WO2018037960A1 - Optical connector production method - Google Patents

Optical connector production method Download PDF

Info

Publication number
WO2018037960A1
WO2018037960A1 PCT/JP2017/029289 JP2017029289W WO2018037960A1 WO 2018037960 A1 WO2018037960 A1 WO 2018037960A1 JP 2017029289 W JP2017029289 W JP 2017029289W WO 2018037960 A1 WO2018037960 A1 WO 2018037960A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
convex portion
ferrule
end surface
optical
Prior art date
Application number
PCT/JP2017/029289
Other languages
French (fr)
Japanese (ja)
Inventor
芳享 為國
大 佐々木
知巳 佐野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018535614A priority Critical patent/JPWO2018037960A1/en
Publication of WO2018037960A1 publication Critical patent/WO2018037960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • One aspect of the present invention relates to a method for manufacturing an optical connector.
  • This application claims priority based on Japanese Patent Application No. 2016-163911 filed on August 24, 2016, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 describes an optical connector with a lens.
  • This optical connector with a lens includes an optical fiber and a ferrule having a holding hole for holding the optical fiber.
  • the optical fiber and the ferrule are provided in a pair, and a light guide member is interposed between the pair of optical fibers.
  • the light guide member includes a main body located between the pair of optical fibers and a spherical light guide lens disposed inside the main body.
  • An optical connector manufacturing method is an optical connector manufacturing method including a ferrule that holds an optical fiber, the optical fiber being exposed to an end surface of the ferrule, and fixing the optical fiber to the ferrule; A step of mirror-finishing the end face together with the optical fiber, and a step of attaching a material to a region other than the region where the optical fiber is exposed on the end surface to form a convex portion.
  • FIG. 1 is a perspective view showing an optical connector according to the first embodiment.
  • 2 is a sectional side view of the optical connector of FIG.
  • FIG. 3 is a side sectional view showing a method for manufacturing the optical connector of FIG.
  • FIG. 4A is a plan view showing a convex portion according to a modification.
  • FIG. 4B is a plan view showing a convex portion according to a modification.
  • FIG. 4C is a plan view showing a convex portion according to a modification.
  • FIG. 4D is a plan view showing a convex portion according to a modification.
  • FIG. 5 is a plan view showing a convex portion according to a modification.
  • FIG. 6 is a side sectional view showing a method for manufacturing an optical connector according to the second embodiment.
  • FIG. 7 is a side cross-sectional view illustrating the method of manufacturing the optical connector according to the third embodiment.
  • FIG. 8 is a side cross-sectional view showing end surfaces of an optical fiber and a ferrule according to a modification.
  • FIG. 9A is a side sectional view schematically showing a conventional optical connection structure.
  • FIG. 9B is a side sectional view schematically showing a conventional optical connection structure.
  • FIG. 9A is a side sectional view showing an example of the structure of a PC type ferrule.
  • the ferrule 100 has a hole 102 that holds the optical fiber 120.
  • the optical fiber 120 is inserted through the hole 102.
  • the optical fibers 120 are optically coupled to each other by pressing the distal end surface of the optical fiber 120 in physical contact with the distal end surface of the optical fiber 120 of the mating connector.
  • the above method has the following problems.
  • the tip surfaces of the two optical fibers 120 are physically contacted and separated from each other and attached and detached. Therefore, if the attachment and detachment are repeated, the tip surfaces of the optical fibers 120 may be worn.
  • the connection is made with foreign matter attached to the end face 104 of the ferrule 100, the foreign matter comes into close contact with the end face 104 by the pressing force.
  • a contact type cleaner In order to remove the adhered foreign matter, it is necessary to use a contact type cleaner.
  • frequent cleaning is necessary to prevent adhesion of foreign matter.
  • a predetermined pressing force is required for each optical fiber 120. Therefore, as the number of optical fibers 120 increases, a greater force is required for connection. It becomes.
  • a structure in which a spacer 106 is interposed between the two end faces 104 to provide a gap between the tip faces 121 of the two optical fibers 120 is conceivable.
  • the gap needs to be adjusted with high accuracy.
  • the spacer 106 defines the interval, the thickness of the spacer 106 needs to be designed with high accuracy.
  • the interval is very small, it is required to make the spacer 106 very thin. Therefore, it is difficult to design and manufacture the spacer 106. Since the spacer 106 may drop off, it is difficult to handle the spacer 106.
  • This disclosure is intended to provide a method of manufacturing an optical connector that can be easily designed and manufactured, and that can manufacture an optical connector that is easy to handle.
  • An optical connector manufacturing method is an optical connector manufacturing method including a ferrule that holds an optical fiber, the optical fiber being exposed to an end surface of the ferrule, and fixing the optical fiber to the ferrule; A step of mirror-finishing the end face together with the optical fiber, and a step of attaching a material to a region other than the region where the optical fiber is exposed on the end surface to form a convex portion.
  • the above-described spacer can be made unnecessary, and a space can be easily formed between the end faces of the optical fiber.
  • the spacer can be made unnecessary, it is possible to manufacture an optical connector that can be easily designed and manufactured and has good handleability.
  • the convex portion may be formed by jetting material from the 3D printer to the other region.
  • the projection can be formed with high accuracy by spraying a minute material onto the end face.
  • the above material may be an ultraviolet curable resin.
  • the convex portion can be easily formed by curing the material with ultraviolet rays.
  • the convex portion may be formed by foil pressing.
  • a convex part can be easily formed by using foil stamping for formation of a convex part.
  • the convex portion may be made of resin or metal. In this case, the convex portion can be easily formed on the end face of the ferrule.
  • the convex portion may be formed by screen printing.
  • the convex portion can be formed with high accuracy on the end face of the ferrule.
  • the height of the convex portion with respect to the region where the optical fiber is exposed may be 3 ⁇ m or more and 200 ⁇ m or less.
  • the distance between the tip surface of the optical fiber and the tip surface of the optical fiber of the mating connector can be 3 ⁇ m or more and 200 ⁇ m or less. Accordingly, the distance between the two tip surfaces is shortened, and these optical fibers can be connected with a low coupling loss despite the configuration without a lens.
  • FIG. 1 is a perspective view showing an optical connector 1 according to the first embodiment.
  • FIG. 2 is a side sectional view showing the ferrule 2 of the optical connector 1.
  • the optical connector 1 includes a ferrule 2 and an optical fiber 3.
  • the ferrule 2 has a substantially rectangular parallelepiped appearance.
  • the ferrule 2 is configured by, for example, a resin such as polyphenylene sulfide (PPS) containing glass.
  • PPS polyphenylene sulfide
  • the optical connector 1 is connected in a connection direction A1 with a mating connector different from the optical connector 1.
  • the ferrule 2 is provided on one end side in the connection direction A1 and faces the mating connector, a rear end face 2j provided on the other end side in the connection direction A1, and a pair of side surfaces extending along the connection direction A1. 2b, and a bottom surface 2k and a top surface 2c.
  • the end face 2a has a region R1 where the optical fiber 3 is exposed and another region R2.
  • the region R1 is, for example, a horizontally long rectangle on the end surface 2a, and the four corners of the region R1 are rounded.
  • a convex portion 2h protruding from the region R1 in the connection direction A1 is formed, and the convex portion 2h is formed in a frame shape surrounding the region R1. That is, the convex portion 2h is provided outside the region R1 where the optical fiber 3 is exposed.
  • the tip surface 3a of the optical fiber 3 is exposed on the end surface 2a of the ferrule 2.
  • the region R1 where the front end surface 3a is exposed is located in the concave portion 2g that is recessed from the convex portion 2h. Therefore, an interval corresponding to the height H (see FIG. 3) of the convex portion 2h is formed between the distal end surface 3a and the distal end surface of the optical fiber of the mating connector.
  • the height H of the convex portion 2h with respect to the region R1 is, for example, 3 ⁇ m or more and 200 ⁇ m or less.
  • interval of the front end surface 3a and the front end surface of the optical fiber of the other party connector is prescribed
  • a pair of guide holes 2e into which guide pins for positioning the optical connector 1 and the mating connector are inserted are formed in the end surface 2a.
  • the pair of guide holes 2e are arranged along a direction A2 that intersects the connection direction A1.
  • the direction A2 is, for example, a direction orthogonal to the connection direction A1, and is a direction orthogonal to the longitudinal direction of the end surface 2a and the side surface 2b.
  • a pair of guide holes 2e are arranged outside the direction A2 of the convex portion 2h.
  • a rectangular hole 2f is formed on the upper surface 2c, and the optical fiber 3 inside the ferrule 2 can be visually recognized from the hole 2f.
  • the hole 2f is an adhesive introduction hole. Therefore, the optical fiber 3 is bonded and fixed inside the ferrule 2 by introducing an adhesive into the ferrule 2 from the hole 2f in a state where the optical fiber 3 is disposed inside the ferrule 2.
  • the rear end face 2j of the ferrule 2 is formed with an introduction hole 2p for receiving a plurality of optical fibers 3 together.
  • the plurality of optical fibers 3 are introduced in the form of, for example, a 0.25 mm strand, a 0.9 mm core, or a tape core.
  • the ferrule 2 further includes a plurality of optical fiber holding holes 2d, and the optical fiber 3 is inserted into each optical fiber holding hole 2d.
  • the optical fiber 3 is, for example, a single mode fiber.
  • the plurality of optical fiber holding holes 2d penetrate from the introduction hole 2p to the end surface 2a.
  • Each optical fiber holding hole 2d penetrates in the connection direction A1, and the center axis direction of each optical fiber holding hole 2d and the optical axis direction of the optical fiber 3 both coincide with the connection direction A1.
  • the front end surfaces 3a of the plurality of optical fibers 3 are arranged along the direction A2 on the end surface 2a.
  • a set of a plurality of tip surfaces 3a arranged in a line is arranged in two stages in a direction A3 intersecting the direction A2.
  • the direction A3 is a direction orthogonal to the upper surface 2c, for example.
  • the connection direction A1, the direction A2, and the direction A3 are, for example, orthogonal to each other.
  • each optical fiber 3 is flush with the end surface 2a, for example.
  • the normal direction of the tip surface 3 a of the optical fiber 3 is inclined with respect to the central axis direction of the optical fiber holding hole 2 d, that is, the optical axis direction of the optical fiber 3. ing.
  • This inclination angle coincides with the inclination angle with respect to the plane S orthogonal to the optical axis of the optical fiber 3, and the value of this inclination angle is, for example, 10 ° or more and 20 ° or less.
  • the tip surfaces 3a of the plurality of optical fibers 3 are arranged at equal intervals, and twelve tip surfaces 3a are arranged along the direction A2.
  • Two sets of 12 tip surfaces 3a arranged along the direction A2 are arranged along the direction A3.
  • a total of 24 tip surfaces 3a are arranged.
  • the set of twelve distal end surfaces 3a is displaced up and down with respect to the central axis L extending in the direction A2 through the center of the end surface 2a.
  • the plurality of tip surfaces 3 a and the plurality of guide holes 2 e are arranged at positions that are symmetric with respect to the central axis L.
  • a method for manufacturing the optical connector 1 configured as described above will be described. Below, the manufacturing method of the optical connector 1 which has the ferrule 2 provided with the end surface 2a in which the optical fiber holding hole 2d holding the optical fiber 3 mentioned above opens is demonstrated.
  • an adhesive is introduced into the hole 2f of the ferrule 2.
  • a plurality of optical fibers 3 are inserted into the respective optical fiber holding holes 2d from the introduction holes 2p on the rear end surface 2j of the ferrule 2, and the plurality of optical fibers 3 are projected from the end surface 2a. That is, the optical fiber 3 is inserted into the optical fiber holding hole 2d to expose the optical fiber 3 to the end face 2a (step of exposing the optical fiber to the end face).
  • the adhesive is cured and the optical fiber 3 is bonded and fixed to the ferrule 2 (step of fixing the optical fiber). And the part which protrudes from the end surface 2a of the optical fiber 3 is cut
  • the ferrule 2 After fixing the optical fiber 3 to the ferrule 2, as shown in FIG. 3, the ferrule 2 is placed with the end face 2a of the ferrule 2 facing upward and while passing the optical fiber 3 through the hole T1 of the stage T. Is placed on the stage T. Then, the convex portion 2h is formed by the 3D printer 10 (step of forming the convex portion).
  • an ultraviolet curable resin G which is a liquid material of the convex portion 2h
  • a support material may be used (for example, by spraying it together with the material) when the material is deformed by gravity.
  • the convex part 2h is formed by making the injected ultraviolet curable resin harden by applying an ultraviolet ray.
  • the nozzle 11 is moved along the end surface 2a, and a plurality of ultraviolet curable resin G layers are formed to form the convex portion 2h.
  • the height H of the convex portion 2h is controlled by the pitch and the number of lamination of the layers of the ultraviolet curable resin G.
  • the support material is removed with high-pressure water after the convex portion 2h is formed, whereby the manufacture of the optical connector 1 is completed.
  • the manufacturing method of the optical connector 1 by projecting a material in the other region R2, a protruding portion 2h protruding from the region R1 where the optical fiber 3 of the end face 2a is exposed is formed. Accordingly, the region R1 where the optical fiber 3 is exposed on the end face 2a is provided at a location that is recessed from the convex portion 2h. Accordingly, since the distal end surface 3a of the optical fiber 3 does not abut against the mating connector at the time of connection, the distal end surface 3a of the optical fiber 3 is not worn even if the attachment / detachment is repeated.
  • the region R1 of the end face 2a where the optical fiber 3 is exposed is a region that does not come into physical contact, even if foreign matter enters the region R1, adhesion of the foreign matter can be avoided. Therefore, cleaning for removing foreign matters can be easily performed.
  • the above-described spacer can be made unnecessary, and an interval can be easily formed between the end faces of the optical fiber. Can do.
  • the spacer can be made unnecessary, it is possible to manufacture the optical connector 1 which can be easily designed and manufactured and has good handleability.
  • the material is jetted from the 3D printer 10 to the region R2 to form the convex portion 2h.
  • the convex portion 2h can be formed with high accuracy.
  • the above material is an ultraviolet curable resin G. Therefore, the convex portion 2h can be easily formed by curing the ultraviolet curable resin G with ultraviolet rays.
  • the frame-shaped convex portion 2h surrounding the region R1 is formed on the end surface 2a.
  • the shape of the convex portion 2h is It may be a shape other than the shape.
  • a window-like region R4 that protrudes from a region R3 where the distal end surface 3a of the optical fiber 3 is provided and has an opening in the guide hole 2e may be used as the convex portion 2h.
  • a pair of regions R6 provided above and below the region R5 where the tip surface 3a is exposed and extending in the direction A2 may be used as the convex portions 2h.
  • a rectangular region R8 surrounding the region R7 where the guide hole 2e and the tip surface 3a are exposed may be used as the convex portion 2h.
  • FIG. 4D it is possible to have a rectangular portion surrounding the region R9 where the tip surface 3a of the optical fiber 3 is exposed, and a region R10 extending in the direction A2 above and below each guide hole 2e may be a convex portion 2h.
  • a plurality of dot-shaped regions R12 protruding from the region R11 where the tip surface 3a of the optical fiber 3 is exposed may be used as the convex portions 2h.
  • the shape of the convex portion 2h can be changed as appropriate.
  • the foil 22 constitutes the convex portion 2h and is, for example, a metal foil such as an aluminum foil or a resin film.
  • One surface of the foil 22 is an adhesive layer, and the adhesive layer adheres to the end surface 2a of the ferrule 2 so that the foil 22 adheres to the end surface 2a.
  • the height H of the convex portion 2 h is controlled by the thickness B of the foil 22.
  • the step of fixing the optical fiber and the step of mirror-finishing the end surface together with the optical fiber are the same as in the first embodiment.
  • the rear end face 2j of the ferrule 2 is placed on the stage T as described above.
  • the convex part 2h is formed with the hot stamp of the foil stamping machine 20 (step which forms a convex part).
  • the foil pusher 20 is arranged above the end surface 2a of the ferrule 2 so that the foil plate 21 faces downward, the foil 22 is interposed between the end surface 2a and the foil plate 21, and the foil 22 An adhesive layer is affixed on the end surface 2a. And the surface on the opposite side of the adhesive layer of the foil 22 is pressed together with heating by the foil plate 21 from above, and the foil 22 is transferred and pasted to the end surface 2a. Thereby, the convex part 2h which consists of foil 22 is formed in the end surface 2a, and the optical connector 1 is completed.
  • the protruding portion 2 h protruding from the region where the optical fiber 3 of the end face 2 a of the ferrule 2 is exposed is formed by the foil pusher 20. Therefore, the same effect as the first embodiment can be obtained.
  • the convex portion 2h is formed by foil stamping (hot stamping).
  • the convex part 2h can be easily formed by using foil stamping for the formation of the convex part 2h.
  • the convex portion 2h is made of resin or metal, the convex portion 2h can be easily formed on the end surface 2a.
  • FIG. 7 shows a screen printer 30 used in the manufacturing method of the third embodiment.
  • the screen printing machine 30 includes a squeegee 31 that moves along the end surface 2a of the ferrule 2, and a screen mesh 32 that is interposed between the squeegee 31 and the end surface 2a.
  • the screen mesh 32 has a mesh that can pass through the ink-like resin material J.
  • the resin material J is a material for forming the convex portion 2h.
  • the resin material J is pushed into the screen mesh 32 by the squeegee 31, and is applied to the end surface 2a by passing through the screen mesh 32 downward.
  • the height H of the convex portion 2 h is controlled by the thickness K of the space formed between the end face 2 a and the screen mesh 32 and the mesh roughness of the screen mesh 32.
  • the rear end surface 2j of the ferrule 2 is placed on the stage T as described above.
  • the convex part 2h is formed by the screen printer 30 (step which forms a convex part).
  • the screen printer 30 is disposed above the end face 2 a of the ferrule 2.
  • the screen mesh 32 is disposed on the end surface 2 a and the resin material J is placed on the screen mesh 32. Then, the squeegee 31 is moved along the upper surface of the screen mesh 32, and the resin material J is passed under the screen mesh 32, thereby forming a convex portion 2h between the screen mesh 32 and the end surface 2a. Thus, after forming the convex part 2h, the optical connector 1 is completed.
  • the convex portion 2h is formed by screen printing. Therefore, by using the screen mesh 32 having a highly accurate mesh, the convex portion 2h can be formed on the end surface 2a of the ferrule 2 with high accuracy.
  • the tip surface 3a of the optical fiber 3 is exposed on the end surface 2a of the ferrule 2
  • the tip surface 3a of the optical fiber 3 itself is not exposed on the end surface 2a of the ferrule 2.
  • a GRIN lens 41 which is a fiber type lens
  • An optical fiber 43 is disposed on the opposite side of the end surface 2a of the GRIN lens 41.
  • the type of the optical fibers 3 and 43 may not be a normal single mode fiber, but may be a special single mode fiber, a fiber type lens as described above, or a multimode fiber.
  • Special single-mode fibers include an MFD expansion fiber in which optical fibers having different mode field diameters (MFD) are connected to the tip of the optical fiber 3 by fusion or welding, and the contents are diffused by burner or arc discharge.
  • TEC fiber etc. in which the MFD is expanded are also included.
  • the special single mode fiber is the above-described MFD expansion fiber, TEC fiber, or the like
  • the emitted beam diameter is increased, an effect of reducing the loss due to the axial deviation between the optically connected connectors can be obtained.
  • the MFD is enlarged, the numerical aperture is decreased, so that the emitted beam is close to collimated light, and the optimum range of the distance between the two tip surfaces can be expanded.
  • the example in which the end surface 2a of the ferrule 2 and the front end surface 3a of the optical fiber 3 are inclined with respect to the surface S has been described.
  • the end surface of the ferrule and the front end surface of the optical fiber may not be inclined with respect to the surface S.
  • an antireflection film can be formed, and the Fresnel loss generated at the end face of the fiber can be reduced.
  • the antireflection film needs to be formed at least on the tip surface of the optical fiber.
  • it when it is technically difficult to form a film only on the front end surface of the optical fiber, it may be formed on the end surface of the ferrule.
  • Anti-reflection measures may be taken using other than anti-reflection films.
  • the Fresnel loss can be reduced even if the treatment or processing for preventing reflection is performed when the vehicle is inclined. Furthermore, in the above-described embodiment, the present invention is applied to the ferrule 2 that is a multi-core ferrule including a plurality of optical fibers 3, but the present invention is also applicable to a single-core ferrule.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The optical connector production method according to one embodiment is a production method for an optical connector that comprises a ferrule that holds an optical fiber. The production method comprises: a step for exposing the optical fiber from an end surface of the ferrule and securing the optical fiber to the ferrule; a step for mirror finishing the end surface and the optical fiber; and a step for forming a protrusion by attaching a material to an area of the end surface that is not the area at which the optical fiber is exposed.

Description

光コネクタの製造方法Manufacturing method of optical connector
 本発明の一側面は、光コネクタの製造方法に関するものである。
 本出願は、2016年8月24日出願の日本出願第2016-163911号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
One aspect of the present invention relates to a method for manufacturing an optical connector.
This application claims priority based on Japanese Patent Application No. 2016-163911 filed on August 24, 2016, and incorporates all the description content described in the above Japanese application.
 特許文献1には、レンズ入り光コネクタが記載されている。このレンズ入り光コネクタは、光ファイバと、光ファイバを保持する保持孔を有するフェルールとを備えている。光ファイバ及びフェルールは一対に設けられ、一対の光ファイバの間には、導光部材が介在している。導光部材は、一対の光ファイバの間に位置する本体と、本体の内部に配置された球状の導光レンズによって構成されている。 Patent Document 1 describes an optical connector with a lens. This optical connector with a lens includes an optical fiber and a ferrule having a holding hole for holding the optical fiber. The optical fiber and the ferrule are provided in a pair, and a light guide member is interposed between the pair of optical fibers. The light guide member includes a main body located between the pair of optical fibers and a spherical light guide lens disposed inside the main body.
特開2003-255184号公報JP 2003-255184 A
 一実施形態に係る光コネクタの製造方法は、光ファイバを保持するフェルールを備えた光コネクタの製造方法であって、光ファイバをフェルールの端面に露出させてフェルールに光ファイバを固定するステップと、端面を光ファイバと共に鏡面加工するステップと、端面における光ファイバが露出する領域以外の他の領域に材料を着設して凸部を形成するステップと、を備える。 An optical connector manufacturing method according to an embodiment is an optical connector manufacturing method including a ferrule that holds an optical fiber, the optical fiber being exposed to an end surface of the ferrule, and fixing the optical fiber to the ferrule; A step of mirror-finishing the end face together with the optical fiber, and a step of attaching a material to a region other than the region where the optical fiber is exposed on the end surface to form a convex portion.
図1は、第1実施形態に係る光コネクタを示す斜視図である。FIG. 1 is a perspective view showing an optical connector according to the first embodiment. 図2は、図1の光コネクタの側断面図である。2 is a sectional side view of the optical connector of FIG. 図3は、図1の光コネクタの製造方法を示す側断面図である。FIG. 3 is a side sectional view showing a method for manufacturing the optical connector of FIG. 図4Aは、変形例に係る凸部を示す平面図である。FIG. 4A is a plan view showing a convex portion according to a modification. 図4Bは、変形例に係る凸部を示す平面図である。FIG. 4B is a plan view showing a convex portion according to a modification. 図4Cは、変形例に係る凸部を示す平面図である。FIG. 4C is a plan view showing a convex portion according to a modification. 図4Dは、変形例に係る凸部を示す平面図である。FIG. 4D is a plan view showing a convex portion according to a modification. 図5は、変形例に係る凸部を示す平面図である。FIG. 5 is a plan view showing a convex portion according to a modification. 図6は、第2実施形態に係る光コネクタの製造方法を示す側断面図である。FIG. 6 is a side sectional view showing a method for manufacturing an optical connector according to the second embodiment. 図7は、第3実施形態に係る光コネクタの製造方法を示す側断面図である。FIG. 7 is a side cross-sectional view illustrating the method of manufacturing the optical connector according to the third embodiment. 図8は、変形例に係る光ファイバ及びフェルールの端面を示す側断面図である。FIG. 8 is a side cross-sectional view showing end surfaces of an optical fiber and a ferrule according to a modification. 図9Aは、従来の光接続構造を模式的に示す側断面図である。FIG. 9A is a side sectional view schematically showing a conventional optical connection structure. 図9Bは、従来の光接続構造を模式的に示す側断面図である。FIG. 9B is a side sectional view schematically showing a conventional optical connection structure.
[本開示が解決しようとする課題]
 光ファイバ同士のコネクタ接続の方式として、一般的にPC(Physical Contact)方式が知られている。図9Aは、PC方式のフェルールの構造の一例を示す側断面図である。フェルール100は、光ファイバ120を保持する孔102を有する。光ファイバ120は孔102に挿通される。このPC方式では、光ファイバ120の先端面を相手側コネクタの光ファイバ120の先端面と物理的に接触させて押圧することにより、光ファイバ120同士を光結合させる。
[Problems to be solved by the present disclosure]
A PC (Physical Contact) method is generally known as a method for connecting connectors between optical fibers. FIG. 9A is a side sectional view showing an example of the structure of a PC type ferrule. The ferrule 100 has a hole 102 that holds the optical fiber 120. The optical fiber 120 is inserted through the hole 102. In this PC method, the optical fibers 120 are optically coupled to each other by pressing the distal end surface of the optical fiber 120 in physical contact with the distal end surface of the optical fiber 120 of the mating connector.
 しかしながら、前述の方式には次の問題がある。フェルール100では、2つの光ファイバ120の先端面を物理的に接触及び離間させて着脱を行うため、着脱を繰り返し行うと光ファイバ120の先端面が摩耗する懸念がある。また、フェルール100の端面104に異物が付着した状態で接続すると、押圧力によって端面104に異物が密着する。密着した異物を取り除くためには接触式のクリーナを使用する必要がある。また、異物の密着を防ぐためには頻繁に清掃を行う必要がある。更に、複数本の光ファイバ120を同時に接続する多芯フェルールの場合、1本の光ファイバ120ごとに所定の押圧力が要求されるので、光ファイバ120の本数が多くなるほど接続に大きな力が必要となる。 However, the above method has the following problems. In the ferrule 100, the tip surfaces of the two optical fibers 120 are physically contacted and separated from each other and attached and detached. Therefore, if the attachment and detachment are repeated, the tip surfaces of the optical fibers 120 may be worn. Further, when the connection is made with foreign matter attached to the end face 104 of the ferrule 100, the foreign matter comes into close contact with the end face 104 by the pressing force. In order to remove the adhered foreign matter, it is necessary to use a contact type cleaner. In addition, frequent cleaning is necessary to prevent adhesion of foreign matter. Furthermore, in the case of a multi-core ferrule that connects a plurality of optical fibers 120 at the same time, a predetermined pressing force is required for each optical fiber 120. Therefore, as the number of optical fibers 120 increases, a greater force is required for connection. It becomes.
 上記の問題に対し、例えば図9Bに示されるように、2つの端面104の間にスペーサ106を介在させて2本の光ファイバ120の先端面121間に間隔を設ける構造が考えられる。しかしながら、先端面121間に間隔を設ける構造では、当該間隔の長さ次第で光の結合状態が変わりうるため、当該間隔の調整を高精度に行う必要がある。また、スペーサ106は、当該間隔を規定するものであるため、スペーサ106の厚さも高精度に設計される必要がある。更に、当該間隔は非常に小さいので、スペーサ106の厚さを非常に薄くすることが求められる。従って、スペーサ106の設計及び製造が困難である。スペーサ106は脱落することもあり得るので、スペーサ106の取り扱いが困難であるという現状がある。 For the above problem, for example, as shown in FIG. 9B, a structure in which a spacer 106 is interposed between the two end faces 104 to provide a gap between the tip faces 121 of the two optical fibers 120 is conceivable. However, in the structure in which the gap is provided between the front end surfaces 121, the light coupling state can be changed depending on the length of the gap. Therefore, the gap needs to be adjusted with high accuracy. Further, since the spacer 106 defines the interval, the thickness of the spacer 106 needs to be designed with high accuracy. Further, since the interval is very small, it is required to make the spacer 106 very thin. Therefore, it is difficult to design and manufacture the spacer 106. Since the spacer 106 may drop off, it is difficult to handle the spacer 106.
 本開示は、設計及び製造を容易に行えると共に、取扱性が良好な光コネクタを製造することができる光コネクタの製造方法を提供することを目的とする。 This disclosure is intended to provide a method of manufacturing an optical connector that can be easily designed and manufactured, and that can manufacture an optical connector that is easy to handle.
[本開示の効果]
 本開示によれば、設計及び製造を容易に行えると共に、取扱性が良好な光コネクタを製造することができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to manufacture an optical connector that can be easily designed and manufactured and that has good handleability.
[実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。一実施形態に係る光コネクタの製造方法は、光ファイバを保持するフェルールを備えた光コネクタの製造方法であって、光ファイバをフェルールの端面に露出させてフェルールに光ファイバを固定するステップと、端面を光ファイバと共に鏡面加工するステップと、端面における光ファイバが露出する領域以外の他の領域に材料を着設して凸部を形成するステップと、を備える。
[Description of Embodiment]
First, the contents of the embodiment of the present disclosure will be listed and described. An optical connector manufacturing method according to an embodiment is an optical connector manufacturing method including a ferrule that holds an optical fiber, the optical fiber being exposed to an end surface of the ferrule, and fixing the optical fiber to the ferrule; A step of mirror-finishing the end face together with the optical fiber, and a step of attaching a material to a region other than the region where the optical fiber is exposed on the end surface to form a convex portion.
 前述の光コネクタの製造方法では、上記他の領域に材料を着設することによって、端面の光ファイバが露出する領域に対して突出した凸部が形成される。よって、端面における光ファイバが露出する領域は、当該凸部よりも窪んだ箇所に設けられる。従って、接続時に光ファイバの先端面は相手側コネクタに当接しないので、着脱を繰り返しても光ファイバの先端面に摩耗は生じない。また、端面の光ファイバが露出する領域は物理的に接触しない領域であるため、たとえ、この領域に異物が入ったとしても、異物の密着を回避することができる。従って、異物を除去する清掃を容易に行うことができる。更に、光ファイバが露出する領域に対して突出する凸部を形成することにより、前述したスペーサを不要とすることができると共に、光ファイバの先端面間に容易に間隔を形成することができる。このようにスペーサを不要とすることができるため、設計及び製造を容易に行えると共に取扱性が良好な光コネクタを製造することができる。 In the method for manufacturing an optical connector described above, by projecting a material in the other region, a protruding portion protruding from a region where the optical fiber on the end face is exposed is formed. Therefore, the region where the optical fiber on the end face is exposed is provided at a location recessed from the convex portion. Therefore, since the tip end face of the optical fiber does not contact the mating connector at the time of connection, the tip end face of the optical fiber is not worn even when it is repeatedly attached and detached. Moreover, since the area | region where the optical fiber of an end surface is exposed is an area | region which does not contact physically, even if a foreign material enters into this area | region, adhesion of a foreign material can be avoided. Therefore, cleaning for removing foreign matters can be easily performed. Furthermore, by forming the convex portion that protrudes from the region where the optical fiber is exposed, the above-described spacer can be made unnecessary, and a space can be easily formed between the end faces of the optical fiber. Thus, since the spacer can be made unnecessary, it is possible to manufacture an optical connector that can be easily designed and manufactured and has good handleability.
 また、凸部を形成するステップでは、3Dプリンタから材料を上記他の領域に噴射して凸部を形成してもよい。この場合、微小な材料を端面に噴射することにより、凸部を高精度に形成することができる。 In the step of forming the convex portion, the convex portion may be formed by jetting material from the 3D printer to the other region. In this case, the projection can be formed with high accuracy by spraying a minute material onto the end face.
 また、上記の材料は、紫外線硬化樹脂であってもよい。この場合、紫外線によって材料を硬化させることにより、凸部を容易に形成することができる。 Further, the above material may be an ultraviolet curable resin. In this case, the convex portion can be easily formed by curing the material with ultraviolet rays.
 また、凸部を形成するステップでは、箔押しによって凸部を形成してもよい。このように、凸部の形成に箔押し加工を用いることにより、容易に凸部を形成することができる。 In the step of forming the convex portion, the convex portion may be formed by foil pressing. Thus, a convex part can be easily formed by using foil stamping for formation of a convex part.
 また、凸部は、樹脂製又は金属製であってもよい。この場合、フェルールの端面に容易に凸部を形成することができる。 Further, the convex portion may be made of resin or metal. In this case, the convex portion can be easily formed on the end face of the ferrule.
 また、凸部を形成するステップでは、スクリーン印刷によって凸部を形成してもよい。この場合、フェルールの端面に凸部を高精度に形成することができる。 In the step of forming the convex portion, the convex portion may be formed by screen printing. In this case, the convex portion can be formed with high accuracy on the end face of the ferrule.
 また、光ファイバが露出する領域に対する凸部の高さは、3μm以上且つ200μm以下であってもよい。この場合、光ファイバの先端面と相手側コネクタの光ファイバの先端面との間隔を3μm以上且つ200μm以下にすることができる。従って、2つの先端面間の距離を短くし、レンズを介さない構成であるにもかかわらず、低い結合損失でこれらの光ファイバ同士を接続することができる。 Further, the height of the convex portion with respect to the region where the optical fiber is exposed may be 3 μm or more and 200 μm or less. In this case, the distance between the tip surface of the optical fiber and the tip surface of the optical fiber of the mating connector can be 3 μm or more and 200 μm or less. Accordingly, the distance between the two tip surfaces is shortened, and these optical fibers can be connected with a low coupling loss despite the configuration without a lens.
[実施形態の詳細]
 以下では、実施形態に係る光コネクタの製造方法の具体例を図面を参照しつつ説明する。なお、本発明は、以下の例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。以下では、図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。
[Details of the embodiment]
Below, the specific example of the manufacturing method of the optical connector which concerns on embodiment is demonstrated, referring drawings. In addition, this invention is not limited to the following illustrations, is shown by the claim, and intends that all the changes within the range equivalent to a claim are included. Hereinafter, in the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
(第1実施形態)
 図1は、第1実施形態に係る光コネクタ1を示す斜視図である。図2は、光コネクタ1のフェルール2を示す側断面図である。光コネクタ1は、フェルール2及び光ファイバ3を備えている。フェルール2は、略直方体状の外観を呈する。フェルール2は、例えば、ポリフェニレンサルファイド(PPS)等の樹脂にガラスが含まれたものによって構成されている。
(First embodiment)
FIG. 1 is a perspective view showing an optical connector 1 according to the first embodiment. FIG. 2 is a side sectional view showing the ferrule 2 of the optical connector 1. The optical connector 1 includes a ferrule 2 and an optical fiber 3. The ferrule 2 has a substantially rectangular parallelepiped appearance. The ferrule 2 is configured by, for example, a resin such as polyphenylene sulfide (PPS) containing glass.
 光コネクタ1は、光コネクタ1とは異なる相手側コネクタと接続方向A1に接続する。フェルール2は、接続方向A1の一端側に設けられて相手側コネクタに対向する端面2aと、接続方向A1の他端側に設けられた後端面2jと、接続方向A1に沿って延びる一対の側面2bと、底面2k及び上面2cとを有する。 The optical connector 1 is connected in a connection direction A1 with a mating connector different from the optical connector 1. The ferrule 2 is provided on one end side in the connection direction A1 and faces the mating connector, a rear end face 2j provided on the other end side in the connection direction A1, and a pair of side surfaces extending along the connection direction A1. 2b, and a bottom surface 2k and a top surface 2c.
 端面2aは、光ファイバ3が露出する領域R1と他の領域R2とを有する。領域R1は、例えば、端面2aにおいて横長の長方形状とされており、領域R1の四隅は丸みを帯びている。領域R2には、領域R1から接続方向A1に突出する凸部2hが形成されており、凸部2hは、領域R1を囲む枠状に形成されている。すなわち、凸部2hは、光ファイバ3が露出する領域R1の外側に設けられている。 The end face 2a has a region R1 where the optical fiber 3 is exposed and another region R2. The region R1 is, for example, a horizontally long rectangle on the end surface 2a, and the four corners of the region R1 are rounded. In the region R2, a convex portion 2h protruding from the region R1 in the connection direction A1 is formed, and the convex portion 2h is formed in a frame shape surrounding the region R1. That is, the convex portion 2h is provided outside the region R1 where the optical fiber 3 is exposed.
 フェルール2の端面2aには光ファイバ3の先端面3aが露出している。先端面3aが露出する領域R1は、凸部2hよりも窪んだ凹部2g内に位置する。よって、先端面3aと、相手側コネクタの光ファイバの先端面との間には、凸部2hの高さH(図3参照)分の間隔が形成される。領域R1に対する凸部2hの高さHは、例えば、3μm以上且つ200μm以下である。これにより、先端面3aと相手側コネクタの光ファイバの先端面との間隔が3μm以上且つ200μm以下に規定される。 The tip surface 3a of the optical fiber 3 is exposed on the end surface 2a of the ferrule 2. The region R1 where the front end surface 3a is exposed is located in the concave portion 2g that is recessed from the convex portion 2h. Therefore, an interval corresponding to the height H (see FIG. 3) of the convex portion 2h is formed between the distal end surface 3a and the distal end surface of the optical fiber of the mating connector. The height H of the convex portion 2h with respect to the region R1 is, for example, 3 μm or more and 200 μm or less. Thereby, the space | interval of the front end surface 3a and the front end surface of the optical fiber of the other party connector is prescribed | regulated to 3 micrometers or more and 200 micrometers or less.
 端面2aには、光コネクタ1と相手側コネクタとの位置決めを行うガイドピンが挿入される一対のガイド孔2eが形成されている。一対のガイド孔2eは、接続方向A1に交差する方向A2に沿って配置されている。方向A2は、例えば接続方向A1に直交する方向であり、端面2aの長手方向、且つ側面2bに直交する方向である。ガイド孔2eは、凸部2hの方向A2の外側に一対で配置されている。 A pair of guide holes 2e into which guide pins for positioning the optical connector 1 and the mating connector are inserted are formed in the end surface 2a. The pair of guide holes 2e are arranged along a direction A2 that intersects the connection direction A1. The direction A2 is, for example, a direction orthogonal to the connection direction A1, and is a direction orthogonal to the longitudinal direction of the end surface 2a and the side surface 2b. A pair of guide holes 2e are arranged outside the direction A2 of the convex portion 2h.
 上面2cには、矩形状の孔部2fが形成されており、孔部2fからフェルール2の内部の光ファイバ3を視認可能となっている。孔部2fは、接着剤の導入孔である。よって、フェルール2の内部に光ファイバ3を配置した状態で孔部2fからフェルール2の内部に接着剤を導入することにより、フェルール2の内部において光ファイバ3が接着固定される。 A rectangular hole 2f is formed on the upper surface 2c, and the optical fiber 3 inside the ferrule 2 can be visually recognized from the hole 2f. The hole 2f is an adhesive introduction hole. Therefore, the optical fiber 3 is bonded and fixed inside the ferrule 2 by introducing an adhesive into the ferrule 2 from the hole 2f in a state where the optical fiber 3 is disposed inside the ferrule 2.
 フェルール2の後端面2jには、複数本の光ファイバ3をまとめて受け入れる導入孔2pが形成されている。複数本の光ファイバ3は、例えば、0.25mm素線、0.9mm心線、又はテープ心線等の形で導入される。フェルール2は、複数の光ファイバ保持孔2dを更に備え、各光ファイバ保持孔2dに光ファイバ3が挿入される。光ファイバ3は、例えば、シングルモードファイバである。複数の光ファイバ保持孔2dは、導入孔2pから端面2aにまで貫通している。 The rear end face 2j of the ferrule 2 is formed with an introduction hole 2p for receiving a plurality of optical fibers 3 together. The plurality of optical fibers 3 are introduced in the form of, for example, a 0.25 mm strand, a 0.9 mm core, or a tape core. The ferrule 2 further includes a plurality of optical fiber holding holes 2d, and the optical fiber 3 is inserted into each optical fiber holding hole 2d. The optical fiber 3 is, for example, a single mode fiber. The plurality of optical fiber holding holes 2d penetrate from the introduction hole 2p to the end surface 2a.
 各光ファイバ保持孔2dは、接続方向A1に貫通しており、各光ファイバ保持孔2dの中心軸方向、及び光ファイバ3の光軸方向は、共に接続方向A1に一致している。複数の光ファイバ3の先端面3aは、端面2aにおいて、方向A2に沿って並んでいる。一列に並んだ複数の先端面3aの組は、方向A2に交差する方向A3に2段に並んでいる。方向A3は、例えば上面2cに直交する方向である。接続方向A1、方向A2及び方向A3は、例えば互いに直交している。 Each optical fiber holding hole 2d penetrates in the connection direction A1, and the center axis direction of each optical fiber holding hole 2d and the optical axis direction of the optical fiber 3 both coincide with the connection direction A1. The front end surfaces 3a of the plurality of optical fibers 3 are arranged along the direction A2 on the end surface 2a. A set of a plurality of tip surfaces 3a arranged in a line is arranged in two stages in a direction A3 intersecting the direction A2. The direction A3 is a direction orthogonal to the upper surface 2c, for example. The connection direction A1, the direction A2, and the direction A3 are, for example, orthogonal to each other.
 各光ファイバ3の先端面3aは、例えば端面2aと面一である。また、光ファイバ3の光軸に沿った断面において、光ファイバ3の先端面3aの法線方向は、光ファイバ保持孔2dの中心軸方向、すなわち光ファイバ3の光軸方向に対して傾斜している。この傾斜角度は、光ファイバ3の光軸に直交する面Sに対する傾斜角度に一致しており、この傾斜角度の値は、例えば10°以上且つ20°以下である。 The front end surface 3a of each optical fiber 3 is flush with the end surface 2a, for example. In the cross section along the optical axis of the optical fiber 3, the normal direction of the tip surface 3 a of the optical fiber 3 is inclined with respect to the central axis direction of the optical fiber holding hole 2 d, that is, the optical axis direction of the optical fiber 3. ing. This inclination angle coincides with the inclination angle with respect to the plane S orthogonal to the optical axis of the optical fiber 3, and the value of this inclination angle is, for example, 10 ° or more and 20 ° or less.
 端面2aの領域R1には、例えば、複数の光ファイバ3の先端面3aが等間隔に配置されており、12個の先端面3aが方向A2に沿って配置されている。方向A2に沿って配置された12個の先端面3aの組は、方向A3に沿って二組配置されており、例えば、合計24個の先端面3aが配置されている。12個の先端面3aの組は、端面2aの中心を通り方向A2に延びる中心軸線Lに対して上下それぞれにずれている。また、複数の先端面3a及び複数のガイド孔2eは、中心軸線Lに対して互いに対称となる位置に配置されている。 In the region R1 of the end surface 2a, for example, the tip surfaces 3a of the plurality of optical fibers 3 are arranged at equal intervals, and twelve tip surfaces 3a are arranged along the direction A2. Two sets of 12 tip surfaces 3a arranged along the direction A2 are arranged along the direction A3. For example, a total of 24 tip surfaces 3a are arranged. The set of twelve distal end surfaces 3a is displaced up and down with respect to the central axis L extending in the direction A2 through the center of the end surface 2a. Further, the plurality of tip surfaces 3 a and the plurality of guide holes 2 e are arranged at positions that are symmetric with respect to the central axis L.
 以上のように構成される光コネクタ1の製造方法について説明する。以下では、前述した光ファイバ3を保持する光ファイバ保持孔2dが開口する端面2aを備えたフェルール2を有する光コネクタ1の製造方法について説明する。 A method for manufacturing the optical connector 1 configured as described above will be described. Below, the manufacturing method of the optical connector 1 which has the ferrule 2 provided with the end surface 2a in which the optical fiber holding hole 2d holding the optical fiber 3 mentioned above opens is demonstrated.
 まず、フェルール2の孔部2fに接着剤を導入する。次に、フェルール2の後端面2jの導入孔2pから各光ファイバ保持孔2dに複数本の光ファイバ3を挿入し、複数の光ファイバ3を端面2aから突出させる。すなわち、光ファイバ保持孔2dに光ファイバ3を挿入して光ファイバ3を端面2aに露出させる(光ファイバを端面に露出させるステップ)。次に、接着剤を硬化して、フェルール2に光ファイバ3を接着固定する(光ファイバを固定するステップ)。そして、光ファイバ3の端面2aから突出する部分を切断して、端面2aを光ファイバ3と共に鏡面加工する(端面を光ファイバと共に研磨等により鏡面加工するステップ)。 First, an adhesive is introduced into the hole 2f of the ferrule 2. Next, a plurality of optical fibers 3 are inserted into the respective optical fiber holding holes 2d from the introduction holes 2p on the rear end surface 2j of the ferrule 2, and the plurality of optical fibers 3 are projected from the end surface 2a. That is, the optical fiber 3 is inserted into the optical fiber holding hole 2d to expose the optical fiber 3 to the end face 2a (step of exposing the optical fiber to the end face). Next, the adhesive is cured and the optical fiber 3 is bonded and fixed to the ferrule 2 (step of fixing the optical fiber). And the part which protrudes from the end surface 2a of the optical fiber 3 is cut | disconnected, and the end surface 2a is mirror-finished with the optical fiber 3 (the step surface is mirror-finished by grinding | polishing etc. with an optical fiber).
 フェルール2に光ファイバ3を固定した後には、図3に示されるように、フェルール2の端面2aを上に向けた状態にすると共に、光ファイバ3をステージTの孔部T1に通しつつフェルール2の後端面2jをステージTに乗せる。そして、3Dプリンタ10によって凸部2hを形成する(凸部を形成するステップ)。 After fixing the optical fiber 3 to the ferrule 2, as shown in FIG. 3, the ferrule 2 is placed with the end face 2a of the ferrule 2 facing upward and while passing the optical fiber 3 through the hole T1 of the stage T. Is placed on the stage T. Then, the convex portion 2h is formed by the 3D printer 10 (step of forming the convex portion).
 具体的には、3Dプリンタ10のノズル11を移動させながら、ノズル11から端面2aに凸部2hの液状の材料である紫外線硬化樹脂Gを噴射する。材料が液状であるため、材料が重力によって変形するような場合には、サポート材を(材料と併せて同時に噴射する等して)用いてもよい。そして、噴射した紫外線硬化樹脂を紫外線を当てて硬化させることにより、凸部2hを形成する。このとき、端面2aに沿ってノズル11を移動させ、紫外線硬化樹脂Gの層を複数形成して凸部2hを形成する。凸部2hの高さHは、紫外線硬化樹脂Gの層を積層させるピッチと積層数によって制御される。前述したサポート材を用いた場合には、凸部2hを形成した後にサポート材を高圧の水で除去して光コネクタ1の製造が完了する。 Specifically, while moving the nozzle 11 of the 3D printer 10, an ultraviolet curable resin G, which is a liquid material of the convex portion 2h, is sprayed from the nozzle 11 to the end surface 2a. Since the material is in a liquid state, a support material may be used (for example, by spraying it together with the material) when the material is deformed by gravity. And the convex part 2h is formed by making the injected ultraviolet curable resin harden by applying an ultraviolet ray. At this time, the nozzle 11 is moved along the end surface 2a, and a plurality of ultraviolet curable resin G layers are formed to form the convex portion 2h. The height H of the convex portion 2h is controlled by the pitch and the number of lamination of the layers of the ultraviolet curable resin G. In the case where the above-described support material is used, the support material is removed with high-pressure water after the convex portion 2h is formed, whereby the manufacture of the optical connector 1 is completed.
 次に、光コネクタ1の製造方法によって得られる作用効果について説明する。 Next, functions and effects obtained by the method for manufacturing the optical connector 1 will be described.
 光コネクタ1の製造方法は、他の領域R2に材料を着設することによって、端面2aの光ファイバ3が露出する領域R1に対して突出した凸部2hが形成される。よって、端面2aにおける光ファイバ3が露出する領域R1は、凸部2hよりも窪んだ箇所に設けられる。従って、接続時に光ファイバ3の先端面3aは相手側コネクタに当接しないので、着脱を繰り返しても光ファイバ3の先端面3aに摩耗は生じない。また、端面2aの光ファイバ3が露出する領域R1は物理的に接触しない領域であるため、たとえ、この領域R1に異物が入ったとしても、異物の密着を回避することができる。従って、異物を除去する清掃を容易に行うことができる。 In the manufacturing method of the optical connector 1, by projecting a material in the other region R2, a protruding portion 2h protruding from the region R1 where the optical fiber 3 of the end face 2a is exposed is formed. Accordingly, the region R1 where the optical fiber 3 is exposed on the end face 2a is provided at a location that is recessed from the convex portion 2h. Accordingly, since the distal end surface 3a of the optical fiber 3 does not abut against the mating connector at the time of connection, the distal end surface 3a of the optical fiber 3 is not worn even if the attachment / detachment is repeated. Further, since the region R1 of the end face 2a where the optical fiber 3 is exposed is a region that does not come into physical contact, even if foreign matter enters the region R1, adhesion of the foreign matter can be avoided. Therefore, cleaning for removing foreign matters can be easily performed.
 更に、光ファイバ3が露出する領域R1に対して突出する凸部2hを形成することにより、前述したスペーサを不要にすることができると共に、光ファイバの先端面間に容易に間隔を形成することができる。このようにスペーサを不要とすることができるため、設計及び製造を容易に行えると共に取扱性が良好な光コネクタ1を製造することができる。 Furthermore, by forming the convex portion 2h that protrudes from the region R1 where the optical fiber 3 is exposed, the above-described spacer can be made unnecessary, and an interval can be easily formed between the end faces of the optical fiber. Can do. Thus, since the spacer can be made unnecessary, it is possible to manufacture the optical connector 1 which can be easily designed and manufactured and has good handleability.
 また、凸部2hを形成するステップでは、3Dプリンタ10から材料を領域R2に噴射して凸部2hを形成している。3Dプリンタ10から微小な材料を端面2aに噴射することにより、凸部2hを高精度に形成することができる。 In the step of forming the convex portion 2h, the material is jetted from the 3D printer 10 to the region R2 to form the convex portion 2h. By ejecting a minute material onto the end surface 2a from the 3D printer 10, the convex portion 2h can be formed with high accuracy.
 また、上記の材料は、紫外線硬化樹脂Gである。従って、紫外線によって紫外線硬化樹脂Gを硬化させることにより、凸部2hを容易に形成することができる。 Further, the above material is an ultraviolet curable resin G. Therefore, the convex portion 2h can be easily formed by curing the ultraviolet curable resin G with ultraviolet rays.
 なお、前述の第1実施形態では、領域R1を囲む枠状の凸部2hを端面2aに形成したが、図4A~図4D及び図5に示されるように、凸部2hの形状は、枠状以外の形状であってもよい。例えば、図4Aに示されるように、光ファイバ3の先端面3aが設けられる領域R3から突出すると共にガイド孔2eの部分に開口を形成した窓状の領域R4を凸部2hとしてもよい。また、図4Bに示されるように、先端面3aが露出する領域R5の上下に設けられ、方向A2に延びる一対の領域R6を凸部2hとしてもよい。 In the first embodiment described above, the frame-shaped convex portion 2h surrounding the region R1 is formed on the end surface 2a. However, as shown in FIGS. 4A to 4D and 5, the shape of the convex portion 2h is It may be a shape other than the shape. For example, as shown in FIG. 4A, a window-like region R4 that protrudes from a region R3 where the distal end surface 3a of the optical fiber 3 is provided and has an opening in the guide hole 2e may be used as the convex portion 2h. Further, as shown in FIG. 4B, a pair of regions R6 provided above and below the region R5 where the tip surface 3a is exposed and extending in the direction A2 may be used as the convex portions 2h.
 図4Cに示されるように、ガイド孔2e及び先端面3aが露出する領域R7を囲む長方形状の領域R8を凸部2hとしてもよい。図4Dに示されるように、光ファイバ3の先端面3aが露出する領域R9を囲む矩形の部位を有すると共に、各ガイド孔2eの上下で方向A2に延びる領域R10を凸部2hとしてもよい。更に、図5に示されるように、光ファイバ3の先端面3aが露出する領域R11から突出する複数のドット状の領域R12を凸部2hとしてもよい。以上のように、凸部2hの形状は、適宜変更することができる。 As shown in FIG. 4C, a rectangular region R8 surrounding the region R7 where the guide hole 2e and the tip surface 3a are exposed may be used as the convex portion 2h. As shown in FIG. 4D, it is possible to have a rectangular portion surrounding the region R9 where the tip surface 3a of the optical fiber 3 is exposed, and a region R10 extending in the direction A2 above and below each guide hole 2e may be a convex portion 2h. Further, as shown in FIG. 5, a plurality of dot-shaped regions R12 protruding from the region R11 where the tip surface 3a of the optical fiber 3 is exposed may be used as the convex portions 2h. As described above, the shape of the convex portion 2h can be changed as appropriate.
(第2実施形態)
 次に、第2実施形態に係る光コネクタ1の製造方法について図6を参照しながら説明する。以下では、第1実施形態と重複する説明を省略する。図6は、第2実施形態の製造方法で用いられる箔押し機20を示している。箔押し機20は、箔押し機20の本体から下方に突出する箔版21と、箔版21及び端面2aの間に介在する箔22とを備える。
(Second Embodiment)
Next, a method for manufacturing the optical connector 1 according to the second embodiment will be described with reference to FIG. Below, the description which overlaps with 1st Embodiment is abbreviate | omitted. FIG. 6 shows a foil press 20 used in the manufacturing method of the second embodiment. The foil stamping machine 20 includes a foil plate 21 projecting downward from the main body of the foil stamping machine 20 and a foil 22 interposed between the foil plate 21 and the end surface 2a.
 箔22は、凸部2hを構成するものであり、例えば、アルミ箔等の金属箔又は樹脂製フィルムである。箔22の片側の面は接着層とされており、この接着層がフェルール2の端面2aに接着することによって箔22が端面2aに接着する。凸部2hの高さHは、箔22の厚さBによって制御される。 The foil 22 constitutes the convex portion 2h and is, for example, a metal foil such as an aluminum foil or a resin film. One surface of the foil 22 is an adhesive layer, and the adhesive layer adheres to the end surface 2a of the ferrule 2 so that the foil 22 adheres to the end surface 2a. The height H of the convex portion 2 h is controlled by the thickness B of the foil 22.
 第2実施形態の製造方法において、光ファイバを固定するステップ、及び端面を光ファイバと共に鏡面加工するステップは、第1実施形態と同様である。鏡面加工した後には、前述と同様、フェルール2の後端面2jをステージTに乗せる。そして、箔押し機20のホットスタンプによって凸部2hを形成する(凸部を形成するステップ)。 In the manufacturing method of the second embodiment, the step of fixing the optical fiber and the step of mirror-finishing the end surface together with the optical fiber are the same as in the first embodiment. After the mirror finish, the rear end face 2j of the ferrule 2 is placed on the stage T as described above. And the convex part 2h is formed with the hot stamp of the foil stamping machine 20 (step which forms a convex part).
 具体的には、まず、フェルール2の端面2aの上方に、箔版21が下に向くように箔押し機20を配置し、端面2aと箔版21の間に箔22を介在させ、箔22の接着層を端面2aに貼り付ける。そして、箔22の接着層の反対側の面を上から箔版21によって加熱と共に押圧し、箔22を端面2aに転写して貼り付ける。これにより、端面2aに箔22から成る凸部2hが形成されて光コネクタ1が完成する。 Specifically, first, the foil pusher 20 is arranged above the end surface 2a of the ferrule 2 so that the foil plate 21 faces downward, the foil 22 is interposed between the end surface 2a and the foil plate 21, and the foil 22 An adhesive layer is affixed on the end surface 2a. And the surface on the opposite side of the adhesive layer of the foil 22 is pressed together with heating by the foil plate 21 from above, and the foil 22 is transferred and pasted to the end surface 2a. Thereby, the convex part 2h which consists of foil 22 is formed in the end surface 2a, and the optical connector 1 is completed.
 以上、第2実施形態に係る光コネクタ1の製造方法では、フェルール2の端面2aの光ファイバ3が露出する領域に対して突出した凸部2hが箔押し機20によって形成される。従って、第1実施形態と同様の効果が得られる。 As described above, in the method of manufacturing the optical connector 1 according to the second embodiment, the protruding portion 2 h protruding from the region where the optical fiber 3 of the end face 2 a of the ferrule 2 is exposed is formed by the foil pusher 20. Therefore, the same effect as the first embodiment can be obtained.
 また、凸部2hを形成するステップでは、箔押し(ホットスタンプ)によって凸部2hを形成する。このように、凸部2hの形成に箔押し加工を用いることにより、容易に凸部2hを形成することができる。更に、凸部2hは、樹脂製又は金属製であるため、端面2aに容易に凸部2hを形成することができる。 In the step of forming the convex portion 2h, the convex portion 2h is formed by foil stamping (hot stamping). Thus, the convex part 2h can be easily formed by using foil stamping for the formation of the convex part 2h. Furthermore, since the convex portion 2h is made of resin or metal, the convex portion 2h can be easily formed on the end surface 2a.
(第3実施形態)
 続いて、第3実施形態に係る光コネクタ1の製造方法について図7を参照しながら説明する。図7は、第3実施形態の製造方法で用いられるスクリーン印刷機30を示している。スクリーン印刷機30は、フェルール2の端面2aに沿って移動するスキージ31と、スキージ31及び端面2aの間に介在するスクリーンメッシュ32とを備えている。
(Third embodiment)
Then, the manufacturing method of the optical connector 1 which concerns on 3rd Embodiment is demonstrated, referring FIG. FIG. 7 shows a screen printer 30 used in the manufacturing method of the third embodiment. The screen printing machine 30 includes a squeegee 31 that moves along the end surface 2a of the ferrule 2, and a screen mesh 32 that is interposed between the squeegee 31 and the end surface 2a.
 スクリーンメッシュ32は、インク状の樹脂材料Jを通過可能なメッシュを有する。樹脂材料Jは、凸部2hを形成する材料である。樹脂材料Jは、スキージ31によってスクリーンメッシュ32に押し込まれ、スクリーンメッシュ32を下方に通過することによって端面2aに塗布される。凸部2hの高さHは、端面2a及びスクリーンメッシュ32の間に形成される空間の厚みK、並びにスクリーンメッシュ32のメッシュの粗さによって制御される。 The screen mesh 32 has a mesh that can pass through the ink-like resin material J. The resin material J is a material for forming the convex portion 2h. The resin material J is pushed into the screen mesh 32 by the squeegee 31, and is applied to the end surface 2a by passing through the screen mesh 32 downward. The height H of the convex portion 2 h is controlled by the thickness K of the space formed between the end face 2 a and the screen mesh 32 and the mesh roughness of the screen mesh 32.
 第3実施形態の製造方法において、鏡面加工した後には、前述と同様、フェルール2の後端面2jをステージTに乗せる。そして、スクリーン印刷機30によって凸部2hを形成する(凸部を形成するステップ)。このとき、フェルール2の端面2aの上方にスクリーン印刷機30を配置する。 In the manufacturing method of the third embodiment, after mirror finishing, the rear end surface 2j of the ferrule 2 is placed on the stage T as described above. And the convex part 2h is formed by the screen printer 30 (step which forms a convex part). At this time, the screen printer 30 is disposed above the end face 2 a of the ferrule 2.
 具体的には、端面2aの上にスクリーンメッシュ32を配置し、スクリーンメッシュ32の上に樹脂材料Jを乗せる。そして、スキージ31をスクリーンメッシュ32の上面に沿って移動させ、樹脂材料Jをスクリーンメッシュ32の下に通過させることにより、スクリーンメッシュ32と端面2aの間に凸部2hを形成する。このように凸部2hを形成した後に光コネクタ1は完成する。 Specifically, the screen mesh 32 is disposed on the end surface 2 a and the resin material J is placed on the screen mesh 32. Then, the squeegee 31 is moved along the upper surface of the screen mesh 32, and the resin material J is passed under the screen mesh 32, thereby forming a convex portion 2h between the screen mesh 32 and the end surface 2a. Thus, after forming the convex part 2h, the optical connector 1 is completed.
 以上、第3実施形態に係る光コネクタ1の製造方法では、第1実施形態と同様の効果が得られる。更に、第3実施形態において、凸部2hを形成するステップでは、スクリーン印刷によって凸部2hを形成する。従って、高精度のメッシュを備えたスクリーンメッシュ32を用いることにより、フェルール2の端面2aに凸部2hを高精度に形成することができる。 As described above, in the method for manufacturing the optical connector 1 according to the third embodiment, the same effects as those of the first embodiment can be obtained. Further, in the third embodiment, in the step of forming the convex portion 2h, the convex portion 2h is formed by screen printing. Therefore, by using the screen mesh 32 having a highly accurate mesh, the convex portion 2h can be formed on the end surface 2a of the ferrule 2 with high accuracy.
 以上、実施形態に係る光コネクタ1の製造方法について説明したが、本発明に係る光コネクタの製造方法は、前述の各実施形態に限られるものではなく、種々の変形が可能である。 As mentioned above, although the manufacturing method of the optical connector 1 which concerns on embodiment was demonstrated, the manufacturing method of the optical connector which concerns on this invention is not restricted to each above-mentioned embodiment, A various deformation | transformation is possible.
 例えば、前述の実施形態では、光ファイバ3の先端面3aがフェルール2の端面2aに露出する例について説明したが、光ファイバ3の先端面3a自体がフェルール2の端面2aに露出していなくてもよい。例えば、図8に示されるように、先端面3aに代えて、ファイバ型レンズであるGRINレンズ41が端面2aに露出していてもよい。なお、GRINレンズ41の端面2aの反対側には光ファイバ43が配置されている。このように、本明細書では、ファイバ型レンズをフェルールの端面に露出させる場合も、光ファイバをフェルールの端面に露出させることに含まれる。 For example, in the above-described embodiment, the example in which the tip surface 3a of the optical fiber 3 is exposed on the end surface 2a of the ferrule 2 has been described. However, the tip surface 3a of the optical fiber 3 itself is not exposed on the end surface 2a of the ferrule 2. Also good. For example, as shown in FIG. 8, instead of the front end surface 3a, a GRIN lens 41, which is a fiber type lens, may be exposed on the end surface 2a. An optical fiber 43 is disposed on the opposite side of the end surface 2a of the GRIN lens 41. Thus, in this specification, the case where the fiber lens is exposed to the end face of the ferrule is also included in exposing the optical fiber to the end face of the ferrule.
 前述のようにファイバ型レンズが端面2aに露出していても、端面2aに凸部2hが形成されることにより、各実施形態と同様の効果が得られる。また、光ファイバ3,43の種類は、通常のシングルモードファイバでなくてもよく、特殊なシングルモードファイバ、上記のようなファイバ型レンズ、又はマルチモードファイバであってもよい。特殊なシングルモードファイバには、光ファイバ3の先端にモードフィールド径(MFD)が異なる光ファイバが融着又は溶着等により接続されたMFD拡大ファイバ、及び、バーナ又はアーク放電により含有物を拡散させてMFDが拡大されたTECファイバ等も含まれる。 Even if the fiber lens is exposed on the end surface 2a as described above, the same effect as that of each embodiment can be obtained by forming the convex portion 2h on the end surface 2a. Further, the type of the optical fibers 3 and 43 may not be a normal single mode fiber, but may be a special single mode fiber, a fiber type lens as described above, or a multimode fiber. Special single-mode fibers include an MFD expansion fiber in which optical fibers having different mode field diameters (MFD) are connected to the tip of the optical fiber 3 by fusion or welding, and the contents are diffused by burner or arc discharge. TEC fiber etc. in which the MFD is expanded are also included.
 端面2aに特殊なシングルモードファイバ、ファイバ型レンズ、又はマルチモードファイバが露出している場合には、高さHの上限を大きくすることができ、例えば、領域R1に対する凸部2hの高さを3μm以上且つ200μm以下とすることができる。この場合、光ファイバの先端面と相手側コネクタの光ファイバの先端面との間隔を3μm以上且つ200μmにすることができる。従って、2つの先端面間の距離を最適にすることが可能となり、低い結合損失でこれらの光ファイバ同士を接続することができる。更に、特殊なシングルモードファイバが前述のMFD拡大ファイバ又はTECファイバ等である場合、出射されるビーム径が大きくなるので、光接続されるコネクタ同士の軸ずれによるロスを低減できる効果が得られる。また、MFDが拡大されると開口数が小さくなるので、出射されるビームはコリメート光に近くなり、2つの先端面間の距離の最適な範囲を拡げることができる。 When a special single mode fiber, fiber type lens, or multimode fiber is exposed on the end face 2a, the upper limit of the height H can be increased. For example, the height of the convex portion 2h with respect to the region R1 can be increased. It can be 3 μm or more and 200 μm or less. In this case, the distance between the tip surface of the optical fiber and the tip surface of the optical fiber of the mating connector can be 3 μm or more and 200 μm. Therefore, it is possible to optimize the distance between the two tip surfaces, and these optical fibers can be connected with low coupling loss. Further, when the special single mode fiber is the above-described MFD expansion fiber, TEC fiber, or the like, since the emitted beam diameter is increased, an effect of reducing the loss due to the axial deviation between the optically connected connectors can be obtained. Further, when the MFD is enlarged, the numerical aperture is decreased, so that the emitted beam is close to collimated light, and the optimum range of the distance between the two tip surfaces can be expanded.
 また、前述の実施形態では、フェルール2の端面2aと光ファイバ3の先端面3aとが面Sに対して傾斜している例について説明した。しかしながら、フェルールの端面、及び光ファイバの先端面は、面Sに対して傾斜していなくてもよい。傾斜していない場合には、反射防止膜を形成することもでき、ファイバの先端面で発生するフレネル損失を低減することもできる。反射防止膜は少なくとも光ファイバの先端面に形成される必要がある。しかしながら、光ファイバの先端面のみに製膜することが技術的に困難である場合には、フェルールの端面に形成してもよい。反射防止の対策は反射防止膜以外のものを用いて行ってもよい。また、傾斜している場合に反射防止のための処理又は加工を行ってもフレネル損失を低減できる。更に、前述の実施形態では、複数の光ファイバ3を備えた多芯フェルールであるフェルール2に本発明を適用しているが、本発明は単心フェルールにも適用可能である。 In the above-described embodiment, the example in which the end surface 2a of the ferrule 2 and the front end surface 3a of the optical fiber 3 are inclined with respect to the surface S has been described. However, the end surface of the ferrule and the front end surface of the optical fiber may not be inclined with respect to the surface S. When it is not inclined, an antireflection film can be formed, and the Fresnel loss generated at the end face of the fiber can be reduced. The antireflection film needs to be formed at least on the tip surface of the optical fiber. However, when it is technically difficult to form a film only on the front end surface of the optical fiber, it may be formed on the end surface of the ferrule. Anti-reflection measures may be taken using other than anti-reflection films. Further, the Fresnel loss can be reduced even if the treatment or processing for preventing reflection is performed when the vehicle is inclined. Furthermore, in the above-described embodiment, the present invention is applied to the ferrule 2 that is a multi-core ferrule including a plurality of optical fibers 3, but the present invention is also applicable to a single-core ferrule.
1…光コネクタ、2…フェルール、2a…端面、2b…側面、2c…上面、2d…光ファイバ保持孔、2e…ガイド孔、2f…孔部、2g…凹部、2h…凸部、2j…後端面、2k…底面、2p…導入孔、3,43…光ファイバ、3a…先端面、10…3Dプリンタ、11…ノズル、20…箔押し機、21…箔版、22…箔、30…スクリーン印刷機、31…スキージ、32…スクリーンメッシュ、41…GRINレンズ、A1…接続方向、A2,A3…方向、G…紫外線硬化樹脂(材料)、J…樹脂材料(材料)、L…中心軸線、R1~R11…領域、S…面、T…ステージ、T1…孔部。 DESCRIPTION OF SYMBOLS 1 ... Optical connector, 2 ... Ferrule, 2a ... End surface, 2b ... Side surface, 2c ... Upper surface, 2d ... Optical fiber holding hole, 2e ... Guide hole, 2f ... Hole, 2g ... Concavity, 2h ... Convex part, 2j ... Rear End face, 2k ... bottom face, 2p ... introduction hole, 3, 43 ... optical fiber, 3a ... tip face, 10 ... 3D printer, 11 ... nozzle, 20 ... foil press, 21 ... foil plate, 22 ... foil, 30 ... screen printing 31 ... Squeegee, 32 ... Screen mesh, 41 ... GRIN lens, A1 ... Connection direction, A2, A3 ... direction, G ... UV curable resin (material), J ... Resin material (material), L ... Center axis, R1 R11 region, S surface, T stage, T1 hole.

Claims (7)

  1.  光ファイバを保持するフェルールを備えた光コネクタの製造方法であって、
     前記光ファイバを前記フェルールの端面に露出させて前記フェルールに前記光ファイバを固定するステップと、
     前記端面を前記光ファイバと共に鏡面加工するステップと、
     前記端面における前記光ファイバが露出する領域以外の他の領域に材料を着設して凸部を形成するステップと、
    を備える光コネクタの製造方法。
    An optical connector manufacturing method including a ferrule that holds an optical fiber,
    Exposing the optical fiber to an end face of the ferrule and fixing the optical fiber to the ferrule;
    Mirroring the end face with the optical fiber;
    Attaching a material to a region other than the region where the optical fiber is exposed on the end face to form a convex portion;
    An optical connector manufacturing method comprising:
  2.  前記凸部を形成するステップでは、3Dプリンタから前記材料を前記他の領域に噴射して前記凸部を形成する、
    請求項1に記載の光コネクタの製造方法。
    In the step of forming the convex portion, the material is jetted from the 3D printer to the other region to form the convex portion.
    The manufacturing method of the optical connector of Claim 1.
  3.  前記材料は、紫外線硬化樹脂である、
    請求項1又は2に記載の光コネクタの製造方法。
    The material is an ultraviolet curable resin.
    The manufacturing method of the optical connector of Claim 1 or 2.
  4.  前記凸部を形成するステップでは、箔押しによって前記凸部を形成する、
    請求項1に記載の光コネクタの製造方法。
    In the step of forming the convex part, the convex part is formed by foil pressing.
    The manufacturing method of the optical connector of Claim 1.
  5.  前記凸部は、樹脂製又は金属製である、
    請求項4に記載の光コネクタの製造方法。
    The convex portion is made of resin or metal.
    The manufacturing method of the optical connector of Claim 4.
  6.  前記凸部を形成するステップでは、スクリーン印刷によって前記凸部を形成する、
    請求項1に記載の光コネクタの製造方法。
    In the step of forming the convex portion, the convex portion is formed by screen printing.
    The manufacturing method of the optical connector of Claim 1.
  7.  前記光ファイバが露出する領域に対する前記凸部の高さは、3μm以上且つ200μm以下である、
    請求項1~6のいずれか一項に記載の光コネクタの製造方法。
    The height of the convex portion with respect to the region where the optical fiber is exposed is 3 μm or more and 200 μm or less.
    The method for manufacturing an optical connector according to any one of claims 1 to 6.
PCT/JP2017/029289 2016-08-24 2017-08-14 Optical connector production method WO2018037960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535614A JPWO2018037960A1 (en) 2016-08-24 2017-08-14 Optical connector manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163911 2016-08-24
JP2016-163911 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037960A1 true WO2018037960A1 (en) 2018-03-01

Family

ID=61244894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029289 WO2018037960A1 (en) 2016-08-24 2017-08-14 Optical connector production method

Country Status (2)

Country Link
JP (1) JPWO2018037960A1 (en)
WO (1) WO2018037960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927812B2 (en) 2019-02-25 2024-03-12 Sumitomo Electric Industries, Ltd. Ferrule and optical connector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171137U (en) * 1974-12-02 1976-06-04
JPS63107599A (en) * 1986-10-23 1988-05-12 稲元マ−ク株式会社 Metallic putting leaf display body and manufacture thereof
JPH1147362A (en) * 1997-07-29 1999-02-23 Daiichi Shokai Co Ltd Game surface plate of game board for pachinko machine
JP2000098186A (en) * 1998-09-22 2000-04-07 Sumitomo Electric Ind Ltd Optical connector
JP2003344690A (en) * 2002-05-29 2003-12-03 Kyocera Corp Multi fiber optical fiber holding member and optical semiconductor device
US20140241668A1 (en) * 2013-02-28 2014-08-28 Lifodas, Uab Hybrid ferrule and fiber optical test device
JP2015143023A (en) * 2013-12-26 2015-08-06 株式会社ミマキエンジニアリング Manufacturing method of shaped object
WO2016046971A1 (en) * 2014-09-26 2016-03-31 堺ディスプレイプロダクト株式会社 Display device and method for manufacturing display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171137U (en) * 1974-12-02 1976-06-04
JPS63107599A (en) * 1986-10-23 1988-05-12 稲元マ−ク株式会社 Metallic putting leaf display body and manufacture thereof
JPH1147362A (en) * 1997-07-29 1999-02-23 Daiichi Shokai Co Ltd Game surface plate of game board for pachinko machine
JP2000098186A (en) * 1998-09-22 2000-04-07 Sumitomo Electric Ind Ltd Optical connector
JP2003344690A (en) * 2002-05-29 2003-12-03 Kyocera Corp Multi fiber optical fiber holding member and optical semiconductor device
US20140241668A1 (en) * 2013-02-28 2014-08-28 Lifodas, Uab Hybrid ferrule and fiber optical test device
JP2015143023A (en) * 2013-12-26 2015-08-06 株式会社ミマキエンジニアリング Manufacturing method of shaped object
WO2016046971A1 (en) * 2014-09-26 2016-03-31 堺ディスプレイプロダクト株式会社 Display device and method for manufacturing display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927812B2 (en) 2019-02-25 2024-03-12 Sumitomo Electric Industries, Ltd. Ferrule and optical connector

Also Published As

Publication number Publication date
JPWO2018037960A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US10705299B2 (en) Ferrule structure, ferrule structure with fiber, and method for manufacturing ferrule structure with fiber
US10481340B2 (en) Optical connector ferrule and optical connection structure
WO2018037675A1 (en) Method for manufacturing optical connector
JP2006528786A (en) Optical ferrule
US9091818B2 (en) Ferrule with encapsulated protruding fibers
WO2017195636A1 (en) Optical connector and optical coupling structure
WO2017163880A1 (en) Optical connector ferrule
JP2009047993A (en) Optical fiber collimator, optical fiber collimator array, and method of manufacturing them
JP5948650B2 (en) Optical connection component manufacturing method and optical connection component
WO2020230363A1 (en) Ferrule and method for manufacturing ferrule
JP2003107277A (en) Optical element for optical connector
WO2018037960A1 (en) Optical connector production method
WO2017149844A1 (en) Optical connector-attached fiber and optical coupling structure
JP5377730B1 (en) Manufacturing method of optical fiber array
JP6514931B2 (en) Optical fiber equipped ferrule and optical connector system
WO2017163478A1 (en) Optical connector and optical coupling structure
WO2018042795A1 (en) Method for manufacturing optical connector
JPH07294779A (en) Core diameter expanding optical fiber with lens and its production
JP6491418B2 (en) Fiber optic connector
JP5697347B2 (en) Optical fiber module and manufacturing method thereof
JPH06194543A (en) Optical waveguide part and their production
WO2019039049A1 (en) Method for manufacturing optical communication component and optical communication component
US20200341199A1 (en) Lens Plate for Ferrules
US20230152534A1 (en) Optical connector, ferrule, and method for manufacturing optical connector
JP5657944B2 (en) Optical connector with lens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018535614

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843443

Country of ref document: EP

Kind code of ref document: A1