WO2018040486A1 - 一种四色面板的过驱动方法 - Google Patents

一种四色面板的过驱动方法 Download PDF

Info

Publication number
WO2018040486A1
WO2018040486A1 PCT/CN2017/071485 CN2017071485W WO2018040486A1 WO 2018040486 A1 WO2018040486 A1 WO 2018040486A1 CN 2017071485 W CN2017071485 W CN 2017071485W WO 2018040486 A1 WO2018040486 A1 WO 2018040486A1
Authority
WO
WIPO (PCT)
Prior art keywords
overdrive
target value
brightness
panel according
overdrive target
Prior art date
Application number
PCT/CN2017/071485
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/500,108 priority Critical patent/US10360860B2/en
Publication of WO2018040486A1 publication Critical patent/WO2018040486A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to an overdrive method for a four color panel.
  • Liquid crystal display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal display devices, which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place a liquid crystal material in two parallel glass substrates, and control the liquid crystal molecules in the liquid crystal material to change direction by applying a driving voltage on the two glass substrates, and refract the light of the backlight module to generate a picture. .
  • LCD response time is an important parameter to identify the quality of liquid crystal display devices.
  • the International Organization for Standardization (ISO13406-2) specifies the response time of liquid crystals: when a pixel changes from white to black, the pixel electrode voltage changes from 0 to the maximum value. That is, under the maximum voltage excitation state, the liquid crystal molecules are quickly switched to a new position, and the time used in this process is called the rising time period; when one pixel turns from black to white, the voltage applied by the pixel electrode is cut off, and the liquid crystal molecules quickly return to plus The pre-electric position, this process is called the fall time.
  • the entire LCD response time process is the value obtained by the rise time plus the fall time. From the principle of gray scale technology, the response time is essentially the twisting speed of liquid crystal molecules. In order to make liquid crystal molecules move faster, there are generally three ways to increase the twisting speed of liquid crystal molecules:
  • the torsional speed of the liquid crystal molecules is related to the voltage. The higher the voltage, the faster the twisting speed of the liquid crystal molecules.
  • the disadvantages of the two methods are quite large. Therefore, the reduction of the gray-scale response time depends on the pressurization, and the panel manufacturer (such as AUO) expresses the overdrive (OD) technology.
  • a display device having, for example, a liquid crystal display panel (LCD) or an organic light emitting display panel (OLED)
  • LCD liquid crystal display panel
  • OLED organic light emitting display panel
  • a pixel displays a color image by controlling the gray value of each sub-pixel and mixing the color to be displayed.
  • RGB three primary color mixed light display mode has relatively low transmittance and mixing efficiency, resulting in large power consumption of the display panel, which restricts product optimization of the display panel.
  • one pixel composed of a red (R) sub-pixel, a green (G) sub-pixel, a blue (B) sub-pixel, and a fourth sub-pixel appears to improve the display quality of the RGB display panel.
  • the added fourth sub-pixel is a white (W) sub-pixel, that is, a red (R) sub-pixel, a green (G) sub-pixel, a blue (B) sub-pixel, and a white (W) sub-pixel.
  • W white sub-pixel
  • R red
  • G green
  • B blue
  • W white sub-pixel
  • FIG. 1 is a transmission spectrum diagram of a conventional W sub-pixel.
  • 2 is a transmission spectrum diagram of a conventional R sub-pixel, G sub-pixel, and B sub-pixel.
  • the backlight for example, blue light
  • W sub-pixel which is usually formed by a transparent photoresist
  • the light emitted by the W sub-pixel is highly similar to the light emitted by the B sub-pixel.
  • the RGBW display panel displays white
  • the RGBW display panel displays a white spectrum that cannot be in a normal area range due to the interaction of the light emitted by the W sub-pixel and the light emitted by the B sub-pixel, and the RGBW display panel displays a white color.
  • the degree value is abnormal.
  • the present invention is to solve the problem of dragging when the gray scale difference of the two frames before and after R/G/B/W is too large, and An overdrive method of a four-color panel is proposed.
  • Step 1 Calculate the overdrive target value of R/G/B; where R is a red sub-pixel, G is a green sub-pixel, and B is a blue sub-pixel;
  • Step 2 Obtain an overdrive target value between different gray levels of R/G/B by switching waveforms of different gray levels;
  • Step 3 calculating an overdrive target value of W according to the R/G/B overdrive target value obtained in step one; the W is a white subpixel;
  • Step 4 According to the overdrive target value between different gray scales of R/G/B obtained in step 2, the overdrive target value between different gray scales is obtained by combining the first expression; the first expression satisfies:
  • Step 5 In the calculation of the R/G/B overdrive table, the calculation of the difference of the brightness normalization curve is added, and the changed overdrive target value of R/G/B is obtained;
  • Step 6 Bring the changed overdrive target value of R/G/B obtained in step 5 into the first expression to obtain a second expression:
  • the invention relates to a method for overdriving a four-color display, comprising: searching for 10% and 90% brightness values in a normalized brightness change curve of R/G, and calculating 10%-90% intervals R/G and G
  • the difference value of the brightness normalization curve is determined by finding the minimum value of the difference value of the brightness normalization curve to determine the overdrive gray scale voltage value of each R/G in the overdrive gray scale voltmeter.
  • the invention solves the current two frames of pictures, when the gray scale difference ( ⁇ Gray) of R/G/B/W is too large, the brightness conversion curve of the smaller gray scale difference ( ⁇ Gray) will be faster, and larger
  • the grayscale difference ( ⁇ Gray) may have a mismatch in the luminance variation curve of R/G/B/W, which causes a problem of dragging.
  • 1 is a transmission spectrum diagram of a conventional W sub-pixel
  • 2 is a transmission spectrum diagram of a conventional R sub-pixel, G sub-pixel, and B sub-pixel;
  • 3 is a graph of normalized luminance conversion curves (initial frame-OD frame-target frame) of R/G at different starting positions;
  • Figure 4 is a processing frame diagram of a signal
  • Figure 5 is a flow chart of the present invention.
  • a method for overdriving a four-color panel includes the following steps:
  • a four-color display the input signal is generally a three-color signal, and the output signal is four colors, and a multi-mapping action is passed in the middle.
  • a set of input signals Ri, Gi, Bi undergoes the three-color to four-color calculation of the first step f, and after the second step of white balance, outputs Ro, Go, Bo, Mo;
  • Ri represents the red color processed by white balance.
  • Gray value of color Gi represents the gray value of the green color processed by white balance
  • Bi represents the gray value of the blue color processed by white balance
  • Ro represents the output gray value of the red color in the RGBW data to be displayed
  • Go indicates the output gray value of the green color in the RGBW data to be displayed
  • Bo indicates the output gray value of the blue color in the RGBW data to be displayed
  • Wo indicates the output gray value of the white color in the RGBW data to be displayed.
  • Step 1 Calculate the overdrive target value of R/G/B; where R is a red sub-pixel, G is a green sub-pixel, and B is a blue sub-pixel;
  • Step 2 Obtain an overdrive target value between different gray levels of R/G/B by switching waveforms of different gray levels;
  • the OD of the four-color system needs to undergo an increased OD (w) driving voltage, and the RGB ⁇ RGBW multiple mapping is turned on ( In the state of Mapping), the overdrive (OD) between different gray levels can be obtained by switching the grayscale ⁇ grayscale switching waveform of the R/G/B picture of the solid color. value.
  • Step 3 calculating an overdrive target value of W according to the R/G/B overdrive target value obtained in step one; the W is a white subpixel;
  • the four-color display system cannot separately display the solid color picture of the fourth sub-pixel, and the gray-scale value of the sub-pixel depends on the input R/G/B signal.
  • the overdrive target value (OD Table) of W can be calculated by analyzing the torsional velocity of the liquid crystal in the cell by the obtained R/G/B overdrive target value (OD Table). .
  • Step 4 According to the overdrive target value between different gray scales of R/G/B obtained in step 2, an overdrive target value between different gray scales is obtained;
  • the relationship between the W film thickness dw and the R/G/B film thickness dr/dg/db can be obtained, so that for the same overdrive target value (OD Table),
  • the overdrive value of a gray-to-gray W sub-pixel can be calculated by the R/G/B overdrive target value (OD Table), assuming R/G/B overdrive for grayscale Gray1 to grayscale Gray2
  • the values are OR1, OG1, OB1, then
  • the overdrive target value (OD Table) of W can already be obtained by the overdrive target value (OD Table) of R/G/B by the formula (1), but some correction is needed for the overdrive of the W subpixel.
  • the switching between grayscale 1 and grayscale 2 is as follows:
  • Frame n is the nth frame
  • Frame n+1 is the n+1th frame
  • ⁇ Gray is the grayscale difference
  • r1, g1, b1, and w1 are the red subpixels and the green subpixels of the nth frame respectively.
  • gray scale values of blue sub-pixels and white sub-pixels; r2, g2, b2, and w2 are gray scales of red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels, respectively, in the n+1th frame picture value.
  • Step 5 In the calculation of the R/G/B overdrive table, the calculation of the difference of the brightness normalization curve is added, and the changed overdrive target value of R/G/B is obtained;
  • Step 6 Bring the changed R/G/B overdrive target value obtained in step 5 into the formula (1), and the formula (1) is transformed into:
  • step 5 an improved R/G/B overdrive target value (OD Table) can be obtained, and at the same time, step 4 is introduced, in order to compensate for the problem that the W subpixel cannot obtain a separate luminance response curve, and at the same time, due to the difference of w2-w1
  • the influence of R/G/B is more, and the formula (1) is transformed into the formula (2).
  • the second embodiment is different from the specific implementation manner in the following steps: Step one, according to the starting gray scale and the ending gray scale of a table in the driving table to be filled in, four frames of dynamic switching, the four frames Including first to fourth frames;
  • Step 12 Try to drive the target value to obtain the R/G/B brightness-time response curve of the overdrive target value of the attempt;
  • Step 13 Perform noise reduction and smoothing on the R/G/B brightness-time response curve obtained in step 1-2;
  • Step 14 using the brightness value of the third frame in step one as the target brightness, determining whether the brightness in the R/G/B brightness-time response curve of the overdrive target value of the attempt matches the target brightness, if If the match is matched, go to step one, otherwise repeat steps one to two.
  • Step 1-5 If the brightness in the R/G/B brightness-time response curve of the overdrive target value of the attempt is the first brightness matching the target brightness, the overdrive target value of the attempt is filled. Enter the corresponding position in the drive table, and repeat step one to two to step four; if the attempted overdrive target value of the R/G/B brightness-time response curve is not the first and target brightness Comparing the brightness, compare the response time of the R/G/B brightness-time response curve worth of the overdrive target of the attempt and the R of the overdrive target value of the corresponding position in the drive table to be filled out. /G/B brightness-time response curve response time, go to step one six;
  • Step 16 When the response time of the R/G/B brightness-time response curve worthy of the overdrive target of the attempt is more than the R/G attempted by the overdrive target value of the corresponding position in the drive table to be filled out If the response time of the /B brightness-time response curve is small, replace the overdrive target value of the corresponding position in the drive table with the overdrive target value of the attempt, and repeat steps one to two to five; The R/G/B brightness-time response of the R/G/B brightness-time response curve worthy of the overdrive target is less than the R/G/B brightness-time response of the overdrive target value of the corresponding position in the drive table to be filled out. When the response time of the curve is large, the overdrive target value of the corresponding position in the drive table to be filled in is used as the overdrive target value finally determined by the corresponding position, and the process proceeds to step 117;
  • Step 17. Repeat steps one through one through six until the calculation of all overdrive target values in the drive table is completed.
  • This embodiment differs from the specific embodiment one or two in that, according to the repetition order, the driving target values in the step one and two are tried in the order of being small to large.
  • This embodiment differs from one of the specific embodiments 1 to 3 in that, according to the repetition order, the overdrive target values in the step 1-2 are tried in descending order.
  • step R3 uses a median filter to reduce the R/G/B luminance-time response curve obtained in step one and two. Noise smoothing.
  • Embodiment 6 This embodiment differs from one of the specific embodiments 1 to 5 in that: in step 2, an overdrive target value between R/G/B different gray levels is obtained, and in the multiple mapping state, input three The color signal R/G/B outputs a four-color signal R/G/B/W.
  • Specific Embodiment 7 This embodiment differs from one of the specific embodiments 1 to 6 in that the overdrive target value of the calculation W in the third step is in the multiple mapping state.
  • Embodiment 8 This embodiment differs from one of the specific embodiments 1 to 7 in that the overdrive table in the step 5 is a 17*17 overdrive table.
  • This embodiment differs from one of the specific embodiments 1 to 8 in that the calculation of the difference of the brightness normalization curve is added in the step 5, and the changed overdrive target value of R/G/B is obtained.
  • the specific process is:
  • Step 51 Find 10%, 90% brightness value in the normalization curve, as shown in Figure 3;
  • Step 52 Calculate the difference between the R or B and G brightness normalization curves for the 10% to 90% segment:
  • the overdrive gray scale voltage value of each R/G in the overdrive gray scale voltmeter is determined by seeking the minimum value of the difference in luminance normalization curve (deltaL).
  • This embodiment differs from one of the specific embodiments 1 to 9 in that the factor f of the step 6 fluctuates around the integer 1.
  • the positive factor factor can fluctuate around the integer 1 to match the condition of the different multiple mapping functions F.
  • Over Drive Table a signal processing framework is shown in Figure 4, in which the white balance and overdrive module sequences are also interchanged, and does not affect the entire overdrive target value (Over Drive Table).
  • the calculation and debugging process, Over Drive Table can also be expressed as OD Table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

公开了一种四色面板的过驱动方法。该方法包括:在归一化曲线图中寻找10%,90%亮度值处,计算10%到90%段的R或B与G亮度归一化曲线的差异,通过寻求亮度归一化曲线差异的最小值,确定过驱动灰阶电压表中每个R/G的过驱动灰阶电压值。将得到的改变后的R/G/B的过驱动目标值带入W不同灰阶之间的过驱动目标值计算公式中。

Description

一种四色面板的过驱动方法
本申请要求享有2016年8月31日提交的名称为“一种四色面板的过驱动方法”的中国专利申请CN201610784274.3的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及四色面板的过驱动方法。
背景技术
液晶显示装置(LCD,Liquid Crystal Display)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶材料,通过在两片玻璃基板上施加驱动电压来控制液晶材料中的液晶分子改变方向,将背光模组的光线折射出来产生画面。
液晶响应时间是鉴定液晶显示装置质量的一个重要参数,国际标准化组织(ISO13406-2)对液晶响应时间的规定是:当一个像素点从白色转为黑色,像素电极电压从0变为最大值,即最大电压激励状态下,液晶分子迅速转换到新的位置,这一过程所用的时间被称为上升时间段;当一个像素由黑转白,像素电极所加电压切断,液晶分子迅速回到加电前位置,这一过程称为下降时间。整个液晶响应时间过程就是由上升时间加上下降时间而获得的数值。从灰阶技术原理上讲起,响应时间其实质就是液晶分子的扭转速度,要让液晶分子运动得更快,一般提升液晶分子扭转速度的方法有以下三种:
1、增加驱动电压法:液晶分子的扭转速度和电压有关系,电压越高,液晶分子的扭转速度就越快。
2、改变液晶分子初始状态法:这种方法其实就是让液晶分子处于一种不稳定的状态,一旦有“风吹草动”就立即作出反应,用以减少响应时间。但这个办法不能无限制的实行,液晶分子不能太不稳定,否则对其将无法有效控制。
3、减小液晶材料粘稠程度法:液晶材料越粘稠,驱动起来就越费力。如果把液晶材料稀释一下,驱动其扭转就比较容易了,其响应时间自然能有所提升。不过液晶材料稀释 以后会影响其控光能力,响应时间虽然提升了,但付出的代价却很大:液晶材料黏稠度越低,画面色彩越黯淡,图像细节也会变模糊,同时会产生轻微漏光的现象。这一点也是LG集团当初只在其超平面切换(Super In-Plane Switching,S-IPS)面板上采用灰阶技术的重要原因之一。
鉴于上述的第2与第3两种方法弊端颇大,因此目前灰阶响应时间的减少有赖于加压,用面板厂家(比如友达)的表述为过驱动(Over Drive,OD)技术。
现有的过驱动方法和方式都基于RGB三色显示系统的LCD显示器件,对于诸如RGBW/RGBY的四色系统,因此需要提出一种改进的过驱动的系统。
目前,在具有例如液晶显示面板(LCD)或有机发光显示面板(OLED)的显示装置中,大多数是以红色(R)子像素、绿色(G)子像素和蓝色(B)子像素组成一个像素,通过控制每个子像素的灰度值,混合出所需要显示的色彩来显示彩色图像。随着信息技术的发展,对于显示面板的各种需求也在增加,高透过率、低功耗、成像质量佳也成为人们对显示面板的需求。现有的RGB三原色混光显示方式的透过率以及混合效率都比较低,导致显示面板的功耗大,制约了显示面板的产品优化。基于此,出现了由红色(R)子像素、绿色(G)子像素、蓝色(B)子像素和第四子像素组成一个像素,以改善RGB显示面板的显示质量。
较为常见的,所增加的第四子像素为白色(W)子像素,即以红色(R)子像素、绿色(G)子像素、蓝色(B)子像素和白色(W)子像素构成一个像素。具有RGBW显示面板的显示装置需要将输入的原始RGB数据转换为需显示的RGBW数据,以驱动RGBW显示面板进行显示。然而,在现有的原始RGB数据转换为需显示的RGBW数据的转换方法中,通常各个子像素满足关系式:W=R+G+B。
图1是现有的W子像素的透射光谱图。图2是现有的R子像素、G子像素、B子像素的透射光谱图。请参照图1和图2,在实际情况中,由于背光模组产生的背光(例如蓝光)直接从W子像素(其通常由透明光阻形成)出射,很难满足各个子像素的关系式:W=R+G+B。此外,由W子像素出射的光与由B子像素出射的光高度近似。此时如果RGBW显示面板显示白色时,由于W子像素出射的光和B子像素出射的光的共同作用,导致RGBW显示面板显示白色的光谱无法处于正常的区域范围,RGBW显示面板显示白色的色度值出现异常。
发明内容
本发明是为了解决前后两帧画面R/G/B/W的灰阶差异过大时,产生拖色的问题,而 提出的一种四色面板的过驱动方法。
一种四色面板的过驱动方法按以下步骤实现:
步骤一:计算R/G/B的过驱动目标值;其中R为红色子像素,G为绿色子像素,B为蓝色子像素;
步骤二:通过不同灰阶的切换波形,得到R/G/B不同灰阶之间的过驱动目标值;
步骤三:根据步骤一得到的R/G/B过驱动目标值计算W的过驱动目标值;所述W为白色子像素;
步骤四:根据步骤二中得到R/G/B不同灰阶之间的过驱动目标值,结合第一表达式得到W不同灰阶之间的过驱动目标值;所述第一表达式满足:
Figure PCTCN2017071485-appb-000001
步骤五:在R/G/B过驱动表的计算中,加入亮度归一化曲线的差异的计算,得到改变后的R/G/B的过驱动目标值;
步骤六:将步骤五得到的改变后的R/G/B的过驱动目标值带入所述第一表达式,得到第二表达式:
Figure PCTCN2017071485-appb-000002
其中factor为正数因子。
发明效果:
本发明涉及一种四色显示器的过驱动方法,包括:在R/G的归一化亮度变化曲线中寻找10%、90%亮度值处,计算10%-90%区间R/G与G的亮度归一化曲线的差异值,通过寻找亮度归一化曲线的差异值的最小值来确定过驱动灰阶电压表中每个R/G的过驱动灰阶电压值。
本发明解决了当前后两帧画面,R/G/B/W的灰阶差异(△Gray)过大时,较小的灰阶差异(△Gray)的亮度变换曲线会更快,而较大的灰阶差异(△Gray)会存在R/G/B/W的亮度变化曲线的不匹配,导致拖色发生的问题。
附图说明
图1为现有的W子像素的透射光谱图;
图2为现有的R子像素、G子像素、B子像素的透射光谱图;
图3为R/G在不同起始位置的归一化亮度变换曲线(初始帧—OD帧—目标帧)图;
图4为一个信号的处理框架图;
图5为本发明流程图。
具体实施方式
具体实施方式一:如图5所示,一种四色面板的过驱动方法包括以下步骤:
一种四色显示器,其输入信号一般为三色信号,而输出信号为四色,中间经过了一个多重映射的动作。
一组输入信号Ri,Gi,Bi经过第一步f的三色到四色的演算,再经过第二步白平衡后,以Ro,Go,Bo,Mo输出;Ri表示经白平衡处理的红色色彩的灰度值,Gi表示经白平衡处理的绿色色彩的灰度值,Bi表示经白平衡处理的蓝色色彩的灰度值;Ro表示需显示的RGBW数据中红色色彩的输出灰度值,Go表示需显示的RGBW数据中绿色色彩的输出灰度值,Bo表示需显示的RGBW数据中蓝色色彩的输出灰度值,Wo表示需显示的RGBW数据中白色色彩的输出灰度值。
当一个四色LCD显示设备由于本身响应时间的问题,需要进行过驱动设计时,传统的三色过驱动方法已经不能适配于四色的系统。一个重要的原因在于,对于四色系统,其必然存在W/R/G/B四色的过驱动目标值,而非R/G/B三色的目标值。如果多重映射(Mapping)功能关闭,通过信号的控制独立显示出W-亚像素(sub pixel)的灰阶来调整W-亚像素(sub pixel)的过驱动目标值会与多重映射(Mapping)打开时存在误差,薄膜晶体管(TFT)的负载不同,充放电的情况也不一样,同时为了单独显示W子像素的灰阶→灰阶切换,需要编写较为复杂的软件来实现。
步骤一:计算R/G/B的过驱动目标值;其中R为红色子像素,G为绿色子像素,B为蓝色子像素;
步骤二:通过不同灰阶的切换波形,得到R/G/B不同灰阶之间的过驱动目标值;
当画面从第n帧(Frame n)切换到第n+1帧(Frame n+1)时,四色系统的OD需要经历一个增加的OD(w)驱动电压,在打开RGB→RGBW多重映射(Mapping)的状态下,通过纯色的R/G/B画面的灰阶→灰阶切换波形,即可得到不同灰阶之间的过驱动(OD) 值。
步骤三:根据步骤一得到的R/G/B过驱动目标值计算W的过驱动目标值;所述W为白色子像素;
对于W子像素来说,在多重映射打开的情况下,四色显示系统无法单独显示第四子像素的纯色画面,该子像素的灰阶值依赖于输入的R/G/B信号。
考虑WRGB的单元(Cell)架构,在四色像素中的部分单元(Cell)结构,R与绿色(Green)的液晶单元间隙(cell gap)较为接近,而W与(黄色)Blue的液晶单元间隙(cell gap)一致。在这样的情况下,可以通过对单元(Cell)中液晶的扭转速度的分析,通过已获得R/G/B过驱动目标值(OD Table)对W的过驱动目标值(OD Table)进行计算。
步骤四:根据步骤二中得到R/G/B不同灰阶之间的过驱动目标值,得到W不同灰阶之间的过驱动目标值;
通过对R/G/B/W膜厚的测试,可以得到W膜厚dw与R/G/B膜厚dr/dg/db的关系,从而对于相同的过驱动目标值(OD Table),每一个灰阶到灰阶的W子像素的过驱动值,可以通过R/G/B过驱动目标值(OD Table)计算出来,假设对于灰阶Gray1到灰阶Gray2的R/G/B过驱动值分别为OR1,OG1,OB1,则
Figure PCTCN2017071485-appb-000003
通过公式(1)已经可以通过R/G/B的过驱动目标值(OD Table)得到W的过驱动目标值(OD Table),但是对于W子像素的过驱动,还需要做一些修正。灰阶1到灰阶2的切换时如下表:
  Frame n Frame n+1 △Gray
R r1 r2 |r2-r1|
G g1 g2 |g2-g1|
B b1 b2 |b2-b1|
W w1 w2 |w2-w1|
其中Frame n为第n帧画面,Frame n+1为第n+1帧画面,△Gray为灰阶差异,r1、g1、b1和w1分别为第n帧画面时的红色子像素,绿色子像素,蓝色子像素和白色子像素的灰阶值;r2、g2、b2和w2分别为第n+1帧画面时的红色子像素,绿色子像素,蓝色子像素和白色子像素的灰阶值。
步骤五:在R/G/B过驱动表的计算中,加入亮度归一化曲线的差异的计算,得到改变后的R/G/B的过驱动目标值;
步骤六:将步骤五得到的改变后的R/G/B的过驱动目标值带入公式(1),公式(1)变形为:
由步骤五可以得到改善的R/G/B过驱动目标值(OD Table),同时带入步骤四,为了补偿W子像素无法得到单独的亮度响应曲线的问题,同时由于w2-w1的差异受到R/G/B的影响较多,公式(1)变形为公式(2)。
Figure PCTCN2017071485-appb-000004
其中factor为正数因子。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一一、根据待填写过驱动表中一个表格的起始灰阶与终止灰阶,进行四帧动态切换,所述四帧包括第一至第四帧;
步骤一二、尝试一过驱动目标值,以获得该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线;
步骤一三、对步骤一二中得到的R/G/B亮度-时间响应曲线进行降噪平滑处理;
步骤一四、以步骤一一中第三帧的亮度值作为目标亮度,判断该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度是否与该目标亮度匹配,若匹配则转至步骤一五,否则重复步骤一二至一四;
步骤一五、若该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度是第一个与目标亮度相匹配的亮度,则将该次尝试的过驱动目标值填入待填写过驱动表中对应位置,并重复步骤一二至步骤一四;若该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度不是第一个与目标亮度相匹配的亮度,则比较该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间与该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间,转至步骤一六;
步骤一六、当该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间比该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间小时,则将该待填写过驱动表中对应位置的过驱动目标值替换为该次尝试的过驱动目标值,并重复步骤一二至一五;当该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间比该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间大时,则以该待填写过驱动表中对应位置的过驱动目标值作为该对应位置最终确定的过驱动目标值,并转至步骤一七;
步骤一七、重复步骤一一至步骤一六,直到完成过驱动表中的所有过驱动目标值的计算。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:根据重复顺序,所述步骤一二中过驱动目标值是按照从小到大的顺序尝试的。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:根据重复顺序,所述步骤一二中过驱动目标值是按照从大到小的顺序尝试的。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述步骤一三中采用中值滤波器对步骤一二中得到的R/G/B亮度-时间响应曲线进行降噪平滑处理。
其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:所述步骤三中计算W的过驱动目标值为在多重映射状态下。
其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:所述步骤五中过驱动表为17*17过驱动表。
其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:所述步骤五中加入亮度归一化曲线的差异的计算,得到改变后的R/G/B的过驱动目标值的具体过程为:
当前后两帧画面,R/G/B/W的灰阶差异(△Gray)的差异过大时,较小的灰阶差异(△Gray)的亮度变换曲线会更快,而较大的灰阶差异(△Gray),依然会存在R/G/B/W的亮度变化曲线的不匹配问题,导致拖色发生,本发明进行了如下改进:
有必要在R/G/B的过驱动表格的计算中,加入亮度归一化曲线的差异的计算来改善这一拖色现象。
步骤五一:在归一化曲线图中寻找10%,90%亮度值处,如图3所示;
步骤五二:计算10%到90%段的R或B与G亮度归一化曲线的差异:
deltaL=(Lv(R)-Lv(G))^2
通过寻求亮度归一化曲线的差异(deltaL)的最小值,确定过驱动灰阶电压表中每个R/G的过驱动灰阶电压值。
其它步骤及参数与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:所述步骤六中factor围绕整数1波动。
针对不同的高低灰阶区域,正数因子factor可以围绕整数1波动,从而匹配不同的多重映射函数F的状况。
其它步骤及参数与具体实施方式一至九之一相同。
在四色显示系统中,一个信号的处理框架如图4所示,其中白平衡和过驱动的模块顺序亦可互换,并不影响过驱动目标值过驱动目标值(Over Drive Table)的整个计算和调试过程,Over Drive Table也可以表示为OD Table。
些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (20)

  1. 一种四色面板的过驱动方法,所述四色面板的过驱动方法包括以下步骤:
    步骤一:计算R/G/B的过驱动目标值;其中R为红色子像素,G为绿色子像素,B为蓝色子像素;
    步骤二:通过不同灰阶的切换波形,得到R/G/B不同灰阶之间的过驱动目标值;
    步骤三:根据步骤一得到的R/G/B过驱动目标值计算W的过驱动目标值;所述W为白色子像素;
    步骤四:根据步骤二中得到R/G/B不同灰阶之间的过驱动目标值,结合第一表达式得到W不同灰阶之间的过驱动目标值;所述第一表达式满足:
    Figure PCTCN2017071485-appb-100001
    其中所述dw为W膜厚,dr为R膜厚,dg为G膜厚,db为B膜厚,OR为不同灰阶之间R的过驱动目标值,OG为不同灰阶之间G的过驱动目标值,OB为不同灰阶之间B的过驱动目标值;
    步骤五:在R/G/B过驱动表的计算中,加入亮度归一化曲线的差异计算,得到改变后的R/G/B的过驱动目标值;
    步骤六:将步骤五得到的改变后的R/G/B的过驱动目标值带入所述第一表达式,得到第二表达式:
    Figure PCTCN2017071485-appb-100002
    其中factor为正数因子。
  2. 根据权利要求1所述的一种四色面板的过驱动方法,其中,所述步骤一中计算R/G/B的过驱动目标值的具体过程为:
    步骤一一、根据待填写过驱动表中一个表格的起始灰阶与终止灰阶,进行四帧动态切换,所述四帧包括第一至第四帧;
    步骤一二、尝试一过驱动目标值,以获得该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线;
    步骤一三、对步骤一二中得到的R/G/B亮度-时间响应曲线进行降噪平滑处理;
    步骤一四、以步骤一一中第三帧的亮度值作为目标亮度,判断该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度是否与该目标亮度匹配,若匹配则转至步骤一五,否则重复步骤一二至一四;
    步骤一五、若该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度是第一个与目标亮度相匹配的亮度,则将该次尝试的过驱动目标值填入待填写过驱动表中对应位置,并重复步骤一二至步骤一四;若该次尝试的过驱动目标值的R/G/B亮度-时间响应曲线中的亮度不是第一个与目标亮度相匹配的亮度,则比较该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间与该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间,转至步骤一六;
    步骤一六、当该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间比该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间小时,则将该待填写过驱动表中对应位置的过驱动目标值替换为该次尝试的过驱动目标值,并重复步骤一二至一五;当该次尝试的过驱动目标值得出的R/G/B亮度-时间响应曲线的响应时间比该待填写过驱动表中对应位置的过驱动目标值尝试得出的R/G/B亮度-时间响应曲线的响应时间大时,则以该待填写过驱动表中对应位置的过驱动目标值作为该对应位置最终确定的过驱动目标值,并转至步骤一七;
    步骤一七、重复步骤一一至步骤一六,直到完成过驱动表中的所有过驱动目标值的计算。
  3. 根据权利要求2所述的一种四色面板的过驱动方法,其中,根据重复顺序,所述步骤一二中过驱动目标值是按照从小到大的顺序尝试的。
  4. 根据权利要求2所述的一种四色面板的过驱动方法,其中,根据重复顺序,所述步骤一二中过驱动目标值是按照从大到小的顺序尝试的。
  5. 根据权利要求3所述的一种四色面板的过驱动方法,其中,所述步骤一三中采用中值滤波器对步骤一二中得到的R/G/B亮度-时间响应曲线进行降噪平滑处理。
  6. 根据权利要求4所述的一种四色面板的过驱动方法,其中,所述步骤一三中采用中值滤波器对步骤一二中得到的R/G/B亮度-时间响应曲线进行降噪平滑处理。
  7. 根据权利要求1所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号 R/G/B/W。
  8. 根据权利要求2所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
  9. 根据权利要求3所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
  10. 根据权利要求4所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
  11. 根据权利要求5所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
  12. 根据权利要求6所述的一种四色面板的过驱动方法,其中,所述步骤二中得到R/G/B不同灰阶之间的过驱动目标值为在多重映射状态下,输入三色信号R/G/B,输出四色信号R/G/B/W。
  13. 根据权利要求7所述的一种四色面板的过驱动方法,其中,所述步骤三中计算W的过驱动目标值为在多重映射状态下。
  14. 根据权利要求8所述的一种四色面板的过驱动方法,其中,所述步骤三中计算W的过驱动目标值为在多重映射状态下。
  15. 根据权利要求9所述的一种四色面板的过驱动方法,其中,所述步骤三中计算W的过驱动目标值为在多重映射状态下。
  16. 根据权利要求10所述的一种四色面板的过驱动方法,其中,所述步骤三中计算W的过驱动目标值为在多重映射状态下。
  17. 根据权利要求12所述的一种四色面板的过驱动方法,其中,所述步骤三中计算W的过驱动目标值为在多重映射状态下。
  18. 根据权利要求17所述的一种四色面板的过驱动方法,其中,所述步骤五中过驱动表为17*17过驱动表。
  19. 根据权利要求18所述的一种四色面板的过驱动方法,其中,所述步骤五中加入 亮度归一化曲线的差异计算,得到改变后的R/G/B的过驱动目标值的具体过程为:
    步骤五一:在归一化曲线图中寻找10%和90%亮度值处;
    步骤五二:计算10%到90%段的R或B与G亮度归一化曲线的差异:
    deltaL=(Lv(R)-Lv(G))^2
    其中所述Lv(R)为R的亮度值,Lv(G)为G的亮度值,通过寻求亮度归一化曲线的差异的最小值,确定过驱动灰阶电压表中每个R/G的过驱动灰阶电压值。
  20. 根据权利要求19所述的一种四色面板的过驱动方法,其中,所述步骤六中factor围绕整数1波动。
PCT/CN2017/071485 2016-08-31 2017-01-18 一种四色面板的过驱动方法 WO2018040486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,108 US10360860B2 (en) 2016-08-31 2017-01-18 Overdrive method of four-color panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610784274.3A CN106448584B (zh) 2016-08-31 2016-08-31 一种四色面板的过驱动方法
CN201610784274.3 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040486A1 true WO2018040486A1 (zh) 2018-03-08

Family

ID=58091091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071485 WO2018040486A1 (zh) 2016-08-31 2017-01-18 一种四色面板的过驱动方法

Country Status (3)

Country Link
US (1) US10360860B2 (zh)
CN (1) CN106448584B (zh)
WO (1) WO2018040486A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509164B1 (ko) * 2016-09-29 2023-03-13 엘지디스플레이 주식회사 표시장치 및 그를 이용한 서브픽셀 트랜지션 방법
US10444592B2 (en) * 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays
CN107818768B (zh) * 2017-10-10 2019-09-17 惠科股份有限公司 显示装置的驱动方法与驱动装置
CN108376537B (zh) * 2018-05-11 2020-08-07 惠州市华星光电技术有限公司 一种液晶面板过驱动方法
CN109410850B (zh) * 2018-12-24 2021-02-12 惠科股份有限公司 一种过驱动亮度值查找表的调试方法、使用方法和显示面板
CN109509457B (zh) * 2019-01-09 2021-01-01 惠州市华星光电技术有限公司 液晶面板的显示模式设定方法及液晶面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303481A (ja) * 2004-04-07 2005-10-27 Sharp Corp 階調補正装置および階調補正方法、電子情報機器装置
CN101075055A (zh) * 2006-02-02 2007-11-21 三星电子株式会社 场序图像显示装置及其驱动方法
US20090238465A1 (en) * 2008-03-18 2009-09-24 Electronics And Telecommunications Research Institute Apparatus and method for extracting features of video, and system and method for identifying videos using same
JP2011119928A (ja) * 2009-12-02 2011-06-16 Sharp Corp 画像処理装置及び画像処理方法
CN104517579A (zh) * 2014-12-31 2015-04-15 深圳市华星光电技术有限公司 过驱动表的调试方法
CN104795020A (zh) * 2015-03-26 2015-07-22 繁昌县江林广告设计制作有限公司 一种白平衡自动调节型led显示屏

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083353A1 (en) * 2003-10-16 2005-04-21 Junichi Maruyama Display device
JP4845825B2 (ja) * 2007-07-25 2011-12-28 株式会社 日立ディスプレイズ 多色表示装置
KR20090052237A (ko) * 2007-11-20 2009-05-25 엘지디스플레이 주식회사 액정표시장치의 오버드라이빙 회로 및 방법
WO2011115169A1 (ja) * 2010-03-18 2011-09-22 シャープ株式会社 多原色液晶パネル駆動回路、多原色液晶パネルの駆動方法、液晶表示装置およびオーバードライブ駆動の設定方法
KR20150049630A (ko) * 2013-10-30 2015-05-08 삼성디스플레이 주식회사 표시 장치
CN103680448B (zh) * 2013-12-11 2015-07-01 深圳市华星光电技术有限公司 计算过驱动目标值的方法
CN105336288B (zh) * 2014-08-15 2018-02-16 Tcl集团股份有限公司 一种rgb信号到rgbw信号的转换方法、装置及电视
CN104517580B (zh) * 2014-12-31 2017-07-21 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN104900209A (zh) * 2015-06-29 2015-09-09 深圳市华星光电技术有限公司 基于子像素信号亮暗切换时过驱动目标值的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303481A (ja) * 2004-04-07 2005-10-27 Sharp Corp 階調補正装置および階調補正方法、電子情報機器装置
CN101075055A (zh) * 2006-02-02 2007-11-21 三星电子株式会社 场序图像显示装置及其驱动方法
US20090238465A1 (en) * 2008-03-18 2009-09-24 Electronics And Telecommunications Research Institute Apparatus and method for extracting features of video, and system and method for identifying videos using same
JP2011119928A (ja) * 2009-12-02 2011-06-16 Sharp Corp 画像処理装置及び画像処理方法
CN104517579A (zh) * 2014-12-31 2015-04-15 深圳市华星光电技术有限公司 过驱动表的调试方法
CN104795020A (zh) * 2015-03-26 2015-07-22 繁昌县江林广告设计制作有限公司 一种白平衡自动调节型led显示屏

Also Published As

Publication number Publication date
US20190005900A1 (en) 2019-01-03
US10360860B2 (en) 2019-07-23
CN106448584A (zh) 2017-02-22
CN106448584B (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2018040486A1 (zh) 一种四色面板的过驱动方法
US10580369B2 (en) Display apparatus and method for driving the same
US10546543B2 (en) Liquid crystal display device and method for driving the same
US9280940B2 (en) Liquid crystal display device, four-color converter, and conversion method for converting RGB data to RGBW data
US9659517B2 (en) Converting system and converting method of three-color data to four-color data
WO2018214188A1 (zh) 图像处理方法、图像处理装置及显示装置
US8749599B2 (en) 4-primary color display and pixel data rendering method thereof
US8013818B2 (en) Liquid crystal display device and method of driving the same
RU2647623C1 (ru) Система и способ преобразования цвета rgb в rgbw
US20160335944A1 (en) Liquid crystal panel and driving method thereof
WO2018214322A1 (zh) 像素驱动方法及显示装置
RU2654349C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
JP6410279B2 (ja) Wrgb方式の液晶表示パネルの表示駆動方法
US20180374435A1 (en) Display Apparatus and Method for Driving the Same
WO2018205395A1 (zh) 显示面板像素驱动方法及显示装置
CN104376833A (zh) 一种rgb数据到rgbw数据的转换系统及转换方法
RU2656702C1 (ru) Жидкокристаллическое устройство отображения, четырехцветовой конвертор и способ преобразования данных rgb в данные rgbw
US9646549B2 (en) Liquid crystal device and the driving method thereof
WO2020135089A1 (zh) 显示器及其显示面板的驱动装置、方法
CN114613338A (zh) 一种像素数据的改善方法、像素矩阵驱动装置及显示器
KR20080045387A (ko) 액정 표시장치
TWI405175B (zh) 液晶子畫素的驅動方法
JP7191057B2 (ja) 表示装置、画像データ変換装置およびホワイトバランス調整方法
US11455962B2 (en) Driving method and system of display assembly, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844797

Country of ref document: EP

Kind code of ref document: A1