WO2018040546A1 - Robot de sauvetage pour train à sustentation magnétique moyenne et basse vitesse - Google Patents

Robot de sauvetage pour train à sustentation magnétique moyenne et basse vitesse Download PDF

Info

Publication number
WO2018040546A1
WO2018040546A1 PCT/CN2017/077857 CN2017077857W WO2018040546A1 WO 2018040546 A1 WO2018040546 A1 WO 2018040546A1 CN 2017077857 W CN2017077857 W CN 2017077857W WO 2018040546 A1 WO2018040546 A1 WO 2018040546A1
Authority
WO
WIPO (PCT)
Prior art keywords
rescue
module
robot
low speed
walking
Prior art date
Application number
PCT/CN2017/077857
Other languages
English (en)
Chinese (zh)
Inventor
刘大玲
周芃
张�浩
张琨
许克亮
张昕
王东波
景晓斐
倪琍
张俊岭
Original Assignee
中铁第四勘察设计院集团有限公司
国开科技(武汉)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁第四勘察设计院集团有限公司, 国开科技(武汉)有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2018040546A1 publication Critical patent/WO2018040546A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones

Definitions

  • the invention belongs to the field of magnetic levitation maintenance, and more specifically relates to a medium and low speed magnetic levitation rescue robot.
  • the present invention provides a rescue robot in which a rescue device suitable for medium and low speed magnetic levitation is designed in combination with the characteristics of the medium and low speed magnetic levitation itself, and key components such as a rack,
  • a rescue device suitable for medium and low speed magnetic levitation is designed in combination with the characteristics of the medium and low speed magnetic levitation itself, and key components such as a rack
  • the structure of the folding and bending mechanism, the detection and rescue mechanism and the autonomous cruise module and the specific setting method are studied and designed, and the corresponding timely rescue of the F-track detection device can be realized, and the robot can walk autonomously, and has a simple structure and operation. Convenience and other advantages.
  • the frame is used for installing the folding and bending mechanism, the detecting and rescue mechanism and the autonomous cruise module, which spans between the two F-tracks of the medium and low speed magnetic levitation;
  • each set of the folding and bending mechanism is provided with two sets of walking wheels and two sets of clamping wheel pairs, and the two sets of walking wheels are arranged along the extending direction of the F rails, and the F rails The upper surface contacts, the two sets of card wheel pairs are also arranged along the direction in which the F rails extend, and are in contact with the outer and lower surfaces of the F rails.
  • the rescue robot is further provided with an F-track parameter detecting sensor, and the F-track parameter detecting sensor is disposed on the folding and bending mechanism.
  • the frame is further provided with a carrier platform.
  • the invention realizes that the robot can walk autonomously along the F-track by setting a folding bending mechanism and an autonomous cruise module suitable for the auxiliary working robot, and the robot can accurately locate and reliably walk through the autonomous cruise module specially designed and designed.
  • the utility model is suitable for the open structure of the medium and low speed magnetic suspension overhead suspension, and solves the problem that the auxiliary working robot can not walk on the middle and low speed magnetic levitation track without the walking position of the operator.
  • FIG. 4 is a block diagram showing the structure of an autonomous cruise module according to an embodiment of the present invention.
  • the frame 11 serves as a supporting member for other components, which is horizontally disposed and spans between the two F-tracks of the medium-low speed magnetic suspension to be detected, and is arranged in a direction perpendicular to the extending direction of the F-track.
  • the folding and bending mechanism is provided with two groups, which are respectively disposed at two ends of the frame.
  • each group of the folding and bending mechanism is provided with a walking wheel pair 5 and a card.
  • the traveling wheel pair 5 includes a pair of walking wheels that are in contact with the upper surface of the F rail and move along the upper surface of the F rail, one of which is a passive wheel and the other is a driving wheel, and the driving wheel pair is a motor wheel.
  • the walking wheel pair is designed as a two-wheel structure, which can effectively prevent the robot from bumping when the bolt connecting the F rail and the sleeper is generated, so that the flaw detection result is more accurate.
  • the folding and bending mechanism includes a traveling wheel mounting plate 12 and a card wheel folding plate 3, wherein the traveling wheel mounting plate 12 is vertically disposed and mounted on the frame, and the traveling wheel pair is mounted on the traveling wheel mounting plate Below the 12, the card wheel folding plate 3 is mounted on the side of the traveling wheel mounting plate by a card wheel connecting bracket, and is wrapped around the periphery of the F rail, and then the card wheel pair is mounted on the card wheel to be folded
  • the plate 12 is arranged such that one of the card position wheels is in contact with the outer side surface of the F rail, and the other card position wheel is in contact with the lower surface of the F rail, so that the card position wheel pair is clamped on the F rail by the holding card manner, Effectively prevent the rescue robot from derailing.
  • the two sets of the folding wheel folding plates 1 are folded upwards to reduce the overall volume of the walking device.
  • the two sets of the folding wheel folding plates 1 are opened, so that the locking wheel is loaded in the F
  • the outer side and the lower surface of the rail realize the outer holding rail and the inner upward holding rail.
  • the detection and rescue mechanism comprises a distance measuring sensor 6, a camera 10 and a rescue contact rod 14.
  • the distance measuring sensor 6 is arranged on the frame and is located between two F rails, which is specifically an ultrasonic or infrared ranging
  • the sensors are arranged in an array, and the distance measuring sensors are arranged in front of and behind the rescue robot. Specifically, within the safe distance range, it is detected that there is an obstacle in the traveling line, and the robot controls the electronically controlled driving unit to brake, and the safety distance is set according to different speeds, and the faster the speed, the farther the safety distance is.
  • the automatic detection robot can automatically stop when it encounters obstacles, and realize the anti-collision function of the robot.
  • the rescue contact rod 14 is horizontally mounted on a side of the frame, and the top of the contact rod 14 is provided with an electromagnetic chuck enclosed in a rod, the electromagnetic chuck comprises an electromagnetic coil and a magnetic conductive panel, and the magnetic conductive panel faces the rescued
  • the electromagnetic coil is located inside the magnetic conductive panel (ie, the magnetic conductive panel is located between the object to be rescued and the electromagnetic coil), and the electromagnetic chuck uses electromagnetic principle to generate magnetic force by energizing the inner coil, and contacts the surface of the panel through the magnetic conductive panel. The workpiece is tightly sucked, the power is removed by the coil, and the magnetic force disappears to realize demagnetization.
  • the autonomous cruise module 7 includes a navigation system, a cruise calculation task control module, and a ground control station communication module.
  • the navigation system includes an inertial navigation unit, a GPS receiving module, and a walking range measuring unit, and the inertial navigation unit is configured to measure the three axes of the robot. Acceleration (ie xyz three-way acceleration, xyz direction is set according to actual needs, such as setting the extension direction of the F-track to the x-axis, perpendicular to the direction in which the F-track extends, and horizontally distributing the y-axis, perpendicular to the direction in which the F-track extends.
  • the GPS receiving module is used to measure the longitude, latitude and height of the robot
  • the walking range measuring unit is used to measure the walking distance of the robot.
  • the cruise calculation task control module and the ground control station communication module implement data interaction, and the cruise calculation task control module can feed the specific position of the robot to the ground control station communication module, and the ground control station communication module can send instructions to the cruise calculation task control module to The robot is operated to a designated position;
  • the cruise calculation task control module mainly comprises a cruise module and a control module, the cruise module and the control module are similar to two microcomputers, and the cruise module is a cruise computer based on embedded Linux for navigation and task control
  • the control module is a control computer for the robot's walking control, stabilization control and communication with the ground control station to realize the motion control of the mobile robot, specifically to realize the servo motor of the driving wheel in the walking wheel
  • the control realizes the movement of the driving wheel by controlling the servo motor of the driving wheel, thereby real
  • the cruise module is respectively connected to the inertial navigation unit, the GPS receiving module and the walking range measuring unit, and the data measured by the inertial navigation unit, the GPS receiving module and the walking range measuring unit are input as input signals to the cruise module, and the cruise module is input according to the input.
  • the signal determines the specific position of the robot, and feeds the specific position of the robot to the ground control station.
  • the control module is connected to the ground control station communication module, and controls the walking of the robot according to the walking instruction of the ground control station communication module.
  • the navigation system in the autonomous cruise module 7 automatically locates the coordinates of the location to be reached according to the input cruise mileage, and then the robot performs real-time matching calculation according to the travel coordinates and the location coordinates of the remote ground station communication input, and simultaneously combines the inertial navigation real-time.
  • the walking position is matched with the set coordinate position in real time, and the walking range measuring unit is used to measure the distance moved by the robot to determine the current position of the robot according to the initial value of the starting point of the robot, according to the current specific position of the robot, and then known
  • the PID matching calculation is performed according to the pre-programmed waypoints to control the movement direction and distance of the robot, thereby achieving autonomous cruising, and the cruising speed is calculated by the robot according to the distance to the destination.
  • the navigation system of the invention is mainly based on range calibration.
  • the navigation system assisted by GPS and inertial navigation has simple control logic, compact structure and small volume, which enables the robot to walk according to the planned route of navigation.
  • the rescue robot is further provided with an F-track parameter detecting sensor 1 which is disposed on the folding and bending mechanism, and is provided in plurality, arranged in an array, which is used for detecting F
  • the track parameters of the rail mainly include the F rail width, the lateral displacement of the sensor board, the vertical misalignment of the sensor board, and the smoothness of the F rail.
  • the width of the rail gap is measured by the PSD displacement sensor.
  • the displacement change time combined with the running speed can calculate the width of the rail joint.
  • the lateral misalignment and vertical misalignment and smoothness of the sensor board can also be analyzed and calculated by the difference of the displacement of the sensor array.
  • the rack is also provided with a platform 15 for loading and loading. Transporter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Multimedia (AREA)

Abstract

L'invention concerne un robot de sauvetage pour un train à sustentation magnétique à moyenne et basse vitesse, qui comprend un bâti (11), un mécanisme de flexion pliant, un mécanisme de sauvetage à détection, et un module de croisière autonome (7). Le bâti (11) fait office de mécanisme de support et est utilisé pour installer de manière sécurisée le mécanisme de flexion pliant et le mécanisme de sauvetage à détection. Le mécanisme de flexion pliant est utilisé pour le montage d'une paire de roues pour permettre à un robot de sauvetage de se déplacer sur des rails F (4). Le mécanisme de sauvetage à détection est utilisé pour se connecter à des dispositifs de détection de rail F à sauver, pour sauver des dispositifs de détection de rail F ne fonctionnant pas correctement à temps. Le module de croisière autonome (7) est utilisé pour permettre au robot de sauvetage de se déplacer de manière autonome sur les rails F d'un train à sustentation magnétique à moyenne et basse vitesse. La coopération de ces mécanismes permet d'assurer que le robot sauve les dispositifs de détection de rail F et se déplace de manière autonome. Le robot effectue des opérations de sauvetage en temps opportun et est pratique à utiliser.
PCT/CN2017/077857 2016-08-31 2017-03-23 Robot de sauvetage pour train à sustentation magnétique moyenne et basse vitesse WO2018040546A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610786339.8A CN106239474B (zh) 2016-08-31 2016-08-31 一种中低速磁悬浮救援机器人
CN201610786339.8 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040546A1 true WO2018040546A1 (fr) 2018-03-08

Family

ID=58080577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077857 WO2018040546A1 (fr) 2016-08-31 2017-03-23 Robot de sauvetage pour train à sustentation magnétique moyenne et basse vitesse

Country Status (2)

Country Link
CN (1) CN106239474B (fr)
WO (1) WO2018040546A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622118A (zh) * 2018-04-27 2018-10-09 深圳博通机器人有限公司 一种用于管廊巡检的机器人
CN110488817A (zh) * 2019-08-07 2019-11-22 深圳昱拓智能有限公司 输煤栈桥轨道式巡检机器人自动清灰装置及巡检机器人
CN110498247A (zh) * 2019-09-27 2019-11-26 清正生态科技(苏州)有限公司 一种为汽爆机配套的料笼翻转装置
CN110614926A (zh) * 2019-09-27 2019-12-27 国网辽宁省电力有限公司盘锦供电公司 巡检机器人无线充电引导轨座
CN112081630A (zh) * 2020-09-21 2020-12-15 安徽理工大学 一种煤矿综采工作面控制机器人
CN112721966A (zh) * 2021-01-25 2021-04-30 上海应用技术大学 高速铁路钢轨探伤机器人
CN112809749A (zh) * 2021-01-26 2021-05-18 易枭零部件科技(襄阳)有限公司 一种新型机器人底盘
CN114280238A (zh) * 2021-12-22 2022-04-05 山西三合盛智慧科技股份有限公司 一种基于夜间作业的可视对讲气体检测机器人及其检测系统
CN115716260A (zh) * 2023-01-10 2023-02-28 安吉思防爆技术(苏州)有限公司 一种防爆式巡检工业机器人

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106239474B (zh) * 2016-08-31 2018-03-27 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人
CN108755289B (zh) * 2018-06-15 2020-11-24 亚太空列(河南)轨道交通有限公司 一种行走式机器人轨道
CN108755307A (zh) * 2018-06-20 2018-11-06 北京磁浮交通发展有限公司 轨道检修用的安全防护装置
CN109064448A (zh) * 2018-07-04 2018-12-21 西南交通大学 中低速磁浮f轨轨缝检测方法
CN110193837B (zh) * 2019-05-24 2023-09-26 京东科技信息技术有限公司 轨道巡检机器人
CN110921227B (zh) * 2019-11-08 2020-10-16 中国科学院自动化研究所 用于线上行走的运载机构
CN111037607B (zh) * 2020-01-02 2022-08-09 东南大学 一种四分裂导线检测机器人脱轨检测及防脱轨机构
CN113561155A (zh) * 2021-07-30 2021-10-29 中铁第四勘察设计院集团有限公司 一种综合管廊挂轨式机器人的救援机器人及救援方法
CN113561198A (zh) * 2021-07-30 2021-10-29 中铁第四勘察设计院集团有限公司 一种基于伸缩式车钩的综合管廊救援机器人
CN114475678A (zh) * 2022-03-01 2022-05-13 柳州铁道职业技术学院 一种基于超声波悬挂式轨道探伤机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110108858A (ko) * 2010-03-30 2011-10-06 호야로봇 (주) 고효율 이동수단을 갖춘 위험현장 탐색용 이륜 로봇
CN202079592U (zh) * 2010-12-24 2011-12-21 江苏大学 双轨直线机器人穿梭车
CN103380766A (zh) * 2013-07-01 2013-11-06 北京农业智能装备技术研究中心 温室自动喷药机器人
CN105485425A (zh) * 2015-11-26 2016-04-13 天津市安维康家科技发展有限公司 大口径管道自动连续铺设作业机器人及其作业方法
CN106239474A (zh) * 2016-08-31 2016-12-21 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人
CN206123636U (zh) * 2016-08-31 2017-04-26 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人
CN206123635U (zh) * 2016-08-31 2017-04-26 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2100839A1 (de) * 1971-01-09 1972-07-20 Baermann, Max, 5060 Bensberg Durch magnetische Kräfte entlang einer Tragbahn geführtes und im Schwebezustand gehaltenes Fahrzeug
CN201653922U (zh) * 2010-05-18 2010-11-24 孔德宇 一种中低速磁悬浮f型轨轨缝检测仪
CN102736623B (zh) * 2011-04-12 2014-11-26 中国科学院沈阳自动化研究所 一种轨道式自主移动机器人
CN102736624B (zh) * 2011-04-12 2014-07-02 中国科学院沈阳自动化研究所 一种变电站轨道式智能巡检机器人
CN104890699B (zh) * 2014-03-04 2017-12-12 北京控股磁悬浮技术发展有限公司 一种轨道检测仪
CN104020768B (zh) * 2014-06-13 2017-01-25 广西电网公司崇左供电局 一种红外测温轨道巡检机器人
CN205327066U (zh) * 2016-01-29 2016-06-22 北京控股磁悬浮技术发展有限公司 中低速磁浮工程作业车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110108858A (ko) * 2010-03-30 2011-10-06 호야로봇 (주) 고효율 이동수단을 갖춘 위험현장 탐색용 이륜 로봇
CN202079592U (zh) * 2010-12-24 2011-12-21 江苏大学 双轨直线机器人穿梭车
CN103380766A (zh) * 2013-07-01 2013-11-06 北京农业智能装备技术研究中心 温室自动喷药机器人
CN105485425A (zh) * 2015-11-26 2016-04-13 天津市安维康家科技发展有限公司 大口径管道自动连续铺设作业机器人及其作业方法
CN106239474A (zh) * 2016-08-31 2016-12-21 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人
CN206123636U (zh) * 2016-08-31 2017-04-26 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人
CN206123635U (zh) * 2016-08-31 2017-04-26 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮救援机器人

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622118A (zh) * 2018-04-27 2018-10-09 深圳博通机器人有限公司 一种用于管廊巡检的机器人
CN110488817A (zh) * 2019-08-07 2019-11-22 深圳昱拓智能有限公司 输煤栈桥轨道式巡检机器人自动清灰装置及巡检机器人
CN110488817B (zh) * 2019-08-07 2023-04-28 深圳昱拓智能有限公司 输煤栈桥轨道式巡检机器人自动清灰装置及巡检机器人
CN110498247A (zh) * 2019-09-27 2019-11-26 清正生态科技(苏州)有限公司 一种为汽爆机配套的料笼翻转装置
CN110614926A (zh) * 2019-09-27 2019-12-27 国网辽宁省电力有限公司盘锦供电公司 巡检机器人无线充电引导轨座
CN112081630A (zh) * 2020-09-21 2020-12-15 安徽理工大学 一种煤矿综采工作面控制机器人
CN112721966A (zh) * 2021-01-25 2021-04-30 上海应用技术大学 高速铁路钢轨探伤机器人
CN112809749A (zh) * 2021-01-26 2021-05-18 易枭零部件科技(襄阳)有限公司 一种新型机器人底盘
CN114280238A (zh) * 2021-12-22 2022-04-05 山西三合盛智慧科技股份有限公司 一种基于夜间作业的可视对讲气体检测机器人及其检测系统
CN115716260A (zh) * 2023-01-10 2023-02-28 安吉思防爆技术(苏州)有限公司 一种防爆式巡检工业机器人
CN115716260B (zh) * 2023-01-10 2023-04-14 安吉思防爆技术(苏州)有限公司 一种防爆式巡检工业机器人

Also Published As

Publication number Publication date
CN106239474B (zh) 2018-03-27
CN106239474A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018040546A1 (fr) Robot de sauvetage pour train à sustentation magnétique moyenne et basse vitesse
WO2018040581A1 (fr) Robot d'opération auxiliaire pour train à lévitation magnétique à moyenne et basse vitesse
JP7486546B2 (ja) 遠隔操作式車両および車両が走行しているトラックに対する車両の位置を検出するための方法
CN206125056U (zh) 一种中低速磁悬浮f轨探伤机器人
WO2018040580A1 (fr) Robot de nettoyage de fonte de neige et brise-glace pour sustentation magnétique moyenne et basse vitesse maglev
CN110615017A (zh) 一种轨道交通自动化检测系统及方法
CN105015521A (zh) 一种基于磁钉的大型车辆自动停靠装置
CN103318167A (zh) 智能气垫转运车及其控制方法
CN108645373A (zh) 一种动态三维隧道断面形变检测及分析系统、方法及装置
CN106774318B (zh) 多智能体交互式环境感知与路径规划运动系统
CN106143530A (zh) 用于悬挂式单轨交通系统箱型轨道梁的巡检小车
CN109591907A (zh) 一种桥墩检测用行走机构和行走方法
CN206131993U (zh) 一种中低速磁悬浮f轨检测机器人
CN106802322A (zh) 一种基于贴壁式检测车的隧道衬砌裂缝超声波检测系统
CN205930728U (zh) 用于悬挂式单轨交通系统箱型轨道梁的巡检小车
CN106320112B (zh) 一种中低速磁悬浮辅助作业机器人
CN109707201A (zh) 一种基于循迹与标定方法定位的自动停车运载平台
CN114728676A (zh) 用于在工业工厂中用作可重新配置的操作系统的自主移动系统
CN109987116B (zh) 一种高温超导磁悬浮轨检车
CN114379651A (zh) 自主行驶车辆及其保管设施
KR100682511B1 (ko) 자기장을 이용한 궤도차량의 자율 주행시스템 및 그주행방법
CN107416062A (zh) 一种可重构的爬壁机器人及其检测方法
CN106168470A (zh) 一种车站站台限界测量装置及方法
CN109131430A (zh) 一种中低速磁悬浮辅助作业机器人
CN210011756U (zh) 一种高温超导磁悬浮轨检车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844854

Country of ref document: EP

Kind code of ref document: A1