WO2013067790A1 - 一种用于移动通信基站的单极化二十二波束天线 - Google Patents

一种用于移动通信基站的单极化二十二波束天线 Download PDF

Info

Publication number
WO2013067790A1
WO2013067790A1 PCT/CN2012/071657 CN2012071657W WO2013067790A1 WO 2013067790 A1 WO2013067790 A1 WO 2013067790A1 CN 2012071657 W CN2012071657 W CN 2012071657W WO 2013067790 A1 WO2013067790 A1 WO 2013067790A1
Authority
WO
WIPO (PCT)
Prior art keywords
butler matrix
power
antenna
feed network
port
Prior art date
Application number
PCT/CN2012/071657
Other languages
English (en)
French (fr)
Inventor
章致光
罗翠琼
Original Assignee
广东博纬通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46351082&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013067790(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 广东博纬通信科技有限公司 filed Critical 广东博纬通信科技有限公司
Publication of WO2013067790A1 publication Critical patent/WO2013067790A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a single-polarized twenty-two beam antenna for a mobile communication base station. Background technique
  • the base station antenna which is one of the key components of mobile communication systems, correspondingly with the construction of mobile communication networks And it is getting more and more important.
  • a single-polarized twenty-two beam antenna for a mobile communication base station comprising a metal floor, at least 12 columns of mutually parallel linear antenna arrays, at least 12 first power splitters, at least 12 second power splitters, a Butler matrix feed network, a second Butler matrix feed network, the number of first splitters is equal to the number of columns of the linear antenna array, and the number of the second splitters is equal to the number of columns of the linear antenna array, a straight line
  • the antenna array is disposed on the upper surface of the metal floor, and the first power splitter and the second power splitter are disposed on the lower surface of the metal floor; each of the linear antenna arrays is composed of at least two identical antenna radiating elements, each of the antenna radiating elements It consists of an antenna unit with a +45 degree polarization mode and an antenna unit with a -45 degree polarization mode, and the antenna unit of the +45 degree polarization mode and the antenna unit of the -45 degree polarization mode are vertically cross-combined.
  • Each input port of the first Butler matrix feed network is connected to a signal input cable, and each output port of the first Butler matrix feed network is electrically connected to a power synthesis port of each first power splitter;
  • Each input port of the matrix feed network is connected to the signal input cable, and each output port of the second Butler matrix feed network is electrically connected to the power synthesis port of each second power splitter;
  • the number of power distribution ports of each first power splitter is equal to the number of antenna elements of the +45 degree polarization mode in each column of linear antenna arrays, and the number of power distribution ports of each second power splitter is The number of antenna elements in the -45 degree polarization mode in the linear antenna array is equal;
  • Each power distribution port of each first power splitter is electrically connected to an antenna unit of a +45 degree polarization mode in the same linear antenna array; each power distribution port of each second power splitter is respectively in the same column
  • the antenna unit of the -45 degree polarization mode in the linear antenna array is electrically connected.
  • the distance between two adjacent linear antenna arrays is 0.3 ⁇ -1.5 ⁇ , and the distance between adjacent antenna radiating elements in each linear antenna array is 0.3 ⁇ -1.5 ⁇ .
  • the linear antenna arrays are parallel to each other, and both ends of all linear antenna arrays are aligned with each other.
  • the linear antenna arrays are parallel to each other, and the ends of all the odd columns are aligned with each other, and the ends of all the even columns are aligned with each other.
  • each power distribution port of each first power splitter is the same, and the power allocated to each adjacent power distribution port of each first power splitter has the same phase difference, so that the vertical pattern has one lower Inclination, the downtilt range is from 0 to 40 degrees.
  • each power distribution width of each power distribution port of each second power splitter is the same, and the power allocated to each adjacent power distribution port of each second power splitter has the same phase difference, so that the vertical pattern has an upper Inclination, the angle of inclination is from 0 to 40 degrees.
  • each Butler matrix feed network consists of one twelve-way Butler. Matrix composition, the input ports of the 12-way Butler matrix are isolated from each other, and the input ports of the 12-way Butler matrix are used as the input ports of the Butler matrix feed network, and the output ports of the 12-channel Butler matrix are used as The output port of the Butler Matrix Feed Network.
  • each Butler matrix feed network consists of one twelve-way Butler.
  • the matrix is composed of one power divider network, and the input ports of the twelve-way Butler matrix are isolated from each other.
  • the output ports of the twelve-way Butler matrix are connected to the input port of the power divider network, and the output of the power divider network The number of ports is equal to the number of columns of the linear antenna array.
  • the input ports of the 12-way Butler matrix serve as the input ports of the Butler Matrix feed network, and the output ports of the power divider network are fed as the Butler Matrix. The output port of the network.
  • the antenna structure of the present invention can form 11 fixed-point beams in the horizontal direction, and form two fixed-point beams in the vertical direction, and the interference between the 11 beams in the horizontal direction is small, and the two beams in the vertical direction are The interference between the two is small.
  • the twenty-two beam antenna made according to the technical scheme of the present invention has good anti-interference effect, stable performance, easy installation, can effectively reduce cost, and satisfies user requirements well.
  • Figure 1 is a side elevational view of the overall construction of the present invention.
  • Figure 2 is a plan view of the overall structure of the present invention.
  • Figure 3 is a schematic plan view of a linear array of linear antennas.
  • Figure 4 is a schematic illustration of an antenna radiating element.
  • Figure 5 is a schematic diagram of the first power splitter.
  • Figure 6 is a schematic diagram of the second power splitter.
  • FIGS. 7 and 8 are schematic diagrams of a Butler matrix feed network.
  • Figure 9 is a schematic diagram of the structure of a twelve-way Butler matrix.
  • Figure 10 is a schematic diagram of the structure of a three-way Butler matrix.
  • the single-polarized twenty-two beam antenna for the mobile communication base station of the present invention includes at least 12 parallel linear antenna arrays 104 (illustrated by using 18 columns as an example in FIG. 1), metal.
  • the floor 103 at least 12 first power splitters 105 (illustrated by taking 18 as an example in FIG. 2), and at least 12 second power splitters 106 (in FIG.
  • a Butler matrix feed network 107, a second Butler matrix feed network 108, the number of first splitters 105 is equal to the number of columns of the linear antenna array 104, and the number of second splitters 106 and the linear antenna array 104
  • the number of columns is equal, the linear antenna array 104 is disposed on the upper surface of the metal floor 103, and the first power divider 105 and the second power divider 106 are disposed on the lower surface of the metal floor 103.
  • the distance between adjacent two columns of linear antenna arrays 104 is 0.3 ⁇ -1.5 ⁇ .
  • Each of the linear antenna arrays 104 is composed of at least two (10 in FIG. 3 as an example) identical antenna radiating elements 203, and the distance between adjacent antenna radiating elements 203 in each column is 0.3 ⁇ -1.5 ⁇ . Where ⁇ represents the wavelength of the center frequency of the antenna operating frequency band in the air.
  • the arrangement of the linear antenna arrays 104 is as follows:
  • Each linear antenna array is parallel to each other, and both ends of all linear antenna arrays are aligned with each other.
  • the linear antenna arrays are parallel to each other, and the ends of all the odd columns are aligned with each other, and the ends of all the even columns are aligned with each other.
  • each antenna radiating unit 203 is composed of an antenna unit 202 of a +45 degree polarization mode and an antenna unit 201 of a -45 degree polarization mode, and an antenna unit 202 of a +45 degree polarization mode.
  • the antenna elements 201 of the -45 degree polarization mode are vertically cross-combined.
  • each first power splitter 105 has one power synthesis port 402 and a plurality of power distribution ports 403, and the number of power distribution ports 403 of each first power divider 105 and each column of linear antenna arrays 104
  • the number of antenna elements in the +45 degree polarization mode is equal (the one-point ten power divider is used in Fig. 5).
  • the distributed power amplitude and phase of each power distribution port 403 of each first power divider 105 can be determined based on actual needs. In the present embodiment, the power distribution amplitudes of the respective power distribution ports 403 of each of the first power dividers 105 are the same.
  • each adjacent power distribution port 403 of each first power splitter 105 has the same phase difference, so that the vertical pattern has a downtilt angle, and the downtilt angle ranges from 0 to 40 degrees. In the example, the downtilt angle is 6 degrees.
  • each second power splitter 106 has one power synthesis port 404 and several power distribution ports 405, and the number of power distribution ports 404 of each second power divider 106 and each column of linear antenna arrays 104 The number of antenna elements in the -45 degree polarization mode is equal (a one-point splitter is used in Fig. 6).
  • the distributed power amplitude and phase of each of the power distribution ports 405 of each of the second power dividers 106 can be determined based on actual needs. In the present embodiment, the power distribution amplitudes of the respective power distribution ports 405 of each of the second power dividers 106 are the same.
  • each adjacent power distribution port 405 of each second power splitter 106 has the same phase difference, so that the vertical pattern has an uptilt angle, and the uptilt angle ranges from 0 to 40 degrees. In the example, the uptilt angle is 6 degrees.
  • each Butler matrix feed network is composed of a twelve-way Butler matrix 602, as shown in FIG.
  • the input ports of the twelve-way Butler matrix 602 are isolated from each other, and the input ports of the twelve-way Butler matrix 602 serve as input ports of the Butler matrix feed network, and the output ports of the twelve-way Butler matrix 602 serve as The output port of the Butler Matrix Feed Network.
  • each Butler matrix feed network consists of a 12-way Batple matrix 602 and a power divider network 601, as shown in FIG.
  • the input ports of the twelve-way Butler matrix 602 are isolated from each other, the output port of the twelve-way Butler matrix 602 is connected to the input port of the power splitter network 601, the number of output ports of the power divider network 601 and the linear antenna array 104
  • the number of columns is the same.
  • FIG. 9 is a specific circuit structure of the twelve-way Butler matrix 602.
  • 702 denotes a phase shifter
  • 703 denotes a three-way Butler matrix
  • 704 denotes a four-way Butler matrix.
  • Fig. 10 is a specific circuit structure of a three-way Butler matrix 703.
  • 701 denotes a mixer
  • 702 denotes a phase shifter.
  • FIG. 11 is a specific circuit configuration of a four-way Butler matrix 704.
  • 701 denotes a mixer
  • phase shifter 702 denotes a phase shifter
  • Each input port of the first Butler matrix feed network 107 and the second Butler matrix feed network 108 is connected to a signal input cable, and each output port of the first Butler matrix feed network 107 is respectively associated with each first splitter
  • the power combining port 402 of the 105 is electrically connected; the output ports of the second Butler matrix feeding network 108 are electrically connected to the power combining ports 404 of the second power splitters 106, respectively.
  • Each power distribution port 403 of each first power splitter 105 is electrically connected to the antenna unit 202 of the +45 degree polarization mode in the same linear array antenna 104; each power distribution of each second power splitter 106
  • the port 405 is electrically connected to the antenna unit 201 of the -45 degree polarization mode in the linear array antenna 104 of the same column.
  • the signal phase of the output port changes linearly. Therefore, when the input ports of the Butler Matrix feed network are fed, the radiation beam directions of the antenna in the horizontal direction are different, wherein the input port 1 generates a beam with a horizontal 0 degree pointing, and the input port 2 generates a beam with a horizontal +70 degree pointing, input Port 3 produces a beam with a horizontal -30 degree pointing, input port 4 Produces a horizontal +30 degree directed beam, input port 5 produces a horizontal -10 degree directed beam, input port 6 produces a horizontal +50 degree directed beam, input port 7 produces a horizontal -40 degree directed beam, and input port 8 produces a horizontal +20 degree directed beam, input port 9 produces a horizontal -20 degree directed beam, input port 10 produces a horizontal +40 degree directed beam, input port 11 produces a horizontal -50 degree directed beam, input port 12 produces a horizontal +10 The beam pointed by the degree.
  • input port 2 is connected to a 50 oh
  • the antenna When 11 ports of the first Butler matrix feed network 107 are simultaneously fed, the antenna produces 11 beams with a horizontal orientation of 0 degrees, ⁇ 10 degrees, ⁇ 20 degrees, ⁇ 30 degrees, ⁇ 40 degrees, and ⁇ 50 degrees. And the 11 beams are tilted 6 degrees in the vertical direction; when 11 ports of the second Butler matrix feed network 108 are simultaneously fed, the antennas are horizontally oriented at 0 degrees, ⁇ 10 degrees, ⁇ 20 degrees, ⁇ 30 degrees. 11 beams of 40 degrees and ⁇ 50 degrees, and the 11 beams are tilted 6 degrees in the vertical direction.
  • the antenna can generate 11 horizontal patterns pointing to 0 degrees, ⁇ 10 degrees, ⁇ 20 degrees, ⁇ 30 degrees, ⁇ 40 degrees, ⁇
  • the 50-degree and vertical patterns have a 6-degree down-tilt beam, while the antenna produces 11 horizontal patterns pointing at 0 degrees, ⁇ 10 degrees, ⁇ 20 degrees, ⁇ 30 degrees, ⁇ 40 degrees, ⁇ 50 degrees, and vertical patterns.
  • a beam with a 6 degree uptilt, ie an antenna can produce 22 beams.
  • the antenna structure of the present invention can form 11 fixed-point beams in the horizontal direction, and form two fixed-point beams in the vertical direction, and the interference between the 11 beams in the horizontal direction is small, and the two beams in the vertical direction are The interference between the two is small.
  • the twenty-two beam antenna made according to the technical solution of the present invention has stable performance and is easy to install, can effectively reduce the cost, and satisfies the user's demand well.
  • the beam pointing and beam width of the present invention can be adjusted according to different requirements. By adjusting the number of columns of the linear antenna array, the distance between two adjacent linear antenna arrays, and the straight line of each column in the present scheme. The number of radiating elements of the antenna array, the distance between adjacent radiating elements, the distributed power amplitude and phase of the power splitter power distribution port, and thus the modification of the beam pointing and width are also within the scope of the present invention. In addition, modifications that change the number of horizontal beams by adjusting the number of feed ports are also within the scope of the present invention.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种用于移动通信基站的单极化二十二波束天线,包括金属地板、至少12列相互平行的直线天线阵、至少12个第一功分器、至少12个第二功分器、第一巴特勒矩阵馈电网络、第二巴特勒矩阵馈电网络。其中,每列直线天线阵由至少2个相同的天线辐射单元组成。本发明的天线结构能在水平方向上形成11个固定指向的波束,在垂直方向上形成2个固定指向的波束,水平方向的11个波束之间的干扰小,且垂直方向的2个波束之间的干扰小。根据本发明的技术方案制成的二十二波束天线,抗干扰效果好,性能稳定,易于安装,能有效降低成本,很好地满足用户需求。

Description

说 明 书
一种用于移动通信基站的单极化二十二波束天线 技术领域
本发明涉及无线通信领域, 特别涉及一种用于移动通信基站的单极化二十 二波束天线。 背景技术
随着移动通信技术的迅速发展和移动通信业务量的急剧增加, 移动通信网 络的覆盖区域在不断的扩大和完善, 作为移动通信系统关键部件之一的基站天 线相应地随着移动通信网络的建设而变得越来越重要。
传统的基站天线是通过在覆盖区域产生一个固定的宽波束来进行通信, 这 样由于容易产生干扰而使通信容量降低。 发明内容
有鉴于此, 有必要针对上述问题, 提供一种抗干扰效果好的用于移动通信 基站的单极化二十二波束天线。
一种用于移动通信基站的单极化二十二波束天线, 包括金属地板、 至少 12 列相互平行的直线天线阵、 至少 12个第一功分器、 至少 12个第二功分器、 第 一巴特勒矩阵馈电网络、 第二巴特勒矩阵馈电网络, 第一功分器的数量与直线 天线阵的列数相等, 第二功分器的数量与直线天线阵的列数相等, 直线天线阵 设置在金属地板的上表面, 第一功分器和第二功分器设置在金属地板的下表面; 每列直线天线阵由至少 2个相同的天线辐射单元组成, 每个天线辐射单元 由 1个 +45度极化方式的天线单元和 1个 -45度极化方式的天线单元组成,且 +45 度极化方式的天线单元和 -45度极化方式的天线单元垂直交叉组合在一起;
第一巴特勒矩阵馈电网络的各输入端口与信号输入电缆连接, 第一巴特勒 矩阵馈电网络的各输出端口分别与各第一功分器的功率合成端口电性连接; 第 二巴特勒矩阵馈电网络的各输入端口与信号输入电缆连接, 第二巴特勒矩阵馈 电网络的各输出端口分别与各第二功分器的功率合成端口电性连接; 每个第一功分器的功率分配端口的数量与每列直线天线阵中的 +45 度极化 方式的天线单元的个数相等, 每个第二功分器的功率分配端口的数量与每列直 线天线阵中的 -45度极化方式的天线单元的个数相等;
每个第一功分器的各功率分配端口分别与同一列直线天线阵中的 +45 度极 化方式的天线单元电性连接; 每个第二功分器的各功率分配端口分别与同一列 直线天线阵中的 -45度极化方式的天线单元电性连接。
相邻两列直线天线阵的距离为 0.3λ-1.5λ, 每列直线天线阵中相邻天线辐射 单元的距离为 0.3λ-1.5λ。
各直线天线阵相互平行, 且所有直线天线阵的两端相互对齐。
各直线天线阵相互平行, 且所有奇数列的两端相互对齐, 所有偶数列的两 端相互对齐。
每个第一功分器的各功率分配端口的分配功率幅度是相同的, 每个第一功 分器的各相邻功率分配端口的分配功率具有相同的相位差, 使垂直方向图有一 个下倾角, 下倾角的取值范围为 0度到 40度。
每个第二功分器的各功率分配端口的分配功率幅度是相同的, 每个第二功 分器的各相邻功率分配端口的分配功率具有相同的相位差, 使垂直方向图有一 个上倾角, 上倾角的取值范围为 0度到 40度。
第一巴特勒矩阵馈电网络和第二巴特勒矩阵馈电网络的结构是相同的, 当 直线天线阵的列数等于 12时, 每个巴特勒矩阵馈电网络由 1个十二路巴特勒矩 阵组成, 十二路巴特勒矩阵的各输入端口之间相互隔离, 十二路巴特勒矩阵的 各输入端口作为巴特勒矩阵馈电网络的输入端口, 十二路巴特勒矩阵的各输出 端口作为巴特勒矩阵馈电网络的输出端口。
第一巴特勒矩阵馈电网络和第二巴特勒矩阵馈电网络的结构是相同的, 当 直线天线阵的列数大于 12时, 每个巴特勒矩阵馈电网络由 1个十二路巴特勒矩 阵和 1 个功分器网络组成, 十二路巴特勒矩阵的各输入端口之间相互隔离, 十 二路巴特勒矩阵的各输出端口连接功分器网络的输入端口, 功分器网络的输出 端口的数量与直线天线阵的列数相等, 十二路巴特勒矩阵的各输入端口作为巴 特勒矩阵馈电网络的输入端口, 功分器网络的各输出端口作为巴特勒矩阵馈电 网络的输出端口。
本发明的天线结构能在水平方向上形成 11个固定指向的波束, 在垂直方向 上形成 2个固定指向的波束, 水平方向的 11个波束之间的干扰小, 且垂直方向 的 2个波束之间的干扰小。 根据本发明的技术方案制成的二十二波束天线, 抗 干扰效果好, 性能稳定, 易于安装, 能有效降低成本, 很好地满足用户需求。 附图说明
图 1为本发明总体结构的侧视图。
图 2为本发明总体结构的俯视图。
图 3为直线天线阵的平面排列示意图。
图 4为天线辐射单元的示意图。
图 5为第一功分器的示意图。
图 6为第二功分器的示意图。
图 7和图 8为巴特勒矩阵馈电网络的示意图。
图 9为十二路巴特勒矩阵的结构示意图。
图 10为三路巴特勒矩阵的结构示意图。
具体实施方式
请参阅图 1和图 2,本发明用于移动通信基站的单极化二十二波束天线包括 至少 12列相互平行的直线天线阵 104 (图 1中是以 18列为例进行说明)、 金属 地板 103、 至少 12个第一功分器 105 (图 2中是以 18个为例进行说明)、 至少 12个第二功分器 106 (图 2中是以 18个为例进行说明)、 第一巴特勒矩阵馈电 网络 107、 第二巴特勒矩阵馈电网络 108, 第一功分器 105的数量与直线天线阵 104的列数相等, 第二功分器 106的数量与直线天线阵 104的列数相等, 直线天 线阵 104设置在金属地板 103的上表面, 第一功分器 105和第二功分器 106设 置在金属地板 103的下表面。 请参阅图 3,相邻两列直线天线阵 104的距离为 0.3λ-1.5λ。 每列直线天线阵 104由至少 2个 (图 3中是以 10个为例进行说明) 相同的天线辐射单元 203组 成, 且每列中相邻天线辐射单元 203的距离为 0.3λ-1.5λ。 其中, λ表示天线工作 频段的中心频率在空气中对应的波长。
各直线天线阵 104的排列方式有:
1、 各直线天线阵相互平行, 且所有直线天线阵的两端相互对齐。
2、 各直线天线阵相互平行, 且所有奇数列的两端相互对齐, 所有偶数列的 两端相互对齐。
请参阅图 4, 每个天线辐射单元 203由 1个 +45度极化方式的天线单元 202 和 1个 -45度极化方式的天线单元 201组成, 且 +45度极化方式的天线单元 202 和 -45度极化方式的天线单元 201垂直交叉组合在一起。
请参阅图 5,每个第一功分器 105具有 1个功率合成端口 402和若干个功率 分配端口 403,每个第一功分器 105的功率分配端口 403的数量与每列直线天线 阵 104中的 +45度极化方式的天线单元的个数相等(图 5中采用的是一分十功分 器)。 每个第一功分器 105的各功率分配端口 403的分配功率幅度和相位可以根 据实际需求来确定。 在本实施例中,每个第一功分器 105的各功率分配端口 403 的分配功率幅度是相同的。 每个第一功分器 105的各相邻功率分配端口 403 的 分配功率具有相同的相位差, 使垂直方向图有一个下倾角, 下倾角的取值范围 为 0度到 40度, 在本实施例中, 下倾角为 6度。
请参阅图 6,每个第二功分器 106具有 1个功率合成端口 404和若干个功率 分配端口 405,每个第二功分器 106的功率分配端口 404的数量与每列直线天线 阵 104中的 -45度极化方式的天线单元的个数相等(图 6中采用的是一分十功分 器)。 每个第二功分器 106的各功率分配端口 405的分配功率幅度和相位可以根 据实际需求来确定。 在本实施例中,每个第二功分器 106的各功率分配端口 405 的分配功率幅度是相同的。 每个第二功分器 106的各相邻功率分配端口 405的 分配功率具有相同的相位差, 使垂直方向图有一个上倾角, 上倾角的取值范围 为 0度到 40度, 在本实施例中, 上倾角为 6度。
第一巴特勒矩阵馈电网络 107和第二巴特勒矩阵馈电网络 108的结构是相 同的。 当直线天线阵的列数等于 12时, 每个巴特勒矩阵馈电网络由 1个十二路 巴特勒矩阵 602组成, 如图 7所示。 十二路巴特勒矩阵 602的各输入端口之间 相互隔离, 十二路巴特勒矩阵 602 的各输入端口作为巴特勒矩阵馈电网络的输 入端口, 十二路巴特勒矩阵 602 的各输出端口作为巴特勒矩阵馈电网络的输出 端口。
当直线天线阵的列数大于 12时, 每个巴特勒矩阵馈电网络由 1个十二路巴 特勒矩阵 602和 1个功分器网络 601组成, 如图 8所示。十二路巴特勒矩阵 602 的输入端口之间相互隔离, 十二路巴特勒矩阵 602 的输出端口连接功分器网络 601的输入端口,功分器网络 601的输出端口的数量与直线天线阵 104的列数相 同。
图 9是十二路巴特勒矩阵 602的具体电路结构。 图 9中, 702表示移相器, 703表示三路巴特勒矩阵, 704表示四路巴特勒矩阵。
图 10是三路巴特勒矩阵 703的具体电路结构。 图 10中, 701表示混合器, 702表示移相器。
图 11是四路巴特勒矩阵 704的具体电路结构。 图 11中, 701表示混合器,
702表示移相器。
综上, 本发明的整体电性连接关系如下:
第一巴特勒矩阵馈电网络 107和第二巴特勒矩阵馈电网络 108的各输入端 口与信号输入电缆连接, 第一巴特勒矩阵馈电网络 107 的各输出端口分别与各 第一功分器 105的功率合成端口 402 电性连接; 第二巴特勒矩阵馈电网络 108 的各输出端口分别与各第二功分器 106的功率合成端口 404电性连接。 每个第 一功分器 105的各功率分配端口 403分别与同一列直线天线阵 104中的 +45度极 化方式的天线单元 202 电性连接; 每个第二功分器 106的各功率分配端口 405 分别与同一列直线天线阵 104中的 -45度极化方式的天线单元 201电性连接。
巴特勒矩阵馈电网络的各输入端口馈电时, 输出端口的信号相位呈不同的 线性变化。 因此, 巴特勒矩阵馈电网络的各输入端口馈电时, 天线水平方向的 辐射波束指向不同, 其中输入端口 1产生水平 0度指向的波束, 输入端口 2产 生水平 +70度指向的波束, 输入端口 3产生水平 -30度指向的波束, 输入端口 4 产生水平 +30度指向的波束, 输入端口 5产生水平 -10度指向的波束, 输入端口 6产生水平 +50度指向的波束, 输入端口 7产生水平 -40度指向的波束, 输入端 口 8产生水平 +20度指向的波束, 输入端口 9产生水平 -20度指向的波束, 输入 端口 10产生水平 +40度指向的波束, 输入端口 11产生水平 -50度指向的波束, 输入端口 12产生水平 +10度指向的波束。 在本具体实例中, 输入端口 2连接 50 欧姆负载, 即一个巴特勒矩阵馈电网络能产生 11个水平方向不同指向的波束。
当第一巴特勒矩阵馈电网络 107的 11个端口同时馈电时, 天线产生水平指 向 0度、 ±10度、 士 20度、 ±30度、 士 40度、 ±50度的 11个波束, 且这 11个波 束在垂直方向下倾 6度; 当第二巴特勒矩阵馈电网络 108的 11个端口同时馈电 时, 天线产生水平指向 0度、 ±10度、 士 20度、 ±30度、 士 40度、 ±50度的 11个 波束, 且这 11个波束在垂直方向上倾 6度。 因此, 当这两个巴特勒矩阵馈电网 络的 11个端口同时馈电时,天线能产生 11个水平方向图指向 0度、 ±10度、 ±20 度、 ±30度、 ±40度、 ±50度和垂直方向图具有 6度下倾的波束, 同时天线能产 生 11个水平方向图指向 0度、 ±10度、 士 20度、 ±30度、 士 40度、 ±50度和垂直 方向图具有 6度上倾的波束, 即天线能产生 22个波束。
本发明的天线结构能在水平方向上形成 11个固定指向的波束, 在垂直方向 上形成 2个固定指向的波束, 水平方向的 11个波束之间的干扰小, 且垂直方向 的 2个波束之间的干扰小。 根据本发明的技术方案制成的二十二波束天线, 性 能稳定, 易于安装, 能有效降低成本, 很好地满足用户需求。
以上所述为本发明的优选实施例而已, 本发明的实施和要求保护的范围并 不局限于上述实施例的范围。 凡在本发明的精神和原则之内, 所作任何修改、 等同替换、 改进等, 均包含在本发明的保护范围之内。 特别需要强调的是本发 明的波束的指向和波束宽度可以根据不同的需求做出调整, 通过调整本方案中 直线天线阵的列数、 相邻两列直线天线阵之间的距离、 每列直线天线阵的辐射 单元个数、 相邻辐射单元之间的距离、 功分器功率分配端口的分配功率幅度和 相位, 从而调节波束指向和宽度的改动亦在本发明保护范围之内。 另外, 通过 调整馈电端口的数量而改变水平波束的数量的改动也在本发明保护范围之内。

Claims

权 利 要 求 书
1、 一种用于移动通信基站的单极化二十二波束天线, 其特征在于: 包括 金属地板、 至少 12列相互平行的直线天线阵、 至少 12个第一功分器、 至少 12 个第二功分器、 第一巴特勒矩阵馈电网络、 第二巴特勒矩阵馈电网络, 第一功 分器的数量与直线天线阵的列数相等, 第二功分器的数量与直线天线阵的列数 相等, 直线天线阵设置在金属地板的上表面, 第一功分器和第二功分器设置在 金属地板的下表面;
每列直线天线阵由至少 2个相同的天线辐射单元组成, 每个天线辐射单元 由 1个 +45度极化方式的天线单元和 1个 -45度极化方式的天线单元组成, 且 +45 度极化方式的天线单元和 -45度极化方式的天线单元垂直交叉组合在一起;
第一巴特勒矩阵馈电网络的各输入端口与信号输入电缆连接, 第一巴特勒 矩阵馈电网络的各输出端口分别与各第一功分器的功率合成端口电性连接; 第 二巴特勒矩阵馈电网络的各输入端口与信号输入电缆连接, 第二巴特勒矩阵馈 电网络的各输出端口分别与各第二功分器的功率合成端口电性连接;
每个第一功分器的功率分配端口的数量与每列直线天线阵中的 +45 度极化 方式的天线单元的个数相等, 每个第二功分器的功率分配端口的数量与每列直 线天线阵中的 -45度极化方式的天线单元的个数相等;
每个第一功分器的各功率分配端口分别与同一列直线天线阵中的 +45 度极 化方式的天线单元电性连接; 每个第二功分器的各功率分配端口分别与同一列 直线天线阵中的 -45度极化方式的天线单元电性连接。
2、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 相邻两列直线天线阵的距离为 0.3λ-1.5λ, 每列直线天线阵中相邻天 线辐射单元的距离为 0.3λ-1.5λ。
3、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 各直线天线阵相互平行, 且所有直线天线阵的两端相互对齐。
4、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 各直线天线阵相互平行, 且所有奇数列的两端相互对齐, 所有偶数 列的两端相互对齐。
5、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 每个第一功分器的各功率分配端口的分配功率幅度是相同的, 每个 第一功分器的各相邻功率分配端口的分配功率具有相同的相位差, 使垂直方向 图有一个下倾角, 下倾角的取值范围为 0度到 40度。
6、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 每个第二功分器的各功率分配端口的分配功率幅度是相同的, 每个 第二功分器的各相邻功率分配端口的分配功率具有相同的相位差, 使垂直方向 图有一个上倾角, 上倾角的取值范围为 0度到 40度。
7、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 第一巴特勒矩阵馈电网络和第二巴特勒矩阵馈电网络的结构是相同 的, 当直线天线阵的列数等于 12时, 每个巴特勒矩阵馈电网络由 1个十二路巴 特勒矩阵组成, 十二路巴特勒矩阵的各输入端口之间相互隔离, 十二路巴特勒 矩阵的各输入端口作为巴特勒矩阵馈电网络的输入端口, 十二路巴特勒矩阵的 各输出端口作为巴特勒矩阵馈电网络的输出端口。
8、 根据权利要求 1所述的用于移动通信基站的单极化二十二波束天线, 其 特征在于: 第一巴特勒矩阵馈电网络和第二巴特勒矩阵馈电网络的结构是相同 的, 当直线天线阵的列数大于 12时, 每个巴特勒矩阵馈电网络由 1个十二路巴 特勒矩阵和 1 个功分器网络组成, 十二路巴特勒矩阵的各输入端口之间相互隔 离, 十二路巴特勒矩阵的各输出端口连接功分器网络的输入端口, 功分器网络 的输出端口的数量与直线天线阵的列数相等, 十二路巴特勒矩阵的各输入端口 作为巴特勒矩阵馈电网络的输入端口, 功分器网络的各输出端口作为巴特勒矩 阵馈电网络的输出端口。
PCT/CN2012/071657 2011-11-10 2012-02-27 一种用于移动通信基站的单极化二十二波束天线 WO2013067790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110352271 2011-11-10
CN201110352271.X 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013067790A1 true WO2013067790A1 (zh) 2013-05-16

Family

ID=46351082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071657 WO2013067790A1 (zh) 2011-11-10 2012-02-27 一种用于移动通信基站的单极化二十二波束天线

Country Status (2)

Country Link
CN (12) CN202474225U (zh)
WO (1) WO2013067790A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687145A (zh) * 2018-12-28 2019-04-26 西安纬创佳联科技有限公司 一种多波束天线水平波束指向角度调向方法和装置
CN113381791A (zh) * 2018-04-20 2021-09-10 上海华为技术有限公司 馈电信号形成方法及其相关设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202474225U (zh) * 2011-11-10 2012-10-03 广东博纬通信科技有限公司 一种用于移动通信基站的单极化二十二波束天线
WO2013143445A1 (zh) * 2012-03-26 2013-10-03 广东博纬通信科技有限公司 一种用于移动通信基站的双极化五波束天线
CN104143692B (zh) * 2013-05-10 2016-10-26 中国电信股份有限公司 多天线阵列和基站
CN103682682B (zh) * 2013-11-27 2016-08-17 华为技术有限公司 一种多波束天线系统
CN103825107A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种双极化双波束贴片阵列天线
US9899747B2 (en) 2014-02-19 2018-02-20 Huawei Technologies Co., Ltd. Dual vertical beam cellular array
CN104836551B (zh) * 2015-05-11 2017-11-14 电子科技大学 微波毫米波和太赫兹电路及相控阵的低功率波束形成方法
CN106252901B (zh) * 2016-09-05 2023-06-20 广东博纬通信科技有限公司 宽频三波束阵列天线
CN106602265B (zh) * 2016-09-22 2023-08-22 京信通信技术(广州)有限公司 波束成形网络及其输入结构、输入输出方法及三波束天线
CN108429016A (zh) * 2018-05-17 2018-08-21 江苏亨鑫科技有限公司 一种改善水平面波束收敛性的天线阵列
CN108761218B (zh) * 2018-05-24 2021-02-12 广东曼克维通信科技有限公司 双极化近场测量探头
CN109273870A (zh) * 2018-10-12 2019-01-25 广东博纬通信科技有限公司 一种宽频六波束阵列天线
CN111323742B (zh) * 2020-03-21 2023-05-30 哈尔滨工程大学 一种基于曲线阵列的相位干涉仪及其测向方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201336371Y (zh) * 2008-12-22 2009-10-28 东莞市晖速天线技术有限公司 交错排列平板定向智能天线阵
WO2010059186A2 (en) * 2008-11-19 2010-05-27 Andrew Llc Dual-beam sector antenna and array
CN101848471A (zh) * 2010-05-07 2010-09-29 摩比天线技术(深圳)有限公司 一种无线通讯网络扩容方法及基站天线
CN201975512U (zh) * 2011-01-19 2011-09-14 东莞市晖速天线技术有限公司 错位阵列电调基站天线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
US6072432A (en) * 1997-05-02 2000-06-06 Radio Frequency Systems, Inc. Hybrid power tapered/space tapered multi-beam antenna
US6583760B2 (en) * 1998-12-17 2003-06-24 Metawave Communications Corporation Dual mode switched beam antenna
CN2561111Y (zh) * 2002-08-02 2003-07-16 西安海天天线科技股份有限公司 单极化波束赋形基站天线
CN100487981C (zh) * 2002-12-31 2009-05-13 中兴通讯股份有限公司 移动通信基站平面多波束天线
US20040242272A1 (en) * 2003-05-29 2004-12-02 Aiken Richard T. Antenna system for adjustable sectorization of a wireless cell
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
CN101091322B (zh) * 2004-12-24 2010-04-28 华为技术有限公司 一种准线性高效功率放大器以及放大射频信号的方法
CN101246997B (zh) * 2008-03-13 2011-04-20 上海交通大学 宽带阵列天线的馈电网络
US8063822B2 (en) * 2008-06-25 2011-11-22 Rockstar Bidco L.P. Antenna system
CN102064379B (zh) * 2010-07-29 2013-08-28 摩比天线技术(深圳)有限公司 一种电调天线及基站
CN201845860U (zh) * 2010-09-30 2011-05-25 寰波科技股份有限公司 高增益多极化天线阵列模块
CN202474225U (zh) * 2011-11-10 2012-10-03 广东博纬通信科技有限公司 一种用于移动通信基站的单极化二十二波束天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059186A2 (en) * 2008-11-19 2010-05-27 Andrew Llc Dual-beam sector antenna and array
CN201336371Y (zh) * 2008-12-22 2009-10-28 东莞市晖速天线技术有限公司 交错排列平板定向智能天线阵
CN101848471A (zh) * 2010-05-07 2010-09-29 摩比天线技术(深圳)有限公司 一种无线通讯网络扩容方法及基站天线
CN201975512U (zh) * 2011-01-19 2011-09-14 东莞市晖速天线技术有限公司 错位阵列电调基站天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381791A (zh) * 2018-04-20 2021-09-10 上海华为技术有限公司 馈电信号形成方法及其相关设备
CN109687145A (zh) * 2018-12-28 2019-04-26 西安纬创佳联科技有限公司 一种多波束天线水平波束指向角度调向方法和装置

Also Published As

Publication number Publication date
CN102570057A (zh) 2012-07-11
CN102570053A (zh) 2012-07-11
CN102544757B (zh) 2014-11-05
CN102544759A (zh) 2012-07-04
CN102544758A (zh) 2012-07-04
CN202474228U (zh) 2012-10-03
CN202474221U (zh) 2012-10-03
CN102570054B (zh) 2014-11-05
CN102570057B (zh) 2016-02-17
CN202474222U (zh) 2012-10-03
CN102544759B (zh) 2014-07-23
CN202474224U (zh) 2012-10-03
CN102544757A (zh) 2012-07-04
CN202474225U (zh) 2012-10-03
CN102570053B (zh) 2014-06-04
CN102570054A (zh) 2012-07-11
CN202474226U (zh) 2012-10-03
CN102544758B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2013067790A1 (zh) 一种用于移动通信基站的单极化二十二波束天线
CN105742828B (zh) 双极化三波束天线及其馈电网络装置
JP5464126B2 (ja) 移動通信用基地局アンテナ、及び移動通信用基地局アンテナシステム
CN202474227U (zh) 一种用于移动通信基站的双极化三波束天线
EP2846400B1 (en) Antenna array, antenna device and base station
CN106252901B (zh) 宽频三波束阵列天线
US20110205119A1 (en) Dual-Beam Sector Antenna and Array
CN105356062B (zh) 一种宽频阵列天线
CN104733844A (zh) 平面宽带双极化基站天线
CN200969402Y (zh) 双极化宽频带天线及其辐射单元以及工字形单极化振子
CN206225561U (zh) 一种双列大下倾角基站天线
CN106159465A (zh) 宽频五波束阵列天线
WO2021135401A1 (zh) 矩形赋形阵列天线及室内基站
CN205657183U (zh) 双极化三波束天线及其馈电网络装置
CN102306872A (zh) 电调天线对称多路功分移相器
CN206322856U (zh) 宽频三波束阵列天线
CN106229638A (zh) 天线阵列及天线
WO2013143445A1 (zh) 一种用于移动通信基站的双极化五波束天线
CN208352529U (zh) 一种宽频九波束阵列天线
WO2013143443A1 (zh) 一种用于移动通信基站的双极化三波束天线
WO2020073362A1 (zh) 一种宽频六波束阵列天线
WO2019184008A1 (zh) 一种宽频九波束阵列天线
JP5314615B2 (ja) 移動通信用基地局アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12846886

Country of ref document: EP

Kind code of ref document: A1