WO2019039049A1 - Method for manufacturing optical communication component and optical communication component - Google Patents

Method for manufacturing optical communication component and optical communication component Download PDF

Info

Publication number
WO2019039049A1
WO2019039049A1 PCT/JP2018/022252 JP2018022252W WO2019039049A1 WO 2019039049 A1 WO2019039049 A1 WO 2019039049A1 JP 2018022252 W JP2018022252 W JP 2018022252W WO 2019039049 A1 WO2019039049 A1 WO 2019039049A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
component
optical
optical communication
optical fiber
Prior art date
Application number
PCT/JP2018/022252
Other languages
French (fr)
Japanese (ja)
Inventor
祥 矢加部
卓朗 渡邊
一真 栗原
遼平 穂苅
Original Assignee
住友電気工業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 住友電気工業株式会社
Priority to JP2019537940A priority Critical patent/JPWO2019039049A1/en
Publication of WO2019039049A1 publication Critical patent/WO2019039049A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • One aspect of the present disclosure relates to a method of manufacturing an optical communication component and an optical communication component.
  • This application claims the priority based on Japanese Patent Application No. 2017-161518 (August 24, 2017), which is incorporated herein by reference in its entirety.
  • Non-Patent Document 1 describes a multi-core lens optical connector capable of collectively connecting a plurality of optical fibers.
  • a lens array composed of a plurality of lenses is provided on the end face of the optical connector.
  • optical coupling is performed without contacting the end face of the optical connector.
  • a spatial coupling type optical connector by performing optical coupling through a space, it is possible to suppress the adhesion of foreign matter to the end face of the optical connector while requiring a large pressing force at the time of connection. .
  • a method of manufacturing an optical communication component is a method of manufacturing a spatial coupling type optical communication component, having a periodic uneven structure with a depth and a spacing of 100 nm or more and 1000 nm or less. And injecting the resin from the gate into the cavity of the mold provided with the lens frame portion having a diameter of 50 ⁇ m or more and 600 ⁇ m or less, and curing the resin to form a lens part.
  • the ratio of the cross-sectional area of the gate to the cross-sectional area is 50% or more and 100% or less.
  • the component for optical communication is a component for optical communication of space coupling type, including a lens component, and the lens component has a lens portion having a diameter of 50 ⁇ m or more and 600 ⁇ m or less,
  • the lens portion includes a periodic uneven structure having a height and a spacing of 100 nm or more and 1000 nm or less, and the lens component is a surface on which a gate mark hardened and a gate mark is provided in the gate into which the resin is poured.
  • the ratio of the area of the gate mark to the area of the surface is 50% or more and 100% or less.
  • FIG. 1 is a perspective view showing lens parts of the optical communication part of the first embodiment.
  • FIG. 2A is a front view of the lens component of FIG.
  • FIG. 2B is a plan view of the lens component of FIG.
  • FIG. 3 is a cross-sectional view of the lens portion of the lens component of FIG.
  • FIG. 4 is an enlarged cross-sectional view of the lens portion of FIG.
  • FIG. 5 is a cross-sectional view showing a resin and a mold of the lens component of FIG.
  • FIG. 6 is a view schematically showing a runner and a gate of the mold of FIG.
  • FIG. 7 is a side sectional view showing an optical connector which is a component for optical communication according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing the lens array of the third embodiment.
  • FIG. 9 is a cross-sectional view showing the lens module of the fourth embodiment.
  • FIG. 10 is an enlarged sectional view of the lens module of FIG.
  • FIG. 11 is a view showing the relationship between the lens diameter of the lens member, the range in which the periodic uneven structure is formed, and the beam diameter.
  • the Fresnel loss tends to be large due to the interface having a different refractive index as compared with a PC (Physical Contact) type optical connector in which the optical fibers are in contact with each other. Therefore, since the space coupling type optical connector is more susceptible to Fresnel reflection than the PC type optical connector, there may occur a problem that the optical loss becomes large.
  • PC Physical Contact
  • One aspect of the present disclosure is to provide a method for manufacturing an optical communication component capable of suppressing optical loss, and an optical communication component.
  • a method of manufacturing an optical communication component according to an embodiment is a method of manufacturing a spatial coupling type optical communication component, which has a periodic uneven structure having a depth and a spacing of 100 nm or more and 1000 nm or less Injecting the resin from the gate into the cavity of the mold provided with the lens frame portion having a diameter of 50 ⁇ m or more and 600 ⁇ m or less, and curing the resin to form the lens component,
  • the ratio of the cross-sectional area of the gate is 50% or more and 100% or less.
  • the component for optical communication is a component for optical communication of space coupling type, and includes a lens component, and the lens component has a lens portion having a diameter of 50 ⁇ m or more and 600 ⁇ m or less, and the lens portion is And the lens part has a surface on which a gate mark hardened and a gate mark is provided in the gate into which the resin is poured, including a periodic uneven structure whose height and spacing are 100 nm or more and 1000 nm or less.
  • the ratio of the area of the gate mark to the surface is 50% or more and 100% or less.
  • a lens portion having a diameter of 50 ⁇ m or more and 600 ⁇ m or less is provided.
  • the lens portion includes a periodic uneven structure having a height and a spacing of 100 nm or more and 1000 nm or less. Fresnel reflection on the surface of the lens portion can be suppressed by the periodic uneven structure of the lens portion functioning as a moth-eye structure. Thus, light loss can be suppressed.
  • the cross-sectional area of the gate into which the resin is poured is 50% or more and 100% or less of the cross-sectional area of the cavity.
  • the ratio of the area of the gate mark to the area of the surface on which the gate mark of the optical communication component is provided is 50% or more and 100% or less. Therefore, since the cross-sectional area of the gate through which the resin flows can be increased, the liquid resin can be reliably poured into the periodic uneven structure of the lens frame portion. That is, the fluidity of the liquid resin can be enhanced. Accordingly, since the resin can be reliably poured into the periodic concavo-convex structure before the liquid resin is cured, transferability of the nano-order periodic concavo-convex structure can be enhanced. Therefore, the moth-eye structure can be reliably formed in the lens portion.
  • the volume of the lens component may be 9 mm 3 or more and 350 mm 3 or less.
  • the moth-eye structure can be reliably transferred to the lens portion. Therefore, lens components capable of suppressing light loss can be formed by suppressing Fresnel reflection.
  • the above-described component for optical communication further includes an optical fiber, an optical fiber holding member for holding the optical fiber, and a refractive index matching layer for matching the refractive index, and the optical fiber holding member holds the optical fiber.
  • the optical fiber is fixed to the optical fiber holding member, and the tip surface of the optical fiber has a refractive index matching layer.
  • the lens may be optically coupled to the lens portion, and positioning may be performed by inserting a guide pin into the guide hole and the hole formed in the lens part. In this case, the configuration in which the transferability of the moth-eye structure is enhanced and the light loss is suppressed can be applied to an optical fiber, an optical fiber holding member, and a component for optical communication provided with an index matching layer.
  • the lens component may have an abutment surface at a position closer to the end than the lens portion, and the guide hole may be formed in the abutment surface.
  • the lens portion can be made non-contact, so spatial coupling of light can be realized.
  • the material of the lens component may be the same as the material of the optical fiber holding member.
  • the coefficient of thermal expansion of the lens component is the same as the coefficient of thermal expansion of the optical fiber holding member. Therefore, it is possible to suppress the positional deviation between the lens component and the optical fiber holding member due to temperature change. Therefore, it is possible to prevent the off-axis of the light due to the temperature change.
  • the thickness of the refractive index matching layer may be 50 ⁇ m or less. In this case, since the thickness of the refractive index matching layer is thin, it is possible to suppress displacement of the optical fiber in the connection direction of light.
  • the lens component may also comprise a plurality of lens portions.
  • the pressing force required at the time of connection can be reduced by providing a plurality of lens portions and forming a multi-core optical communication component. Therefore, multi-core optical communication components can be connected efficiently.
  • the lens component may have a region where there is no periodic uneven structure in the outer peripheral portion. In this case, by providing the region having no periodic uneven structure in the outer peripheral portion, the alignment of the lens component can be performed with high accuracy.
  • the component for optical communication described above may be an optical connector.
  • the lens component described above may be a lens array that optically couples the optical waveguide and an optical waveguide other than the optical waveguide. In this case, it is possible to obtain a spatially coupled lens array with a small Fresnel loss.
  • the lens component may be a lens module that optically couples the optical waveguide and the light emitting / receiving element. In this case, it is possible to provide a spatially coupled lens module with a small Fresnel loss.
  • FIG. 1 is a perspective view showing a lens component 1 of the optical communication component according to the first embodiment.
  • FIG. 2A is a front view showing the lens component 1.
  • FIG. 2B is a plan view showing the lens component 1.
  • the optical communication component includes, for example, a lens component 1 and an MT ferrule, and the lens component 1 is connected to the MT ferrule and the mating connector along a direction D1 which is a connection direction.
  • the lens component 1 constitutes a space coupling type optical connector optically connected to the mating connector by being interposed between the MT ferrule and the mating connector.
  • the lens component 1 is, for example, a communication lens component.
  • the lens part 1 has a substantially rectangular parallelepiped appearance.
  • the volume of the lens component 1 is, for example, 9 mm 3 or more and 350 mm 3 or less, and the lens component 1 is small.
  • the lens component 1 is made of a transparent resin having a high transmittance to light having a wavelength of 750 nm or more and 1650 nm or less.
  • the lens component 1 has an end face 2a which is an abutting face in contact with the mating connector, a rear end face 2b opposite to the direction D1 of the end face 2a, and a pair of side faces 2c connecting the end face 2a and the rear end face 2b to each other. , Top surface 2d and bottom surface 2e.
  • the end face 2a has, for example, a rectangular shape extending along a plane orthogonal to the direction D1.
  • the end face 2a has, for example, a long side extending in a direction D2 intersecting the direction D1 and a short side extending in a direction D3 intersecting the direction D1 and the direction D2.
  • the direction D2 is orthogonal to the direction D1
  • the direction D3 is orthogonal to a plane extending in the direction D1 and the direction D2.
  • the end face 2a is provided with a recess 2f which is recessed in a rectangular shape in the direction D1, and a plurality of (for example, 12) lens portions 3 are formed on the bottom of the recess 2f.
  • the end face 2 a is provided at a position closer to the end of the lens component 1 than the lens portion 3.
  • the lens portion 3 is a convex lens integrated with the lens component 1.
  • the plurality of lens portions 3 are arranged along the direction D2.
  • Guide holes 4 (holes formed in the lens component) into which guide pins for positioning the lens component 1 and the mating connector are inserted are provided on both end sides of the concave portion 2f in the direction D2.
  • the MT ferrule described above is opposed to the rear end face 2b.
  • the rear end face 2b, the side face 2c, the top face 2d, and the bottom face 2e are, for example, both rectangular.
  • a gate mark 2g is provided on the upper surface 2d.
  • the gate mark 2g is a hardened portion in the gate into which the resin constituting the lens part 1 is poured when the lens part 1 is manufactured.
  • the gate mark 2g is provided, for example, on the rear end surface 2b side, and protrudes in a rectangular shape with respect to the upper surface 2d.
  • the gate mark 2g extends in the entire direction D2 of the upper surface 2d.
  • the shape of the gate mark 2g (when viewed from the direction D3) in plan view is rectangular.
  • Gate mark 2g has a short side extending from rear end face 2b to end face 2a and a long side extending along rear end face 2b. One of the two long sides of the gate mark 2g coincides with the rear end face 2b.
  • the other of the two long sides of the gate mark 2g is located closer to the end face 2a than the midpoint of the short side of the upper surface 2d. Further, each of the short sides of the gate mark 2g corresponds to, for example, each side surface 2c. Therefore, the ratio of the area B of the gate mark 2g to the area A of the upper surface 2d on which the gate mark 2g is provided is 50% or more and 100% or less. The shape and size of the gate mark 2g can be changed as appropriate.
  • FIG. 3 is a cross-sectional view showing the lens portion 3.
  • FIG. 4 is an enlarged sectional view of one lens portion 3.
  • the lens portion 3 protrudes, for example, in a hemispherical shape, and the diameter R of the lens portion 3 is 50 ⁇ m or more and 600 ⁇ m or less.
  • Each lens portion 3 includes a periodic uneven structure 3A in which a plurality of convex portions 3a are arranged in parallel on the surface.
  • the periodic uneven structure 3A corresponds to the moth-eye structure of the lens portion 3.
  • the refractive index of light passing through the lens portion 3 changes continuously from the top of the convex portion 3a toward the root of the convex portion 3a.
  • the height H and the interval P of the convex portions 3a are 100 nm or more and 1000 nm or less.
  • the communication wavelength of light passing through the lens portion 3 is, for example, 850 nm, 1310 nm, or 1550 nm, and the distance P and height H of the convex portions 3 a are at least 1/4 and at most 1/2 of the communication wavelength. May be
  • FIG. 5 is a cross-sectional view showing the mold 5 of the lens component 1 and the resin C constituting the lens component 1.
  • FIG. 6 is a view schematically showing the mold 5.
  • the mold 5 includes runners 6a and 6b through which the resin C which has been heated and liquefied is passed, a gate 7, and a cavity 8.
  • the cavity 8 of the mold 5 has a lens frame portion 8a having a diameter R of 50 ⁇ m or more and 600 ⁇ m or less, and the lens frame portion 8a has a depth and a space Is provided with a periodic uneven structure 8 b of 100 nm or more and 1000 nm or less.
  • the shape and size of the lens frame portion 8 a correspond to the shape and size of the lens portion 3.
  • the shape and size of the periodic uneven structure 8b correspond to the shape and size of the periodic uneven structure 3A of the lens portion 3, and the depth and interval of the periodic uneven structure 8b are periodical.
  • the height H and the interval P of the concavo-convex structure 3A are the same.
  • the liquid resin C is injected through the runners 6a and 6b and the gate 7. (Step of injecting resin from the gate). At this time, the resin C is heated and the mold 5 is heated, for example, the temperature of the resin C is made higher than the temperature of the mold 5.
  • the lens component 1 has the nano-order periodic uneven structure 3A. Therefore, the fluidity of the resin C is important in order to inject the resin C into the periodic concavo-convex structure 8 b of the cavity 8 to reliably form the periodic concavo-convex structure 3 A.
  • the fluidity of the resin C is related to the viscosity of the resin C, the temperature of the mold 5, the temperature of the resin C, the sizes of the runners 6a and 6b, and the size of the gate 7.
  • the temperature of the resin C and the temperature of the mold 5 are preferably higher. However, if these temperatures are close to the glass transition point (Tg), deformation at the time of taking out the lens part 1 and resin residue on the mold 5 may be concerned. Accordingly, the temperature of the resin C and the temperature of the mold 5 are preferably equal to or less than the glass transition point.
  • the flowability of the resin C is improved by enlarging the sizes of the runners 6 a and 6 b and the gate 7. Specifically, the ratio of the cross-sectional area F1 of the gate 7 to the cross-sectional area E1 of the cavity 8 when viewed from the direction in which the resin C flows is 50% or more and 100% or less.
  • a gate mark 2g on the upper surface 2d of the lens component 1 is formed.
  • the gate mark 2g is formed on the top surface 2d, but may be formed on the side surface 2c or the bottom surface 2e. That is, the gate mark 2g may be formed on a surface other than the surface orthogonal to the direction D1.
  • the gate mark 2g can not be formed on the end face 2a and the rear end face 2b.
  • the high temperature resin C is injected from the runners 6a and 6b into the gate 7 and the cavity 8 configured as described above.
  • the lens component 1 is formed by curing the resin C injected into the cavity 8 (step of forming the lens component). Then, the pin 8c is pulled out from the cured resin C (lens component 1), and after the cured lens component 1 is taken out from the mold 5, the lens component 1 is connected to, for example, an MT ferrule to complete an optical communication component.
  • the lens portion 3 having a diameter R of 50 ⁇ m or more and 600 ⁇ m or less is provided.
  • the lens portion 3 includes a periodic uneven structure 3A having a height H and a distance P of 100 nm or more and 1000 nm or less. Fresnel reflection on the surface of the lens portion 3 can be suppressed by the periodic uneven structure 3A of the lens portion 3 functioning as a moth-eye structure. Thus, light loss can be suppressed.
  • the cross-sectional area F1 of the gate 7 into which the resin C is poured is 50% or more and 100% or less of the cross-sectional area E1 of the cavity 8. Therefore, the ratio of the area B of the gate mark 2g to the area A of the upper surface 2d where the gate mark 2g is provided is 50% or more and 100% or less. Therefore, since the cross-sectional area of the gate 7 through which the resin C flows can be increased, the liquid resin C can be reliably poured into the periodic uneven structure 8 b of the lens frame portion 8 a.
  • the resin C can be reliably poured into the periodic uneven structure 8 b before the liquid resin C is cured. Therefore, since the transferability of the nano-order periodic uneven structure 3A can be enhanced, the moth-eye structure can be reliably formed in the lens portion 3.
  • the volume of the lens component 1 is 9 mm 3 or more and 350 mm 3 or less.
  • the lens component 1 has an end face 2a which is a contact surface at a position closer to the end than the lens portion 3, and the guide hole 4 is formed in the end face 2a. Therefore, by providing the end face 2a closer to the end than the lens portion 3, the lens portion 3 can be made non-contact, so that spatial coupling of light can be realized.
  • the lens component 1 also includes a plurality of lens portions 3. Therefore, the lens component 1 includes the plurality of lens portions 3 and is a multi-core optical communication component, so that the pressing force required at the time of connection can be reduced. Therefore, multi-core optical communication components can be connected efficiently.
  • FIG. 7 is a side sectional view showing an optical connector 10 which is a component for optical communication according to the second embodiment.
  • the optical connector 10 includes the lens component 1 of the first embodiment, an optical fiber 11, an optical fiber holding member 12 for holding the optical fiber 11, and a refractive index matching layer 13 for matching the refractive index.
  • the description overlapping with that of the first embodiment is appropriately omitted.
  • the optical fiber holding member 12 is, for example, a ferrule that holds the optical fiber 11.
  • the material of the optical fiber holding member 12 may be, for example, a transparent resin, or a resin such as PPS may contain glass.
  • the thermal expansion coefficient of the optical fiber holding member 12 may be equal to (for example, the same order of magnitude) the thermal expansion coefficient of the lens component 1.
  • the material of the optical fiber holding member 12 is the same as the material of the lens component 1.
  • the optical fiber holding member 12 includes an optical end face 12 c in contact with the refractive index matching layer 13, and the refractive index matching layer 13 is provided between the optical end face 12 c and the rear end face 2 b of the lens component 1.
  • the thickness T in the direction D1 of the refractive index matching layer 13 is, for example, 1 ⁇ m or more and 50 ⁇ m or less, and may be 20 ⁇ m or more and 50 ⁇ m or less.
  • the optical fiber 11 has a tip surface 11 a in contact with the refractive index matching layer 13, and the tip surface 11 a is optically coupled to the lens portion 3 via the refractive index matching layer 13.
  • the refractive index matching layer 13 performs refractive index matching between the optical fiber 11 and the lens component 1. That is, an air layer having a large difference in refractive index is prevented from being included between the optical fiber 11 and the lens component 1. Therefore, the refractive index of the refractive index matching layer 13 is preferably a refractive index of a value between the refractive index of the optical fiber 11 and the refractive index of the lens component 1.
  • the index matching layer 13 is, for example, an index matching sheet, an adhesive or a matching gel.
  • the refractive index matching layer 13 may be sandwiched between the optical end face 12c and the rear end face 2b, and the sandwiched refractive index matching layer 13 may be bonded by an adhesive.
  • the optical fiber holding member 12 includes an optical fiber holding hole 12a extending in the direction D1, and the optical fiber 11 is held by the optical fiber holding hole 12a by inserting the optical fiber 11 into the optical fiber holding hole 12a.
  • the direction D1 coincides with the central axis direction of the optical fiber holding hole 12a and the optical axis direction of the optical fiber 11.
  • the optical fiber 11 and the optical fiber holding hole 12 a are provided corresponding to the lens portion 3 of the lens component 1.
  • the optical fiber 11 emits light L1 which is diverging light, and the lens portion 3 converts the light L1 into collimated light.
  • the lens portion 3 may convert collimated light incident from the mating connector into light L1 which is convergent light, and the light L1 may be incident on the tip surface 11a of the optical fiber 11.
  • the optical fiber 11 is, for example, a single mode fiber, but may be a multi mode fiber.
  • connection loss optical loss between the optical fiber 11 and the lens component 1 and connection loss between the optical connector 10 and another optical connector
  • the plurality of lens portions 3 and the plurality of optical fibers 11 are arranged along the direction D2 (direction orthogonal to the paper surface of FIG. 7).
  • Guide holes 12b into which guide pins for positioning the optical connector 10 and the mating connector are inserted are formed on both ends of the optical fiber 11 in the direction D2.
  • the guide holes 12 b communicate with the guide holes 4 of the lens component 1. Therefore, by inserting the guide pins into the guide holes 4 and the guide holes 12b, the lens component 1 and the optical fiber holding member 12 are positioned with respect to the mating connector.
  • the optical fiber holding member 12 is manufactured, for example, in the same manner as the method of manufacturing the lens component 1 described above.
  • the optical fiber holding member 12 is manufactured, for example, by the mold 5.
  • the gate mark formed by curing of the resin C in the gate 7 has a surface other than the optical end surface 12c (for example, any of the pair of side surfaces 12d Or the rear end surface facing the opposite side of the optical end surface 12c).
  • the optical communication component according to the second embodiment is the optical connector 10 provided with the lens component 1. Therefore, the space coupled optical connector 10 with a small Fresnel loss can be obtained. Further, in the optical connector 10, the optical fiber 11 is fixed to the optical fiber holding member 12, and the tip surface 11a of the optical fiber 11 is optically coupled to the lens portion 3 through the refractive index matching layer 13, Positioning is performed by inserting a guide pin into the hole 12 b and the guide hole 4 provided in the lens component 1. Therefore, the configuration in which the transferability of the moth-eye structure is enhanced and the optical loss is suppressed can be applied to the optical connector 10 provided with the optical fiber 11, the optical fiber holding member 12 and the refractive index matching layer 13.
  • the material of the lens component 1 is the same as the material of the optical fiber holding member 12. Therefore, the coefficient of thermal expansion of the lens component 1 becomes equal to the coefficient of thermal expansion of the optical fiber holding member 12. Therefore, it is possible to suppress the positional deviation between the lens component 1 and the optical fiber holding member 12 due to the temperature change, so that it is possible to prevent the axial deviation of the light L1 due to the temperature change.
  • the optical connector 10 also includes the refractive index matching layer 13.
  • the refractive index of the optical fiber 11 and the lens component 1 can be matched. Therefore, the connection loss between the optical fiber 11 and the lens component 1 can be reduced.
  • the thickness T of the refractive index matching layer 13 is 50 ⁇ m or less. Therefore, since the thickness T of the refractive index matching layer 13 is thin, it is possible to suppress the positional deviation of the light L1 of the optical fiber 11 in the connection direction (direction D1).
  • the lens component is a lens array 21 in which the plurality of lens portions 3 described above are juxtaposed.
  • the lens component including the lens portion 3 and the configuration around it are illustrated in a simplified manner for easy understanding.
  • the lens array 21 optically couples, for example, the first optical waveguide 23 provided on the substrate 22 and the second optical waveguide 25 held by the holding member 24.
  • the first optical waveguide 23 has an inclined surface 23 a that bends the optical axis of the light L 2 passing through the first optical waveguide 23 toward the lens array 21.
  • the inclined surface 23a reflects the light L2 extending in the direction D3 in the direction D1.
  • a refractive index matching layer 26 is interposed between the lens array 21 and the first optical waveguide 23.
  • the material of the lens array 21 is, for example, the same as the material of the lens component 1 described above.
  • the index matching layer 26 has the same configuration as the index matching layer 13 described above.
  • the plurality of lens portions 3 of the lens array 21 are arranged along the direction D2 (direction orthogonal to the paper surface of FIG. 8).
  • the plurality of lens portions 3 are provided on the bottom surface 21 c of the recess 21 b recessed in the direction D1 with respect to the surface 21 a of the lens array 21 facing the holding member 24. Therefore, the first optical waveguide 23 and the second optical waveguide 25 are optically coupled to each other through the space K1.
  • the holding member 24 may have, for example, the same configuration as the optical fiber holding member 12, and the second optical waveguide 25 may be similar to the optical fiber 11.
  • the lens array 21 is manufactured in the same manner as the method for manufacturing the lens component 1.
  • the lens array 21 is manufactured by, for example, a mold 5.
  • the lens array 21 is formed by injecting the resin C from the gate 7 whose cross-sectional area F2 is 50% or more and 100% or less of the cross-sectional area E2 of the cavity 8 and curing the resin C.
  • a gate mark formed by curing of the resin C in the gate 7 is formed on a surface other than the surface 21a and the bottom surface 21c (for example, a surface orthogonal to the paper surface of FIG. 8 or a surface directed in the left-right direction of FIG. 8).
  • the lens component is the lens array 21 that optically couples the first optical waveguide 23 and the second optical waveguide 25 different from the first optical waveguide 23.
  • the lens portion 3 By including the lens portion 3 in the lens array 21, it is possible to provide a spatially coupled lens array 21 with a small Fresnel loss. Further, since the lens array 21 includes the lens portion 3 of the first embodiment, Fresnel reflection on the surface of the lens portion 3 can be suppressed.
  • the cross-sectional area F2 of the gate 7 into which the resin C is poured is 50% or more and 100% or less of the cross-sectional area E2 of the cavity 8, the flowability of the resin C can be enhanced. Therefore, since the transferability of the nano-order periodic uneven structure 3A can be enhanced, the same effect as that of the first embodiment can be obtained.
  • the lens component is a lens module 31 in which a plurality of lens portions are juxtaposed.
  • the lens module 31 optically couples, for example, the light emitting / receiving element 33 provided on the substrate 32 and the optical waveguide 35 held by the holding member 34.
  • the light emitting / receiving element 33 is mounted on the substrate 32.
  • the light emitting / receiving element 33 is a light receiving element that converts an optical signal into an electrical signal, or a light emitting element that converts an electrical signal into an optical signal.
  • PD Photo Diode
  • LD Laser Diode
  • the light emitting / receiving element 33 receives the light L3 or emits the light L3.
  • the material of the lens module 31 is, for example, the same as the material of the lens component 1 described above.
  • the lens module 31 includes a first lens portion 31a facing the light emitting / receiving element 33, a second lens portion 31b facing the optical waveguide 35, and a portion between the first lens portion 31a and the second lens portion 31b in the light path of the light L3. And the inclined surface 31c located in
  • the lens module 31 includes a plurality of first lens portions 31a and a plurality of second lens portions 31b juxtaposed in the direction D2 (direction orthogonal to the sheet of FIG. 9 and FIG. 10).
  • the plurality of light emitting and receiving elements 33 are provided along the direction D2, and the plurality of light emitting and receiving elements 33 correspond to the first lens portion 31a and the second lens portion 31b.
  • the light L3 passing through the first lens portion 31a is bent at the inclined surface 31c and enters the second lens portion 31b.
  • the light L3 which is diverging light from the light emitting / receiving element 33 is converted into collimated light by the first lens portion 31a, reflected by the inclined surface 31c, and converted into convergent light by the second lens portion 31b. It will be incident.
  • the divergent light from the optical waveguide 35 is converted into collimated light by the second lens portion 31 b, reflected by the inclined surface 31 c, converted into convergent light by the first lens portion 31 a, and enters the light emitting / receiving element 33.
  • the plurality of first lens portions 31a are provided on the bottom surface 31f of the recess 31e which is recessed in the direction D1 with respect to the surface 31d of the lens module 31 facing the substrate 32. Therefore, the first lens portions 31a and the light emitting and receiving elements 33 are optically coupled to each other through the space K2.
  • Each of the first lens portion 31a and the second lens portion 31b has, for example, the same configuration as the lens portion 3 described above. That is, each of the first lens portion 31a and the second lens portion 31b has the same periodic uneven structure as the periodic uneven structure 3A. Further, each of the holding member 34 and the optical waveguide 35 may have the same configuration as each of the optical fiber holding member 12 and the optical fiber 11.
  • the lens module 31 is manufactured in the same manner as the lens component 1 and is manufactured, for example, by the mold 5.
  • the lens module 31 is formed by injecting the resin C from the gate 7 whose cross-sectional area F3 is 50% or more and 100% or less of the cross-sectional area E3 of the cavity 8 and curing the resin C.
  • a gate mark formed by curing of the resin C is formed on a surface other than the surface through which the light L3 passes (for example, a surface directed to the front side or the back side in the direction perpendicular to the paper surface of FIG. 10).
  • the lens component is the lens module 31 that optically couples the light guide 35 and the light emitting / receiving element 33.
  • the lens module 31 can be a spatially coupled lens module 31 with a small Fresnel loss.
  • the manufacturing method of the parts for optical communication concerning the embodiment and the parts for optical communication were explained, the manufacturing method of the parts for optical communication concerning this indication and the parts for optical communication are limited to each above-mentioned embodiment. And various modifications are possible.
  • the mold 5 having the runners 6a and 6b, the gate 7, and the cavity 8 is described in the above embodiment, the configuration of the mold for manufacturing the optical communication component can be changed as appropriate.
  • the lens part provided with the periodic uneven structure 3A is integrated with the lens component 1
  • the lens part provided with the periodic uneven structure is a different component from the lens part. It may be a lens member. In this case, relative alignment between the lens member and the optical waveguide can be performed with high accuracy as compared with the integrated lens component.
  • the lens member 41 which is a component separate from the lens component, is a communication lens, and has a periodic uneven structure similar to that of the periodic uneven structure 3A in the range X.
  • the accuracy of the position of the communication lens directly affects the light connection loss. For this reason, it is necessary to measure the position of the edge (periphery) of the lens with high accuracy using, for example, an optical microscope.
  • the periodic uneven structure is formed at the edge portion of the lens, the position measurement may be difficult because the edge portion may be unclear.
  • the beam diameter of light passing through the lens member 41 is V1
  • the diameter of the lens member 41 V3 is satisfied.
  • the periodic uneven structure is not formed on the edge side of the range X, that is, there is a region without the periodic uneven structure in the outer peripheral portion, so the shape evaluation of the lens member 41 and the lens The position measurement of the member 41 can be performed easily and with high accuracy.
  • a portion where the periodic uneven structure on the edge side of the range X is not formed is formed, for example, by applying a mask to the lens frame portion.
  • the lens component 1 provided with the several lens part 3
  • the number of lens parts may be one and can be changed suitably.
  • the optical connector 10 is provided with the refractive index matching layer 13, the refractive index matching layer can be omitted.
  • the optical connector 10 in which the lens component 1, the optical fiber 11, and the optical fiber holding member 12 are integrated can be manufactured by the mold 5 in the same manner as the manufacturing method described above.
  • the lens part 3 is the outer periphery of the lens part 1 in which the lens part 3 is integrated.
  • the part may have a region without a periodic uneven structure. Also in this case, the effect that the alignment between the optical fiber 11 and the lens component 1 can be performed with high accuracy can be obtained.
  • the material, shape, size, number, and arrangement of each component of the optical communication component can be changed as appropriate, and the contents and order of each process in the method of manufacturing the optical communication component can be changed as appropriate. is there.
  • lens module Reference Signs List 1a: first lens portion, 31b: second lens portion, 31c: inclined surface, 31d: surface, 31e: recess, 31f: bottom surface, 33: light emitting / receiving element, 35: optical waveguide, 41: lens member, A, B ... area, C: resin, D1, D2, D3 ... direction, E1, E2, E3 ... sectional area, F1, F2, F3 ... sectional area, K1, K2 ... space, L1, L2, L3 ... light, P ... interval , R ... diameter, X ... range.

Abstract

This method for manufacturing an optical communication component according to an embodiment is a method for manufacturing a spatial coupling type optical communication component, the method comprising: a step of injecting a resin from a gate into the cavity of a mold having a periodic concavo-convex structure having a depth and an interval of 100 nm or more and 1000 nm or less and provided with a lens piece portion having a diameter of 50 μm or more and 600 μm or less; and a step of curing the resin to form a lens component, wherein the proportion of a cross-sectional area of the gate to a cross-sectional area of the cavity is 50% or more and 100% or less.

Description

光通信用部品の製造方法、及び光通信用部品Method of manufacturing components for optical communication, and components for optical communication
 本開示の一側面は、光通信用部品の製造方法、及び光通信用部品に関する。
 本出願は、2017年8月24日の日本出願第2017-161518号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものとする。
One aspect of the present disclosure relates to a method of manufacturing an optical communication component and an optical communication component.
This application claims the priority based on Japanese Patent Application No. 2017-161518 (August 24, 2017), which is incorporated herein by reference in its entirety.
 従来から、光通信用部品、及びその製造方法としては種々のものが知られている。非特許文献1には、複数の光ファイバを一括接続可能な多心レンズ光コネクタが記載されている。光コネクタの端面には、複数のレンズから成るレンズアレイが設けられている。レンズアレイの各レンズによって各光ファイバから出射した拡散光を平行光に変換することにより、光コネクタの端面を接触させずに光結合を行う。このような空間結合型の光コネクタでは、空間を介して光結合を行うことにより、接続時に大きな押圧力を要しないと共に、光コネクタの端面に異物が付着することを抑制することが可能となる。 Conventionally, various components for optical communication and methods for manufacturing the same are known. Non-Patent Document 1 describes a multi-core lens optical connector capable of collectively connecting a plurality of optical fibers. A lens array composed of a plurality of lenses is provided on the end face of the optical connector. By converting the diffused light emitted from each optical fiber into parallel light by each lens of the lens array, optical coupling is performed without contacting the end face of the optical connector. In such a spatial coupling type optical connector, by performing optical coupling through a space, it is possible to suppress the adhesion of foreign matter to the end face of the optical connector while requiring a large pressing force at the time of connection. .
 本開示の一側面に係る光通信用部品の製造方法は、空間結合型の光通信用部品の製造方法であって、深さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を有すると共に、直径が50μm以上且つ600μm以下とされたレンズ駒部分を備えた金型のキャビティにゲートから樹脂を注入する工程と、樹脂を硬化してレンズ部品を形成する工程と、を備え、キャビティの断面積に対するゲートの断面積の割合が50%以上且つ100%以下である。 A method of manufacturing an optical communication component according to an aspect of the present disclosure is a method of manufacturing a spatial coupling type optical communication component, having a periodic uneven structure with a depth and a spacing of 100 nm or more and 1000 nm or less. And injecting the resin from the gate into the cavity of the mold provided with the lens frame portion having a diameter of 50 μm or more and 600 μm or less, and curing the resin to form a lens part. The ratio of the cross-sectional area of the gate to the cross-sectional area is 50% or more and 100% or less.
 本開示の一側面に係る光通信用部品は、空間結合型の光通信用部品であって、レンズ部品を備え、レンズ部品は、直径が50μm以上且つ600μm以下とされたレンズ部分を有し、レンズ部分は、高さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を含んでおり、レンズ部品は、樹脂が流し込まれるゲートにおいて硬化したゲート痕、及びゲート痕が設けられた面を有し、当該面の面積に対するゲート痕の面積の割合が50%以上且つ100%以下である。 The component for optical communication according to one aspect of the present disclosure is a component for optical communication of space coupling type, including a lens component, and the lens component has a lens portion having a diameter of 50 μm or more and 600 μm or less, The lens portion includes a periodic uneven structure having a height and a spacing of 100 nm or more and 1000 nm or less, and the lens component is a surface on which a gate mark hardened and a gate mark is provided in the gate into which the resin is poured. The ratio of the area of the gate mark to the area of the surface is 50% or more and 100% or less.
図1は、第1実施形態の光通信用部品のレンズ部品を示す斜視図である。FIG. 1 is a perspective view showing lens parts of the optical communication part of the first embodiment. 図2Aは、図1のレンズ部品の正面図である。FIG. 2A is a front view of the lens component of FIG. 図2Bは、図1のレンズ部品の平面図である。FIG. 2B is a plan view of the lens component of FIG. 図3は、図1のレンズ部品のレンズ部分を示す横断面図である。FIG. 3 is a cross-sectional view of the lens portion of the lens component of FIG. 図4は、図3のレンズ部分を拡大した横断面図である。FIG. 4 is an enlarged cross-sectional view of the lens portion of FIG. 図5は、図1のレンズ部品の樹脂と金型を示す断面図である。FIG. 5 is a cross-sectional view showing a resin and a mold of the lens component of FIG. 図6は、図5の金型のランナー及びゲートを模式的に示す図である。FIG. 6 is a view schematically showing a runner and a gate of the mold of FIG. 図7は、第2実施形態の光通信用部品である光コネクタを示す側断面図である。FIG. 7 is a side sectional view showing an optical connector which is a component for optical communication according to the second embodiment. 図8は、第3実施形態のレンズアレイを示す断面図である。FIG. 8 is a cross-sectional view showing the lens array of the third embodiment. 図9は、第4実施形態のレンズモジュールを示す断面図である。FIG. 9 is a cross-sectional view showing the lens module of the fourth embodiment. 図10は、図9のレンズモジュールを拡大した断面図である。FIG. 10 is an enlarged sectional view of the lens module of FIG. 図11は、レンズ部材におけるレンズ径、周期的凹凸構造が形成されている範囲、及びビーム径の関係を示す図である。FIG. 11 is a view showing the relationship between the lens diameter of the lens member, the range in which the periodic uneven structure is formed, and the beam diameter.
[本開示が解決しようとする課題]
 空間結合型の光コネクタでは、光ファイバ同士を接触させるPC(Physical Contact)型の光コネクタと比較して、屈折率が異なる界面によってフレネル損失が大きくなる傾向がある。よって、空間結合型の光コネクタは、PC型の光コネクタよりもフレネル反射が生じやすいので、光損失が大きくなるという問題が発生しうる。
[Problems to be solved by the present disclosure]
In the spatial coupling type optical connector, the Fresnel loss tends to be large due to the interface having a different refractive index as compared with a PC (Physical Contact) type optical connector in which the optical fibers are in contact with each other. Therefore, since the space coupling type optical connector is more susceptible to Fresnel reflection than the PC type optical connector, there may occur a problem that the optical loss becomes large.
 本開示の一側面は、光損失を抑制することができる光通信用部品の製造方法、及び光通信用部品を提供することを目的とする。 One aspect of the present disclosure is to provide a method for manufacturing an optical communication component capable of suppressing optical loss, and an optical communication component.
[本開示の効果]
 本開示の一側面によれば、光損失を抑制することができる。
[Effect of the present disclosure]
According to one aspect of the present disclosure, light loss can be suppressed.
[実施形態の説明]
 最初に、本願開示の実施形態の内容を列記して説明する。実施形態に係る光通信用部品の製造方法は、空間結合型の光通信用部品の製造方法であって、深さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を有すると共に、直径が50μm以上且つ600μm以下とされたレンズ駒部分を備えた金型のキャビティにゲートから樹脂を注入する工程と、樹脂を硬化してレンズ部品を形成する工程と、を備え、キャビティの断面積に対するゲートの断面積の割合が50%以上且つ100%以下である。
[Description of the embodiment]
First, the contents of the embodiments of the present disclosure will be listed and described. A method of manufacturing an optical communication component according to an embodiment is a method of manufacturing a spatial coupling type optical communication component, which has a periodic uneven structure having a depth and a spacing of 100 nm or more and 1000 nm or less Injecting the resin from the gate into the cavity of the mold provided with the lens frame portion having a diameter of 50 μm or more and 600 μm or less, and curing the resin to form the lens component, The ratio of the cross-sectional area of the gate is 50% or more and 100% or less.
 実施形態に係る光通信用部品は、空間結合型の光通信用部品であって、レンズ部品を備え、レンズ部品は、直径が50μm以上且つ600μm以下とされたレンズ部分を有し、レンズ部分は、高さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を含んでおり、レンズ部品は、樹脂が流し込まれるゲートにおいて硬化したゲート痕、及びゲート痕が設けられた面を有し、当該面に対するゲート痕の面積の割合が50%以上且つ100%以下である。 The component for optical communication according to the embodiment is a component for optical communication of space coupling type, and includes a lens component, and the lens component has a lens portion having a diameter of 50 μm or more and 600 μm or less, and the lens portion is And the lens part has a surface on which a gate mark hardened and a gate mark is provided in the gate into which the resin is poured, including a periodic uneven structure whose height and spacing are 100 nm or more and 1000 nm or less. The ratio of the area of the gate mark to the surface is 50% or more and 100% or less.
 この光通信用部品の製造方法、及び光通信用部品では、直径が50μm以上且つ600μm以下とされたレンズ部分が設けられる。レンズ部分は、高さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を含む。レンズ部分の周期的凹凸構造がモスアイ構造として機能することによりレンズ部分の表面におけるフレネル反射を抑えることができる。よって、光損失を抑制することができる。また、樹脂が流し込まれるゲートの断面積は、キャビティの断面積の50%以上且つ100%以下である。よって、光通信用部品のゲート痕が設けられる面の面積に対するゲート痕の面積の割合が50%以上且つ100%以下となる。従って、樹脂が流れるゲートの断面積を大きくすることができるので、液状の樹脂をレンズ駒部分の周期的凹凸構造まで確実に流し込むことができる。すなわち、液状の樹脂の流動性を高めることができる。よって、液状の樹脂が硬化する前に確実に樹脂を周期的凹凸構造に流し込むことができるので、ナノオーダーの周期的凹凸構造の転写性を高めることができる。従って、レンズ部分に確実にモスアイ構造を作り込むことができる。 In the method of manufacturing the optical communication component and the optical communication component, a lens portion having a diameter of 50 μm or more and 600 μm or less is provided. The lens portion includes a periodic uneven structure having a height and a spacing of 100 nm or more and 1000 nm or less. Fresnel reflection on the surface of the lens portion can be suppressed by the periodic uneven structure of the lens portion functioning as a moth-eye structure. Thus, light loss can be suppressed. In addition, the cross-sectional area of the gate into which the resin is poured is 50% or more and 100% or less of the cross-sectional area of the cavity. Therefore, the ratio of the area of the gate mark to the area of the surface on which the gate mark of the optical communication component is provided is 50% or more and 100% or less. Therefore, since the cross-sectional area of the gate through which the resin flows can be increased, the liquid resin can be reliably poured into the periodic uneven structure of the lens frame portion. That is, the fluidity of the liquid resin can be enhanced. Accordingly, since the resin can be reliably poured into the periodic concavo-convex structure before the liquid resin is cured, transferability of the nano-order periodic concavo-convex structure can be enhanced. Therefore, the moth-eye structure can be reliably formed in the lens portion.
 また、レンズ部品の体積は9mm以上且つ350mm以下であってもよい。このように小型のレンズ部品を備えた光通信用部品であってもレンズ部分に確実にモスアイ構造を転写することができる。よって、フレネル反射を抑えることにより光損失を抑制することが可能なレンズ部品を形成することができる。 In addition, the volume of the lens component may be 9 mm 3 or more and 350 mm 3 or less. Thus, even in the case of an optical communication component provided with a small lens component, the moth-eye structure can be reliably transferred to the lens portion. Therefore, lens components capable of suppressing light loss can be formed by suppressing Fresnel reflection.
 また、前述の光通信用部品は、光ファイバと、光ファイバを保持する光ファイバ保持部材と、屈折率を整合する屈折率整合層と、を更に備え、光ファイバ保持部材は、光ファイバを保持する光ファイバ保持孔と、位置決めを行うガイドピンが挿入されるガイド孔と、を有し、光ファイバは、光ファイバ保持部材に固定されており、光ファイバの先端面は、屈折率整合層を介して、レンズ部分と光結合しており、ガイド孔、及びレンズ部品に形成された孔にガイドピンが挿入されることにより位置決めがなされてもよい。この場合、モスアイ構造の転写性が高められ且つ光損失が抑制された構成を光ファイバ、光ファイバ保持部材及び屈折率整合層を備えた光通信用部品に応用することができる。 The above-described component for optical communication further includes an optical fiber, an optical fiber holding member for holding the optical fiber, and a refractive index matching layer for matching the refractive index, and the optical fiber holding member holds the optical fiber. The optical fiber is fixed to the optical fiber holding member, and the tip surface of the optical fiber has a refractive index matching layer. The lens may be optically coupled to the lens portion, and positioning may be performed by inserting a guide pin into the guide hole and the hole formed in the lens part. In this case, the configuration in which the transferability of the moth-eye structure is enhanced and the light loss is suppressed can be applied to an optical fiber, an optical fiber holding member, and a component for optical communication provided with an index matching layer.
 また、レンズ部品は、レンズ部分よりも端部寄りの位置に当接面を有し、ガイド孔は、当接面に形成されていてもよい。この場合、当接面がレンズ部分よりも端部寄りに設けられることにより、レンズ部分を非接触とすることができるので、光の空間結合を実現させることができる。 The lens component may have an abutment surface at a position closer to the end than the lens portion, and the guide hole may be formed in the abutment surface. In this case, by providing the contact surface closer to the end than the lens portion, the lens portion can be made non-contact, so spatial coupling of light can be realized.
 また、レンズ部品の材料は、光ファイバ保持部材の材料と同一であってもよい。この場合、レンズ部品の熱膨張率が光ファイバ保持部材の熱膨張率と同一になる。従って、温度変化によってレンズ部品と光ファイバ保持部材との位置がずれることを抑制することができる。よって、温度変化による光の軸ずれを防止することができる。 Also, the material of the lens component may be the same as the material of the optical fiber holding member. In this case, the coefficient of thermal expansion of the lens component is the same as the coefficient of thermal expansion of the optical fiber holding member. Therefore, it is possible to suppress the positional deviation between the lens component and the optical fiber holding member due to temperature change. Therefore, it is possible to prevent the off-axis of the light due to the temperature change.
 また、屈折率整合層の厚さが50μm以下であってもよい。この場合、屈折率整合層の厚さが薄いので、光ファイバの光の接続方向における位置ずれを抑制することができる。 The thickness of the refractive index matching layer may be 50 μm or less. In this case, since the thickness of the refractive index matching layer is thin, it is possible to suppress displacement of the optical fiber in the connection direction of light.
 また、レンズ部品は、複数のレンズ部分を備えてもよい。この場合、複数のレンズ部分を備え、多心の光通信用部品とすることにより、接続時に要する押圧力を低減することができる。従って、多心の光通信用部品を効率よく接続することができる。 The lens component may also comprise a plurality of lens portions. In this case, the pressing force required at the time of connection can be reduced by providing a plurality of lens portions and forming a multi-core optical communication component. Therefore, multi-core optical communication components can be connected efficiently.
 また、レンズ部品は、外周部に周期的凹凸構造がない領域を有してもよい。この場合、外周部に周期的凹凸構造がない領域が設けられることにより、レンズ部品における位置合わせを高精度に行うことができる。 In addition, the lens component may have a region where there is no periodic uneven structure in the outer peripheral portion. In this case, by providing the region having no periodic uneven structure in the outer peripheral portion, the alignment of the lens component can be performed with high accuracy.
 また、前述した光通信用部品は光コネクタであってもよい。この場合、フレネル損失が小さい空間結合型の光コネクタとすることができる。 Further, the component for optical communication described above may be an optical connector. In this case, it is possible to provide a spatially coupled optical connector with a small Fresnel loss.
 また、前述したレンズ部品は、光導波路と、光導波路とは別の光導波路と、を光結合するレンズアレイであってもよい。この場合、フレネル損失が小さい空間結合型のレンズアレイとすることができる。 Further, the lens component described above may be a lens array that optically couples the optical waveguide and an optical waveguide other than the optical waveguide. In this case, it is possible to obtain a spatially coupled lens array with a small Fresnel loss.
 また、レンズ部品は、光導波路と受発光素子とを光結合するレンズモジュールであってもよい。この場合、フレネル損失が小さい空間結合型のレンズモジュールとすることができる。 The lens component may be a lens module that optically couples the optical waveguide and the light emitting / receiving element. In this case, it is possible to provide a spatially coupled lens module with a small Fresnel loss.
[実施形態の詳細]
 以下では、実施形態に係る光通信用部品の製造方法、及び光通信用部品の具体例を図面を参照しながら説明する。本開示は、以下の例示に限定されるものではなく、請求の範囲に示され、請求の範囲と均等の範囲における全ての変更が含まれることが意図される。図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、理解を容易にするため一部を簡略化又は誇張して描いており、寸法等は図面に記載のものに限定されない。
Details of Embodiment
Hereinafter, specific examples of the method for manufacturing an optical communication component and the optical communication component according to the embodiment will be described with reference to the drawings. The present disclosure is not limited to the following examples, but is shown in the claims, and is intended to include all modifications within the scope of the claims and equivalents. In the description of the drawings, the same or corresponding elements will be denoted by the same reference symbols, and overlapping descriptions will be omitted as appropriate. In addition, the drawings are drawn in a simplified or exaggerated manner for ease of understanding, and the dimensions and the like are not limited to those described in the drawings.
(第1実施形態)
 図1は、第1実施形態に係る光通信用部品のレンズ部品1を示す斜視図である。図2Aは、レンズ部品1を示す正面図である。図2Bは、レンズ部品1を示す平面図である。光通信用部品は、例えば、レンズ部品1とMTフェルールを備えており、レンズ部品1は、MTフェルール及び相手側コネクタと接続方向である方向D1に沿って接続する。レンズ部品1は、MTフェルールと相手側コネクタの間に介在することにより、相手側コネクタと光接続する空間結合型の光コネクタを構成する。
First Embodiment
FIG. 1 is a perspective view showing a lens component 1 of the optical communication component according to the first embodiment. FIG. 2A is a front view showing the lens component 1. FIG. 2B is a plan view showing the lens component 1. The optical communication component includes, for example, a lens component 1 and an MT ferrule, and the lens component 1 is connected to the MT ferrule and the mating connector along a direction D1 which is a connection direction. The lens component 1 constitutes a space coupling type optical connector optically connected to the mating connector by being interposed between the MT ferrule and the mating connector.
 レンズ部品1は、例えば、通信用レンズ部品である。レンズ部品1は、略直方体状の外観を呈する。レンズ部品1の体積は、例えば、9mm以上且つ350mm以下であり、レンズ部品1は小型とされている。レンズ部品1は、波長が750nm以上且つ1650nm以下である光に対して高い透過率を有する透明樹脂によって構成されている。レンズ部品1は、相手側コネクタに当接する当接面である端面2aと、端面2aの方向D1の反対側に位置する後端面2bと、端面2a及び後端面2bを互いに接続する一対の側面2c、上面2d及び底面2eを有する。 The lens component 1 is, for example, a communication lens component. The lens part 1 has a substantially rectangular parallelepiped appearance. The volume of the lens component 1 is, for example, 9 mm 3 or more and 350 mm 3 or less, and the lens component 1 is small. The lens component 1 is made of a transparent resin having a high transmittance to light having a wavelength of 750 nm or more and 1650 nm or less. The lens component 1 has an end face 2a which is an abutting face in contact with the mating connector, a rear end face 2b opposite to the direction D1 of the end face 2a, and a pair of side faces 2c connecting the end face 2a and the rear end face 2b to each other. , Top surface 2d and bottom surface 2e.
 端面2aは、例えば、方向D1に直交する平面に沿って延びる長方形状とされている。端面2aは、例えば、方向D1に交差する方向D2に延びる長辺と、方向D1及び方向D2に交差する方向D3に延びる短辺とを有する。例えば、方向D2は方向D1に直交しており、方向D3は方向D1及び方向D2に延びる平面に直交している。 The end face 2a has, for example, a rectangular shape extending along a plane orthogonal to the direction D1. The end face 2a has, for example, a long side extending in a direction D2 intersecting the direction D1 and a short side extending in a direction D3 intersecting the direction D1 and the direction D2. For example, the direction D2 is orthogonal to the direction D1, and the direction D3 is orthogonal to a plane extending in the direction D1 and the direction D2.
 端面2aには、方向D1に矩形状に窪む凹部2fが設けられており、凹部2fの底面には、複数(例えば12)のレンズ部分3が形成されている。凹部2fが設けられることにより、レンズ部分3よりもレンズ部品1の端部寄りの位置に端面2aが設けられる。レンズ部分3は、レンズ部品1と一体とされた凸レンズである。複数のレンズ部分3は、方向D2に沿って配列されている。凹部2fの方向D2の両端側それぞれには、レンズ部品1と相手側コネクタとの位置決めを行うガイドピンが挿入されるガイド孔4(レンズ部品に形成された孔)が設けられている。 The end face 2a is provided with a recess 2f which is recessed in a rectangular shape in the direction D1, and a plurality of (for example, 12) lens portions 3 are formed on the bottom of the recess 2f. By providing the concave portion 2 f, the end face 2 a is provided at a position closer to the end of the lens component 1 than the lens portion 3. The lens portion 3 is a convex lens integrated with the lens component 1. The plurality of lens portions 3 are arranged along the direction D2. Guide holes 4 (holes formed in the lens component) into which guide pins for positioning the lens component 1 and the mating connector are inserted are provided on both end sides of the concave portion 2f in the direction D2.
 後端面2bには、例えば、前述したMTフェルールが対向する。後端面2b、側面2c、上面2d及び底面2eは、例えば、共に矩形状とされている。上面2dには、ゲート痕2gが設けられる。ゲート痕2gは、レンズ部品1が製造されるときに、レンズ部品1を構成する樹脂が流し込まれるゲートにおいて硬化した部分である。ゲート痕2gは、例えば、後端面2b側に設けられており、上面2dに対して矩形状に突出している。例えば、ゲート痕2gは、上面2dの方向D2の全体に延びている。 For example, the MT ferrule described above is opposed to the rear end face 2b. The rear end face 2b, the side face 2c, the top face 2d, and the bottom face 2e are, for example, both rectangular. A gate mark 2g is provided on the upper surface 2d. The gate mark 2g is a hardened portion in the gate into which the resin constituting the lens part 1 is poured when the lens part 1 is manufactured. The gate mark 2g is provided, for example, on the rear end surface 2b side, and protrudes in a rectangular shape with respect to the upper surface 2d. For example, the gate mark 2g extends in the entire direction D2 of the upper surface 2d.
 本実施形態では、平面視における(方向D3から見たときの)ゲート痕2gの形状は長方形状とされている。ゲート痕2gは、後端面2bから端面2aに向かって延びる短辺と、後端面2bに沿って延びる長辺とを有する。ゲート痕2gの2つの長辺の一方は後端面2bに一致している。 In the present embodiment, the shape of the gate mark 2g (when viewed from the direction D3) in plan view is rectangular. Gate mark 2g has a short side extending from rear end face 2b to end face 2a and a long side extending along rear end face 2b. One of the two long sides of the gate mark 2g coincides with the rear end face 2b.
 ゲート痕2gの2つの長辺の他方は、上面2dの短辺の中点よりも端面2a側に位置する。また、ゲート痕2gの短辺のそれぞれは、例えば、各側面2cに一致している。よって、ゲート痕2gが設けられる上面2dの面積Aに対するゲート痕2gの面積Bの割合は50%以上且つ100%以下である。なお、ゲート痕2gの形状及び大きさは適宜変更可能である。 The other of the two long sides of the gate mark 2g is located closer to the end face 2a than the midpoint of the short side of the upper surface 2d. Further, each of the short sides of the gate mark 2g corresponds to, for example, each side surface 2c. Therefore, the ratio of the area B of the gate mark 2g to the area A of the upper surface 2d on which the gate mark 2g is provided is 50% or more and 100% or less. The shape and size of the gate mark 2g can be changed as appropriate.
 図3は、レンズ部分3を示す横断面図である。図4は、1つのレンズ部分3を拡大した断面図である。レンズ部分3は、例えば、半球状に突出しており、レンズ部分3の直径Rは50μm以上且つ600μm以下である。各レンズ部分3は、その表面に複数の凸部3aが並設された周期的凹凸構造3Aを備える。周期的凹凸構造3Aはレンズ部分3のモスアイ構造に相当する。 FIG. 3 is a cross-sectional view showing the lens portion 3. FIG. 4 is an enlarged sectional view of one lens portion 3. The lens portion 3 protrudes, for example, in a hemispherical shape, and the diameter R of the lens portion 3 is 50 μm or more and 600 μm or less. Each lens portion 3 includes a periodic uneven structure 3A in which a plurality of convex portions 3a are arranged in parallel on the surface. The periodic uneven structure 3A corresponds to the moth-eye structure of the lens portion 3.
 レンズ部分3が周期的凹凸構造3Aを備えることにより、レンズ部分3を通る光の屈折率は、凸部3aの頂部から凸部3aの根元側に向かうに従って連続的に変化する。凸部3aの高さH及び間隔Pは、100nm以上且つ1000nm以下である。また、レンズ部分3を通る光の通信波長は、例えば、850nm、1310nm又は1550nmであり、凸部3aの間隔P及び高さHは、当該通信波長の1/4以上且つ1/2以下であってもよい。 By providing the lens portion 3 with the periodic uneven structure 3A, the refractive index of light passing through the lens portion 3 changes continuously from the top of the convex portion 3a toward the root of the convex portion 3a. The height H and the interval P of the convex portions 3a are 100 nm or more and 1000 nm or less. The communication wavelength of light passing through the lens portion 3 is, for example, 850 nm, 1310 nm, or 1550 nm, and the distance P and height H of the convex portions 3 a are at least 1/4 and at most 1/2 of the communication wavelength. May be
 次に、レンズ部品1を製造する金型5について説明する。図5は、レンズ部品1の金型5とレンズ部品1を構成する樹脂Cを示す横断面図である。図6は、金型5を模式的に示す図である。金型5は、高温且つ液状にされた樹脂Cが通るランナー6a,6bと、ゲート7と、キャビティ8とを備える。 Next, the mold 5 for manufacturing the lens part 1 will be described. FIG. 5 is a cross-sectional view showing the mold 5 of the lens component 1 and the resin C constituting the lens component 1. FIG. 6 is a view schematically showing the mold 5. The mold 5 includes runners 6a and 6b through which the resin C which has been heated and liquefied is passed, a gate 7, and a cavity 8.
 また、図3~図5に示されるように、金型5のキャビティ8は、直径Rが50μm以上且つ600μm以下とされたレンズ駒部分8aを有し、レンズ駒部分8aは、深さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造8bを備える。レンズ駒部分8aの形状及び大きさは、レンズ部分3の形状及び大きさに対応している。また、周期的凹凸構造8bの形状及び大きさは、レンズ部分3の周期的凹凸構造3Aの形状及び大きさに対応しており、周期的凹凸構造8bの深さ及び間隔のそれぞれは、周期的凹凸構造3Aの高さH及び間隔Pのそれぞれと同一である。 Further, as shown in FIGS. 3 to 5, the cavity 8 of the mold 5 has a lens frame portion 8a having a diameter R of 50 μm or more and 600 μm or less, and the lens frame portion 8a has a depth and a space Is provided with a periodic uneven structure 8 b of 100 nm or more and 1000 nm or less. The shape and size of the lens frame portion 8 a correspond to the shape and size of the lens portion 3. Further, the shape and size of the periodic uneven structure 8b correspond to the shape and size of the periodic uneven structure 3A of the lens portion 3, and the depth and interval of the periodic uneven structure 8b are periodical. The height H and the interval P of the concavo-convex structure 3A are the same.
 次に、レンズ部品1を備えた光通信用部品の製造方法の一例を説明する。まず、前述したキャビティ8に対し、ガイド孔4を形成するピン8cを配置した後、図5及び図6に示されるように、液状の樹脂Cをランナー6a,6b及びゲート7を介して注入する(ゲートから樹脂を注入する工程)。このとき、樹脂Cを加熱すると共に金型5を加熱し、例えば樹脂Cの温度を金型5の温度よりも高くする。 Next, an example of a method for manufacturing an optical communication component including the lens component 1 will be described. First, after the pin 8c forming the guide hole 4 is disposed in the cavity 8 described above, as shown in FIGS. 5 and 6, the liquid resin C is injected through the runners 6a and 6b and the gate 7. (Step of injecting resin from the gate). At this time, the resin C is heated and the mold 5 is heated, for example, the temperature of the resin C is made higher than the temperature of the mold 5.
 前述したようにレンズ部品1はナノオーダーの周期的凹凸構造3Aを有する。よって、キャビティ8の周期的凹凸構造8bに樹脂Cを注入して周期的凹凸構造3Aを確実に形成するためには、樹脂Cの流動性が重要である。樹脂Cの流動性は、樹脂Cの粘度、金型5の温度、樹脂Cの温度、ランナー6a,6bの大きさ、及びゲート7の大きさと関連がある。 As described above, the lens component 1 has the nano-order periodic uneven structure 3A. Therefore, the fluidity of the resin C is important in order to inject the resin C into the periodic concavo-convex structure 8 b of the cavity 8 to reliably form the periodic concavo-convex structure 3 A. The fluidity of the resin C is related to the viscosity of the resin C, the temperature of the mold 5, the temperature of the resin C, the sizes of the runners 6a and 6b, and the size of the gate 7.
 樹脂Cの温度及び金型5の温度は高い方が好ましい。しかしながら、これらの温度がガラス転移点(Tg)に近い場合、レンズ部品1の取り出し時の変形、及び金型5への樹脂残りが懸念される。よって、樹脂Cの温度及び金型5の温度は、ガラス転移点以下であることが好ましい。 The temperature of the resin C and the temperature of the mold 5 are preferably higher. However, if these temperatures are close to the glass transition point (Tg), deformation at the time of taking out the lens part 1 and resin residue on the mold 5 may be concerned. Accordingly, the temperature of the resin C and the temperature of the mold 5 are preferably equal to or less than the glass transition point.
 本実施形態では、ランナー6a,6b及びゲート7の大きさが拡大されることによって、樹脂Cの流動性が向上している。具体的には、樹脂Cが流れる方向から見たときのキャビティ8の断面積E1に対するゲート7の断面積F1の割合は、50%以上且つ100%以下とされている。 In the present embodiment, the flowability of the resin C is improved by enlarging the sizes of the runners 6 a and 6 b and the gate 7. Specifically, the ratio of the cross-sectional area F1 of the gate 7 to the cross-sectional area E1 of the cavity 8 when viewed from the direction in which the resin C flows is 50% or more and 100% or less.
 よって、樹脂Cの温度が低下する前に樹脂Cをキャビティ8に注入することができるので周期的凹凸構造3Aの転写性が向上する。また、ゲート7に存在する樹脂Cが硬化することによってレンズ部品1の上面2dのゲート痕2gが形成される。前述したように、ゲート痕2gは、上面2dに形成されるが、側面2c又は底面2eに形成されてもよい。すなわち、ゲート痕2gは、方向D1に直交する面以外の面に形成されてもよい。なお、レンズ部品1の端面2a及び後端面2bは、それぞれ、相手側コネクタ及びMTフェルールに接続する部分であるため、端面2a及び後端面2bにゲート痕2gを形成することはできない。 Therefore, since the resin C can be injected into the cavity 8 before the temperature of the resin C decreases, the transferability of the periodic uneven structure 3A is improved. Further, by curing the resin C present in the gate 7, a gate mark 2g on the upper surface 2d of the lens component 1 is formed. As described above, the gate mark 2g is formed on the top surface 2d, but may be formed on the side surface 2c or the bottom surface 2e. That is, the gate mark 2g may be formed on a surface other than the surface orthogonal to the direction D1. In addition, since the end face 2a and the rear end face 2b of the lens component 1 are portions to be connected to the mating connector and the MT ferrule, respectively, the gate mark 2g can not be formed on the end face 2a and the rear end face 2b.
 以上のように構成されたゲート7及びキャビティ8にランナー6a,6bから高温の樹脂Cを注入する。キャビティ8に注入された樹脂Cが硬化することにより、レンズ部品1が形成される(レンズ部品を形成する工程)。そして、硬化した樹脂C(レンズ部品1)からピン8cを引き抜き、金型5から硬化したレンズ部品1を取り出した後に、レンズ部品1を例えばMTフェルールに接続して光通信用部品が完成する。 The high temperature resin C is injected from the runners 6a and 6b into the gate 7 and the cavity 8 configured as described above. The lens component 1 is formed by curing the resin C injected into the cavity 8 (step of forming the lens component). Then, the pin 8c is pulled out from the cured resin C (lens component 1), and after the cured lens component 1 is taken out from the mold 5, the lens component 1 is connected to, for example, an MT ferrule to complete an optical communication component.
 次に、本実施形態に係る光通信用部品の製造方法、及び光通信用部品から得られる作用効果について説明する。 Next, the method of manufacturing the optical communication component according to the present embodiment and the effects obtained from the optical communication component will be described.
 本実施形態に係る光通信用部品の製造方法、及び光通信用部品では、直径Rが50μm以上且つ600μm以下とされたレンズ部分3が設けられる。レンズ部分3は、高さH及び間隔Pが100nm以上且つ1000nm以下とされた周期的凹凸構造3Aを含む。レンズ部分3の周期的凹凸構造3Aがモスアイ構造として機能することによりレンズ部分3の表面におけるフレネル反射を抑えることができる。よって、光損失を抑えることができる。 In the method of manufacturing an optical communication component and the optical communication component according to the present embodiment, the lens portion 3 having a diameter R of 50 μm or more and 600 μm or less is provided. The lens portion 3 includes a periodic uneven structure 3A having a height H and a distance P of 100 nm or more and 1000 nm or less. Fresnel reflection on the surface of the lens portion 3 can be suppressed by the periodic uneven structure 3A of the lens portion 3 functioning as a moth-eye structure. Thus, light loss can be suppressed.
 また、樹脂Cが流し込まれるゲート7の断面積F1は、キャビティ8の断面積E1の50%以上且つ100%以下である。よって、ゲート痕2gが設けられる上面2dの面積Aに対するゲート痕2gの面積Bの割合は50%以上且つ100%以下となる。従って、樹脂Cが流れるゲート7の断面積を大きくすることができるので、液状の樹脂Cをレンズ駒部分8aの周期的凹凸構造8bまで確実に流し込むことができる。 Further, the cross-sectional area F1 of the gate 7 into which the resin C is poured is 50% or more and 100% or less of the cross-sectional area E1 of the cavity 8. Therefore, the ratio of the area B of the gate mark 2g to the area A of the upper surface 2d where the gate mark 2g is provided is 50% or more and 100% or less. Therefore, since the cross-sectional area of the gate 7 through which the resin C flows can be increased, the liquid resin C can be reliably poured into the periodic uneven structure 8 b of the lens frame portion 8 a.
 すなわち、液状の樹脂Cの流動性を高めることができるので、液状の樹脂Cが硬化する前に確実に樹脂Cを周期的凹凸構造8bに流し込むことができる。よって、ナノオーダーの周期的凹凸構造3Aの転写性を高めることができるので、レンズ部分3に確実にモスアイ構造を作り込むことができる。 That is, since the fluidity of the liquid resin C can be enhanced, the resin C can be reliably poured into the periodic uneven structure 8 b before the liquid resin C is cured. Therefore, since the transferability of the nano-order periodic uneven structure 3A can be enhanced, the moth-eye structure can be reliably formed in the lens portion 3.
 また、レンズ部品1の体積は9mm以上且つ350mm以下である。このように小型のレンズ部品1を備えた光通信用部品であってもレンズ部分3に確実にモスアイ構造を転写することができる。よって、フレネル反射を抑えることにより光損失を抑制することが可能なレンズ部品1を形成することができる。 The volume of the lens component 1 is 9 mm 3 or more and 350 mm 3 or less. Thus, even if it is a component for optical communication provided with the small lens component 1, the moth-eye structure can be reliably transferred to the lens portion 3. Therefore, the lens component 1 capable of suppressing the light loss can be formed by suppressing the Fresnel reflection.
 また、レンズ部品1は、レンズ部分3よりも端部寄りの位置に当接面である端面2aを有し、ガイド孔4は、端面2aに形成されている。よって、端面2aがレンズ部分3よりも端部寄りに設けられることにより、レンズ部分3を非接触とすることができるので、光の空間結合を実現させることができる。 Further, the lens component 1 has an end face 2a which is a contact surface at a position closer to the end than the lens portion 3, and the guide hole 4 is formed in the end face 2a. Therefore, by providing the end face 2a closer to the end than the lens portion 3, the lens portion 3 can be made non-contact, so that spatial coupling of light can be realized.
 また、レンズ部品1は、複数のレンズ部分3を備える。よって、レンズ部品1は、複数のレンズ部分3を備え、多心の光通信用部品であることにより、接続時に要する押圧力を低減することができる。従って、多心の光通信用部品を効率よく接続することができる。 The lens component 1 also includes a plurality of lens portions 3. Therefore, the lens component 1 includes the plurality of lens portions 3 and is a multi-core optical communication component, so that the pressing force required at the time of connection can be reduced. Therefore, multi-core optical communication components can be connected efficiently.
(第2実施形態)
 次に、第2実施形態に係る光通信用部品について図7を参照しながら説明する。図7は、第2実施形態に係る光通信用部品である光コネクタ10を示す側断面図である。光コネクタ10は、第1実施形態のレンズ部品1と、光ファイバ11と、光ファイバ11を保持する光ファイバ保持部材12と、屈折率を整合する屈折率整合層13とを備える。以降の説明では、第1実施形態と重複する説明を適宜省略する。
Second Embodiment
Next, a component for optical communication according to a second embodiment will be described with reference to FIG. FIG. 7 is a side sectional view showing an optical connector 10 which is a component for optical communication according to the second embodiment. The optical connector 10 includes the lens component 1 of the first embodiment, an optical fiber 11, an optical fiber holding member 12 for holding the optical fiber 11, and a refractive index matching layer 13 for matching the refractive index. In the following description, the description overlapping with that of the first embodiment is appropriately omitted.
 光ファイバ保持部材12は、例えば、光ファイバ11を保持するフェルールである。光ファイバ保持部材12の材料は、例えば、透明樹脂であってもよいし、PPS等の樹脂にガラスが含まれたものであってもよい。また、光ファイバ保持部材12の熱膨張率は、レンズ部品1の熱膨張率と同等(例えば同じオーダー)であってもよい。本実施形態では、光ファイバ保持部材12の材料は、レンズ部品1の材料と同一である。 The optical fiber holding member 12 is, for example, a ferrule that holds the optical fiber 11. The material of the optical fiber holding member 12 may be, for example, a transparent resin, or a resin such as PPS may contain glass. Further, the thermal expansion coefficient of the optical fiber holding member 12 may be equal to (for example, the same order of magnitude) the thermal expansion coefficient of the lens component 1. In the present embodiment, the material of the optical fiber holding member 12 is the same as the material of the lens component 1.
 光ファイバ保持部材12は、屈折率整合層13に接触する光学端面12cを備えており、屈折率整合層13は、光学端面12cとレンズ部品1の後端面2bの間に設けられる。屈折率整合層13の方向D1の厚さTは、例えば、1μm以上且つ50μm以下であり、また、20μm以上且つ50μm以下であってもよい。光ファイバ11は、屈折率整合層13に接触する先端面11aを有し、先端面11aは屈折率整合層13を介してレンズ部分3と光結合する。 The optical fiber holding member 12 includes an optical end face 12 c in contact with the refractive index matching layer 13, and the refractive index matching layer 13 is provided between the optical end face 12 c and the rear end face 2 b of the lens component 1. The thickness T in the direction D1 of the refractive index matching layer 13 is, for example, 1 μm or more and 50 μm or less, and may be 20 μm or more and 50 μm or less. The optical fiber 11 has a tip surface 11 a in contact with the refractive index matching layer 13, and the tip surface 11 a is optically coupled to the lens portion 3 via the refractive index matching layer 13.
 屈折率整合層13は、光ファイバ11とレンズ部品1の間において屈折率の整合を行う。すなわち、光ファイバ11とレンズ部品1の間に屈折率の差が大きくなる空気層が含まれないようにする。従って、屈折率整合層13の屈折率は、光ファイバ11の屈折率とレンズ部品1の屈折率との間の値の屈折率であることが好ましい。屈折率整合層13は、例えば、屈折率整合シート、接着剤又はマッチングジェルである。なお、光学端面12cと後端面2bの間に屈折率整合層13が挟み込まれ、挟み込まれた屈折率整合層13が接着剤によって接着されてもよい。 The refractive index matching layer 13 performs refractive index matching between the optical fiber 11 and the lens component 1. That is, an air layer having a large difference in refractive index is prevented from being included between the optical fiber 11 and the lens component 1. Therefore, the refractive index of the refractive index matching layer 13 is preferably a refractive index of a value between the refractive index of the optical fiber 11 and the refractive index of the lens component 1. The index matching layer 13 is, for example, an index matching sheet, an adhesive or a matching gel. The refractive index matching layer 13 may be sandwiched between the optical end face 12c and the rear end face 2b, and the sandwiched refractive index matching layer 13 may be bonded by an adhesive.
 光ファイバ保持部材12は、方向D1に延びる光ファイバ保持孔12aを備えており、光ファイバ保持孔12aに光ファイバ11が挿入されることによって光ファイバ11が光ファイバ保持孔12aに保持される。方向D1は、光ファイバ保持孔12aの中心軸方向、及び光ファイバ11の光軸方向に一致する。 The optical fiber holding member 12 includes an optical fiber holding hole 12a extending in the direction D1, and the optical fiber 11 is held by the optical fiber holding hole 12a by inserting the optical fiber 11 into the optical fiber holding hole 12a. The direction D1 coincides with the central axis direction of the optical fiber holding hole 12a and the optical axis direction of the optical fiber 11.
 光ファイバ11及び光ファイバ保持孔12aは、レンズ部品1のレンズ部分3に対応して設けられる。光ファイバ11は、発散光である光L1を出射し、レンズ部分3は光L1をコリメート光に変換する。また、レンズ部分3は、相手側コネクタから入射したコリメート光を収束光である光L1に変換し、光L1を光ファイバ11の先端面11aに入射してもよい。 The optical fiber 11 and the optical fiber holding hole 12 a are provided corresponding to the lens portion 3 of the lens component 1. The optical fiber 11 emits light L1 which is diverging light, and the lens portion 3 converts the light L1 into collimated light. In addition, the lens portion 3 may convert collimated light incident from the mating connector into light L1 which is convergent light, and the light L1 may be incident on the tip surface 11a of the optical fiber 11.
 光ファイバ11は、例えばシングルモードファイバであるが、マルチモードファイバであってもよい。光ファイバ11がシングルモードファイバである場合、より効果的に接続損失(光ファイバ11とレンズ部品1との光損失、及び光コネクタ10と別の光コネクタとの接続損失)を抑制することが可能である。例えば、複数のレンズ部分3、及び複数の光ファイバ11は、方向D2(図7の紙面に直交する方向)に沿って配列されている。 The optical fiber 11 is, for example, a single mode fiber, but may be a multi mode fiber. When the optical fiber 11 is a single mode fiber, connection loss (optical loss between the optical fiber 11 and the lens component 1 and connection loss between the optical connector 10 and another optical connector) can be suppressed more effectively. It is. For example, the plurality of lens portions 3 and the plurality of optical fibers 11 are arranged along the direction D2 (direction orthogonal to the paper surface of FIG. 7).
 光ファイバ11の方向D2の両端側それぞれには、光コネクタ10と相手側コネクタとの位置決めを行うガイドピンが挿入されるガイド孔12bが形成されている。ガイド孔12bは、レンズ部品1のガイド孔4に連通している。よって、ガイド孔4及びガイド孔12bにガイドピンが挿入されることにより、相手側コネクタに対するレンズ部品1及び光ファイバ保持部材12の位置決めがなされる。 Guide holes 12b into which guide pins for positioning the optical connector 10 and the mating connector are inserted are formed on both ends of the optical fiber 11 in the direction D2. The guide holes 12 b communicate with the guide holes 4 of the lens component 1. Therefore, by inserting the guide pins into the guide holes 4 and the guide holes 12b, the lens component 1 and the optical fiber holding member 12 are positioned with respect to the mating connector.
 また、光ファイバ保持部材12は、例えば、前述したレンズ部品1の製造方法と同様に製造される。光ファイバ保持部材12は、例えば、金型5によって製造され、この場合、ゲート7における樹脂Cの硬化によって形成されるゲート痕は、光学端面12c以外の面(例えば、一対の側面12dのいずれか、又は光学端面12cの反対側を向く後端面)に形成される。 The optical fiber holding member 12 is manufactured, for example, in the same manner as the method of manufacturing the lens component 1 described above. The optical fiber holding member 12 is manufactured, for example, by the mold 5. In this case, the gate mark formed by curing of the resin C in the gate 7 has a surface other than the optical end surface 12c (for example, any of the pair of side surfaces 12d Or the rear end surface facing the opposite side of the optical end surface 12c).
 以上のように、第2実施形態に係る光通信用部品はレンズ部品1を備えた光コネクタ10である。従って、フレネル損失が小さい空間結合型の光コネクタ10とすることができる。また、光コネクタ10では、光ファイバ11が光ファイバ保持部材12に固定されており、光ファイバ11の先端面11aは、屈折率整合層13を介してレンズ部分3と光結合しており、ガイド孔12b、及びレンズ部品1に設けられたガイド孔4にガイドピンが挿入されることにより位置決めがなされる。よって、モスアイ構造の転写性が高められ且つ光損失が抑制された構成を、光ファイバ11、光ファイバ保持部材12及び屈折率整合層13を備えた光コネクタ10に応用することができる。 As described above, the optical communication component according to the second embodiment is the optical connector 10 provided with the lens component 1. Therefore, the space coupled optical connector 10 with a small Fresnel loss can be obtained. Further, in the optical connector 10, the optical fiber 11 is fixed to the optical fiber holding member 12, and the tip surface 11a of the optical fiber 11 is optically coupled to the lens portion 3 through the refractive index matching layer 13, Positioning is performed by inserting a guide pin into the hole 12 b and the guide hole 4 provided in the lens component 1. Therefore, the configuration in which the transferability of the moth-eye structure is enhanced and the optical loss is suppressed can be applied to the optical connector 10 provided with the optical fiber 11, the optical fiber holding member 12 and the refractive index matching layer 13.
 また、レンズ部品1の材料は、光ファイバ保持部材12の材料と同一である。よって、レンズ部品1の熱膨張率は光ファイバ保持部材12の熱膨張率と同一になる。従って、温度変化によってレンズ部品1と光ファイバ保持部材12との位置がずれることを抑制することができるので、温度変化による光L1の軸ずれを防止することができる。 Further, the material of the lens component 1 is the same as the material of the optical fiber holding member 12. Therefore, the coefficient of thermal expansion of the lens component 1 becomes equal to the coefficient of thermal expansion of the optical fiber holding member 12. Therefore, it is possible to suppress the positional deviation between the lens component 1 and the optical fiber holding member 12 due to the temperature change, so that it is possible to prevent the axial deviation of the light L1 due to the temperature change.
 また、光コネクタ10は、屈折率整合層13を備える。屈折率整合層13を備えることにより、光ファイバ11とレンズ部品1との屈折率の整合を図ることができる。従って、光ファイバ11とレンズ部品1との接続損失を低減することができる。また、屈折率整合層13の厚さTは、50μm以下である。よって、屈折率整合層13の厚さTが薄いので、光ファイバ11の光L1の接続方向(方向D1)における位置ずれを抑制することができる。 The optical connector 10 also includes the refractive index matching layer 13. By providing the refractive index matching layer 13, the refractive index of the optical fiber 11 and the lens component 1 can be matched. Therefore, the connection loss between the optical fiber 11 and the lens component 1 can be reduced. The thickness T of the refractive index matching layer 13 is 50 μm or less. Therefore, since the thickness T of the refractive index matching layer 13 is thin, it is possible to suppress the positional deviation of the light L1 of the optical fiber 11 in the connection direction (direction D1).
(第3実施形態)
 続いて、第3実施形態について図8を参照しながら説明する。第3実施形態において、レンズ部品は、前述した複数のレンズ部分3が並設されたレンズアレイ21である。図8以降の図では、理解しやすくするために、レンズ部分3を備えたレンズ部品、及びその周辺の構成を簡略化して図示している。
Third Embodiment
Subsequently, a third embodiment will be described with reference to FIG. In the third embodiment, the lens component is a lens array 21 in which the plurality of lens portions 3 described above are juxtaposed. In the drawings after FIG. 8, the lens component including the lens portion 3 and the configuration around it are illustrated in a simplified manner for easy understanding.
 レンズアレイ21は、例えば、基板22上に設けられた第1光導波路23と、保持部材24に保持された第2光導波路25とを光結合する。第1光導波路23は、第1光導波路23を通る光L2の光軸をレンズアレイ21に向かって曲げる傾斜面23aを有する。傾斜面23aは、方向D3に延びる光L2を方向D1に反射する。 The lens array 21 optically couples, for example, the first optical waveguide 23 provided on the substrate 22 and the second optical waveguide 25 held by the holding member 24. The first optical waveguide 23 has an inclined surface 23 a that bends the optical axis of the light L 2 passing through the first optical waveguide 23 toward the lens array 21. The inclined surface 23a reflects the light L2 extending in the direction D3 in the direction D1.
 レンズアレイ21と第1光導波路23との間には、例えば、屈折率整合層26が介在する。レンズアレイ21の材料は、例えば、前述したレンズ部品1の材料と同一である。屈折率整合層26は、前述した屈折率整合層13と同様の構成を備える。レンズアレイ21の複数のレンズ部分3は、方向D2(図8の紙面に直交する方向)に沿って配列されている。 For example, a refractive index matching layer 26 is interposed between the lens array 21 and the first optical waveguide 23. The material of the lens array 21 is, for example, the same as the material of the lens component 1 described above. The index matching layer 26 has the same configuration as the index matching layer 13 described above. The plurality of lens portions 3 of the lens array 21 are arranged along the direction D2 (direction orthogonal to the paper surface of FIG. 8).
 複数のレンズ部分3は、レンズアレイ21の保持部材24に対向する面21aに対して方向D1に窪んだ凹部21bの底面21cに設けられる。従って、第1光導波路23と第2光導波路25とは空間K1を介して光結合する。保持部材24は、例えば、光ファイバ保持部材12と同様の構成を備えており、第2光導波路25は光ファイバ11と同様であってもよい。 The plurality of lens portions 3 are provided on the bottom surface 21 c of the recess 21 b recessed in the direction D1 with respect to the surface 21 a of the lens array 21 facing the holding member 24. Therefore, the first optical waveguide 23 and the second optical waveguide 25 are optically coupled to each other through the space K1. The holding member 24 may have, for example, the same configuration as the optical fiber holding member 12, and the second optical waveguide 25 may be similar to the optical fiber 11.
 レンズアレイ21は、レンズ部品1の製造方法と同様に製造される。レンズアレイ21は、例えば、金型5によって製造される。具体的には、レンズアレイ21は、断面積F2がキャビティ8の断面積E2の50%以上且つ100%以下とされたゲート7から樹脂Cを注入し、この樹脂Cの硬化によって形成される。ゲート7における樹脂Cの硬化によって形成されるゲート痕は、面21a及び底面21c以外の面(例えば図8の紙面に直交する方向、又は図8の左右方向に向けられる面)に形成される。 The lens array 21 is manufactured in the same manner as the method for manufacturing the lens component 1. The lens array 21 is manufactured by, for example, a mold 5. Specifically, the lens array 21 is formed by injecting the resin C from the gate 7 whose cross-sectional area F2 is 50% or more and 100% or less of the cross-sectional area E2 of the cavity 8 and curing the resin C. A gate mark formed by curing of the resin C in the gate 7 is formed on a surface other than the surface 21a and the bottom surface 21c (for example, a surface orthogonal to the paper surface of FIG. 8 or a surface directed in the left-right direction of FIG. 8).
 以上、第3実施形態において、レンズ部品は、第1光導波路23と、第1光導波路23とは別の第2光導波路25と、を光結合するレンズアレイ21である。レンズアレイ21がレンズ部分3を備えることにより、フレネル損失が小さい空間結合型のレンズアレイ21とすることができる。また、レンズアレイ21は、第1実施形態のレンズ部分3を備えるので、レンズ部分3の表面におけるフレネル反射を抑えることができる。 As described above, in the third embodiment, the lens component is the lens array 21 that optically couples the first optical waveguide 23 and the second optical waveguide 25 different from the first optical waveguide 23. By including the lens portion 3 in the lens array 21, it is possible to provide a spatially coupled lens array 21 with a small Fresnel loss. Further, since the lens array 21 includes the lens portion 3 of the first embodiment, Fresnel reflection on the surface of the lens portion 3 can be suppressed.
 更に、樹脂Cが流し込まれるゲート7の断面積F2がキャビティ8の断面積E2の50%以上且つ100%以下であるため、樹脂Cの流動性を高めることができる。従って、ナノオーダーの周期的凹凸構造3Aの転写性を高めることができるので第1実施形態と同様の効果が得られる。 Furthermore, since the cross-sectional area F2 of the gate 7 into which the resin C is poured is 50% or more and 100% or less of the cross-sectional area E2 of the cavity 8, the flowability of the resin C can be enhanced. Therefore, since the transferability of the nano-order periodic uneven structure 3A can be enhanced, the same effect as that of the first embodiment can be obtained.
(第4実施形態)
 次に、第4実施形態について図9及び図10を参照しながら説明する。第4実施形態では、レンズ部品は、複数のレンズ部分が並設されたレンズモジュール31である。レンズモジュール31は、例えば、基板32上に設けられた受発光素子33と、保持部材34に保持された光導波路35とを光結合する。
Fourth Embodiment
Next, a fourth embodiment will be described with reference to FIG. 9 and FIG. In the fourth embodiment, the lens component is a lens module 31 in which a plurality of lens portions are juxtaposed. The lens module 31 optically couples, for example, the light emitting / receiving element 33 provided on the substrate 32 and the optical waveguide 35 held by the holding member 34.
 受発光素子33は、基板32に実装されている。受発光素子33は、光信号を電気信号に変換する受光素子、又は電気信号を光信号に変換する発光素子である。受発光素子33としては、受光素子であるPD(Photo Diode)、又は、発光素子であるLD(Laser Diode)若しくはVCSEL(Vertical Cavity Surface Emitting Laser)が挙げられる。受発光素子33は、光L3を受光、又は光L3を発光する。 The light emitting / receiving element 33 is mounted on the substrate 32. The light emitting / receiving element 33 is a light receiving element that converts an optical signal into an electrical signal, or a light emitting element that converts an electrical signal into an optical signal. As the light emitting / receiving element 33, PD (Photo Diode) which is a light receiving element, or LD (Laser Diode) which is a light emitting element or a Vertical Cavity Surface Emitting Laser (VCSEL) can be mentioned. The light emitting / receiving element 33 receives the light L3 or emits the light L3.
 レンズモジュール31の材料は、例えば、前述したレンズ部品1の材料と同一である。レンズモジュール31は、受発光素子33に対向する第1レンズ部分31aと、光導波路35に対向する第2レンズ部分31bと、光L3の光路における第1レンズ部分31a及び第2レンズ部分31bの間に位置する傾斜面31cと、を有する。 The material of the lens module 31 is, for example, the same as the material of the lens component 1 described above. The lens module 31 includes a first lens portion 31a facing the light emitting / receiving element 33, a second lens portion 31b facing the optical waveguide 35, and a portion between the first lens portion 31a and the second lens portion 31b in the light path of the light L3. And the inclined surface 31c located in
 例えば、レンズモジュール31は、方向D2(図9及び図10の紙面に直交する方向)に並設された複数の第1レンズ部分31a及び複数の第2レンズ部分31bを備える。複数の受発光素子33は方向D2に沿って設けられており、複数の受発光素子33が第1レンズ部分31a及び第2レンズ部分31bに対応している。 For example, the lens module 31 includes a plurality of first lens portions 31a and a plurality of second lens portions 31b juxtaposed in the direction D2 (direction orthogonal to the sheet of FIG. 9 and FIG. 10). The plurality of light emitting and receiving elements 33 are provided along the direction D2, and the plurality of light emitting and receiving elements 33 correspond to the first lens portion 31a and the second lens portion 31b.
 第1レンズ部分31aを通る光L3は、傾斜面31cにおいて曲げられて第2レンズ部分31bに入射する。例えば、受発光素子33からの発散光である光L3は、第1レンズ部分31aによってコリメート光に変換され、傾斜面31cにおいて反射し、第2レンズ部分31bによって収束光とされて光導波路35に入射する。一方、光導波路35からの発散光は、第2レンズ部分31bでコリメート光に変換され、傾斜面31cにおいて反射し、第1レンズ部分31aにおいて収束光とされて受発光素子33に入射する。複数の第1レンズ部分31aは、レンズモジュール31の基板32に対向する面31dに対して方向D1に窪んだ凹部31eの底面31fに設けられる。従って、各第1レンズ部分31aと各受発光素子33とは空間K2を介して光結合する。 The light L3 passing through the first lens portion 31a is bent at the inclined surface 31c and enters the second lens portion 31b. For example, the light L3 which is diverging light from the light emitting / receiving element 33 is converted into collimated light by the first lens portion 31a, reflected by the inclined surface 31c, and converted into convergent light by the second lens portion 31b. It will be incident. On the other hand, the divergent light from the optical waveguide 35 is converted into collimated light by the second lens portion 31 b, reflected by the inclined surface 31 c, converted into convergent light by the first lens portion 31 a, and enters the light emitting / receiving element 33. The plurality of first lens portions 31a are provided on the bottom surface 31f of the recess 31e which is recessed in the direction D1 with respect to the surface 31d of the lens module 31 facing the substrate 32. Therefore, the first lens portions 31a and the light emitting and receiving elements 33 are optically coupled to each other through the space K2.
 第1レンズ部分31a及び第2レンズ部分31bのそれぞれは、例えば、前述したレンズ部分3と同様の構成を備える。すなわち、第1レンズ部分31a及び第2レンズ部分31bのそれぞれは、周期的凹凸構造3Aと同様の周期的凹凸構造を備える。また、保持部材34及び光導波路35のそれぞれは、光ファイバ保持部材12及び光ファイバ11のそれぞれと同様の構成を備えていてもよい。 Each of the first lens portion 31a and the second lens portion 31b has, for example, the same configuration as the lens portion 3 described above. That is, each of the first lens portion 31a and the second lens portion 31b has the same periodic uneven structure as the periodic uneven structure 3A. Further, each of the holding member 34 and the optical waveguide 35 may have the same configuration as each of the optical fiber holding member 12 and the optical fiber 11.
 レンズモジュール31は、レンズ部品1と同様に製造され、例えば金型5によって製造される。レンズモジュール31は、断面積F3がキャビティ8の断面積E3の50%以上且つ100%以下とされたゲート7から樹脂Cを注入し、樹脂Cが硬化することによって形成される。樹脂Cの硬化によって形成されるゲート痕は、光L3が通る面以外の面(例えば、図10の紙面直交方向の手前側又は奥側に向けられる面)に形成される。 The lens module 31 is manufactured in the same manner as the lens component 1 and is manufactured, for example, by the mold 5. The lens module 31 is formed by injecting the resin C from the gate 7 whose cross-sectional area F3 is 50% or more and 100% or less of the cross-sectional area E3 of the cavity 8 and curing the resin C. A gate mark formed by curing of the resin C is formed on a surface other than the surface through which the light L3 passes (for example, a surface directed to the front side or the back side in the direction perpendicular to the paper surface of FIG. 10).
 以上、第4実施形態では、レンズ部品は、光導波路35と受発光素子33とを光結合するレンズモジュール31である。レンズモジュール31がレンズ部分3と同様の第1レンズ部分31a及び第2レンズ部分31bを備えることにより、フレネル損失が小さい空間結合型のレンズモジュール31とすることができる。 As described above, in the fourth embodiment, the lens component is the lens module 31 that optically couples the light guide 35 and the light emitting / receiving element 33. By providing the first lens portion 31a and the second lens portion 31b similar to the lens portion 3, the lens module 31 can be a spatially coupled lens module 31 with a small Fresnel loss.
 従って、第1レンズ部分31a及び第2レンズ部分31bそれぞれの表面におけるフレネル反射を抑えることができる。また、樹脂Cが流し込まれるゲート7の断面積F3がキャビティ8の断面積E3の50%以上且つ100%以下であるため、樹脂Cの流動性を高めると共に、第1レンズ部分31a及び第2レンズ部分31bにおける周期的凹凸構造の転写性を高めることができる。従って、第1実施形態と同様の効果が得られる。 Therefore, Fresnel reflection on the surface of each of the first lens portion 31a and the second lens portion 31b can be suppressed. Moreover, since the cross-sectional area F3 of the gate 7 into which the resin C is poured is 50% or more and 100% or less of the cross-sectional area E3 of the cavity 8, the flowability of the resin C is enhanced and the first lens portion 31a and the second lens The transferability of the periodic uneven structure in the portion 31 b can be enhanced. Therefore, the same effect as that of the first embodiment can be obtained.
 以上、実施形態に係る光通信用部品の製造方法、及び光通信用部品について説明したが、本開示に係る光通信用部品の製造方法、及び光通信用部品は、前述の各実施形態に限定されず種々の変形が可能である。例えば、前述の実施形態では、ランナー6a,6b、ゲート7及びキャビティ8を備えた金型5について説明したが、光通信用部品を製造する金型の構成は適宜変更可能である。 As mentioned above, although the manufacturing method of the parts for optical communication concerning the embodiment and the parts for optical communication were explained, the manufacturing method of the parts for optical communication concerning this indication and the parts for optical communication are limited to each above-mentioned embodiment. And various modifications are possible. For example, although the mold 5 having the runners 6a and 6b, the gate 7, and the cavity 8 is described in the above embodiment, the configuration of the mold for manufacturing the optical communication component can be changed as appropriate.
 また、前述の実施形態では、周期的凹凸構造3Aを備えるレンズ部分3がレンズ部品1に一体化された例について説明したが、周期的凹凸構造を備えるレンズ部分は、レンズ部品とは別部品とされたレンズ部材であってもよい。この場合、一体化されているレンズ部品と比較して、レンズ部材と光導波路との相対的な位置合わせを高精度に行うことができる。 Moreover, although the above-mentioned embodiment demonstrated the example in which the lens part 3 provided with the periodic uneven structure 3A was integrated with the lens component 1, the lens part provided with the periodic uneven structure is a different component from the lens part. It may be a lens member. In this case, relative alignment between the lens member and the optical waveguide can be performed with high accuracy as compared with the integrated lens component.
 例えば、図11に示されるように、レンズ部品とは別部品とされたレンズ部材41は、通信用レンズであり、周期的凹凸構造3Aと同様の周期的凹凸構造を範囲Xに備える。一般的に、通信用レンズの位置の精度は光の接続損失に直接影響する。このため、例えば光学顕微鏡を用いてレンズのエッジ(外周)部分の位置を高精度に計測することが必要となる。しかしながら、周期的凹凸構造がレンズのエッジ部分に形成されている場合、エッジ部分が不鮮明となりうるため位置の計測が困難となる場合がある。 For example, as shown in FIG. 11, the lens member 41, which is a component separate from the lens component, is a communication lens, and has a periodic uneven structure similar to that of the periodic uneven structure 3A in the range X. In general, the accuracy of the position of the communication lens directly affects the light connection loss. For this reason, it is necessary to measure the position of the edge (periphery) of the lens with high accuracy using, for example, an optical microscope. However, when the periodic uneven structure is formed at the edge portion of the lens, the position measurement may be difficult because the edge portion may be unclear.
 従って、図11に示される例では、レンズ部材41を通る光のビーム径をV1、レンズ部材41の周期的凹凸構造が形成されている範囲Xの直径をV2、レンズ部材41の直径をV3、とすると、V1<V2<V3の関係を満たす。V1<V2の関係を満たすことにより、レンズ部材41を通る光のフレネル反射を一層効果的に抑制することができる。 Therefore, in the example shown in FIG. 11, the beam diameter of light passing through the lens member 41 is V1, the diameter of the range X in which the periodic uneven structure of the lens member 41 is formed V2, the diameter of the lens member 41 V3, Then, the relationship of V1 <V2 <V3 is satisfied. By satisfying the relationship of V1 <V2, Fresnel reflection of light passing through the lens member 41 can be more effectively suppressed.
 また、V2<V3を満たすことにより、範囲Xよりもエッジ側に周期的凹凸構造が形成されない、すなわち、外周部に周期的凹凸構造がない領域を有するので、レンズ部材41の形状評価、及びレンズ部材41の位置計測を容易に且つ高精度に行うことができる。なお、範囲Xよりもエッジ側の周期的凹凸構造が形成されない箇所は、例えば、レンズ駒部分にマスクをかけることによって形成される。 Further, by satisfying V2 <V3, the periodic uneven structure is not formed on the edge side of the range X, that is, there is a region without the periodic uneven structure in the outer peripheral portion, so the shape evaluation of the lens member 41 and the lens The position measurement of the member 41 can be performed easily and with high accuracy. A portion where the periodic uneven structure on the edge side of the range X is not formed is formed, for example, by applying a mask to the lens frame portion.
 また、前述の実施形態では、複数のレンズ部分3を備えたレンズ部品1について説明したが、レンズ部分の数は、1つであってもよく適宜変更可能である。更に、光コネクタ10は、屈折率整合層13を備えていたが、屈折率整合層は省略することも可能である。この場合、レンズ部品1、光ファイバ11及び光ファイバ保持部材12が一体化された光コネクタ10を金型5によって前述した製造方法と同様に製造することができる。 Moreover, although the above-mentioned embodiment demonstrated the lens component 1 provided with the several lens part 3, the number of lens parts may be one and can be changed suitably. Furthermore, although the optical connector 10 is provided with the refractive index matching layer 13, the refractive index matching layer can be omitted. In this case, the optical connector 10 in which the lens component 1, the optical fiber 11, and the optical fiber holding member 12 are integrated can be manufactured by the mold 5 in the same manner as the manufacturing method described above.
 更に、レンズ部品とは別部品とされたレンズ部材41について、外周部に周期的凹凸構造がない例を説明したが、レンズ部分3が一体化されているレンズ部品1について、レンズ部分3が外周部に周期的凹凸構造がない領域を有していてもよい。この場合にも、光ファイバ11とレンズ部品1との位置合わせを高精度に行うことができるという効果が得られる。以上、光通信用部品を構成する各部品の材料、形状、大きさ、数及び配置態様は適宜変更可能であり、光通信用部品の製造方法における各工程の内容及び順序については適宜変更可能である。 Furthermore, as for the lens member 41 which is a separate component from the lens part, although an example in which the periodic uneven structure is not formed in the outer peripheral part has been described, the lens part 3 is the outer periphery of the lens part 1 in which the lens part 3 is integrated. The part may have a region without a periodic uneven structure. Also in this case, the effect that the alignment between the optical fiber 11 and the lens component 1 can be performed with high accuracy can be obtained. As described above, the material, shape, size, number, and arrangement of each component of the optical communication component can be changed as appropriate, and the contents and order of each process in the method of manufacturing the optical communication component can be changed as appropriate. is there.
1…レンズ部品、2a…端面、2b…後端面、2c…側面、2d…上面、2e…底面、2f…凹部、2g…ゲート痕、3…レンズ部分、3A…周期的凹凸構造、3a…凸部、4…ガイド孔(孔)、5…金型、6a,6b…ランナー、7…ゲート、8…キャビティ、8a…レンズ駒部分、8b…周期的凹凸構造、8c…ピン、10…光コネクタ(光通信用部品)、11…光ファイバ、11a…先端面、12…光ファイバ保持部材、12a…光ファイバ保持孔、12b…ガイド孔、12c…光学端面、12d…側面、13,26…屈折率整合層、21…レンズアレイ、21a…面、21b…凹部、21c…底面、22,32…基板、23…第1光導波路、23a…傾斜面、24,34…保持部材、25…第2光導波路、31…レンズモジュール、31a…第1レンズ部分、31b…第2レンズ部分、31c…傾斜面、31d…面、31e…凹部、31f…底面、33…受発光素子、35…光導波路、41…レンズ部材、A,B…面積、C…樹脂、D1,D2,D3…方向、E1,E2,E3…断面積、F1,F2,F3…断面積、K1,K2…空間、L1,L2,L3…光、P…間隔、R…直径、X…範囲。 DESCRIPTION OF SYMBOLS 1 ... lens part, 2a ... end surface, 2b ... back end surface, 2c ... side surface, 2d ... top surface, 2e ... bottom surface, 2f ... recessed part, 2g ... gate mark, 3 ... lens part, 3A ... periodic uneven structure, 3a ... convex Part 4 guide hole (hole) 5 mold 6a, 6b runner 7 gate 8 cavity 8a lens frame portion 8b periodical uneven structure 8c pin 10 optical connector (Parts for optical communication) 11 Optical fiber 11a Tip surface 12 Optical fiber holding member 12a Optical fiber holding hole 12b Guide hole 12c Optical end face 12d Side surface 13, 26 Refraction Ratio matching layer 21 lens array 21a surface 21b recess 21c bottom surface 22 32 substrate 23 first optical waveguide 23a inclined surface 24 34 holding member 25 25th Optical waveguide, 31 ... lens module, Reference Signs List 1a: first lens portion, 31b: second lens portion, 31c: inclined surface, 31d: surface, 31e: recess, 31f: bottom surface, 33: light emitting / receiving element, 35: optical waveguide, 41: lens member, A, B ... area, C: resin, D1, D2, D3 ... direction, E1, E2, E3 ... sectional area, F1, F2, F3 ... sectional area, K1, K2 ... space, L1, L2, L3 ... light, P ... interval , R ... diameter, X ... range.

Claims (13)

  1.  空間結合型の光通信用部品の製造方法であって、
     深さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を有すると共に、直径が50μm以上且つ600μm以下とされたレンズ駒部分を備えた金型のキャビティにゲートから樹脂を注入する工程と、
     前記樹脂を硬化してレンズ部品を形成する工程と、
    を備え、
     前記キャビティの断面積に対する前記ゲートの断面積の割合が50%以上且つ100%以下である、
    光通信用部品の製造方法。
    A method of manufacturing a spatial coupling type optical communication component, comprising
    Injecting a resin from a gate into a cavity of a mold having a periodic uneven structure with a depth and a spacing of 100 nm or more and 1000 nm or less and having a lens frame portion with a diameter of 50 μm or more and 600 μm or less ,
    Curing the resin to form a lens component;
    Equipped with
    The ratio of the cross sectional area of the gate to the cross sectional area of the cavity is 50% or more and 100% or less.
    Method of manufacturing parts for optical communication.
  2.  前記レンズ部品の体積は9mm以上且つ350mm以下である、
    請求項1に記載の光通信用部品の製造方法。
    The volume of the lens component is 9 mm 3 or more and 350 mm 3 or less,
    A method of manufacturing a component for optical communication according to claim 1.
  3.  空間結合型の光通信用部品であって、
     レンズ部品を備え、
     前記レンズ部品は、直径が50μm以上且つ600μm以下とされたレンズ部分を有し、
     前記レンズ部分は、高さ及び間隔が100nm以上且つ1000nm以下とされた周期的凹凸構造を含んでおり、
     前記レンズ部品は、樹脂が流し込まれるゲートにおいて硬化したゲート痕、及び前記ゲート痕が設けられた面を有し、
     前記面の面積に対する前記ゲート痕の面積の割合が50%以上且つ100%以下である、
    光通信用部品。
    Space-coupled optical communication components,
    Equipped with lens parts,
    The lens component has a lens portion with a diameter of 50 μm or more and 600 μm or less,
    The lens portion includes a periodic uneven structure having a height and a spacing of 100 nm or more and 1000 nm or less.
    The lens component has a hardened gate mark at a gate into which resin is poured, and a surface provided with the gate mark.
    The ratio of the area of the gate mark to the area of the surface is 50% or more and 100% or less.
    Parts for optical communication.
  4.  光ファイバと、前記光ファイバを保持する光ファイバ保持部材と、屈折率を整合する屈折率整合層と、を更に備え、
     前記光ファイバ保持部材は、前記光ファイバを保持する光ファイバ保持孔と、位置決めを行うガイドピンが挿入されるガイド孔と、を有し、
     前記光ファイバは、前記光ファイバ保持部材に固定されており、
     前記光ファイバの先端面は、前記屈折率整合層を介して、前記レンズ部分と光結合しており、
     前記ガイド孔、及び前記レンズ部品に形成された孔に前記ガイドピンが挿入されることにより位置決めがなされる、
    請求項3に記載の光通信用部品。
    An optical fiber, an optical fiber holding member for holding the optical fiber, and an index matching layer for matching the refractive index,
    The optical fiber holding member has an optical fiber holding hole for holding the optical fiber, and a guide hole into which a guide pin for positioning is inserted.
    The optical fiber is fixed to the optical fiber holding member,
    The tip surface of the optical fiber is optically coupled to the lens portion through the refractive index matching layer,
    Positioning is performed by inserting the guide pin into the guide hole and a hole formed in the lens component,
    A component for optical communication according to claim 3.
  5.  前記レンズ部品の体積は9mm以上且つ350mm以下である、
    請求項3又は4に記載の光通信用部品。
    The volume of the lens component is 9 mm 3 or more and 350 mm 3 or less,
    A component for optical communication according to claim 3 or 4.
  6.  前記レンズ部品は、前記レンズ部分よりも端部寄りの位置に当接面を有し、前記ガイド孔は、前記当接面に形成されている、
    請求項4に記載の光通信用部品。
    The lens component has an abutment surface at a position closer to the end than the lens portion, and the guide hole is formed in the abutment surface.
    A component for optical communication according to claim 4.
  7.  前記レンズ部品の材料は、前記光ファイバ保持部材の材料と同一である、
    請求項4に記載の光通信用部品。
    The material of the lens component is the same as the material of the optical fiber holding member,
    A component for optical communication according to claim 4.
  8.  前記屈折率整合層の厚さが50μm以下である、
    請求項4に記載の光通信用部品。
    The thickness of the refractive index matching layer is 50 μm or less
    A component for optical communication according to claim 4.
  9.  前記レンズ部品は、複数の前記レンズ部分を備える、
    請求項3~8のいずれか一項に記載の光通信用部品。
    The lens component comprises a plurality of the lens portions,
    A component for optical communication according to any one of claims 3 to 8.
  10.  前記レンズ部品は、外周部に前記周期的凹凸構造がない領域を有する、
    請求項3~9のいずれか一項に記載の光通信用部品。
    The lens component has a region without the periodic uneven structure at an outer peripheral portion thereof.
    A component for optical communication according to any one of claims 3 to 9.
  11.  前記光通信用部品は光コネクタである、
    請求項3~10のいずれか一項に記載の光通信用部品。
    The optical communication component is an optical connector,
    A component for optical communication according to any one of claims 3 to 10.
  12.  前記レンズ部品は、光導波路と、前記光導波路とは別の光導波路と、を光結合するレンズアレイである、
    請求項3に記載の光通信用部品。
    The lens component is a lens array that optically couples an optical waveguide and an optical waveguide other than the optical waveguide.
    A component for optical communication according to claim 3.
  13.  前記レンズ部品は、光導波路と受発光素子とを光結合するレンズモジュールである、
    請求項3に記載の光通信用部品。
    The lens component is a lens module that optically couples an optical waveguide and a light emitting and receiving element.
    A component for optical communication according to claim 3.
PCT/JP2018/022252 2017-08-24 2018-06-11 Method for manufacturing optical communication component and optical communication component WO2019039049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537940A JPWO2019039049A1 (en) 2017-08-24 2018-06-11 Optical communication component manufacturing method and optical communication component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161518 2017-08-24
JP2017-161518 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039049A1 true WO2019039049A1 (en) 2019-02-28

Family

ID=65438586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022252 WO2019039049A1 (en) 2017-08-24 2018-06-11 Method for manufacturing optical communication component and optical communication component

Country Status (2)

Country Link
JP (1) JPWO2019039049A1 (en)
WO (1) WO2019039049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261026A1 (en) * 2019-06-28 2020-12-30 3M Innovative Properties Company Structured surface and optical ferrule including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120967A (en) * 1974-08-15 1976-02-19 Dainippon Printing Co Ltd
JP2006150902A (en) * 2004-12-01 2006-06-15 Enplas Corp Optical element, optical element molding die and manufacturing method of optical element
JP2011005820A (en) * 2009-06-29 2011-01-13 Nippon Zeon Co Ltd Molding method of optical element, and optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120967A (en) * 1974-08-15 1976-02-19 Dainippon Printing Co Ltd
JP2006150902A (en) * 2004-12-01 2006-06-15 Enplas Corp Optical element, optical element molding die and manufacturing method of optical element
JP2011005820A (en) * 2009-06-29 2011-01-13 Nippon Zeon Co Ltd Molding method of optical element, and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261026A1 (en) * 2019-06-28 2020-12-30 3M Innovative Properties Company Structured surface and optical ferrule including same
CN114080553A (en) * 2019-06-28 2022-02-22 3M创新有限公司 Structured surface and optical ferrule including the same
US11726266B2 (en) 2019-06-28 2023-08-15 3M Innovative Properties Company Structured surface and optical ferrule including same

Also Published As

Publication number Publication date
JPWO2019039049A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP5564344B2 (en) Ferrule with optical fiber
JP5127546B2 (en) Optical connector
US10761279B2 (en) Method of producing a device for adiabatic coupling between waveguide arrays, corresponding device, and system
JP4730274B2 (en) Optical coupler, optical connector, and receptacle type optical transmission module
CN108463751B (en) Optical connector, optical connector system, and active optical cable having the same
US10591694B2 (en) Photonic chip having a monolithically integrated reflector unit and method of manufacturing a reflector unit
US20190121030A1 (en) Optical coupler for coupling light in/out of an optical receiving/emitting structure
WO2017195636A1 (en) Optical connector and optical coupling structure
CN102183824A (en) Two-dimensional optical fiber array with collimation lens
JP3205876U (en) Optical path conversion optical connector
US20200088954A1 (en) Ferrule, ferrule with optical fiber, and method of manufacturing ferrule with optical fiber
US10101541B2 (en) Optical ferrule and optical connector
JP2015125164A (en) Optical receptacle and optical module
WO2019039049A1 (en) Method for manufacturing optical communication component and optical communication component
JP2002048949A (en) Optical waveguide connecting structure, and optical element/optical fiber mounting structure
JP5458191B2 (en) Optical connection method and multi-fiber optical connector
JP2010231130A (en) Optical module
JP6796627B2 (en) Optical connector and optical connection structure
US11150418B2 (en) Optical connector ferrule and optical connector
JP5737108B2 (en) Optical fiber unit and manufacturing method thereof
Missinne et al. Silicon photonic temperature sensor: from photonic integrated chip to fully packaged miniature probe
JP2015169664A (en) Optical coupling component, optical connector and optical coupling method
JP7451315B2 (en) Manufacturing method for optical connector ferrules, optical connectors, optical connection structures, and lens arrays
JP2019204050A (en) Optical connection component, and method for manufacturing optical connection component
JP5282988B2 (en) Optical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848609

Country of ref document: EP

Kind code of ref document: A1