WO2018038094A1 - Method for manufacturing capacitor, method for manufacturing substrate with built-in capacitor, substrate with built-in capacitor, and semiconductor device mounting component - Google Patents

Method for manufacturing capacitor, method for manufacturing substrate with built-in capacitor, substrate with built-in capacitor, and semiconductor device mounting component Download PDF

Info

Publication number
WO2018038094A1
WO2018038094A1 PCT/JP2017/029906 JP2017029906W WO2018038094A1 WO 2018038094 A1 WO2018038094 A1 WO 2018038094A1 JP 2017029906 W JP2017029906 W JP 2017029906W WO 2018038094 A1 WO2018038094 A1 WO 2018038094A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
capacitor
resin
thin film
forming
Prior art date
Application number
PCT/JP2017/029906
Other languages
French (fr)
Japanese (ja)
Inventor
重信 三浦
Original Assignee
重信 三浦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重信 三浦 filed Critical 重信 三浦
Priority to JP2018535691A priority Critical patent/JP6967005B2/en
Publication of WO2018038094A1 publication Critical patent/WO2018038094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a capacitor manufacturing method, a capacitor built-in substrate manufacturing method, a capacitor built-in substrate, and a semiconductor device mounting component.
  • a voltage drop occurs as the speed of a semiconductor device typified by LSI or WLP (Wafer Level Package) increases, but there is a technique of providing a capacitor that compensates for the voltage drop in order to ensure the stability of the device.
  • a capacitor for preventing such a voltage drop a technique for providing a capacitor having a relatively large capacity is generally used.
  • the voltage drop can be prevented. The time until the voltage is compensated is important, and a device has been devised to shorten the time by arranging it near a component such as an LSI using a package substrate incorporating a capacitor (see Patent Documents 1 and 2).
  • the substrate with a built-in capacitor has a problem that the manufacturing process is complicated because the capacitor is built around the LSI mounting portion.
  • Triazine disulfide polymer has been proposed as a material suitable for a thin film capacitor (see Patent Document 4).
  • Patent Document 4 Triazine disulfide polymer has been proposed as a material suitable for a thin film capacitor.
  • pinholes as in the case of an inorganic thin film, and the chemical resistance of the film is low.
  • the upper electrode There is also a problem that it is difficult to form the upper electrode.
  • the present invention provides a capacitor manufacturing method, a capacitor built-in substrate manufacturing method, a capacitor built-in substrate, and a semiconductor device mounting component capable of manufacturing a capacitor built-in substrate that can cope with the above-described high speed at a relatively low cost.
  • the purpose is to provide.
  • a first mode for achieving the object includes a step (1) of forming a first electrode, a step (2) of forming a high dielectric thin film on the first electrode, and a resin on the high dielectric thin film.
  • the second aspect of the present invention includes a step (1) of forming a first electrode, a step (2) of forming a high dielectric thin film on the first electrode, and a first resin on the high dielectric thin film.
  • the defoaming is performed at a temperature of room temperature to 160 ° C.
  • a step (15) of forming a melting temperature transition-type solder layer and alloying to form a conductor layer having a remelting temperature of MP, and a temperature lower than the melting temperature MP of the conductor layer Step of curing the resin component to form a cured resin layer ( 6) and a step (17) of forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second via conductor connected to the conductor layer; Forming a through hole in the second layer to expose the via conductor and providing a third via conductor connected to the via conductor (18). Is in the way.
  • a step (13-1) of defoaming by providing a resin composition layer containing one resin component and a solder-containing resin composition containing a second resin component and a melting temperature transition type solder are provided on the resin composition layer
  • a step (13-2) a step (14) of causing the melting temperature transition type solder to settle into the resin composition layer to form a melting temperature transition type solder layer on the high dielectric thin film, and the melting temperature.
  • a sixth aspect of the present invention is the method for manufacturing a capacitor built-in substrate according to the fourth or fifth aspect, wherein the defoaming is performed at a temperature of room temperature to 160 ° C.
  • a method for manufacturing a capacitor-embedded substrate is provided.
  • a second metal layer under the first metal layer is etched by etching the first metal layer at a location where a capacitor terminal for providing a capacitor of a laminated metal sheet in which a plurality of metal layers are laminated.
  • Curing the resin component A step (36) of forming a cured resin layer, a step (37) of etching the first metal layer leaving the conductive layer and the cured resin layer in the recess, and a wiring terminal other than the capacitor terminal; A step (38) of forming an insulating layer for embedding the conductor layer and the resin cured layer and the wiring terminal; and forming a through hole in the resin cured layer to expose the conductor layer and the conductor layer And a step (38) of forming a second electrode made of a second conductor connected to the capacitor.
  • the defoaming is performed at a temperature of room temperature to 160 ° C.
  • a capacitor built-in substrate provided between a semiconductor package and a substrate on which the semiconductor package is mounted, a plurality of via terminals connecting the semiconductor package and the substrate, and the via
  • a capacitor built-in terminal provided adjacent to the terminal and having a built-in capacitor
  • the capacitor built-in terminal includes a first electrode, a high-dielectric thin film provided on the first electrode, and the high-dielectric
  • a conductive layer made of molten transition type solder provided on the body thin film, a cured resin layer provided on the conductive layer, and penetrated until the conductive layer provided on the cured resin layer is exposed.
  • a second electrode made of a second via conductor provided in the through hole.
  • the via terminal includes a via conductor penetrating the first layer made of an insulator and the cured resin layer provided on the first layer.
  • a capacitor-embedded substrate comprising a second via conductor connected to the via conductor through a second layer.
  • a twelfth aspect of the present invention is the capacitor according to the tenth or eleventh aspect, wherein the first electrode includes the via conductor provided through the first layer made of an insulator. Located on the built-in board.
  • the first electrode includes the via conductor provided through the resin cured layer provided on the first layer made of an insulator.
  • a capacitor-embedded substrate comprising a body.
  • the conductor layer is formed of a melt transition formed by sedimenting a solder-containing resin composition containing a resin component and a melting temperature transition type solder.
  • the resin cured layer is a cured product of the resin component of the solder-containing resin composition, and the pin holes of the high dielectric thin film are filled with the resin component of the solder-containing resin composition.
  • a capacitor-embedded substrate is formed of a melt transition formed by sedimenting a solder-containing resin composition containing a resin component and a melting temperature transition type solder.
  • a fifteenth aspect of the present invention is a capacitor built-in substrate having a signal wiring terminal and a capacitor built-in terminal provided adjacent to the signal wiring terminal, wherein the capacitor built-in terminal includes the first electrode, A melt transition type formed by sedimenting a high dielectric thin film provided on the first electrode, and a solder-containing resin composition provided on the high dielectric thin film and including a resin component and a melting temperature transition type solder
  • a second electrode made of a second via conductor provided in the penetrating through hole, and the pinhole of the high dielectric thin film is filled with the resin component of the solder-containing resin composition
  • a semiconductor mounting component comprising the capacitor built-in substrate according to any one of the tenth to fifteenth aspects, and the semiconductor package mounted on the capacitor built-in substrate. It is in.
  • the semiconductor mounting component according to the sixteenth aspect, wherein the capacitor-embedded substrate is mounted on the substrate.
  • FIG. 3 is a cross-sectional view schematically showing the manufacturing method according to the first embodiment.
  • 5 is a cross-sectional view schematically showing a manufacturing method according to Embodiment 2.
  • FIG. It is sectional drawing which shows typically the modification of the capacitor of embodiment. It is sectional drawing which shows the effect of this invention typically. It is sectional drawing which shows typically an example of the semiconductor mounting component of this invention. It is sectional drawing which compares the capacitor of embodiment with a comparative example. It is the top view and sectional drawing which show the other example of the basic composition of the board
  • a via 2a which is a through hole, is formed in the insulator layer 2 of the printed circuit board including the conductor layer 1 and the insulator layer 2 by laser processing or the like, and the via 2a is plated.
  • the via conductor 3 is formed by embedding with a via conductor such as copper by the method.
  • a rigid board such as a glass epoxy board, a glass composite board, a ceramic board, and a Teflon (registered trademark) board, or a flexible board can be used.
  • a substrate on which the via conductor 3 is formed may be used.
  • an insulator layer 4 is formed, a via 4a is formed at a site where a capacitor is to be formed, and the via conductor 3 is exposed to form the first electrode 3A.
  • the insulator layer 4 may be formed using a resin composition (prepreg) containing a resin component and an inorganic filler such as silica or a filler such as acrylic rubber particles, and has a low thermal expansion coefficient (CTE) as much as possible. Coefficient of thermal expansion) is preferable.
  • the resin composition forming the insulator layer 4 a commercially available prepreg may be used, but a resin component and a filler may be appropriately blended.
  • the resin component contains a thermosetting resin, a curing agent, and, if necessary, a solvent.
  • thermosetting resin typically, various epoxy resins can be used.
  • Polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, unsaturated polyphenylene ether resin, vinyl ester resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, A melamine-urea cocondensation resin or the like may be blended.
  • the method for forming the via 4a in the insulator layer 4 is not particularly limited, but may be performed by laser processing or the like.
  • a high dielectric thin film 5 is provided so as to cover the first electrode 3A in the via 4a.
  • the high dielectric thin film 5 is composed of an inorganic high dielectric thin film such as barium titanate (BTO) or strontium titanate (BST), or an organic high dielectric thin film such as hydrazine, a hydrazine derivative, or a triazine thiol derivative.
  • BTO barium titanate
  • BST strontium titanate
  • organic high dielectric thin film such as hydrazine, a hydrazine derivative, or a triazine thiol derivative.
  • Such a high dielectric thin film 5 can be formed by a vapor phase method such as sputtering, CVD, or ion plating, a liquid phase method such as a solution coating method, a printing method, a plating method, or the like.
  • the film thickness of the high dielectric thin film 5 is appropriately selected depending on the relative dielectric constant of the material and the application, but may be a thickness in the range of 0.5 ⁇ m to 1.0 ⁇ m, for example.
  • Examples of such a capacitor include a capacitor having a capacity of 30 pF to 80 pF, preferably 50 pF to 80 pF.
  • inorganic high dielectric thin films such as barium titanate (BTO), strontium titanate (BST), and tantalum pentoxide (Ta 2 O 5 )
  • BTO barium titanate
  • BST strontium titanate
  • Ta 2 O 5 tantalum pentoxide
  • the thickness may be 120 nm to 150 nm.
  • An inorganic high dielectric thin film such as BTO can be formed by a vapor phase method such as sputtering, a liquid phase method such as a solution coating method, or a printing method.
  • a tantalum pentoxide film or the like can also be formed by an anodic oxidation film formation method.
  • the organic high dielectric thin film can be formed by a liquid phase method such as a solution coating method or a printing method.
  • a high temperature environment may be supplied in some cases.
  • the printing method and the anodic oxidation film forming method have an advantage that the film formation can be performed in a low temperature environment.
  • a barium titanate thin film having a thickness of 0.6 ⁇ m is formed by a sputtering method to obtain a high dielectric thin film 5.
  • the high dielectric thin film 5 may be provided only in the via 4a through a mask such as a resist.
  • the melting temperature transition type solder contained in the solder-containing resin composition 6 is made of an alloy or metal fine particles, and is, for example, 160 to 260 ° C., preferably 160 to 200 ° C., more preferably 160 to 180 ° C. It becomes what becomes a conductor by sintering or metallization at the temperature of, and the subsequent remelting temperature (MP) becomes 260 degreeC or more, Preferably it becomes 400 degreeC or more.
  • the melting temperature transition type solder contains, for example, a low melting point metal powder and a high melting point metal powder.
  • the low metal metal powder is made of one or more alloys such as indium, tin, lead, indium, and bismuth, and has a melting point of 180 ° C. or lower, for example.
  • the high melting point metal powder is silver, copper, silver-coated copper or the like, and has a melting point of 800 ° C. or higher.
  • the shape of the metal powder is not particularly limited as long as it has an average particle size of about 1 ⁇ m to 25 ⁇ m, but it is preferable not to include metal powder having a size that can enter the pinhole.
  • a melting temperature transition type solder composed of such a low melting point metal powder and a high melting point metal powder is melted, alloyed by sintering or metallization, and becomes a conductor whose remelting temperature has transitioned to a high temperature.
  • Such alloying hereinafter also simply referred to as metallization
  • metallization is promoted by the presence of flux. Therefore, it is preferable to contain a flux.
  • zinc chloride As flux, zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamic acid hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, hydroxyethyllaurylamine, polyethylene glycol laurylamine Oleylpropylenediamine, triethanolamine, glycerin, hydrazine, rosin and the like.
  • the resin component contained in the solder-containing resin composition 6 includes a thermosetting resin and a curing agent.
  • thermosetting resin include various epoxy resins and other resins.
  • Epoxy resins include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, cresol novolak type Epoxy resins, phenol novolac type epoxy resins, alkylphenol novolac type epoxy resins, aralkyl type epoxy resins, biphenol type epoxy resins, dicyclopentadiene type epoxy resins, trishydroxyphenylmethane type epoxy compounds, aromatics having phenols and phenolic hydroxyl groups Epoxidized products of condensates with aldehydes, diglycidyl etherified products of bisphenol, diglycidyl etherified products of naphthalenediol, phenolic groups Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • resins include polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, unsaturated polyphenylene ether resin, vinyl ester resin, urea resin, diallyl phthalate resin, melanin resin, Examples thereof include guanamine resin, unsaturated polyester resin, melamine-urea cocondensation resin, and the like.
  • thermosetting resins include, for example, 20 parts by weight or more of an epoxy resin having an epoxy equivalent in the range of 200 to 600 and a hydrolyzable chlorine concentration of less than 200 ppm, and 80 weight of a resin other than this epoxy resin. And a resin having an ethylene glycol-modified epoxy resin and an overall hydrolyzable chlorine concentration of less than 1000 ppm.
  • Examples of the epoxy resin having an epoxy equivalent in the range of 200 to 600 and having a hydrolyzable chlorine concentration of less than 200 ppm include bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, Examples thereof include alicyclic epoxy resins, glycidyl amine type epoxy resins, glycidyl ether type epoxy resins, and heterocyclic epoxy resins.
  • resin components other than epoxy resins that satisfy the requirements for the epoxy equivalent and hydrolyzable chlorine concentration include epoxy resins, alkyd resins, melamine resins, xylene resins, and the like that do not satisfy the requirements.
  • the curing agent is appropriately selected so as to obtain desired characteristics, and examples of usable curing agents include imidazole curing agents, phenol novolac curing agents, and naphthol curing agents, but are not limited thereto. Is not to be done.
  • the imidazole-based curing agent is one that can be used as a curing agent among imidazole and its derivatives.
  • derivatives include 2-undecylimidazole, 2-heptadecylimidazole, 2-ethylimidazole, 2-phenylimidazole, Examples include 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate and the like.
  • the phenol novolac-based curing agent is a phenol novolak and derivatives thereof usable as a curing agent
  • the naphthol-based curing agent is a naphthol and derivatives thereof usable as a curing agent.
  • the solder-containing resin composition 6 is filled and then defoamed.
  • defoaming refers to a reduced pressure environment in which bubbles in pinholes existing in the high dielectric thin film 5 are detached and filled with resin instead.
  • This defoaming step is performed under a vacuum of ⁇ 30 kPa to ⁇ 100 kPa and a temperature of room temperature to 160 ° C. As a result, the bubbles in the pinholes present in the high dielectric thin film 5 are detached and filled with the resin component instead.
  • the temperature is raised to, for example, 50 ° C. to 160 ° C., and ultrasonic vibrations are applied as necessary to remove the metal powder in the solder-containing resin composition 6.
  • a melting temperature transition type solder layer 7 is formed on the high dielectric thin film 5 by sedimentation.
  • the melting temperature transition type solder layer 7 is metallized to form a conductor layer 8.
  • the metallization of the melting temperature transition type solder layer 7 may be performed at a temperature corresponding to the component of the melting temperature transition type solder layer 7, for example, at a temperature of 160 ° C. to 260 ° C.
  • the remelting temperature MP of the conductor layer 8 formed thereby is, for example, 260 ° C. or higher, preferably 400 ° C. or higher.
  • the sedimentation process is performed to form the molten transition type solder layer 7, which is metallized to form the conductor layer 8. Therefore, it is necessary to select the composition of the solder-containing resin composition 6 so that the contained melting temperature transition type solder can settle. Further, the content of the melting temperature transition type solder should be settled to form the melting temperature transition type solder layer 7 and to be contained in an amount sufficient to form the conductor layer 8.
  • the content of the melting temperature transition type solder in the solder-containing resin composition 6 is, for example, preferably 40 vol% or less, and more preferably 20 to 40 vol%.
  • the resin component is mixed in the melt transition type solder layer 7 formed after settling, the content of the melt transition type solder layer 7 is 60 vol% or more, for example, 60 vol%. It may be ⁇ 80 vol%.
  • the volume resistivity of the conductor layer 8 can be set to 1 ⁇ 10 ⁇ 5 or more, preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 7 .
  • the resin component of the solder-containing resin composition 6 needs to be prepared so that the melting temperature transition type solder can be settled. At the temperature of the sedimentation step, for example, a temperature of 50 ° C. to 160 ° C. Although it is premised on not to harden
  • the resin component of the solder-containing resin composition 6 is not cured when the melting temperature transition type solder layer 7 is metallized.
  • “not cured” means substantially not cured.
  • a resin component having a curing temperature (process temperature) of 130 to 230 ° C. is used. Absent.
  • the curing of the resin component is not started as much as possible in the sedimentation step, but there is no problem even if the curing reaction is started simultaneously in the metallization step.
  • the conductor layer 8 formed by sintering or metallization in this way has a melting temperature MP of, for example, 260 ° C. or higher.
  • the resin component is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the resin cured layer 9, and the high dielectric thin film 5 on the surface of the insulator layer 4 is removed and the resin cured layer is removed. 9 is flattened (FIG. 1G).
  • an insulator layer 10 is provided on the surface, and as shown in FIG. 1 (i), vias 9a are formed in the insulator layer 10 and the cured resin layer 9 by laser processing or the like. Thus, the conductor layer 8 is exposed. At the same time, a via 4 b is formed in the insulator layer 10 and the insulator layer 4 to expose the via conductor 3.
  • a via conductor 11 is embedded in the via 9a and the via 4b by plating or the like. Thereby, the second electrode 11A and the via terminal 11B are formed.
  • the conductor layer 1 on the back surface side is patterned by etching or the like to form an external terminal, and the first electrode 3A and the via terminal 3B are separated.
  • a via terminal including the via terminal 3B and the via terminal 11B is used for a signal line
  • a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11A is used. Used as a ground connected to the power supply.
  • Embodiment 2 The present embodiment is the same as the first embodiment except that the resin composition not containing solder is filled before the solder-containing resin composition 6 is filled, and the defoaming step is performed in that state. Description is omitted.
  • FIGS. 2A to 2C are the same as those in the first embodiment.
  • the high dielectric thin film 5 in the via 4a is covered.
  • the resin composition 12 is provided, a defoaming step is performed, bubbles in the pinholes present in the high dielectric thin film 5 are removed, and a resin component that forms the resin composition 12 is filled in the pinholes.
  • the solder-containing resin composition 6 is filled in the via 4a in the same manner as in the first embodiment, and a sedimentation process is performed (FIG. 2 (e)).
  • the melting temperature transition type solder in the solder-containing resin composition 6 settles down to the resin composition 12 and forms the melting temperature transition type solder layer 7 directly on the high dielectric thin film 5.
  • FIG. 2 (f) the melting temperature transition type solder layer 7 is metallized to form a conductor layer 8 (FIG. 2G).
  • the resin composition 12 contains a thermosetting resin and a curing agent.
  • thermosetting resin the same resin component as that of the solder-containing resin composition 6 described in the first embodiment can be used.
  • the resin component of the resin composition 12 and the resin component of the solder-containing resin composition 6 may be the same or different, but the melting temperature transition type solder is allowed to settle in the same manner as the resin component of the solder-containing resin composition 6. However, it is premised that it does not substantially harden at the temperature of the sedimentation step, for example, a temperature of 50 ° C. to 160 ° C., but preferably has a property of reducing the viscosity. Moreover, the resin composition 12 desirably does not contain a solvent.
  • the resin composition 12 does not harden when the melting temperature transition type solder layer 7 is metallized similarly to the resin component of the solder-containing resin composition 6.
  • “not cured” means substantially not cured. For example, when metallized at 160 to 260 ° C., there is a problem even if a resin component having a curing temperature (process temperature) of 130 to 230 ° C. is used. Absent.
  • the curing of the resin component is not started as much as possible in the sedimentation step, but there is no problem even if the curing reaction is started simultaneously in the metallization step.
  • the conductor layer 8 formed by metallization in this way has a melting temperature MP of, for example, 260 ° C. or higher.
  • the resin components of the resin composition 12 and the solder-containing resin composition 6 are cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9, and further, the insulator layer The high dielectric thin film 5 on the surface 4 is removed and the cured resin layer 9 is flattened (FIG. 2H).
  • an insulator layer 10 is provided on the surface, and vias 9a are formed in the insulator layer 10 and the cured resin layer 9 by laser processing or the like.
  • the body layer 8 is exposed.
  • a via 4 b is formed in the insulator layer 10 and the insulator layer 4 to expose the via conductor 3.
  • the via conductor 11 is embedded in the via 9a and the via 4b by plating or the like. Thereby, the second electrode 11A and the via terminal 11B are formed.
  • the conductor layer 1 on the back surface side is patterned by etching or the like to form external terminals, and the first electrode 3A and the via terminal 3B are separated (FIG. 2 (l)).
  • a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11B and a via terminal having no capacitor including the via terminal 3B and the via terminal 11B are formed.
  • a via terminal including the via terminal 3B and the via terminal 11B is used for a signal line
  • a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11A is used. Used as a ground connected to the power supply.
  • FIG. 3 the principal part enlarged view of a some modification is shown.
  • the high dielectric thin film is formed by the sputtering method, as shown in FIG. 3A, the high dielectric thin film 5 is formed so as to cover the side wall in the via 4a.
  • the high dielectric thin film 5A may be provided only at the bottom of the via 4a by a solution coating method or a printing method.
  • the high dielectric thin film 5A only needs to be provided to cover the first electrode 3A.
  • the capacitor of the present invention is provided adjacent to the via conductor penetrating the substrate, and the first electrode and the second electrode of the capacitor are provided on the front surface and the back surface of the substrate.
  • the first electrode 3A of the capacitor may be provided on the surface side adjacent to the second electrode 11A, and various modifications can be considered.
  • the high dielectric thin film 5 examples include inorganic high dielectric thin films such as barium titanate (BTO) and strontium titanate (BST), and organic high dielectric thin films such as hydrazine, hydrazine derivatives, and triazine thiol derivatives. it can.
  • BTO barium titanate
  • BST strontium titanate
  • organic high dielectric thin films such as hydrazine, hydrazine derivatives, and triazine thiol derivatives. it can.
  • the second electrode Even if the dielectric breakdown is prevented by the resin composition 12 as described above, the second electrode must be provided immediately above the high dielectric thin film 5, but in the present invention, the conductor layer formed by metallizing the second electrode is provided in the first layer. This is solved by using a part of two electrodes.
  • a solder-containing resin composition 6 containing a resin component and a melting temperature transition type solder is used, and after this is provided on the resin composition 12, the melting temperature transition type solder is used.
  • the resin composition 12 is allowed to settle and the melting temperature transition type solder layer 7 is provided directly on the high dielectric thin film 5 (FIG. 4D), which is metallized and alloyed to increase the remelting temperature. It is set as the body layer 8 (FIG.4 (e)).
  • the conductor layer 8 which becomes a 2nd electrode in close contact with the high dielectric material thin film 5 can be provided.
  • the conductive layer 8 is a step in which the resin component of the resin composition 12 or the solder-containing resin composition 6 is subsequently cured without being remelted. The point that 8 can be held is important.
  • This technique also solves the problem that electrodes have not been effectively provided on organic high dielectric thin films such as hydrazine, hydrazine derivatives, and triazine thiol derivatives. That is, the organic high-dielectric thin film has a problem that the plating resistance is low and the upper electrode cannot be effectively provided, but this problem is caused by metallizing the precipitated melting point transition type thin film to form the upper electrode. Has solved.
  • the solder-containing resin composition 6 is provided on the high dielectric thin film 5 without providing the resin composition 12. Even if defoaming is performed, insulation breakdown due to pinholes can be similarly prevented.
  • the capacitor built-in substrate manufactured in the above-described embodiment is provided, for example, between a semiconductor package and a substrate on which the semiconductor package is mounted.
  • FIG. 5 An example of such a semiconductor mounting component is shown in FIG. As shown in FIG. 5, the capacitor built-in substrate 50 is disposed between a package substrate 200 provided on the mother board 100 and an LSI 300 which is a semiconductor package to be mounted.
  • FIG. 5A is a schematic diagram of a semiconductor mounting component
  • FIG. 5B is an enlarged view showing a capacitor built-in substrate and an LSI.
  • capacitor-embedded substrate 50 By using such a capacitor-embedded substrate 50, it is possible to dispose a capacitor immediately below the high-speed signal terminal of the LSI 300.
  • the function of the capacitor provided immediately below is not required to have a high capacity, and the time required to compensate for the voltage drop is important, that is, it is important to be provided directly below as much as possible.
  • the diameter ⁇ 1 of the via 4a provided in the insulator layer 4 is, for example, 150 ⁇ m to 250 ⁇ m, for example, 200 ⁇ m
  • the diameter ⁇ 2 of the second electrode 11A is, for example, 100 ⁇ m to 150 ⁇ m.
  • the diameter ⁇ 3 of the first electrode 3A was set to 100 ⁇ m to 200 ⁇ m, and as an example 150 ⁇ m.
  • the thickness d1 of the insulator layer 4 is, for example, 0.04 mm to 0.10 mm, for example, 0.05 mm, and the thickness d2 of the insulator layer 2 is, for example, 0.06 mm to 0.30 mm, for example. As 0.06 mm.
  • a capacitor of 50 to 80 pF can be realized with a yield of about 70%.
  • the yield is the yield that did not break down due to 5 V or less. In this example, breakdown due to pinholes is eliminated, but the yield is 70% due to other process factors.
  • this capacitor has a similar high dielectric thin film 02 provided by sputtering on a first electrode 01 having a diameter of 150 ⁇ m, and a copper seed layer provided thereon by sputtering, followed by copper plating and patterning.
  • the second electrode 03 having a diameter of 200 ⁇ m is provided.
  • the yield when 5V is applied is 30%.
  • About 40% of the breakdown is due to pinhole breakdown.
  • Modification 2 In the capacitor-embedded substrates of Embodiments 1 and 2 described above, a normal via terminal that uses a capacitor terminal containing a capacitor for compensating for a voltage drop for wiring of a mounted component in order to ensure the stability of the device.
  • the semiconductor mounting component shown in FIG. 5 schematically shows an example of the semiconductor mounting component using the above-described capacitor-embedded substrate, and the structure shown in FIG. It cannot be said that the actual terminal structure is accurately shown.
  • the basic configuration of the capacitor-embedded substrate may be the structure shown in FIG.
  • the structure shown in FIG. 7 includes a capacitor terminal 21 having the same structure as in the first and second embodiments.
  • the capacitor terminal 21 includes a first electrode 21A, a high dielectric thin film 5, a melting temperature transition type solder layer 7, and a second electrode 21B, and a via terminal 22 serving as a ground wiring adjacent thereto.
  • a via terminal 23 serving as a power supply wiring.
  • the via terminal 22 serving as the ground wiring is composed of a first via terminal 22A and a second via terminal 22B, and the first via terminal 22A is connected to the first electrode 21A of the capacitor terminal 21.
  • the via terminal 23 serving as a power supply wiring is composed of a first via terminal 23A and a second via terminal 23B, and the second via terminal 23B is connected to the second electrode 21B of the capacitor terminal 21.
  • the via terminal 25 serving as a signal wiring is provided adjacent to the ground wiring, and includes a first via terminal 25A and a second via terminal 25B.
  • the voltage drop can be instantaneously compensated by the presence of the capacitor terminal 21, and a semiconductor device represented by LSI, WLP (Wafer Level Package), or the like can be used. It can cope with high speed.
  • the capacitor built-in substrate of the present invention is such a capacitor built-in substrate incorporating the capacitor of the present invention, the arrangement of capacitors and the connection structure of capacitor terminals are not particularly limited.
  • the terminal structure is not particularly limited, and a terminal having a built-in multilayer ceramic capacitor may be used.
  • the capacitor built-in substrate shown in FIG. 7 may have a structure in which a via terminal 25 serving as a signal wiring and a via terminal 23 serving as a power wiring are terminals incorporating a multilayer ceramic capacitor.
  • the cross section of the via is displayed in a taper shape, but it may be formed in a shape close to a vertical shape instead of the taper shape, and the present invention is not limited to this.
  • the capacitor built-in substrate described above can be manufactured from the upper surface side to the lower surface side by changing the process, and the capacitor built-in substrate manufactured in this way is also the capacitor built-in substrate of the present invention.
  • the cross section of the via terminal in FIG. 7 looks like a taper in the opposite direction.
  • the via terminal structure may be formed using a laminated metal sheet in which a plurality of metal layers are laminated. Is possible.
  • the manufacture example using a laminated metal sheet is shown.
  • the basic configuration is the same as that of the above-described embodiment, and therefore, the same portions are denoted by the same reference numerals and redundant description is omitted.
  • FIG. 8 shows an example of a production example using a laminated metal sheet.
  • a laminated metal layer 60 comprising a first metal layer 61 made of copper, a second metal layer 62 made of nickel, and a third metal layer 63 made of copper is prepared.
  • the first metal layer 61 is thicker than the third metal layer 63, but is not limited thereto.
  • the second metal layer 62 made of nickel is not limited to nickel as long as it is a conductor having etching characteristics different from those of copper.
  • the first metal layer 61 is etched to form a plurality of wiring terminals.
  • a capacitor forming terminal 61A and a ground wiring 61B are formed.
  • a terminal 61C serving as a power wiring and a wiring terminal 61D serving as a signal wiring are illustrated.
  • the terminal 31 and the wiring terminals 32A to 34A are embedded with the insulator layer 41 (FIG. 8C).
  • the insulator layer 41 is not particularly limited.
  • the insulator layer 41 may be formed using a resin composition (prepreg) containing a resin component and an inorganic filler such as silica or a filler such as acrylic rubber particles.
  • preg resin composition
  • an inorganic filler such as silica or a filler such as acrylic rubber particles.
  • a material having a coefficient of thermal expansion (CTE) as low as possible is preferable.
  • the terminal 31 is removed by etching to form a recess 42 exposing the second metal layer 62 (FIG. 8D).
  • the high dielectric thin film 5 is provided so as to cover the second metal layer 62 in the recess 42 (FIG. 8E), and the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42.
  • the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42.
  • the solder-containing resin composition 6 is filled in the recesses 42, a sedimentation process is performed to form a melting temperature transition type solder layer 7 (FIG. 8G), and the melting temperature transition type solder layer 7 is metallized.
  • the resin component of the resin composition 12 and the solder-containing resin composition 6 is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9 (see FIG. 8 (h)) and the high dielectric thin film 5 on the surface of the insulator layer 4 is further removed. Both to planarize the cured resin layer 9 (FIG. 8 (i)) point is the same as in Embodiment 2.
  • vias 9a are formed in the cured resin layer 9 in the recess 42 by laser processing or the like to expose the conductor layer 8.
  • via conductors 11 are embedded in the vias 9a by plating or the like, and wirings are formed at the same time.
  • the first electrode 31A and the wiring terminals 32A to 34A to be the upper wiring are formed.
  • the second metal layer 62 and the third metal layer 63 on the back surface side are patterned, and the conductor layer 1 is patterned by etching or the like to form external terminals.
  • An electrode 31B and wiring terminals 32B to 34B are formed.
  • the capacitor terminal 31 containing the capacitor sandwiching the high dielectric thin film 5 between the first electrode 31A and the second electrode 31B and the wiring terminals 32 to 34 including the wiring terminal 32A and the wiring terminal 32B are formed.
  • the wiring terminal 32 is a ground wiring
  • the wiring terminal 33 is a power supply wiring
  • the wiring terminal 34 is a signal wiring.
  • FIG. 9 shows another example of a production example using a laminated metal sheet.
  • a laminated metal layer 60 comprising a first metal layer 61 made of copper, a second metal layer 62 made of nickel, and a third metal layer 63 made of copper is prepared.
  • the first metal layer 61 is etched to form a recess 42 for forming a capacitor.
  • the high dielectric thin film 5 is provided so as to cover the second metal layer 62 in the recess 42 (FIG. 9C), and the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42.
  • the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42.
  • the solder-containing resin composition 6 is filled in the recesses 42, a sedimentation process is performed to form the melting temperature transition type solder layer 7 (FIG. 9E), and the melting temperature transition type solder layer 7 is metallized.
  • the resin component of the resin composition 12 and the solder-containing resin composition 6 is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9 (see FIG. 9 (f)), and when the high dielectric thin film 5 on the surface of the insulator layer 4 is removed, Moni cured resin layer 9 is planarized (FIG. 9 (g)) point is the same as the method of Embodiment 2, and FIG. In this method, since only the laminated metal sheet 60 exists in the process of providing the high dielectric thin film 5, for example, there is an advantage that sputtering at a high temperature process of about 400 ° C. can be easily used.
  • the first metal layer 61 is etched to leave the structure in the recess 42 and form terminals other than the terminals for capacitor formation.
  • a terminal 61B serving as a ground wiring
  • a terminal 61C serving as a power wiring
  • a wiring terminal 61D serving as a signal wiring are illustrated.
  • FIG. 9 (i) a via 9a is laser-processed in the cured resin layer 9 in the recess 42. Etc. to expose the conductor layer 8.
  • FIG. 9K via conductors 31 are embedded in the vias 9a by plating or the like, and wirings are formed at the same time.
  • the first electrode 31A and the wiring terminals 32A to 34A to be the upper wiring are formed.
  • the second metal layer 62 and the third metal layer 63 on the back surface side are patterned, and the conductor layer 1 is patterned by etching or the like to form external terminals.
  • An electrode 31B and wiring terminals 32B to 34B are formed.
  • the capacitor terminal 31 containing the capacitor sandwiching the high dielectric thin film 5 between the first electrode 31A and the second electrode 31B and the wiring terminals 32 to 34 including the wiring terminal 32A and the wiring terminal 32B are formed.
  • the wiring terminal 32 is a ground wiring
  • the wiring terminal 33 is a power supply wiring
  • the wiring terminal 34 is a signal wiring.
  • the capacitor-embedded substrate thus manufactured is also the capacitor-embedded substrate of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

Provided are: a step (1) for forming a first electrode 3A; a step (2) for forming a high dielectric thin film 5 on the first electrode 3A; a step (3) in which a solder-containing resin composition 6 that contains a resin component and a melting temperature transition-type solder is provided on the high dielectric thin film 5, degassing is performed, and the resin is filled into pinholes in the high dielectric thin film 5; a step (4) in which the melting temperature transition-type solder 6 is allowed to settle and a melting temperature transition-type solder layer 7 is formed on the high dielectric thin film 5; a step (5) for melting the melting temperature transition-type solder layer 7, and prompting the formation of an alloy to yield a conductor layer 8 for which the re-melting temperature is MP; a step (6) in which the resin component is hardened at a temperature lower than the melting temperature MP of the conductor layer 8 to make a resin hardened layer 9; and a step (7) for forming a through hole in the resin hardened layer 9 and exposing the conductor layer, and also forming a second electrode connected to the conductor layer.

Description

キャパシタの製造方法及びキャパシタ内蔵基板の製造方法並びにキャパシタ内蔵基板及び半導体装置実装部品Capacitor manufacturing method, capacitor built-in substrate manufacturing method, capacitor built-in substrate, and semiconductor device mounting component
 本発明は、キャパシタの製造方法及びキャパシタ内蔵基板の製造方法並びにキャパシタ内蔵基板及び半導体装置実装部品に関する。 The present invention relates to a capacitor manufacturing method, a capacitor built-in substrate manufacturing method, a capacitor built-in substrate, and a semiconductor device mounting component.
 LSIやWLP(Wafer Level Package)などに代表される半導体装置の高速化に伴い、電圧降下が生じるが、装置の安定性を確保するために、電圧降下を補填するキャパシタを設ける技術がある。このような電圧降下を防止するキャパシタとしては、比較的大容量のキャパシタを設けて対応する技術が一般的であるが、高速化された装置の信頼性を確保するためには、電圧降下の際の電圧が補填されるまでの時間が重要となり、キャパシタを内蔵したパッケージ基板を用いてLSIなどの部品の近くに配置して時間を短縮する工夫がされてきた(特許文献1、2参照)。 A voltage drop occurs as the speed of a semiconductor device typified by LSI or WLP (Wafer Level Package) increases, but there is a technique of providing a capacitor that compensates for the voltage drop in order to ensure the stability of the device. As a capacitor for preventing such a voltage drop, a technique for providing a capacitor having a relatively large capacity is generally used. However, in order to ensure the reliability of a high-speed device, the voltage drop can be prevented. The time until the voltage is compensated is important, and a device has been devised to shorten the time by arranging it near a component such as an LSI using a package substrate incorporating a capacitor (see Patent Documents 1 and 2).
 しかしながら、キャパシタ内蔵基板は、LSIの実装部の周囲にキャパシタを内蔵するものであり、製造工程が複雑となるという課題がある。 However, the substrate with a built-in capacitor has a problem that the manufacturing process is complicated because the capacitor is built around the LSI mounting portion.
 また、今後のさらなる高速化に対応するためには、キャパシタの容量は小さくても、できるだけ近接してキャパシタを内蔵する必要がある。そこで、LSIの実装部にビア配線とキャパシタを内蔵したキャパシタ内蔵ビア配線とを隣接して設け、この上にLSIを実装する技術が提案されている(特許文献3など参照)。 Also, in order to cope with further higher speeds in the future, even if the capacitance of the capacitor is small, it is necessary to incorporate the capacitor as close as possible. In view of this, a technique has been proposed in which a via wiring and a capacitor built-in via wiring in which a capacitor is incorporated are provided adjacent to each other in an LSI mounting portion, and the LSI is mounted on the via wiring (see Patent Document 3).
 このようなキャパシタ内蔵ビアを具備するキャパシタ内蔵基板を製造するためには、導電体層で高誘電体層をサンドイッチにしたシートが用いられるが、誘電体層を基板一面に設けてあるため、非常に高価であるという課題がある。また、高誘電体層に発生するピンホールの問題から、製造歩留まりが非常に低くなるという課題もある。 In order to manufacture a capacitor-embedded substrate having such a capacitor-embedded via, a sheet in which a high dielectric layer is sandwiched between conductive layers is used. However, since the dielectric layer is provided on the entire surface of the substrate, There is a problem that it is expensive. Another problem is that the manufacturing yield is very low due to the problem of pinholes generated in the high dielectric layer.
 このようなキャパシタ内蔵基板を安価に製造する技術が望まれているが、このようなキャパシタ内蔵基板を安価に製造できる技術が存在しないのが現状である。 Although a technology for manufacturing such a capacitor built-in substrate at low cost is desired, there is currently no technology capable of manufacturing such a capacitor built-in substrate at low cost.
 また、LSIの電源端子及び信号端子に接続されるビア配線の全てに、必ずキャパシタ内蔵ビア配線を設ける必要がない場合もあり、この場合には、基板全体に高誘電体層を設けたシートを設けると、さらに無駄が多くなるという問題がある。 In some cases, it is not always necessary to provide a capacitor built-in via wiring to all of the via wiring connected to the power supply terminal and signal terminal of the LSI. In this case, a sheet provided with a high dielectric layer on the entire substrate is used. If provided, there is a problem that waste is further increased.
 そこで、キャパシタ内蔵基板の製造プロセスにおいて、必要な箇所だけ、スパッタリング法やメッキ法などにより、無機高誘電体膜や有機薄膜を設けることが考えられるが、非常に微細な領域に薄膜を形成することから、ピンホールによる絶縁破壊の可能性がさらに上昇するという問題がある。 Therefore, it is conceivable to provide an inorganic high-dielectric film or an organic thin film only in necessary places by a sputtering method or a plating method in the manufacturing process of the capacitor built-in substrate. Therefore, there is a problem that the possibility of dielectric breakdown due to pinholes further increases.
 また、薄膜キャパシタに好適な材料として、トリアジンジスルフィドポリマーが提案されている(特許文献4参照)が、無機薄膜と同様にピンホールの問題があり、さらに膜の耐薬品性が低く、メッキ法による上部電極の形成が困難であるという問題点もある。 Triazine disulfide polymer has been proposed as a material suitable for a thin film capacitor (see Patent Document 4). However, there is a problem of pinholes as in the case of an inorganic thin film, and the chemical resistance of the film is low. There is also a problem that it is difficult to form the upper electrode.
特開2005-101075号公報JP 2005-101075 A 特開2014-127716号公報JP 2014-127716 A 特表2008-529309号公報Special table 2008-529309 特開2005-251932号公報JP 2005-251932 A
 本発明は、上述した事情に鑑み、上述したような高速化に対応できるキャパシタ内蔵基板を比較的安価に製造できるキャパシタの製造方法及びキャパシタ内蔵基板の製造方法並びにキャパシタ内蔵基板及び半導体装置実装部品を提供することを目的とする。 In view of the above-described circumstances, the present invention provides a capacitor manufacturing method, a capacitor built-in substrate manufacturing method, a capacitor built-in substrate, and a semiconductor device mounting component capable of manufacturing a capacitor built-in substrate that can cope with the above-described high speed at a relatively low cost. The purpose is to provide.
 前記目的を達成する第1の態様は、第1電極を形成する工程(1)と、前記第1電極上に高誘電体薄膜を形成する工程(2)と、前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡して前記高誘電体薄膜のピンホールに前記樹脂を充填する工程(3)と、前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(4)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(5)と、前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(6)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2電極を形成する工程(7)と、を具備することを特徴とするキャパシタの製造方法にある。 A first mode for achieving the object includes a step (1) of forming a first electrode, a step (2) of forming a high dielectric thin film on the first electrode, and a resin on the high dielectric thin film. A step (3) of providing a solder-containing resin composition containing a component and a melting temperature transition type solder, defoaming and filling the resin into the pinhole of the high dielectric thin film, and settling the melting temperature transition type solder A step (4) of forming a melting temperature transition type solder layer on the high dielectric thin film, and a step of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP ( 5), a step (6) of curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to form a resin cured layer, and forming the through hole in the resin cured layer to form the conductor layer. Forming a second electrode that is exposed and connected to the conductor layer ( ) And, in the manufacturing method of the capacitor, characterized by comprising.
 本発明の第2の態様は、第1電極を形成する工程(1)と、前記第1電極上に高誘電体薄膜を形成する工程(2)と、前記高誘電体薄膜上に第1樹脂成分を含む樹脂組成物層を設けて脱泡して前記高誘電体薄膜のピンホールに前記第1樹脂成分を充填する工程(3-1)と、第2樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を前記樹脂組成物層上に設ける工程(3-2)と、前記溶融温度遷移型はんだを前記樹脂組成物層中まで沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(4)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(5)と、前記導電体層の溶融温度MPより低い温度で前記第1樹脂成分及び前記第2樹脂成分を硬化して樹脂硬化層とする工程(7)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2電極を形成する工程(8)と、を具備することを特徴とするキャパシタの製造方法にある。 The second aspect of the present invention includes a step (1) of forming a first electrode, a step (2) of forming a high dielectric thin film on the first electrode, and a first resin on the high dielectric thin film. A step (3-1) of providing a resin composition layer containing a component and degassing to fill the pinhole of the high dielectric thin film with the first resin component; a second resin component and a melting temperature transition type solder; A step (3-2) of providing a solder-containing resin composition containing the resin composition layer on the resin composition layer, and the melting temperature transition type solder is allowed to settle into the resin composition layer to melt the high temperature dielectric film on the high dielectric thin film. A step (4) of forming a transitional solder layer, a step (5) of melting and alloying the transitional solder layer to form a conductor layer having a remelting temperature of MP, and a melting temperature of the conductor layer Curing the first resin component and the second resin component at a temperature lower than MP to cure the resin And a step (8) of forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode connected to the conductor layer. It is in the manufacturing method of the capacitor characterized.
 本発明の第3の態様は、第1又は第2の態様において、前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタの製造方法にある。 According to a third aspect of the present invention, in the first or second aspect, the defoaming is performed at a temperature of room temperature to 160 ° C.
 本発明の第4の態様は、絶縁体からなる第1層に貫通して設けられた複数のビア導電体を形成する工程(11)と、前記複数のビア導電体のうちのキャパシタを設けるビア導電体を第1電極として他のビア導電体を絶縁体からなる第2層で覆い、前記第1電極上に高誘電体薄膜を形成する工程(12)と、前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(13)と、前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(14)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(15)と、前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(16)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2ビア導電体からなる第2電極を形成する工程(17)と、前記第2層に貫通孔を形成して前記ビア導電体を露出するとともに当該ビア導電体に接続する第3ビア導電体を設ける工程(18)とを具備することを特徴とするキャパシタ内蔵基板の製造方法にある。 According to a fourth aspect of the present invention, there is provided a step (11) of forming a plurality of via conductors provided penetrating through a first layer made of an insulator, and a via for providing a capacitor among the plurality of via conductors. A step (12) of forming a high dielectric thin film on the first electrode by covering another via conductor with a second layer made of an insulator using the conductor as the first electrode, and a resin on the high dielectric thin film; A step (13) of providing a solder-containing resin composition containing a component and a melting temperature transition type solder and defoaming; and a melting temperature transition type solder layer on the high dielectric thin film by allowing the melting temperature transition type solder to settle. A step (15) of forming a melting temperature transition-type solder layer and alloying to form a conductor layer having a remelting temperature of MP, and a temperature lower than the melting temperature MP of the conductor layer Step of curing the resin component to form a cured resin layer ( 6) and a step (17) of forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second via conductor connected to the conductor layer; Forming a through hole in the second layer to expose the via conductor and providing a third via conductor connected to the via conductor (18). Is in the way.
 本発明の第5の態様は、絶縁体からなる第1層に貫通して設けられた複数のビア導電体を形成する工程(11)と、前記複数のビア導電体のうちのキャパシタを設けるビア導電体を第1電極として他のビア導電体を絶縁体からなる第2層で覆い、前記第1電極上に高誘電体薄膜を形成する工程(12)と、前記高誘電体薄膜上に第1樹脂成分を含む樹脂組成物層を設けて脱泡する工程(13-1)と、第2樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を前記樹脂組成物層上に設ける工程(13-2)と、前記溶融温度遷移型はんだを前記樹脂組成物層中まで沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(14)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(15)と、前記導電体層の溶融温度MPより低い温度で前記第1樹脂成分及び前記第2樹脂成分を硬化して樹脂硬化層とする工程(16)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2ビア導電体からなる第2電極を形成する工程(17)と、前記第2層に貫通孔を形成して前記ビア導電体を露出するとともに当該ビア導電体に接続する第3ビア導電体を設ける工程(18)とを具備することを特徴とするキャパシタ内蔵基板の製造方法にある。 According to a fifth aspect of the present invention, there is provided a step (11) of forming a plurality of via conductors provided penetrating through a first layer made of an insulator, and a via for providing a capacitor among the plurality of via conductors. A step (12) of forming a high dielectric thin film on the first electrode, covering the other via conductor with a second layer made of an insulator with the conductor as the first electrode, and a second layer on the high dielectric thin film; A step (13-1) of defoaming by providing a resin composition layer containing one resin component and a solder-containing resin composition containing a second resin component and a melting temperature transition type solder are provided on the resin composition layer A step (13-2), a step (14) of causing the melting temperature transition type solder to settle into the resin composition layer to form a melting temperature transition type solder layer on the high dielectric thin film, and the melting temperature. Conductor with melting and alloying transitional solder layer and remelting temperature MP The step (15), the step (16) of curing the first resin component and the second resin component at a temperature lower than the melting temperature MP of the conductor layer to form a resin cured layer, and the resin cured layer Forming a through hole in the second layer to expose the conductor layer and forming a second electrode made of a second via conductor connected to the conductor layer; and forming a through hole in the second layer And a step (18) of providing a third via conductor that exposes the via conductor and connects to the via conductor.
 本発明の第6の態様は、第4又は第5の態様において、前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタ内蔵基板の製造方法にある。 A sixth aspect of the present invention is the method for manufacturing a capacitor built-in substrate according to the fourth or fifth aspect, wherein the defoaming is performed at a temperature of room temperature to 160 ° C.
 本発明の第7の態様は、金属層を複数層積層した積層金属シートの第1金属層をエッチングして複数の配線端子を形成する工程(21)と、前記配線端子を埋め込む絶縁層を形成する工程(22)と、前記複数の配線端子のうちのキャパシタを設けるキャパシタ端子を形成する箇所の配線端子を除去して当該配線端子の下層の第2金属層を第1電極として露出する凹部を形成する工程(23)と、少なくとも前記凹部内の前記第1電極を覆う高誘電体薄膜を形成する工程(24)と、前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(25)と、前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(26)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(27)と、前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(28)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2導電体からなる第2電極を形成する工程(29)とを具備することを特徴とするキャパシタ内蔵基板の製造方法にある。 According to a seventh aspect of the present invention, there is provided a step (21) of forming a plurality of wiring terminals by etching the first metal layer of the laminated metal sheet in which a plurality of metal layers are laminated, and an insulating layer for embedding the wiring terminals. And a step of removing a wiring terminal at a location where a capacitor terminal for providing a capacitor from among the plurality of wiring terminals is formed and exposing a second metal layer below the wiring terminal as a first electrode. A step (23) of forming, a step (24) of forming a high dielectric thin film covering at least the first electrode in the recess, and a resin component and a melting temperature transition type solder on the high dielectric thin film. A step (25) of providing a solder-containing resin composition and defoaming, a step (26) of forming a melting temperature transition type solder layer on the high dielectric thin film by precipitating the melting temperature transition type solder, Melting temperature transition A step (27) of melting and alloying a solder layer to form a conductor layer having a remelting temperature of MP, and a step of curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to obtain a cured resin layer (28) and a step (29) of forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second conductor connected to the conductor layer. A method for manufacturing a capacitor-embedded substrate is provided.
 本発明の第8の態様は、金属層を複数層積層した積層金属シートのキャパシタを設けるキャパシタ端子を形成する箇所の第1金属層をエッチングして前記第1金属層の下層の第2金属層を第1電極として露出する凹部を形成する工程(31)と、少なくとも前記凹部内の前記第1電極を覆う高誘電体薄膜を形成する工程(32)と、前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(33)と、前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(34)と、前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(35)と、前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(36)と、前記凹部内の前記導電体層及び前記樹脂硬化層と、前記キャパシタ端子以外の配線端子を残して前記第1金属層をエッチングする工程(37)と、前記導電体層及び前記樹脂硬化層と、前記配線端子を埋め込む絶縁層を形成する工程(38)と、前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2導電体からなる第2電極を形成する工程(38)とを具備することを特徴とするキャパシタ内蔵基板の製造方法にある。 According to an eighth aspect of the present invention, a second metal layer under the first metal layer is etched by etching the first metal layer at a location where a capacitor terminal for providing a capacitor of a laminated metal sheet in which a plurality of metal layers are laminated. Forming a recess exposing the first electrode as a first electrode, forming a high dielectric thin film covering at least the first electrode in the recess (32), and a resin component on the high dielectric thin film And a defoaming step (33) of providing a solder-containing resin composition containing a melting temperature transition type solder and a melting temperature transition type solder layer on the high dielectric thin film by settling the melting temperature transition type solder A step (34) of forming, a step (35) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature MP, and a temperature lower than the melting temperature MP of the conductor layer. Curing the resin component A step (36) of forming a cured resin layer, a step (37) of etching the first metal layer leaving the conductive layer and the cured resin layer in the recess, and a wiring terminal other than the capacitor terminal; A step (38) of forming an insulating layer for embedding the conductor layer and the resin cured layer and the wiring terminal; and forming a through hole in the resin cured layer to expose the conductor layer and the conductor layer And a step (38) of forming a second electrode made of a second conductor connected to the capacitor.
 本発明の第9の態様は、第7又は8の態様において、前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタ内蔵基板の製造方法にある。 According to a ninth aspect of the present invention, in the seventh or eighth aspect, the defoaming is performed at a temperature of room temperature to 160 ° C.
 本発明の第10の態様は、半導体パッケージと半導体パッケージが実装される基板との間に設けられるキャパシタ内蔵基板であって、前記半導体パッケージと前記基板とを接続する複数のビア端子と、前記ビア端子に隣接して設けられ且つキャパシタが内蔵されたキャパシタ内蔵端子とを具備し、前記キャパシタ内蔵端子は、第1電極と、前記第1電極上に設けられた高誘電体薄膜と、前記高誘電体薄膜上に設けられた溶融遷移型はんだからなる導電体層と、前記導電体層の上に設けられた樹脂硬化層と、前記樹脂硬化層に設けられ前記導電体層を露出するまで貫通した貫通孔内に設けられた第2ビア導電体からなる第2電極とを具備することを特徴とするキャパシタ内蔵基板にある。 According to a tenth aspect of the present invention, there is provided a capacitor built-in substrate provided between a semiconductor package and a substrate on which the semiconductor package is mounted, a plurality of via terminals connecting the semiconductor package and the substrate, and the via A capacitor built-in terminal provided adjacent to the terminal and having a built-in capacitor, wherein the capacitor built-in terminal includes a first electrode, a high-dielectric thin film provided on the first electrode, and the high-dielectric A conductive layer made of molten transition type solder provided on the body thin film, a cured resin layer provided on the conductive layer, and penetrated until the conductive layer provided on the cured resin layer is exposed. And a second electrode made of a second via conductor provided in the through hole.
 本発明の第11の態様は、第10の態様において、前記ビア端子は、絶縁体からなる第1層を貫通するビア導電体と、前記第1層上に設けられた前記樹脂硬化層からなる第2層を貫通して前記ビア導電体と接続された第2ビア導電体とからなることを特徴とするキャパシタ内蔵基板にある。 According to an eleventh aspect of the present invention, in the tenth aspect, the via terminal includes a via conductor penetrating the first layer made of an insulator and the cured resin layer provided on the first layer. A capacitor-embedded substrate comprising a second via conductor connected to the via conductor through a second layer.
 本発明の第12の態様は、第10又は11の態様において、前記第1電極は、絶縁体からなる第1層を貫通して設けられた前記ビア導電体を具備することを特徴とするキャパシタ内蔵基板にある。 A twelfth aspect of the present invention is the capacitor according to the tenth or eleventh aspect, wherein the first electrode includes the via conductor provided through the first layer made of an insulator. Located on the built-in board.
 本発明の第13の態様は、第10又は11の態様において、前記第1電極は、絶縁体からなる前記第1層上に設けられた前記樹脂硬化層を貫通して設けられた前記ビア導電体を具備することを特徴とするキャパシタ内蔵基板にある。 According to a thirteenth aspect of the present invention, in the tenth or eleventh aspect, the first electrode includes the via conductor provided through the resin cured layer provided on the first layer made of an insulator. A capacitor-embedded substrate comprising a body.
 本発明の第14の態様は、第10~13の何れかの態様において、前記導電体層は、樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を沈降して形成した溶融遷移型はんだからなり、前記樹脂硬化層は、前記はんだ含有樹脂組成物の樹脂成分の硬化物であり、前記高誘電体薄膜のピンホール内には前記はんだ含有樹脂組成物の樹脂成分が充填されていることを特徴とするキャパシタ内蔵基板にある。 According to a fourteenth aspect of the present invention, in any one of the tenth to thirteenth aspects, the conductor layer is formed of a melt transition formed by sedimenting a solder-containing resin composition containing a resin component and a melting temperature transition type solder. The resin cured layer is a cured product of the resin component of the solder-containing resin composition, and the pin holes of the high dielectric thin film are filled with the resin component of the solder-containing resin composition. A capacitor-embedded substrate.
 本発明の第15の態様は、信号用配線端子と、この信号用配線端子に隣接して設けられキャパシタ内蔵端子とを有するキャパシタ内蔵基板であって、前記キャパシタ内蔵端子は、第1電極と、前記第1電極上に設けられた高誘電体薄膜と、前記高誘電体薄膜上に設けられ且つ樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を沈降して形成した溶融遷移型はんだからなる導電体層と、前記導電体層の上に設けられ且つ前記はんだ含有樹脂組成物の樹脂成分が硬化した樹脂硬化層と、前記樹脂硬化層に設けられ前記導電体層を露出するまで貫通した貫通孔内に設けられた第2ビア導電体からなる第2電極とを具備し、前記高誘電体薄膜のピンホール内には前記はんだ含有樹脂組成物の樹脂成分が充填されていることを特徴とするキャパシタ内蔵基板にある。 A fifteenth aspect of the present invention is a capacitor built-in substrate having a signal wiring terminal and a capacitor built-in terminal provided adjacent to the signal wiring terminal, wherein the capacitor built-in terminal includes the first electrode, A melt transition type formed by sedimenting a high dielectric thin film provided on the first electrode, and a solder-containing resin composition provided on the high dielectric thin film and including a resin component and a melting temperature transition type solder A conductive layer made of solder, a cured resin layer provided on the conductive layer and cured by the resin component of the solder-containing resin composition, and until the conductive layer provided on the cured resin layer is exposed A second electrode made of a second via conductor provided in the penetrating through hole, and the pinhole of the high dielectric thin film is filled with the resin component of the solder-containing resin composition Features In the capacitor built-in substrate.
 本発明の第16の態様は、第10~15の何れか一つの態様に記載のキャパシタ内蔵基板と、このキャパシタ内蔵基板に実装された前記半導体パッケージとを具備することを特徴とする半導体実装部品にある。 According to a sixteenth aspect of the present invention, there is provided a semiconductor mounting component comprising the capacitor built-in substrate according to any one of the tenth to fifteenth aspects, and the semiconductor package mounted on the capacitor built-in substrate. It is in.
 本発明の第17の態様は、第16の態様に記載の半導体実装部品において、前記キャパシタ内蔵基板が前記基板に実装されていることを特徴とする半導体実装部品にある。 According to a seventeenth aspect of the present invention, there is provided the semiconductor mounting component according to the sixteenth aspect, wherein the capacitor-embedded substrate is mounted on the substrate.
実施形態1に係る製造方法を示す模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the manufacturing method according to the first embodiment. 実施形態2に係る製造方法を示す模式的に示す断面図である。5 is a cross-sectional view schematically showing a manufacturing method according to Embodiment 2. FIG. 実施形態のキャパシタの変形例を模式的に示す断面図である。It is sectional drawing which shows typically the modification of the capacitor of embodiment. 本発明の作用効果を模式的に示す断面図である。It is sectional drawing which shows the effect of this invention typically. 本発明の半導体実装部品の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the semiconductor mounting component of this invention. 実施形態のキャパシタを比較例と比較する断面図である。It is sectional drawing which compares the capacitor of embodiment with a comparative example. 本発明のキャパシタ内蔵基板の基本構成の他の例を示す平面図及び断面図である。It is the top view and sectional drawing which show the other example of the basic composition of the board | substrate with a built-in capacitor of this invention. 他の例に係る製造方法を示す模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method which concerns on another example. 他の例に係る製造方法を示す模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method which concerns on another example.
 以下、本発明をさらに詳細に説明する。
 (実施形態1)
 本実施形態では、本発明のキャパシタ内蔵基板に適用できるキャパシタの製造方法の一例を説明する。
Hereinafter, the present invention will be described in more detail.
(Embodiment 1)
In the present embodiment, an example of a method for manufacturing a capacitor that can be applied to the capacitor-embedded substrate of the present invention will be described.
 図1(a)に示すように、導電体層1と、絶縁体層2とからなるプリント基板の絶縁体層2に貫通孔であるビア2aを、レーザー加工などにより形成し、ビア2aをめっき法により銅などのビア導電体で埋め込み、ビア導電体3を形成する。 As shown in FIG. 1A, a via 2a, which is a through hole, is formed in the insulator layer 2 of the printed circuit board including the conductor layer 1 and the insulator layer 2 by laser processing or the like, and the via 2a is plated. The via conductor 3 is formed by embedding with a via conductor such as copper by the method.
 ここで、プリント基板としては、ガラスエポキシ基板、ガラスコンポジット基板、セラミックス基板、テフロン(登録商標)基板などのリジット基板や、フレキシブル基板を用いることができる。また、ビア導電体3を形成した基板を用いてもよい。 Here, as the printed board, a rigid board such as a glass epoxy board, a glass composite board, a ceramic board, and a Teflon (registered trademark) board, or a flexible board can be used. Further, a substrate on which the via conductor 3 is formed may be used.
 次に、図1(b)に示すように、絶縁体層4を形成し、キャパシタを形成する部位にビア4aを形成し、ビア導電体3を露出させて第1電極3Aとする。 Next, as shown in FIG. 1B, an insulator layer 4 is formed, a via 4a is formed at a site where a capacitor is to be formed, and the via conductor 3 is exposed to form the first electrode 3A.
 ここで、絶縁体層4は、樹脂成分と、シリカなどの無機フィラーやアクリルゴム粒子などのフィラーとを含有する樹脂組成物(プレプリグ)を用いて形成すればよく、できるだけ低熱膨張率(CTE;coefficient of thermal expansion)のものが好ましい。 Here, the insulator layer 4 may be formed using a resin composition (prepreg) containing a resin component and an inorganic filler such as silica or a filler such as acrylic rubber particles, and has a low thermal expansion coefficient (CTE) as much as possible. Coefficient of thermal expansion) is preferable.
 絶縁体層4を形成する樹脂組成物としては、市販のプリプレグなどを用いればよいが、樹脂成分とフィラーとを適宜配合してもよい。樹脂成分には、熱硬化性樹脂と硬化剤と、必要に応じて溶剤とが含有されるが、熱硬化性樹脂としては、代表的には各種エポキシ樹脂を用いることができ、エポキシ樹脂に、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和ポリフェニレンエーテル樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、メラミン-尿素共縮合樹脂等を配合してもよい。 As the resin composition forming the insulator layer 4, a commercially available prepreg may be used, but a resin component and a filler may be appropriately blended. The resin component contains a thermosetting resin, a curing agent, and, if necessary, a solvent. As the thermosetting resin, typically, various epoxy resins can be used. Polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, unsaturated polyphenylene ether resin, vinyl ester resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, A melamine-urea cocondensation resin or the like may be blended.
 また、絶縁体層4にビア4aを形成する方法は特に限定されないが、レーザー加工などにより行えばよい。 The method for forming the via 4a in the insulator layer 4 is not particularly limited, but may be performed by laser processing or the like.
 次に、図1(c)に示すように、ビア4a内の第1電極3Aを覆うように、高誘電体薄膜5を設ける。 Next, as shown in FIG. 1C, a high dielectric thin film 5 is provided so as to cover the first electrode 3A in the via 4a.
 高誘電体薄膜5は、チタン酸バリウム(BTO)、チタン酸ストロンチウム(BST)などの無機高誘電体薄膜、ヒドラジン、ヒドラジン誘導体、トリアジンチオール誘導体などの有機高誘電体薄膜からなる。 The high dielectric thin film 5 is composed of an inorganic high dielectric thin film such as barium titanate (BTO) or strontium titanate (BST), or an organic high dielectric thin film such as hydrazine, a hydrazine derivative, or a triazine thiol derivative.
 このような高誘電体薄膜5は、スパッタリング、CVD、イオンプレーティングなどの気相法、溶液塗布法などの液相法、印刷法、めっき法などにより形成することができる。高誘電体薄膜5の膜厚は材料の比誘電率や用途によって適宜選定されるが、例えば、0.5μm~1.0μmの範囲の厚さとすればよい。 Such a high dielectric thin film 5 can be formed by a vapor phase method such as sputtering, CVD, or ion plating, a liquid phase method such as a solution coating method, a printing method, a plating method, or the like. The film thickness of the high dielectric thin film 5 is appropriately selected depending on the relative dielectric constant of the material and the application, but may be a thickness in the range of 0.5 μm to 1.0 μm, for example.
 このようなキャパシタとしては、例えば、30pF~80pF、好ましくは、50pF~80pFの容量のキャパシタを挙げることができる。 Examples of such a capacitor include a capacitor having a capacity of 30 pF to 80 pF, preferably 50 pF to 80 pF.
 例えば、有効な高誘電体薄膜5の直径を100μm~200μmとした場合、チタン酸バリウム(BTO)、チタン酸ストロンチウム(BST)、五酸化タンタル(Ta)などの無機高誘電体薄膜では、0.5μm~1.0μm、ヒドラジン、ヒドラジン誘導体、トリアジンチオール誘導体などの有機高誘電体薄膜の場合、120nm~150nmの厚さとすればよい。BTOなどの無機高誘電体薄膜は、スパッタリング等の気相法の他、溶液塗布法などの液相法や印刷法など成膜することができる。また、五酸化タンタル膜などは陽極酸化成膜法により成膜することも可能である。また、有機高誘電体薄膜は、溶液塗布法などの液相法や印刷法で成膜することができる。気相法や液相法では、場合によっては高温環境が供給される場合があるが、印刷用や陽極酸化成膜法は、低温環境での成膜が可能であるという利点がある。 For example, when the effective high dielectric thin film 5 has a diameter of 100 μm to 200 μm, inorganic high dielectric thin films such as barium titanate (BTO), strontium titanate (BST), and tantalum pentoxide (Ta 2 O 5 ) In the case of organic high dielectric thin films such as 0.5 μm to 1.0 μm, hydrazine, hydrazine derivatives, and triazine thiol derivatives, the thickness may be 120 nm to 150 nm. An inorganic high dielectric thin film such as BTO can be formed by a vapor phase method such as sputtering, a liquid phase method such as a solution coating method, or a printing method. A tantalum pentoxide film or the like can also be formed by an anodic oxidation film formation method. The organic high dielectric thin film can be formed by a liquid phase method such as a solution coating method or a printing method. In the vapor phase method and the liquid phase method, a high temperature environment may be supplied in some cases. However, the printing method and the anodic oxidation film forming method have an advantage that the film formation can be performed in a low temperature environment.
 本実施形態では、スパッタリング法により、0.6μmの厚さのチタン酸バリウム薄膜を形成し、高誘電体薄膜5とした。 In the present embodiment, a barium titanate thin film having a thickness of 0.6 μm is formed by a sputtering method to obtain a high dielectric thin film 5.
 なお、高誘電体薄膜5は、レジストなどマスクを介してビア4a内のみに設けてもよい。 The high dielectric thin film 5 may be provided only in the via 4a through a mask such as a resist.
 次に、図1(d)に示すように、樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物6をビア4a内の高誘電体薄膜5上に充填した後、脱泡し、高誘電体薄膜5に存在するピンホール内に樹脂を充填する。 Next, as shown in FIG. 1 (d), after filling the high dielectric thin film 5 in the via 4 a with the solder-containing resin composition 6 containing the resin component and the melting temperature transition type solder, defoaming, Resin is filled into pinholes existing in the high dielectric thin film 5.
 ここで、はんだ含有樹脂組成物6に含有される溶融温度遷移型はんだとは、合金又は金属微粒子からなり、例えば、160~260℃、好ましくは、160~200℃、さらに好ましくは160~180℃の温度で焼結又はメタライズ化により導電体となるものであり、その後の再溶融温度(MP)は、260℃以上、好ましくは400℃以上となるものである。 Here, the melting temperature transition type solder contained in the solder-containing resin composition 6 is made of an alloy or metal fine particles, and is, for example, 160 to 260 ° C., preferably 160 to 200 ° C., more preferably 160 to 180 ° C. It becomes what becomes a conductor by sintering or metallization at the temperature of, and the subsequent remelting temperature (MP) becomes 260 degreeC or more, Preferably it becomes 400 degreeC or more.
 溶融温度遷移型はんだは、例えば、低融点金属粉と、高融点金属粉とを含有する。低金属金属粉は、インジウム、スズ、鉛、インジウム、ビスマスなどの一種以上の合金などからなり、例えば、融点が180℃以下のものである。高融点金属粉は、銀、銅、銀コート銅などで、融点が800℃以上のものである。金属粉の形状は特に限定されず、平均粒径で1μm~25μm程度のものであればよいが、ピンホールに入り込む大きさの金属粉を含まないようにするのが好ましい。 The melting temperature transition type solder contains, for example, a low melting point metal powder and a high melting point metal powder. The low metal metal powder is made of one or more alloys such as indium, tin, lead, indium, and bismuth, and has a melting point of 180 ° C. or lower, for example. The high melting point metal powder is silver, copper, silver-coated copper or the like, and has a melting point of 800 ° C. or higher. The shape of the metal powder is not particularly limited as long as it has an average particle size of about 1 μm to 25 μm, but it is preferable not to include metal powder having a size that can enter the pinhole.
 このような低融点金属粉と高融点金属粉とからなる溶融温度遷移型はんだは、溶融し、焼結又はメタライズ化により合金化して、再溶融温度が高温に遷移した導電体となるが、このような合金化(以下、単にメタライズ化ともいう)はフラックスの存在化で促進される。よって、フラックスを含有させるのが好ましい。 A melting temperature transition type solder composed of such a low melting point metal powder and a high melting point metal powder is melted, alloyed by sintering or metallization, and becomes a conductor whose remelting temperature has transitioned to a high temperature. Such alloying (hereinafter also simply referred to as metallization) is promoted by the presence of flux. Therefore, it is preferable to contain a flux.
 フラックスとしては、塩化亜鉛、乳酸、クエン酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、シュウ酸、グルタミン酸塩酸塩、アニリン塩酸塩、臭化セチルピリジン、尿素、ヒドロキシエチルラウリルアミン、ポリエチレングリコールラウリルアミン、オレイルプロピレンジアミン、トリエタノールアミン、グリセリン、ヒドラジン、ロジン等が挙げられる。 As flux, zinc chloride, lactic acid, citric acid, oleic acid, stearic acid, glutamic acid, benzoic acid, oxalic acid, glutamic acid hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, hydroxyethyllaurylamine, polyethylene glycol laurylamine Oleylpropylenediamine, triethanolamine, glycerin, hydrazine, rosin and the like.
 はんだ含有樹脂組成物6に含有される樹脂成分としては、熱硬化性樹脂と硬化剤とが含有される。
 熱硬化性樹脂としては、各種エポキシ樹脂と、その他の樹脂とを挙げることができる。
The resin component contained in the solder-containing resin composition 6 includes a thermosetting resin and a curing agent.
Examples of the thermosetting resin include various epoxy resins and other resins.
 エポキシ樹脂としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。 Epoxy resins include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, cresol novolak type Epoxy resins, phenol novolac type epoxy resins, alkylphenol novolac type epoxy resins, aralkyl type epoxy resins, biphenol type epoxy resins, dicyclopentadiene type epoxy resins, trishydroxyphenylmethane type epoxy compounds, aromatics having phenols and phenolic hydroxyl groups Epoxidized products of condensates with aldehydes, diglycidyl etherified products of bisphenol, diglycidyl etherified products of naphthalenediol, phenolic groups Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
 また、その他の樹脂としては、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和ポリフェニレンエーテル樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、メラミン-尿素共縮合樹脂等が挙げられる。 Other resins include polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, unsaturated polyphenylene ether resin, vinyl ester resin, urea resin, diallyl phthalate resin, melanin resin, Examples thereof include guanamine resin, unsaturated polyester resin, melamine-urea cocondensation resin, and the like.
 特に、好ましい熱硬化性樹脂としては、例えば、エポキシ当量が200~600の範囲内であり、かつ加水分解性塩素濃度が200ppm未満であるエポキシ樹脂20重量部以上とこのエポキシ樹脂以外の樹脂80重量部以下とからなり、エチレングリコール変性エポキシ樹脂を含まず、かつ全体の加水分解性塩素濃度が1000ppm未満である樹脂を挙げることができる。 Particularly preferred thermosetting resins include, for example, 20 parts by weight or more of an epoxy resin having an epoxy equivalent in the range of 200 to 600 and a hydrolyzable chlorine concentration of less than 200 ppm, and 80 weight of a resin other than this epoxy resin. And a resin having an ethylene glycol-modified epoxy resin and an overall hydrolyzable chlorine concentration of less than 1000 ppm.
 エポキシ当量が200~600の範囲内であり、かつ加水分解性塩素濃度が200ppm未満であるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、複素環式エポキシ樹脂などを挙げることができる。 Examples of the epoxy resin having an epoxy equivalent in the range of 200 to 600 and having a hydrolyzable chlorine concentration of less than 200 ppm include bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, Examples thereof include alicyclic epoxy resins, glycidyl amine type epoxy resins, glycidyl ether type epoxy resins, and heterocyclic epoxy resins.
 上記エポキシ当量と加水分解性塩素濃度の要件を満たすエポキシ樹脂以外の樹脂成分の好ましい例としては、上記要件を満たさないエポキシ樹脂、アルキド樹脂、メラミン樹脂、キシレン樹脂等が挙げられる。 Preferred examples of resin components other than epoxy resins that satisfy the requirements for the epoxy equivalent and hydrolyzable chlorine concentration include epoxy resins, alkyd resins, melamine resins, xylene resins, and the like that do not satisfy the requirements.
 いずれの場合も、硬化剤は、所望の特性が得られるように適宜選択され、使用可能な例としてはイミダゾール系硬化剤、フェノールノボラック系硬化剤、ナフトール系硬化剤が挙げられるが、これらに限定されるものではない。 In any case, the curing agent is appropriately selected so as to obtain desired characteristics, and examples of usable curing agents include imidazole curing agents, phenol novolac curing agents, and naphthol curing agents, but are not limited thereto. Is not to be done.
 イミダゾール系硬化剤とはイミダゾール及びその誘導体のうち硬化剤として使用可能なものであり、誘導体の例としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト等が挙げられる。 The imidazole-based curing agent is one that can be used as a curing agent among imidazole and its derivatives. Examples of derivatives include 2-undecylimidazole, 2-heptadecylimidazole, 2-ethylimidazole, 2-phenylimidazole, Examples include 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate and the like.
 フェノールノボラック系硬化剤とは、フェノールノボラック及びその誘導体のうち硬化剤として使用可能なものであり、ナフトール系硬化剤とは、ナフトール及びその誘導体のうち硬化剤として使用可能なものである。 The phenol novolac-based curing agent is a phenol novolak and derivatives thereof usable as a curing agent, and the naphthol-based curing agent is a naphthol and derivatives thereof usable as a curing agent.
 本発明では、はんだ含有樹脂組成物6を充填した後、脱泡する。
 ここで、脱泡とは、減圧環境とし、高誘電体薄膜5に存在するピンホール内の気泡が脱離し、代わりに樹脂が充填されることをいう。かかる脱泡工程は、-30kPa~-100kPaの真空下で、室温~160℃の温度下で行う。これにより、高誘電体薄膜5に存在するピンホール内の気泡が脱離し、代わりに樹脂成分が充填される。
In the present invention, the solder-containing resin composition 6 is filled and then defoamed.
Here, defoaming refers to a reduced pressure environment in which bubbles in pinholes existing in the high dielectric thin film 5 are detached and filled with resin instead. This defoaming step is performed under a vacuum of −30 kPa to −100 kPa and a temperature of room temperature to 160 ° C. As a result, the bubbles in the pinholes present in the high dielectric thin film 5 are detached and filled with the resin component instead.
 次に、図1(e)に示すように、温度を、例えば、50℃~160℃に上昇し、必要に応じて超音波振動などを付与してはんだ含有樹脂組成物6中の金属粉を沈降させ、高誘電体薄膜5上に溶融温度遷移型はんだ層7を形成する。 Next, as shown in FIG. 1 (e), the temperature is raised to, for example, 50 ° C. to 160 ° C., and ultrasonic vibrations are applied as necessary to remove the metal powder in the solder-containing resin composition 6. A melting temperature transition type solder layer 7 is formed on the high dielectric thin film 5 by sedimentation.
 そして、この状態で、図1(f)に示すように、溶融温度遷移型はんだ層7をメタライズ化し、導電体層8を形成する。 Then, in this state, as shown in FIG. 1 (f), the melting temperature transition type solder layer 7 is metallized to form a conductor layer 8.
 ここで、溶融温度遷移型はんだ層7のメタライズ化は、溶融温度遷移型はんだ層7の成分に応じた温度で行えばよいが、例えば、160℃~260℃の温度で行う。これにより形成された導電体層8の再溶融温度MPは、例えば、260℃以上、好ましくは400℃以上となる。 Here, the metallization of the melting temperature transition type solder layer 7 may be performed at a temperature corresponding to the component of the melting temperature transition type solder layer 7, for example, at a temperature of 160 ° C. to 260 ° C. The remelting temperature MP of the conductor layer 8 formed thereby is, for example, 260 ° C. or higher, preferably 400 ° C. or higher.
 このように本実施形態では、はんだ含有樹脂組成物6を設けて脱泡工程を実行した後、沈降工程を実施して溶融遷移型はんだ層7を形成してこれをメタライズ化して導電体層8とするので、はんだ含有樹脂組成物6の組成は、含有される溶融温度遷移型はんだが沈降させることができるように選定する必要がある。また、溶融温度遷移型はんだの含有量も、沈降して溶融温度遷移型はんだ層7となり、導電体層8を形成するに十分な量が含有されればよい。 As described above, in this embodiment, after the solder-containing resin composition 6 is provided and the defoaming process is performed, the sedimentation process is performed to form the molten transition type solder layer 7, which is metallized to form the conductor layer 8. Therefore, it is necessary to select the composition of the solder-containing resin composition 6 so that the contained melting temperature transition type solder can settle. Further, the content of the melting temperature transition type solder should be settled to form the melting temperature transition type solder layer 7 and to be contained in an amount sufficient to form the conductor layer 8.
 はんだ含有樹脂組成物6中の溶融温度遷移型はんだの含有量は、例えば、40vol%以下が好ましく、20~40vol%がさらに好ましい。 The content of the melting temperature transition type solder in the solder-containing resin composition 6 is, for example, preferably 40 vol% or less, and more preferably 20 to 40 vol%.
 また、沈降後に形成される溶融遷移型はんだ層7には、樹脂成分が混在することになるが、溶融遷移型はんだ層7は、溶融温度遷移型はんだの含有量が60vol%以上、例えば、60~80vol%となればよい。 In addition, although the resin component is mixed in the melt transition type solder layer 7 formed after settling, the content of the melt transition type solder layer 7 is 60 vol% or more, for example, 60 vol%. It may be ˜80 vol%.
 これにより、導電体層8の体積抵抗率を1×10-5以上、好ましくは、1×10-6~1×10-7とすることができる。 Thereby, the volume resistivity of the conductor layer 8 can be set to 1 × 10 −5 or more, preferably 1 × 10 −6 to 1 × 10 −7 .
 また、はんだ含有樹脂組成物6の樹脂成分は、溶融温度遷移型はんだを沈降させることができるように調製する必要があり、沈降工程の温度、例えば、50℃~160℃の温度では実質的に硬化しないことが前提であるが、低粘度化する性質を有するものが好ましい。また、樹脂成分は、溶剤を含有しないものが望ましい。 Further, the resin component of the solder-containing resin composition 6 needs to be prepared so that the melting temperature transition type solder can be settled. At the temperature of the sedimentation step, for example, a temperature of 50 ° C. to 160 ° C. Although it is premised on not to harden | cure, what has the property to reduce viscosity is preferable. Further, the resin component preferably does not contain a solvent.
 また、はんだ含有樹脂組成物6の樹脂成分は、溶融温度遷移型はんだ層7をメタライズ化する際に硬化しないのが好ましい。ここで、硬化しないとは、実質的に硬化しないことであり、例えば、160~260℃でメタライズ化する場合、樹脂成分の硬化温度(プロセス温度)が130~230℃のものを用いても問題ない。 Further, it is preferable that the resin component of the solder-containing resin composition 6 is not cured when the melting temperature transition type solder layer 7 is metallized. Here, “not cured” means substantially not cured. For example, when metallized at 160 to 260 ° C., there is a problem even if a resin component having a curing temperature (process temperature) of 130 to 230 ° C. is used. Absent.
 このように樹脂成分の硬化は、沈降工程ではできるだけ開始しないのが好ましいが、メタライズ化工程では、同時に硬化反応が開始しても問題ない。 Thus, it is preferable that the curing of the resin component is not started as much as possible in the sedimentation step, but there is no problem even if the curing reaction is started simultaneously in the metallization step.
 なお、本実施形態では、このようなはんだ含有樹脂組成物6を充填した後、脱泡するが、脱泡工程までで沈降する可能性があるので、はんだ含有樹脂組成物6を充填した後、時間をおかないで脱泡するのが好ましい。 In this embodiment, after filling with such a solder-containing resin composition 6, defoaming, but since there is a possibility of sedimentation until the defoaming step, after filling the solder-containing resin composition 6, It is preferable to defoam without taking time.
 このように焼結又はメタライズ化して形成された導電体層8は、溶融温度MPが、例えば、260℃以上の高温となる。 The conductor layer 8 formed by sintering or metallization in this way has a melting temperature MP of, for example, 260 ° C. or higher.
 よって、その後、導電体層8の溶融温度MPより低い温度で樹脂成分を硬化させ、樹脂硬化層9を形成するとともに、絶縁体層4の表面の高誘電体薄膜5を除去するとともに樹脂硬化層9を平坦化する(図1(g))。 Therefore, after that, the resin component is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the resin cured layer 9, and the high dielectric thin film 5 on the surface of the insulator layer 4 is removed and the resin cured layer is removed. 9 is flattened (FIG. 1G).
 次に、図1(h)に示すように、表面に絶縁体層10を設け、図1(i)に示すように、絶縁体層10及び樹脂硬化層9にビア9aをレーザー加工などにより形成して導電体層8を露出する。また、同時に、絶縁体層10及び絶縁体層4にビア4bを形成し、ビア導電体3を露出させる。 Next, as shown in FIG. 1 (h), an insulator layer 10 is provided on the surface, and as shown in FIG. 1 (i), vias 9a are formed in the insulator layer 10 and the cured resin layer 9 by laser processing or the like. Thus, the conductor layer 8 is exposed. At the same time, a via 4 b is formed in the insulator layer 10 and the insulator layer 4 to expose the via conductor 3.
 そして、図1(j)に示すように、めっき法などによりビア9a及びビア4bにビア導電体11を埋め込む。これにより、第2電極11A及びビア端子11Bが形成される。 Then, as shown in FIG. 1 (j), a via conductor 11 is embedded in the via 9a and the via 4b by plating or the like. Thereby, the second electrode 11A and the via terminal 11B are formed.
 次に、図1(k)に示すように、裏面側の導電体層1をエッチングなどによりパターニングして外部端子を形成し、第1電極3Aとビア端子3Bとを分離する。 Next, as shown in FIG. 1 (k), the conductor layer 1 on the back surface side is patterned by etching or the like to form an external terminal, and the first electrode 3A and the via terminal 3B are separated.
 これにより、高誘電体薄膜5を第1電極3A及び第2電極11Aとで挟持したキャパシタを内蔵するキャパシタ端子と、ビア端子3B及びビア端子11Bからなるキャパシタを有さないビア端子とが形成される。 Thereby, a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11A, and a via terminal having no capacitor including the via terminal 3B and the via terminal 11B are formed. The
 ここで、例えば、ビア端子3B及びビア端子11Bからなるビア端子は、信号線に使用され、高誘電体薄膜5を第1電極3A及び第2電極11Aとで挟持したキャパシタを内蔵するキャパシタ端子は、電源に接続されるグランドとして使用される。 Here, for example, a via terminal including the via terminal 3B and the via terminal 11B is used for a signal line, and a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11A is used. Used as a ground connected to the power supply.
 (実施形態2)
 本実施形態は、はんだ含有樹脂組成物6を充填する前に、はんだを含有しない樹脂組成物を充填し、その状態で脱泡工程を行う以外は、実施形態1と同様であるので、重複する説明は省略する。
(Embodiment 2)
The present embodiment is the same as the first embodiment except that the resin composition not containing solder is filled before the solder-containing resin composition 6 is filled, and the defoaming step is performed in that state. Description is omitted.
 本実施形態では、図2(a)~図2(c)までは、実施形態1と同様であり、図2(d)に示す工程では、ビア4a内の高誘電体薄膜5を覆うように樹脂組成物12を設け、脱泡工程を実施し、高誘電体薄膜5に存在するピンホール内の気泡を脱離し、ピンホール内に樹脂組成物12を形成する樹脂成分を充填する。 In the present embodiment, FIGS. 2A to 2C are the same as those in the first embodiment. In the process shown in FIG. 2D, the high dielectric thin film 5 in the via 4a is covered. The resin composition 12 is provided, a defoaming step is performed, bubbles in the pinholes present in the high dielectric thin film 5 are removed, and a resin component that forms the resin composition 12 is filled in the pinholes.
 その後、実施形態1と同様にビア4a内にはんだ含有樹脂組成物6を充填し、沈降工程を行う(図2(e))。この沈降工程では、はんだ含有樹脂組成物6内の溶融温度遷移型はんだは、樹脂組成物12内にまで沈降し、高誘電体薄膜5の直上に溶融温度遷移型はんだ層7を形成するようにする(図2(f))。そして、溶融温度遷移型はんだ層7をメタライズ化し、導電体層8とする(図2(g))。 Thereafter, the solder-containing resin composition 6 is filled in the via 4a in the same manner as in the first embodiment, and a sedimentation process is performed (FIG. 2 (e)). In this sedimentation step, the melting temperature transition type solder in the solder-containing resin composition 6 settles down to the resin composition 12 and forms the melting temperature transition type solder layer 7 directly on the high dielectric thin film 5. (FIG. 2 (f)). Then, the melting temperature transition type solder layer 7 is metallized to form a conductor layer 8 (FIG. 2G).
 ここで、樹脂組成物12は、熱硬化性樹脂と硬化剤とを含有するものである。熱硬化性樹脂は、実施形態1で説明したはんだ含有樹脂組成物6の樹脂成分と同様なものを用いることができる。 Here, the resin composition 12 contains a thermosetting resin and a curing agent. As the thermosetting resin, the same resin component as that of the solder-containing resin composition 6 described in the first embodiment can be used.
 樹脂組成物12の樹脂成分と、はんだ含有樹脂組成物6の樹脂成分とは、同じでも、異なるものでもよいが、はんだ含有樹脂組成物6の樹脂成分と同様に溶融温度遷移型はんだを沈降させることができるように調製する必要があり、沈降工程の温度、例えば、50℃~160℃の温度では実質的に硬化しないことが前提であるが、低粘度化する性質を有するものが好ましい。また、樹脂組成物12は、溶剤を含有しないものが望ましい。 The resin component of the resin composition 12 and the resin component of the solder-containing resin composition 6 may be the same or different, but the melting temperature transition type solder is allowed to settle in the same manner as the resin component of the solder-containing resin composition 6. However, it is premised that it does not substantially harden at the temperature of the sedimentation step, for example, a temperature of 50 ° C. to 160 ° C., but preferably has a property of reducing the viscosity. Moreover, the resin composition 12 desirably does not contain a solvent.
 また、樹脂組成物12も、はんだ含有樹脂組成物6の樹脂成分と同様に溶融温度遷移型はんだ層7をメタライズ化する際に硬化しないのが好ましい。ここで、硬化しないとは、実質的に硬化しないことであり、例えば、160~260℃でメタライズ化する場合、樹脂成分の硬化温度(プロセス温度)が130~230℃のものを用いても問題ない。 Also, it is preferable that the resin composition 12 does not harden when the melting temperature transition type solder layer 7 is metallized similarly to the resin component of the solder-containing resin composition 6. Here, “not cured” means substantially not cured. For example, when metallized at 160 to 260 ° C., there is a problem even if a resin component having a curing temperature (process temperature) of 130 to 230 ° C. is used. Absent.
 このように樹脂成分の硬化は、沈降工程ではできるだけ開始しないのが好ましいが、メタライズ化工程では、同時に硬化反応が開始しても問題ない。 Thus, it is preferable that the curing of the resin component is not started as much as possible in the sedimentation step, but there is no problem even if the curing reaction is started simultaneously in the metallization step.
 このようにメタライズ化して形成された導電体層8は、溶融温度MPが、例えば、260℃以上の高温となる。 The conductor layer 8 formed by metallization in this way has a melting temperature MP of, for example, 260 ° C. or higher.
 よって、その後、樹脂組成物12およびはんだ含有樹脂組成物6の樹脂成分を導電体層8の溶融温度MPより低い温度で樹脂成分を硬化させ、樹脂硬化層9を形成し、さらに、絶縁体層4の表面の高誘電体薄膜5を除去するとともに樹脂硬化層9を平坦化する(図2(h))。 Therefore, after that, the resin components of the resin composition 12 and the solder-containing resin composition 6 are cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9, and further, the insulator layer The high dielectric thin film 5 on the surface 4 is removed and the cured resin layer 9 is flattened (FIG. 2H).
 以下同様に、図2(i)及び図2(j)に示すように、表面に絶縁体層10を設け、絶縁体層10及び樹脂硬化層9にビア9aをレーザー加工などにより形成して導電体層8を露出する。また、同時に、絶縁体層10及び絶縁体層4にビア4bを形成し、ビア導電体3を露出させる。 Similarly, as shown in FIGS. 2 (i) and 2 (j), an insulator layer 10 is provided on the surface, and vias 9a are formed in the insulator layer 10 and the cured resin layer 9 by laser processing or the like. The body layer 8 is exposed. At the same time, a via 4 b is formed in the insulator layer 10 and the insulator layer 4 to expose the via conductor 3.
 そして、図2(k)に示すように、めっき法などによりビア9a及びビア4bにビア導電体11を埋め込む。これにより、第2電極11A及びビア端子11Bが形成される。 Then, as shown in FIG. 2 (k), the via conductor 11 is embedded in the via 9a and the via 4b by plating or the like. Thereby, the second electrode 11A and the via terminal 11B are formed.
 次に、裏面側の導電体層1をエッチングなどによりパターニングして外部端子を形成し、第1電極3Aとビア端子3Bとを分離する(図2(l))。 Next, the conductor layer 1 on the back surface side is patterned by etching or the like to form external terminals, and the first electrode 3A and the via terminal 3B are separated (FIG. 2 (l)).
 これにより、高誘電体薄膜5を第1電極3A及び第2電極11Bとで挟持したキャパシタを内蔵するキャパシタ端子と、ビア端子3B及びビア端子11Bからなるキャパシタを有さないビア端子とが形成される。 Thereby, a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11B and a via terminal having no capacitor including the via terminal 3B and the via terminal 11B are formed. The
 ここで、例えば、ビア端子3B及びビア端子11Bからなるビア端子は、信号線に使用され、高誘電体薄膜5を第1電極3A及び第2電極11Aとで挟持したキャパシタを内蔵するキャパシタ端子は、電源に接続されるグランドとして使用される。 Here, for example, a via terminal including the via terminal 3B and the via terminal 11B is used for a signal line, and a capacitor terminal including a capacitor in which the high dielectric thin film 5 is sandwiched between the first electrode 3A and the second electrode 11A is used. Used as a ground connected to the power supply.
 (変形例)
 図3には、いくつかの変形例の要部拡大図を示す。
 実施形態1、2では、高誘電体薄膜をスパッタリング法により形成したので、図3(a)に示すように、高誘電体薄膜5は、ビア4a内の側壁まで覆うように形成されたが、例えば、溶液塗布法や印刷法などによりビア4aの底部のみに設けることも可能である。この場合、図3(b)に示すように、高誘電体薄膜5Aは、第1電極3Aを覆う部分だけ設ければよい。
(Modification)
In FIG. 3, the principal part enlarged view of a some modification is shown.
In the first and second embodiments, since the high dielectric thin film is formed by the sputtering method, as shown in FIG. 3A, the high dielectric thin film 5 is formed so as to cover the side wall in the via 4a. For example, it may be provided only at the bottom of the via 4a by a solution coating method or a printing method. In this case, as shown in FIG. 3B, the high dielectric thin film 5A only needs to be provided to cover the first electrode 3A.
 また、実施形態1、2では、基板を貫通するビア導電体に隣接して本発明のキャパシタを設け、キャパシタの第1電極と第2電極とは、基板の表面と裏面とに設けたが、図3(c)に示すように、キャパシタの第1電極3Aを、第2電極11Aに隣接して表面側に設ける構造としてもよく、種々の変形例が考えられる。 In the first and second embodiments, the capacitor of the present invention is provided adjacent to the via conductor penetrating the substrate, and the first electrode and the second electrode of the capacitor are provided on the front surface and the back surface of the substrate. As shown in FIG. 3C, the first electrode 3A of the capacitor may be provided on the surface side adjacent to the second electrode 11A, and various modifications can be considered.
 (発明の作用効果)
 発明の作用効果を、図4を参照しながら説明する。
 本発明の本質は、低容量であるが小型のキャパシタの歩留まりを飛躍的に向上させ、高歩留まりで、低容量であるが小型のキャパシタを配線に隣接して自由に設けられるようにした点にある。
(Effects of the invention)
The operational effects of the invention will be described with reference to FIG.
The essence of the present invention is that the yield of low-capacitance but small capacitors is dramatically improved, and high yield and low-capacity but small capacitors can be freely provided adjacent to the wiring. is there.
 これを実現するために、高誘電体薄膜のピンホールに起因する絶縁破壊を防止する点にある。すなわち、図4(a)に示すように、高誘電体薄膜5にピンホール51が存在しても、図4(b)に示すように、高誘電体薄膜5上に樹脂組成物12を設けた後、脱泡処理を行うことにより、ピンホール51内に樹脂成分を充填し、後に硬化させることで、ピンホール51に起因する絶縁破壊を防止することができる。 In order to realize this, it is in the point of preventing dielectric breakdown due to pinholes in the high dielectric thin film. That is, as shown in FIG. 4A, even if the pinhole 51 exists in the high dielectric thin film 5, the resin composition 12 is provided on the high dielectric thin film 5 as shown in FIG. Then, by performing a defoaming process, the resin component is filled in the pinhole 51 and cured later, thereby preventing dielectric breakdown due to the pinhole 51.
 なお、高誘電体薄膜5としては、チタン酸バリウム(BTO)、チタン酸ストロンチウム(BST)などの無機高誘電体薄膜、ヒドラジン、ヒドラジン誘導体、トリアジンチオール誘導体などの有機高誘電体薄膜を挙げることができる。 Examples of the high dielectric thin film 5 include inorganic high dielectric thin films such as barium titanate (BTO) and strontium titanate (BST), and organic high dielectric thin films such as hydrazine, hydrazine derivatives, and triazine thiol derivatives. it can.
 また、このように樹脂組成物12により絶縁破壊を防止しても、高誘電体薄膜5の直上に第2電極を設けなければならないが、本発明では、これをメタライズ化した導電体層を第2電極の一部とすることにより解決している。 Even if the dielectric breakdown is prevented by the resin composition 12 as described above, the second electrode must be provided immediately above the high dielectric thin film 5, but in the present invention, the conductor layer formed by metallizing the second electrode is provided in the first layer. This is solved by using a part of two electrodes.
 すなわち、図4(c)に示すように、樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物6を用い、これを樹脂組成物12上に設けた後、溶融温度遷移型はんだを樹脂組成物12内まで沈降させて溶融温度遷移型はんだ層7を高誘電体薄膜5の直上に設け(図4(d))、これをメタライズ化して合金化し、再溶融温度が高温化した導電体層8とする(図4(e))。これにより、高誘電体薄膜5に密着して第2電極となる導電体層8を設けることができる。また、この導電体層8は、再溶融温度MPが高温化しているので、樹脂組成物12やはんだ含有樹脂組成物6の樹脂成分をその後硬化させる工程で、再溶融することなく、導電体層8が保持できる点が重要となる。 That is, as shown in FIG. 4 (c), a solder-containing resin composition 6 containing a resin component and a melting temperature transition type solder is used, and after this is provided on the resin composition 12, the melting temperature transition type solder is used. The resin composition 12 is allowed to settle and the melting temperature transition type solder layer 7 is provided directly on the high dielectric thin film 5 (FIG. 4D), which is metallized and alloyed to increase the remelting temperature. It is set as the body layer 8 (FIG.4 (e)). Thereby, the conductor layer 8 which becomes a 2nd electrode in close contact with the high dielectric material thin film 5 can be provided. In addition, since the remelting temperature MP is increased, the conductive layer 8 is a step in which the resin component of the resin composition 12 or the solder-containing resin composition 6 is subsequently cured without being remelted. The point that 8 can be held is important.
 また、この技術は、従来、ヒドラジン、ヒドラジン誘導体、トリアジンチオール誘導体などの有機高誘電体薄膜上に有効に電極を設けられなかったという課題をも解決するものである。すなわち、有機高誘電体薄膜は、めっき耐性が低く、上部電極を有効に設けられないという課題を抱えていたが、沈降させた融点遷移型薄膜をメタライズ化して上部電極とすることにより、かかる課題を解決している。 This technique also solves the problem that electrodes have not been effectively provided on organic high dielectric thin films such as hydrazine, hydrazine derivatives, and triazine thiol derivatives. That is, the organic high-dielectric thin film has a problem that the plating resistance is low and the upper electrode cannot be effectively provided, but this problem is caused by metallizing the precipitated melting point transition type thin film to form the upper electrode. Has solved.
 以上の説明は、上述した実施形態2に基づいて説明したが、実施形態1に示したように、樹脂組成物12を設けずに、はんだ含有樹脂組成物6を高誘電体薄膜5上に設けて脱泡しても、同様にピンホールによる絶縁破壊を防止できる。 The above description has been made based on the above-described second embodiment. However, as shown in the first embodiment, the solder-containing resin composition 6 is provided on the high dielectric thin film 5 without providing the resin composition 12. Even if defoaming is performed, insulation breakdown due to pinholes can be similarly prevented.
 (半導体実装部品の実施形態)
 上述した実施形態で製造されたキャパシタ内蔵基板は、例えば、半導体パッケージと半導体パッケージが実装される基板との間に設けられる。
(Embodiment of semiconductor mounting component)
The capacitor built-in substrate manufactured in the above-described embodiment is provided, for example, between a semiconductor package and a substrate on which the semiconductor package is mounted.
 このような半導体実装部品の一例を図5に示す。図5に示すように、キャパシタ内蔵基板50は、マザーボード100上に設けられたパッケージ基板200と、実装される半導体パッケージであるLSI300との間に配置される。図5(a)は、半導体実装部品の模式図であり、図5(b)は、キャパシタ内蔵基板とLSIとを示す拡大図である。 An example of such a semiconductor mounting component is shown in FIG. As shown in FIG. 5, the capacitor built-in substrate 50 is disposed between a package substrate 200 provided on the mother board 100 and an LSI 300 which is a semiconductor package to be mounted. FIG. 5A is a schematic diagram of a semiconductor mounting component, and FIG. 5B is an enlarged view showing a capacitor built-in substrate and an LSI.
 このようなキャパシタ内蔵基板50を用いることにより、LSI300の高速信号端子の直下にキャパシタを配置することが可能となる。このように直下に設けるキャパシタの機能としては、高容量であることは求められず、電圧降下の補填をするまでの時間が重要となり、すなわち、出来るだけ直下に設けられることが重要となる。 By using such a capacitor-embedded substrate 50, it is possible to dispose a capacitor immediately below the high-speed signal terminal of the LSI 300. Thus, the function of the capacitor provided immediately below is not required to have a high capacity, and the time required to compensate for the voltage drop is important, that is, it is important to be provided directly below as much as possible.
 このようなキャパシタとしては、例えば、30pF~80pF、好ましくは、50pF~80pFの容量で十分である。 As such a capacitor, for example, a capacitance of 30 pF to 80 pF, preferably 50 pF to 80 pF is sufficient.
 このようなキャパシタの拡大図を図6に示す。図6(a)に示すように、絶縁体層4に設けたビア4aの径φ1は、例えば、150μm~250μm、一例としては、200μm、第2電極11Aの直径φ2は、例えば、100μm~150μm、一例としては、125μm、第1電極3Aの直径φ3は、100μm~200μm、一例として150μmとした。 An enlarged view of such a capacitor is shown in FIG. As shown in FIG. 6A, the diameter φ1 of the via 4a provided in the insulator layer 4 is, for example, 150 μm to 250 μm, for example, 200 μm, and the diameter φ2 of the second electrode 11A is, for example, 100 μm to 150 μm. As an example, the diameter φ3 of the first electrode 3A was set to 100 μm to 200 μm, and as an example 150 μm.
 また、絶縁体層4の厚さd1は、例えば、0.04mm~0.10mm、一例として、0.05mm、絶縁体層2の厚さd2は、例えば、0.06mm~0.30mm、一例としては、0.06mmとした。 The thickness d1 of the insulator layer 4 is, for example, 0.04 mm to 0.10 mm, for example, 0.05 mm, and the thickness d2 of the insulator layer 2 is, for example, 0.06 mm to 0.30 mm, for example. As 0.06 mm.
 このようなキャパシタで、高誘電体薄膜5として、厚さ0.06μm~1.0μmのBTO薄膜を用いた場合、50~80pFのキャパシタが、歩留まり70%程度で実現できる。ここでも歩留まりは、5V以下により絶縁破壊しなかったものの歩留まりである。この例では、ピンホールに起因する絶縁破壊は排除されているが、それ以外のプロセス上の要因で70%の歩留まりとなる。 In such a capacitor, when a BTO thin film having a thickness of 0.06 μm to 1.0 μm is used as the high dielectric thin film 5, a capacitor of 50 to 80 pF can be realized with a yield of about 70%. Here again, the yield is the yield that did not break down due to 5 V or less. In this example, breakdown due to pinholes is eliminated, but the yield is 70% due to other process factors.
 一方、比較例として、従来構造のキャパシタを図6(b)に示す。このキャパシタは、同じく、直径150μmの第1電極01上に、スパッタリングにより同様な高誘電体薄膜02を設け、その上にスパッタリングにより銅のシード層を設けた後、銅メッキを施し、パターニングして、直径200μmの第2電極03を設けたものである。 On the other hand, as a comparative example, a conventional capacitor is shown in FIG. Similarly, this capacitor has a similar high dielectric thin film 02 provided by sputtering on a first electrode 01 having a diameter of 150 μm, and a copper seed layer provided thereon by sputtering, followed by copper plating and patterning. The second electrode 03 having a diameter of 200 μm is provided.
 この場合、5V印加での歩留まりは、30%となる。絶縁破壊されたもののうち、約40%分はピンホールによる絶縁破壊である。 In this case, the yield when 5V is applied is 30%. About 40% of the breakdown is due to pinhole breakdown.
 (変形例2)
 以上説明した実施形態1、2のキャパシタ内蔵基板では、装置の安定性を確保するために、電圧降下を補填するためのキャパシタを内蔵するキャパシタ端子を、実装部品の配線に使用する通常のビア端子に隣接して設けた基本構成を示したものであり、図5の半導体実装部品は、上述したキャパシタ内蔵基板を用いた半導体実装部品の一例を模式的に示したものであり、図示の構造は、実際の端子構造を正確に示しているものとはいえない。
(Modification 2)
In the capacitor-embedded substrates of Embodiments 1 and 2 described above, a normal via terminal that uses a capacitor terminal containing a capacitor for compensating for a voltage drop for wiring of a mounted component in order to ensure the stability of the device. The semiconductor mounting component shown in FIG. 5 schematically shows an example of the semiconductor mounting component using the above-described capacitor-embedded substrate, and the structure shown in FIG. It cannot be said that the actual terminal structure is accurately shown.
 キャパシタ内蔵基板の基本構成は、例えば、図7に示す構造となる場合が考えられる。
 図7に示す構造は、実施形態1,2と同様な構造のキャパシタ端子21を具備する。キャパシタ端子21は、第1電極21Aと、高誘電体薄膜5と、溶融温度遷移型はんだ層7と、第2電極21Bとを具備し、これに隣接してグランド用配線となるビア端子22と、電源用配線となるビア端子23とを具備する。そして、グランド用配線となるビア端子22は第1ビア端子22Aと第2ビア端子22Bとで構成され、第1ビア端子22Aがキャパシタ端子21の第1電極21Aと接続されている。また、電源用配線となるビア端子23は、第1ビア端子23Aと第2ビア端子23Bとで構成されるが、第2ビア端子23Bは、キャパシタ端子21の第2電極21Bに接続されている。
 また、信号用配線となるビア端子25は、グランド用配線に隣接して設けられ、第1ビア端子25Aと第2ビア端子25Bとで構成されている。
For example, the basic configuration of the capacitor-embedded substrate may be the structure shown in FIG.
The structure shown in FIG. 7 includes a capacitor terminal 21 having the same structure as in the first and second embodiments. The capacitor terminal 21 includes a first electrode 21A, a high dielectric thin film 5, a melting temperature transition type solder layer 7, and a second electrode 21B, and a via terminal 22 serving as a ground wiring adjacent thereto. And a via terminal 23 serving as a power supply wiring. The via terminal 22 serving as the ground wiring is composed of a first via terminal 22A and a second via terminal 22B, and the first via terminal 22A is connected to the first electrode 21A of the capacitor terminal 21. The via terminal 23 serving as a power supply wiring is composed of a first via terminal 23A and a second via terminal 23B, and the second via terminal 23B is connected to the second electrode 21B of the capacitor terminal 21. .
Also, the via terminal 25 serving as a signal wiring is provided adjacent to the ground wiring, and includes a first via terminal 25A and a second via terminal 25B.
 このような構成とすることにより、電圧降下が生じた場合でも、キャパシタ端子21の存在により瞬時に電圧降下を補填することができ、LSIやWLP(Wafer Level Package)などに代表される半導体装置の高速化にも対応できるものである。 By adopting such a configuration, even when a voltage drop occurs, the voltage drop can be instantaneously compensated by the presence of the capacitor terminal 21, and a semiconductor device represented by LSI, WLP (Wafer Level Package), or the like can be used. It can cope with high speed.
 これは、実施形態1,2で説明した本発明のキャパシタ端子を内蔵したキャパシタ内蔵基板を用いることにより、高誘電体薄膜の小型化、薄膜化が可能であり、且つこの場合にも高誘電体薄膜のピンホールに起因する絶縁破壊を防止することができ、信号用配線にできるだけ隣接する箇所にキャパシタを内蔵させることができるためである。よって、本発明のキャパシタ内蔵基板は、このような本発明のキャパシタを内蔵するキャパシタ内蔵基板であれば、キャパシタの配置やキャパシタ端子の接続構造などは特に限定されるものではない。 This is because the high dielectric thin film can be reduced in size and thinned by using the capacitor built-in substrate incorporating the capacitor terminal of the present invention described in the first and second embodiments. This is because dielectric breakdown due to thin film pinholes can be prevented, and a capacitor can be built in a position adjacent to the signal wiring as much as possible. Therefore, as long as the capacitor built-in substrate of the present invention is such a capacitor built-in substrate incorporating the capacitor of the present invention, the arrangement of capacitors and the connection structure of capacitor terminals are not particularly limited.
 また、端子構造についても特に限定されるものではなく、積層セラミックスキャパシタを内蔵した端子を用いたものとすることもできる。例えば、図7に示すキャパシタ内蔵基板では、信号用配線となるビア端子25と、電源用配線となるビア端子23を積層セラミックスキャパシタを内蔵した端子とした構造にすればよい。 Also, the terminal structure is not particularly limited, and a terminal having a built-in multilayer ceramic capacitor may be used. For example, the capacitor built-in substrate shown in FIG. 7 may have a structure in which a via terminal 25 serving as a signal wiring and a via terminal 23 serving as a power wiring are terminals incorporating a multilayer ceramic capacitor.
 なお、以上説明した実施形態では、ビアの断面をテーパー状に表示したが、テーパー状ではなく、垂直に近い形状に形成することもでき、これには限定されない。また、上述したキャパシタ内蔵基板は、プロセスを変更して上面側から下面側へ製造することも可能であり、このように製造したキャパシタ内蔵基板も本発明のキャパシタ内蔵基板である。なお、この場合、例えば、図7のビア端子の断面は逆方向のテーパーに見えることになる。 In the embodiment described above, the cross section of the via is displayed in a taper shape, but it may be formed in a shape close to a vertical shape instead of the taper shape, and the present invention is not limited to this. Further, the capacitor built-in substrate described above can be manufactured from the upper surface side to the lower surface side by changing the process, and the capacitor built-in substrate manufactured in this way is also the capacitor built-in substrate of the present invention. In this case, for example, the cross section of the via terminal in FIG. 7 looks like a taper in the opposite direction.
 (変形例3)
 また、以上説明した実施形態では、ビア端子を導電体を少なくとも二層積層して形成した例を説明したが、金属層を複数層積層した積層金属シートを用いてビア端子構造を形成することが可能である。
 以下、積層金属シートを用いた製造例を示す。出発材料が異なることにより構造上の相違点はあるが、基本構成は上述した実施形態と同様であるので、同一部分には同一符号を付して重複する説明は省略する。
(Modification 3)
In the embodiment described above, an example in which the via terminal is formed by laminating at least two layers of conductors has been described. However, the via terminal structure may be formed using a laminated metal sheet in which a plurality of metal layers are laminated. Is possible.
Hereinafter, the manufacture example using a laminated metal sheet is shown. Although there are structural differences due to different starting materials, the basic configuration is the same as that of the above-described embodiment, and therefore, the same portions are denoted by the same reference numerals and redundant description is omitted.
 図8は、積層金属シートを用いた製造例の一例を示す。
 図8(a)に示すように、銅からなる第1金属層61、ニッケルからなる第2金属層62、及び銅からなる第3金属層63からなる積層金属層60を用意する。この場合、第1金属層61は、第3金属層63と比較して厚い層となっているが、これに限定されない。また、ニッケルからなる第2金属層62は、銅とエッチング特性が異なる導電体であれば、ニッケルに限定されない。
FIG. 8 shows an example of a production example using a laminated metal sheet.
As shown in FIG. 8A, a laminated metal layer 60 comprising a first metal layer 61 made of copper, a second metal layer 62 made of nickel, and a third metal layer 63 made of copper is prepared. In this case, the first metal layer 61 is thicker than the third metal layer 63, but is not limited thereto. The second metal layer 62 made of nickel is not limited to nickel as long as it is a conductor having etching characteristics different from those of copper.
 まず、図8(b)に示すように、第1金属層61をエッチングして、複数の配線用端子を形成するが、この場合、キャパシタ形成用の端子61Aと、グランド用配線となる端子61Bと、電源用配線となる端子61Cと、信号用配線となる配線端子61Dとを図示する。 First, as shown in FIG. 8B, the first metal layer 61 is etched to form a plurality of wiring terminals. In this case, a capacitor forming terminal 61A and a ground wiring 61B are formed. A terminal 61C serving as a power wiring and a wiring terminal 61D serving as a signal wiring are illustrated.
 次に、端子31及び配線端子32A~34Aを絶縁体層41で埋め込む(図8(c))。ここで、絶縁体層41は、特に限定されないが、例えば、樹脂成分と、シリカなどの無機フィラーやアクリルゴム粒子などのフィラーとを含有する樹脂組成物(プレプリグ)を用いて形成すればよく、できるだけ低熱膨張率(CTE;coefficient of thermal expansion)のものが好ましい。 Next, the terminal 31 and the wiring terminals 32A to 34A are embedded with the insulator layer 41 (FIG. 8C). Here, the insulator layer 41 is not particularly limited. For example, the insulator layer 41 may be formed using a resin composition (prepreg) containing a resin component and an inorganic filler such as silica or a filler such as acrylic rubber particles. A material having a coefficient of thermal expansion (CTE) as low as possible is preferable.
 次いで、端子31をエッチングにより除去して第2金属層62を露出する凹部42を形成する(図8(d))。 Next, the terminal 31 is removed by etching to form a recess 42 exposing the second metal layer 62 (FIG. 8D).
 この後、凹部42内の第2金属層62を覆うように、高誘電体薄膜5を設け(図8(e))、凹部42内の高誘電体薄膜5を覆うように樹脂組成物12を設け、脱泡工程を実施し、高誘電体薄膜5に存在するピンホール内の気泡を脱離し、ピンホール内に樹脂組成物12を形成する樹脂成分を充填し(図8(f))、その後、凹部42内にはんだ含有樹脂組成物6を充填し、沈降工程を行って溶融温度遷移型はんだ層7を形成し(図8(g))、溶融温度遷移型はんだ層7をメタライズ化して導電体層8とし、その後、樹脂組成物12およびはんだ含有樹脂組成物6の樹脂成分を導電体層8の溶融温度MPより低い温度で樹脂成分を硬化させ、樹脂硬化層9を形成し(図8(h))、さらに、絶縁体層4の表面の高誘電体薄膜5を除去するとともに樹脂硬化層9を平坦化する(図8(i))点は実施形態2と同様である。 Thereafter, the high dielectric thin film 5 is provided so as to cover the second metal layer 62 in the recess 42 (FIG. 8E), and the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42. Providing a defoaming step, detaching bubbles in the pinholes present in the high dielectric thin film 5, and filling the resin components to form the resin composition 12 in the pinholes (FIG. 8 (f)), Thereafter, the solder-containing resin composition 6 is filled in the recesses 42, a sedimentation process is performed to form a melting temperature transition type solder layer 7 (FIG. 8G), and the melting temperature transition type solder layer 7 is metallized. Then, the resin component of the resin composition 12 and the solder-containing resin composition 6 is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9 (see FIG. 8 (h)) and the high dielectric thin film 5 on the surface of the insulator layer 4 is further removed. Both to planarize the cured resin layer 9 (FIG. 8 (i)) point is the same as in Embodiment 2.
 次に、図8(j)に示すように、凹部42内の樹脂硬化層9にビア9aをレーザー加工などにより形成して導電体層8を露出する。そして、図8(k)に示すように、めっき法などによりビア9aにビア導電体11を埋め込み、同時に配線を形成する。これにより、上部配線となる、第1電極31Aと、配線端子32A~34Aが形成される。 Next, as shown in FIG. 8 (j), vias 9a are formed in the cured resin layer 9 in the recess 42 by laser processing or the like to expose the conductor layer 8. Then, as shown in FIG. 8K, via conductors 11 are embedded in the vias 9a by plating or the like, and wirings are formed at the same time. As a result, the first electrode 31A and the wiring terminals 32A to 34A to be the upper wiring are formed.
 次に、図8(l)に示すように、裏面側の第2金属層62及び第3金属層63をパターニングし、導電体層1をエッチングなどによりパターニングして外部端子を形成し、第2電極31Bと、配線端子32B~34Bが形成される。 Next, as shown in FIG. 8L, the second metal layer 62 and the third metal layer 63 on the back surface side are patterned, and the conductor layer 1 is patterned by etching or the like to form external terminals. An electrode 31B and wiring terminals 32B to 34B are formed.
 これにより、高誘電体薄膜5を第1電極31A及び第2電極31Bとで挟持したキャパシタを内蔵するキャパシタ端子31と、配線端子32A及び配線端子32Bからなる配線端子32~34とが形成される。ここで、配線端子32は、グランド配線となり、配線端子33は、電源用配線となり、配線端子34は、信号用配線となる。 As a result, the capacitor terminal 31 containing the capacitor sandwiching the high dielectric thin film 5 between the first electrode 31A and the second electrode 31B and the wiring terminals 32 to 34 including the wiring terminal 32A and the wiring terminal 32B are formed. . Here, the wiring terminal 32 is a ground wiring, the wiring terminal 33 is a power supply wiring, and the wiring terminal 34 is a signal wiring.
 図9は、積層金属シートを用いた製造例の他の例を示す。
 図9(a)に示すように、銅からなる第1金属層61、ニッケルからなる第2金属層62、及び銅からなる第3金属層63からなる積層金属層60を用意し、まず、図9(b)に示すように、第1金属層61をエッチングして、キャパシタを形成するための凹部42を形成する。
FIG. 9 shows another example of a production example using a laminated metal sheet.
As shown in FIG. 9A, a laminated metal layer 60 comprising a first metal layer 61 made of copper, a second metal layer 62 made of nickel, and a third metal layer 63 made of copper is prepared. As shown in FIG. 9B, the first metal layer 61 is etched to form a recess 42 for forming a capacitor.
 この後、凹部42内の第2金属層62を覆うように、高誘電体薄膜5を設け(図9(c))、凹部42内の高誘電体薄膜5を覆うように樹脂組成物12を設け、脱泡工程を実施し、高誘電体薄膜5に存在するピンホール内の気泡を脱離し、ピンホール内に樹脂組成物12を形成する樹脂成分を充填し(図9(d))、その後、凹部42内にはんだ含有樹脂組成物6を充填し、沈降工程を行って溶融温度遷移型はんだ層7を形成し(図9(e))、溶融温度遷移型はんだ層7をメタライズ化して導電体層8とし、その後、樹脂組成物12およびはんだ含有樹脂組成物6の樹脂成分を導電体層8の溶融温度MPより低い温度で樹脂成分を硬化させ、樹脂硬化層9を形成し(図9(f))、さらに、絶縁体層4の表面の高誘電体薄膜5を除去するとともに樹脂硬化層9を平坦化する(図9(g))点は実施形態2及び図8の方法と同様である。
 なお、この方法では、高誘電体薄膜5を設けるプロセスでは、積層金属シート60のみ存在するので、例えば、400℃程度の高温プロセスのスパッタリングなどを容易に利用できるという利点がある。
Thereafter, the high dielectric thin film 5 is provided so as to cover the second metal layer 62 in the recess 42 (FIG. 9C), and the resin composition 12 is applied so as to cover the high dielectric thin film 5 in the recess 42. Providing a defoaming step, detaching bubbles in the pinholes present in the high dielectric thin film 5, and filling the resin components forming the resin composition 12 in the pinholes (FIG. 9 (d)), Thereafter, the solder-containing resin composition 6 is filled in the recesses 42, a sedimentation process is performed to form the melting temperature transition type solder layer 7 (FIG. 9E), and the melting temperature transition type solder layer 7 is metallized. Then, the resin component of the resin composition 12 and the solder-containing resin composition 6 is cured at a temperature lower than the melting temperature MP of the conductor layer 8 to form the cured resin layer 9 (see FIG. 9 (f)), and when the high dielectric thin film 5 on the surface of the insulator layer 4 is removed, Moni cured resin layer 9 is planarized (FIG. 9 (g)) point is the same as the method of Embodiment 2, and FIG.
In this method, since only the laminated metal sheet 60 exists in the process of providing the high dielectric thin film 5, for example, there is an advantage that sputtering at a high temperature process of about 400 ° C. can be easily used.
 次に、図9(h)に示すように、第1金属層61をエッチングして、凹部42内の構造を残し、キャパシタ形成用の端子以外の端子を形成する。この場合、グランド用配線となる端子61Bと、電源用配線となる端子61Cと、信号用配線となる配線端子61Dとを図示する。 Next, as shown in FIG. 9 (h), the first metal layer 61 is etched to leave the structure in the recess 42 and form terminals other than the terminals for capacitor formation. In this case, a terminal 61B serving as a ground wiring, a terminal 61C serving as a power wiring, and a wiring terminal 61D serving as a signal wiring are illustrated.
 次に、エッチングで除去した部分を絶縁体層41で埋め込み(図9(i))、次に、図9(j)に示すように、凹部42内の樹脂硬化層9にビア9aをレーザー加工などにより形成して導電体層8を露出する。そして、図9(k)に示すように、めっき法などによりビア9aにビア導電体31を埋め込み、同時に配線を形成する。これにより、上部配線となる、第1電極31Aと、配線端子32A~34Aが形成される。 Next, the portion removed by the etching is embedded with an insulator layer 41 (FIG. 9 (i)). Next, as shown in FIG. 9 (j), a via 9a is laser-processed in the cured resin layer 9 in the recess 42. Etc. to expose the conductor layer 8. Then, as shown in FIG. 9K, via conductors 31 are embedded in the vias 9a by plating or the like, and wirings are formed at the same time. As a result, the first electrode 31A and the wiring terminals 32A to 34A to be the upper wiring are formed.
 次に、図9(l)に示すように、裏面側の第2金属層62及び第3金属層63をパターニングし、導電体層1をエッチングなどによりパターニングして外部端子を形成し、第2電極31Bと、配線端子32B~34Bが形成される。 Next, as shown in FIG. 9L, the second metal layer 62 and the third metal layer 63 on the back surface side are patterned, and the conductor layer 1 is patterned by etching or the like to form external terminals. An electrode 31B and wiring terminals 32B to 34B are formed.
 これにより、高誘電体薄膜5を第1電極31A及び第2電極31Bとで挟持したキャパシタを内蔵するキャパシタ端子31と、配線端子32A及び配線端子32Bからなる配線端子32~34とが形成される。ここで、配線端子32は、グランド配線となり、配線端子33は、電源用配線となり、配線端子34は、信号用配線となる。 As a result, the capacitor terminal 31 containing the capacitor sandwiching the high dielectric thin film 5 between the first electrode 31A and the second electrode 31B and the wiring terminals 32 to 34 including the wiring terminal 32A and the wiring terminal 32B are formed. . Here, the wiring terminal 32 is a ground wiring, the wiring terminal 33 is a power supply wiring, and the wiring terminal 34 is a signal wiring.
 なお、図8及び図9で説明した実施形態において、プロセスを変更して上面側から下面側へ製造することも可能であり、このように製造したキャパシタ内蔵基板も本発明のキャパシタ内蔵基板である。 In the embodiment described with reference to FIG. 8 and FIG. 9, it is possible to manufacture from the upper surface side to the lower surface side by changing the process, and the capacitor-embedded substrate thus manufactured is also the capacitor-embedded substrate of the present invention. .
  1 導電体層
  2 絶縁体層
  3 ビア導電体
  3A 第1電極
  3B ビア端子
  4 絶縁体層
  5、5A、5B 高誘電体薄膜
  6 はんだ含有樹脂組成物
  7 溶融温度遷移型はんだ層
  8 導電体層
  9 樹脂硬化層
 10 絶縁体層
 11 ビア導電体
 11A 第2電極
 11B ビア端子
 12 樹脂組成物
 50 キャパシタ内蔵基板
 51 ピンホール
100 マザーボード
200 パッケージ基板
300 LSI(半導体実装部品)
DESCRIPTION OF SYMBOLS 1 Conductor layer 2 Insulator layer 3 Via conductor 3A 1st electrode 3B Via terminal 4 Insulator layer 5, 5A, 5B High dielectric thin film 6 Solder containing resin composition 7 Melting temperature transition type solder layer 8 Conductor layer 9 Hardened resin layer 10 Insulator layer 11 Via conductor 11A Second electrode 11B Via terminal 12 Resin composition 50 Substrate with built-in capacitor 51 Pinhole 100 Motherboard 200 Package substrate 300 LSI (semiconductor mounting component)

Claims (17)

  1.  第1電極を形成する工程(1)と、
     前記第1電極上に高誘電体薄膜を形成する工程(2)と、
     前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡して前記高誘電体薄膜のピンホールに前記樹脂を充填する工程(3)と、
     前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(4)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(5)と、
     前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(6)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2電極を形成する工程(7)と、を具備することを特徴とするキャパシタの製造方法。
    Forming a first electrode (1);
    Forming a high dielectric thin film on the first electrode (2);
    A step (3) of providing a solder-containing resin composition containing a resin component and a melting temperature transition type solder on the high dielectric thin film and defoaming to fill the pinhole of the high dielectric thin film with the resin;
    (4) forming a melting temperature transition type solder layer on the high dielectric thin film by precipitating the melting temperature transition type solder;
    A step (5) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    A step (6) of curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to form a cured resin layer;
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode connected to the conductor layer (7). .
  2.  第1電極を形成する工程(1)と、
     前記第1電極上に高誘電体薄膜を形成する工程(2)と、
     前記高誘電体薄膜上に第1樹脂成分を含む樹脂組成物層を設けて脱泡して前記高誘電体薄膜のピンホールに前記第1樹脂成分を充填する工程(3-1)と、
     第2樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を前記樹脂組成物層上に設ける工程(3-2)と、
     前記溶融温度遷移型はんだを前記樹脂組成物層中まで沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(4)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(5)と、
     前記導電体層の溶融温度MPより低い温度で前記第1樹脂成分及び前記第2樹脂成分を硬化して樹脂硬化層とする工程(7)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2電極を形成する工程(8)と、を具備することを特徴とするキャパシタの製造方法。
    Forming a first electrode (1);
    Forming a high dielectric thin film on the first electrode (2);
    Providing a resin composition layer containing a first resin component on the high dielectric thin film and degassing to fill the pin hole of the high dielectric thin film with the first resin component (3-1);
    Providing a solder-containing resin composition containing a second resin component and a melting temperature transition type solder on the resin composition layer (3-2);
    (4) forming the melting temperature transition type solder layer on the high dielectric thin film by allowing the melting temperature transition type solder to settle into the resin composition layer;
    A step (5) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    A step (7) of curing the first resin component and the second resin component at a temperature lower than the melting temperature MP of the conductor layer to form a resin cured layer;
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode connected to the conductor layer (8). .
  3.  請求項1又は2において、
     前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタの製造方法。
    In claim 1 or 2,
    A method for producing a capacitor, wherein the defoaming is performed at a temperature of room temperature to 160 ° C.
  4.  絶縁体からなる第1層に貫通して設けられた複数のビア導電体を形成する工程(11)と、
     前記複数のビア導電体のうちのキャパシタを設けるビア導電体を第1電極として他のビア導電体を絶縁体からなる第2層で覆い、前記第1電極上に高誘電体薄膜を形成する工程(12)と、
     前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(13)と、
     前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(14)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(15)と、
     前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(16)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2ビア導電体からなる第2電極を形成する工程(17)と、
     前記第2層に貫通孔を形成して前記ビア導電体を露出するとともに当該ビア導電体に接続する第3ビア導電体を設ける工程(18)とを具備することを特徴とするキャパシタ内蔵基板の製造方法。
    A step (11) of forming a plurality of via conductors provided penetrating through the first layer made of an insulator;
    A step of forming a high dielectric thin film on the first electrode by covering a via conductor provided with a capacitor among the plurality of via conductors as a first electrode and covering another via conductor with a second layer made of an insulator. (12)
    Providing a solder-containing resin composition containing a resin component and a melting temperature transition type solder on the high dielectric thin film and defoaming (13);
    A step (14) of forming a melting temperature transition type solder layer on the high dielectric thin film by precipitating the melting temperature transition type solder;
    A step (15) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    A step (16) of curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to form a cured resin layer;
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second via conductor connected to the conductor layer;
    Forming a through hole in the second layer to expose the via conductor and providing a third via conductor connected to the via conductor (18). Production method.
  5.  絶縁体からなる第1層に貫通して設けられた複数のビア導電体を形成する工程(11)と、
     前記複数のビア導電体のうちのキャパシタを設けるビア導電体を第1電極として他のビア導電体を絶縁体からなる第2層で覆い、前記第1電極上に高誘電体薄膜を形成する工程(12)と、
     前記高誘電体薄膜上に第1樹脂成分を含む樹脂組成物層を設けて脱泡する工程(13-1)と、
     第2樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を前記樹脂組成物層上に設ける工程(13-2)と、
     前記溶融温度遷移型はんだを前記樹脂組成物層中まで沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(14)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(15)と、
     前記導電体層の溶融温度MPより低い温度で前記第1樹脂成分及び前記第2樹脂成分を硬化して樹脂硬化層とする工程(16)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2ビア導電体からなる第2電極を形成する工程(17)と、
     前記第2層に貫通孔を形成して前記ビア導電体を露出するとともに当該ビア導電体に接続する第3ビア導電体を設ける工程(18)とを具備することを特徴とするキャパシタ内蔵基板の製造方法。
    A step (11) of forming a plurality of via conductors provided penetrating through the first layer made of an insulator;
    A step of forming a high dielectric thin film on the first electrode by covering a via conductor provided with a capacitor among the plurality of via conductors as a first electrode and covering another via conductor with a second layer made of an insulator. (12)
    Providing a resin composition layer containing a first resin component on the high dielectric thin film and defoaming (13-1);
    Providing a solder-containing resin composition containing a second resin component and a melting temperature transition type solder on the resin composition layer (13-2);
    A step (14) of forming the melting temperature transition type solder layer on the high dielectric thin film by allowing the melting temperature transition type solder to settle into the resin composition layer;
    A step (15) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    A step (16) of curing the first resin component and the second resin component at a temperature lower than the melting temperature MP of the conductor layer to form a resin cured layer;
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second via conductor connected to the conductor layer;
    Forming a through hole in the second layer to expose the via conductor and providing a third via conductor connected to the via conductor (18). Production method.
  6.  請求項4又は5において、
     前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタ内蔵基板の製造方法。
    In claim 4 or 5,
    A method for producing a capacitor-embedded substrate, wherein the defoaming is performed at a temperature of room temperature to 160 ° C.
  7.  金属層を複数層積層した積層金属シートの第1金属層をエッチングして複数の配線端子を形成する工程(21)と、
     前記配線端子を埋め込む絶縁層を形成する工程(22)と、
     前記複数の配線端子のうちのキャパシタを設けるキャパシタ端子を形成する箇所の配線端子を除去して当該配線端子の下層の第2金属層を第1電極として露出する凹部を形成する工程(23)と、
     少なくとも前記凹部内の前記第1電極を覆う高誘電体薄膜を形成する工程(24)と、
     前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(25)と、
     前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(26)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(27)と、
     前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(28)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2導電体からなる第2電極を形成する工程(29)とを具備することを特徴とするキャパシタ内蔵基板の製造方法。
    Etching the first metal layer of the laminated metal sheet in which a plurality of metal layers are laminated to form a plurality of wiring terminals;
    Forming an insulating layer for embedding the wiring terminals (22);
    A step (23) of removing a wiring terminal where a capacitor terminal for forming a capacitor from among the plurality of wiring terminals is to be formed and exposing a second metal layer under the wiring terminal as a first electrode; ,
    Forming a high dielectric thin film covering at least the first electrode in the recess;
    Providing a solder-containing resin composition containing a resin component and a melting temperature transition type solder on the high dielectric thin film and defoaming (25);
    (26) a step of sinking the melting temperature transition type solder to form a melting temperature transition type solder layer on the high dielectric thin film;
    A step (27) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    A step (28) of curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to form a cured resin layer;
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second conductor connected to the conductor layer (29). A method of manufacturing a capacitor built-in substrate.
  8.  金属層を複数層積層した積層金属シートのキャパシタを設けるキャパシタ端子を形成する箇所の第1金属層をエッチングして前記第1金属層の下層の第2金属層を第1電極として露出する凹部を形成する工程(31)と、
     少なくとも前記凹部内の前記第1電極を覆う高誘電体薄膜を形成する工程(32)と、
     前記高誘電体薄膜上に樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を設けて脱泡する工程(33)と、
     前記溶融温度遷移型はんだを沈降させて前記高誘電体薄膜上に溶融温度遷移型はんだ層を形成する工程(34)と、
     前記溶融温度遷移型はんだ層を溶融、合金化して再溶融温度がMPの導電体層とする工程(35)と、
     前記導電体層の溶融温度MPより低い温度で前記樹脂成分を硬化して樹脂硬化層とする工程(36)と、
     前記凹部内の前記導電体層及び前記樹脂硬化層と、前記キャパシタ端子以外の配線端子を残して前記第1金属層をエッチングする工程(37)と、
     前記導電体層及び前記樹脂硬化層と、前記配線端子を埋め込む絶縁層を形成する工程(38)と、
     前記樹脂硬化層に貫通孔を形成して前記導電体層を露出するとともに当該導電体層に接続する第2導電体からなる第2電極を形成する工程(38)とを具備することを特徴とするキャパシタ内蔵基板の製造方法。
    A recess that exposes a second metal layer under the first metal layer as a first electrode by etching a first metal layer at a location where a capacitor terminal for providing a capacitor of a laminated metal sheet in which a plurality of metal layers are laminated is provided. Forming (31);
    Forming a high dielectric thin film covering at least the first electrode in the recess;
    Providing a solder-containing resin composition containing a resin component and a melting temperature transition type solder on the high dielectric thin film and defoaming (33);
    A step (34) of forming a melting temperature transition type solder layer on the high dielectric thin film by precipitating the melting temperature transition type solder;
    A step (35) of melting and alloying the melting temperature transition type solder layer to form a conductor layer having a remelting temperature of MP;
    Curing the resin component at a temperature lower than the melting temperature MP of the conductor layer to form a resin cured layer (36);
    Etching the first metal layer leaving the wiring layer other than the capacitor layer and the conductor layer and the resin cured layer in the recess; and
    Forming the conductive layer and the cured resin layer, and an insulating layer for embedding the wiring terminal (38);
    Forming a through hole in the cured resin layer to expose the conductor layer and forming a second electrode made of a second conductor connected to the conductor layer (38). A method of manufacturing a capacitor built-in substrate.
  9.  請求項7又は8において、
     前記脱泡を室温以上160℃以下の温度で行うことを特徴とするキャパシタ内蔵基板の製造方法。
    In claim 7 or 8,
    A method for producing a capacitor-embedded substrate, wherein the defoaming is performed at a temperature of room temperature to 160 ° C.
  10.  半導体パッケージと半導体パッケージが実装される基板との間に設けられるキャパシタ内蔵基板であって、前記半導体パッケージと前記基板とを接続する複数のビア端子と、前記ビア端子に隣接して設けられ且つキャパシタが内蔵されたキャパシタ内蔵端子とを具備し、
     前記キャパシタ内蔵端子は、第1電極と、前記第1電極上に設けられた高誘電体薄膜と、前記高誘電体薄膜上に設けられた溶融遷移型はんだからなる導電体層と、前記導電体層の上に設けられた樹脂硬化層と、前記樹脂硬化層に設けられ前記導電体層を露出するまで貫通した貫通孔内に設けられた第2ビア導電体からなる第2電極とを具備することを特徴とするキャパシタ内蔵基板。
    A substrate with a built-in capacitor provided between a semiconductor package and a substrate on which the semiconductor package is mounted, a plurality of via terminals connecting the semiconductor package and the substrate, provided adjacent to the via terminals, and a capacitor And a built-in capacitor terminal.
    The capacitor built-in terminal includes a first electrode, a high-dielectric thin film provided on the first electrode, a conductor layer made of molten transition type solder provided on the high-dielectric thin film, and the conductor A cured resin layer provided on the layer, and a second electrode made of a second via conductor provided in the through hole provided in the cured resin layer and penetrating until the conductive layer is exposed. A capacitor-embedded substrate.
  11.  請求項10において、
     前記ビア端子は、絶縁体からなる第1層を貫通するビア導電体と、前記第1層上に設けられた前記樹脂硬化層からなる第2層を貫通して前記ビア導電体と接続された第2ビア導電体とからなることを特徴とするキャパシタ内蔵基板。
    In claim 10,
    The via terminal is connected to the via conductor passing through the first layer made of an insulator and the second layer made of the cured resin layer provided on the first layer. A capacitor built-in substrate comprising a second via conductor.
  12.  請求項10又は11において、
     前記第1電極は、絶縁体からなる第1層を貫通して設けられた前記ビア導電体を具備する
    ことを特徴とするキャパシタ内蔵基板。
    In claim 10 or 11,
    The capacitor-embedded substrate, wherein the first electrode includes the via conductor provided through a first layer made of an insulator.
  13.  請求項10又は11において、
     前記第1電極は、絶縁体からなる前記第1層上に設けられた前記樹脂硬化層を貫通して設けられた前記ビア導電体を具備することを特徴とするキャパシタ内蔵基板。
    In claim 10 or 11,
    The substrate with a built-in capacitor, wherein the first electrode includes the via conductor provided through the resin cured layer provided on the first layer made of an insulator.
  14.  請求項10~13の何れか一項において、
     前記導電体層は、樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を沈降して形成した溶融遷移型はんだからなり、前記樹脂硬化層は、前記はんだ含有樹脂組成物の樹脂成分の硬化物であり、前記高誘電体薄膜のピンホール内には前記はんだ含有樹脂組成物の樹脂成分が充填されていることを特徴とするキャパシタ内蔵基板。
    In any one of claims 10 to 13,
    The conductor layer is made of a melt transition type solder formed by precipitating a solder-containing resin composition containing a resin component and a melting temperature transition type solder, and the cured resin layer is a resin component of the solder-containing resin composition A capacitor-embedded substrate, wherein a pinhole of the high dielectric thin film is filled with a resin component of the solder-containing resin composition.
  15.  信号用配線端子と、この信号用配線端子に隣接して設けられキャパシタ内蔵端子とを有するキャパシタ内蔵基板であって、
     前記キャパシタ内蔵端子は、第1電極と、前記第1電極上に設けられた高誘電体薄膜と、前記高誘電体薄膜上に設けられ且つ樹脂成分と溶融温度遷移型はんだとを含むはんだ含有樹脂組成物を沈降して形成した溶融遷移型はんだからなる導電体層と、前記導電体層の上に設けられ且つ前記はんだ含有樹脂組成物の樹脂成分が硬化した樹脂硬化層と、前記樹脂硬化層に設けられ前記導電体層を露出するまで貫通した貫通孔内に設けられた第2ビア導電体からなる第2電極とを具備し、前記高誘電体薄膜のピンホール内には前記はんだ含有樹脂組成物の樹脂成分が充填されていることを特徴とするキャパシタ内蔵基板。
    A capacitor built-in substrate having a signal wiring terminal and a capacitor built-in terminal provided adjacent to the signal wiring terminal,
    The capacitor built-in terminal includes a first electrode, a high dielectric thin film provided on the first electrode, a solder-containing resin provided on the high dielectric thin film and including a resin component and a melting temperature transition type solder. A conductor layer made of a molten transition type solder formed by settling the composition, a resin cured layer provided on the conductor layer and cured with a resin component of the solder-containing resin composition, and the resin cured layer And a second electrode made of a second via conductor provided in a through-hole penetrating until the conductor layer is exposed, and the solder-containing resin is provided in the pinhole of the high dielectric thin film A capacitor-embedded substrate, wherein the resin component of the composition is filled.
  16.  請求項10~15の何れか一項に記載のキャパシタ内蔵基板と、このキャパシタ内蔵基板に実装された前記半導体パッケージとを具備することを特徴とする半導体装置実装部品。 A semiconductor device mounting component comprising the capacitor built-in substrate according to any one of claims 10 to 15 and the semiconductor package mounted on the capacitor built-in substrate.
  17.  請求項16に記載の半導体実装部品において、前記キャパシタ内蔵基板が前記基板に実装されていることを特徴とする半導体装置実装部品。 The semiconductor device mounting component according to claim 16, wherein the capacitor built-in substrate is mounted on the substrate.
PCT/JP2017/029906 2016-08-22 2017-08-22 Method for manufacturing capacitor, method for manufacturing substrate with built-in capacitor, substrate with built-in capacitor, and semiconductor device mounting component WO2018038094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535691A JP6967005B2 (en) 2016-08-22 2017-08-22 Capacitor manufacturing method, capacitor built-in board manufacturing method, capacitor built-in board and semiconductor device mounting parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-162218 2016-08-22
JP2016162218 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018038094A1 true WO2018038094A1 (en) 2018-03-01

Family

ID=61245062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029906 WO2018038094A1 (en) 2016-08-22 2017-08-22 Method for manufacturing capacitor, method for manufacturing substrate with built-in capacitor, substrate with built-in capacitor, and semiconductor device mounting component

Country Status (2)

Country Link
JP (1) JP6967005B2 (en)
WO (1) WO2018038094A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094242A (en) * 2000-09-14 2002-03-29 Denso Corp Material for connecting layers of printed multi-layer board and method for manufacturing printed multi-layer board using the material
WO2004040604A1 (en) * 2002-10-30 2004-05-13 Mitsui Mining & Smelting Co.,Ltd. Copper foil with dielectric layer for formation of capacitor layer, copper-clad laminate for formation of capacitor layer using such copper foil with dielectric layer, and method for producing such copper foil with dielectric layer for formation of capacitor layer
JP2007305825A (en) * 2006-05-12 2007-11-22 Nippon Mektron Ltd Method for manufacturing circuit board
JP2008041930A (en) * 2006-08-07 2008-02-21 Shinko Electric Ind Co Ltd Interposer with built-in capacitor, manufacturing method therefor, and electronic component device
JP2008042118A (en) * 2006-08-10 2008-02-21 Shinko Electric Ind Co Ltd Substrate with built-in capacitor, its manufacturing method, and electronic component device
JP2008084933A (en) * 2006-09-26 2008-04-10 Fujitsu Ltd Interposer and manufacturing method thereof
JP2008113002A (en) * 2006-10-27 2008-05-15 Samsung Electro Mech Co Ltd Printed circuit board with built-in capacitor, and manufacturing method thereof
JP2008160040A (en) * 2006-12-26 2008-07-10 Tdk Corp Manufacturing method of capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094242A (en) * 2000-09-14 2002-03-29 Denso Corp Material for connecting layers of printed multi-layer board and method for manufacturing printed multi-layer board using the material
WO2004040604A1 (en) * 2002-10-30 2004-05-13 Mitsui Mining & Smelting Co.,Ltd. Copper foil with dielectric layer for formation of capacitor layer, copper-clad laminate for formation of capacitor layer using such copper foil with dielectric layer, and method for producing such copper foil with dielectric layer for formation of capacitor layer
JP2007305825A (en) * 2006-05-12 2007-11-22 Nippon Mektron Ltd Method for manufacturing circuit board
JP2008041930A (en) * 2006-08-07 2008-02-21 Shinko Electric Ind Co Ltd Interposer with built-in capacitor, manufacturing method therefor, and electronic component device
JP2008042118A (en) * 2006-08-10 2008-02-21 Shinko Electric Ind Co Ltd Substrate with built-in capacitor, its manufacturing method, and electronic component device
JP2008084933A (en) * 2006-09-26 2008-04-10 Fujitsu Ltd Interposer and manufacturing method thereof
JP2008113002A (en) * 2006-10-27 2008-05-15 Samsung Electro Mech Co Ltd Printed circuit board with built-in capacitor, and manufacturing method thereof
JP2008160040A (en) * 2006-12-26 2008-07-10 Tdk Corp Manufacturing method of capacitor

Also Published As

Publication number Publication date
JP6967005B2 (en) 2021-11-17
JPWO2018038094A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
CN111508692B (en) Inductance element, package member, and switching regulator
US9253882B2 (en) Electronic component built-in multi-layer wiring board and method of manufacturing the same
US7701052B2 (en) Power core devices
US8206530B2 (en) Manufacturing method of printed circuit board having electro component
US9560770B2 (en) Component built-in board and method of manufacturing the same, and mounting body
TW200305260A (en) Multi-layered semiconductor device and method of manufacturing same
US7738257B2 (en) Microelectronic device including bridging interconnect to top conductive layer of passive embedded structure and method of making same
JP2008160160A (en) Wiring board and semiconductor device
US20070177331A1 (en) Non-flaking capacitor material, capacitive substrate having an internal capacitor therein including said non-flaking capacitor material, and method of making a capacitor member for use in a capacitive substrate
KR100816623B1 (en) Power core devices and methods of making thereof
KR20160059125A (en) Element embedded printed circuit board and method of manufacturing the same
JP4839824B2 (en) Capacitor-embedded substrate and manufacturing method thereof
US9699921B2 (en) Multi-layer wiring board
KR101300318B1 (en) Printed circuit board and method of manufacturing a printed circuit board
US11019725B2 (en) Wiring substrate
WO2018038094A1 (en) Method for manufacturing capacitor, method for manufacturing substrate with built-in capacitor, substrate with built-in capacitor, and semiconductor device mounting component
CN103476197B (en) A kind of manufacture method of printed circuit board and printed circuit board
JP2006186058A (en) Module comprising built-in component and manufacturing method thereof
JP2005129899A (en) Wiring board and semiconductor device
JP6315681B2 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP6998744B2 (en) Built-in component board
JP4772586B2 (en) Circuit board manufacturing method
JP2009004417A (en) Solid electrolytic capacitor, substrate with built-in solid electrolytic capacitor, and manufacturing method therefor
WO2018047612A1 (en) Component-incorporated substrate and method for manufacturing same
US9826646B2 (en) Component built-in board and method of manufacturing the same, and mounting body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843574

Country of ref document: EP

Kind code of ref document: A1