WO2018040140A1 - 宽频五波束阵列天线 - Google Patents

宽频五波束阵列天线 Download PDF

Info

Publication number
WO2018040140A1
WO2018040140A1 PCT/CN2016/099281 CN2016099281W WO2018040140A1 WO 2018040140 A1 WO2018040140 A1 WO 2018040140A1 CN 2016099281 W CN2016099281 W CN 2016099281W WO 2018040140 A1 WO2018040140 A1 WO 2018040140A1
Authority
WO
WIPO (PCT)
Prior art keywords
input port
broadband
sub
array antenna
network
Prior art date
Application number
PCT/CN2016/099281
Other languages
English (en)
French (fr)
Inventor
吴泽海
张劭
苏振华
吴壁群
Original Assignee
广东博纬通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博纬通信科技有限公司 filed Critical 广东博纬通信科技有限公司
Publication of WO2018040140A1 publication Critical patent/WO2018040140A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a broadband five-beam array antenna, in particular to a broadband five-beam array antenna for increasing network speed and capacity.
  • the fourth-generation mobile communication technology is commercialized on the scale of 4G/LTE, the data traffic in the mobile communication network is proliferating, and the bandwidth capacity of the mobile communication system in the user-intensive area is under tremendous pressure.
  • Large-scale plazas, transportation hubs, sports centers, performing arts venues, tourist attractions, college student residences and other regional users are densely populated. At peak times, tens of thousands or even more than 100,000 people can be accumulated.
  • Data traffic and voice calls require systems with extremely high capacity.
  • the conventional method of increasing the carrier is limited, and another method of reducing the coverage area of the base station antenna to increase the number of base stations faces the problem of site selection and property coordination, which is costly and limited in capacity.
  • the invention patent publication CN 102570057 A proposes a method of generating five beams using a 6 x 6 Butler matrix, as shown in FIG.
  • Each column of evenly arranged radiating elements is connected to a vertical splitter and then to a 6 x 6 Butler matrix output, each polarization corresponding to a 6 x 6 Butler matrix.
  • the technology has a working bandwidth of only 23.7% (1710-2170MHz) and cannot be compatible with the 2300 and 2600MHz bands of 4G LTE.
  • the existing five-beam technology if the frequency band is widened to the 1700-2700 MHz band, produces a very high horizontal grating lobes at 2700 MHz.
  • the pattern of the simulation calculation in Figure 2 shows that the grating lobes at the 2700MHz frequency are as high as -5dB, which is very disturbing to adjacent cells.
  • the working frequency band is widened to 1700-2700MHz, compatible with 4G, 3G standard frequency band and part of 2G standard frequency band, and has good side lobes in the azimuth direction in the working frequency band.
  • grating flap suppression performance to overcome the above problems.
  • the present invention adopts the following technical means:
  • a broadband five-beam array antenna comprising a metal reflector; an array of radiating elements comprising M sub-arrays, each sub-array comprising N radiating elements arranged in a horizontal direction, at least one sub-array being offset in a horizontal direction a plurality of phase compensation circuits for phase compensation of the horizontally offset sub-array; a plurality of beamforming networks including two 3 ⁇ 3 Butler matrix circuits, a plurality of 2-way mixer circuits, a phase shifter circuit, and a power distribution network, a beamforming network, including a first input port forming a first beam, forming a second input port of the second beam, forming a third input port of the third beam, forming a fourth input port of the fourth beam, and Forming a fifth input port of the fifth beam.
  • the radiating element is a dual polarized antenna unit.
  • the number M of sub-arrays is six, and the number N of radiating elements in each sub-array is ten.
  • each sub-array is arranged along a horizontal line, and the three sub-arrays are shifted in the horizontal direction.
  • each sub-array radiating element is equal, and the vertical spacing between the sub-arrays is equal.
  • the distance in which the sub-array is offset in the horizontal direction is half of the horizontal pitch of the radiation unit.
  • phase compensation circuit includes two independent transmission lines, and the phase difference between the two is ⁇ .
  • the input port of the 3 ⁇ 3 Butler matrix circuit is connected to the output port of the 2-way mixer circuit through a phase shifter circuit, and the output port of the 3 ⁇ 3 Butler matrix circuit is connected to the input port of the power distribution network, and the 2-way mixer
  • the input port of the circuit is a first input port, a second input port, a third input port, a fourth input port and a fifth input port of the beam forming network, and an output port of the power distribution network is an output port of the beam forming network.
  • the 3 x 3 Butler Matrix circuit consists of three mixers and at least one phase shifter.
  • the azimuth of the first beam ranges from 30 to 55 degrees
  • the azimuth of the second beam ranges from 15 to 23 degrees
  • the azimuth of the third beam is 0 degrees
  • the azimuth of the fourth beam ranges from -15 to At -23 degrees
  • the azimuth of the fifth beam ranges from -30 to -55 degrees.
  • the first power divider network includes a plurality of 3-way power divider circuits
  • the second power divider network includes a plurality of 2-way power divider circuits.
  • the output port of the 3-way splitter circuit is connected to three radiating elements at different horizontal positions of the same horizontal position, and the input port of the 3-way splitter circuit is connected to the output port of the beam forming network.
  • first input port, the second input port, the fourth input port, and the fifth input port of the beam forming network are connected to the second power divider network through a phase compensation circuit.
  • first input port and the fifth input port of the beam forming network have the same phase difference corresponding to the phase compensation circuit; the second input port and the fourth input port of the beam forming network have equal phase differences corresponding to the phase compensation circuit.
  • the present invention has the following beneficial effects:
  • each sub-array includes N radiating elements arranged in a horizontal direction, at least one sub-array is offset in a horizontal direction, and a plurality of phase compensating circuits perform phase compensation on the horizontally offset sub-array, In this way, different types of radiating elements are arranged in a horizontal direction according to a certain regularity, and a certain phase compensation is added to the offset radiating elements in the feeding network.
  • the five-beam antenna has better in the ultra-wide frequency band.
  • the side lobes and the grating lobes suppress the performance, reduce the neighboring interference of the corresponding cells of the beam, and realize the frequency reuse of the adjacent cells without increasing the antenna site and the surface resources, thereby improving the network capacity.
  • 1 is a radiation unit arrangement scheme for generating a five-beam antenna in the prior art
  • 2 is a composite direction diagram of five beams at a frequency of 2700 MHz when the prior art is widened to a frequency band of 1700-2700 MHz;
  • 3 is a radiation unit arrangement scheme of a broadband five-beam antenna of the present invention.
  • FIG. 4 is a connection diagram of a radiation unit and a 3-way power divider circuit of the present invention.
  • Figure 5 is a connection diagram of a beam forming network of the present invention.
  • FIG. 6 is a connection diagram of a second power divider network and a phase compensation circuit according to the present invention.
  • FIG. 7 is a composite direction diagram of a frequency of 2200 MHz simulated by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a composite direction of five beams at a frequency of 2700 MHz simulated according to an embodiment of the present invention.
  • the broadband five-beam array antenna includes a metal reflector, a radiation unit array, a plurality of phase compensation circuits, a plurality of beamforming networks, a first power divider network, and a second power divider network, and a beamforming network.
  • the five beams are primarily generated by a beamforming network, each beam forming network comprising two 3 x 3 Butler matrix circuits, a plurality of 2-way mixer circuits, a phase shifter circuit, and a power distribution network.
  • the input port of the 2-way mixer circuit is an input port of the beam forming network
  • the output port of the power distribution network is an output port of the beam forming network.
  • the 3x3 Butler Matrix circuit consists of three mixers and more than one phase shifter.
  • a wide-band five-beam antenna provided by an embodiment of the present invention has a fixed tilt angle of each beam, including a metal reflector, a radiation unit array, a plurality of beamforming networks, a first power divider network, and a second power split. Network, and phase compensation circuit.
  • Adjacent rows of the array of radiating elements are offset horizontally in the arrangement, as shown in FIG.
  • the plurality of radiating elements 101 are arranged in a row, the horizontal spacing of the radiating elements is HD, the vertical spacing is VD, and the distance horizontally staggered by adjacent rows is HD1.
  • the second row of radiating elements 112, the fourth row of radiating elements 114, and the sixth row of radiating elements 116 are each right offset HD1 with respect to the first row 111; the third row of radiating elements 113 and the fifth row of radiating elements 115 There is no offset relative to the first row 111.
  • the radiating element 101 is a ⁇ 45 dual-polarized crossed dipole antenna, a patch antenna and a slot antenna.
  • each row of radiating elements is connected to an output port of the first power divider network
  • the first splitter network is composed of a plurality of 3-way splitter circuits
  • the number of 3-way splitter circuits is 4 ⁇ N .
  • Three radiating elements of the same horizontal position in each column of the array are connected to the same 3-way splitter circuit output port, as shown in FIG.
  • the first row of radiating elements are connected as follows.
  • the +45 polarization of the radiating elements d11, d31 and d51 is connected to the output port of the 3-way splitter circuit 201, and the +45 polarization of the radiating elements d21, d41 and d61 is connected to another 3-way power split.
  • the circuit 202 outputs an output port.
  • the other column radiating elements are similar to the three-way splitter circuit.
  • Figure 4 shows the connection of the radiating element +45 polarization, similar to the -45 polarization connection.
  • the input port of the 3-way splitter circuit is connected to the output port of the beam forming network, as shown in FIG.
  • the input port of the 3-way splitter circuit connecting the radiating elements of the 1, 3, and 5 rows is connected to the output port of the beam forming network 301; the input port of the 3-way splitter circuit connecting the radiating elements of the 2nd, 4th, and 6th rows is connected.
  • Figure 5 shows a +45 polarization connection diagram with a -45 polarization connection similar.
  • the input port of the 2-way mixer circuit is an input port of the beam forming network, and the output port of the 2-way mixer circuit is connected to the phase shifter circuit.
  • the input port of the 3 ⁇ 3 Butler matrix circuit is connected to a phase shifter circuit, and the output port of the 3 ⁇ 3 Butler matrix circuit is connected to an input port of the power distribution network.
  • the power distribution network is comprised of a plurality of 2-way splitter circuits for forming a tapered distribution of the amplitude of each row of radiating elements of the array to suppress azimuth sidelobes.
  • the output port of the power distribution network is the output port of the beamforming network.
  • the input port of the beamforming network is connected to the second power divider network through a phase compensation circuit, as shown in FIG.
  • the second power divider network is composed of a plurality of 2-way power divider circuits.
  • the phase compensation circuit includes two independent transmission lines with a phase difference of ⁇ therebetween.
  • the input ports 413 and 423 of the third beam of the beam forming network are connected to the 2-way function.
  • the -45 polarization connection is similar.
  • Figures 7 and 8 show the azimuthal plane five-beam synthesis pattern simulated using a 6-row, 10-column array layout with display frequencies of 2200 MHz and 2700 MHz, respectively.
  • the radiating element uses a crossed dipole antenna with a vertical tilt angle of 6 degrees.
  • the simulation results show that the side lobes and grating lobes are better than 18dB, the beam crossing level is 9.5dB, and the 10dB beamwidth range is 80-140 degrees.
  • the five-beam antenna of the embodiment has a fixed electronic downtilt angle and is suitable for users with very dense scenes, such as large stadiums, performing arts centers and plazas.
  • the communication capacity can be doubled.
  • the traditional 5-sector division requires five narrow-beam antennas, each of which is very bulky. It is very difficult to install on the antenna tower. In this embodiment, only one antenna is needed for five sectors, which can be conveniently configured in the antenna tower. on.
  • the spacing between two adjacent radiating elements in the horizontal direction in the antenna array is fixed, that is, the radiating elements are equally spaced.
  • the vibrator units can also be arranged at unequal intervals.
  • the two vibrators in the vertical direction may also be arranged at unequal intervals.
  • Lines 2, 4, and 6 are offset to the right with respect to lines 1, 3, and 5. In practical applications, they may also be left-shifted.
  • the arrangement of the vibrators is staggered, it is also possible to realize a multi-beam pattern having a low side lobe in the ultra-wideband range, and it is also within the scope of the present invention without departing from the concept of the present invention.
  • each of the sub-arrays includes N radiating elements arranged in a horizontal direction, the plurality of sub-arrays are offset in a horizontal direction, and a plurality of phase compensating circuits perform phase compensation on the horizontally offset sub-arrays, such that The radiation unit with different rows is arranged in a horizontal direction according to a certain regularity, and a certain phase compensation is added to the offset radiation unit in the feeding network.
  • the five-beam antenna has better side in the ultra-wide frequency band.
  • the flap and grating lobe suppression performance reduces the neighboring interference of the corresponding cell of the beam, and achieves frequency reuse of the adjacent cell without increasing the antenna site and the surface resource, thereby improving the network capacity.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种宽频五波束阵列天线,其包括一金属反射板;一辐射单元阵列,其包含M个子阵列,每一个子阵列包含N个沿水平方向排列的辐射单元,至少一个子阵列在水平方向偏移;多个相位补偿电路,对水平方向偏移的子阵列进行相位补偿;多个波束形成网络,其包含2个3×3巴特勒矩阵电路、多个2路混合器电路、移相器电路和功率分配网络,波束形成网络,包含形成第一波束的第一输入端口,形成第二波束的第二输入端口,形成第三波束的第三输入端口,形成第四波束的第四输入端口,和形成第五波束的第五输入端口,这样采用不同行的辐射单元在水平方向按照一定规律偏移,并在馈电网络里对偏移的辐射单元添加一定的相位补偿来抑制栅瓣。

Description

宽频五波束阵列天线 【技术领域】
本发明涉及一种宽频五波束阵列天线,尤指一种提高网络速率和容量的宽频五波束阵列天线。
【背景技术】
第四代移动通信技术4G/LTE规模商用后,移动通信网络中的数据流量激增,用户密集区域移动通信系统带宽容量面临巨大压力。大型广场、交通枢纽、体育中心、演艺场馆、旅游景点、高校学生宿舍等区域用户密集,高峰时期可积聚几万乃至超过十万人口,数据流量和语音通话都需要系统具备极高的容量。为了增加通信网络容量,传统增加载波的方式提升有限,另外一种缩小基站天线覆盖区域从而增加基站数量的方法,面临站址选择和物业协调的难题,成本高昂,容量提高有限。
针对单个小区容量有限的问题,使用多波束天线,常规单个扇区的覆盖区域可细分为多个扇区,无线信道容量成倍增加。公开号为CN 102570057 A的发明专利提出了一种使用6×6巴特勒矩阵来产生五波束的方法,如图1所示。均匀排布的辐射单元的每一列与垂直功分器相连,再与6×6的巴特勒矩阵输出口相连,每一个极化对应一个6×6巴特勒矩阵。但是该技术工作带宽只有23.7%(1710-2170MHz),不能同时兼容4G LTE的2300和2600MHz频段。现有的五波束技术,如果频段拓宽至1700-2700MHz频段,在2700MHz频率会产生非常高的水平栅瓣。图2仿真计算的方向图显示,2700MHz频率处栅瓣高达-5dB,对相邻小区干扰非常大。
因此,有必要设计一种好的宽频五波束阵列天线,工作频带拓宽至1700-2700MHz,兼容4G、3G制式频段和部分2G制式的频段,且工作频带范围内方位角方向具有良好的旁瓣 和栅瓣抑制性能,以克服上述问题。
【发明内容】
针对背景技术所面临的问题,本发明的目的在于提供一种通过设置相位补偿电路对水平方向偏移的子阵列在进行相位补偿,提高网络速率和容量的宽频五波束阵列天线。
为实现上述目的,本发明采用以下技术手段:
一种宽频五波束阵列天线,其包括一金属反射板;一辐射单元阵列,其包含M个子阵列,每一个子阵列包含N个沿水平方向排列的辐射单元,至少一个子阵列在水平方向偏移;多个相位补偿电路,对水平方向偏移的子阵列进行相位补偿;多个波束形成网络,其包含2个3×3巴特勒矩阵电路、多个2路混合器电路、移相器电路和功率分配网络,波束形成网络,包含形成第一波束的第一输入端口,形成第二波束的第二输入端口,形成第三波束的第三输入端口,形成第四波束的第四输入端口,和形成第五波束的第五输入端口。
进一步地,辐射单元为双极化天线单元。
进一步地,子阵列的数目M为6个,每一个子阵列中辐射单元的数目N为10个。
进一步地,每一个子阵列的多个辐射单元沿一水平线排列,3个子阵列在水平方向偏移。
进一步地,各子阵列辐射单元的水平间距相等,各子阵列之间的垂直间距相等。
进一步地,子阵列在水平方向偏移的距离为辐射单元水平间距的一半。
进一步地,相位补偿电路包含2个独立传输线路,二者相位差为φ。
进一步地,3×3巴特勒矩阵电路的输入端口通过移相器电路连接2路混合器电路的输出端口,3×3巴特勒矩阵电路的输出端口连接功率分配网络的输入端口,2路混合器电路的输入端口为波束形成网络的第一输入端口、第二输入端口、第三输入端口、第四输入端口和第五输入端口,功率分配网络的输出端口为波束形成网络的输出端口。
进一步地,3×3巴特勒矩阵电路由三个混合器和至少一个相位偏移器组成。
进一步地,第一波束的方位角范围为30至55度,第二波束的方位角范围为15至23度,第三波束的方位角为0度,第四波束的方位角范围为-15至-23度,第五波束的方位角范围为-30至-55度。
进一步地,第一功分器网络包含多个3路功分器电路,第二功分器网络包含多个2路功分器电路。
进一步地,3路功分器电路的输出端口连接不同行的位于同一水平位置的三个辐射单元,3路功分器电路的输入端口连接波束形成网络的输出端口。
进一步地,波束形成网络的第一输入端口、第二输入端口、第四输入端口和第五输入端口通过相位补偿电路连接第二功分器网络。
进一步地,波束形成网络的第一输入端口和第五输入端口,对应相位补偿电路的相位差相等;波束形成网络的第二输入端口和第四输入端口,对应相位补偿电路的相位差相等。
与现有技术相比,本发明具有以下有益效果:
上述宽频五波束阵列天线,每一个子阵列包含N个沿水平方向排列的辐射单元,至少一个子阵列在水平方向偏移,多个相位补偿电路,对水平方向偏移的子阵列进行相位补偿,这样采用不同行的辐射单元在水平方向按照一定规律偏移的排列方案,并在馈电网络里对偏移的辐射单元添加一定的相位补偿,五波束天线在超宽频段内都具有较好的旁瓣和栅瓣抑制性能,降低波束对应小区的邻区干扰,在不增加天线站址和天面资源的条件下实现相邻小区的频率复用,提高网络容量。
【附图说明】
图1为现有技术产生五波束天线的辐射单元排列方案;
图2为现有技术拓宽到1700-2700MHz频段时2700MHz频率五个波束的合成方向图;
图3为本发明的宽频五波束天线的辐射单元排布方案;
图4为本发明辐射单元与3路功分器电路的连线图;
图5为本发明波束形成网络的连接图;
图6为本发明第二功分器网络和相位补偿电路的连接图;
图7为本发明实施例仿真的五个波束2200MHz频率的合成方向图;
图8为本发明实施例仿真的五个波束2700MHz频率的合成方向图。
【具体实施方式】
为便于更好的理解本发明的目的、结构、特征以及功效等,现结合附图和具体实施方式对本发明作进一步说明。
本发明中,宽频五波束阵列天线包括一金属反射板、一辐射单元阵列、多个相位补偿电路、多个波束形成网络、第一功分器网络以及第二功分器网络,波束形成网络的五个波束主要由波束形成网络产生,每个波束形成网络包括2个3×3巴特勒矩阵电路,多个2路混合器电路,移相器电路,和功率分配网络。所述2路混合器电路的输入端口为波束形成网络的输入端口,功率分配网络的输出端口为波束形成网络的输出端口。所述3×3巴特勒矩阵电路由三个混合器和多于一个的相位偏移器组成。
下面将结合附图和具体的实施例,对本发明的技术方案进行详细说明。
本发明实施例提供的一种宽频段五波束天线,每一个波束的俯仰面电倾角固定,包括金属反射板,辐射单元阵列,多个波束形成网络,第一功分器网络,第二功分器网络,和相位补偿电路。
辐射单元阵列的相邻行在排布上采用水平方向偏移的方式,如图3所示。多个辐射单元101排成一行,辐射单元水平间距为HD,垂直间距为VD,相邻行水平错开的距离为HD1。优选地,每一行的辐射单元数目N=10且水平间距相等,行数M=6且相邻行的垂直间距相 等;优选地,第二行辐射单元112,第四行辐射单元114,和第六行辐射单元116均相对于第一行111右偏移HD1;第三行辐射单元113与第五行辐射单元115相对于第一行111无偏移。优选地,辐射单元101为±45双极化的交叉偶极天线,贴片天线和缝隙天线。
优选地,每一行的辐射单元与第一功分器网络的输出端口相连,所述第一功分器网络由多个3路功分器电路组成,3路功分器电路数量为4×N。阵列中每一列的三个相同水平位置的辐射单元与同一个3路功分器电路输出端口相连,如图4所示。第一列辐射单元连接如下,辐射单元d11、d31和d51的+45极化连接3路功分器电路201输出端口,辐射单元d21、d41和d61的+45极化连接另外一个3路功分器电路202输出端口。其他列辐射单元与3路功分器电路的连接类似。图4显示的是辐射单元+45极化的连接,-45极化的连接类似。
优选地,3路功分器电路的输入端口与波束形成网络的输出端口相连,如图5所示。连接第1、3、5行辐射单元的3路功分器电路的输入端口连接波束形成网络301的输出端口;连接第2、4、6行辐射单元的3路功分器电路的输入端口连接波束形成网络302的输出端口。图5显示的是+45极化的连接图,-45极化的连接类似。
所述波束形成网络含有5个输入端口,输出端口数目等于阵列的列数N=10。所述2路混合器电路的输入端口为波束形成网络的输入端口,2路混合器电路的输出端口连接移相器电路。所述3×3巴特勒矩阵电路的输入端口连接移相器电路,3×3巴特勒矩阵电路的输出端口连接功率分配网络的输入口。所述功率分配网络由多个2路功分器电路构成,用于形成阵列每一行辐射单元幅度的锥形分布以抑制方位角旁瓣。功率分配网络的输出端口为波束形成网络的输出端口。
优选地,波束形成网络的输入端口通过相位补偿电路连接第二功分器网络,如图6所示。所述第二功分器网络由多个2路功分器电路组成。所述相位补偿电路包含两个独立传输线路,二者之间相位差为φ。波束形成网络第三波束的输入端口413、423连接2路功 分器电路503;第一波束的输入端口411、421经过相位补偿电路401连接到2路功分器电路501;第二波束的输入端口412、422经过相位补偿电路402连接到2路功分器电路502;第四波束的输入端口414、424经过相位补偿电路403连接到2路功分器电路504;第五波束的输入端口415、425经过相位补偿电路404连接到2路功分器电路505。-45极化的连接类似。
优选地,每一行辐射单元的水平偏移距离HD1为辐射单元水平距离的一半,即HD1=HD/2,第一和第五波束对应的相位补偿电路的相位差为60度,第二和第四波束对应的相位补偿电路的相位差为30度。
与现有的五波束技术相比,本发明通过对阵列单元交错排列和多套波束形成网络来实现技术优势。图7和8显示的是使用6行10列的阵列布局,仿真模拟的方位角平面五波束合成方向图,显示频率分别为2200MHz和2700MHz。仿真模型里辐射单元使用交叉偶极天线,垂直倾角为6度。仿真结果显示,旁瓣以及栅瓣抑制优于18dB,波束交叉电平为9.5dB,10dB波束宽度范围80-140度。
实施例的五波束天线电子下倾角固定,适合用户非常密集的场景,比如大型的体育场馆,演艺中心和广场。通过对场馆等应用场景进行精细小区划分,使用多副的五波束天线,可以实现通信容量的成倍提升。相对于传统的波束宽度为65度的常规基站天线,不仅通过小区分裂增加容量,而且超宽频(45%)范围内具有较低的方位角旁瓣,小区的邻区干扰小,网络速率高。传统的5扇区划分需要5个窄波束天线,每一个天线都非常庞大,同时安装在天线塔上非常困难,本实施例实现5个扇区只需一副天线,可以方便的配置在天线塔上。
需要强调的是,以上实施例中,天线阵列中位于水平方向相邻两个辐射单元之间的间距是固定的,即辐射单元是等间距排列的。然而,在实际工程应用中,振子单元也可以是不等间距排列的。同样的,垂直方向上的两个振子也可以是不等间距排列的。在实施例中, 第2、4、6行相对于第1、3、5行右偏移,在实际应用中,也可以是左偏移的。这种振子排列交错变化的情形,也可以实现超宽频范围内具有低旁瓣的多波束方向图,由于不脱离本发明的构思,也在本发明的保护范围之内。
上述宽频五波束阵列天线,每一个子阵列包含N个沿水平方向排列的辐射单元,多个子阵列在水平方向偏移,多个相位补偿电路,对水平方向偏移的子阵列进行相位补偿,这样采用不同行的辐射单元在水平方向按照一定规律偏移的排列方案,并在馈电网络里对偏移的辐射单元添加一定的相位补偿,五波束天线在超宽频段内都具有较好的旁瓣和栅瓣抑制性能,降低波束对应小区的邻区干扰,在不增加天线站址和天面资源的条件下实现相邻小区的频率复用,提高网络容量。
以上详细说明仅为本发明之较佳实施例的说明,非因此局限本发明的专利范围,所以,凡运用本创作说明书及图示内容所为的等效技术变化,均包含于本发明的专利范围内。

Claims (14)

  1. 一种宽频五波束阵列天线,其特征在于,包括:
    一金属反射板;
    一辐射单元阵列,其包含M个子阵列,每一个子阵列包含N个沿水平方向排列的辐射单元,至少一个子阵列在水平方向偏移;
    多个相位补偿电路,对水平方向偏移的子阵列进行相位补偿;
    多个波束形成网络,其包含2个3×3巴特勒矩阵电路、多个2路混合器电路、移相器电路和功率分配网络,波束形成网络,包含形成第一波束的第一输入端口,形成第二波束的第二输入端口,形成第三波束的第三输入端口,形成第四波束的第四输入端口,和形成第五波束的第五输入端口。
  2. 如权利要求1的宽频五波束阵列天线,其特征在于:辐射单元为双极化天线单元。
  3. 如权利要求1的宽频五波束阵列天线,其特征在于:子阵列的数目M为6个,每一个子阵列中辐射单元的数目N为10个。
  4. 如权利要求1的宽频五波束阵列天线,其特征在于:每一个子阵列的多个辐射单元沿一水平线排列,3个子阵列在水平方向偏移。
  5. 如权利要求1的宽频五波束阵列天线,其特征在于:各子阵列辐射单元的水平间距相等,各子阵列之间的垂直间距相等。
  6. 如权利要求1的宽频五波束阵列天线,其特征在于:3个子阵列在水平方向偏移的距离为辐射单元水平间距的一半。
  7. 如权利要求1的宽频五波束阵列天线,其特征在于:相位补偿电路包含2个独立传输线路,二者相位差为φ。
  8. 如权利要求1的宽频五波束阵列天线,其特征在于:3×3巴特勒矩阵电路的输入端口 通过移相器电路连接2路混合器电路的输出端口,3×3巴特勒矩阵电路的输出端口连接功率分配网络的输入端口,2路混合器电路的输入端口为波束形成网络的第一输入端口、第二输入端口、第三输入端口、第四输入端口和第五输入端口,功率分配网络的输出端口为波束形成网络的输出端口。
  9. 如权利要求1的宽频五波束阵列天线,其特征在于:3×3巴特勒矩阵电路由三个混合器和至少一个相位偏移器组成。
  10. 如权利要求1的宽频五波束阵列天线,其特征在于:第一波束的方位角范围为30至55度,第二波束的方位角范围为15至23度,第三波束的方位角为0度,第四波束的方位角范围为-15至-23度,第五波束的方位角范围为-30至-55度。
  11. 如权利要求1的宽频五波束阵列天线,其特征在于:第一功分器网络包含多个3路功分器电路,第二功分器网络包含多个2路功分器电路。
  12. 如权利要求11的宽频五波束阵列天线,其特征在于:3路功分器电路的输出端口连接不同行的位于同一水平位置的三个辐射单元,3路功分器电路的输入端口连接波束形成网络的输出端口。
  13. 如权利要求1的宽频五波束阵列天线,其特征在于:波束形成网络的第一输入端口、第二输入端口、第四输入端口和第五输入端口通过相位补偿电路连接第二功分器网络。
  14. 如权利要求13的宽频五波束阵列天线,其特征在于:波束形成网络的第一输入端口和第五输入端口,对应相位补偿电路的相位差相等;波束形成网络的第二输入端口和第四输入端口,对应相位补偿电路的相位差相等。
PCT/CN2016/099281 2016-09-05 2016-09-19 宽频五波束阵列天线 WO2018040140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610803078.6 2016-09-05
CN201610803078.6A CN106159465B (zh) 2016-09-05 2016-09-05 宽频五波束阵列天线

Publications (1)

Publication Number Publication Date
WO2018040140A1 true WO2018040140A1 (zh) 2018-03-08

Family

ID=57341054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099281 WO2018040140A1 (zh) 2016-09-05 2016-09-19 宽频五波束阵列天线

Country Status (2)

Country Link
CN (1) CN106159465B (zh)
WO (1) WO2018040140A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6756300B2 (ja) * 2017-04-24 2020-09-16 株式会社村田製作所 アレーアンテナ
CN108461932B (zh) * 2018-01-30 2024-01-30 广东博纬通信科技有限公司 一种低复杂度的模拟波束赋形天线阵列
CN108666769A (zh) * 2018-03-29 2018-10-16 广东博纬通信科技有限公司 一种宽频九波束阵列天线
CN108832307A (zh) * 2018-05-30 2018-11-16 华为技术有限公司 一种波束赋形天线
WO2020073362A1 (zh) * 2018-10-12 2020-04-16 广东博纬通信科技有限公司 一种宽频六波束阵列天线
CN112072309B (zh) * 2020-09-03 2023-02-28 中国电子科技集团公司第三十八研究所 一种步进补偿低成本相控阵天线架构及其设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160361A1 (en) * 2003-02-14 2004-08-19 Izzat Narian Moh?Apos;D Kheir Moh?Apos;D Antenna, base station and power coupler
CN103682573A (zh) * 2008-11-20 2014-03-26 安德鲁有限责任公司 双波束扇区天线与阵列
CN105356062A (zh) * 2015-10-23 2016-02-24 广东博纬通信科技有限公司 一种宽频阵列天线
CN105742828A (zh) * 2016-03-31 2016-07-06 广东通宇通讯股份有限公司 双极化三波束天线及其馈电网络装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160361A1 (en) * 2003-02-14 2004-08-19 Izzat Narian Moh?Apos;D Kheir Moh?Apos;D Antenna, base station and power coupler
CN103682573A (zh) * 2008-11-20 2014-03-26 安德鲁有限责任公司 双波束扇区天线与阵列
CN105356062A (zh) * 2015-10-23 2016-02-24 广东博纬通信科技有限公司 一种宽频阵列天线
CN105742828A (zh) * 2016-03-31 2016-07-06 广东通宇通讯股份有限公司 双极化三波束天线及其馈电网络装置

Also Published As

Publication number Publication date
CN106159465A (zh) 2016-11-23
CN106159465B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018040141A1 (zh) 宽频三波束阵列天线
WO2018040140A1 (zh) 宽频五波束阵列天线
JP5969698B2 (ja) アンテナアレイ、アンテナ装置及び基地局
CN105356062B (zh) 一种宽频阵列天线
EP2685557B1 (en) Antenna and base station
CN108432088B (zh) 具有子阵列的相控阵天线
US8237619B2 (en) Dual beam sector antenna array with low loss beam forming network
WO2013067790A1 (zh) 一种用于移动通信基站的单极化二十二波束天线
CN205004448U (zh) 一种宽频阵列天线
WO2003063299A9 (en) Tiled monopulse antenna with overlapping subarrays
CN107732465B (zh) 一种双频段双极化快速跌落矩形赋形阵列天线
CN109509995A (zh) 一种混合多波束天线
CN106252903A (zh) 一种双频两波束天线阵列及双频两波束天线
KR20170096196A (ko) 조정 가능한 스포트라이트 빔을 가진 셀룰러 어레이
CN208209011U (zh) 一种混合多波束天线
CN108232466A (zh) 一种混合多波束天线
CN108666769A (zh) 一种宽频九波束阵列天线
CN206322856U (zh) 宽频三波束阵列天线
CN206322857U (zh) 宽频五波束阵列天线
CN108092008B (zh) 一种两波束阵列天线及系统
CN206628602U (zh) 一种超宽频双波束电调天线
CN207517897U (zh) 一种两波束阵列天线及系统
CN206148623U (zh) 宽频全向天线
CN209374680U (zh) 一种混合多波束天线
WO2019184008A1 (zh) 一种宽频九波束阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.06.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16914704

Country of ref document: EP

Kind code of ref document: A1