WO2018039902A1 - 电池的充电方法、装置及电池系统 - Google Patents

电池的充电方法、装置及电池系统 Download PDF

Info

Publication number
WO2018039902A1
WO2018039902A1 PCT/CN2016/097287 CN2016097287W WO2018039902A1 WO 2018039902 A1 WO2018039902 A1 WO 2018039902A1 CN 2016097287 W CN2016097287 W CN 2016097287W WO 2018039902 A1 WO2018039902 A1 WO 2018039902A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
capacity
energy
rate
Prior art date
Application number
PCT/CN2016/097287
Other languages
English (en)
French (fr)
Inventor
范会平
明帮生
赵徳强
高伟
汪颖
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2016/097287 priority Critical patent/WO2018039902A1/zh
Publication of WO2018039902A1 publication Critical patent/WO2018039902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a battery charging method, device, and battery system.
  • the cycle life of secondary batteries is becoming higher and higher, for example, the cycle life of batteries is increased from 500 cycles to 800 cycles, 1000 cycles, or even 1500 cycles.
  • a constant charging current is typically used to charge the battery.
  • the present application provides a charging method, device and battery system for a battery, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the application provides a charging method for a battery, including:
  • the status information of the battery including at least one of capacity status information of the battery and energy status information of the battery;
  • the charging rate of the battery is decreased
  • the battery is charged according to the reduced charging rate.
  • the capacity status information of the battery includes at least one of a current capacity of the battery and a capacity retention rate of the battery.
  • an implementation is further provided, wherein the energy state information of the battery includes at least one of a current energy of the battery and an energy retention rate of the battery.
  • the conditions for the battery's charge rate include:
  • the capacity status information of the battery reaches the corresponding capacity threshold, it is determined that the condition for reducing the charging rate of the battery is satisfied; or if the capacity status information of the battery does not reach the corresponding capacity threshold, it is determined that the reduction is not satisfied.
  • the condition of the charging rate of the battery is determined that the condition for reducing the charging rate of the battery is satisfied; or if the capacity status information of the battery does not reach the corresponding capacity threshold, it is determined that the reduction is not satisfied.
  • the conditions for the battery's charge rate include:
  • the energy state information of the battery reaches a corresponding energy threshold, it is determined that the condition for reducing the charging rate of the battery is satisfied; or if the energy state information of the battery does not reach the corresponding energy threshold, it is determined that the reduction is not satisfied.
  • the condition of the charging rate of the battery is determined that the condition for reducing the charging rate of the battery is satisfied; or if the energy state information of the battery does not reach the corresponding energy threshold, it is determined that the reduction is not satisfied.
  • adjusting the charging parameter of the battery includes:
  • One candidate charging rate lower than the charging magnification of the battery in the preset charging magnification candidate set is taken as the charging magnification of the battery after the reduction; wherein the charging magnification candidate set includes at least one candidate charging magnification.
  • the aspect as described above and any possible implementation manner further provide an implementation manner of charging the battery according to the adjusted charging magnification, including:
  • constant current charging pulse charging, step charging and constant current are used.
  • the battery is charged by one of four charging modes in the charging, or a combined charging mode of at least two charging modes.
  • the method as described above, and any possible implementation manner further provides an implementation manner, before the obtained capacity state information of the battery is compared with a corresponding capacity threshold, the method further includes:
  • a capacity threshold corresponding to the temperature segment is determined based on the temperature segment.
  • the method further includes:
  • An energy threshold corresponding to the temperature segment is determined based on the temperature segment.
  • the status information of the battery includes at least one of the capacity status information of the battery and the energy status information of the battery, and then, according to the status information of the battery, determine whether the charging rate of the battery is reduced. In the condition, if it is judged that the condition for lowering the charging magnification of the battery is satisfied, the charging magnification of the battery is lowered, and further, the battery is charged according to the reduced charging magnification.
  • the charging method provided by the present application can indicate status information of the battery usage status by acquiring the capacity status information of the battery and the energy status information of the battery, etc., and determining whether the preset condition is met according to the status information, thereby determining whether to charge the battery. The magnification is reduced.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the application also provides a charging device for a battery, comprising:
  • An acquiring unit configured to acquire status information of the battery, where the status information of the battery includes at least one of capacity status information of the battery and energy status information of the battery;
  • a determining unit configured to determine, according to status information of the battery, whether a condition for reducing a charging rate of the battery is satisfied
  • An adjusting unit configured to reduce a charging rate of the battery if it is determined that the condition for reducing the charging rate of the battery is satisfied;
  • a charging unit configured to charge the battery according to the reduced charging rate.
  • the capacity status information of the battery includes at least one of a current capacity of the battery and a capacity retention rate of the battery.
  • an implementation is further provided, wherein the energy state information of the battery includes at least one of a current energy of the battery and an energy retention rate of the battery.
  • determining unit is specifically configured to:
  • the status information of the battery is the capacity status information of the battery, compare the acquired capacity status information of the battery with a corresponding capacity threshold;
  • the capacity status information of the battery reaches the corresponding capacity threshold, it is determined that the condition for reducing the charging rate of the battery is satisfied; or if the capacity status information of the battery does not reach the corresponding capacity threshold, it is determined that the reduction is not satisfied.
  • the condition of the charging rate of the battery is determined that the condition for reducing the charging rate of the battery is satisfied; or if the capacity status information of the battery does not reach the corresponding capacity threshold, it is determined that the reduction is not satisfied.
  • determining unit is specifically configured to:
  • the state information of the battery is the energy state information of the battery, compare the obtained energy state information of the battery with a corresponding energy threshold;
  • the energy state information of the battery reaches a corresponding energy threshold, it is determined that the condition for reducing the charging rate of the battery is satisfied; or if the energy state information of the battery does not reach the corresponding energy threshold, it is determined that the reduction is not satisfied.
  • the condition of the charging rate of the battery is determined that the condition for reducing the charging rate of the battery is satisfied; or if the energy state information of the battery does not reach the corresponding energy threshold, it is determined that the reduction is not satisfied.
  • adjusting unit is specifically configured to:
  • One candidate charging rate lower than the charging magnification of the battery in the preset charging magnification candidate set is taken as the charging magnification of the battery after the reduction; wherein the charging magnification candidate set includes at least one candidate charging magnification.
  • one of four charging modes of constant current charging, pulse charging, step charging, and constant current constant voltage charging, or a combined charging mode of at least two charging modes The battery is charged.
  • determining unit is further configured to:
  • a capacity threshold corresponding to the temperature segment is determined based on the temperature segment.
  • determining unit is further configured to:
  • An energy threshold corresponding to the temperature segment is determined based on the temperature segment.
  • the state information of the battery is acquired by the acquiring unit in the charging device, and the state information of the battery includes at least one of the capacity state information of the battery and the energy state information of the battery, and then the determining unit in the charging device is according to the battery.
  • the state information determines whether the condition for lowering the charging magnification of the battery is satisfied, and if it is determined that the condition for lowering the charging magnification of the battery is satisfied, the adjusting unit in the charging device lowers the charging magnification of the battery, and further, the charging unit in the charging device is lowered.
  • the charging rate charges the battery.
  • the charging device provided by the present application is obtained by acquiring a battery
  • the capacity status information, the energy status information of the battery, and the like may indicate status information of the battery usage condition, and determine whether the predetermined condition is satisfied based on the status information, thereby determining whether to reduce the charging rate of the battery.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the application also provides a battery system comprising: a battery and a charging device of the above battery.
  • the battery system provided by the present application can indicate the status information of the battery usage status by acquiring the capacity status information of the battery and the energy status information of the battery, etc., and determining whether the preset condition is met according to the status information, thereby determining whether to charge the battery.
  • the magnification is reduced.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • Embodiment 1 is a schematic flow chart of Embodiment 1 of a method for charging a battery according to an embodiment of the present application;
  • FIG. 2 is a schematic diagram showing a comparison of cycle curves obtained by charging a battery at different charging rates
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a method for charging a battery according to an embodiment of the present application;
  • Embodiment 4 is a schematic flow chart of Embodiment 3 of a method for charging a battery according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart diagram of Embodiment 4 of a method for charging a battery according to an embodiment of the present disclosure
  • FIG. 6 is a functional block diagram of a charging device for a battery according to an embodiment of the present application.
  • FIG. 7 is a functional block diagram of a battery system according to an embodiment of the present application.
  • FIG. 8 is a first schematic diagram of a battery system according to an embodiment of the present application.
  • FIG. 9 is a second schematic diagram of a battery system according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a charging method of a battery provided by an embodiment of the present application. As shown in Figure 1, the method includes:
  • the status information of the battery may include, but is not limited to, at least one of capacity status information of the battery and energy status information of the battery.
  • the status information of the battery may also include related data such as the number of cycles of the battery, the accumulated time of the battery, and the temperature of the battery.
  • the capacity status information of the battery may include, but is not limited to, at least one of a current capacity of the battery and a capacity retention rate of the battery, which is not specifically limited in this embodiment of the present application.
  • the capacity status information of the battery may further include a capacity interval of the battery and a capacity retention rate interval of the battery, which is not particularly limited in the embodiment of the present invention.
  • the energy state information of the battery may include, but is not limited to, at least one of a current energy of the battery and an energy retention rate of the battery, which is not specifically limited in this embodiment of the present application.
  • the energy state information of the battery may further include an energy interval of the battery and an energy retention rate interval of the battery, which is not particularly limited in the embodiment of the present invention.
  • the battery is charged by the reduced charging rate during the cyclic charging of the battery, and the battery is charged to the charging cut-off voltage by the reduced charging rate; During the cyclic discharge of the battery, the battery is discharged.
  • the specific charging method for charging the battery according to the adjusted charging magnification is not particularly limited in the embodiment of the present application.
  • one of four charging modes constant current charging, pulse charging, step charging, and constant current constant voltage charging, or a combination charging mode of at least two charging modes may be used.
  • the battery is charged.
  • the battery when the battery is step-by-step charged according to the adjusted charging magnification, at least one step of the charging process in the step-by-step charging process can be charged at the adjusted charging magnification.
  • the charging process of a specific step in the step charging process may be charged with the adjusted charging rate, or the charging steps of the step charging process may be charged with the adjusted charging rate.
  • the charging parameter of the adjusted battery is: the charging cutoff voltage of the battery is V4, and the charging magnification of the battery is C3.
  • the battery can be charged with a constant current at a charging rate C3, the voltage to be charged reaches the charging cut-off voltage V4, and the battery is charged with a constant voltage of the charging voltage V4, and when charging to the charging cut-off current, Charging is over.
  • constant current charging may be employed, that is, the battery is subjected to constant current charging at a charging magnification C3, and charging is completed when charging to the charging cutoff voltage V4.
  • the charging cutoff voltage of the battery may be the same, or the charging cutoff voltage of the battery may be different, which is not specifically limited in the embodiment of the present application.
  • the performance test of the lithium ion secondary battery is performed according to the technical solution of the present application to explain the technical effects of the present application.
  • FIG. 2 is a comparison diagram of a cycle curve obtained by charging a battery at different charging rates.
  • the battery is discharged to 3.0 V at a discharge rate of 4 C, and after 30 minutes of dormancy, the battery is charged to 4.35 V with a constant current of 1.5 C, and then a constant voltage of 4.35. V was charged until the charge rate was lowered to 0.05 C for 15 minutes, and then discharged to 3.0 V at a discharge rate of 4 C, and thus cycled 500 times to obtain a cycle curve 1.
  • the battery At a battery ambient temperature of 25 ° C, the battery is discharged to 3.0 V at a discharge rate of 4 C, after 30 minutes of dormancy, and then charged to 4.35 V with a constant current of 2 C, and then charged at a constant voltage of 4.35 V until the charge rate is lowered to 0.05 C. After 15 minutes, the battery was discharged to 3.0 V at a discharge rate of 4 C, and thus cycled 500 times to obtain a cycle curve 2.
  • the capacity retention rate of the cycle curve 2 is lower than the capacity retention rate of the cycle curve 1. Further, as the number of cycles increases, the difference between the capacity retention ratio of the cycle curve 1 and the capacity retention rate of the cycle curve 2 increases first, and the difference after the difference is maintained. That is, by lowering the charging rate of the battery, it is possible to slow down the capacity retention rate of the battery to a certain extent, and further, it is possible to extend the life of the rechargeable battery.
  • the status information of the battery includes at least one of the capacity status information of the battery and the energy status information of the battery, and then, according to the status information of the battery, determining whether the charging rate of the battery is reduced is satisfied. In the condition, if it is judged that the condition for lowering the charging magnification of the battery is satisfied, the charging magnification of the battery is lowered, and further, the battery is charged according to the reduced charging magnification.
  • the charging method provided by the embodiment of the present application can indicate status information of the battery usage status by acquiring the capacity status information of the battery, the energy status information of the battery, and the like, and determining whether the preset condition is met according to the status information, thereby determining whether the battery is satisfied.
  • the charging rate is reduced; and, when the preset condition is satisfied, the charging rate of the battery is appropriately adjusted and lowered, and the battery is charged according to the reduced charging rate, so that the polarization speed of the battery is slowed; , slowing down the speed of accumulation of by-products in the anode and cathode of the battery, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the oxidative decomposition speed of the electrolyte is slowed down; further, the battery is slowed down to some extent in the cycle charging process.
  • the loss rate in the battery extends the cycle life of the battery.
  • the usage data of the battery is the capacity status information of the battery
  • the capacity status information of the battery may be obtained in multiple implementation manners, which is not specifically limited in this embodiment of the present application.
  • the charging capacity of the battery is not necessarily equal to the discharging capacity of the battery.
  • the charging capacity of the battery may be obtained as the current capacity of the battery, or the discharging capacity of the battery may also be obtained.
  • the current capacity of the battery As the current capacity of the battery. It can be understood that, in the actual application process, the above-mentioned capacity is obtained as the current capacity of the battery, and can be determined according to actual needs, which is not specifically limited in the embodiment of the present invention.
  • the charging capacity of the battery can be obtained as the current capacity of the battery.
  • the first power and the second power can be obtained; wherein the first power is the remaining power of the battery at the beginning of the most recent charging process, and the second power is the battery is charged by the first power during the most recent charging The amount of charge that is charged when the battery is fully charged; then, the sum of the first charge and the second charge is calculated to obtain the current capacity of the battery.
  • the remaining battery capacity of the battery at the beginning of the most recent charging process is 1000 mAh
  • the battery is charged by 1000 mAh during the charging process until the battery is fully charged
  • the charged amount is 800 mAh
  • the obtained power is obtained.
  • the first power is 1000 mAh
  • the second power is 800 mAh. Therefore, the current capacity of the battery is the sum of the first power and the second power, that is, the current capacity of the battery is 1800 mAh.
  • the discharge capacity of the battery can be obtained as the current capacity of the battery.
  • the third power and the fourth power can be obtained; wherein the third power is the amount of power discharged by the battery from full charge to discharge, and the fourth power is the remaining power at the end of the battery discharge; The sum of the three powers and the fourth power can be used to obtain the current capacity of the battery.
  • the discharge capacity of the battery can be obtained as the current capacity of the battery.
  • the fifth power and the sixth power can be obtained; wherein the fifth power is the remaining power of the battery at the beginning of the most recent discharging process, and the sixth power is discharged by the fifth battery to the battery during the last discharging The amount of electricity discharged from the discharge cutoff voltage of the battery; then, the difference between the fifth power and the sixth power is calculated to obtain the current capacity of the battery.
  • the solid electrolyte interphase (SEI) of the anode surface of the battery is in the dynamic process of continuous destruction and repair, and the SEI is consumed in the process of repairing the anode.
  • Charging power in addition, the battery is in a certain Under the condition, some of the electricity charged into the battery during the charging process will be converted into a side reaction product of the battery. Therefore, the discharge capacity of the battery can better reflect the state of use of the battery, and obtaining the discharge capacity of the battery as the current capacity of the battery is closer to the practical application, and is more advantageous for extending the cycle life of the battery.
  • the capacity retention rate of the battery can be determined according to the current capacity of the battery.
  • the capacity retention rate of the battery can be obtained according to the current capacity of the battery and the initial capacity of the battery.
  • the initial capacity of the battery is the actual capacity of the battery during the first use from full charge to full discharge.
  • the current capacity of the battery is 1800 mAh (mAh) and the initial capacity of the battery is 2000 mAh
  • the ratio of the current capacity of the battery to the initial capacity of the battery is calculated, and the capacity retention rate of the battery is 90%.
  • the capacity retention rate of the battery may also be obtained according to the current capacity of the battery and the nominal capacity of the battery.
  • the nominal capacity of the battery is the capacity provided in the battery specification. Specifically, depending on the battery supplier, the nominal capacity of the battery may be the minimum of the capacity of the battery of the model, or the nominal capacity of the battery may be the average of the capacity of the battery of the model.
  • the usage data of the battery is the energy state information of the battery
  • the usage data of the battery is obtained, that is, the energy state information of the battery is obtained.
  • the energy state information of the battery may be obtained in various manners, which is not specifically limited in the embodiment of the present application.
  • the charging energy of the battery is not necessarily equal to the discharging energy of the battery.
  • the charging energy of the battery may be obtained as the current energy of the battery, or the discharging energy of the battery may also be obtained.
  • As the current energy of the battery It can be understood that, in the actual application process, which of the above-mentioned energy is obtained as the current energy of the battery can be determined according to actual needs, which is not specifically limited in the embodiment of the present invention.
  • the charging energy of the battery can be obtained as the current energy of the battery.
  • the first energy and the second energy can be obtained; wherein the first energy is the remaining energy of the battery at the beginning of the most recent charging process, and the second energy is the battery is charged by the first energy during the most recent charging process.
  • the discharge energy of the battery can be obtained as the current energy of the battery.
  • the third energy and the fourth energy can be obtained; wherein the third energy is the energy released by the battery from full charge to a certain voltage, and the fourth energy is the remaining energy at the end of the battery discharge; The sum of the three energies and the fourth energies gives the current energy of the battery.
  • the discharge energy of the battery can be obtained as the current energy of the battery.
  • the fifth energy and the sixth energy can be obtained; wherein the fifth energy is the remaining energy of the battery at the beginning of the most recent discharge process, and the sixth energy is the fifth energy discharge of the battery during the last discharge to The energy released by the discharge cutoff voltage of the battery; then, the difference between the fifth energy and the sixth energy is calculated to obtain the current energy of the battery.
  • the solid electrolyte interphase (SEI) of the anode surface of the battery is in the dynamic process of continuous destruction and repair, and the SEI is consumed in the process of repairing the anode.
  • the battery will also be converted into a side reaction product of the battery when the battery is charged in the charging process. Therefore, the discharge energy of the battery can better reflect the state of use of the battery, and obtaining the discharge energy of the battery as the current energy of the battery is closer to the practical application, and is more advantageous for prolonging the cycle life of the battery.
  • the energy retention rate of the battery can be determined according to the current energy of the battery.
  • the energy retention rate of the battery can be obtained according to the current energy of the battery and the initial energy of the battery.
  • the initial energy of the battery is the actual energy released during the first use of the battery from full charge to full discharge.
  • the energy retention rate of the battery can be obtained based on the current energy of the battery and the nominal energy of the battery.
  • the nominal energy of the battery is the energy provided in the battery specification. Specifically, depending on the battery supplier, the nominal energy of the battery may be the minimum energy of the battery of the model, or the nominal energy of the battery may be the average of the energy of the battery of the model.
  • the battery when the state information of the battery is obtained, the battery is in the use state during the charging process and the discharging process, or the battery is in the storage state, which is not specifically limited in the embodiment of the present application.
  • the charging method provided by the embodiment of the present application can indicate status information of the battery usage status by acquiring the capacity status information of the battery, the energy status information of the battery, and the like, and determining whether the preset condition is met according to the status information, thereby determining whether the battery is satisfied.
  • the charging rate is reduced; and, when the preset condition is satisfied, the charging rate of the battery is appropriately adjusted and lowered, and the battery is charged according to the reduced charging rate, so that the polarization speed of the battery is slowed; , slowing down the speed of accumulation of by-products in the anode and cathode of the battery, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the oxidative decomposition speed of the electrolyte is slowed down; further, the battery is slowed down to some extent in the cycle charging process.
  • the loss rate in the battery extends the cycle life of the battery.
  • the embodiment of the present application specifically describes the implementation manner of “determining whether the condition for reducing the charging rate of the battery is satisfied according to the state information of the battery” in S102 in the first embodiment.
  • determining whether the condition for reducing the charging rate of the battery is satisfied according to the obtained state information of the battery may include, but is not limited to, the following two implementation manners:
  • the first type if the status information of the battery is the capacity status information of the battery, compare the obtained capacity status information of the battery with the corresponding capacity threshold; if the capacity status information of the battery reaches the corresponding capacity threshold, determine that the reduced battery is satisfied The condition of the charging magnification; or, if the capacity status information of the battery does not reach the corresponding capacity threshold, it is judged that the condition for lowering the charging magnification of the battery is not satisfied.
  • the capacity status information of the battery reaches a corresponding capacity threshold, that is, the capacity status information of the battery is less than or equal to the corresponding capacity threshold. At this time, it is determined that the condition for lowering the charging rate of the battery is satisfied; or, if the capacity status information of the battery Greater than the corresponding capacity threshold, ie the capacity of the battery The status information does not reach the corresponding capacity threshold, and it is determined that the condition for lowering the charging rate of the battery is not satisfied.
  • the current capacity of the battery is compared with a corresponding first capacity threshold, and if the current capacity of the battery reaches a corresponding first capacity threshold, it is determined that the reduction is satisfied.
  • the condition of the battery's charging rate is the condition of the battery's charging rate.
  • the acquired state information of the battery is the capacity retention rate of the battery, comparing the capacity retention rate of the battery with the corresponding second capacity threshold, if the capacity retention rate of the battery reaches the corresponding second capacity threshold It is judged that the condition for lowering the charging magnification of the battery is satisfied.
  • the current capacity of the acquired battery can be compared with the first capacity threshold, and the obtained capacity retention rate and the second value can be obtained.
  • the capacity threshold is compared. If the current capacity of the acquired battery reaches the first capacity threshold and the acquired capacity retention rate reaches at least one of the second capacity threshold, it is determined that the condition for lowering the charging rate of the battery is satisfied.
  • At least one capacity threshold may be preset, which is not specifically limited in this embodiment of the present application.
  • the value of the preset capacity threshold may be the same, and may be different, which is not specifically limited in this embodiment of the present application.
  • n capacity thresholds with different values are preset, the condition for lowering the charging rate of the battery may be satisfied n times, and then, the charging magnification of the battery may be adjusted n times, wherein n Is an integer greater than 0.
  • the battery charging magnification can be adjusted five times.
  • the preset four capacity thresholds include three capacity thresholds having the same value, that is, the capacity thresholds different from the preset two values, the battery charging magnification can be adjusted twice.
  • the capacity thresholds may be sorted according to the numerical order from large to small, and the acquired capacity status information of the battery may be obtained. It is compared with the sorted capacity threshold in turn.
  • the capacity status information of the battery acquired in the Nth time is less than or equal to the Mth capacity threshold, it is determined that the preset condition for reducing the charging rate of the battery is satisfied; and due to the capacity status of the battery The information is gradually decreasing.
  • the capacity status information of the battery acquired by the N+1th time must be less than or equal to the capacity status information acquired by the Nth time, that is, the N+1th.
  • the capacity status information of the acquired battery must be less than or equal to the Mth capacity threshold; therefore, when determining whether the preset adjustment condition is met according to the capacity status information of the battery acquired in the N+1th time, the Nth
  • the capacity status information of the +1 acquired battery is compared with the M+1th capacity threshold.
  • the value of the Mth capacity threshold is greater than or equal to the value of the M+1th capacity threshold according to the numerical value for each capacity threshold.
  • N is an integer greater than 0, and M is greater than 0. Integer.
  • the capacity status information of the battery acquired at the Nth time is greater than the Mth capacity threshold, that is, the condition that the preset charging rate of the reduced battery is not satisfied is determined at this time; and the capacity status information of the battery is gradually decreased.
  • the capacity status information of the battery acquired by the N+1th time must be less than or equal to the capacity status information acquired by the Nth time, that is, the capacity status information of the battery acquired by the N+1th time and the Mth capacity threshold value. The relationship is not determined; therefore, when judging whether the preset adjustment condition is satisfied according to the capacity status information of the battery acquired in the N+1th time, the capacity status information of the battery acquired by the N+1th time is still required to be M capacity thresholds are compared.
  • the preset when the first capacity threshold and the second capacity threshold are preset, the preset may be preset according to a fixed adjustment interval, for example, the first capacity threshold of the preset battery is 1700 mAh, 1900 mAh, 1800 mAh; or The preset may also be performed according to an unfixed adjustment interval.
  • the second capacity threshold of the battery may be preset to be 90%, 85%, 70%, or the like. This embodiment of the present application does not specifically limit this.
  • the battery can be charged once during the entire cycle of use of the battery. Adjustment of parameters. Specifically, when the capacity of the current battery is less than or equal to the unique capacity threshold for the first time, it is determined that the condition for lowering the charging rate of the battery is satisfied; and during the subsequent cycle life, there are no other capacity thresholds having different values. The condition for lowering the charging rate of the battery is no longer satisfied.
  • FIG. 3 is a schematic flowchart of Embodiment 2 of a charging method of a battery provided by an embodiment of the present application.
  • R is the capacity retention rate of the obtained battery
  • the preset n second capacity thresholds are R1, R2, ..., Rn, respectively.
  • the charging magnification of the battery is adjusted from C1 to C2, and the battery is charged to V2 using C2; or, if R ⁇ R1, the capacity retention rate of the battery is less than the second
  • the capacity threshold value is judged to satisfy the condition of lowering the charging magnification of the battery, the charging magnification of the battery is adjusted from C1 to C2, and the battery is charged to V2 using C2.
  • the charging magnification of the battery is adjusted from C2 to the charging magnification C3 under the condition that the charging rate of the battery is lowered.
  • the temperature of the battery may also be considered.
  • the temperature of the battery may include, but is not limited to, at least one of a battery temperature, an ambient temperature of the battery, and an operating temperature of the battery.
  • the application example is not particularly limited.
  • the battery may be divided into at least two temperature segments according to the temperature of the battery, and a corresponding capacity threshold is set for each temperature segment, and then the temperature segment corresponding to the current temperature of the battery is determined according to the current temperature of the battery, and thus, according to the determined In the temperature segment, a capacity threshold corresponding to the temperature segment is obtained.
  • the capacity threshold may include, but is not limited to, at least one of a first capacity threshold and a second capacity threshold, which is not specifically limited in the embodiment of the present application.
  • a specific value when a corresponding capacity threshold is set for each temperature segment, a specific value may be set as a capacity threshold of the battery, or a range of values may be set to facilitate selection of the value range according to actual needs.
  • a certain value is used as the capacity threshold of the battery, and the present application does not specifically limit this.
  • the temperature can be divided into three temperature segments according to the ambient temperature of the battery, for example, a temperature greater than 40 ° C is divided into a high temperature segment; a temperature ranging from 15 ° C to 35 ° C is divided into a medium temperature segment, which will be less than 15 ° C. Divided into low temperatures. Then, an adjustment interval of the corresponding second capacity threshold is respectively set for the high temperature section, the intermediate temperature section, and the low temperature section.
  • the second capacity threshold can be set for the high temperature section with a small adjustment interval; and the conductivity of the electrolyte is lower at low temperatures.
  • the viscosity decreases, the anode becomes more susceptible to lithium during the circulation.
  • the adjustment interval of the second capacity threshold may be set to a tendency to decrease as the capacity retention ratio is lowered.
  • the adjustment interval of each second capacity threshold of the battery may be [5, 10]. Since the temperature is moderate, a second capacity threshold corresponding to a larger adjustment interval of the high temperature section may be set for the middle temperature section, and the adjustment interval range of each second capacity threshold of the battery may be [10, 20]. Therefore, after determining the current temperature of the battery, the temperature segment corresponding to the current temperature can be determined, and further, according to the determined temperature segment, the second capacity of the battery is set within the adjustment interval of the second capacity threshold corresponding to the temperature segment. Threshold.
  • the second type if the state information of the battery is the energy state information of the battery, the energy state information of the obtained battery is compared with the corresponding energy threshold; if the energy state information of the battery reaches the corresponding energy threshold, it is determined that the battery is satisfied The condition of the charging rate; or, if the energy state information of the battery does not reach the corresponding energy threshold, it is judged that the condition for lowering the charging rate of the battery is not satisfied.
  • the energy state information of the battery reaches a corresponding energy threshold, that is, the energy state information of the battery is less than or equal to the corresponding energy threshold. At this time, it is determined that the condition for lowering the charging rate of the battery is satisfied; or, if the energy state information of the battery If the energy threshold information of the battery does not reach the corresponding energy threshold, it is determined that the condition for reducing the charging rate of the battery is not satisfied.
  • the acquired state information of the battery is the current energy of the battery
  • the current energy of the battery is compared with a corresponding first energy threshold, and if the current energy of the battery reaches a corresponding first energy threshold, it is determined that the reduction is satisfied.
  • the condition of the battery's charging rate is the condition of the battery's charging rate.
  • the acquired state information of the battery is the energy retention rate of the battery
  • comparing the energy retention rate of the battery with the corresponding second energy threshold if the energy retention rate of the battery reaches the corresponding second energy threshold It is judged that the condition for lowering the charging magnification of the battery is satisfied.
  • the current energy of the obtained battery may be compared with a first energy threshold, and the obtained energy retention rate is compared with a second energy threshold, and if the current energy of the obtained battery reaches the first energy threshold and is obtained When the energy retention rate reaches at least one of the second energy thresholds, it is judged that the condition for lowering the charging magnification of the battery is satisfied.
  • At least one energy threshold may be preset, which is not specifically limited in this embodiment of the present application.
  • the value of the preset energy threshold may be the same, and may be different, and the embodiment of the present application does not specifically limit this.
  • the condition for lowering the charging rate of the battery may be met m times, and then, the charging magnification of the battery may be adjusted m times, wherein m Is an integer greater than 0.
  • the battery charging magnification can be adjusted five times.
  • the preset four energy thresholds include three energy thresholds having the same value, that is, equivalent to two energy thresholds with different values, the battery charging magnification can be adjusted twice.
  • the energy thresholds may be sorted according to the numerical order from large to small, and the acquired energy state information of the battery may be obtained. It is compared with the sorted energy threshold in turn.
  • the energy state information of the battery acquired in the Xth time is less than or equal to the Yth energy threshold, it is determined that the preset condition of reducing the charging rate of the battery is satisfied; and the energy state of the battery is The information is gradually decreasing, and the energy state information of the battery acquired by the X+1th time must be less than or equal to the energy state information acquired by the Xth time, that is, the energy state information of the battery acquired by the X+1th time must be smaller than Or equal to the Yth energy threshold; therefore, when determining whether the preset adjustment condition is met according to the energy state information of the battery acquired in the X+1th time, the energy state information of the battery acquired by the X+1th time is needed.
  • the value of the Yth energy threshold is greater than or equal to the value of the Y+1th energy threshold, and X is an integer greater than 0, and Y is greater than 0, according to the numerical value for each energy threshold. Integer.
  • the energy state information of the battery obtained in the Xth time is greater than the Yth energy threshold, that is, it is determined that the preset lowering of the charging rate of the battery is not satisfied; and
  • the quantity status information is a gradually decreasing trend, and the energy status information of the battery acquired by the X+1th time must be less than or equal to the energy status information acquired by the Xth time, that is, the energy status information of the battery acquired by the X+1th time.
  • the relationship with the Yth energy threshold is not determined; therefore, when judging whether the preset adjustment condition is satisfied according to the energy state information of the battery acquired in the X+1th time, the battery acquired by the X+1th time is required.
  • the energy state information is still compared to the Yth energy threshold.
  • the preset when the first energy threshold and the second energy threshold are preset, the preset may be preset according to a fixed adjustment interval, for example, the second energy threshold of the preset battery is 90%, 90%, 90%. Alternatively, the preset may be performed according to an unfixed adjustment interval.
  • the second energy threshold of the battery may be preset to be 90%, 85%, 70%, or the like. This embodiment of the present application does not specifically limit this.
  • the battery can be charged once during the entire cycle of use of the battery. Adjustment of parameters. Specifically, when the energy of the current battery is less than or equal to the unique energy threshold for the first time, it is determined that the condition for lowering the charging rate of the battery is satisfied; and during the subsequent cycle life, there are no other energy thresholds having different values. The condition for lowering the charging rate of the battery is no longer satisfied.
  • FIG. 4 is a schematic flowchart of Embodiment 3 of a charging method of a battery provided by an embodiment of the present application.
  • Q is the current energy of the obtained battery
  • the preset n first energy thresholds are Q1, Q2, ..., Qn, respectively.
  • the obtained Q is compared with Q1. If Q>Q1, that is, the current energy of the battery is greater than the first energy threshold, and it is determined that the condition for lowering the charging rate of the battery is not satisfied, the battery is maintained.
  • the magnification is adjusted from C1 to C2, and the battery is charged to V2 using C2; or, if Q ⁇ Q1, at this time, the current energy of the battery is less than the first energy threshold, and it is judged that the condition for lowering the charging magnification of the battery is satisfied, and the battery is The charge rate is adjusted from C1 to C2, and the battery is charged to V2 using C2.
  • the condition for lowering the charge rate of the battery will adjust the charge rate of the battery from C2 to the charge rate C3.
  • the temperature of the battery may also be considered.
  • the temperature of the battery may include, but is not limited to, at least one of a battery temperature, an ambient temperature of the battery, and an operating temperature of the battery.
  • the application example is not particularly limited.
  • the battery may be divided into at least two temperature segments according to the temperature of the battery, and a corresponding energy threshold is set for each temperature segment, and then the temperature segment corresponding to the current temperature of the battery is determined according to the current temperature of the battery, and thus, according to the determined In the temperature segment, an energy threshold corresponding to the temperature segment is obtained.
  • the energy threshold may include, but is not limited to, at least one of the first energy threshold and the second energy threshold, which is not specifically limited in the embodiment of the present application.
  • a specific value may be set as the energy threshold of the battery, or a range of values may be set to facilitate selection of the value range according to actual needs.
  • a certain value is used as the energy threshold of the battery, which is not specifically limited in this application.
  • the second energy threshold is taken as an example for illustration.
  • the temperature can be divided into three temperature segments according to the ambient temperature of the battery, for example, a temperature greater than 40 ° C is divided into a high temperature segment; a temperature ranging from 15 ° C to 35 ° C is divided into a medium temperature segment, which will be less than 15 ° C. Divided into low temperatures. Then, an adjustment interval of the corresponding second energy threshold is respectively set for the high temperature section, the intermediate temperature section, and the low temperature section.
  • the second energy threshold can be set for the high temperature section with a small adjustment interval; and the conductivity of the electrolyte is lower at low temperatures.
  • the viscosity decreases, the anode becomes more susceptible to lithium during the circulation.
  • the adjustment interval of the second energy threshold may be set to a tendency to decrease as the energy retention rate decreases. Therefore, it is possible to set at least one smaller value range for the high temperature section and the low temperature section, such as the second energy of the battery.
  • the adjustment interval of the quantity threshold can be [5, 10]. Since the temperature is moderate, a second energy threshold corresponding to a larger adjustment interval of the high temperature section may be set for the middle temperature section, and the adjustment interval of each second energy threshold of the battery may be [10, 20]. Therefore, after determining the current temperature of the battery, the temperature segment corresponding to the current temperature can be determined, and further, according to the determined temperature segment, the second energy of the battery is set within the adjustment interval of the second energy threshold corresponding to the temperature segment. Threshold.
  • the above two implementation manners are only used to explain how to "determine whether the condition for lowering the charging rate of the battery is satisfied according to the state information of the battery".
  • the foregoing implementation may be implemented.
  • the method of determining the manner may be determined by a combination of the foregoing two implementation manners, which is not specifically limited in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of Embodiment 4 of a charging method of a battery provided by an embodiment of the present application.
  • R is the capacity retention rate of the obtained battery
  • the preset n second capacity thresholds are R1, R2, ..., Rn, respectively
  • Q is the current energy of the obtained battery
  • the preset n The first energy thresholds are Q1, Q2, ..., Qn, respectively.
  • whether the condition of reducing the charging rate of the battery is satisfied is determined according to the state information of the battery, and the determination may be made according to the actual needs, which is not specifically limited in the embodiment of the present invention.
  • the product of power and time is the energy of the battery, so the energy of the battery determines the duration of the constant power discharge product during a discharge process.
  • the pool system only needs to detect the discharge power and discharge time to obtain the energy status information of the battery, including the current energy of the battery and/or the energy retention rate of the battery.
  • the battery needs to calculate the battery discharge current and time integral through the algorithm to calculate the current capacity of the battery, the steps are cumbersome, and the error is easy to occur, which is unfavorable for prolonging the cycle life of the battery. Therefore, it is possible to determine whether or not the condition for lowering the charging magnification of the battery is satisfied based on the energy state information of the constant power discharge product.
  • the capacity of the battery determines the duration of the constant current discharge product in a single discharge process.
  • the battery system only needs to detect the discharge current and the discharge time to obtain the capacity status information of the battery. , including the capacity of the battery and / or the capacity retention rate of the battery.
  • the battery needs to integrate the battery discharge current by the algorithm, and the voltage and time integral are used to calculate the energy of the battery, which is disadvantageous for prolonging the cycle life of the battery. Therefore, it is possible to determine whether or not the condition for lowering the charging magnification of the battery is satisfied based on the capacity state information of the constant current discharge product.
  • the charging device provided by the present application can indicate status information of the battery usage status by acquiring the capacity status information of the battery, the energy status information of the battery, and the like, and determining whether the preset condition is met according to the status information, thereby determining whether to charge the battery.
  • the magnification is reduced.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the embodiment of the present application specifically describes the implementation manner of “reducing the charging rate of the battery if the condition of reducing the charging rate of the battery is satisfied” in S103 in the first embodiment.
  • the charging magnification of the battery is lowered to charge the battery according to the charging magnification of the reduced battery.
  • reducing the charging rate of the battery may include, but is not limited to, the following two implementation manners:
  • the first type adjust the interval according to the preset charging rate to reduce the charging rate of the battery.
  • the charging magnification adjustment interval ⁇ C may be preset, and ⁇ C is used to indicate an adjustment interval between charging rates of two adjacent batteries. It will be appreciated that ⁇ C may include, but is not limited to, at least one value. Then, when it is detected that the usage data of the battery satisfies the condition of lowering the charging magnification of the battery, lowering the charging magnification of the battery can be realized by subtracting ⁇ C from the current charging magnification.
  • the charging magnification adjustment interval ⁇ C1, ⁇ C2, ... ⁇ Cn-1 is preset, the adjustment interval between C1 and C2 is ⁇ C1, and the difference between C1 and ⁇ C1 can be subtracted as the charging of C2.
  • the magnification value; the adjustment interval between C2 and C3 is ⁇ C2, and the difference of C2 minus ⁇ C2 can be used as the charging magnification value of C3; and so on, the charging magnifications C1, C2, ..., Cn of the battery are obtained.
  • the adjustment interval between Cn-1 and Cn is ⁇ C
  • the difference of C1 minus ⁇ C can be taken as C2.
  • the charging magnification value, the difference of C2 minus ⁇ C is taken as the charging magnification value of C3, and so on, and the charging magnifications C1, C2, ... Cn of the battery are obtained.
  • the charging magnification adjustment interval ⁇ C can be taken in the range of [0.1C, 2C]; in a preferred implementation process, the charging magnification adjustment interval ⁇ C can be in the range of [0.3C, 1C] .
  • the charging magnification adjustment interval ⁇ C may be set to gradually decrease, thereby avoiding a large decrease in battery capacity due to excessive reduction in the charging rate of the battery. problem.
  • the second type a candidate charging rate lower than the charging rate of the battery in the preset charging magnification candidate set is taken as the charging magnification of the reduced battery; wherein the charging magnification candidate set includes at least one candidate charging magnification.
  • the charge rate candidate set of the battery may be preset, and the charge rate set may include at least one candidate charge rate, such as C1, C2, C3, C4, and C5, when the battery usage data is detected to satisfy the reduction of the battery charge.
  • the condition of the magnification, which reduces the charging rate of the battery can select one of the candidate charging magnifications C1, C2, C3, C4, C5 which is lower than the charging rate of the current battery.
  • Candidate charging rate If the current battery charge rate is C, at this time, C3>C>C4>C2>C1>C5. At this time, one candidate charge rate can be selected as the reduced charge ratio among the candidate charge rates C1, C2, C4, and C5. The charging rate of the battery.
  • the candidate charging magnification C4 can be taken as the charging magnification of the reduced battery in consideration of the range of the charging magnification adjustment interval between two adjacent charging magnifications.
  • other candidate charging rates lower than the candidate charging magnification C4 may be selected in the candidate set as the charging rate of the reduced battery. This embodiment of the present application does not specifically limit this.
  • a charging magnification candidate set of the battery may be preset, and the charging magnification set may include at least one candidate charging magnification, such as C1, C2, . . . , Cn, and sort the candidate charging magnifications in the candidate set.
  • the charging magnification of the battery can be reduced, and one candidate charging magnification in the charging magnification candidate set can be sequentially selected according to the sorting result. As the charging rate of the reduced battery.
  • the charging magnification at this time is C3, after a certain cycle or accumulation time is detected, and the condition for lowering the charging magnification of the battery is detected, the C5 of the candidate charging magnification C3 in the charging magnification candidate set is selected according to the sorting result. As a reduced charging rate.
  • a charge rate candidate set of the battery may be preset, and the charge rate set may include at least one candidate charge rate, such as C1, C2, . . . , Cn, and determine values of C1, C2, C3, . . .
  • the size relationship is C1>C2>C3>...Cn.
  • the numerical order of the candidate charging magnifications in the charging magnification candidate set of the battery may be fixed or unfixed.
  • the charging magnification candidate set may be C1>C2>C3>...Cn, or may be C3>C5>C2>...Cn, etc., which is not specifically limited in the embodiment of the present application. Only one candidate charging rate lower than the charging rate of the current battery in the charging magnification candidate set of the battery is taken as the charging magnification of the reduced battery.
  • the adjustment interval between the candidate charging magnifications in the charging magnification candidate set may be performed within a range of [0.1C, 2C]; in a preferred implementation process, the charging magnification candidate set is The adjustment interval between the candidate charge rates may be [0.3C, 1C].
  • the adjustment interval between the candidate charging magnifications in the charging magnification candidate set may be set to gradually decrease, thereby avoiding the battery charging rate being reduced. A problem caused by a large decrease in battery capacity.
  • the charging ratio of the battery has a unique relationship with the charging current of the battery. Therefore, adjusting the charging magnification of the battery corresponds to adjusting the charging current of the battery, and adjusting the charging current of the battery is equivalent to adjusting the charging of the battery. Magnification. Therefore, the charging rate of the battery can be adjusted, and the charging rate of the battery can be adjusted directly. Alternatively, the charging rate of the battery can be adjusted by adjusting the charging current of the battery.
  • the preset charging current can be adjusted, and thus, according to the preset charging current. Adjusting the interval to reduce the charging current of the battery; or, the charging current candidate set may be preset, the charging current candidate set includes at least one candidate charging current; a candidate of the charging current candidate set lower than the current battery charging current The charging current is used as the charging current of the reduced battery. This embodiment of the present application will not be described again.
  • the charging method provided by the embodiment of the present application can indicate the usage data of the battery usage condition by acquiring the number of cycles of the battery, the accumulated time of the battery, and the like, and determining whether the preset condition is met according to the usage data, thereby determining whether to charge the battery.
  • the magnification is reduced; and, when the preset condition is satisfied, the charging magnification of the battery is appropriately adjusted, and the battery is charged according to the adjusted charging magnification, so that the polarization speed of the battery is slowed;
  • the speed at which the anode and cathode of the battery accumulate by-products slows down the destruction of the crystal form of the cathode material of the battery, and the rate of oxidative decomposition of the electrolyte becomes slower; thereby, to some extent, the loss of the battery during the cyclic charging process is slowed down to some extent.
  • Speed extending the cycle life of the battery.
  • FIG. 6 is a functional block diagram of a charging device for a battery according to an embodiment of the present application. As shown in Figure 6, the device includes:
  • the acquiring unit 61 is configured to acquire status information of the battery, where the status information of the battery includes at least one of capacity status information of the battery and energy status information of the battery;
  • the determining unit 62 is configured to determine, according to the state information of the battery, whether the charging of the battery is reduced Condition of magnification;
  • the adjusting unit 63 is configured to reduce the charging rate of the battery if it is determined that the condition for reducing the charging rate of the battery is satisfied;
  • the charging unit 64 is configured to charge the battery according to the reduced charging magnification.
  • the capacity status information of the battery includes at least one of a current capacity of the battery and a capacity retention rate of the battery.
  • the energy state information of the battery includes at least one of a current energy of the battery and an energy retention rate of the battery.
  • the determining unit 62 is specifically configured to:
  • the status information of the battery is the capacity status information of the battery, compare the obtained capacity status information of the battery with a corresponding capacity threshold;
  • the capacity status information of the battery reaches the corresponding capacity threshold, it is determined that the condition for lowering the charging magnification of the battery is satisfied; or if the capacity status information of the battery does not reach the corresponding capacity threshold, it is determined that the condition for lowering the charging magnification of the battery is not satisfied.
  • the determining unit 62 is specifically configured to:
  • the status information of the battery is the energy status information of the battery, compare the energy status information of the obtained battery with a corresponding energy threshold;
  • the condition for lowering the charging rate of the battery is satisfied; or if the energy state information of the battery does not reach the corresponding energy threshold, it is determined that the condition for lowering the charging rate of the battery is not satisfied.
  • the adjusting unit 63 is specifically configured to:
  • One candidate charging magnification lower than the charging magnification of the battery in the preset charging magnification candidate set is taken as the charging magnification of the reduced battery; wherein the charging magnification candidate set includes at least one candidate charging magnification.
  • the charging unit 64 is specifically configured to:
  • one of four charging modes constant current charging, pulse charging, step charging, and constant current constant voltage charging, or a combination charging mode of at least two charging modes, Charging.
  • the determining unit 62 is specifically configured to:
  • a capacity threshold corresponding to the temperature segment is determined.
  • the determining unit 62 is specifically configured to:
  • an energy threshold corresponding to the temperature segment is determined.
  • the state information of the battery is acquired by the acquiring unit in the charging device, and the state information of the battery includes at least one of the capacity state information of the battery and the energy state information of the battery, and then the determining unit in the charging device is according to the battery.
  • the state information determines whether the condition for lowering the charging magnification of the battery is satisfied, and if it is determined that the condition for lowering the charging magnification of the battery is satisfied, the adjusting unit in the charging device lowers the charging magnification of the battery, and further, the charging unit in the charging device is lowered.
  • the charging rate charges the battery.
  • the charging device provided by the present application can indicate status information of the battery usage status by acquiring the capacity status information of the battery, the energy status information of the battery, and the like, and determining whether the preset condition is met according to the status information, thereby determining whether to charge the battery.
  • the magnification is reduced.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the embodiment of the present application further provides a battery system.
  • FIG. 7 is a functional block diagram of a battery system provided by an embodiment of the present application.
  • the battery system includes a battery 71 and a charging device 72 of the above battery.
  • FIG. 8 is a first schematic diagram of a battery system according to an embodiment of the present application.
  • the battery system includes a battery, a battery charging device, a temperature sensor, an ammeter, a voltmeter, and a capacity acquisition unit. , current source and voltage source.
  • the schematic diagram of the battery system shown in FIG. 8 corresponds to the schematic diagram of the second embodiment of the charging method of the battery shown in FIG.
  • an ammeter in the battery system is used to monitor the charging current of the battery during charging and transmit the monitoring result to the charging device of the battery of the battery system.
  • a voltmeter in the battery system for measuring the voltage across the battery.
  • a temperature sensor in the battery system for measuring the temperature of the battery.
  • the capacity acquisition unit in the battery system is configured to acquire capacity state information of the battery according to the method described in Embodiment 2.
  • a current source in the battery system for providing a controlled, constant charging current.
  • connection manner of the capacity acquisition unit, the current meter, the voltmeter, the temperature sensor, the current source, the voltage source, the battery, and the charging device of the battery is only a specific implementation manner. It is not intended to limit the application.
  • FIG. 9 is a second schematic diagram of a battery system according to an embodiment of the present application.
  • the battery system includes a battery, a battery charging device, a temperature sensor, an ammeter, a voltmeter, and an energy acquiring unit. , current source and voltage source.
  • the schematic diagram of the battery system shown in FIG. 9 corresponds to the flow chart of the third embodiment of the charging method of the battery shown in FIG.
  • an ammeter in the battery system is used to monitor the charging current of the battery during charging and transmit the monitoring result to the charging device of the battery of the battery system.
  • a voltmeter in the battery system for measuring the voltage across the battery.
  • a temperature sensor in the battery system for measuring the temperature of the battery.
  • the energy acquisition unit in the battery system is configured to acquire energy state information of the battery according to the method described in Embodiment 3.
  • a current source in the battery system for providing a controlled, constant charging current.
  • connection manner of the energy harvesting unit, the galvanometer, the voltmeter, the temperature sensor, the current source, the voltage source, the battery, and the battery charging device is only It is a specific implementation and is not intended to limit the application.
  • the battery system provided by the present application can indicate the status information of the battery usage status by acquiring the capacity status information of the battery and the energy status information of the battery, etc., and determining whether the preset condition is met according to the status information, thereby determining whether to charge the battery.
  • the magnification is reduced.
  • the charging adjustment ratio of the battery is appropriately adjusted and reduced, and the battery is charged according to the reduced charging magnification, so that the internal resistance of the battery is increased, and the polarization speed of the battery is slowed down.
  • the rate of accumulation of by-products in the anode and cathode of the battery is slowed down, so that the destruction rate of the crystal form of the cathode material of the battery is slowed down, and the rate of oxidative decomposition of the electrolyte is slowed down; further, the rate of decay of the battery capacity is slowed down, It slows down the speed of battery energy attenuation, which slows down the loss rate of the battery during the cycle charging process to a certain extent, and prolongs the cycle life of the battery.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

一种电池的充电方法、装置及电池系统。通过获取电池的状态信息(S101),电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个,然后,根据电池的状态信息,判断是否满足降低电池的充电倍率的条件(S102),若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率(S103),进而,根据降低后电池的充电倍率对电池进行充电(S104)。因此,该充电方法、装置及系统减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。

Description

电池的充电方法、装置及电池系统 技术领域
本申请涉及电池技术领域,尤其涉及一种电池的充电方法、装置及电池系统。
背景技术
随着电池技术的不断突破与发展,对二次电池循环寿命的要求越来越高,例如,将电池的循环寿命由500循环提升到800循环、1000循环,甚至1500循环。目前,在电池的循环充电过程中,一般使用恒定的充电电流对电池进行充电。
在实现本申请的过程中,申请人发现现有技术中至少存在如下问题:
现有的充电方法中,对于高能量密度的电池,随着电池的循环使用的时间的增加,电池的内阻随之增大,电池的极化变大,电池的阴极和阳极会积累大量的副产物,加速对阴极材料的晶型的破坏,并且导致电解液的快速氧化分解,从而会加速电池能量的急剧衰减和电池容量的急剧衰减,影响电池的使用寿命。
发明内容
本申请提供一种电池的充电方法、装置及电池系统,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
本申请提供一种电池的充电方法,包括:
获取电池的状态信息,所述电池的状态信息包括所述电池的容量状态信息和所述电池的能量状态信息中至少一个;
根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件;
若判断出满足降低所述电池的充电倍率的条件,降低所述电池的充电倍率;
根据降低后的充电倍率对所述电池进行充电。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池的容量状态信息包括所述电池的当前容量和所述电池的容量保持率中至少一个。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池的能量状态信息包括所述电池的当前能量和所述电池的能量保持率中至少一个。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,若所述电池的状态信息为所述电池的容量状态信息,根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件,包括:
将获取到的所述电池的容量状态信息与对应的容量阈值进行比较;
若所述电池的容量状态信息达到对应的容量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的容量状态信息未达到对应的容量阈值,判断出不满足降低所述电池的充电倍率的条件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,若所述电池的状态信息为所述电池的能量状态信息,根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件,包括:
将获取到的所述电池的能量状态信息与对应的能量阈值进行比较;
若所述电池的能量状态信息达到对应的能量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的能量状态信息未达到对应的能量阈值,判断出不满足降低所述电池的充电倍率的条件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,若确定满足降低所述电池的充电倍率的条件,调整所述电池的充电参数,包括:
根据预设的充电倍率调整间隔,降低所述电池的充电倍率;或者,
将预设的充电倍率候选集合中低于所述电池的充电倍率的一个候选充电倍率作为降低后所述电池的充电倍率;其中,所述充电倍率候选集合中包括至少一个候选充电倍率。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据调整后的充电倍率对所述电池进行充电,包括:
根据调整后的充电倍率,采用恒流充电、脉冲充电、分步充电和恒流恒 压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对所述电池进行充电。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,将获取到的所述电池的容量状态信息与对应的容量阈值进行比较之前,所述方法还包括:
根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的容量阈值;
根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
根据所述温度段,确定与所述温度段对应的容量阈值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,将获取到的所述电池的能量状态信息与对应的能量阈值进行比较之前,所述方法还包括:
根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的能量阈值;
根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
根据所述温度段,确定与所述温度段对应的能量阈值。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例中,通过获取电池的状态信息,该电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个,然后,根据电池的状态信息,判断是否满足降低电池的充电倍率的条件,若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率,进而,根据降低后的充电倍率对电池进行充电。本申请提供的充电方法,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
本申请还提供一种电池的充电装置,包括:
获取单元,用于获取电池的状态信息,所述电池的状态信息包括所述电池的容量状态信息和所述电池的能量状态信息中至少一个;
判断单元,用于根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件;
调整单元,用于若判断出满足降低所述电池的充电倍率的条件,降低所述电池的充电倍率;
充电单元,用于根据降低后的充电倍率对所述电池进行充电。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池的容量状态信息包括所述电池的当前容量和所述电池的容量保持率中至少一个。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电池的能量状态信息包括所述电池的当前能量和所述电池的能量保持率中至少一个。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述判断单元,具体用于:
若所述电池的状态信息为所述电池的容量状态信息,将获取到的所述电池的容量状态信息与对应的容量阈值进行比较;
若所述电池的容量状态信息达到对应的容量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的容量状态信息未达到对应的容量阈值,判断出不满足降低所述电池的充电倍率的条件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述判断单元,具体用于:
若所述电池的状态信息为所述电池的能量状态信息,将获取到的所述电池的能量状态信息与对应的能量阈值进行比较;
若所述电池的能量状态信息达到对应的能量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的能量状态信息未达到对应的能量阈值,判断出不满足降低所述电池的充电倍率的条件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述调整单元,具体用于:
根据预设的充电倍率调整间隔,降低所述电池的充电倍率;或者,
将预设的充电倍率候选集合中低于所述电池的充电倍率的一个候选充电倍率作为降低后所述电池的充电倍率;其中,所述充电倍率候选集合中包括至少一个候选充电倍率。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述充电单元,具体用于:
根据调整后的充电倍率,采用恒流充电、脉冲充电、分步充电和恒流恒压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对所述电池进行充电。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述判断单元,还用于:
将获取到的所述电池的容量状态信息与对应的容量阈值进行比较之前,根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的容量阈值;
根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
根据所述温度段,确定与所述温度段对应的容量阈值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述判断单元,还用于:
将获取到的所述电池的能量状态信息与对应的能量阈值进行比较之前,根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的能量阈值;
根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
根据所述温度段,确定与所述温度段对应的能量阈值。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例中,通过充电装置中的获取单元获取电池的状态信息,该电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个,然后,充电装置中的判断单元根据电池的状态信息,判断是否满足降低电池的充电倍率的条件,若判断出满足降低电池的充电倍率的条件,充电装置中的调整单元降低电池的充电倍率,进而,充电装置中的充电单元根据降低后的充电倍率对电池进行充电。本申请提供的充电装置,通过获取电池的 容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
本申请还提供一种电池系统,包括:电池以及上述电池的充电装置。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请提供的电池系统,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所提供的电池的充电方法实施例一的流程示意图;
图2为以不同的充电倍率对电池进行充电得到的循环曲线的对比示意图;
图3为本申请实施例所提供的电池的充电方法实施例二的流程示意图;
图4为本申请实施例所提供的电池的充电方法实施例三的流程示意图;
图5为本申请实施例所提供的电池的充电方法实施例四的流程示意图;
图6为本申请实施例所提供的电池的充电装置的功能方块图;
图7为本申请实施例所提供的电池系统的功能方块图;
图8为本申请实施例所提供的电池系统的第一示意图;
图9为本申请实施例所提供的电池系统的第二示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本申请实施例提供了一种电池的充电方法,请参考图1,其为本申请实施例所提供的电池的充电方法的实施例一的流程示意图。如图1所示,该方法包括:
S101,获取电池的状态信息。
具体的,本申请实施例中,电池的状态信息可以包括但不限于电池的容量状态信息和电池的能量状态信息中至少一个。除此之外,该电池的状态信息还可以包括电池的循环数目、电池的累计时间、电池的温度等相关数据。
具体的,本申请实施例中,电池的容量状态信息可以包括但不限于电池的当前容量和电池的容量保持率中的至少一个,本申请实施例对此不进行特别限定。除此之外,电池的容量状态信息还可以包括电池的容量间隔、电池的容量保持率间隔,本发明实施例对此不进行特别限定。
具体的,本申请实施例中,电池的能量状态信息可以包括但不限于电池的当前能量和电池的能量保持率中的至少一个,本申请实施例对此不进行特别限定。除此之外,电池的能量状态信息还可以包括电池的能量间隔、电池的能量保持率间隔,本发明实施例对此不进行特别限定。
S102,根据电池的状态信息,判断是否满足降低电池的充电倍率的条件。
可以理解的是,本申请实施例中,根据获取到的电池的状态信息的不同,可以采用不同的判断条件进行判断。
S103,若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率。
S104,根据降低后的充电倍率对电池进行充电。
本申请实施例中,若降低了电池的充电倍率,则在电池的循环充电过程中,利用降低后的充电倍率对电池进行充电,将电池以降低后的充电倍率充电至充电截止电压电压;在电池的循环放电过程中,电池放电。
具体的,本申请实施例对根据调整后的充电倍率对电池进行充电的具体充电方式不进行特别限定。
在一个具体的实现过程中,可以采用恒流充电、脉冲充电、分步充电和恒流恒压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对电池进行充电。
可以理解的是,根据调整后的充电倍率对电池进行分步充电时,可以对分步充电过程中的至少一步充电过程以调整后的充电倍率进行充电。具体的,可以对分步充电过程中具体的某一步的充电过程以调整后的充电倍率进行充电,或者,也可以对分步充电过程中的各充电步骤以调整后的充电倍率进行充电。
举例说明,假设调整后的电池的充电参数为:电池的充电截止电压为V4,电池的充电倍率为C3。例如,对电池进行充电时,可以先以充电倍率C3对电池进行恒流充电,待充电的电压达到充电截止电压V4,对电池以充电电压V4进行恒压充电,待充电至充电截止电流时,充电结束。或者,又例如,对电池进行充电时,可以采用恒流充电,即以充电倍率C3对电池进行恒流充电,待充电至充电截止电压V4时,充电结束。
需要说明的是,本申请实施例所提供的充电方法,电池的充电截止电压可以相同,或者,电池的充电截止电压也可以不同,本申请实施例对此不进行特别限定。
具体的,本申请实施例中,依照本申请技术方案对锂离子二次电池进行性能测试,以说明本申请的技术效果。
请参考图2,其为以不同的充电倍率对电池进行充电得到的循环曲线的对比示意图。
具体的,如图2所示,在25℃的电池环境温度下,电池以放电倍率4C放电至3.0V,休眠30分钟之后,再用充电倍率1.5C恒流充电至4.35V,再恒压4.35V充电至充电倍率降低至0.05C,15分钟,再以放电倍率4C放电至3.0V,如此循环500次,得到循环曲线1。在25℃的电池环境温度下,电池以放电倍率4C放电至3.0V,休眠30分钟之后,再用充电倍率2C恒流充电至4.35V,再恒压4.35V充电至充电倍率降低至0.05C,15分钟,再以放电倍率4C放电至3.0V,如此循环500次,得到循环曲线2。
如图2所示,循环曲线1与循环曲线2在第80个循环时,循环曲线2的容量保持率会低于循环曲线1的容量保持率。并且,随着循环次数的增多,循环曲线1的容量保持率与循环曲线2的容量保持率之间的差值呈现先增大,后差值保持的趋势。也即,降低电池的充电倍率,是可以在一定程度上使电池的容量保持率降低的速度变慢,进而,可以延长充电电池的寿命。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例中,通过获取电池的状态信息,电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个,然后,根据电池的状态信息,判断是否满足降低电池的充电倍率的条件,若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率,进而,根据降低后的充电倍率对电池进行充电。本申请实施例提供的充电方法,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作;并且,在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
实施例二
基于本申请实施例一提供的电池的充电方法,本申请实施例对实施例一中S101中“获取电池的使用数据”的实现方式进行具体说明。
具体的,本申请实施例中,若电池的使用数据为电池的容量状态信息, 获取电池的使用数据即获取电池的容量状态信息。具体的,本申请实施例中,获取电池的容量状态信息可以有多种实现方式,本申请实施例对此不进行特别限定。
具体的,电池在每一个循环过程中,电池的充电容量不一定等于电池的放电容量,本发明实施例中,可以获取电池的充电容量作为电池的当前容量,或者,也可以获取电池的放电容量作为电池的当前容量。可以理解的是,在实际应用过程中,获取上述哪一种容量作为电池的当前容量,可以根据实际需要进行确定,本发明实施例对此不进行特别限定。
在一个具体的实现过程中,可以获取电池的充电容量作为电池的当前容量。具体的,可以通过获取第一电量和第二电量;其中,第一电量为电池在最近一次充电过程开始时的剩余电量,第二电量为电池在该最近一次充电过程中由第一电量充电至电池充满电为止所充入的电量;然后,计算第一电量和第二电量的和,即可得到电池的当前容量。
举例说明,若获取到电池在最近一次充电过程开始时的剩余电量为1000mAh,同时,电池在该次充电过程中由1000mAh充电至电池充满电为止,所充入的电量为800mAh,则获取到的第一电量即1000mAh,第二电量即800mAh,所以,电池的当前容量为第一电量与第二电量的和,即电池的当前容量为1800mAh。
或者,在另一个具体的实现过程中,可以获取电池的放电容量作为电池的当前容量。具体的,可以通过获取第三电量和第四电量;其中,第三电量为电池从满充放电至某一电压所放出的电量,第四电量为电池放电结束时的剩余电量;然后,计算第三电量和第四电量的和,即可得到电池的当前容量。
或者,在再一个具体的实现过程中,可以获取电池的放电容量作为电池的当前容量。具体的,可以通过获取第五电量和第六电量;其中,第五电量为电池在最近一次放电过程开始时的剩余电量,第六电量为电池在该最近一次放电过程中由第五电量放电至电池的放电截止电压为止所放出的电量;然后,计算第五电量和第六电量的差值,即可得到电池的当前容量。
需要说明的是,电池在循环使用过程中,电池的阳极表面的固体电解质界面膜(Solid electrolyte interphase,SEI)处在不断的破坏和修复的动态过程中,阳极的SEI修复的过程中消耗掉一定的充电电量;另外,电池在一定的 条件下,电池在充电过程中充进去的电量中也会有部分电量转化为电池的副反应产物。因此,电池的放电容量能够更好地反映电池的使用状态,获取电池的放电容量作为电池的当前容量更接近实际应用,对延长电池的循环寿命更为有利。
可以理解的是,上述举例仅用以说明获取电池的当前容量的实现方式,并不用以限制本申请,本申请实施例对获取电池的当前容量的具体实现过程不进行特别限定。
具体的,本申请实施例中,根据电池的当前容量,可以确定电池的容量保持率。
在一个具体的实现过程中,可以根据电池的当前容量和电池的初始容量,获得电池的容量保持率。
需要说明的是,电池的初始容量为电池在实际使用过程中,第一次从满充到完全放电过程中所放出来的实际容量。
例如,若获取到电池的当前容量为1800毫安时(mAh),而该电池的初始容量是2000mAh,计算电池的当前容量和电池的初始容量的比值,得到电池的容量保持率为90%。
或者,在另一个具体的实现过程中,也可以根据电池的当前容量和电池的标称容量,获得电池的容量保持率。
需要说明的是,电池的标称容量为电池技术规格书中提供的容量。具体的,根据电池供应商的不同,电池的标称容量可以为该型号电池的容量的最小值,或者,电池的标称容量可以为该型号电池的容量的平均值。
具体的,本申请实施例中,若电池的使用数据为电池的能量状态信息,获取电池的使用数据即获取电池的能量状态信息。具体的,本申请实施例中,获取电池的能量状态信息可以有多种实现方式,本申请实施例对此不进行特别限定。
具体的,电池在每一个循环过程中,电池的充电能量不一定等于电池的放电能量,本发明实施例中,可以获取电池的充电能量作为电池的当前能量,或者,也可以获取电池的放电能量作为电池的当前能量。可以理解的是,在实际应用过程中,获取上述哪一种能量作为电池的当前能量,可以根据实际需要进行确定,本发明实施例对此不进行特别限定。
在一个具体的实现过程中,可以获取电池的充电能量作为电池的当前能量。具体的,可以通过获取第一能量和第二能量;其中,第一能量为电池在最近一次充电过程开始时的剩余能量,第二能量为电池在该最近一次充电过程中由第一能量充电至电池充满电为止所充入的能量;然后,计算第一能量和第二能量的和,即可得到电池的当前能量。
或者,在另一个具体的实现过程中,可以获取电池的放电能量作为电池的当前能量。具体的,可以通过获取第三能量和第四能量;其中,第三能量为电池从满充放电至某一电压所放出的能量,第四能量为电池放电结束时的剩余能量;然后,计算第三能量和第四能量的和,即可得到电池的当前能量。
或者,在再一个具体的实现过程中,可以获取电池的放电能量作为电池的当前能量。具体的,可以通过获取第五能量和第六能量;其中,第五能量为电池在最近一次放电过程开始时的剩余能量,第六能量为电池在该最近一次放电过程中由第五能量放电至电池的放电截止电压为止所放出的能量;然后,计算第五能量和第六能量的差值,即可得到电池的当前能量。
需要说明的是,电池在循环使用过程中,电池的阳极表面的固体电解质界面膜(Solid electrolyte interphase,SEI)处在不断的破坏和修复的动态过程中,阳极的SEI修复的过程中消耗掉一定的充电电量;另外,电池在一定的条件下,电池在充电过程中充进去的电量中也会有部分电量转化为电池的副反应产物。因此,电池的放电能量能够更好地反映电池的使用状态,获取电池的放电能量作为电池的当前能量更接近实际应用,对延长电池的循环寿命更为有利。
可以理解的是,上述举例仅用以说明获取电池的当前能量的实现方式,并不用以限制本申请,本申请实施例对获取电池的当前能量的具体实现过程不进行特别限定。
具体的,本申请实施例中,根据电池的当前能量,可以确定电池的能量保持率。
在一个具体的实现过程中,可以根据电池的当前能量和电池的初始能量,获得电池的能量保持率。
需要说明的是,电池的初始能量为电池在实际使用过程中,第一次从满充到完全放电过程中所放出来的实际能量。
或者,在另一个具体的实现过程中,可以根据电池的当前能量和电池的标称能量,获得电池的能量保持率。
需要说明的是,电池的标称能量为电池技术规格书中提供的能量。具体的,根据电池供应商的不同,电池的标称能量可以为该型号电池的能量的最小值,或者,电池的标称能量可以为该型号电池的能量的平均值。
需要说明的是,本申请实施例中,获取电池的状态信息时,电池在充电过程和放电过程中处于使用状态或是电池处于存储状态,本申请实施例对此不进行特别限定。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例提供的充电方法,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作;并且,在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
实施例三
基于本申请实施例一提供的电池的充电方法,本申请实施例对实施例一中S102中“根据电池的状态信息,判断是否满足降低电池的充电倍率的条件”的实现方式进行具体说明。
具体的,根据获取到的电池的状态信息,判断是否满足降低电池的充电倍率的条件,可以包括但不限于以下两种实现方式:
第一种:若电池的状态信息为电池的容量状态信息,将获取到的电池的容量状态信息与对应的容量阈值进行比较;若电池的容量状态信息达到对应的容量阈值,判断出满足降低电池的充电倍率的条件;或者,若电池的容量状态信息未达到对应的容量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,电池的容量状态信息达到对应的容量阈值,即电池的容量状态信息小于或者等于对应的容量阈值,此时,判断出满足降低电池的充电倍率的条件;或者,若电池的容量状态信息大于对应的容量阈值,即电池的容量 状态信息未达到对应的容量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,若获取到的电池的状态信息为电池的当前容量,则将电池的当前容量与对应的第一容量阈值进行比较,若电池的当前容量达到对应的第一容量阈值,判断出满足降低电池的充电倍率的条件。
或者,具体的,若获取到的电池的状态信息为电池的容量保持率,则将电池的容量保持率与对应的第二容量阈值进行比较,若电池的容量保持率达到对应的第二容量阈值,判断出满足降低电池的充电倍率的条件。
可以理解的是,若获取到的电池的状态信息为当前容量和容量保持率时,可以将获取到的电池的当前容量与第一容量阈值进行比较,并将获取到的容量保持率与第二容量阈值进行比较,若满足获取到的电池的当前容量达到第一容量阈值和获取到的容量保持率达到第二容量阈值中至少一个,则判断出满足降低电池的充电倍率的条件。
需要说明的是,本申请实施例中,可以预设至少一个容量阈值,本申请实施例对此不进行特别限定。具体的,预设的容量阈值的数值可以相同,可以不同,本申请实施例对此不进行特别限定。
需要说明的是,若预设了n个数值不同的容量阈值,就会有n次满足对应的降低电池的充电倍率的条件,进而,就可以对电池的充电倍率进行n次调整,其中,n为大于0的整数。
例如,若预设了1个容量阈值,只能对电池的充电倍率进行1次调整。或者,又例如,若预设了5个数值各不相同的容量阈值,则可以对电池的充电倍率进行5次调整。或者,又例如,若预设的4个容量阈值中包括有3个数值相同的容量阈值,即相当于预设了2个数值不同的容量阈值,则可以对电池的充电倍率进行2次调整。
在一个具体的实现过程中,若预设了至少两个数值各不相同的容量阈值,则可以按照数值由大到小的顺序为各容量阈值进行排序,并将获取到的电池的容量状态信息依次与排序后的容量阈值进行比较。
需要说明的是,若第N次获取到的电池的容量状态信息小于或等于第M个容量阈值后,即此时判断出满足预设的降低电池的充电倍率的条件;而由于电池的容量状态信息为逐渐降低的趋势,第N+1次获取到的电池的容量状态信息一定小于或者等于第N次获取到的容量状态信息,即第N+1 次获取到的电池的容量状态信息一定小于或等于第M个容量阈值;所以,在根据第N+1次获取到的电池的容量状态信息判断是否满足预设的调整条件时,需要将第N+1次获取到的电池的容量状态信息与第M+1个容量阈值进行比较。其中,按照数值大小为各容量阈值进行由大到小的排序后,第M个容量阈值的数值大于或者等于第M+1个容量阈值的数值,N为大于0的整数,M为大于0的整数。
或者,若第N次获取到的电池的容量状态信息大于第M个容量阈值,即此时判断出不满足预设的降低电池的充电倍率的条件;而由于电池的容量状态信息为逐渐降低的趋势,第N+1次获取到的电池的容量状态信息一定小于或者等于第N次获取到的容量状态信息,即第N+1次获取到的电池的容量状态信息与第M个容量阈值的关系并不确定;所以,在根据第N+1次获取到的电池的容量状态信息判断是否满足预设的调整条件时,需要将第N+1次获取到的电池的容量状态信息仍然与第M个容量阈值进行比较。
在一个具体的实现过程中,预设第一容量阈值与第二容量阈值时,可以按照固定的调整间隔进行预设,例如,预设电池的第一容量阈值为1700mAh、1900mAh、1800mAh;或者,也可以按照不固定的调整间隔进行预设,例如,可以预设电池的第二容量阈值为90%、85%、70%等。本申请实施例对此不进行特别限定。
在另一个具体的实现过程中,若预设的至少两个容量阈值的数值大小相同,相当于预设了1个容量阈值,在电池的整个循环使用过程中,可以为该电池进行1次充电参数的调整。具体的,根据当前电池的容量第一次小于或者等于该唯一的容量阈值时,判断出满足降低电池的充电倍率的条件;而在之后的循环寿命过程中,不存在其他数值不同的容量阈值,不再满足降低电池的充电倍率的条件。
举例说明,请参考图3,其为本申请实施例所提供的电池的充电方法的实施例二的流程示意图。
如图3所示,R为获取到的电池的容量保持率,预设的n个第二容量阈值分别为R1、R2……Rn。在电池开始进行循环使用时,将获取到的R与R1进行比较,若R>R1,即电池的容量保持率大于第二容量阈值,判断 出不满足降低电池的充电倍率的条件,则保持电池的充电倍率C1不变,使用C1对电池充电至充电截止电压V1;若R=R1,此时,电池的容量保持率等于第二容量阈值,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2;或者,若R<R1,此时,电池的容量保持率小于第二容量阈值,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2。
需要说明的是,如图3所示,本申请实施例中,若已经出现过R=R1的情况,并在R=R1时将电池的充电倍率由C1调整为C2,或者,若已经出现过R<R1的情况,并在R<R1时将电池的充电倍率由C1调整为C2。所以,当后续再出现R<R1的情况时,需要进行下一轮的比较和判断,以确定是否满足再次降低电池的充电倍率的条件。所以,对于已经出现过R=R1或R<R1的情况后出现的R<R1的循环过程,都需要通过R是否大于R2的第二轮判断,若通过R>R2的第二轮判断为是,则仍然不满足再次降低电池的充电倍率的条件,电池的充电倍率保持为C2不变,直到电池的容量保持率出现R=R2的情况或者出现R<R2的情况时,才会判断出再次满足降低电池的充电倍率的条件,才会将电池的充电倍率由C2调整为充电倍率C3。
在一个具体的实现过程中,预设电池的容量阈值时,还需要考虑电池的温度,电池的温度可以包括但不限于:电芯温度、电池的环境温度和电池的工作温度中至少一个,本申请实施例对此不进行特别限定。
具体的,可以根据电池的温度,划分为至少两个温度段,并为各温度段设置对应的容量阈值,然后根据电池的当前温度,确定电池的当前温度对应的温度段,从而,根据确定的温度段,得到与该温度段对应的容量阈值。
可以理解的是,该容量阈值可以包括但不限于:第一容量阈值和第二容量阈值中至少一个,本申请实施例对此不进行特别限定。
在一个具体的实现过程中,为各温度段设置对应的容量阈值时,可以设置具体的数值作为电池的容量阈值,或者,也可以设置一个数值范围,以便于根据实际需要选择该数值范围内的某一个数值作为电池的容量阈值,本申请对此不进行特别限定。
以第二容量阈值为例进行举例说明。可以根据电池的环境温度,将温度划分为三个温度段,例如,将大于40℃的温度划分为高温段;温度范围为15℃~35℃的温度划分为中温段,将小于15℃的温度划分为低温度。然后,为高温段、中温段和低温段分别设置对应的第二容量阈值的调整间隔。由于高温下电解液与阴极和阳极表面的反应更剧烈,消耗电解液的速度更快,所以可以以较小的调整间隔为高温段设置第二容量阈值;而低温时,由于电解液的电导率减小,粘度不断变大,导致阳极在循环过程中更容易析锂。此外,为了避免频繁的降低电池的充电倍率导致电池的充电速度大幅降低,可以在将第二容量阈值的调整间隔设置为随着容量保持率的降低而减小的趋势。所以,可以为高温段和低温段设置至少一个较小数值范围,如电池的各第二容量阈值的调整间隔范围可以为[5,10]。由于温度适中,可以为中温段设置相比高温段较大调整间隔的第二容量阈值,如电池的各第二容量阈值的调整间隔范围可以为[10,20]。所以,当确定了电池当前温度后,即可确定与当前温度对应的温度段,进而,根据确定的温度段,在该温度段对应的第二容量阈值的调整间隔范围内设置电池的第二容量阈值。
第二种:若电池的状态信息为电池的能量状态信息,将获取到的电池的能量状态信息与对应的能量阈值进行比较;若电池的能量状态信息达到对应的能量阈值,判断出满足降低电池的充电倍率的条件;或者,若电池的能量状态信息未达到对应的能量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,电池的能量状态信息达到对应的能量阈值,即电池的能量状态信息小于或者等于对应的能量阈值,此时,判断出满足降低电池的充电倍率的条件;或者,若电池的能量状态信息大于对应的能量阈值,即电池的能量状态信息未达到对应的能量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,若获取到的电池的状态信息为电池的当前能量,则将电池的当前能量与对应的第一能量阈值进行比较,若电池的当前能量达到对应的第一能量阈值,判断出满足降低电池的充电倍率的条件。
或者,具体的,若获取到的电池的状态信息为电池的能量保持率,则将电池的能量保持率与对应的第二能量阈值进行比较,若电池的能量保持率达到对应的第二能量阈值,判断出满足降低电池的充电倍率的条件。
可以理解的是,若获取到的电池的状态信息为当前能量和能量保持率时, 可以将获取到的电池的当前能量与第一能量阈值进行比较,并将获取到的能量保持率与第二能量阈值进行比较,若满足获取到的电池的当前能量达到第一能量阈值和获取到的能量保持率达到第二能量阈值中至少一个,则判断出满足降低电池的充电倍率的条件。
需要说明的是,本申请实施例中,可以预设至少一个能量阈值,本申请实施例对此不进行特别限定。具体的,预设的能量阈值的数值可以相同,可以不同,本申请实施例对此不进行特别限定。
需要说明的是,若预设了m个数值不同的能量阈值,就会有m次满足对应的降低电池的充电倍率的条件,进而,就可以对电池的充电倍率进行m次调整,其中,m为大于0的整数。
例如,若预设了1个能量阈值,只能对电池的充电倍率进行1次调整。或者,又例如,若预设了5个数值各不相同的能量阈值,则可以对电池的充电倍率进行5次调整。或者,又例如,若预设的4个能量阈值中包括有3个数值相同的能量阈值,即相当于预设了2个数值不同的能量阈值,则可以对电池的充电倍率进行2次调整。
在一个具体的实现过程中,若预设了至少两个数值各不相同的能量阈值,则可以按照数值由大到小的顺序为各能量阈值进行排序,并将获取到的电池的能量状态信息依次与排序后的能量阈值进行比较。
需要说明的是,若第X次获取到的电池的能量状态信息小于或等于第Y个能量阈值后,即此时判断出满足预设的降低电池的充电倍率的条件;而由于电池的能量状态信息为逐渐降低的趋势,第X+1次获取到的电池的能量状态信息一定小于或者等于第X次获取到的能量状态信息,即第X+1次获取到的电池的能量状态信息一定小于或等于第Y个能量阈值;所以,在根据第X+1次获取到的电池的能量状态信息判断是否满足预设的调整条件时,需要将第X+1次获取到的电池的能量状态信息与第Y+1个能量阈值进行比较。其中,按照数值大小为各能量阈值进行由大到小的排序后,第Y个能量阈值的数值大于或者等于第Y+1个能量阈值的数值,X为大于0的整数,Y为大于0的整数。
或者,若第X次获取到的电池的能量状态信息大于第Y个能量阈值,即此时判断出不满足预设的降低电池的充电倍率的条件;而由于电池的能 量状态信息为逐渐降低的趋势,第X+1次获取到的电池的能量状态信息一定小于或者等于第X次获取到的能量状态信息,即第X+1次获取到的电池的能量状态信息与第Y个能量阈值的关系并不确定;所以,在根据第X+1次获取到的电池的能量状态信息判断是否满足预设的调整条件时,需要将第X+1次获取到的电池的能量状态信息仍然与第Y个能量阈值进行比较。
在一个具体的实现过程中,预设第一能量阈值与第二能量阈值时,可以按照固定的调整间隔进行预设,例如,预设电池的第二能量阈值为90%、90%、90%;或者,也可以按照不固定的调整间隔进行预设,例如,可以预设电池的第二能量阈值为90%、85%、70%等。本申请实施例对此不进行特别限定。
在另一个具体的实现过程中,若预设的至少两个能量阈值的数值大小相同,相当于预设了1个能量阈值,在电池的整个循环使用过程中,可以为该电池进行1次充电参数的调整。具体的,根据当前电池的能量第一次小于或者等于该唯一的能量阈值时,判断出满足降低电池的充电倍率的条件;而在之后的循环寿命过程中,不存在其他数值不同的能量阈值,不再满足降低电池的充电倍率的条件。
举例说明,请参考图4,其为本申请实施例所提供的电池的充电方法的实施例三的流程示意图。
如图4所示,Q为获取到的电池的当前能量,预设的n个第一能量阈值分别为Q1、Q2……Qn。在电池开始进行循环使用时,将获取到的Q与Q1进行比较,若Q>Q1,即电池的当前能量大于第一能量阈值,判断出不满足降低电池的充电倍率的条件,则保持电池的充电倍率C1不变,使用C1对电池充电至充电截止电压V1;若Q=Q1,此时,电池的当前能量等于第一能量阈值,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2;或者,若Q<Q1,此时,电池的当前能量小于第一能量阈值,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2。
需要说明的是,如图4所示,本申请实施例中,若已经出现过Q=Q1的情况,并在Q=Q1时将电池的充电倍率由C1调整为C2,或者,若已经出现过Q<Q1的情况,并在Q<Q1时将电池的充电倍率由C1调整为C2。 所以,当后续再出现Q<Q1的情况时,需要进行下一轮的比较和判断,以确定是否满足再次降低电池的充电倍率的条件。所以,对于已经出现过Q=Q1或Q<Q1的情况后出现的Q<Q1的循环过程,都需要通过Q是否大于Q2的第二轮判断,若通过Q>Q2的第二轮判断为是,则仍然不满足再次降低电池的充电倍率的条件,电池的充电倍率保持为C2不变,直到电池的当前能量出现Q=Q2的情况或者出现Q<Q2的情况时,才会判断出再次满足降低电池的充电倍率的条件,才会将电池的充电倍率由C2调整为充电倍率C3。
在一个具体的实现过程中,预设电池的能量阈值时,还需要考虑电池的温度,电池的温度可以包括但不限于:电芯温度、电池的环境温度和电池的工作温度中至少一个,本申请实施例对此不进行特别限定。
具体的,可以根据电池的温度,划分为至少两个温度段,并为各温度段设置对应的能量阈值,然后根据电池的当前温度,确定电池的当前温度对应的温度段,从而,根据确定的温度段,得到与该温度段对应的能量阈值。
可以理解的是,该能量阈值可以包括但不限于:第一能量阈值和第二能量阈值中至少一个,本申请实施例对此不进行特别限定。
在一个具体的实现过程中,为各温度段设置对应的能量阈值时,可以设置具体的数值作为电池的能量阈值,或者,也可以设置一个数值范围,以便于根据实际需要选择该数值范围内的某一个数值作为电池的能量阈值,本申请对此不进行特别限定。
以第二能量阈值为例进行举例说明。可以根据电池的环境温度,将温度划分为三个温度段,例如,将大于40℃的温度划分为高温段;温度范围为15℃~35℃的温度划分为中温段,将小于15℃的温度划分为低温度。然后,为高温段、中温段和低温段分别设置对应的第二能量阈值的调整间隔。由于高温下电解液与阴极和阳极表面的反应更剧烈,消耗电解液的速度更快,所以可以以较小的调整间隔为高温段设置第二能量阈值;而低温时,由于电解液的电导率减小,粘度不断变大,导致阳极在循环过程中更容易析锂。此外,为了避免频繁的降低电池的充电倍率导致电池的充电速度大幅降低,可以在将第二能量阈值的调整间隔设置为随着能量保持率的降低而减小的趋势。所以,可以为高温段和低温段设置至少一个较小数值范围,如电池的各第二能 量阈值的调整间隔范围可以为[5,10]。由于温度适中,可以为中温段设置相比高温段较大调整间隔的第二能量阈值,如电池的各第二能量阈值的调整间隔范围可以为[10,20]。所以,当确定了电池当前温度后,即可确定与当前温度对应的温度段,进而,根据确定的温度段,在该温度段对应的第二能量阈值的调整间隔范围内设置电池的第二能量阈值。
需要说明的是,以上的两种实现方式仅用以说明如何“根据电池的状态信息,判断是否满足降低电池的充电倍率的条件”,在一个具体的实现过程中,可以通过上述的一种实现方式进行判断,也可以通过上述两种实现方式的组合方式进行判断,本申请实施例对此不进行特别限定。
以上述方法中的两种实现方式的组合方式为例进行说明。
请参考图5,其为本申请实施例所提供的电池的充电方法的实施例四的流程示意图。
如图5所示,R为获取到的电池的容量保持率,预设的n个第二容量阈值分别为R1、R2……Rn,Q为获取到的电池的当前能量,预设的n个第一能量阈值分别为Q1、Q2……Qn。在电池开始进行循环使用时,将获取到的R与R1进行比较,并且,将获取到的Q与Q1进行比较,若同时满足R>R1且Q>Q1,则判断出不满足降低电池的充电倍率的条件,则保持电池的充电倍率C1不变,使用C1对电池充电至电压V1;若满足R>R1且Q=Q1,此时,通过Q>Q1的判断为否,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2;或者,若满足R=R1且Q=Q1,此时,通过R>R1的判断为否且通过Q>Q1的判断为否,判断出满足降低电池的充电倍率的条件,将电池的充电倍率由C1调整为C2,并使用C2对电池充电至V2。
可以理解的是,如图5所示的举例只是上述组合方式中的一种组合方式的具体实现过程,该举例仅用以说明本方案,并不用以限制本申请。
需要说明的是,本发明实施例中,根据电池的何种状态信息判断是否满足降低电池的充电倍率的条件,可以根据实际需要进行确定,本发明实施例对此不进行特别限定。
例如,针对恒功率放电的产品,功率与时间的乘积就是电池的能量,所以电池的能量决定了恒功率放电产品在一次放电过程的持续时间,此时,电 池系统只需要检测放电功率及放电时间就可以得到电池的能量状态信息,包括电池的当前能量和/或电池的能量保持率。同时,获取恒功率放电产品的容量状态信息时,电池需要通过算法去积分电池放电电流和时间积分去计算电池的当前容量,步骤繁琐,容易产生误差,对延长电池的循环寿命不利。因此,可以根据恒功率放电产品的能量状态信息,判断是否满足降低电池的充电倍率的条件。
或者,又例如,针对恒流放电的产品,电池的容量决定了恒流放电产品在一次放电过程的持续时间,此时,电池系统只需要检测放电电流及放电时间就可以得到电池的容量状态信息,包括电池的容量和/或电池的容量保持率。同时,获取恒流放电产品的能量状态信息时,电池需要通过算法积分电池放电电流,电压和时间积分去计算电池的能量,对延长电池的循环寿命不利。因此,可以根据恒流放电产品的容量状态信息,判断是否满足降低电池的充电倍率的条件。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请提供的充电装置,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
实施例四
基于本申请实施例一提供的电池的充电方法,本申请实施例对实施例一中S103中“若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率”的实现方式进行具体说明。
具体的,本申请实施例中,若根据电池的使用数据,确定满足降低电池的充电倍率的条件,降低电池的充电倍率,是为了根据降低后电池的充电倍率对电池进行充电。
本申请实施例中,降低电池的充电倍率,可以包括但不限于以下两种实现方式:
第一种:根据预设的充电倍率调整间隔,降低电池的充电倍率。
具体的,可以预设充电倍率调整间隔ΔC,ΔC用以表示相邻两个电池的充电倍率之间的调整间隔。可以理解的是,ΔC可以包括但不限于至少一个数值。则当检测到电池的使用数据满足降低电池的充电倍率的条件,降低电池的充电倍率可以通过当前充电倍率减去ΔC的方式来实现。
以图4为例进行说明,若预设了充电倍率调整间隔ΔC1、ΔC2……ΔCn-1,则C1与C2之间的调整间隔为ΔC1,可以将C1减去ΔC1的差值作为C2的充电倍率值;C2与C3之间的调整间隔为ΔC2,可以将C2减去ΔC2的差值作为C3的充电倍率值;以此类推,得到电池的充电倍率C1、C2……Cn。
或者,又例如,若预设了充电倍率调整间隔ΔC=ΔC1=ΔC2=……ΔCn-1,则Cn-1与Cn之间的调整间隔为ΔC,可以将C1减去ΔC的差值作为C2的充电倍率值,将C2减去ΔC的差值作为C3的充电倍率值,以此类推,得到电池的充电倍率C1、C2……Cn。
若充电倍率调整间隔过大,会导致电池的充电速度降低的程度过大,进而导致电池的充电时间大幅延长;若充电倍率调整间隔过小,对电池的循环寿命的改善不明显,所以,在一个具体的实现过程中,充电倍率调整间隔ΔC可以在[0.1C,2C]的范围内进行取值;在一个优选的实现过程中,充电倍率调整间隔ΔC的范围可以是[0.3C,1C]。
需要说明的是,本申请实施例中,随着电池的循环使用,充电倍率调整间隔ΔC可以设置为逐渐减小的趋势,避免了由于电池的充电倍率降低过多引起的电池容量的大幅降低的问题。
第二种:将预设的充电倍率候选集合中低于电池的充电倍率的一个候选充电倍率作为降低后电池的充电倍率;其中,该充电倍率候选集合中包括至少一个候选充电倍率。
举例说明,可以预设电池的充电倍率候选集合,该充电倍率集合中可以包括至少一个候选充电倍率,如C1、C2、C3、C4、C5,则当检测到电池的使用数据满足降低电池的充电倍率的条件,降低电池的充电倍率可以在候选充电倍率C1、C2、C3、C4、C5中选择一个低于当前电池的充电倍率的一个 候选充电倍率。若当前的电池的充电倍率为C,此时,C3>C>C4>C2>C1>C5,此时,可以在候选充电倍率C1、C2、C4、C5中选择一个候选充电倍率作为降低后的电池的充电倍率。
在一个优选的实现过程中,考虑到相邻两个充电倍率之间的充电倍率调整间隔的范围,可以将候选充电倍率C4作为降低后的电池的充电倍率。在一个具体的实现过程中,若电池或电池的环境发生变化,以及一些可能出现的原因,也可以在候选集合中选择低于候选充电倍率C4的其他候选充电倍率作为降低后的电池的充电倍率,本申请实施例对此不进行特别限定。
或者,又例如,可以预设电池的充电倍率候选集合,该充电倍率集合中可以包括至少一个候选充电倍率,如C1、C2……Cn,并且为候选集合中的候选充电倍率进行大小排序,若为C7>C3>C5>……Cn,则当检测到电池的使用数据满足降低电池的充电倍率的条件,降低电池的充电倍率可以按照排序结果,依次选择充电倍率候选集合中的一个候选充电倍率作为降低后的电池的充电倍率。若此时的充电倍率为C3,经过一定的循环或累计时间后,检测到又满足降低电池的充电倍率的条件,则根据排序结果选择该充电倍率候选集合中候选充电倍率C3后一位的C5作为降低后的充电倍率。
或者,又例如,可以预设电池的充电倍率候选集合,该充电倍率集合中可以包括至少一个候选充电倍率,如C1、C2……Cn,并确定了C1、C2、C3、……Cn的数值大小关系是C1>C2>C3>……Cn,此时,则当检测到电池的使用数据满足降低电池的充电倍率的条件,可以按照C1、C2、C3、……Cn的顺序进行电池的充电倍率的降低,此时,相当于为每次减低电池的充电倍率设置了指定数值。
可以理解的是,电池的充电倍率候选集合中的候选充电倍率的数值大小顺序,可以是固定的,也可以是不固定的。例如,充电倍率候选集合中可以是C1>C2>C3>……Cn,也可以是C3>C5>C2>……Cn等,本申请实施例对此不进行特别限定,本申请实施例中,只是将电池的充电倍率候选集合中低于当前电池的充电倍率的一个候选充电倍率作为降低后的电池的充电倍率。
在一个具体的实现过程中,充电倍率候选集合中的候选充电倍率之间的调整间隔可以在[0.1C,2C]的范围内进行取值;在一个优选的实现过程中,充电倍率候选集合中的候选充电倍率之间的调整间隔范围可以是[0.3C,1C]。
需要说明的是,本申请实施例中,随着电池的循环使用,充电倍率候选集合中的候选充电倍率之间的调整间隔可以设置为逐渐减小的趋势,避免了由于电池的充电倍率降低过多引起的电池容量的大幅降低的问题。
需要说明的是,电池的充电倍率与该电池的充电电流存在唯一对应关系,所以,调整电池的充电倍率即相当于调整该电池的充电电流,调整电池的充电电流即相当于调整该电池的充电倍率。因此调整电池的充电倍率,可以直接对电池的充电倍率进行调整,或者,也可以通过调整电池的充电电流的方式对该电池的充电倍率进行调整,本申请实施例对此不做特别限定。
可以理解的是,若通过调整电池的充电电流的方式对该电池的充电倍率进行调整,与上述方法A和方法B类似的,可以为预设充电电流调整间隔,从而,根据预设的充电电流调整间隔,降低电池的充电电流;或者,也可以预设充电电流候选集合,该充电电流候选集合中包括至少一个候选充电电流;将该充电电流候选集合中低于当前电池的充电电流的一个候选充电电流作为降低后的电池的充电电流。本申请实施例对此不再进行赘述。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例提供的充电方法,通过获取电池的循环数目和电池的累计时间等可以表示电池使用情况的使用数据,并根据这些使用数据判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作;并且,在满足预设的条件时,对电池的充电倍率进行适当调整,并根据调整后的充电倍率对电池进行充电,使得电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
实施例五
本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。请参考图6,其为本申请实施例所提供的电池的充电装置的功能方块图。如图6所示,该装置包括:
获取单元61,用于获取电池的状态信息,电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个;
判断单元62,用于根据电池的状态信息,判断是否满足降低电池的充电 倍率的条件;
调整单元63,用于若判断出满足降低电池的充电倍率的条件,降低电池的充电倍率;
充电单元64,用于根据降低后的充电倍率对电池进行充电。
具体的,本申请实施例中,电池的容量状态信息包括电池的当前容量和电池的容量保持率中至少一个。
具体的,本申请实施例中,电池的能量状态信息包括电池的当前能量和电池的能量保持率中至少一个。
具体的,本申请实施例中,判断单元62,具体用于:
若电池的状态信息为电池的容量状态信息,将获取到的电池的容量状态信息与对应的容量阈值进行比较;
若电池的容量状态信息达到对应的容量阈值,判断出满足降低电池的充电倍率的条件;或者,若电池的容量状态信息未达到对应的容量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,本申请实施例中,判断单元62,具体用于:
若电池的状态信息为电池的能量状态信息,将获取到的电池的能量状态信息与对应的能量阈值进行比较;
若电池的能量状态信息达到对应的能量阈值,判断出满足降低电池的充电倍率的条件;或者,若电池的能量状态信息未达到对应的能量阈值,判断出不满足降低电池的充电倍率的条件。
具体的,本申请实施例中,调整单元63,具体用于:
根据预设的充电倍率调整间隔,降低电池的充电倍率;或者,
将预设的充电倍率候选集合中低于电池的充电倍率的一个候选充电倍率作为降低后电池的充电倍率;其中,充电倍率候选集合中包括至少一个候选充电倍率。
具体的,本申请实施例中,充电单元64,具体用于:
根据调整后的充电倍率,采用恒流充电、脉冲充电、分步充电和恒流恒压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对电池进行充电。
具体的,本申请实施例中,判断单元62,具体用于:
将获取到的电池的容量状态信息与对应的容量阈值进行比较之前,根据电池的温度,划分至少两个温度段,并为各温度段设置对应的容量阈值;
根据电池的当前温度,确定电池的当前温度对应的温度段;
根据温度段,确定与温度段对应的容量阈值。
具体的,本申请实施例中,判断单元62,具体用于:
将获取到的电池的能量状态信息与对应的能量阈值进行比较之前,根据电池的温度,划分至少两个温度段,并为各温度段设置对应的能量阈值;
根据电池的当前温度,确定电池的当前温度对应的温度段;
根据温度段,确定与温度段对应的能量阈值。
由于本实施例中的各单元能够执行图1所示的方法,本实施例未详细描述的部分,可参考对图1的相关说明。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请实施例中,通过充电装置中的获取单元获取电池的状态信息,该电池的状态信息包括电池的容量状态信息和电池的能量状态信息中至少一个,然后,充电装置中的判断单元根据电池的状态信息,判断是否满足降低电池的充电倍率的条件,若判断出满足降低电池的充电倍率的条件,充电装置中的调整单元降低电池的充电倍率,进而,充电装置中的充电单元根据降低后的充电倍率对电池进行充电。本申请提供的充电装置,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
实施例六
本申请实施例进一步给出一种电池系统。请参考图7,其为本申请实施例所提供的电池系统的功能方块图。
如图7所示,该电池系统包括电池71以及上述的电池的充电装置72。
请参考图8,其为本申请实施例所提供的电池系统的第一示意图,如图8所示,该电池系统包括电池、电池的充电装置、温度传感器、电流计、电压计、容量获取单元、电流源和电压源。
具体的,如图8所示的电池系统示意图,对应于图3所示的电池的充电方法实施例二的流程示意图。
在一个具体的实现过程中,如图8所示,该电池系统中的电流计,用于监测电池在充电过程中的充电电流,并将监测结果传输给电池系统的电池的充电装置。该电池系统中的电压计,用于测量电池两端的电压。该电池系统中的温度传感器,用于测量电池的温度。该电池系统中的容量获取单元,用于根据实施例二所述的方法获取电池的容量状态信息。该电池系统中的电流源,用于提供可控的恒定的充电电流。该电池系统中的电压源,用于提供可控的恒定的充电电压。
可以理解的是,如图8所示的电池系统中,容量获取单元、电流计、电压计、温度传感器、电流源、电压源、电池、电池的充电装置的连接方式只是一种具体的实现方式,并不用以限制本申请。
请参考图9,其为本申请实施例所提供的电池系统的第二示意图,如图9所示,该电池系统包括电池、电池的充电装置、温度传感器、电流计、电压计、能量获取单元、电流源和电压源。
具体的,如图9所示的电池系统示意图,对应于图3所示的电池的充电方法实施例三的流程示意图。
在一个具体的实现过程中,如图9所示,该电池系统中的电流计,用于监测电池在充电过程中的充电电流,并将监测结果传输给电池系统的电池的充电装置。该电池系统中的电压计,用于测量电池两端的电压。该电池系统中的温度传感器,用于测量电池的温度。该电池系统中的能量获取单元用于根据实施例三所述的方法获取电池的能量状态信息。该电池系统中的电流源,用于提供可控的恒定的充电电流。该电池系统中的电压源,用于提供可控的恒定的充电电压。
可以理解的是,如图9所示的电池系统中,能量获取单元、电流计、电压计、温度传感器、电流源、电压源、电池、电池的充电装置的连接方式只 是一种具体的实现方式,并不用以限制本申请。
本实施例未详细描述的部分,可参考对图1-图7的相关说明。
本申请技术方案中的一个技术方案具有如下有益效果:
本申请提供的电池系统,通过获取电池的容量状态信息和电池的能量状态信息等可以表示电池使用情况的状态信息,并根据这些状态信息判断是否满足预设的条件,进而确定是否对电池的充电倍率进行降低的操作。本申请在满足预设的条件时,对电池的充电倍率进行适当调整降低,并根据降低后的充电倍率对电池进行充电,使得电池内阻增大的速度变慢,电池的极化速度变慢;从而,减缓了电池阳极和阴极积累副产物的速度,使得对电池阴极材料的晶型的破坏速度变慢,电解液的氧化分解的速度变慢;进而,减缓了电池容量衰减的速度,也减缓了电池能量衰减的速度,在一定程度上减缓了电池在循环充电过程中的损耗速度,延长了电池的循环寿命。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (19)

  1. 一种电池的充电方法,其特征在于,所述方法包括:
    获取电池的状态信息,所述电池的状态信息包括所述电池的容量状态信息和所述电池的能量状态信息中至少一个;
    根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件;
    若判断出满足降低所述电池的充电倍率的条件,降低所述电池的充电倍率;
    根据降低后的充电倍率对所述电池进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述电池的容量状态信息包括所述电池的当前容量和所述电池的容量保持率中至少一个。
  3. 根据权利要求1所述的方法,其特征在于,所述电池的能量状态信息包括所述电池的当前能量和所述电池的能量保持率中至少一个。
  4. 根据权利要求1或2所述的方法,其特征在于,若所述电池的状态信息为所述电池的容量状态信息,根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件,包括:
    将获取到的所述电池的容量状态信息与对应的容量阈值进行比较;
    若所述电池的容量状态信息达到对应的容量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的容量状态信息未达到对应的容量阈值,判断出不满足降低所述电池的充电倍率的条件。
  5. 根据权利要求1或3所述的方法,其特征在于,若所述电池的状态信息为所述电池的能量状态信息,根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件,包括:
    将获取到的所述电池的能量状态信息与对应的能量阈值进行比较;
    若所述电池的能量状态信息达到对应的能量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的能量状态信息未达到对应的能量阈值,判断出不满足降低所述电池的充电倍率的条件。
  6. 根据权利要求1所述的方法,其特征在于,若确定满足降低所述电池的充电倍率的条件,调整所述电池的充电参数,包括:
    根据预设的充电倍率调整间隔,降低所述电池的充电倍率;或者,
    将预设的充电倍率候选集合中低于所述电池的充电倍率的一个候选充电倍率作为降低后所述电池的充电倍率;其中,所述充电倍率候选集合中包括至少一个候选充电倍率。
  7. 根据权利要求1所述的方法,其特征在于,根据调整后的充电倍率对所述电池进行充电,包括:
    根据调整后的充电倍率,采用恒流充电、脉冲充电、分步充电和恒流恒压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对所述电池进行充电。
  8. 根据权利要求4所述的方法,其特征在于,将获取到的所述电池的容量状态信息与对应的容量阈值进行比较之前,所述方法还包括:
    根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的容量阈值;
    根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
    根据所述温度段,确定与所述温度段对应的容量阈值。
  9. 根据权利要求5所述的方法,其特征在于,将获取到的所述电池的能量状态信息与对应的能量阈值进行比较之前,所述方法还包括:
    根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的能量阈值;
    根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
    根据所述温度段,确定与所述温度段对应的能量阈值。
  10. 一种电池的充电装置,其特征在于,所述方装置包括:
    获取单元,用于获取电池的状态信息,所述电池的状态信息包括所述电池的容量状态信息和所述电池的能量状态信息中至少一个;
    判断单元,用于根据所述电池的状态信息,判断是否满足降低所述电池的充电倍率的条件;
    调整单元,用于若判断出满足降低所述电池的充电倍率的条件,降低所述电池的充电倍率;
    充电单元,用于根据降低后的充电倍率对所述电池进行充电。
  11. 根据权利要求10所述的装置,其特征在于,所述电池的容量状态信息包括所述电池的当前容量和所述电池的容量保持率中至少一个。
  12. 根据权利要求10所述的装置,其特征在于,所述电池的能量状态信息包括所述电池的当前能量和所述电池的能量保持率中至少一个。
  13. 根据权利要求10或11所述的装置,其特征在于,所述判断单元,具体用于:
    若所述电池的状态信息为所述电池的容量状态信息,将获取到的所述电池的容量状态信息与对应的容量阈值进行比较;
    若所述电池的容量状态信息达到对应的容量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的容量状态信息未达到对应的容量阈值,判断出不满足降低所述电池的充电倍率的条件。
  14. 根据权利要求10或12所述的装置,其特征在于,所述判断单元,具体用于:
    若所述电池的状态信息为所述电池的能量状态信息,将获取到的所述电池的能量状态信息与对应的能量阈值进行比较;
    若所述电池的能量状态信息达到对应的能量阈值,判断出满足降低所述电池的充电倍率的条件;或者,若所述电池的能量状态信息未达到对应的能量阈值,判断出不满足降低所述电池的充电倍率的条件。
  15. 根据权利要求10所述的装置,其特征在于,所述调整单元,具体用于:
    根据预设的充电倍率调整间隔,降低所述电池的充电倍率;或者,
    将预设的充电倍率候选集合中低于所述电池的充电倍率的一个候选充电倍率作为降低后所述电池的充电倍率;其中,所述充电倍率候选集合中包括至少一个候选充电倍率。
  16. 根据权利要求10所述的装置,其特征在于,所述充电单元,具体用于:
    根据调整后的充电倍率,采用恒流充电、脉冲充电、分步充电和恒流恒压充电中四种充电方式中的一种充电方式,或至少两种充电方式的组合充电方式,对所述电池进行充电。
  17. 根据权利要求13所述的装置,其特征在于,所述判断单元,还用于:
    将获取到的所述电池的容量状态信息与对应的容量阈值进行比较之前,根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的容量 阈值;
    根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
    根据所述温度段,确定与所述温度段对应的容量阈值。
  18. 根据权利要求14所述的装置,其特征在于,所述判断单元,还用于:
    将获取到的所述电池的能量状态信息与对应的能量阈值进行比较之前,根据所述电池的温度,划分至少两个温度段,并为各温度段设置对应的能量阈值;
    根据所述电池的当前温度,确定所述电池的当前温度对应的温度段;
    根据所述温度段,确定与所述温度段对应的能量阈值。
  19. 一种电池系统,其特征在于,所述电池系统包括电池以及如权利要求10至18任一项所述的电池的充电装置。
PCT/CN2016/097287 2016-08-30 2016-08-30 电池的充电方法、装置及电池系统 WO2018039902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097287 WO2018039902A1 (zh) 2016-08-30 2016-08-30 电池的充电方法、装置及电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097287 WO2018039902A1 (zh) 2016-08-30 2016-08-30 电池的充电方法、装置及电池系统

Publications (1)

Publication Number Publication Date
WO2018039902A1 true WO2018039902A1 (zh) 2018-03-08

Family

ID=61299596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097287 WO2018039902A1 (zh) 2016-08-30 2016-08-30 电池的充电方法、装置及电池系统

Country Status (1)

Country Link
WO (1) WO2018039902A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544929A (zh) * 2019-05-06 2021-10-22 Oppo广东移动通信有限公司 充电方法和充电装置
CN113954692A (zh) * 2021-09-07 2022-01-21 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备
CN114614123A (zh) * 2022-03-28 2022-06-10 东莞新能安科技有限公司 一种电化学装置、充电装置及电子设备
CN114744713A (zh) * 2022-04-12 2022-07-12 深圳市华宝新能源股份有限公司 一种储能电源的充电方法、装置、设备和介质
CN115882566A (zh) * 2022-12-30 2023-03-31 重庆太蓝新能源有限公司 一种电池充放电管理方法、系统、终端设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041466A2 (en) * 2000-11-15 2002-05-23 Enrev Power Solutions, Inc. Adaptive battery charging based on battery condition
CN1595760A (zh) * 2004-07-15 2005-03-16 北京嘉捷源技术开发有限公司 为取得最高充电效率测定电池最大可接受电流的充电方法
CN201150005Y (zh) * 2005-12-15 2008-11-12 戴尔产品有限公司 构造成由电池或交流-直流转换器供电的信息处理系统
JP4300363B2 (ja) * 2004-07-14 2009-07-22 日産自動車株式会社 組電池容量調整装置及び方法
CN103414223A (zh) * 2013-07-25 2013-11-27 清华大学 电池的充电控制方法
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041466A2 (en) * 2000-11-15 2002-05-23 Enrev Power Solutions, Inc. Adaptive battery charging based on battery condition
JP4300363B2 (ja) * 2004-07-14 2009-07-22 日産自動車株式会社 組電池容量調整装置及び方法
CN1595760A (zh) * 2004-07-15 2005-03-16 北京嘉捷源技术开发有限公司 为取得最高充电效率测定电池最大可接受电流的充电方法
CN201150005Y (zh) * 2005-12-15 2008-11-12 戴尔产品有限公司 构造成由电池或交流-直流转换器供电的信息处理系统
CN103414223A (zh) * 2013-07-25 2013-11-27 清华大学 电池的充电控制方法
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544929A (zh) * 2019-05-06 2021-10-22 Oppo广东移动通信有限公司 充电方法和充电装置
CN113954692A (zh) * 2021-09-07 2022-01-21 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备
CN113954692B (zh) * 2021-09-07 2023-08-22 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备
CN114614123A (zh) * 2022-03-28 2022-06-10 东莞新能安科技有限公司 一种电化学装置、充电装置及电子设备
CN114614123B (zh) * 2022-03-28 2023-08-11 东莞新能安科技有限公司 一种电化学装置、充电装置及电子设备
CN114744713A (zh) * 2022-04-12 2022-07-12 深圳市华宝新能源股份有限公司 一种储能电源的充电方法、装置、设备和介质
CN114744713B (zh) * 2022-04-12 2023-08-22 深圳市华宝新能源股份有限公司 一种储能电源的充电方法、装置、设备和介质
CN115882566A (zh) * 2022-12-30 2023-03-31 重庆太蓝新能源有限公司 一种电池充放电管理方法、系统、终端设备及介质

Similar Documents

Publication Publication Date Title
WO2018039902A1 (zh) 电池的充电方法、装置及电池系统
US20160064961A1 (en) User-behavior-driven battery charging
US20170366015A1 (en) Method and apparatus of battery charging
US20180217207A1 (en) Devices with battery remaining capacity estimating functions
US9225186B2 (en) Method and device for controlling charge of battery
US9229510B2 (en) Power management method for electro-chemical batteries in low capacity state
US9490642B2 (en) Charging method of secondary battery with constant current using high charge rate
KR102418791B1 (ko) 동적 컷오프 전압 기반의 배터리 고속 충전 시스템 및 방법
WO2018039900A1 (zh) 电池的充电方法、装置及电池系统
US9455587B2 (en) Device and method for charging a battery
US11768245B2 (en) Predicting a potential fault in a battery
CN101443672A (zh) 使用充电甩鞭效应管理一组可再充电的电池的方法
WO2014126744A1 (en) Method for determining a state of charge and remaining operation life of a battery
US9368984B2 (en) Method and device for fast-charging of rechargeable batteries
CN109037810A (zh) 一种电池的充电方法、装置及电池系统
CN110018422B (zh) 一种电池管理方法及装置
JP2013506398A (ja) ニッケル系電池の充電方法及びその充電終期基準を決定する方法
JP6738738B2 (ja) バッテリの充電状態を管理する方法
JP6956240B2 (ja) 電池装置及びその制御方法
US20160105041A1 (en) Method and system for charging a battery
KR20180086591A (ko) 배터리 충전 방법 및 충전 시스템
CN112034353B (zh) 一种电池寿命预测方法以及系统
CN111130177B (zh) 一种bbu的管理方法、系统及装置
CN109066742B (zh) 一种分布式电源与混合储能系统协调控制的方法和系统
WO2017214852A1 (zh) 电池的充电方法、装置及电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914472

Country of ref document: EP

Kind code of ref document: A1