法散热,内部温度升高可超出健康组织5~9℃,有时甚至高达10~11℃,且维持较长时间。射频能量对癌瘤组织的选择性作用,可以使其达到杀灭癌组织而不损伤正常组织的目的。射频能量还可以改变肿瘤细胞周围环境酸度,降低PH值,加强溶酶体酶活性,加速溶酶体对恶性肿瘤细胞的破坏。射频能量对DNA合成旺盛的肿瘤细胞更具破坏力,因为DNA合成期对热度敏感。不仅存在于癌细胞与正常组织之间,胚胎与母体组织,骨质或结石与软组织,都存在对射频能量敏感性的差异性。不同生物组织产生不同的生物学效应,这为射频消融治疗肝癌,乳腺癌,恶性骨肿瘤等实体肿瘤提供了先决条件。
鉴于微创方面因素的考虑,电极针状电极的体积受到限制,电极套管中束状电极的电极针的的数量有限,电极针间的空隙较大,然而,按照电流在组织中随着距离的增加按1/2r的方式的衰减定律[J=1/4πr2(J为电流强度;I为电流强度;r为距离)],绝大部分射频电流在紧靠电极1-2mm狭窄范围的组织中就完全转变成热能,因此造成局部电流密度过高,从而导致局部组织温度过高、碳化和汽化,阻断射频电流的传导,使肿瘤病灶不能有效消融, 因此手术过程中需要反复补充消融,增加了手术操作难度和手术时间。
公开日为2011年11月23日,申请号为201120079822.5,名称为“肝脏肿瘤治疗用塔式多层探针射频消融电极装置”的中国实用新型专利,公开了一种射频消融电极装置,该射频消融电极装置采用多层塔式的探针结构,该多层塔式的探针结构的作用是提供更大的探针张开范围,与肿瘤进行深度的接触,增加与肿瘤接触的体积。但是,由于射频消融需要形成电流回路,使用这种射频消融电极还需要在人体皮肤外设置特定的地电极,射频能量在射频消融电极-人体-地电极之间形成电流回路。这种装置的缺点是射频消融电极与地电极的距离较大,且射频电流需要经过人体正常组织,射频能量消耗大,射频能量会在人体正常组织中积累,引起病人身体不适,并可导致病人在经射频消融手术后数周内持续发热。
发明内容
针对现有技术的缺点,本发明提供了一种射频消融电极装置,以解决射频消融电极装置工作过程中射频能量消耗大,射频能量会在人体正常组织中积累,引起病人身体不适的问题。
本发明的目的是通过以下的技术方案实现的:一种射频消融电极装置,包括射频发生装置、电极套管、探针管、第一电极束、第二电极束和操作手柄;所述电极套管固定在操作手柄上,所述探针管设置在电极套管内腔,并且可沿电极套管的延伸方向相对电极套管进行移动;所述第一电极束固定在探针管远离所述操作手柄的一端,所述第二电极束固定在探针管近邻所述操作手柄的一端;所述第一电极束与所述第二电极束绝缘;所述第一电极束加载第一电压,所述第二电极束加载第二电压,所述第一电极束与所述第二电极束作用于人体负载,所述人体负载为人体病变组织;所述第一电极束、第二电极束和人体病变组织之间形成电流回路,所述第一电极束和所述第二电极束的工作电流密度相同。
与现有技术相比,本发明的有益效果在于:所述第一电极束与所述第二电 极束绝缘;所述第一电极束加载第一电压,所述第二电极束加载第二电压,所述第一电极束与所述第二电极束作用于人体负载,所述人体负载为人体病变组织;所述第一电极束、第二电极束和人体病变组织之间形成电流回路,本发明的射频消融电极装置使射频电流在第一电极束、第二电极束和人体病变组织之间传导,射频电流不需要经过人体正常组织,减少了射频电流传导距离,进而减少了射频能量消耗,避免了射频能量在人体正常组织中积累,提高了病人的舒适度。此外,本发明所述第一电极束与所述第二电极束的电流密度相同,减少了第一电极束和第二电极束在工作时的热损毁效应差,避免了因为第一电极束和第二电极束在射频消融过程中由于电流密度不等而影响手术效果。
进一步的,本发明所述第一电极束具有第一工作表面积,所述第二电极束具有第二工作表面积;所述第一工作表面积与所述第二工作表面积相等。以避免第一电极束和第二电极束之间产生较大的电流差,导致一极过热,一极过冷,影响手术效果。
进一步的,所述第一电极束包括第一电极针,所述第二电极束包括第二电极针,所述第一电极针或所述第二电极针的材料为良导体,所述良导体选自金属或石墨烯。
进一步的,所述第一电极束包括第一电极针,所述第二电极束包括第二电极针,所述第一电极针或所述第二电极针包括绝缘实体和涂覆在所述绝缘实体表面的导电涂层,所述绝缘实体的材料选自陶瓷、聚合物、橡胶中的至少一种,所述导电涂层的材料为良导体,所述良导体选自金属或石墨烯。
进一步的,所述金属选自不锈钢、银、镍合金、钛合金或镍钛合金中的至少一种,以减少电流传导中的热损失。
进一步的,所述探针管具有第一电极束连接部与第二电极束连接部,所述第一电极束连接部与所述第二电极束连接部之间设置有绝缘部件,所述绝缘部件将所述第一电极束和第二电极束彼此绝缘。
进一步的,所述绝缘部件包括绝缘管和绝缘胶圈,所述绝缘管在所述探针 管内延伸,所述绝缘胶圈覆盖在所述绝缘胶圈的外侧并从探针管壁裸露出来,所述绝缘部件整体将所述第一电极束和第二电极束彼此绝缘并形成所述射频消融电极装置的正极和负极,所述绝缘管内设有过线孔,所述射频消融电极装置的正极或负极的绝缘导线通过过线孔与第一电极束连接。
进一步的,所述探针管包括第一探针管和第二探针管,所述第一探针管上具有第一电极束连接部,所述第二探针管上具有第二电极束连接部,所述第一电极束连接部和第一探针管的外表面设置有绝缘层,所述绝缘层将所述第一电极束和所述第二电极束彼此绝缘。
进一步的,所述第一电极束连接部与第二电极束连接部之间沿着探针管延伸方向的距离为0~10cm,以使所述第一电极束和所述第二电极束之间的射频电流传导距离适应肿瘤的大小,保证射频电流在肿瘤组织内部传导,避免了人体正常组织吸收过多的射频能量,而导致病人身体不适的问题。
进一步的,所述第一电极针展开后的弯曲方向与第二电极针展开后的弯曲方向相同,在射频消融过程中,所述射频消融装置的射频消融效率相对单层射频消融装置成倍的增加,缩短了手术时间。
进一步的,所述第一电极针展开后的弯曲方向与第二电极针展开后的弯曲方向相反,进行肿瘤射频消融手术时,优先对本发明射频消融装置所包裹的肿瘤组织的外围进行热损毁,以切断肿瘤核心区域的养分供给,进而杀死肿瘤细胞,并能有效激活人体免疫机制来清除人体内剩余的肿瘤细胞。
进一步的,所述第一电极束或第二电极束的形状与肿瘤边界适型,所述第一电极束或第二电极束的形状选自伞状、爪形、喇叭状、波浪形中的至少一种。
进一步的,本发明所述第一电极束和第二电极束的电极针的横截面选自多边形、圆形、椭圆形、类圆形中的至少一种。
进一步的,所述的第一电极束的电极针和第二电极束的电极针以电极套管的轴心为轴依次绕轴排列,提高了电极套管内部的空间利用率。
进一步的,所述探针管为中空结构,所述探针管的中空腔内设有测温传感 器。所述测温传感器能实时反馈紧靠探针管0~1cm区域内的温度变化,以便实现热损毁温度的精确监测和控制。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例一中射频消融电极装置非工作状态时的示意图;
图2为实施例一中射频消融电极装置的第一电极束和第二电极束以伞状展开时的示意图;
图3为实施例一中射频消融电极装置的第一电极束和第二电极束以喇叭状展开时的示意图;
图4为实施例一中射频消融电极装置的第一电极束和第二电极束在电极套管内排列的剖面图;
图5为实施例二公开的射频消融电极装置的示意图;
图6为实施例三公开的射频消融电极装置的示意图;
图7为实施例四公开的射频消融电极装置的示意图;
图8为实施例五公开的射频消融电极装置的示意图;
图9为实施例二或实施例三公开的射频消融电极装置的电极套管的剖面图;
图10为实施例四和实施例五公开的射频消融电极装置的电极套管的剖面图;
图11为实施例六中射频消融电极装置的一种优选方案的电极套管的剖面图;
图12为实施例六中射频消融电极装置的另一种优选方案的电极套管的剖面图;
图13为本发明实施例中所述绝缘部件的剖面图;
图14为现有技术中射频消融电极装置进行肝肿瘤射频消融时的示意图;
图15为本发明实施例的射频消融电极装置进行肝肿瘤射频消融时的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
参考图1~4,本实施例提供了一种射频消融电极装置,包括电极套管100、探针管200、第一电极束301、第二电极束302和操作手柄500;所述电极套管100固定在操作手柄500上,所述探针管200设置在电极套管100的内腔,并且可沿电极套管100的延伸方向相对电极套管100进行移动;所述第一电极束301固定在探针管200远离所述操作手柄500的一端,所述第二电极束302固定在探针管200近邻所述操作手柄500的一端;所述第一电极束301与所述第二电极束302绝缘;工作中,所述第一电极束301加载第一电压,所述第二电极束302加载第二电压,所述第一电极束301与所述第二电极束302作用于人体负载,所述人体负载为人体病变组织;所述第一电极束301、第二电极束302和人体病变组织之间形成电流回路,所述第一电极束301和所述第二电极束302的工作电流密度相同。本实施例的射频消融电极装置使射频电流在第一电极束、第二电极束和人体病变组织之间传导,射频电流不需要经过人体正常组织,减少了射频电流传导距离,进而减少了射频能量消耗,避免了射频能量在人体正常组织中积累,提高了病人的舒适度。此外,本发明中的第一电极束301和第二电极束302的电流密度相同,从而减少第一电极束301和第二电极束302在工作 时的热损毁效应差,避免了因为第一电极束301和第二电极束302在射频消融过程中由于电流密度不等而影响手术效果的问题。
本发明中,所述探针管200具有第一电极束连接部与第二电极束连接部,所述第一电极束连接部与第二电极束连接部之间沿着探针管延伸方向的距离为0~10cm,以使所述第一电极束和所述第二电极束之间的射频电流传导距离适应肿瘤的大小,保证射频电流在肿瘤组织内部传导,避免了人体正常组织吸收过多的射频能量,而导致病人身体不适的问题。
本实施例中,所述第一电极束连接部与第二电极束连接部之间沿着探针管延伸方向的距离为0,具体的,所述第一电极束301固定在探针管200上,固定方式为焊接,第一电极束301与探针管200连接点的外侧设置有绝缘部件201,所述第二电极束302固定在绝缘部件201外侧,固定方式为焊接或卡扣连接。
本发明的第一电极针和第二电极针的针尖末端的距离小于1cm。本实施例的射频消融电极装置使射频电流在第一电极束、第二电极束和人体病变组织之间传导,使射频电流的传导距离从现有技术的10~20cm降低到10cm以下,极大的提高了射频能量的利用率,提高了射频消融效率并减少了病人的不适感。所述人体病变组织为肿瘤。所述肿瘤包括肺肿瘤、肝肿瘤、甲状腺肿瘤或乳腺肿瘤中的一种或者多种。
本发明中,所述第一电极束或第二电极束的形状选自伞状、爪形、喇叭状、波浪形中的至少一种。具体地,在本实施例中,所述第一电极束301与第二电极束302展开后的形状为伞状或喇叭状,且电极针的弯曲方向相同。
本发明中,所述第一电极针和所述第二电极针的横截面选自四边形、圆形、椭圆形中的至少一种。具体地,在本实施例中,所述第一电极针和所述第二电极针的横截面选自四边形,优选地,为等腰梯形,所述等腰梯形的四个角设置有倒角,具体的,所述等腰梯形的上底和两个腰的长度相等,且所述上底的长度等于下底长度的1/2。如图4所示,本实施例中,所述的第一电极束301的电极针以电极套管100的轴心为轴依次绕轴排列,提高了电极套管100内部的空 间利用率。具体地,本实施例子中,所述第一电极束围绕所述轴心绕轴1圈,所述第二电极束302的电极针排列在第一电极束301的外侧且第一电极束301和第二电极束302之间设置有绝缘部件201。
本发明所述的第一电极针的数量为8~16个,所述第二电极针的数量为8~16个,所述第一电极针末端的间距小于1cm,所述第二电极针末端的间距小于1cm,在进行射频消融手术时,使肿瘤组织受热均匀,提高了热损毁效率,并且可以减少热损毁遗漏,减少了补充热损毁的次数,减轻了病人的不适感,提高了工作效率,缩短了手术时间。具体地,本发明所述的第一电极针的数量与所述第二电极针的数量可以相同也可以不同。在本实施例中,所述的第一电极束301和第二电极束302的电极针的数量均为8个。
实施例二
如图5所示,本实施例所述第一电极束连接部到第二电极束连接部的距离为3~5cm,所述第一电极束固定在探针管远离所述操作手柄500的一端,所述第二电极束固定在探针管近邻所述操作手柄500的一端,第一电极束连接部和第二电极束连接部之间设置有绝缘部件201,所述绝缘部件201将所述第一电极束301和第二电极束302彼此绝缘;所述第一电极束301加载第一电压,所述第二电极束302加载第二电压,所述第一电极束301与所述第二电极束302作用于人体负载,所述人体负载为人体病变组织;所述第一电极束301、第二电极束302和人体病变组织之间形成电流回路。本实施例的射频消融电极装置使射频电流在第一电极束、第二电极束和人体病变组织之间传导,本实施例所述的射频消融电极装置工作过程中的射频电流不需要经过人体正常组织,减少了射频能量消耗,提高了病人的舒适度,并能有效避免病人术后持续发热的问题。
本实施例所述第一电极束301具有第一工作表面积,所述第二电极束302具有第二工作表面积;所述第一工作表面积与所述第二工作表面积相等。所述第一工作表面积指第一电极束301可以产生热损毁效应部分的表面积,所述第二工作表面积指第二电极束302可以产生热损毁效应部分的表面积,所述第一 工作表面积与所述第二工作表面积相等是指第一工作表面积和第二工作表面积的差值小于±3%。
本实施例所述第一电极束301包括第一电极针,所述第二电极束302包括第二电极针,所述第一电极针或所述第二电极针的材料为良导体,所述良导体选自不锈钢。
本实施例所述探针管具有第一电极束连接部和第二电极束连接部,所述第一电极束连接部和第二电极束连接部之间设置有绝缘部件201,所述绝缘部件201将所述第一电极束301和第二电极束302彼此绝缘。
请一并参考图13,本实施例所述绝缘部件包括绝缘管221和绝缘胶圈211,所述绝缘管221在所述探针管200内延伸,所述绝缘胶圈211覆盖在所述绝缘管的外侧并从探针管壁裸露出来,所述绝缘部件201整体将所述第一电极束301和第二电极束302彼此绝缘并形成所述射频消融电极装置的正极和负极,所述绝缘管内设有过线孔,所述射频消融电极装置的正极或负极的绝缘导线通过过线孔与第一电极束连接。
在本发明其他优选实施例中,所述探针管包括第一探针管和第二探针管,所述第一探针管上具有第一电极束连接部,所述第二探针管上具有第二电极束连接部,所述第一电极束连接部和第一探针管的外表面设置有绝缘层,所述绝缘层将所述第一电极束和所述第二电极束彼此绝缘。进一步的,所述第一探针管和所述第二探针管为中空结构,所述探针管的中空腔内设有测温传感器。所述测温传感器能实时反馈紧靠第一探针管和第二探针管0~1cm区域内的温度变化,以便实现热损毁温度的精确监测和控制。
本实施例中,所述第一电极束301和第二电极束302展开后的形状均为伞形,且展开后电极针的弯曲方向相同,在射频消融过程中,所述射频消融装置的射频消融效率相对单层射频消融装置成倍的增加,缩短了手术时间。当然,在本发明的其他优选实施方式中,进一步地,所述第一电极针展开后的弯曲方向与第二电极针展开后的弯曲方向相反,进行肿瘤射频消融手术时,优先对本 发明射频消融装置所包裹的肿瘤组织的外围进行热损毁,以切断肿瘤核心区域的养分供给,进而杀死肿瘤细胞,并能有效激活人体免疫机制来清除人体内剩余的肿瘤细胞。
本实施例保持第一电极束301和第二电极束302的工作表面积相同,以避免第一电极束301和第二电极束302之间产生较大的电流差,导致一极过热,一极过冷,影响手术效果;此外,本实例的所述第一电极束301与所述第二电极束302形成双层结构,射频消融效率相对单层结构提高了一倍。
如图9所示,本实施例中,所述第一电极束301和第二电极束302的电极针的横截面为等腰梯形,所述等腰梯形的四个角设置有倒角,具体的,所述等腰梯形的上底和两个腰的长度相等,且所述上底的长度等于下底长度的1/2,所述的第一电极束301的电极针和第二电极束302的电极针以电极套管100的轴心为轴依次排列,绕轴排列1圈。
本实施例中,所述的第一电极束301和第二电极束302的电极针的数量均为8个。
本实施例所述的电极针设计成横截面为等腰梯形的结构,并绕轴依次排列,提高了电极套管100内部的空间利用率,增加了电极针的排列数量,使电极针末端的间距小于1cm,在进行射频消融手术时,使肿瘤组织受热均匀,提高了热损毁效率,并且可以减少热损毁遗漏,减少了补充热损毁的次数,减轻了病人的不适感,提高了工作效率,缩短了手术时间。
实施例三
参考图6,本实施例与实施例二的区别在于,本实施例所述第一电极束包括第一电极针,所述第二电极束包括第二电极针,所述第一电极针或所述第二电极针包括绝缘实体和涂覆在所述绝缘实体表面的导电涂层,本发明所述绝缘实体的材料选自陶瓷、聚合物、橡胶中的至少一种,具体的,本实施例中的绝缘实体的材料选自陶瓷,本发明所述导电涂层的材料为良导体,所述良导体选自金属或石墨烯,具体的,本实施例中所述良导体选自银,本实施例的第一电极 针或第二电极针由陶瓷材料和银涂层组成,避免了单纯使用银导致第一电极针或第二电极针硬度过低,穿刺力小的问题,同时利用了银优良的导电、导热性能和抗菌消炎的性能,即提高了射频消融效果,又能防止伤口感染,提高了手术效果。
本实施例的第一电极束301和第二电极束302展开后的形状为喇叭状,第一电极束301和第二电极束302的电极针为中空针状结构。本实施例的电极针的中空腔和探针管200内的中空腔内均设有测温传感器,以便实时反馈热损毁区域温度,并根据温度反馈情况及时调整射频消融电磁频率,实现射频消融温度的精确控制。具体地,本实施例子中,所述测温传感器能实时反馈紧靠电极针0~1cm区域内的温度变化,以便实现热损毁温度的精确监测和控制。
实施例四
参考图7,本实施例的射频消融装置与实施例二的区别在于,本实施例的第一电极束301展开后为伞状结构,第二电极束302展开后为喇叭状结构,第一电极束301和第二电极束302展开后可将肿瘤组织包裹起来,对肿瘤组织的外围进行热损毁,切断肿瘤核心区域肿瘤细胞的养分供给,并能有效激活人体免疫机制,借助人体免疫细胞杀死参与的肿瘤细胞。
本实施例的射频消融电极装置适用于体积较大的肿瘤组织,因此第一电极束连接部到第二电极束连接部的距离为5~10cm,为了增强电极针的穿刺力度,参考图10,本实施例中的第一电极束301与第二电极束302的电极针的横截面均设计为等腰梯形结构,所述等腰梯形的四个角设置有倒角,具体的,所述等腰梯形的上底和两个腰的长度相等,且所述上底的长度等于下底长度的1/2,所述的第一电极束301的电极针和第二电极束302的电极针以电极套管100的轴心为轴依次排列,绕轴排列2圈,本实施例所述的第一电极束301和第二电极束302的电极针的数量均为16个。
本实施例提高了电极套管100内部的空间利用率,进一步增加了电极针的排列数量,使电极针末端的间距小于1cm,且射频消融的范围更大,在进行射频 消融手术时,使肿瘤组织受热均匀,提高了热损毁效率,并且可以减少热损毁遗漏,减少了补充热损毁的次数,减轻了病人的不适感,提高了工作效率,缩短了手术时间。
进一步的,本实施例中,使用射频消融电极装置优先对肿瘤组织的外围进行热损毁,以切断肿瘤核心区域的养分供给,手术时间短,并能有效激活人体免疫机制来杀死剩余的肿瘤细胞。另一方面,本实施例提供的射频消融装置和方法,避免了射频消融时间较长后,热损毁的残余物会附着在电极针表面,影响射频电流传导的问题。
实施例五
参考图8,本实施例的射频消融装置与实施例四的区别在于,本实施例的第二电极束302展开后为爪形结构,第一电极束301展开后仍为伞状结构,本实施例中第一电极束301和第二电极束302展开后进行射频消融热损毁的面积更大,可将更大体积的肿瘤组织包裹起来,对肿瘤组织的外围进行热损毁,切断肿瘤核心区域肿瘤细胞的养分供给,并能有效激活人体免疫机制,借助人体免疫细胞杀死参与的肿瘤细胞。
实施例六
参考图11和图12,本实施例的射频消融装置是在实施例四或实施例五的基础上,将所述第一电极束301或第二电极束302的电极针加工成中空结构,所述的中空腔的横截面可以为圆形,或者为多边形。所述中空腔内设有传感器,用于在射频消融过程中监测电极针及其进行热损毁区域的温度变化,并根据温度反馈情况及时调整射频消融电磁频率,实现射频消融温度的精确控制。
为了更清楚地对本发明实施例的技术效果进行理解,图14和图15分别显示了现有技术和本发明实施例中的射频消融装置进行肝肿瘤射频消融手术时的示意图。图14中,101为现有技术中射频消融装置的电极针,501为现有技术中射频消融装置的电极手柄,600为人体皮肤,700为地电极,800为流经人体的电流线;图15中,800为本发明实施例的射频消融电极装置工作时流经人体 的电流线。从图14和图15可以看出,相对于现有技术,本发明的射频消融电极装置进行射频消融手术时,射频消融电极装置工作过程中的射频电流不需要经过人体正常组织,极大地减少了射频电流传导距离,减少了射频能量消耗,避免了射频能量在人体正常组织内积累,提高了病人的舒适度。
本发明实施例所述第一电极束连接部到第二电极束连接部的距离为2~5cm,参考图15,本发明可根据肿瘤大小来提供不同的射频消融电极装置,使第一电极束和第二电极束之间的射频电流传导距离适应肿瘤的大小,保证射频电流在肿瘤组织内部传导,避免了人体正常组织吸收过多的射频能量,而导致病人身体不适的问题。
参考图15,本发明实施例所述第一电极束与所述第二电极束的工作电流密度相同,减少了第一电极束和第二电极束在工作时的热损毁效应差,避免了因为第一电极束和第二电极束在射频消融过程中由于电流密度不等而影响手术效果的问题。
实施例七
本实施例的射频消融装置与实施例三的区别在于,本实施例的第一电极束301或第二电极束302展开后为波浪形结构,所述波浪形结构是指第一电极束301或第二电极束302展开后的电极针末端交替的位于直径不等的两个圆的圆周上,以使所述第一电极束或第二电极束的形状与肿瘤边界适型,本实施例的射频消融装置在使用时,可用于不同形状和大小的肿瘤组织的射频消融,不需要再手术过程中反复更换不同尺寸的的射频消融装置。
上面对本发明的各种实施方式的描述以描述的目的提供给本领域技术人员。其不旨在是穷举的、或者不旨在将本发明限制于单个公开的实施方式。如上所述,本发明的各种替代和变化对于上述技术所属领域技术人员而言将是显而易见的。因此,虽然已经具体讨论了一些另选的实施方式,但是其它实施方式将是显而易见的,或者本领域技术人员相对容易得出。本发明旨在包括在此 已经讨论过的本发明的所有替代、修改、和变化,以及落在上述申请的精神和范围内的其它实施方式。
虽然通过实施方式描绘了本发明,本领域普通技术人员知道,本发明有许多变形和变化而不脱离本发明的精神,希望所附的权利要求包括这些变形和变化而不脱离本发明的精神。

Claims (15)

  1. 一种射频消融电极装置,其特征在于:包括射频发生装置、电极套管、探针管、第一电极束、第二电极束和操作手柄;所述电极套管固定在操作手柄上,所述探针管设置在电极套管内腔,并且可沿电极套管的延伸方向相对电极套管进行移动;所述第一电极束固定在探针管远离所述操作手柄的一端,所述第二电极束固定在探针管近邻所述操作手柄的一端;所述第一电极束与所述第二电极束绝缘;所述第一电极束加载第一电压,所述第二电极束加载第二电压,所述第一电极束与所述第二电极束作用于人体负载,所述人体负载为人体病变组织;所述第一电极束、第二电极束和人体病变组织之间形成电流回路,所述第一电极束和所述第二电极束的工作电流密度相同。
  2. 根据权利要求1所述的射频消融电极装置,其特征在于,所述第一电极束具有第一工作表面积,所述第二电极束具有第二工作表面积;所述第一工作表面积与所述第二工作表面积相等。
  3. 根据权利要求2所述的射频消融电极装置,其特征在于,所述第一电极束包括第一电极针,所述第二电极束包括第二电极针,所述第一电极针或所述第二电极针的材料为良导体,所述良导体选自金属或石墨烯。
  4. 根据权利要求2所述的射频消融电极装置,其特征在于,所述第一电极束包括第一电极针,所述第二电极束包括第二电极针,所述第一电极针或所述第二电极针包括绝缘实体和涂覆在所述绝缘实体表面的导电涂层,所述绝缘实体的材料选自陶瓷、聚合物、橡胶中的至少一种,所述导电涂层的材料为良导体,所述良导体选自金属或石墨烯。
  5. 根据权利要求3或4任一项所述的射频消融电极装置,其特征在于,所述金属选自不锈钢、银、镍合金、钛合金或镍钛合金中的至少一种。
  6. 根据权利要求1所述的射频消融电极装置,其特征在于,所述探针管具有第一电极束连接部与第二电极束连接部,所述第一电极束连接部与所述第二电极束连接部之间设置有绝缘部件,所述绝缘部件将所述第一电极束和第二电极束彼此绝缘。
  7. 根据权利要求6所述的射频消融电极装置,其特征在于,所述绝缘部件包括绝缘管和绝缘胶圈,所述绝缘管在所述探针管内延伸,所述绝缘胶圈覆盖在所述绝缘胶圈的外侧并从探针管壁裸露出来,所述绝缘部件整体将所述第一电极束和第二电极束彼此绝缘并形成所述射频消融电极装置的正极和负极,所述绝缘管内设有过线孔,所述射频消融电极装置的正极或负极的绝缘导线通过过线孔与第一电极束连接。
  8. 根据权利要求6所述的射频消融电极装置,其特征在于,所述探针管包括第一探针管和第二探针管,所述第一探针管上具有第一电极束连接部,所述第二探针管上具有第二电极束连接部,所述第一电极束连接部和第一探针管的外表面设置有绝缘层,所述绝缘层将所述第一电极束和所述第二电极束彼此绝缘。
  9. 根据权利要求6所述的射频消融电极装置,其特征在于,所述第一电极束连接部与所述第二电极束连接部之间沿着探针管延伸方向的距离为0~10cm。
  10. 根据权利要求9所述的射频消融电极装置,其特征在于,所述第一电极针展开后的弯曲方向与第二电极针展开后的弯曲方向相同。
  11. 根据权利要求9所述的射频消融电极装置,其特征在于,所述第一电极针展开后的弯曲方向与第二电极针展开后的弯曲方向相反。
  12. 根据权利要求10、11中任一项所述的射频消融电极装置,其特征在于,所述第一电极束或第二电极束的形状与肿瘤边界适型,所述第一电极束或第二电极束展开后的形状选自伞状、爪形、喇叭状和波浪形中的至少一种。
  13. 根据权利要求12所述的射频消融电极装置,其特征在于,所述第一电极针和所述第二电极针的横截面选自多边形、圆形、椭圆形、类圆形中的至少一种。
  14. 根据权利要求13所述的射频消融电极装置,其特征在于,所述的第一电极针和所述第二电极针以电极套管的轴心为轴依次绕轴排列。
  15. 根据权利要求6所述的射频消融电极装置,其特征在于,所述探针管为中空结构,所述探针管的中空腔内设有测温传感器。
PCT/CN2017/085173 2016-08-31 2017-05-19 射频消融电极装置 WO2018040620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610780284.XA CN106236254A (zh) 2016-08-31 2016-08-31 射频消融电极装置
CN201610780284.X 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040620A1 true WO2018040620A1 (zh) 2018-03-08

Family

ID=58079999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085173 WO2018040620A1 (zh) 2016-08-31 2017-05-19 射频消融电极装置

Country Status (2)

Country Link
CN (1) CN106236254A (zh)
WO (1) WO2018040620A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106236254A (zh) * 2016-08-31 2016-12-21 迈德医疗科技(上海)有限公司 射频消融电极装置
CN111529049A (zh) * 2019-10-11 2020-08-14 深圳钮迈科技有限公司 双电极探针及其操作方法
CN111839720A (zh) * 2020-08-14 2020-10-30 四川大学华西医院 一种折叠式电极组件及折叠式止血器械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050187542A1 (en) * 2000-08-18 2005-08-25 Map Technologies, Llc Devices for electrosurgery
US20060149226A1 (en) * 2005-01-06 2006-07-06 Scimed Life Systems, Inc. Co-access bipolar ablation probe
US20090171340A1 (en) * 2007-12-28 2009-07-02 Boston Scientific Scimed, Inc. Electrosurgical probe having conductive outer surface to initiate ablation between electrode
CN202044344U (zh) * 2011-03-24 2011-11-23 迈德医疗科技(上海)有限公司 肝肿瘤治疗用塔式多层探针射频消融电极装置
CN103519889A (zh) * 2013-10-10 2014-01-22 迈德医疗科技(上海)有限公司 一种双层伞形探针的射频消融电极装置
CN106236254A (zh) * 2016-08-31 2016-12-21 迈德医疗科技(上海)有限公司 射频消融电极装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792140A (en) * 1997-05-15 1998-08-11 Irvine Biomedical, Inc. Catheter having cooled multiple-needle electrode
CN2885157Y (zh) * 2006-03-23 2007-04-04 迈德医疗科技(上海)有限公司 可灌注式探针电极
CN202113165U (zh) * 2011-06-27 2012-01-18 北京畅想天行医疗技术有限公司 一种射频消融电极针
CN203493738U (zh) * 2013-10-10 2014-03-26 迈德医疗科技(上海)有限公司 一种双层伞形探针的射频消融电极装置
CN104173105A (zh) * 2014-09-18 2014-12-03 安隽医疗科技(南京)有限公司 一种新型消融双极针

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050187542A1 (en) * 2000-08-18 2005-08-25 Map Technologies, Llc Devices for electrosurgery
US20060149226A1 (en) * 2005-01-06 2006-07-06 Scimed Life Systems, Inc. Co-access bipolar ablation probe
US20090171340A1 (en) * 2007-12-28 2009-07-02 Boston Scientific Scimed, Inc. Electrosurgical probe having conductive outer surface to initiate ablation between electrode
CN202044344U (zh) * 2011-03-24 2011-11-23 迈德医疗科技(上海)有限公司 肝肿瘤治疗用塔式多层探针射频消融电极装置
CN103519889A (zh) * 2013-10-10 2014-01-22 迈德医疗科技(上海)有限公司 一种双层伞形探针的射频消融电极装置
CN106236254A (zh) * 2016-08-31 2016-12-21 迈德医疗科技(上海)有限公司 射频消融电极装置

Also Published As

Publication number Publication date
CN106236254A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
US9713497B2 (en) System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
JP2925036B2 (ja) 非侵襲型治療法用の入り子式に伸縮可能な双極型電極
JP2004267644A (ja) 生体組織処理用電極棒
WO2018040620A1 (zh) 射频消融电极装置
KR101415900B1 (ko) 고주파 열치료용 중첩형 바이폴라 전극
CN206390989U (zh) 射频消融电极装置
TWI626035B (zh) 射頻消融電極針具
VanderBrink et al. Microwave ablation using a spiral antenna design in a porcine thigh muscle preparation: In vivo assessment of temperature profile and lesion geometry
CN112294429B (zh) 电刀
WO2018006384A1 (zh) 一种消融电极
CN214128764U (zh) 电刀
WO2013076439A1 (en) Apparatus for destroying solid tumours in- situ
JPH03977Y2 (zh)
AU2015213362B2 (en) System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
JP2014113176A (ja) 焼灼子
AU2013251228B2 (en) System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
JP2023106347A (ja) 改善された組織接触及び電流送達のための球形バスケットを形成する三脚型スパインのためのシステム及び方法
WO2013076440A1 (en) Radio frequency surgical probe
CN114831723A (zh) 医疗导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844927

Country of ref document: EP

Kind code of ref document: A1