WO2018037775A1 - Light source device and backlight device provided with same, and display device - Google Patents

Light source device and backlight device provided with same, and display device Download PDF

Info

Publication number
WO2018037775A1
WO2018037775A1 PCT/JP2017/026039 JP2017026039W WO2018037775A1 WO 2018037775 A1 WO2018037775 A1 WO 2018037775A1 JP 2017026039 W JP2017026039 W JP 2017026039W WO 2018037775 A1 WO2018037775 A1 WO 2018037775A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
quantum dot
jig
Prior art date
Application number
PCT/JP2017/026039
Other languages
French (fr)
Japanese (ja)
Inventor
敦幸 田中
悠作 味地
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018037775A1 publication Critical patent/WO2018037775A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the following disclosure relates to a light source device, and more particularly to a light source device that obtains white light by a combination of a blue LED and quantum dots, a backlight device including the light source device, and a display device.
  • a transmissive liquid crystal display device requires a backlight device that can irradiate a liquid crystal panel with white light including a red component, a green component, and a blue component.
  • CCFLs cold cathode tubes
  • LEDs has increased from the viewpoint of low power consumption and ease of brightness control.
  • a backlight device having a configuration using a red LED, a green LED, and a blue LED as a light source has been conventionally known.
  • a technique for obtaining white light by combining a blue LED and a quantum dot has attracted attention.
  • a white LED package called “surface mount type” as shown in FIG. 32
  • a configuration in which blue LEDs and quantum dots are combined is employed.
  • the blue LED 801 provided on the package substrate 810 is covered with quantum dots 802.
  • the blue LED 801 is covered with a resin including green quantum dots and red quantum dots.
  • quantum dots are dispersed and arranged in the LED package.
  • a reflector 820 for reflecting light is provided in a region around the blue LED 801 on the package substrate 810.
  • the blue LED 801 has an anode connected to the electrode 841 through the bonding wire 831, and the blue LED 801 has a cathode connected to the electrode 842 through the bonding wire 832.
  • the quantum dot 802 used include a combination of a green quantum dot having an emission peak wavelength of 500 to 550 nm and a red quantum dot having an emission peak wavelength of 600 nm or more. According to such a structure, the half value width of green light and red light can be narrowed. Accordingly, a wide color gamut of the liquid crystal display device is realized by combining a backlight device configured using quantum dots and a liquid crystal panel configured using high density color filters.
  • FIG. 33 is a schematic cross-sectional view of a backlight device employing a QD capillary system.
  • quantum dots 852 sealed in a glass (elongated glass tube) 870 are disposed between the blue LED 851 and the light guide 880.
  • a reflector 860 for reflecting light is provided so as to cover the glass 870 enclosing the quantum dots 852 and the blue LED 851.
  • the quantum dot 852 for example, a combination of a green quantum dot and a red quantum dot is used.
  • the light emitted from the blue LED 851 passes through the quantum dots 852 and becomes white light and enters the light guide 880. Thereby, white light is emitted from the light guide 880 toward the liquid crystal panel (not shown).
  • quantum dots have the property of being vulnerable to heat and humidity.
  • the quantum dots 802 are arranged at positions very close to the blue LED 801. Further, unlike the quantum dot sheet described later, the quantum dot 802 in the surface mount type configuration is not provided with a barrier film for protection from humidity. From the above, according to the surface mount type configuration, the quantum dots 802 are easily deteriorated.
  • the quantum dots 852 are enclosed in the glass 870 and disposed at a position away from the blue LED 851 to some extent. Therefore, in the QD capillary system, the quantum dots 852 are less likely to be deteriorated by the influence of heat and humidity.
  • the phosphor sheet contains a phosphor that emits light when excited by light emitted from a blue LED.
  • Specific examples of the phosphor sheet used include a phosphor sheet containing a yellow phosphor and a phosphor sheet containing a green phosphor and a red phosphor. Regarding such a phosphor sheet, it is also considered to employ quantum dots as the phosphor.
  • FIG. 34 is a side view showing a schematic configuration of a conventional backlight device that obtains white light by a combination of a blue LED and a phosphor sheet.
  • This backlight device includes a plurality of blue LEDs 93 as light sources, an LED substrate 92 on which the plurality of blue LEDs 93 are mounted, and a diffusion for diffusing the light emitted from the blue LEDs 93 to make the surface uniform light.
  • the chassis is not shown.
  • a phosphor sheet for example, a phosphor sheet containing a yellow phosphor
  • a phosphor sheet 95 is provided as shown in FIG. 34, so that white light is emitted from the backlight device as backlight light. Emitted.
  • a liquid crystal display device that performs local dimming processing that logically divides a screen into a plurality of areas and controls the luminance (light emission intensity) of the light source device for each area.
  • the luminance of the light source device is controlled based on the input image in the corresponding area. Specifically, the luminance of each light source device is obtained based on the maximum value or average value of the target luminance (luminance corresponding to the input gradation value) of the pixels included in the corresponding area. In the area where the luminance of the light source device is smaller than the original luminance, the transmittance of each pixel is increased. Thereby, the target display brightness
  • development of an HDR drive for displaying a very wide dynamic range has been actively performed.
  • the local dimming process is also used when realizing this HDR drive.
  • FIGS. 35 to 37 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when only one central area is turned on (partial lighting) in a configuration using white LEDs.
  • 38 to 40 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when only one central area is turned on (partial lighting) in a configuration using a phosphor sheet.
  • 35 to 40 it can be understood that the configuration using the phosphor sheet has a larger chromaticity difference depending on the location than the configuration using the white LED.
  • a backlight is provided in the vicinity immediately above the lit blue LED (the portion indicated by the arrow 99 in FIGS.
  • the color of the light is blue, and the color of the backlight becomes yellowish as the distance from the lighting point increases.
  • color unevenness occurs due to a small amount of light mixed in each area.
  • FIG. 41 to 43 show the luminance, chromaticity x, and chromaticity y when 36 areas (6 vertical areas ⁇ 6 horizontal areas) are turned on (partial lighting) in a configuration using a phosphor sheet.
  • FIG. 44 to 46 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when the entire surface is turned on in the configuration using the phosphor sheet. From FIG. 39, FIG. 40, FIG. 42, FIG. 43, FIG. 45, and FIG. 46, it is understood that the chromaticity of the backlight light in the vicinity immediately above the lit blue LED differs depending on the lighting range. That is, how color unevenness occurs differs depending on the lighting range.
  • the light 9 a emitted from the blue LED 93 is divided into light (component) 9 b that passes through the optical sheet 96 and light (component) 9 c that is reflected by the optical sheet 96 after passing through the phosphor sheet 95. That is, some components of the light 9 a emitted from the blue LED 93 are reflected by the optical sheet 96 and return to the LED substrate 92 side. Since a reflection sheet that reflects light is generally attached to the surface of the LED substrate 92, the light 9 c reflected by the optical sheet 96 is further reflected by the LED substrate 92.
  • the reflected light 9 d is divided into light 9 e that passes through the optical sheet 96 and light 9 f that is reflected by the optical sheet 96 after passing through the phosphor sheet 95.
  • the light 9f reflected by the optical sheet 96 is reflected by the LED substrate 92
  • the light 9g reflected by the LED substrate 92 is divided into light 9h that passes through the optical sheet 96 and light 9i that is reflected by the optical sheet 96. .
  • the color of the light is yellowish every time it passes through the phosphor sheet 95. Therefore, when attention is paid to the emitted light from one blue LED 93, the color of the light becomes yellowish as the region is farther from the blue LED 93.
  • the color of the light 9e is more yellowish than the color of the light 9b
  • the color of the light 9h is more yellowish than the color of the light 9e.
  • the phosphor content (phosphor concentration) in the phosphor sheet 95 is adjusted so that the backlight becomes white light when the entire surface is turned on.
  • the amount of yellowish light that reaches the lighting area from other areas is smaller than when full lighting is performed.
  • the color of the backlight light appearing in the lighting area has a blue color, and the white balance is lost.
  • the range where partial lighting is performed is narrow.
  • the emitted light from the blue LED 93 reaches the surrounding area by repeating reflection, the light is irradiated to the non-lighting area when partial lighting is performed. At that time, the color of the light gradually becomes yellowish as the distance from the lighting area increases, and color unevenness occurs.
  • Japanese Patent Application Laid-Open No. 2015-216104 discloses an invention of a light source device that suppresses the spread of light by providing a suppressing member that divides a region of a light emitting surface. According to this light source device, the light emitted from the light source and transmitted through the conversion member (quantum dot) is suppressed from leaking to the adjacent region, and as a result, color unevenness and luminance unevenness are reduced.
  • the following disclosure aims to realize a direct type backlight device configured by combining a blue LED and quantum dots at low cost without causing color unevenness.
  • a light source device includes a light emitting device package including a blue light emitting device that emits blue light, and converts the wavelength of the light emitted from the blue light emitting device so that the color of the outgoing light is white.
  • a quantum dot-containing body containing quantum dots. The quantum dots are disposed immediately above the light emitting element package.
  • the light source device includes a light emitting element package including a blue light emitting element that emits blue light, and a wavelength of light emitted from the blue light emitting element so that a color of light emitted to the outside is white.
  • the jig includes a mounting portion that is positioned immediately above the light emitting device package and on which the quantum dot-containing body is mounted, and a support portion that is positioned around the light emitting device package and supports the mounting portion. The support part reflects or scatters the light emitted from the blue light emitting element.
  • the light source device includes a light emitting device package including a blue light emitting device that emits blue light, and a wavelength of light emitted from the blue light emitting device so that the color of light emitted to the outside is white.
  • the jig includes a mounting portion that is positioned immediately above the light emitting device package and on which the quantum dot-containing body is mounted, and a support portion that is positioned around the light emitting device package and supports the mounting portion.
  • the mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting element package.
  • quantum dots are arranged at a position immediately above the light emitting element package or above the light emitting element package and relatively close to the light emitting element package. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided. Therefore, the light propagating through the backlight device becomes white light, and even if light reflection is repeated inside the device, yellowish light is not emitted. Therefore, color unevenness caused by repeated light reflection does not occur.
  • the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced. As described above, a light source device having a configuration in which a blue LED and a quantum dot are combined can be realized at low cost.
  • FIG. 6 is a flowchart illustrating an example of a procedure of local dimming processing in the first embodiment. In the said 1st Embodiment, it is a figure for demonstrating control of the light emission luminance by a local dimming process.
  • the said 1st Embodiment it is the schematic which shows the structure of the unit drive part for driving the blue LED contained in one area. It is a figure which shows the detailed structure of the light source device in the said 1st Embodiment. It is a figure which shows the example of 1 structure of the quantum dot sheet in the said 1st Embodiment. It is a figure for demonstrating that white light is radiate
  • the said 3rd Embodiment it is a figure for demonstrating the reason the whole jig
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device including a backlight device 600 according to the first embodiment.
  • the liquid crystal display device includes a display control circuit 100, a gate driver (scanning signal line driving circuit) 200, a source driver (video signal line driving circuit) 300, a liquid crystal panel 400, a light source control unit 500, and a backlight device 600.
  • the liquid crystal panel 400 includes a display unit 410 for displaying an image. Note that the gate driver 200 and / or the source driver 300 may be provided in the liquid crystal panel 400.
  • the display unit 410 includes a plurality (n) of source bus lines (video signal lines) SL1 to SLn and a plurality (m) of gate bus lines (scanning signal lines) GL1 to GLm. It is installed.
  • a pixel forming portion 4 for forming pixels is provided corresponding to each intersection of the source bus lines SL1 to SLn and the gate bus lines GL1 to GLm.
  • the display unit 410 includes a plurality (m ⁇ n) of pixel forming units 4.
  • the plurality of pixel forming portions 4 are arranged in a matrix to form a pixel matrix.
  • Each pixel forming unit 4 includes a TFT (thin film transistor) which is a switching element having a gate terminal connected to a gate bus line GL passing through a corresponding intersection and a source terminal connected to a source bus line SL passing through the intersection.
  • TFT thin film transistor
  • the pixel electrode 41 connected to the drain terminal of the TFT 40, the common electrode 44 and the auxiliary capacitance electrode 45 provided in common to the plurality of pixel forming portions 4, the pixel electrode 41 and the common electrode 44, And a storage capacitor 43 formed by the pixel electrode 41 and the storage capacitor electrode 45 are included.
  • the liquid crystal capacitor 42 and the auxiliary capacitor 43 constitute a pixel capacitor 46.
  • the display unit 410 in FIG. 1 only components corresponding to one pixel forming unit 4 are shown.
  • an oxide TFT (a thin film transistor using an oxide semiconductor for a channel layer) can be employed. More specifically, In—Ga—Zn—O (indium gallium zinc oxide) which is an oxide semiconductor mainly containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used.
  • In—Ga—Zn—O—TFT indium gallium zinc oxide
  • a TFT in which a channel layer is formed hereinafter referred to as “In—Ga—Zn—O—TFT”
  • In—Ga—Zn—O—TFT an In—Ga—Zn—O—TFT
  • a transistor in which an oxide semiconductor other than In—Ga—Zn—O (indium gallium zinc oxide) is used for a channel layer can be employed.
  • an oxide semiconductor other than In—Ga—Zn—O indium gallium zinc oxide
  • at least one of indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb) is included.
  • TFTs other than oxide TFTs is not excluded.
  • the display control circuit 100 receives an image signal DAT sent from the outside and a timing signal group TG such as a horizontal synchronizing signal and a vertical synchronizing signal, and receives a digital video signal DV and a gate start pulse for controlling the operation of the gate driver 200.
  • the signal BS is output.
  • the gate driver 200 Based on the gate start pulse signal GSP and the gate clock signal GCK sent from the display control circuit 100, the gate driver 200 applies the active scanning signals G (1) to G (m) to the gate bus lines GL1 to GLm. The application is repeated with one vertical scanning period as a cycle.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS sent from the display control circuit 100, and drives the video signal S (1 (1) to the source bus lines SL1 to SLn. ) To S (n) are applied. At this time, the source driver 300 sequentially holds the digital video signal DV indicating the voltage to be applied to the source bus lines SL1 to SLn at the timing when the pulse of the source clock signal SCK is generated. The held digital video signal DV is converted into an analog voltage at the timing when the pulse of the latch strobe signal LS is generated. The converted analog voltage is applied simultaneously to all the source bus lines SL1 to SLn as drive video signals S (1) to S (n).
  • the light source control unit 500 controls the luminance (light emission intensity) of the light source device in the backlight device 600 based on the light source control signal BS sent from the display control circuit 100.
  • the backlight device 600 irradiates the back surface of the liquid crystal panel 400 with the backlight light.
  • local dimming processing is performed.
  • the scanning signals G (1) to G (m) are applied to the gate bus lines GL1 to GLm, and the driving video signals S (1) to S (n) are applied to the source bus lines SL1 to SLn. Then, by controlling the luminance of the light source device in the backlight device 600, an image corresponding to the image signal DAT sent from the outside is displayed on the display unit 410.
  • FIG. 2 is a perspective view of the liquid crystal panel 400 and the backlight device 600.
  • FIG. 3 is a side view of the liquid crystal panel 400 and the backlight device 600.
  • the backlight device 600 is provided on the back surface of the liquid crystal panel 400. That is, the backlight device 600 in the present embodiment is a direct type backlight device.
  • the backlight device 600 includes a chassis 61, an LED substrate 62, a plurality of light source devices 63, a diffusion plate 64, and an optical sheet 65.
  • Each light source device 63 includes a blue LED 631 and quantum dots 632.
  • the chassis 61 supports the LED substrate 62 and the like.
  • the LED substrate 62 is a metal substrate, for example, and has a plurality of light source devices 63 mounted thereon.
  • a reflective sheet is attached to the surface of the LED substrate 62 in order to increase the utilization efficiency of the light emitted from the light source device 63.
  • the blue LED 631 emits blue light.
  • the quantum dot 632 converts the wavelength of the light emitted from the blue LED 631 so that the emitted light from the light source device 63 becomes white light.
  • the diffusing plate 64 is disposed at a position several millimeters to several centimeters above the light source device 63.
  • the diffusion plate 64 diffuses the light emitted from the light source device 63 so that the backlight light becomes surface-uniform light.
  • the optical sheet 65 is disposed above the diffusion plate 64.
  • the optical sheet 65 is composed of a plurality of sheets. Each of the plurality of sheets has a function of diffusing light, a light condensing function, a function of improving light use efficiency, and the like. A detailed description of the configuration of the light source device 63 will be given later.
  • the display unit 410 that displays an image logically controls a plurality of areas (not physically) (not physically) as shown in FIG.
  • the area is the smallest unit to be performed).
  • a light source device 63 is provided on the LED substrate 62 so as to correspond to each area, and the luminance (light emission intensity) of the light source device 63 is controlled for each area.
  • the number of light source devices 63 provided in each area is not particularly limited.
  • the local dimming process is performed by a local dimming processing unit (not shown) in the display control circuit 100 (see FIG. 1).
  • display unit 410 is divided into (vertical p ⁇ horizontal q) areas.
  • an image signal DAT sent from the outside is input to the local dimming processing unit as input image data (step S11).
  • the input image data includes the luminance (luminance data) of (m ⁇ n) pixels.
  • the local dimming processing unit performs sub-sampling processing (averaging processing) on the input image data to obtain a reduced image including the luminance of (sp ⁇ sq) (s is an integer of 2 or more) pixels.
  • the local dimming processing unit divides the reduced image into (p ⁇ q) area data (step S13). The data of each area includes the luminance of (s ⁇ s) pixels.
  • the local dimming processing unit obtains the maximum luminance value Ma of the pixels in the area and the average luminance value Me of the pixels in the area for each of the (p ⁇ q) areas (step S14). .
  • the local dimming processing unit is the light emission luminance (light emission luminance of the blue LED 631) of the light source device 63 corresponding to each area (p ⁇ q) based on the maximum value Ma, the average value Me, and the like obtained in step S14.
  • the individual light emission luminances are obtained (step S15).
  • the local dimming processing unit obtains (tp ⁇ tq) display luminances (t is an integer of 2 or more) based on the (p ⁇ q) emission luminances obtained in step S15 (step S16).
  • the local dimming processing unit obtains backlight luminance data including (m ⁇ n) display luminances by performing linear interpolation processing on (tp ⁇ tq) display luminances (step S17).
  • the backlight luminance data represents the luminance of light incident on (m ⁇ n) pixels when all the light source devices 63 emit light with the light emission luminance obtained in step S15.
  • the local dimming processing unit divides the luminance of (m ⁇ n) pixels included in the input image by (m ⁇ n) display luminances included in the backlight luminance data, respectively ( The light transmittance in m ⁇ n) pixels is obtained (step S18). Finally, the local dimming processing unit causes the digital video signal DV corresponding to the data representing the light transmittance obtained in step S18 and the light source device 63 corresponding to each area to emit light with the light emission luminance obtained in step S15.
  • the light source control signal BS is output (step S19).
  • light having different luminance is emitted for each area as schematically shown in FIG.
  • the brightness of light is indicated by the thickness of the arrow.
  • FIG. 7 is a schematic diagram showing the configuration of the unit drive unit 50 for driving the blue LEDs 631 included in one area.
  • FIG. 7 shows an example in which four light source devices 63 are provided in one area, that is, an example in which four blue LEDs 631 are provided in one area.
  • the unit driving unit 50 includes a power source 52 and a current control transistor 54.
  • the current control transistor 54 the light source control signal BS is given to the gate terminal, the drain terminal is connected to the blue LED 631, and the source terminal is grounded.
  • Four blue LEDs 631 are connected in series between the power supply 52 and the drain terminal of the current control transistor 54.
  • the light source control signal BS corresponding to the target luminance (light emission intensity) of the blue LED 631 is applied to the gate terminal of the current control transistor 54. Thereby, the drive current Im according to the target luminance of the blue LED 631 flows.
  • FIG. 8 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment.
  • the light source device 63 in this embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by.
  • the blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
  • the blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin.
  • a reflector 634 for reflecting light is provided in a region around the blue LED 631 on the package substrate 633.
  • the anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b.
  • a jig 638 is provided around the LED package 631P, and the quantum dot sheet 637 is fixed above the LED package 631P (above the blue LED 631) by the jig 638.
  • the jig 638 is provided with a convex portion 6381 that is horizontal to the substrate surface, and a quantum dot sheet 637 is fixed on the convex portion 6381.
  • the quantum dot sheet 637 including the quantum dots 632 is disposed immediately above the LED package 631P.
  • the jig 638 is made of white polycarbonate.
  • sheet-like glass enclosing the quantum dots 632 may be disposed above the LED package 631P.
  • the quantum dot sheet 637 in this embodiment includes a resin film 70, a moisture-resistant barrier film (protective film) 72a that covers the surface of the resin film 70, and a moisture-resistant barrier film (protective film) that covers the back surface of the resin film 70. 72b.
  • the resin film 70 is made of a resin 71 in which quantum dots 632 are encapsulated.
  • quantum dots 632 for example, green quantum dots having an emission peak wavelength of 500 to 550 nm and red quantum dots having an emission peak wavelength of 600 nm or more are enclosed in the resin 71.
  • the quantum dots 632 are protected by the barrier films 72a and 72b.
  • the light (blue light LB) emitted from the blue LED 631 of each light source device 63 is converted into white light LW by the quantum dots 632 in the quantum dot sheet 637.
  • the jig 638 is made of white polycarbonate, the jig 638 shines white as a whole when light is scattered by the quantum dot sheet 637 or the jig 638.
  • the white light LW is emitted from each light source device 63 toward the diffusion plate 64.
  • the liquid crystal panel 400 is irradiated with white light.
  • a light emitting device package is realized by the LED package 631P, and a quantum dot containing body is realized by the quantum dot sheet 637.
  • the quantum dots 632 are included directly above the LED package 631P, that is, at a position relatively close to the blue LED 631.
  • a quantum dot sheet 637 is disposed. For this reason, the light emitted from the blue LED 631 is immediately converted into white light.
  • the jig 638 for placing the quantum dot sheet 637 directly above the LED package 631P is formed of white polycarbonate. For this reason, the jig 638 shines white by the light scattered by the quantum dot sheet 637 and the jig 638.
  • the light source device 63 emits white light as in the case where a general white LED package is provided. Accordingly, the light propagating in the backlight device 600 is white light, and even if the light is repeatedly reflected inside the device, yellowish light is emitted around the lighting area when partial lighting is performed. It will never be done. Therefore, even when the local dimming process is performed using the backlight device 600 according to the present embodiment, color unevenness due to repeated light reflection does not occur.
  • the jig 638 is only provided in the vicinity of the LED package 631P.
  • the area of the region surrounded by the jig 638 in this embodiment is larger than the area of the region surrounded by the suppression member in the conventional configuration. It is extremely small, and the height of the jig 638 in this embodiment is extremely lower than the height of the suppressing member in the conventional configuration.
  • a physical member serving as a wall is not provided at the boundary portion of the area.
  • the quantum dot sheet 637 is disposed at a position relatively close to the blue LED 631 as described above, but the quantum dot sheet 637 is disposed at a position away from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As can be understood from FIG. 8, an air layer is also present between the blue LED 631 and the quantum dot sheet 637. For this reason, the quantum dot 632 is not deteriorated by the influence of heat.
  • the quantum dots 632 are protected by moisture-resistant barrier films 72a and 72b. For this reason, the quantum dot 632 is not deteriorated by the influence of humidity.
  • each LED package 631P (each The quantum dots 632 are provided only near the blue LED 631). For this reason, the amount of quantum dots 632 required is relatively small. As described above, the manufacturing cost can be reduced.
  • the direct type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dot 632 can be realized at low cost without causing color unevenness. it can.
  • liquid crystal display device In the liquid crystal display device according to this embodiment, local dimming processing is performed. That is, the emission intensity of the blue LED 631 is controlled for each area. For this reason, power consumption can be reduced. In addition, it is possible to expand the dynamic range by causing the blue LED 631 to emit light with strong emission intensity intensively in the high gradation portion.
  • each light source device 63 is provided with a jig 638 for placing a quantum dot sheet 637 (or a sheet-like glass encapsulating the quantum dots 632) directly above the LED package 631P. (See FIG. 8).
  • a heat dissipating filler such as alumina (heat dissipating filler) may be kneaded therein. Thereby, heat generated by light emission of the blue LED 631 is radiated to the LED substrate 62 via the jig 638. As a result, deterioration of the quantum dots 632 due to heat is effectively suppressed.
  • the jig 638 is made of polycarbonate.
  • the jig 638 is formed of a metal (for example, copper) having excellent heat dissipation.
  • the heat generated by the light emission of the blue LED 631 is dissipated to the LED substrate 62 via the jig 638, as in the first modification.
  • deterioration of the quantum dots 632 due to heat is effectively suppressed.
  • the jig 638 for placing the quantum dot sheet 637 (or, for example, a sheet-like glass encapsulating the quantum dots 632) directly above the LED package 631P is made of a highly reflective resin (light reflective). Resin).
  • the resin having high reflectance include polyester in addition to the polycarbonate described above. According to such a modification, blue light emitted from the blue LED 631 is prevented from leaking from the jig 638 without passing through the quantum dot sheet 637 (or a sheet-like glass enclosing the quantum dots 632). can do.
  • the jig 638 for placing the quantum dot sheet 637 (or, for example, a sheet-like glass encapsulating the quantum dots 632) immediately above the LED package 631P is a highly reflective metal (light reflective property). Metal). Examples of the metal having high reflectivity include aluminum and silver. According to this modification, blue light emitted from the blue LED 631 passes through the quantum dot sheet 637 (or a sheet-like glass enclosing the quantum dots 632), as in the third modification. And leakage from the jig 638 can be suppressed.
  • Second Embodiment> A second embodiment will be described.
  • the overall configuration, the outline of the backlight device 600 having the device device 63, the procedure of the local dimming process, and the driving of the backlight device 600 are the same as those in the first embodiment, and the description thereof is omitted (FIG. 1). (See FIG. 7).
  • FIG. 11 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment.
  • the light source device 63 in the present embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, and a glass member 639 containing quantum dots.
  • the blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
  • the glass member 639 includes a lens 639a enclosing the quantum dots 632 and a leg portion 639b for fixing the lens 639a directly above the LED package 631P.
  • the blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin.
  • a reflector 634 for reflecting light is provided in a region around the blue LED 631 on the package substrate 633.
  • the anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b.
  • the quantum dot 632 is disposed at a position immediately above the LED package 631P.
  • a resin member having the same configuration may be provided.
  • the light (blue light LB) emitted from the blue LED 631 of each light source device 63 is converted into white light LW by the quantum dots 632 enclosed in the lens 639a.
  • the lens 639a since the lens 639a is used, the emitted light from the light source device 63 is effectively diffused. Then, the diffused light enters the diffusion plate 64, and as a result, the liquid crystal panel 400 is irradiated with white light.
  • a light emitting device package is realized by the LED package 631P
  • a quantum dot containing body is realized by the glass member 639
  • a quantum dot holding unit is realized by the lens 639a.
  • the quantum dots 632 are encapsulated immediately above the LED package 631P, that is, at a position relatively close to the blue LEDs 631.
  • a lens 639a is disposed.
  • the light emitted from the blue LED 631 is immediately converted into white light.
  • the white light is diffused by the lens 639 a and emitted from the light source device 63.
  • the light propagating through the backlight device 600 is white light, and even if the light is repeatedly reflected inside the device, the partial lighting is performed when the partial lighting is performed.
  • the surrounding area is not irradiated with yellowish light. Therefore, even when the local dimming process is performed using the backlight device 600 according to the present embodiment, color unevenness due to repeated light reflection does not occur.
  • a physical member serving as a wall is not provided at the boundary portion of the area. For this reason, even if there is an individual difference (variation) with respect to the blue LED 631 or the quantum dot 632, the occurrence of color unevenness and luminance unevenness due to such individual differences is suppressed by mixing light between adjacent areas.
  • the lens 639a enclosing the quantum dot 632 is disposed at a position relatively close to the blue LED 631, but the quantum dot 632 is separated from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As is understood from FIG. 11, an air layer is also present between the blue LED 631 and the quantum dot 632. For this reason, as in the first embodiment, the quantum dots 632 are not deteriorated by the influence of heat.
  • the structure is not complicated.
  • the quantum dots 632 are provided only in the vicinity immediately above each LED package 631P (each blue LED 631). For this reason, as in the first embodiment, the manufacturing cost can be reduced.
  • the direct-type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dots 632 causes uneven color. And can be realized at low cost.
  • FIG. 13 is a diagram illustrating a detailed configuration of the light source device according to the modification of the second embodiment.
  • the lens 639a is provided on the LED package 631P so that the white light emitted from the light source device 63 is effectively diffused.
  • the present invention is not limited to this, and as shown in FIG. 13, a sheet-like glass 639 c enclosing the quantum dots 632 is provided on the LED package 631 ⁇ / b> P, and a scattering agent (for example, scattering particles or foams) is provided in the glass 639 c. ) 79 may be mixed to diffuse white light.
  • a scattering agent for example, scattering particles or foams
  • FIG. 14 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment.
  • the light source device 63 in this embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by.
  • the blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
  • the shape of the jig 638 is different from that of the first embodiment (see FIG. 8).
  • the quantum dot sheet 637 has the same configuration as that of the first embodiment (see FIG. 9).
  • the jig 638 in this embodiment will be described in detail with reference to FIGS.
  • the jig 638 is made of resin and has an H-shaped cross section as shown in FIGS.
  • the jig 638 includes a placement portion 638a for placing the quantum dot sheet 637 and a support portion 638b that supports the placement portion 638a (see FIG. 15).
  • the mounting portion 638a is formed in a planar shape so as to cover the entire upper portion of one LED package 631P (see FIGS. 14 and 15).
  • the support portion 638b is formed so as to surround the periphery of one LED package 631P.
  • the support portion 638b includes a fixed leg portion 682 positioned below the coupling portion 638p with the mounting portion 638a and a holding frame portion 683 positioned above the coupling portion 638p with the mounting portion 638a (see FIG. 16).
  • the fixed leg 682 is fixed to the LED substrate 62 (see FIG. 3). With such a configuration, a recess 684 that is a space for placing the quantum dot sheet 637 is formed above the placement portion 638a.
  • the blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin.
  • a reflector 634 for reflecting light is provided in a region around the blue LED 631 on the package substrate 633.
  • the anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b.
  • the jig 638 having the above-described configuration is provided around the LED package 631P, and the quantum dot sheet 637 is fixed to the placement portion 638a of the jig 638.
  • the quantum dot sheet 637 including the quantum dots 632 is arranged on the mounting portion 638a (of the jig 638) located immediately above the LED package 631P.
  • the quantum dot sheet 637 for example, sheet-like glass enclosing the quantum dots 632 may be placed on the placement portion 638a of the jig 638.
  • the support portion 638b of the jig 638 has a configuration for reflecting or scattering light emitted from the blue LED 631.
  • the inner surface of the fixed leg portion 682 (the shaded portion denoted by reference numeral 681 in FIG. 14) of the support portion 638b reflects or scatters the light emitted from the blue LED 631. It is formed as follows. More specifically, roughening treatment (surface of the object to be processed) such as blasting (processing the surface of the object to be processed by spraying an abrasive at a high speed) on the inner surface of the fixed leg 682. Is applied). Accordingly, the inner surface of the fixed leg portion 682 is not a smooth surface, but is a rough surface as schematically shown in FIG. In the present embodiment, the entire jig 638 is transparent.
  • the mounting portion 638a of the jig 638 does not have the space portion 901 as shown in FIG. 18 is that liquid quantum dots are attached to the jig 638 (see FIG. This is because it is possible to adopt a method of injecting into the recesses 684) and baking them.
  • the method for manufacturing the light source device 63 is not particularly limited.
  • the entire jig 638 is transparent. However, if the entire jig 638 is made of a reflective material or a scattering agent, the light emitted from the blue LED 631 is used. As shown in FIG.
  • the component reflected by the mounting portion 638a of the jig 638 increases as indicated by the arrow denoted by reference numeral 902 in FIG.
  • the light component incident on the quantum dot sheet 637 decreases, and the light use efficiency decreases.
  • the entire jig 638 is made transparent without performing the above-described roughening process, not all the components of the light are reflected by the reflector 634 even if the reflector 634 is provided. Therefore, with respect to the light emitted from the blue LED 631, a component leaking from the side surface of the jig 638 increases as indicated by the arrow denoted by reference numeral 903 in FIG. Therefore, the light use efficiency is reduced.
  • blue light emitted from the blue LED 631 of each light source device 63 through the mounting portion 638 a of the jig 638.
  • components that are scattered on the inner surface of the fixed leg portion 682 of the jig 638 scattered portion marked with reference numeral 681 and enter the quantum dot sheet 637 (reference numeral 74) (See the attached arrow).
  • the blue light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637, and the blue light is converted into white light by the quantum dots 632. In this way, white light is emitted from each light source device 63 toward the diffusion plate 64.
  • the liquid crystal panel 400 is irradiated with white light.
  • a light emitting device package is realized by the LED package 631P, and a quantum dot containing body is realized by the quantum dot sheet 637.
  • a jig 638 for fixing a quantum dot sheet 637 containing the quantum dots 632 is provided in the backlight device 600 having the light source device 63 configured using the blue LEDs 631 and the quantum dots 632. It is done.
  • the jig 638 includes a mounting portion 638a positioned immediately above the LED package 631P including the blue LED 631 and a support portion 638b that supports the mounting portion 638a.
  • a quantum dot sheet is formed on the mounting portion 638a. 637 is arranged.
  • the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631.
  • the light emitted from the blue LED 631 is immediately converted into white light.
  • the inner surface of the fixed leg portion 682 in the support portion 638b constituting the jig 638 is subjected to a roughening process.
  • the light emitted from the blue LED 631 there are many components incident on the quantum dot sheet 637 without leaking from the side surface of the jig 638.
  • the light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637. In this way, the utilization efficiency of light emitted from the blue LED 631 is increased. Therefore, the light emitted from the blue LED 631 is efficiently converted into white light.
  • a physical member serving as a wall is not provided at the boundary portion of the area. For this reason, even if there is an individual difference (variation) with respect to the blue LED 631 or the quantum dot 632, the occurrence of color unevenness and luminance unevenness due to such individual differences is suppressed by mixing light between adjacent areas.
  • the quantum dot sheet 637 is disposed at a position relatively close to the blue LED 631 as described above, but the quantum dot sheet 637 is disposed at a position away from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As can be understood from FIG. 14, there is also a placement portion 638 a of the jig 638, that is, a resin layer, between the blue LED 631 and the quantum dot sheet 637. For this reason, the quantum dot 632 is not deteriorated by the influence of heat.
  • the quantum dots 632 are protected by moisture-resistant barrier films 72a and 72b. For this reason, the quantum dot 632 is not deteriorated by the influence of humidity.
  • the structure is not complicated.
  • the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631). For this reason, as in the first embodiment, the manufacturing cost can be reduced.
  • the direct-type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dots 632 causes uneven color. And can be realized at low cost.
  • the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the reflective paint on the inner surface of the fixed leg 682 of the jig 638 and is applied to the quantum dot sheet 637.
  • the incident component see the arrow denoted by reference numeral 74 in FIG. 21
  • the utilization efficiency of the light emitted from the blue LED 631 can also be improved by applying the reflective paint to the inner surface of the fixed leg portion 682 of the jig 638.
  • the utilization efficiency of the light emitted from the blue LED 631 can also be improved by processing the inner surface of the fixed leg portion 682 of the jig 638 in a jagged shape.
  • the jagged shape was described as an example here, the shape is not limited to the jagged shape as long as the light emitted from the blue LED 631 can be reflected or scattered.
  • the entire jig 638 is transparent.
  • the entire jig 638 containing a thin scattering agent inside by using a jig 638 containing a thin scattering agent inside, the entire jig 638 is milky white as shown in FIG. In FIG. 24, the entire jig 638 is milky white by hatching the portion representing the jig 638.
  • the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 and the portion subjected to the roughening treatment is scattered inside the jig 638 and is scattered in the quantum dot sheet 637.
  • the number of components incident on the head increases.
  • the jig 638 containing the scattering agent inside it is possible to further increase the utilization efficiency of the light emitted from the blue LED 631.
  • the light emitted from the blue LED 631 is used by adopting the jig 638 containing a scattering agent therein. Efficiency can be further increased.
  • FIG. 26 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment.
  • the light source device 63 in the present embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by.
  • the blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
  • the shape of the jig 638 is the same as that of the third embodiment. Hereinafter, differences from the third embodiment will be described.
  • the inner surface of the fixed leg 682 of the support portion 638b constituting the jig 638 emits from the blue LED 631. It was formed to reflect or scatter the emitted light.
  • the outer surface of the support portion 638b constituting the jig 638 reflects the light emitted from the blue LED 631 in order to increase the utilization efficiency of the light emitted from the blue LED 631. Or it is formed so as to be scattered.
  • the outer surface of the support portion 638b constituting the jig 638 is not a smooth surface but is typically a rough surface as shown in FIG. Also in the present embodiment, the entire jig 638 is transparent.
  • the roughening process may be performed with respect to the outer surface of only the part corresponding to the fixed leg part 682 in the support part 638b.
  • a roughening process is performed on the outer surface of the support portion 638b constituting the jig 638. For this reason, with respect to the light emitted from the blue LED 631, there are many components that enter the quantum dot sheet 637 without leaking from the side surface of the jig 638 (see the arrow denoted by reference numeral 77 in FIG. 28). Thereby, the light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637. Thus, the utilization efficiency of the light emitted from the blue LED 631 is increased. Further, similarly to the third embodiment, the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631.
  • the light emitted from the blue LED 631 is immediately and efficiently converted into white light.
  • the light emitted from the light source device 63 and propagating through the backlight device 600 becomes white light, and even if the light is repeatedly reflected inside the device, when the partial lighting is performed, There is no yellowish light. Therefore, even when the local dimming process is performed, color unevenness due to repeated reflection of light does not occur.
  • the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631), the amount of the required quantum dots 632 is relatively small. Therefore, the manufacturing cost can be reduced.
  • the backlight device 600 having the light source device 63 configured by combining the blue LEDs 631 and the quantum dots 632 can be realized at low cost without causing color unevenness.
  • the outer surface of the support portion 638b (a mesh denoted by reference numeral 686 in FIG. 26).
  • a configuration in which a roughening process is performed on the hanging portion) is employed.
  • the reflective paint is applied to the outer surface of the support portion 638b constituting the jig 638.
  • the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the reflective paint on the outer surface of the support portion 638b constituting the jig 638, and the quantum dot sheet 637.
  • the number of components incident on increases.
  • the utilization efficiency of the light emitted from the blue LED 631 can also be improved by applying the reflective paint to the outer surface of the support portion 638b of the jig 638.
  • the utilization efficiency of the light emitted from the blue LED 631 can also be improved by processing the outer surface of the fixed leg portion 682 of the jig 638 in a jagged shape.
  • the jagged shape was described as an example here, the shape is not limited to the jagged shape as long as the light emitted from the blue LED 631 can be reflected or scattered.
  • the entire jig 638 is transparent.
  • the jig 638 containing a thin scattering agent inside is employed, so that the entire jig 638 is milky white. It has become.
  • the third modification of the third embodiment it is possible to further increase the utilization efficiency of the light emitted from the blue LED 631.
  • FIG. 31 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. Similar to the light source device 63 in the first embodiment, the light source device 63 in the present embodiment is a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, and quantum dots. A quantum dot sheet 637 including 632 and a jig 638 are included.
  • the blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
  • the shape of the jig 638 is the same as that of the third embodiment.
  • the support 638b constituting the jig 638 is configured to reflect or scatter the light emitted from the blue LED 631.
  • the element is not provided. About other points, it is the same as that of the said 3rd Embodiment and the said 4th Embodiment.
  • the use efficiency of light emitted from the blue LED 631 is reduced as compared with the third embodiment and the fourth embodiment.
  • the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631 as in the third embodiment and the fourth embodiment. For this reason, the light emitted from the blue LED 631 is immediately converted into white light. As a result, the light emitted from the light source device 63 and propagating through the backlight device 600 becomes white light, and even if the light is repeatedly reflected inside the device, when the partial lighting is performed, There is no yellowish light.
  • the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631), the amount of the required quantum dots 632 is relatively small. Therefore, the manufacturing cost can be reduced.
  • the direct type backlight device 600 having a configuration in which the blue LED 631 and the quantum dot 632 are combined can be realized at low cost without causing color unevenness.
  • the mounting portion 638a constituting the jig 638 is formed in a planar shape so as to cover the entire upper portion of one LED package 631P without having the space portion 901 as shown in FIG. Therefore, when the light source device 63 is manufactured, it is possible to adopt a method of injecting liquid quantum dots into the jig 638 (specifically, the recess 684 in FIG. 16) and baking them.
  • the local dimming process is performed, but the present invention is not limited to this.
  • the present invention can also be applied to a liquid crystal display device that is not subjected to local dimming processing.
  • a direct type backlight device has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to a backlight device other than the direct type backlight device. .
  • the liquid crystal display device has been described as an example, but the present invention is not limited to this.
  • the present invention can be applied to a display device other than a liquid crystal display device as long as the display device includes a backlight device.
  • the mounting portion 638a constituting the jig 638 is formed in a planar shape so as to cover the entire upper portion of the LED package 631P.
  • the shape in the first embodiment that is, the mounting portion a constituting the jig 638 is a space portion as shown in FIG. 901
  • the support portion 638b constituting the jig 638 is configured to reflect or scatter light emitted from the blue LED 631, thereby increasing the utilization efficiency of the light emitted from the blue LED 631. It becomes possible.
  • a light emitting device package including a blue light emitting device emitting blue light; A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white; The quantum dot is disposed immediately above the light emitting device package.
  • quantum dots are arranged immediately above the light emitting element package. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided. Further, the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only directly above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced. As described above, a light source device having a configuration in which a blue LED and a quantum dot are combined can be realized at low cost.
  • Appendix 2 The light source device according to appendix 1, wherein an air layer is formed between the blue light emitting element and the quantum dots.
  • appendix 3 The light source device according to appendix 1, further comprising a jig provided around the light emitting device package in order to dispose the quantum dot-containing body immediately above the light emitting device package.
  • the jig is only provided in the vicinity of the light emitting device package, and a physical member serving as a wall is provided at the boundary of the area (when the local dimming process is performed). is not. For this reason, even if there are individual differences (variations) in blue light emitting elements and quantum dots, light is mixed between adjacent areas, thereby suppressing the occurrence of color unevenness and luminance unevenness due to such individual differences.
  • the jig shines white by the light scattered in the light source device.
  • the light propagating through the backlight device can be effectively whitened.
  • Appendix 5 The light source device according to appendix 3, wherein the jig is made of a light reflecting resin.
  • the blue light emitted from the blue light emitting element can be prevented from leaking from the jig without passing through the quantum dot-containing body.
  • Appendix 6 The light source device according to appendix 3, wherein the jig is made of a light reflective metal.
  • the quantum dot-containing body is A quantum dot holding unit for holding the quantum dots therein; 2.
  • the legs of the quantum dot-containing body are only provided in the vicinity of the light-emitting element package, and a physical wall that forms a wall at the boundary of the area (when the local dimming process is performed) The member is not provided. Therefore, the same effect as the configuration described in Appendix 3 can be obtained.
  • Appendix 8 The light source device according to appendix 1, wherein the quantum dot holding unit is formed by a lens.
  • the light converted into white by the quantum dots is effectively diffused by the lens.
  • the light propagating through the backlight device can be effectively whitened.
  • Appendix 9 The light source device according to appendix 1, wherein the quantum dot holding unit contains a light scattering agent.
  • a light emitting device package including a blue light emitting device emitting blue light; A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white; A jig for fixing the quantum dot-containing body above the light emitting device package; The jig is Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and It is located around the light emitting device package, and includes a support part that supports the mounting part. The light source device, wherein the support part reflects or scatters light emitted from the blue light emitting element.
  • a jig for fixing a quantum dot-containing body containing quantum dots is provided in a light source device including a blue light emitting element and quantum dots.
  • the jig is composed of a mounting part located directly above the light emitting element package including the blue light emitting element and a support part that supports the mounting part, and the quantum dot containing body is disposed on the mounting part.
  • the quantum dots are arranged above the blue light emitting element and at a position relatively close to the blue light emitting element. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided.
  • the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced.
  • a light source device having a configuration in which a blue light emitting element and a quantum dot are combined can be realized at low cost.
  • tool is comprised so that the light emitted from the blue light emitting element may be reflected or scattered. For this reason, the component which injects into a quantum dot containing body, without leaking from the side surface of a jig
  • the support portion includes a fixed leg portion positioned below a coupling portion with the mounting portion, and a holding frame portion positioned above a coupling portion with the mounting portion, The light source device according to appendix 10, wherein an inner surface of the fixed leg portion is formed so as to reflect or scatter light emitted from the blue light emitting element.
  • Appendix 12 12. The light source device according to appendix 11, wherein the inner surface of the fixed leg portion is subjected to a roughening process for roughening the surface.
  • the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of the fixing leg portion of the jig on which the roughening treatment is performed.
  • the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
  • Appendix 13 The light source device according to appendix 11, wherein a reflective paint is applied to an inner surface of the fixed leg portion.
  • the light emitted from the blue light emitting element toward the side surface of the jig is reflected by the reflective paint applied to the inner surface of the fixed leg portion of the jig.
  • the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
  • Appendix 14 11. The light source device according to appendix 10, wherein an outer surface of the support portion is formed to reflect or scatter light emitted from the blue light emitting element.
  • Appendix 15 The light source device according to appendix 14, wherein a roughening process for roughening a surface is performed on an outer surface of the support portion.
  • the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of the fixing leg portion of the jig on which the roughening treatment is performed.
  • the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
  • Appendix 16 15. The light source device according to appendix 14, wherein a reflective paint is applied to an outer surface of the support portion.
  • the light emitted from the blue light emitting element toward the side surface of the jig is reflected by the reflective paint applied to the outer surface of the support portion constituting the jig.
  • the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
  • the quantum dot-containing body does not leak from the side surface of the jig as compared with the configuration in which no scattering agent is contained in the jig. More components are incident on the screen. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is further enhanced.
  • Appendix 18 The light source device according to appendix 10, wherein a part of the surface of the support part is processed into a shape that reflects or scatters light emitted from the blue light emitting element.
  • the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of a part of the support portion constituting the jig.
  • the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
  • Appendix 20 The light source device according to appendix 10, wherein the mounting portion is made of a transparent resin.
  • a light emitting device package including a blue light emitting device emitting blue light; A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white; A jig for fixing the quantum dot-containing body above the light emitting device package; The jig is Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and It is located around the light emitting device package, and includes a support part that supports the mounting part.
  • a light source device having a configuration in which a blue light emitting element and a quantum dot are combined can be realized at low cost.
  • the mounting portion constituting the jig is formed in a planar shape so as to cover the entire upper part of the light emitting device package, liquid quantum dots are injected into the jig when the light source device is manufactured. It is possible to adopt a technique of baking them.
  • Appendix 23 The light source device according to any one of appendices 1, 10, and 21, wherein the quantum dot-containing body is a glass in which the quantum dots are enclosed.
  • Appendix 26 A backlight device comprising the light source device according to any one of appendices 1 to 25.
  • the light propagating in the backlight device becomes white light, and even if the light is repeatedly reflected inside the device, yellowish light is not emitted. Therefore, the occurrence of uneven color due to repeated light reflection is prevented.
  • Appendix 27 A backlight device comprising a plurality of light source devices according to any one of appendices 1 to 25.
  • the light propagating in the backlight device becomes white light, and even if the light is repeatedly reflected inside the device, yellowish light is not emitted. Therefore, the occurrence of uneven color due to repeated light reflection is prevented.
  • Appendix 28 28.
  • a display panel including a display unit for displaying an image;
  • the backlight device according to any one of supplementary notes 26 to 28, which is disposed so as to irradiate light on a back surface of the display panel;
  • a display device comprising: a light source control unit that controls light emission intensity of the blue light emitting element.
  • a display device that employs a light source device having a configuration in which a blue light emitting element and a quantum dot are combined, occurrence of color unevenness is suppressed.
  • a display panel including a display unit for displaying an image;
  • a light source control unit for controlling the light emission intensity of the blue light emitting element,
  • the display unit is logically divided into a plurality of areas, Each light source device is provided to correspond to any of the plurality of areas,
  • the light emission intensity of the light source device can be controlled independently, so that power consumption can be reduced.
  • a display device that includes the direct-type backlight device and has the same effects as the configuration described in Appendix 30 is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

To realize, at a low cost, a light source device having a configuration in which blue LEDs and quantum dots are combined. A light source device (63), comprising: an LED package (631P) containing blue LEDs (631) for emitting blue light; and a quantum dot sheet (637) containing quantum dots (632) for converting the wavelength of light emitted from the blue LEDs (631) so that the light emitted to the exterior becomes white. The quantum dots sheet (637) is disposed immediately below the LED package (631P).

Description

光源装置およびそれを備えたバックライト装置、表示装置LIGHT SOURCE DEVICE, BACKLIGHT DEVICE HAVING THE SAME, AND DISPLAY DEVICE
 以下の開示は、光源装置に関し、より詳しくは、青色LEDと量子ドットとの組み合わせによって白色光を得ている光源装置およびそれを備えたバックライト装置、表示装置に関する。 The following disclosure relates to a light source device, and more particularly to a light source device that obtains white light by a combination of a blue LED and quantum dots, a backlight device including the light source device, and a display device.
 カラー画像を表示する液晶表示装置においては、3原色の加法混色によって色の表示が行われる。このため、透過型の液晶表示装置には、赤色成分,緑色成分,および青色成分を含む白色光を液晶パネルに照射することのできるバックライト装置が必要とされる。バックライト装置における光源装置には、従来、CCFLと呼ばれる冷陰極管が多く採用されていた。しかしながら、近年、消費電力の低さや輝度制御の容易さなどの観点からLEDの採用が増加している。例えば、赤色LED,緑色LED,および青色LEDを光源として用いた構成のバックライト装置が従来より知られている。 In a liquid crystal display device that displays a color image, a color is displayed by additive mixing of the three primary colors. Therefore, a transmissive liquid crystal display device requires a backlight device that can irradiate a liquid crystal panel with white light including a red component, a green component, and a blue component. Conventionally, many cold cathode tubes called CCFLs have been adopted as light source devices in backlight devices. However, in recent years, the use of LEDs has increased from the viewpoint of low power consumption and ease of brightness control. For example, a backlight device having a configuration using a red LED, a green LED, and a blue LED as a light source has been conventionally known.
 また、近年、広色域化を実現する技術として、青色LEDと量子ドットとを組み合わせることによって白色光を得るという技術が注目されている。例えば、図32に示すような「表面実装型」と呼ばれる白色LEDパッケージにおいて、青色LEDと量子ドットとを組み合わせた構成が採用されている。この白色LEDパッケージにおいて、パッケージ基板810上に設けられた青色LED801は、量子ドット802によって覆われている。より詳しくは、青色LED801は、緑色量子ドットおよび赤色量子ドットを含む樹脂によって覆われている。このように、この構成においては、LEDパッケージ内に量子ドットが分散して配置されている。パッケージ基板810上の青色LED801の周囲の領域には、光を反射するためのリフレクタ820が設けられている。青色LED801のアノードはボンディングワイヤー831を介して電極841に接続され、青色LED801のカソードはボンディングワイヤー832を介して電極842に接続されている。用いられる量子ドット802としては、例えば、500~550nmの波長を発光ピーク波長とする緑色量子ドットと600nm以上の波長を発光ピーク波長とする赤色量子ドットとの組み合わせが挙げられる。このような構成によれば、緑色光および赤色光の半値幅を狭くすることができる。従って、量子ドットを用いた構成のバックライト装置と高濃度カラーフィルタを用いた構成の液晶パネルとを組み合わせることによって、液晶表示装置の広色域化が実現されている。 In recent years, as a technique for realizing a wide color gamut, a technique for obtaining white light by combining a blue LED and a quantum dot has attracted attention. For example, in a white LED package called “surface mount type” as shown in FIG. 32, a configuration in which blue LEDs and quantum dots are combined is employed. In this white LED package, the blue LED 801 provided on the package substrate 810 is covered with quantum dots 802. More specifically, the blue LED 801 is covered with a resin including green quantum dots and red quantum dots. Thus, in this configuration, quantum dots are dispersed and arranged in the LED package. In a region around the blue LED 801 on the package substrate 810, a reflector 820 for reflecting light is provided. The blue LED 801 has an anode connected to the electrode 841 through the bonding wire 831, and the blue LED 801 has a cathode connected to the electrode 842 through the bonding wire 832. Examples of the quantum dot 802 used include a combination of a green quantum dot having an emission peak wavelength of 500 to 550 nm and a red quantum dot having an emission peak wavelength of 600 nm or more. According to such a structure, the half value width of green light and red light can be narrowed. Accordingly, a wide color gamut of the liquid crystal display device is realized by combining a backlight device configured using quantum dots and a liquid crystal panel configured using high density color filters.
 また、液晶テレビジョンに用いられるバックライト装置の方式は直下型とエッジライト型とに大別されるところ、エッジライト型のバックライト装置に関し、量子ドットを用いた方式(以下「QDキャピラリー方式」という。)を採用しているものがある。なお、“QD”は“Quantum Dot”(量子ドット)の略である。図33は、QDキャピラリー方式を採用したバックライト装置の概略断面図である。このバックライト装置においては、青色LED851と導光体880との間に、ガラス(細長いガラス管)870内に封入された量子ドット852が配置されている。量子ドット852を封入したガラス870および青色LED851を覆うように、光を反射するためのリフレクタ860が設けられている。量子ドット852としては、例えば、緑色量子ドットと赤色量子ドットとの組み合わせが用いられる。このような構成において、青色LED851から発せられた光は、量子ドット852を通過することにより、白色光となって導光体880へと入射する。これにより、導光体880から液晶パネル(不図示)に向けて白色光が出射される。 In addition, backlight devices used in liquid crystal televisions are roughly classified into direct type and edge light type. Regarding the edge light type backlight device, a method using quantum dots (hereinafter referred to as “QD capillary method”). Some have adopted. “QD” is an abbreviation for “Quantum Dot” (quantum dot). FIG. 33 is a schematic cross-sectional view of a backlight device employing a QD capillary system. In this backlight device, quantum dots 852 sealed in a glass (elongated glass tube) 870 are disposed between the blue LED 851 and the light guide 880. A reflector 860 for reflecting light is provided so as to cover the glass 870 enclosing the quantum dots 852 and the blue LED 851. As the quantum dot 852, for example, a combination of a green quantum dot and a red quantum dot is used. In such a configuration, the light emitted from the blue LED 851 passes through the quantum dots 852 and becomes white light and enters the light guide 880. Thereby, white light is emitted from the light guide 880 toward the liquid crystal panel (not shown).
 一般に、量子ドットは熱や湿度に弱いという性質を持っている。これに関し、図32に示した表面実装型の構成によれば、量子ドット802は青色LED801にきわめて近い位置に配置される。また、後述する量子ドットシートとは異なり、表面実装型の構成における量子ドット802には湿度から保護するためのバリアフィルムが設けられない。以上のことから、表面実装型の構成によれば、量子ドット802は劣化しやすい。この点、図33に示したQDキャピラリー方式によれば、量子ドット852は、ガラス870内に封入されており、かつ、青色LED851からある程度離れた位置に配置されている。従って、QDキャピラリー方式においては、量子ドット852が熱や湿度の影響により劣化することが少ない。 Generally, quantum dots have the property of being vulnerable to heat and humidity. In this regard, according to the surface mount type configuration shown in FIG. 32, the quantum dots 802 are arranged at positions very close to the blue LED 801. Further, unlike the quantum dot sheet described later, the quantum dot 802 in the surface mount type configuration is not provided with a barrier film for protection from humidity. From the above, according to the surface mount type configuration, the quantum dots 802 are easily deteriorated. In this regard, according to the QD capillary method shown in FIG. 33, the quantum dots 852 are enclosed in the glass 870 and disposed at a position away from the blue LED 851 to some extent. Therefore, in the QD capillary system, the quantum dots 852 are less likely to be deteriorated by the influence of heat and humidity.
 また、近年、青色LEDと蛍光体シートとを組み合わせることによって白色光を得るという技術も注目されている。蛍光体シートには、青色LEDから発せられた光によって励起されて発光する蛍光体が含有されている。用いられる蛍光体シートの具体例としては、黄色蛍光体を含む蛍光体シートや、緑色蛍光体および赤色蛍光体を含む蛍光体シートが挙げられる。このような蛍光体シートに関し、蛍光体として量子ドットを採用することも考えられている。 In recent years, attention has also been paid to a technique for obtaining white light by combining a blue LED and a phosphor sheet. The phosphor sheet contains a phosphor that emits light when excited by light emitted from a blue LED. Specific examples of the phosphor sheet used include a phosphor sheet containing a yellow phosphor and a phosphor sheet containing a green phosphor and a red phosphor. Regarding such a phosphor sheet, it is also considered to employ quantum dots as the phosphor.
 図34は、青色LEDと蛍光体シートとの組み合わせによって白色光を得ている従来のバックライト装置の概略構成を示す側面図である。このバックライト装置は、光源としての複数の青色LED93と、それら複数の青色LED93を搭載したLED基板92と、青色LED93から発せられた光を拡散させて面的に均一な光にするための拡散板94と、白色光が得られるよう青色LED93から発せられた光の波長を変換する蛍光体シート95と、光の利用効率を高めるための光学シート96と、LED基板92等を支持するシャーシとによって構成されている。なお、図34では、シャーシの図示を省略している。青色LED93を光源として用いた構成において図34に示すように蛍光体シート(例えば、黄色蛍光体を含む蛍光体シート)95が設けられることにより、このバックライト装置からはバックライト光として白色光が出射される。 FIG. 34 is a side view showing a schematic configuration of a conventional backlight device that obtains white light by a combination of a blue LED and a phosphor sheet. This backlight device includes a plurality of blue LEDs 93 as light sources, an LED substrate 92 on which the plurality of blue LEDs 93 are mounted, and a diffusion for diffusing the light emitted from the blue LEDs 93 to make the surface uniform light. A plate 94, a phosphor sheet 95 for converting the wavelength of light emitted from the blue LED 93 so as to obtain white light, an optical sheet 96 for increasing the light utilization efficiency, and a chassis for supporting the LED substrate 92 and the like It is constituted by. In FIG. 34, the chassis is not shown. In the configuration using the blue LED 93 as a light source, a phosphor sheet (for example, a phosphor sheet containing a yellow phosphor) 95 is provided as shown in FIG. 34, so that white light is emitted from the backlight device as backlight light. Emitted.
 ところで、液晶表示装置に関しては、従来より、消費電力を低減することが課題となっている。そこで、近年、画面を論理的に複数のエリアに分割してエリア毎に光源装置の輝度(発光強度)を制御するローカルディミング処理を行う液晶表示装置が開発されている。ローカルディミング処理では、光源装置の輝度は、対応するエリア内の入力画像に基づいて制御される。具体的には、各光源装置の輝度は、対応するエリアに含まれる画素の目標輝度(入力階調値に対応する輝度)の最大値や平均値などに基づいて求められる。そして、光源装置の輝度が本来の輝度よりも小さくされたエリアでは、各画素の透過率が高められる。これにより、各画素において目標とする表示輝度が得られる。また、近年、きわめて広いダイナミックレンジの表示を行うHDR駆動の開発が盛んである。このHDR駆動を実現する際にもローカルディミング処理が用いられている。 Incidentally, with respect to liquid crystal display devices, it has been a challenge to reduce power consumption. Therefore, in recent years, a liquid crystal display device has been developed that performs local dimming processing that logically divides a screen into a plurality of areas and controls the luminance (light emission intensity) of the light source device for each area. In the local dimming process, the luminance of the light source device is controlled based on the input image in the corresponding area. Specifically, the luminance of each light source device is obtained based on the maximum value or average value of the target luminance (luminance corresponding to the input gradation value) of the pixels included in the corresponding area. In the area where the luminance of the light source device is smaller than the original luminance, the transmittance of each pixel is increased. Thereby, the target display brightness | luminance in each pixel is obtained. In recent years, development of an HDR drive for displaying a very wide dynamic range has been actively performed. The local dimming process is also used when realizing this HDR drive.
 蛍光体シートを用いた構成(図34参照)のバックライト装置を備えた液晶表示装置においてローカルディミング処理が行われると、一部のエリアの光源装置(青色LED93)のみが点灯すること(以下、「部分点灯」という。)に起因して色むらが生じることがある。これについて、以下に説明する。なお、光源装置が点灯状態になっているエリアのことを「点灯エリア」といい、光源装置が消灯状態になっているエリアのことを「非点灯エリア」という。 When a local dimming process is performed in a liquid crystal display device having a backlight device having a configuration using a phosphor sheet (see FIG. 34), only a light source device (blue LED 93) in a part of the area is turned on (hereinafter, referred to as “light emitting device”) Color unevenness may occur due to “partial lighting”. This will be described below. Note that an area where the light source device is turned on is referred to as a “lighting area”, and an area where the light source device is turned off is referred to as a “non-lighting area”.
 図35~図37は、白色LEDを用いた構成で中央の1エリアのみの点灯(部分点灯)が行われた際の輝度,色度x,および色度yをそれぞれ示す図である。図38~図40は、蛍光体シートを用いた構成で中央の1エリアのみの点灯(部分点灯)が行われた際の輝度,色度x,および色度yをそれぞれ示す図である。図35~図40より、蛍光体シートを用いた構成では白色LEDを用いた構成に比べて場所による色度の差が大きいことが把握される。また、図39および図40から把握されるように、蛍光体シートを用いた構成では、点灯している青色LEDの直上付近(図39および図40で符号99の矢印で示す部分)ではバックライト光の色は青色味を帯び、点灯箇所から離れるにつれてバックライト光の色は黄色味を帯びた色となっている。このように、蛍光体シートを用いた構成で部分点灯が行われた際には、各エリアにおいて混ざり合う光の量が少ないことに起因して色むらが生じている。 FIGS. 35 to 37 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when only one central area is turned on (partial lighting) in a configuration using white LEDs. 38 to 40 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when only one central area is turned on (partial lighting) in a configuration using a phosphor sheet. 35 to 40, it can be understood that the configuration using the phosphor sheet has a larger chromaticity difference depending on the location than the configuration using the white LED. As can be understood from FIGS. 39 and 40, in the configuration using the phosphor sheet, a backlight is provided in the vicinity immediately above the lit blue LED (the portion indicated by the arrow 99 in FIGS. 39 and 40). The color of the light is blue, and the color of the backlight becomes yellowish as the distance from the lighting point increases. Thus, when partial lighting is performed with a configuration using a phosphor sheet, color unevenness occurs due to a small amount of light mixed in each area.
 図41~図43は、蛍光体シートを用いた構成で36エリア(縦6エリア×横6エリア)の点灯(部分点灯)が行われた際の輝度,色度x,および色度yをそれぞれ示す図である。図44~図46は、蛍光体シートを用いた構成で全面点灯が行われた際の輝度,色度x,および色度yをそれぞれ示す図である。図39,図40,図42,図43,図45,および図46より、点灯範囲に応じて、点灯している青色LEDの直上付近のバックライト光の色度が異なることが把握される。すなわち、点灯範囲に応じて、色むらの生じ方が異なっている。 41 to 43 show the luminance, chromaticity x, and chromaticity y when 36 areas (6 vertical areas × 6 horizontal areas) are turned on (partial lighting) in a configuration using a phosphor sheet. FIG. 44 to 46 are diagrams showing luminance, chromaticity x, and chromaticity y, respectively, when the entire surface is turned on in the configuration using the phosphor sheet. From FIG. 39, FIG. 40, FIG. 42, FIG. 43, FIG. 45, and FIG. 46, it is understood that the chromaticity of the backlight light in the vicinity immediately above the lit blue LED differs depending on the lighting range. That is, how color unevenness occurs differs depending on the lighting range.
 ここで、図47を参照しつつ、蛍光体シートを用いた構成で部分点灯が行われた際に色むらが生じる理由について説明する。青色LED93から発せられた光9aは、蛍光体シート95を通過後、光学シート96を通過する光(成分)9bと光学シート96で反射する光(成分)9cとに分けられる。すなわち、青色LED93から発せられた光9aの一部の成分は、光学シート96で反射してLED基板92側に戻ってくる。LED基板92の表面には一般に光を反射する反射シートが貼り付けられているため、光学シート96で反射した光9cは、さらにLED基板92で反射する。その反射光9dは、蛍光体シート95を通過後、光学シート96を通過する光9eと光学シート96で反射する光9fとに分けられる。同様にして、光学シート96で反射した光9fはLED基板92で反射し、LED基板92で反射した光9gは光学シート96を通過する光9hと光学シート96で反射する光9iとに分けられる。以上のように光の反射が繰り返されるところ、光の色は蛍光体シート95を通過する毎に黄色味を帯びる。従って、1つの青色LED93からの出射光に着目すると、当該青色LED93から離れた領域ほど光の色は黄色味を帯びることになる。図47に示した例では、光9eの色は光9bの色よりも黄色味を帯びており、光9hの色は光9eの色よりも更に黄色味を帯びている。 Here, the reason why color unevenness occurs when partial lighting is performed in a configuration using a phosphor sheet will be described with reference to FIG. The light 9 a emitted from the blue LED 93 is divided into light (component) 9 b that passes through the optical sheet 96 and light (component) 9 c that is reflected by the optical sheet 96 after passing through the phosphor sheet 95. That is, some components of the light 9 a emitted from the blue LED 93 are reflected by the optical sheet 96 and return to the LED substrate 92 side. Since a reflection sheet that reflects light is generally attached to the surface of the LED substrate 92, the light 9 c reflected by the optical sheet 96 is further reflected by the LED substrate 92. The reflected light 9 d is divided into light 9 e that passes through the optical sheet 96 and light 9 f that is reflected by the optical sheet 96 after passing through the phosphor sheet 95. Similarly, the light 9f reflected by the optical sheet 96 is reflected by the LED substrate 92, and the light 9g reflected by the LED substrate 92 is divided into light 9h that passes through the optical sheet 96 and light 9i that is reflected by the optical sheet 96. . When the reflection of light is repeated as described above, the color of the light is yellowish every time it passes through the phosphor sheet 95. Therefore, when attention is paid to the emitted light from one blue LED 93, the color of the light becomes yellowish as the region is farther from the blue LED 93. In the example shown in FIG. 47, the color of the light 9e is more yellowish than the color of the light 9b, and the color of the light 9h is more yellowish than the color of the light 9e.
 以上のように、1つの青色LED93からの出射光は、反射を繰り返すことによって周囲の領域にも届く。換言すれば、或る領域には、当該領域に対応する青色LED93からの出射光だけでなく、周囲の領域に対応する青色LED93からの出射光の反射成分の光も照射される。このような点を考慮して、全面点灯が行われた際にバックライト光が白色光となるよう、蛍光体シート95中の蛍光体の含有量(蛍光体濃度)が調整されている。 As described above, light emitted from one blue LED 93 reaches the surrounding area by repeating reflection. In other words, a certain area is irradiated not only with the emitted light from the blue LED 93 corresponding to the area but also with the reflected component of the emitted light from the blue LED 93 corresponding to the surrounding area. In consideration of such points, the phosphor content (phosphor concentration) in the phosphor sheet 95 is adjusted so that the backlight becomes white light when the entire surface is turned on.
 ところが、部分点灯が行われた際には、全面点灯が行われた際と比較して、点灯エリアに他のエリアから届く黄色味を帯びた光の量が少なくなる。その結果、点灯エリアに現れるバックライト光の色は青色味を帯び、ホワイトバランスが崩れる。これについては、部分点灯が行われる範囲が狭いほど顕著になる。また、青色LED93からの出射光は反射を繰り返すことによって周囲の領域にも届くので、部分点灯が行われた際に、非点灯エリアにも光が照射されることになる。その際、点灯エリアから離れるにつれて光の色は徐々に黄色味を帯びるので、色むらが生じる。 However, when partial lighting is performed, the amount of yellowish light that reaches the lighting area from other areas is smaller than when full lighting is performed. As a result, the color of the backlight light appearing in the lighting area has a blue color, and the white balance is lost. About this, it becomes so remarkable that the range where partial lighting is performed is narrow. Moreover, since the emitted light from the blue LED 93 reaches the surrounding area by repeating reflection, the light is irradiated to the non-lighting area when partial lighting is performed. At that time, the color of the light gradually becomes yellowish as the distance from the lighting area increases, and color unevenness occurs.
 そこで、日本の特開2015-216104号公報には、発光面の領域を分割する抑制部材を設けることにより光の広がりを抑制するようにした光源装置の発明が開示されている。この光源装置によれば、光源から発せられて変換部材(量子ドット)を透過した光が隣接する領域に漏れることが抑制され、その結果、色むらや輝度むらが低減される。 Therefore, Japanese Patent Application Laid-Open No. 2015-216104 discloses an invention of a light source device that suppresses the spread of light by providing a suppressing member that divides a region of a light emitting surface. According to this light source device, the light emitted from the light source and transmitted through the conversion member (quantum dot) is suppressed from leaking to the adjacent region, and as a result, color unevenness and luminance unevenness are reduced.
日本の特開2015-216104号公報Japanese Unexamined Patent Publication No. 2015-216104
 ところが、日本の特開2015-216104号公報に開示された光源装置によれば、構造が複雑になり、かつ、多量の量子ドットが必要となる。そのため、光源装置の製造コストが高くなる。 However, according to the light source device disclosed in Japanese Unexamined Patent Publication No. 2015-216104, the structure is complicated and a large amount of quantum dots are required. This increases the manufacturing cost of the light source device.
 そこで、以下の開示は、青色LEDと量子ドットとを組み合わせた構成の直下型のバックライト装置を色むらを生ずることなく低コストで実現することを目的とする。 Therefore, the following disclosure aims to realize a direct type backlight device configured by combining a blue LED and quantum dots at low cost without causing color unevenness.
 いくつかの実施形態による光源装置は、青色の光を発する青色発光素子を含む発光素子パッケージと、青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体とを有する。量子ドットは、発光素子パッケージの直上に配置されている。 A light source device according to some embodiments includes a light emitting device package including a blue light emitting device that emits blue light, and converts the wavelength of the light emitted from the blue light emitting device so that the color of the outgoing light is white. A quantum dot-containing body containing quantum dots. The quantum dots are disposed immediately above the light emitting element package.
 また、いくつかの実施形態による光源装置は、青色の光を発する青色発光素子を含む発光素子パッケージと、青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、発光素子パッケージの上方で量子ドット含有体を固定するための治具とを有する。治具は、発光素子パッケージの直上に位置して量子ドット含有体が載置される載置部と、発光素子パッケージの周囲に位置して載置部を支持する支持部とからなる。支持部は、青色発光素子から発せられた光を反射または散乱させる。 In addition, the light source device according to some embodiments includes a light emitting element package including a blue light emitting element that emits blue light, and a wavelength of light emitted from the blue light emitting element so that a color of light emitted to the outside is white. A quantum dot-containing body containing quantum dots to be converted into a light source, and a jig for fixing the quantum dot-containing body above the light emitting device package. The jig includes a mounting portion that is positioned immediately above the light emitting device package and on which the quantum dot-containing body is mounted, and a support portion that is positioned around the light emitting device package and supports the mounting portion. The support part reflects or scatters the light emitted from the blue light emitting element.
 さらに、いくつかの実施形態による光源装置は、青色の光を発する青色発光素子を含む発光素子パッケージと、青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、発光素子パッケージの上方で量子ドット含有体を固定するための治具とを有する。治具は、発光素子パッケージの直上に位置して量子ドット含有体が載置される載置部と、発光素子パッケージの周囲に位置して載置部を支持する支持部とからなる。載置部は、発光素子パッケージの上部全体を覆うように面状に形成されている。 Furthermore, the light source device according to some embodiments includes a light emitting device package including a blue light emitting device that emits blue light, and a wavelength of light emitted from the blue light emitting device so that the color of light emitted to the outside is white. A quantum dot-containing body containing quantum dots to be converted into a light source, and a jig for fixing the quantum dot-containing body above the light emitting device package. The jig includes a mounting portion that is positioned immediately above the light emitting device package and on which the quantum dot-containing body is mounted, and a support portion that is positioned around the light emitting device package and supports the mounting portion. The mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting element package.
 青色発光素子と量子ドットとを用いた構成の光源装置において、発光素子パッケージの直上の位置もしくは発光素子パッケージの上方かつ当該発光素子パッケージから比較的近い位置に量子ドットが配置される。このため、青色発光素子から発せられた光はすぐに白色光に変換される。これにより、光源装置からは、一般的な白色LEDパッケージが設けられている場合と同様に、白色光が発せられる。従って、バックライト装置内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、黄色味を帯びた光が出射されることはない。従って、光の反射が繰り返されることに起因する色むらが生じることはない。また、量子ドットは、表示装置の表示部全体に対応する領域に設けられるのではなく、各発光素子パッケージの上方のみに設けられる。このため、必要とされる量子ドットの量が少なくなり、製造コストを安くすることができる。以上より、青色LEDと量子ドットとを組み合わせた構成の光源装置を低コストで実現することができる。 In a light source device having a configuration using blue light emitting elements and quantum dots, quantum dots are arranged at a position immediately above the light emitting element package or above the light emitting element package and relatively close to the light emitting element package. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided. Therefore, the light propagating through the backlight device becomes white light, and even if light reflection is repeated inside the device, yellowish light is not emitted. Therefore, color unevenness caused by repeated light reflection does not occur. Further, the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced. As described above, a light source device having a configuration in which a blue LED and a quantum dot are combined can be realized at low cost.
第1の実施形態に係るバックライト装置を備えた液晶表示装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the liquid crystal display device provided with the backlight apparatus which concerns on 1st Embodiment. 上記第1の実施形態における液晶パネルおよびバックライト装置の斜視図である。It is a perspective view of the liquid crystal panel and backlight apparatus in the said 1st Embodiment. 上記第1の実施形態における液晶パネルおよびバックライト装置の側面図である。It is a side view of the liquid crystal panel and backlight device in the first embodiment. 上記第1の実施形態において、エリアについて説明するための図である。It is a figure for demonstrating an area in the said 1st Embodiment. 上記第1の実施形態において、ローカルディミング処理の手順の一例を示すフローチャートである。6 is a flowchart illustrating an example of a procedure of local dimming processing in the first embodiment. 上記第1の実施形態において、ローカルディミング処理による発光輝度の制御について説明するための図である。In the said 1st Embodiment, it is a figure for demonstrating control of the light emission luminance by a local dimming process. 上記第1の実施形態において、1つのエリアに含まれる青色LEDを駆動するための単位駆動部の構成を示す概略図である。In the said 1st Embodiment, it is the schematic which shows the structure of the unit drive part for driving the blue LED contained in one area. 上記第1の実施形態における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in the said 1st Embodiment. 上記第1の実施形態における量子ドットシートの一構成例を示す図である。It is a figure which shows the example of 1 structure of the quantum dot sheet in the said 1st Embodiment. 上記第1の実施形態において、各光源装置から白色光が出射されることについて説明するための図である。It is a figure for demonstrating that white light is radiate | emitted from each light source device in the said 1st Embodiment. 第2の実施形態における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in 2nd Embodiment. 上記第2の実施形態において、各光源装置から白色光が出射されることについて説明するための図である。It is a figure for demonstrating that white light is radiate | emitted from each light source device in the said 2nd Embodiment. 上記第2の実施形態の変形例における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in the modification of the said 2nd Embodiment. 第3の実施形態における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in 3rd Embodiment. 上記第3の実施形態において、治具の構成について説明するための図である。In the said 3rd Embodiment, it is a figure for demonstrating the structure of a jig | tool. 上記第3の実施形態において、治具の構成について説明するための図である。In the said 3rd Embodiment, it is a figure for demonstrating the structure of a jig | tool. 上記第3の実施形態において、荒らし処理が施された面を模式的に示した図である。In the said 3rd Embodiment, it is the figure which showed typically the surface where the roughening process was performed. 上記第3の実施形態において、治具の載置部が空間部を有していない理由について説明するための図である。In the said 3rd Embodiment, it is a figure for demonstrating the reason the mounting part of a jig | tool does not have a space part. 上記第3の実施形態において、治具の全体が透明となっている理由について説明するための図である。In the said 3rd Embodiment, it is a figure for demonstrating the reason the whole jig | tool is transparent. 上記第3の実施形態において、治具に荒らし処理が施されている理由について説明するための図である。In the said 3rd Embodiment, it is a figure for demonstrating the reason why the roughening process is performed to the jig | tool. 上記第3の実施形態の効果について説明するための図である。It is a figure for demonstrating the effect of the said 3rd Embodiment. 上記第3の実施形態の第2の変形例における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in the 2nd modification of the said 3rd Embodiment. 上記第3の実施形態の第2の変形例の効果について説明するための図である。It is a figure for demonstrating the effect of the 2nd modification of the said 3rd Embodiment. 上記第3の実施形態の第3の変形例における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in the 3rd modification of the said 3rd Embodiment. 上記第3の実施形態の第3の変形例の効果について説明するための図である。It is a figure for demonstrating the effect of the 3rd modification of the said 3rd Embodiment. 第4の実施形態における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in 4th Embodiment. 上記第4の実施形態における光源装置の詳細な構成の別の例を示す図である。It is a figure which shows another example of a detailed structure of the light source device in the said 4th Embodiment. 上記第4の実施形態の効果について説明するための図である。It is a figure for demonstrating the effect of the said 4th Embodiment. 上記第4の実施形態の第2の変形例における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in the 2nd modification of the said 4th Embodiment. 上記第4の実施形態の第2の変形例の効果について説明するための図である。It is a figure for demonstrating the effect of the 2nd modification of the said 4th Embodiment. 第5の実施形態における光源装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the light source device in 5th Embodiment. 従来例に関し、青色LEDと量子ドットとを組み合わせて用いた表面実装型の白色LEDパッケージの構成を示す図である。It is a figure which shows the structure of the surface mount type white LED package which used blue LED and the quantum dot in combination regarding the prior art example. 従来例に関し、QDキャピラリー方式を採用したバックライト装置の概略断面図である。It is a schematic sectional drawing of the backlight apparatus which employ | adopted QD capillary system regarding the prior art example. 従来例に関し、青色LEDと蛍光体シートとの組み合わせによって白色光を得ているバックライト装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the backlight apparatus which has obtained white light by the combination of blue LED and a fluorescent substance sheet regarding a prior art example. 白色LEDを用いた構成で中央の1エリアのみの点灯が行われた際の輝度を示す図である。It is a figure which shows the brightness | luminance at the time of lighting of only one center area by the structure using white LED. 白色LEDを用いた構成で中央の1エリアのみの点灯が行われた際の色度xを示す図である。It is a figure which shows chromaticity x at the time of lighting of only one center area by the structure using white LED. 白色LEDを用いた構成で中央の1エリアのみの点灯が行われた際の色度yを示す図である。It is a figure which shows chromaticity y at the time of lighting of only one center area by the structure using white LED. 蛍光体シートを用いた構成で中央の1エリアのみの点灯が行われた際の輝度を示す図である。It is a figure which shows the brightness | luminance at the time of lighting of only one center area by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で中央の1エリアのみの点灯が行われた際の色度xを示す図である。It is a figure which shows the chromaticity x when the lighting of only one center area is performed by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で中央の1エリアのみの点灯が行われた際の色度yを示す図である。It is a figure which shows the chromaticity y when the lighting of only one center area is performed by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で36エリア(縦6エリア×横6エリア)の点灯が行われた際の輝度を示す図である。It is a figure which shows the brightness | luminance at the time of lighting of 36 areas (length 6 area x width 6 area) by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で36エリア(縦6エリア×横6エリア)の点灯が行われた際の色度xを示す図である。It is a figure which shows chromaticity x at the time of lighting of 36 areas (length 6 area x width 6 area) by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で36エリア(縦6エリア×横6エリア)の点灯が行われた際の色度yを示す図である。It is a figure which shows chromaticity y at the time of lighting of 36 areas (length 6 area x width 6 area) by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で全面点灯が行われた際の輝度を示す図である。It is a figure which shows the brightness | luminance when whole surface lighting is performed by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で全面点灯が行われた際の色度xを示す図である。It is a figure which shows the chromaticity x when the whole surface lighting is performed by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で全面点灯が行われた際の色度yを示す図である。It is a figure which shows chromaticity y when the whole surface lighting is performed by the structure using a fluorescent substance sheet. 蛍光体シートを用いた構成で部分点灯が行われた際に色むらが生じる理由について説明するための図である。It is a figure for demonstrating the reason a color nonuniformity arises when partial lighting is performed by the structure using a fluorescent substance sheet.
 以下、添付図面を参照しつつ実施形態について説明する。 Hereinafter, embodiments will be described with reference to the accompanying drawings.
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図1は、第1の実施形態に係るバックライト装置600を備えた液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、表示制御回路100とゲートドライバ(走査信号線駆動回路)200とソースドライバ(映像信号線駆動回路)300と液晶パネル400と光源制御部500とバックライト装置600とによって構成されている。液晶パネル400には、画像を表示するための表示部410が含まれている。なお、ゲートドライバ200あるいはソースドライバ300もしくはその双方が液晶パネル400内に設けられていても良い。
<1. First Embodiment>
<1.1 Overall configuration and operation overview>
FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device including a backlight device 600 according to the first embodiment. The liquid crystal display device includes a display control circuit 100, a gate driver (scanning signal line driving circuit) 200, a source driver (video signal line driving circuit) 300, a liquid crystal panel 400, a light source control unit 500, and a backlight device 600. ing. The liquid crystal panel 400 includes a display unit 410 for displaying an image. Note that the gate driver 200 and / or the source driver 300 may be provided in the liquid crystal panel 400.
 図1に関し、表示部410には、複数本(n本)のソースバスライン(映像信号線)SL1~SLnと複数本(m本)のゲートバスライン(走査信号線)GL1~GLmとが配設されている。ソースバスラインSL1~SLnとゲートバスラインGL1~GLmとの各交差点に対応して、画素を形成する画素形成部4が設けられている。すなわち、表示部410には、複数個(m×n個)の画素形成部4が含まれている。上記複数個の画素形成部4はマトリクス状に配置されて画素マトリクスを構成している。各画素形成部4には、対応する交差点を通過するゲートバスラインGLにゲート端子が接続されると共に当該交差点を通過するソースバスラインSLにソース端子が接続されたスイッチング素子であるTFT(薄膜トランジスタ)40と、そのTFT40のドレイン端子に接続された画素電極41と、上記複数個の画素形成部4に共通的に設けられた共通電極44および補助容量電極45と、画素電極41と共通電極44とによって形成される液晶容量42と、画素電極41と補助容量電極45とによって形成される補助容量43とが含まれている。液晶容量42と補助容量43とによって画素容量46が構成されている。なお、図1における表示部410内には、1つの画素形成部4に対応する構成要素のみを示している。 Referring to FIG. 1, the display unit 410 includes a plurality (n) of source bus lines (video signal lines) SL1 to SLn and a plurality (m) of gate bus lines (scanning signal lines) GL1 to GLm. It is installed. A pixel forming portion 4 for forming pixels is provided corresponding to each intersection of the source bus lines SL1 to SLn and the gate bus lines GL1 to GLm. In other words, the display unit 410 includes a plurality (m × n) of pixel forming units 4. The plurality of pixel forming portions 4 are arranged in a matrix to form a pixel matrix. Each pixel forming unit 4 includes a TFT (thin film transistor) which is a switching element having a gate terminal connected to a gate bus line GL passing through a corresponding intersection and a source terminal connected to a source bus line SL passing through the intersection. 40, the pixel electrode 41 connected to the drain terminal of the TFT 40, the common electrode 44 and the auxiliary capacitance electrode 45 provided in common to the plurality of pixel forming portions 4, the pixel electrode 41 and the common electrode 44, And a storage capacitor 43 formed by the pixel electrode 41 and the storage capacitor electrode 45 are included. The liquid crystal capacitor 42 and the auxiliary capacitor 43 constitute a pixel capacitor 46. In the display unit 410 in FIG. 1, only components corresponding to one pixel forming unit 4 are shown.
 ところで、表示部410内のTFT40としては、例えば酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)を採用することができる。より具体的には、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(O)を主成分とする酸化物半導体であるIn-Ga-Zn-O(酸化インジウムガリウム亜鉛)によりチャネル層が形成されたTFT(以下、「In-Ga-Zn-O-TFT」という。)をTFT40として採用することができる。このようなIn-Ga-Zn-O-TFTを採用することにより、高精細化や低消費電力化などの効果が得られる。また、In-Ga-Zn-O(酸化インジウムガリウム亜鉛)以外の酸化物半導体をチャネル層に用いたトランジスタを採用することもできる。例えば、インジウム,ガリウム,亜鉛,銅(Cu),シリコン(Si),錫(Sn),アルミニウム(Al),カルシウム(Ca),ゲルマニウム(Ge),および鉛(Pb)のうち少なくとも1つを含む酸化物半導体をチャネル層に用いたトランジスタを採用した場合にも同様の効果が得られる。なお、酸化物TFT以外のTFTの使用を排除するものではない。 Incidentally, as the TFT 40 in the display unit 410, for example, an oxide TFT (a thin film transistor using an oxide semiconductor for a channel layer) can be employed. More specifically, In—Ga—Zn—O (indium gallium zinc oxide) which is an oxide semiconductor mainly containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used. A TFT in which a channel layer is formed (hereinafter referred to as “In—Ga—Zn—O—TFT”) can be employed as the TFT 40. By adopting such an In—Ga—Zn—O—TFT, effects such as high definition and low power consumption can be obtained. Alternatively, a transistor in which an oxide semiconductor other than In—Ga—Zn—O (indium gallium zinc oxide) is used for a channel layer can be employed. For example, at least one of indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb) is included. The same effect can be obtained when a transistor using an oxide semiconductor for a channel layer is employed. Note that the use of TFTs other than oxide TFTs is not excluded.
 次に、図1に示す構成要素の動作について説明する。表示制御回路100は、外部から送られる画像信号DATと水平同期信号や垂直同期信号などのタイミング信号群TGとを受け取り、デジタル映像信号DVと、ゲートドライバ200の動作を制御するためのゲートスタートパルス信号GSPおよびゲートクロック信号GCKと、ソースドライバ300の動作を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSと、光源制御部500の動作を制御するための光源制御信号BSとを出力する。 Next, the operation of the components shown in FIG. 1 will be described. The display control circuit 100 receives an image signal DAT sent from the outside and a timing signal group TG such as a horizontal synchronizing signal and a vertical synchronizing signal, and receives a digital video signal DV and a gate start pulse for controlling the operation of the gate driver 200. The signal GSP and the gate clock signal GCK, the source start pulse signal SSP for controlling the operation of the source driver 300, the source clock signal SCK, and the latch strobe signal LS, and the light source control for controlling the operation of the light source controller 500 The signal BS is output.
 ゲートドライバ200は、表示制御回路100から送られるゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号G(1)~G(m)の各ゲートバスラインGL1~GLmへの印加を1垂直走査期間を周期として繰り返す。 Based on the gate start pulse signal GSP and the gate clock signal GCK sent from the display control circuit 100, the gate driver 200 applies the active scanning signals G (1) to G (m) to the gate bus lines GL1 to GLm. The application is repeated with one vertical scanning period as a cycle.
 ソースドライバ300は、表示制御回路100から送られるデジタル映像信号DV,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、ソースバスラインSL1~SLnに駆動用映像信号S(1)~S(n)を印加する。このとき、ソースドライバ300では、ソースクロック信号SCKのパルスが発生するタイミングで、各ソースバスラインSL1~SLnに印加すべき電圧を示すデジタル映像信号DVが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記保持されたデジタル映像信号DVがアナログ電圧に変換される。その変換されたアナログ電圧は、駆動用映像信号S(1)~S(n)として全てのソースバスラインSL1~SLnに一斉に印加される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS sent from the display control circuit 100, and drives the video signal S (1 (1) to the source bus lines SL1 to SLn. ) To S (n) are applied. At this time, the source driver 300 sequentially holds the digital video signal DV indicating the voltage to be applied to the source bus lines SL1 to SLn at the timing when the pulse of the source clock signal SCK is generated. The held digital video signal DV is converted into an analog voltage at the timing when the pulse of the latch strobe signal LS is generated. The converted analog voltage is applied simultaneously to all the source bus lines SL1 to SLn as drive video signals S (1) to S (n).
 光源制御部500は、表示制御回路100から送られる光源制御信号BSに基づいて、バックライト装置600内の光源装置の輝度(発光強度)を制御する。これにより、バックライト装置600から液晶パネル400の背面にバックライト光が照射される。なお、本実施形態ではローカルディミング処理が行われる。 The light source control unit 500 controls the luminance (light emission intensity) of the light source device in the backlight device 600 based on the light source control signal BS sent from the display control circuit 100. As a result, the backlight device 600 irradiates the back surface of the liquid crystal panel 400 with the backlight light. In the present embodiment, local dimming processing is performed.
 以上のようにして、ゲートバスラインGL1~GLmに走査信号G(1)~G(m)が印加され、ソースバスラインSL1~SLnに駆動用映像信号S(1)~S(n)が印加され、バックライト装置600内の光源装置の輝度が制御されることにより、外部から送られる画像信号DATに応じた画像が表示部410に表示される。 As described above, the scanning signals G (1) to G (m) are applied to the gate bus lines GL1 to GLm, and the driving video signals S (1) to S (n) are applied to the source bus lines SL1 to SLn. Then, by controlling the luminance of the light source device in the backlight device 600, an image corresponding to the image signal DAT sent from the outside is displayed on the display unit 410.
<1.2 バックライト装置の概略>
 図2は、液晶パネル400およびバックライト装置600の斜視図である。また、図3は、液晶パネル400およびバックライト装置600の側面図である。このバックライト装置600は、液晶パネル400の背面に設けられている。すなわち、本実施形態におけるバックライト装置600は、直下型のバックライト装置である。
<1.2 Outline of backlight device>
FIG. 2 is a perspective view of the liquid crystal panel 400 and the backlight device 600. FIG. 3 is a side view of the liquid crystal panel 400 and the backlight device 600. The backlight device 600 is provided on the back surface of the liquid crystal panel 400. That is, the backlight device 600 in the present embodiment is a direct type backlight device.
 このバックライト装置600は、シャーシ61とLED基板62と複数の光源装置63と拡散板64と光学シート65とによって構成されている。各光源装置63は、青色LED631と量子ドット632とを含んでいる。シャーシ61は、LED基板62等を支持する。LED基板62は、例えば金属製の基板であって、複数の光源装置63を搭載する。LED基板62の表面には、光源装置63から発せられた光の利用効率を高めるために反射シートが貼り付けられている。青色LED631は、青色光を出射する。量子ドット632は、光源装置63からの出射光が白色光となるよう、青色LED631から発せられた光の波長を変換する。拡散板64は、光源装置63から数mm~数cmほど上方の位置に配置されている。拡散板64は、バックライト光が面的に均一な光となるよう、光源装置63から発せられた光を拡散させる。光学シート65は、拡散板64の上方に配置されている。一般に、光学シート65は複数のシートによって構成されている。それら複数のシートはそれぞれ光を拡散させる機能,集光機能,光の利用効率を高める機能などを有している。なお、光源装置63の構成についての詳しい説明は後述する。 The backlight device 600 includes a chassis 61, an LED substrate 62, a plurality of light source devices 63, a diffusion plate 64, and an optical sheet 65. Each light source device 63 includes a blue LED 631 and quantum dots 632. The chassis 61 supports the LED substrate 62 and the like. The LED substrate 62 is a metal substrate, for example, and has a plurality of light source devices 63 mounted thereon. A reflective sheet is attached to the surface of the LED substrate 62 in order to increase the utilization efficiency of the light emitted from the light source device 63. The blue LED 631 emits blue light. The quantum dot 632 converts the wavelength of the light emitted from the blue LED 631 so that the emitted light from the light source device 63 becomes white light. The diffusing plate 64 is disposed at a position several millimeters to several centimeters above the light source device 63. The diffusion plate 64 diffuses the light emitted from the light source device 63 so that the backlight light becomes surface-uniform light. The optical sheet 65 is disposed above the diffusion plate 64. In general, the optical sheet 65 is composed of a plurality of sheets. Each of the plurality of sheets has a function of diffusing light, a light condensing function, a function of improving light use efficiency, and the like. A detailed description of the configuration of the light source device 63 will be given later.
 ところで、本実施形態においては、ローカルディミング処理を行うために、画像を表示する表示部410が図4に示すように(物理的にではなく)論理的に複数のエリア(光源装置63の制御を行う最小の単位となるエリア)に分割されている。そして、LED基板62上には各エリアに対応するように光源装置63が設けられ、エリア毎に光源装置63の輝度(発光強度)の制御が行われる。なお、各エリアに設けられる光源装置63の数については特に限定されない。 By the way, in this embodiment, in order to perform the local dimming process, the display unit 410 that displays an image logically controls a plurality of areas (not physically) (not physically) as shown in FIG. The area is the smallest unit to be performed). A light source device 63 is provided on the LED substrate 62 so as to correspond to each area, and the luminance (light emission intensity) of the light source device 63 is controlled for each area. The number of light source devices 63 provided in each area is not particularly limited.
<1.3 ローカルディミング処理およびバックライト装置の駆動について>
 ここで、図5を参照しつつ、ローカルディミング処理の手順の一例を説明する。ローカルディミング処理は、表示制御回路100(図1参照)内のローカルディミング処理部(不図示)で行われる。なお、ここでは、表示部410が(縦p×横q)個のエリアに分割されていると仮定する。
<1.3 Local dimming process and driving of backlight device>
Here, an example of the procedure of the local dimming process will be described with reference to FIG. The local dimming process is performed by a local dimming processing unit (not shown) in the display control circuit 100 (see FIG. 1). Here, it is assumed that display unit 410 is divided into (vertical p × horizontal q) areas.
 まず、外部から送られる画像信号DATが入力画像データとしてローカルディミング処理部に入力される(ステップS11)。入力画像データには(m×n)個の画素の輝度(輝度データ)が含まれている。次に、ローカルディミング処理部は、入力画像データに対してサブサンプリング処理(平均化処理)を行い、(sp×sq)個(sは2以上の整数)の画素の輝度を含む縮小画像を求める(ステップS12)。次に、ローカルディミング処理部は、縮小画像を(p×q)個のエリアのデータに分割する(ステップS13)。各エリアのデータには(s×s)個の画素の輝度が含まれている。次に、ローカルディミング処理部は、(p×q)個のエリアのそれぞれについて、エリア内の画素の輝度の最大値Maと、エリア内の画素の輝度の平均値Meとを求める(ステップS14)。次に、ローカルディミング処理部は、ステップS14で求めた最大値Ma,平均値Meなどに基づき、各エリアに対応する光源装置63の発光輝度(青色LED631の発光輝度)である(p×q)個の発光輝度を求める(ステップS15)。 First, an image signal DAT sent from the outside is input to the local dimming processing unit as input image data (step S11). The input image data includes the luminance (luminance data) of (m × n) pixels. Next, the local dimming processing unit performs sub-sampling processing (averaging processing) on the input image data to obtain a reduced image including the luminance of (sp × sq) (s is an integer of 2 or more) pixels. (Step S12). Next, the local dimming processing unit divides the reduced image into (p × q) area data (step S13). The data of each area includes the luminance of (s × s) pixels. Next, the local dimming processing unit obtains the maximum luminance value Ma of the pixels in the area and the average luminance value Me of the pixels in the area for each of the (p × q) areas (step S14). . Next, the local dimming processing unit is the light emission luminance (light emission luminance of the blue LED 631) of the light source device 63 corresponding to each area (p × q) based on the maximum value Ma, the average value Me, and the like obtained in step S14. The individual light emission luminances are obtained (step S15).
 次に、ローカルディミング処理部は、ステップS15で求めた(p×q)個の発光輝度に基づき、(tp×tq)個(tは2以上の整数)の表示輝度を求める(ステップS16)。次に、ローカルディミング処理部は、(tp×tq)個の表示輝度に対して線形補間処理を行うことにより、(m×n)個の表示輝度を含むバックライト輝度データを求める(ステップS17)。バックライト輝度データは、全ての光源装置63がステップS15で求めた発光輝度で発光したときに(m×n)個の画素に入射する光の輝度を表す。次に、ローカルディミング処理部は、入力画像に含まれる(m×n)個の画素の輝度を、それぞれ、バックライト輝度データに含まれる(m×n)個の表示輝度で割ることにより、(m×n)個の画素における光透過率を求める(ステップS18)。最後に、ローカルディミング処理部は、ステップS18で求めた光透過率を表すデータに相当するデジタル映像信号DVと、各エリアに対応する光源装置63をステップS15で求めた発光輝度で発光させるための光源制御信号BSとを出力する(ステップS19)。 Next, the local dimming processing unit obtains (tp × tq) display luminances (t is an integer of 2 or more) based on the (p × q) emission luminances obtained in step S15 (step S16). Next, the local dimming processing unit obtains backlight luminance data including (m × n) display luminances by performing linear interpolation processing on (tp × tq) display luminances (step S17). . The backlight luminance data represents the luminance of light incident on (m × n) pixels when all the light source devices 63 emit light with the light emission luminance obtained in step S15. Next, the local dimming processing unit divides the luminance of (m × n) pixels included in the input image by (m × n) display luminances included in the backlight luminance data, respectively ( The light transmittance in m × n) pixels is obtained (step S18). Finally, the local dimming processing unit causes the digital video signal DV corresponding to the data representing the light transmittance obtained in step S18 and the light source device 63 corresponding to each area to emit light with the light emission luminance obtained in step S15. The light source control signal BS is output (step S19).
 以上のようなローカルディミング処理が行われることによって、模式的には図6に示すように、エリア毎に異なる輝度(発光強度)の光が出射される。なお、図6では、光の輝度(発光強度)を矢印の太さで表している。 By performing the local dimming process as described above, light having different luminance (light emission intensity) is emitted for each area as schematically shown in FIG. In FIG. 6, the brightness of light (emission intensity) is indicated by the thickness of the arrow.
 図7は、1つのエリアに含まれる青色LED631を駆動するための単位駆動部50の構成を示す概略図である。なお、図7には、1つのエリアに4つの光源装置63が設けられている例すなわち1つのエリアに4つの青色LED631が設けられている例を示している。図7に示すように、単位駆動部50は、電源52と電流制御トランジスタ54とを含んでいる。電流制御トランジスタ54については、ゲート端子には光源制御信号BSが与えられ、ドレイン端子は青色LED631に接続され、ソース端子は接地されている。電源52と電流制御トランジスタ54のドレイン端子との間に、4個の青色LED631が直列に接続されている。このような構成において、青色LED631の目標とする輝度(発光強度)に応じた光源制御信号BSが電流制御トランジスタ54のゲート端子に与えられる。これにより、青色LED631の目標とする輝度に応じた駆動電流Imが流れる。 FIG. 7 is a schematic diagram showing the configuration of the unit drive unit 50 for driving the blue LEDs 631 included in one area. FIG. 7 shows an example in which four light source devices 63 are provided in one area, that is, an example in which four blue LEDs 631 are provided in one area. As shown in FIG. 7, the unit driving unit 50 includes a power source 52 and a current control transistor 54. As for the current control transistor 54, the light source control signal BS is given to the gate terminal, the drain terminal is connected to the blue LED 631, and the source terminal is grounded. Four blue LEDs 631 are connected in series between the power supply 52 and the drain terminal of the current control transistor 54. In such a configuration, the light source control signal BS corresponding to the target luminance (light emission intensity) of the blue LED 631 is applied to the gate terminal of the current control transistor 54. Thereby, the drive current Im according to the target luminance of the blue LED 631 flows.
<1.4 光源装置の詳細な構成>
 図8は、本実施形態における光源装置63の詳細な構成を示す図である。本実施形態における光源装置63は、青色LED631と、パッケージ基板633と、リフレクタ634と、ボンディングワイヤー635a,635bと、電極636a,636bと、量子ドット632を含む量子ドットシート637と、治具638とによって構成されている。青色LED631とパッケージ基板633とリフレクタ634とボンディングワイヤー635a,635bと電極636a,636bとによって1つのLEDパッケージ631Pが構成されている。
<1.4 Detailed configuration of light source device>
FIG. 8 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. The light source device 63 in this embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by. The blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P.
 青色LED631は、パッケージ基板633上に設けられ、樹脂などの封止材によって覆われている。パッケージ基板633上の青色LED631の周囲の領域には、光を反射するためのリフレクタ634が設けられている。青色LED631のアノードはボンディングワイヤー635aを介して電極636aに接続され、青色LED631のカソードはボンディングワイヤー635bを介して電極636bに接続されている。LEDパッケージ631Pの周囲には治具638が設けられており、その治具638によってLEDパッケージ631Pの上方(青色LED631の上方)に量子ドットシート637が固定されている。詳しくは、治具638には基板面に対して水平となるような凸部6381が設けられており、当該凸部6381上に量子ドットシート637が固定されている。このようにして、光源装置63毎に、LEDパッケージ631Pの直上に量子ドット632を含む量子ドットシート637が配置されている。本実施形態においては、治具638は、白色のポリカーボネートによって形成されている。なお、量子ドットシート637に代えて、量子ドット632を封入した例えばシート状のガラスをLEDパッケージ631Pの上方に配置するようにしても良い。 The blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin. In a region around the blue LED 631 on the package substrate 633, a reflector 634 for reflecting light is provided. The anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b. A jig 638 is provided around the LED package 631P, and the quantum dot sheet 637 is fixed above the LED package 631P (above the blue LED 631) by the jig 638. Specifically, the jig 638 is provided with a convex portion 6381 that is horizontal to the substrate surface, and a quantum dot sheet 637 is fixed on the convex portion 6381. In this way, for each light source device 63, the quantum dot sheet 637 including the quantum dots 632 is disposed immediately above the LED package 631P. In the present embodiment, the jig 638 is made of white polycarbonate. Instead of the quantum dot sheet 637, for example, sheet-like glass enclosing the quantum dots 632 may be disposed above the LED package 631P.
 ここで、図9を参照しつつ、量子ドットシート637の一構成例について説明する。本実施形態における量子ドットシート637は、樹脂フィルム70と、樹脂フィルム70の表面を覆う耐湿性のバリアフィルム(保護フィルム)72aと、樹脂フィルム70の裏面を覆う耐湿性のバリアフィルム(保護フィルム)72bとによって構成されている。樹脂フィルム70は、量子ドット632を封入した樹脂71によって構成されている。量子ドット632として、例えば、500~550nmの波長を発光ピーク波長とする緑色量子ドットと600nm以上の波長を発光ピーク波長とする赤色量子ドットとが樹脂71内に封入されている。このようにして、本実施形態においては、量子ドット632はバリアフィルム72a,72bによって保護されている。 Here, a configuration example of the quantum dot sheet 637 will be described with reference to FIG. The quantum dot sheet 637 in this embodiment includes a resin film 70, a moisture-resistant barrier film (protective film) 72a that covers the surface of the resin film 70, and a moisture-resistant barrier film (protective film) that covers the back surface of the resin film 70. 72b. The resin film 70 is made of a resin 71 in which quantum dots 632 are encapsulated. As the quantum dots 632, for example, green quantum dots having an emission peak wavelength of 500 to 550 nm and red quantum dots having an emission peak wavelength of 600 nm or more are enclosed in the resin 71. Thus, in this embodiment, the quantum dots 632 are protected by the barrier films 72a and 72b.
 以上のような構成において、図10に示すように、各光源装置63の青色LED631から出射された光(青色光LB)は、量子ドットシート637内の量子ドット632によって白色光LWに変換される。また、治具638は白色のポリカーボネートによって形成されているため、量子ドットシート637や治具638で光が散乱することにより治具638は全体的に白く光る。以上より、各光源装置63から拡散板64に向けて白色光LWが出射される。その結果、液晶パネル400に白色光が照射される。 In the configuration as described above, as shown in FIG. 10, the light (blue light LB) emitted from the blue LED 631 of each light source device 63 is converted into white light LW by the quantum dots 632 in the quantum dot sheet 637. . In addition, since the jig 638 is made of white polycarbonate, the jig 638 shines white as a whole when light is scattered by the quantum dot sheet 637 or the jig 638. As described above, the white light LW is emitted from each light source device 63 toward the diffusion plate 64. As a result, the liquid crystal panel 400 is irradiated with white light.
 なお、本実施形態においては、LEDパッケージ631Pによって発光素子パッケージが実現され、量子ドットシート637によって量子ドット含有体が実現されている。 In the present embodiment, a light emitting device package is realized by the LED package 631P, and a quantum dot containing body is realized by the quantum dot sheet 637.
<1.5 効果>
 本実施形態によれば、青色LED631と量子ドット632とを用いた構成の光源装置63を有するバックライト装置600において、LEDパッケージ631Pの直上すなわち青色LED631から比較的近い位置に、量子ドット632を含む量子ドットシート637が配置されている。このため、青色LED631から発せられた光はすぐに白色光に変換される。また、LEDパッケージ631Pの直上に量子ドットシート637を配置するための治具638は、白色のポリカーボネートで形成されている。このため、量子ドットシート637や治具638で散乱された光によって、当該治具638は白く光る。以上より、この光源装置63からは、一般的な白色LEDパッケージが設けられている場合と同様に、白色光が発せられる。従って、バックライト装置600内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、部分点灯が行われた際に点灯エリアの周囲に黄色味を帯びた光が照射されることはない。従って、本実施形態に係るバックライト装置600を用いてローカルディミング処理が行われても、光の反射が繰り返されることに起因する色むらが生じることはない。
<1.5 Effect>
According to the present embodiment, in the backlight device 600 having the light source device 63 configured using the blue LEDs 631 and the quantum dots 632, the quantum dots 632 are included directly above the LED package 631P, that is, at a position relatively close to the blue LED 631. A quantum dot sheet 637 is disposed. For this reason, the light emitted from the blue LED 631 is immediately converted into white light. The jig 638 for placing the quantum dot sheet 637 directly above the LED package 631P is formed of white polycarbonate. For this reason, the jig 638 shines white by the light scattered by the quantum dot sheet 637 and the jig 638. As described above, the light source device 63 emits white light as in the case where a general white LED package is provided. Accordingly, the light propagating in the backlight device 600 is white light, and even if the light is repeatedly reflected inside the device, yellowish light is emitted around the lighting area when partial lighting is performed. It will never be done. Therefore, even when the local dimming process is performed using the backlight device 600 according to the present embodiment, color unevenness due to repeated light reflection does not occur.
 また、治具638は、LEDパッケージ631Pの近傍領域に設けられるにすぎない。換言すれば、日本の特開2015-216104号公報に開示された従来構成と比較すると、本実施形態における治具638で囲まれる領域の面積は従来構成における抑制部材で囲まれる領域の面積よりもきわめて小さく、かつ、本実施形態における治具638の高さは従来構成における抑制部材の高さよりもきわめて低い。すなわち、本実施形態においては、エリアの境界部分に壁となる物理的な部材が設けられるわけではない。このため、青色LED631や量子ドット632に関して個体差(ばらつき)があっても、隣接するエリア間で光が混ざり合うことにより、そのような個体差に起因する色むら・輝度むらの発生が抑制される。また、治具638の影に起因する色むらが生じることもない。 Also, the jig 638 is only provided in the vicinity of the LED package 631P. In other words, compared with the conventional configuration disclosed in Japanese Unexamined Patent Application Publication No. 2015-216104, the area of the region surrounded by the jig 638 in this embodiment is larger than the area of the region surrounded by the suppression member in the conventional configuration. It is extremely small, and the height of the jig 638 in this embodiment is extremely lower than the height of the suppressing member in the conventional configuration. In other words, in the present embodiment, a physical member serving as a wall is not provided at the boundary portion of the area. For this reason, even if there is an individual difference (variation) with respect to the blue LED 631 or the quantum dot 632, the occurrence of color unevenness and luminance unevenness due to such individual differences is suppressed by mixing light between adjacent areas. The Further, color unevenness due to the shadow of the jig 638 does not occur.
 また、量子ドットシート637は上述したように青色LED631から比較的近い位置に配置されるが、図32に示した表面実装型の構成と比較すると量子ドットシート637は青色LED631から離れた位置に配置されており、図8から把握されるように青色LED631と量子ドットシート637との間には空気層も存在する。このため、熱の影響によって量子ドット632が劣化することもない。また、量子ドット632は、耐湿性のバリアフィルム72a,72bによって保護されている。このため、湿度の影響によって量子ドット632が劣化することもない。 Further, the quantum dot sheet 637 is disposed at a position relatively close to the blue LED 631 as described above, but the quantum dot sheet 637 is disposed at a position away from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As can be understood from FIG. 8, an air layer is also present between the blue LED 631 and the quantum dot sheet 637. For this reason, the quantum dot 632 is not deteriorated by the influence of heat. The quantum dots 632 are protected by moisture- resistant barrier films 72a and 72b. For this reason, the quantum dot 632 is not deteriorated by the influence of humidity.
 さらに、日本の特開2015-216104号公報に開示された構成と比較すると、構造は複雑なものではない。また、日本の特開2015-216104号公報に開示された構成によれば、表示部のほぼ全面に対応するように量子ドットが設けられるが、本実施形態によれば、各LEDパッケージ631P(各青色LED631)の直上付近のみに量子ドット632が設けられる。このため、必要とされる量子ドット632の量が比較的少なくなる。以上より、製造コストを安くすることができる。 Furthermore, compared with the configuration disclosed in Japanese Patent Laid-Open No. 2015-216104, the structure is not complicated. Further, according to the configuration disclosed in Japanese Unexamined Patent Publication No. 2015-216104, quantum dots are provided so as to correspond to almost the entire surface of the display unit, but according to the present embodiment, each LED package 631P (each The quantum dots 632 are provided only near the blue LED 631). For this reason, the amount of quantum dots 632 required is relatively small. As described above, the manufacturing cost can be reduced.
 以上のように、本実施形態によれば、青色LED631と量子ドット632とを組み合わせた構成の光源装置63を有する直下型のバックライト装置600を色むらを生ずることなく低コストで実現することができる。 As described above, according to the present embodiment, the direct type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dot 632 can be realized at low cost without causing color unevenness. it can.
 また、本実施形態に係る液晶表示装置ではローカルディミング処理が行われる。すなわち、青色LED631の発光強度がエリア毎に制御される。このため、低消費電力化が可能となる。また、高階調部分において集中的に強い発光強度で青色LED631を発光させることにより、ダイナミックレンジを拡大することが可能となる。 In the liquid crystal display device according to this embodiment, local dimming processing is performed. That is, the emission intensity of the blue LED 631 is controlled for each area. For this reason, power consumption can be reduced. In addition, it is possible to expand the dynamic range by causing the blue LED 631 to emit light with strong emission intensity intensively in the high gradation portion.
<1.6 変形例>
 以下、上記第1の実施形態の変形例について説明する。
<1.6 Modification>
Hereinafter, modifications of the first embodiment will be described.
<1.6.1 第1の変形例>
 上記第1の実施形態では、各光源装置63には、LEDパッケージ631Pの直上に量子ドットシート637(または、量子ドット632を封入した例えばシート状のガラス)を配置するための治具638が設けられていた(図8参照)。この治具638に関し、内部にアルミナなどの放熱フィラー(放熱用充填剤)を練り込んでおいても良い。これにより、青色LED631の発光によって生じた熱は、治具638を介してLED基板62へと放熱される。その結果、熱による量子ドット632の劣化が効果的に抑制される。
<1.6.1 First Modification>
In the first embodiment, each light source device 63 is provided with a jig 638 for placing a quantum dot sheet 637 (or a sheet-like glass encapsulating the quantum dots 632) directly above the LED package 631P. (See FIG. 8). Regarding the jig 638, a heat dissipating filler such as alumina (heat dissipating filler) may be kneaded therein. Thereby, heat generated by light emission of the blue LED 631 is radiated to the LED substrate 62 via the jig 638. As a result, deterioration of the quantum dots 632 due to heat is effectively suppressed.
<1.6.2 第2の変形例>
 上記第1の実施形態においては、治具638はポリカーボネートによって形成されていた。これに対して、本変形例においては、治具638は放熱性に優れた金属(例えば、銅)によって形成される。これにより、上記第1の変形例と同様、青色LED631の発光によって生じた熱は、治具638を介してLED基板62へと放熱される。その結果、熱による量子ドット632の劣化が効果的に抑制される。
<1.6.2 Second Modification>
In the first embodiment, the jig 638 is made of polycarbonate. On the other hand, in this modification, the jig 638 is formed of a metal (for example, copper) having excellent heat dissipation. As a result, the heat generated by the light emission of the blue LED 631 is dissipated to the LED substrate 62 via the jig 638, as in the first modification. As a result, deterioration of the quantum dots 632 due to heat is effectively suppressed.
<1.6.3 第3の変形例>
 本変形例においては、LEDパッケージ631Pの直上に量子ドットシート637(または、量子ドット632を封入した例えばシート状のガラス)を配置するための治具638は、反射率の高い樹脂(光反射性樹脂)によって形成される。反射率の高い樹脂としては、上述したポリカーボネートの他に例えばポリエステルが挙げられる。このような本変形例によれば、青色LED631から発せられた青色光が量子ドットシート637(または、量子ドット632を封入したシート状のガラス)を通過することなく治具638から漏れることを抑制することができる。
<1.6.3 Third Modification>
In this modification, the jig 638 for placing the quantum dot sheet 637 (or, for example, a sheet-like glass encapsulating the quantum dots 632) directly above the LED package 631P is made of a highly reflective resin (light reflective). Resin). Examples of the resin having high reflectance include polyester in addition to the polycarbonate described above. According to such a modification, blue light emitted from the blue LED 631 is prevented from leaking from the jig 638 without passing through the quantum dot sheet 637 (or a sheet-like glass enclosing the quantum dots 632). can do.
<1.6.4 第4の変形例>
 本変形例においては、LEDパッケージ631Pの直上に量子ドットシート637(または、量子ドット632を封入した例えばシート状のガラス)を配置するための治具638は、反射率の高い金属(光反射性金属)によって形成される。反射率の高い金属としては、例えばアルミニウムや銀が挙げられる。このような本変形例によれば、上記第3の変形例と同様、青色LED631から発せられた青色光が量子ドットシート637(または、量子ドット632を封入したシート状のガラス)を通過することなく治具638から漏れることを抑制することができる。
<1.6.4 Fourth Modification>
In the present modification, the jig 638 for placing the quantum dot sheet 637 (or, for example, a sheet-like glass encapsulating the quantum dots 632) immediately above the LED package 631P is a highly reflective metal (light reflective property). Metal). Examples of the metal having high reflectivity include aluminum and silver. According to this modification, blue light emitted from the blue LED 631 passes through the quantum dot sheet 637 (or a sheet-like glass enclosing the quantum dots 632), as in the third modification. And leakage from the jig 638 can be suppressed.
<2.第2の実施形態>
 第2の実施形態について説明する。全体構成,装置装置63を有するバックライト装置600の概略,ローカルディミング処理の手順,およびバックライト装置600の駆動については、上記第1の実施形態と同様であるので、説明を省略する(図1~図7を参照)。
<2. Second Embodiment>
A second embodiment will be described. The overall configuration, the outline of the backlight device 600 having the device device 63, the procedure of the local dimming process, and the driving of the backlight device 600 are the same as those in the first embodiment, and the description thereof is omitted (FIG. 1). (See FIG. 7).
<2.1 光源装置の詳細な構成>
 図11は、本実施形態における光源装置63の詳細な構成を示す図である。本実施形態における光源装置63は、青色LED631と、パッケージ基板633と、リフレクタ634と、ボンディングワイヤー635a,635bと、電極636a,636bと、量子ドットを含有するガラス部材639とによって構成されている。青色LED631とパッケージ基板633とリフレクタ634とボンディングワイヤー635a,635bと電極636a,636bとによって1つのLEDパッケージ631Pが構成されている。ガラス部材639は、量子ドット632を封入したレンズ639aと、レンズ639aをLEDパッケージ631Pの直上に固定するための脚部639bとによって構成されている。
<2.1 Detailed configuration of light source device>
FIG. 11 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. The light source device 63 in the present embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, and a glass member 639 containing quantum dots. The blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P. The glass member 639 includes a lens 639a enclosing the quantum dots 632 and a leg portion 639b for fixing the lens 639a directly above the LED package 631P.
 青色LED631は、パッケージ基板633上に設けられ、樹脂などの封止材によって覆われている。パッケージ基板633上の青色LED631の周囲の領域には、光を反射するためのリフレクタ634が設けられている。青色LED631のアノードはボンディングワイヤー635aを介して電極636aに接続され、青色LED631のカソードはボンディングワイヤー635bを介して電極636bに接続されている。レンズ639a内において、LEDパッケージ631Pの直上の位置に量子ドット632が配置されている。なお、ガラス部材639に代えて、同様の構成を有する樹脂部材を設けるようにしても良い。 The blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin. In a region around the blue LED 631 on the package substrate 633, a reflector 634 for reflecting light is provided. The anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b. In the lens 639a, the quantum dot 632 is disposed at a position immediately above the LED package 631P. Instead of the glass member 639, a resin member having the same configuration may be provided.
 以上のような構成において、図12に示すように、各光源装置63の青色LED631から出射された光(青色光LB)は、レンズ639a内に封入された量子ドット632によって白色光LWに変換される。ここで、本実施形態においては、レンズ639aが用いられているため、光源装置63からの出射光が効果的に拡散される。そして、その拡散された光が拡散板64に入射し、その結果、液晶パネル400に白色光が照射される。 In the configuration as described above, as shown in FIG. 12, the light (blue light LB) emitted from the blue LED 631 of each light source device 63 is converted into white light LW by the quantum dots 632 enclosed in the lens 639a. The Here, in this embodiment, since the lens 639a is used, the emitted light from the light source device 63 is effectively diffused. Then, the diffused light enters the diffusion plate 64, and as a result, the liquid crystal panel 400 is irradiated with white light.
 なお、本実施形態においては、LEDパッケージ631Pによって発光素子パッケージが実現され、ガラス部材639によって量子ドット含有体が実現され、レンズ639aによって量子ドット保持部が実現されている。 In the present embodiment, a light emitting device package is realized by the LED package 631P, a quantum dot containing body is realized by the glass member 639, and a quantum dot holding unit is realized by the lens 639a.
<2.2 効果>
 本実施形態によれば、青色LED631と量子ドット632とを用いた構成の光源装置63を有するバックライト装置600において、LEDパッケージ631Pの直上すなわち青色LED631から比較的近い位置に、量子ドット632を封入したレンズ639aが配置されている。このため、青色LED631から発せられた光はすぐに白色光に変換される。その白色光は、レンズ639aによって拡散されて、光源装置63から出射される。以上より、上記第1の実施形態と同様、バックライト装置600内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、部分点灯が行われた際に点灯エリアの周囲に黄色味を帯びた光が照射されることはない。従って、本実施形態に係るバックライト装置600を用いてローカルディミング処理が行われても、光の反射が繰り返されることに起因する色むらが生じることはない。
<2.2 Effect>
According to this embodiment, in the backlight device 600 having the light source device 63 configured using the blue LEDs 631 and the quantum dots 632, the quantum dots 632 are encapsulated immediately above the LED package 631P, that is, at a position relatively close to the blue LEDs 631. A lens 639a is disposed. For this reason, the light emitted from the blue LED 631 is immediately converted into white light. The white light is diffused by the lens 639 a and emitted from the light source device 63. As described above, similarly to the first embodiment, the light propagating through the backlight device 600 is white light, and even if the light is repeatedly reflected inside the device, the partial lighting is performed when the partial lighting is performed. The surrounding area is not irradiated with yellowish light. Therefore, even when the local dimming process is performed using the backlight device 600 according to the present embodiment, color unevenness due to repeated light reflection does not occur.
 また、上記第1の実施形態と同様、本実施形態においても、エリアの境界部分に壁となる物理的な部材が設けられるわけではない。このため、青色LED631や量子ドット632に関して個体差(ばらつき)があっても、隣接するエリア間で光が混ざり合うことにより、そのような個体差に起因する色むら・輝度むらの発生が抑制される。 Also, as in the first embodiment, in this embodiment, a physical member serving as a wall is not provided at the boundary portion of the area. For this reason, even if there is an individual difference (variation) with respect to the blue LED 631 or the quantum dot 632, the occurrence of color unevenness and luminance unevenness due to such individual differences is suppressed by mixing light between adjacent areas. The
 また、量子ドット632を封入したレンズ639aは上述したように青色LED631から比較的近い位置に配置されるが、図32に示した表面実装型の構成と比較すると量子ドット632は青色LED631から離れた位置に配置されており、図11から把握されるように青色LED631と量子ドット632との間には空気層も存在する。このため、上記第1の実施形態と同様、熱の影響によって量子ドット632が劣化することもない。 Further, as described above, the lens 639a enclosing the quantum dot 632 is disposed at a position relatively close to the blue LED 631, but the quantum dot 632 is separated from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As is understood from FIG. 11, an air layer is also present between the blue LED 631 and the quantum dot 632. For this reason, as in the first embodiment, the quantum dots 632 are not deteriorated by the influence of heat.
 さらに、日本の特開2015-216104号公報に開示された構成と比較すると、構造は複雑なものではない。また、本実施形態によれば、各LEDパッケージ631P(各青色LED631)の直上付近のみに量子ドット632が設けられる。このため、上記第1の実施形態と同様、製造コストを安くすることができる。 Furthermore, compared with the configuration disclosed in Japanese Patent Laid-Open No. 2015-216104, the structure is not complicated. Further, according to the present embodiment, the quantum dots 632 are provided only in the vicinity immediately above each LED package 631P (each blue LED 631). For this reason, as in the first embodiment, the manufacturing cost can be reduced.
 以上のように、本実施形態においても、上記第1の実施形態と同様、青色LED631と量子ドット632とを組み合わせた構成の光源装置63を有する直下型のバックライト装置600を色むらを生ずることなく低コストで実現することができる。 As described above, also in the present embodiment, as in the first embodiment, the direct-type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dots 632 causes uneven color. And can be realized at low cost.
<2.3 変形例>
 図13は、上記第2の実施形態の変形例における光源装置の詳細な構成を示す図である。上記第2の実施形態においては、光源装置63から出射された白色光が効果的に拡散するよう、LEDパッケージ631P上にはレンズ639aが設けられていた。しかしながら、これに限定されず、図13に示すように、量子ドット632を封入したシート状のガラス639cをLEDパッケージ631P上に設けて、当該ガラス639c内に散乱剤(例えば、散乱粒子や発泡体)79を混入することによって白色光を拡散させるようにしても良い。
<2.3 Modification>
FIG. 13 is a diagram illustrating a detailed configuration of the light source device according to the modification of the second embodiment. In the second embodiment, the lens 639a is provided on the LED package 631P so that the white light emitted from the light source device 63 is effectively diffused. However, the present invention is not limited to this, and as shown in FIG. 13, a sheet-like glass 639 c enclosing the quantum dots 632 is provided on the LED package 631 </ b> P, and a scattering agent (for example, scattering particles or foams) is provided in the glass 639 c. ) 79 may be mixed to diffuse white light.
<3.第3の実施形態>
 第3の実施形態について説明する。全体構成,バックライト装置600の概略,ローカルディミング処理の手順,およびバックライト装置600の駆動については、上記第1の実施形態と同様であるので、説明を省略する(図1~図7を参照)。
<3. Third Embodiment>
A third embodiment will be described. Since the overall configuration, the outline of the backlight device 600, the procedure of the local dimming process, and the driving of the backlight device 600 are the same as those in the first embodiment, description thereof will be omitted (see FIGS. 1 to 7). ).
<3.1 光源装置の詳細な構成>
 図14は、本実施形態における光源装置63の詳細な構成を示す図である。本実施形態における光源装置63は、青色LED631と、パッケージ基板633と、リフレクタ634と、ボンディングワイヤー635a,635bと、電極636a,636bと、量子ドット632を含む量子ドットシート637と、治具638とによって構成されている。青色LED631とパッケージ基板633とリフレクタ634とボンディングワイヤー635a,635bと電極636a,636bとによって1つのLEDパッケージ631Pが構成されている。なお、治具638の形状が、上記第1の実施形態(図8参照)とは異なっている。量子ドットシート637については、上記第1の実施形態と同様の構成(図9参照)である。
<3.1 Detailed Configuration of Light Source Device>
FIG. 14 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. The light source device 63 in this embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by. The blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P. The shape of the jig 638 is different from that of the first embodiment (see FIG. 8). The quantum dot sheet 637 has the same configuration as that of the first embodiment (see FIG. 9).
 図14~図16を参照しつつ、本実施形態における治具638について詳しく説明する。治具638は、樹脂によって形成され、図14~図16に示すように断面H型の形状を有している。治具638は、量子ドットシート637を載置するための載置部638aと、当該載置部638aを支持する支持部638bとによって構成されている(図15参照)。載置部638aは、1つのLEDパッケージ631Pの上部全体を覆うように面状に形成されている(図14および図15を参照)。支持部638bは、1つのLEDパッケージ631Pの周囲を取り囲むように形成されている。支持部638bは、載置部638aとの結合部分638pよりも下方に位置する固定脚部682と、載置部638aとの結合部分638pよりも上方に位置する保持枠部683とからなる(図16参照)。なお、固定脚部682はLED基板62(図3参照)に固定される。このような構成により、載置部638aの上方には、量子ドットシート637を配置するための空間である凹部684が形成されている。 The jig 638 in this embodiment will be described in detail with reference to FIGS. The jig 638 is made of resin and has an H-shaped cross section as shown in FIGS. The jig 638 includes a placement portion 638a for placing the quantum dot sheet 637 and a support portion 638b that supports the placement portion 638a (see FIG. 15). The mounting portion 638a is formed in a planar shape so as to cover the entire upper portion of one LED package 631P (see FIGS. 14 and 15). The support portion 638b is formed so as to surround the periphery of one LED package 631P. The support portion 638b includes a fixed leg portion 682 positioned below the coupling portion 638p with the mounting portion 638a and a holding frame portion 683 positioned above the coupling portion 638p with the mounting portion 638a (see FIG. 16). The fixed leg 682 is fixed to the LED substrate 62 (see FIG. 3). With such a configuration, a recess 684 that is a space for placing the quantum dot sheet 637 is formed above the placement portion 638a.
 上述のような治具638の構成を踏まえ、図14に示す光源装置63の構成について更に詳しく説明する。青色LED631は、パッケージ基板633上に設けられ、樹脂などの封止材によって覆われている。パッケージ基板633上の青色LED631の周囲の領域には、光を反射するためのリフレクタ634が設けられている。青色LED631のアノードはボンディングワイヤー635aを介して電極636aに接続され、青色LED631のカソードはボンディングワイヤー635bを介して電極636bに接続されている。LEDパッケージ631Pの周囲には上述した構成の治具638が設けられており、その治具638の載置部638aに量子ドットシート637が固定されている。このようにして、光源装置63毎に、LEDパッケージ631Pの直上に位置する(治具638の)載置部638a上に、量子ドット632を含む量子ドットシート637が配置されている。なお、量子ドットシート637に代えて、量子ドット632を封入した例えばシート状のガラスを治具638の載置部638a上に載置するようにしても良い。 Based on the configuration of the jig 638 as described above, the configuration of the light source device 63 shown in FIG. The blue LED 631 is provided on the package substrate 633 and is covered with a sealing material such as resin. In a region around the blue LED 631 on the package substrate 633, a reflector 634 for reflecting light is provided. The anode of the blue LED 631 is connected to the electrode 636a through the bonding wire 635a, and the cathode of the blue LED 631 is connected to the electrode 636b through the bonding wire 635b. The jig 638 having the above-described configuration is provided around the LED package 631P, and the quantum dot sheet 637 is fixed to the placement portion 638a of the jig 638. In this way, for each light source device 63, the quantum dot sheet 637 including the quantum dots 632 is arranged on the mounting portion 638a (of the jig 638) located immediately above the LED package 631P. Instead of the quantum dot sheet 637, for example, sheet-like glass enclosing the quantum dots 632 may be placed on the placement portion 638a of the jig 638.
 ところで、治具638の支持部638bは、青色LED631から発せられた光を反射または散乱させる構成を有している。これに関し、本実施形態においては、支持部638bのうちの固定脚部682の内側の面(図14で符号681を付した網掛け部分)が、青色LED631から発せられた光を反射または散乱させるように形成されている。より詳しくは、固定脚部682の内側の面に対して、ブラスト加工(処理対象物の表面に研磨材を高速で吹き付けることによって当該表面を加工すること)などの荒らし処理(処理対象物の表面を荒らす処理)が施されている。従って、固定脚部682の内側の面は、滑らかな状態の面ではなく、模式的には図17に示すようにざらつきのある面となっている。また、本実施形態においては、治具638の全体が透明となっている。 Incidentally, the support portion 638b of the jig 638 has a configuration for reflecting or scattering light emitted from the blue LED 631. In this regard, in the present embodiment, the inner surface of the fixed leg portion 682 (the shaded portion denoted by reference numeral 681 in FIG. 14) of the support portion 638b reflects or scatters the light emitted from the blue LED 631. It is formed as follows. More specifically, roughening treatment (surface of the object to be processed) such as blasting (processing the surface of the object to be processed by spraying an abrasive at a high speed) on the inner surface of the fixed leg 682. Is applied). Accordingly, the inner surface of the fixed leg portion 682 is not a smooth surface, but is a rough surface as schematically shown in FIG. In the present embodiment, the entire jig 638 is transparent.
 なお、治具638の載置部638aが図18に示すような空間部901を有していない理由は、光源装置63の作製に関して、液体状の量子ドットを治具638(詳しくは図16の凹部684)に注入してそれらを焼き固めるという手法を採用できるようにするためである。但し、光源装置63を作製する手法については、特に限定されない。また、上述したように本実施形態においては治具638の全体が透明となっているが、仮に治具638の全体が反射材あるいは散乱剤で構成されていると、青色LED631から出射された光に関して、図19で符号902を付した矢印で示すように治具638の載置部638aで反射する成分が多くなる。その結果、量子ドットシート637に入射する光の成分が少なくなり、光の利用効率が低下する。また、仮に上述したような荒らし処理を施すことなく治具638の全体を透明にした場合には、リフレクタ634が設けられていても当該リフレクタ634によって光の全ての成分が反射されるわけではないので、青色LED631から出射された光に関して、図20で符号903を付した矢印で示すように治具638の側面から漏れる成分が多くなる。従って、光の利用効率が低下する。 The reason why the mounting portion 638a of the jig 638 does not have the space portion 901 as shown in FIG. 18 is that liquid quantum dots are attached to the jig 638 (see FIG. This is because it is possible to adopt a method of injecting into the recesses 684) and baking them. However, the method for manufacturing the light source device 63 is not particularly limited. Further, as described above, in the present embodiment, the entire jig 638 is transparent. However, if the entire jig 638 is made of a reflective material or a scattering agent, the light emitted from the blue LED 631 is used. As shown in FIG. 19, the component reflected by the mounting portion 638a of the jig 638 increases as indicated by the arrow denoted by reference numeral 902 in FIG. As a result, the light component incident on the quantum dot sheet 637 decreases, and the light use efficiency decreases. Further, if the entire jig 638 is made transparent without performing the above-described roughening process, not all the components of the light are reflected by the reflector 634 even if the reflector 634 is provided. Therefore, with respect to the light emitted from the blue LED 631, a component leaking from the side surface of the jig 638 increases as indicated by the arrow denoted by reference numeral 903 in FIG. Therefore, the light use efficiency is reduced.
 この点、本実施形態に係る構成によれば、図21に示すように、各光源装置63の青色LED631から出射された光(青色光)に関して、治具638の載置部638aを透過する成分(符号73を付した矢印を参照)や治具638の固定脚部682の内側の面(符号681を付した網掛け部分)で散乱して量子ドットシート637へと入射する成分(符号74を付した矢印を参照)が多くなる。以上のようにして、青色LED631から出射された青色光は効率良く量子ドットシート637に入射され、青色光は量子ドット632によって白色光に変換される。このようにして、各光源装置63から拡散板64に向けて白色光が出射される。その結果、液晶パネル400に白色光が照射される。 In this regard, according to the configuration according to the present embodiment, as shown in FIG. 21, a component that transmits light (blue light) emitted from the blue LED 631 of each light source device 63 through the mounting portion 638 a of the jig 638. (Refer to the arrow marked with reference numeral 73) and components that are scattered on the inner surface of the fixed leg portion 682 of the jig 638 (shaded portion marked with reference numeral 681) and enter the quantum dot sheet 637 (reference numeral 74) (See the attached arrow). As described above, the blue light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637, and the blue light is converted into white light by the quantum dots 632. In this way, white light is emitted from each light source device 63 toward the diffusion plate 64. As a result, the liquid crystal panel 400 is irradiated with white light.
 なお、本実施形態においては、LEDパッケージ631Pによって発光素子パッケージが実現され、量子ドットシート637によって量子ドット含有体が実現されている。 In the present embodiment, a light emitting device package is realized by the LED package 631P, and a quantum dot containing body is realized by the quantum dot sheet 637.
<3.2 効果>
 本実施形態によれば、青色LED631と量子ドット632とを用いた構成の光源装置63を有するバックライト装置600において、量子ドット632を含有する量子ドットシート637を固定するための治具638が設けられる。治具638は青色LED631を含むLEDパッケージ631Pの直上に位置する載置部638aと当該載置部638aを支持する支持部638bとによって構成されているところ、当該載置部638a上に量子ドットシート637が配置されている。このように、青色LED631の上方かつ当該青色LED631から比較的近い位置に、量子ドットシート637が配置されている。このため、青色LED631から発せられた光はすぐに白色光に変換される。ここで、治具638を構成する支持部638bのうちの固定脚部682の内側の面には荒らし処理が施されている。このため、青色LED631から発せられた光に関して、治具638の側面から漏れることなく量子ドットシート637へと入射する成分が多くなる。これにより、青色LED631から発せられた光は効率良く量子ドットシート637に入射される。このようにして青色LED631から発せられた光の利用効率が高められる。従って、青色LED631から発せられた光は効率的に白色光に変換される。これにより、この光源装置63からは、一般的な白色LEDパッケージが設けられている場合と同様に、白色光が発せられる。その結果、バックライト装置600内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、部分点灯が行われた際に点灯エリアの周囲に黄色味を帯びた光が照射されることはない。従って、本実施形態に係るバックライト装置600を用いてローカルディミング処理が行われても、光の反射が繰り返されることに起因する色むらが生じることはない。
<3.2 Effects>
According to the present embodiment, a jig 638 for fixing a quantum dot sheet 637 containing the quantum dots 632 is provided in the backlight device 600 having the light source device 63 configured using the blue LEDs 631 and the quantum dots 632. It is done. The jig 638 includes a mounting portion 638a positioned immediately above the LED package 631P including the blue LED 631 and a support portion 638b that supports the mounting portion 638a. A quantum dot sheet is formed on the mounting portion 638a. 637 is arranged. Thus, the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631. For this reason, the light emitted from the blue LED 631 is immediately converted into white light. Here, the inner surface of the fixed leg portion 682 in the support portion 638b constituting the jig 638 is subjected to a roughening process. For this reason, with respect to the light emitted from the blue LED 631, there are many components incident on the quantum dot sheet 637 without leaking from the side surface of the jig 638. Thereby, the light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637. In this way, the utilization efficiency of light emitted from the blue LED 631 is increased. Therefore, the light emitted from the blue LED 631 is efficiently converted into white light. Thereby, white light is emitted from the light source device 63 as in the case where a general white LED package is provided. As a result, the light propagating in the backlight device 600 becomes white light, and even if the light is repeatedly reflected inside the device, yellowish light is emitted around the lighting area when partial lighting is performed. There is no irradiation. Therefore, even when the local dimming process is performed using the backlight device 600 according to the present embodiment, color unevenness due to repeated light reflection does not occur.
 また、上記第1の実施形態と同様、本実施形態においても、エリアの境界部分に壁となる物理的な部材が設けられるわけではない。このため、青色LED631や量子ドット632に関して個体差(ばらつき)があっても、隣接するエリア間で光が混ざり合うことにより、そのような個体差に起因する色むら・輝度むらの発生が抑制される。 Also, as in the first embodiment, in this embodiment, a physical member serving as a wall is not provided at the boundary portion of the area. For this reason, even if there is an individual difference (variation) with respect to the blue LED 631 or the quantum dot 632, the occurrence of color unevenness and luminance unevenness due to such individual differences is suppressed by mixing light between adjacent areas. The
 さらに、量子ドットシート637は上述したように青色LED631から比較的近い位置に配置されるが、図32に示した表面実装型の構成と比較すると量子ドットシート637は青色LED631から離れた位置に配置されており、図14から把握されるように青色LED631と量子ドットシート637との間には治具638の載置部638aすなわち樹脂層も存在する。このため、熱の影響によって量子ドット632が劣化することもない。また、量子ドット632は、耐湿性のバリアフィルム72a,72bによって保護されている。このため、湿度の影響によって量子ドット632が劣化することもない。 Further, the quantum dot sheet 637 is disposed at a position relatively close to the blue LED 631 as described above, but the quantum dot sheet 637 is disposed at a position away from the blue LED 631 as compared with the surface mount type configuration shown in FIG. As can be understood from FIG. 14, there is also a placement portion 638 a of the jig 638, that is, a resin layer, between the blue LED 631 and the quantum dot sheet 637. For this reason, the quantum dot 632 is not deteriorated by the influence of heat. The quantum dots 632 are protected by moisture- resistant barrier films 72a and 72b. For this reason, the quantum dot 632 is not deteriorated by the influence of humidity.
 さらにまた、日本の特開2015-216104号公報に開示された構成と比較すると、構造は複雑なものではない。また、本実施形態によれば、各LEDパッケージ631P(各青色LED631)の上方付近のみに量子ドット632が設けられる。このため、上記第1の実施形態と同様、製造コストを安くすることができる。 Furthermore, compared with the configuration disclosed in Japanese Patent Laid-Open No. 2015-216104, the structure is not complicated. Further, according to the present embodiment, the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631). For this reason, as in the first embodiment, the manufacturing cost can be reduced.
 以上のように、本実施形態においても、上記第1の実施形態と同様、青色LED631と量子ドット632とを組み合わせた構成の光源装置63を有する直下型のバックライト装置600を色むらを生ずることなく低コストで実現することができる。 As described above, also in the present embodiment, as in the first embodiment, the direct-type backlight device 600 having the light source device 63 configured by combining the blue LED 631 and the quantum dots 632 causes uneven color. And can be realized at low cost.
<3.3 変形例>
 以下、上記第3の実施形態の変形例について説明する。
<3.3 Modification>
Hereinafter, modified examples of the third embodiment will be described.
<3.3.1 第1の変形例>
 上記第3の実施形態では、青色LED631から発せられた光を治具638の支持部638bにおいて反射または散乱させるための構成として、支持部638bのうちの固定脚部682の内側の面(図14で符号681を付した網掛け部分)に対して荒らし処理を施すという構成が採用されていた。これに対して、本変形例においては、治具638を構成する支持部638bのうちの固定脚部682の内側の面に反射塗料が塗布される。このような構成によれば、青色LED631から出射されてリフレクタ634を透過した光(青色光)に関して、治具638の固定脚部682の内側の面で反射塗料によって反射して量子ドットシート637へと入射する成分(図21で符号74を付した矢印を参照)が多くなる。このように、治具638の固定脚部682の内側の面に反射塗料を塗布することによっても、青色LED631から発せられた光の利用効率を高めることができる。
<3.3.1 First Modification>
In the third embodiment, as a configuration for reflecting or scattering light emitted from the blue LED 631 at the support portion 638b of the jig 638, the inner surface of the fixed leg portion 682 of the support portion 638b (FIG. 14). In this case, a roughening process is applied to the shaded portion (681). On the other hand, in the present modification, the reflective paint is applied to the inner surface of the fixed leg portion 682 in the support portion 638b constituting the jig 638. According to such a configuration, the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the reflective paint on the inner surface of the fixed leg 682 of the jig 638 and is applied to the quantum dot sheet 637. And the incident component (see the arrow denoted by reference numeral 74 in FIG. 21) increase. Thus, the utilization efficiency of the light emitted from the blue LED 631 can also be improved by applying the reflective paint to the inner surface of the fixed leg portion 682 of the jig 638.
<3.3.2 第2の変形例>
 本変形例においては、青色LED631から発せられた光の利用効率を高めるために、治具638を構成する支持部638bの一部の表面が、青色LED631から発せられた光を反射または散乱させる形状に加工されている。具体的には、図22に示すように、治具638の固定脚部682の内側の表面がギザギザな形状に加工されている(符号685を付した部分を参照)。このような構成によれば、青色LED631から出射されてリフレクタ634を透過した光(青色光)に関して、上述のようにギザギザ状に加工された表面で反射して量子ドットシート637へと入射する成分(図23で符号75を付した矢印を参照)が多くなる。このように、治具638の固定脚部682の内側の表面をギザギザ状に加工することによっても、青色LED631から発せられた光の利用効率を高めることができる。なお、ここではギザギザな形状を例に挙げて説明したが、青色LED631から発せられた光を反射または散乱させることのできる形状であればギザギザな形状には限定されない。
<3.3.2 Second Modification>
In this modification, in order to improve the utilization efficiency of light emitted from the blue LED 631, a shape in which a part of the surface of the support portion 638b constituting the jig 638 reflects or scatters the light emitted from the blue LED 631. Has been processed. Specifically, as shown in FIG. 22, the inner surface of the fixed leg portion 682 of the jig 638 is processed into a jagged shape (see the portion denoted by reference numeral 685). According to such a configuration, the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the jagged surface as described above and incident on the quantum dot sheet 637. (Refer to the arrow with reference numeral 75 in FIG. 23). Thus, the utilization efficiency of the light emitted from the blue LED 631 can also be improved by processing the inner surface of the fixed leg portion 682 of the jig 638 in a jagged shape. In addition, although the jagged shape was described as an example here, the shape is not limited to the jagged shape as long as the light emitted from the blue LED 631 can be reflected or scattered.
<3.6.3 第3の変形例>
 上記第3の実施形態では、治具638の全体が透明であった。これに対して、本変形例においては、内部に薄い散乱剤を含有した治具638を採用することによって、図24に示すように、治具638の全体が乳白色となっている。なお、図24では、治具638を表す部分に斜線を付すことによって当該治具638の全体が乳白色であることを表している。ところで、治具638の全体を透明にした場合には、上述したように、青色LED631から出射された光に関して、治具638の側面から漏れる成分が多くなる。従って、光の利用効率が低下する。この点、本変形例によれば、青色LED631から出射されてリフレクタ634および荒らし処理が施されている部分を透過した光(青色光)に関して、治具638の内部で散乱して量子ドットシート637へと入射する成分(図25で符号76を付した矢印を参照)が多くなる。このように、内部に散乱剤を含有した治具638を採用することにより、青色LED631から発せられた光の利用効率を更に高めることが可能となる。
<3.6.3 Third Modification>
In the third embodiment, the entire jig 638 is transparent. On the other hand, in this modification, by using a jig 638 containing a thin scattering agent inside, the entire jig 638 is milky white as shown in FIG. In FIG. 24, the entire jig 638 is milky white by hatching the portion representing the jig 638. By the way, when the whole jig | tool 638 is made transparent, as above-mentioned, the component which leaks from the side surface of the jig | tool 638 increases regarding the light radiate | emitted from the blue LED631. Therefore, the light use efficiency is reduced. In this regard, according to this modification, the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 and the portion subjected to the roughening treatment is scattered inside the jig 638 and is scattered in the quantum dot sheet 637. The number of components incident on the head (see the arrow labeled 76 in FIG. 25) increases. As described above, by using the jig 638 containing the scattering agent inside, it is possible to further increase the utilization efficiency of the light emitted from the blue LED 631.
 なお、上記第1の変形例の構成および上記第2の変形例の構成においても、同様に、内部に散乱剤を含有した治具638を採用することにより、青色LED631から発せられた光の利用効率を更に高めることが可能となる。 Similarly, in the configuration of the first modification and the configuration of the second modification, the light emitted from the blue LED 631 is used by adopting the jig 638 containing a scattering agent therein. Efficiency can be further increased.
<4.第4の実施形態>
 第4の実施形態について説明する。全体構成,バックライト装置600の概略,ローカルディミング処理の手順,およびバックライト装置600の駆動については、上記第1の実施形態と同様であるので、説明を省略する(図1~図7を参照)。
<4. Fourth Embodiment>
A fourth embodiment will be described. Since the overall configuration, the outline of the backlight device 600, the procedure of the local dimming process, and the driving of the backlight device 600 are the same as those in the first embodiment, description thereof will be omitted (see FIGS. 1 to 7). ).
<4.1 光源装置の詳細な構成>
 図26は、本実施形態における光源装置63の詳細な構成を示す図である。本実施形態における光源装置63は、青色LED631と、パッケージ基板633と、リフレクタ634と、ボンディングワイヤー635a,635bと、電極636a,636bと、量子ドット632を含む量子ドットシート637と、治具638とによって構成されている。青色LED631とパッケージ基板633とリフレクタ634とボンディングワイヤー635a,635bと電極636a,636bとによって1つのLEDパッケージ631Pが構成されている。治具638の形状は、上記第3の実施形態と同様である。以下、上記第3の実施形態と異なる点について説明する。
<4.1 Detailed Configuration of Light Source Device>
FIG. 26 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. The light source device 63 in the present embodiment includes a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, a quantum dot sheet 637 including quantum dots 632, a jig 638, and the like. It is constituted by. The blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P. The shape of the jig 638 is the same as that of the third embodiment. Hereinafter, differences from the third embodiment will be described.
 上記第3の実施形態においては、青色LED631から発せられた光の利用効率を高めるために、治具638を構成する支持部638bのうちの固定脚部682の内側の面が、青色LED631から発せられた光を反射または散乱させるように形成されていた。これに対して、本実施形態においては、青色LED631から発せられた光の利用効率を高めるために、治具638を構成する支持部638bの外側の面が、青色LED631から発せられた光を反射または散乱させるように形成されている。より詳しくは、治具638を構成する支持部638bの外側の面(図26で符号686を付した網掛け部分)に対して、ブラスト加工などの荒らし処理が施されている。従って、支持部638bの外側の面は、滑らかな状態の面ではなく、模式的には図17に示すようにざらつきのある面となっている。また、本実施形態においても、治具638の全体が透明となっている。なお、図27に示すように、支持部638bのうち固定脚部682に相当する部分のみの外側の面に対して荒らし処理が施されていても良い。 In the third embodiment, in order to improve the utilization efficiency of light emitted from the blue LED 631, the inner surface of the fixed leg 682 of the support portion 638b constituting the jig 638 emits from the blue LED 631. It was formed to reflect or scatter the emitted light. On the other hand, in the present embodiment, the outer surface of the support portion 638b constituting the jig 638 reflects the light emitted from the blue LED 631 in order to increase the utilization efficiency of the light emitted from the blue LED 631. Or it is formed so as to be scattered. More specifically, roughening processing such as blasting is performed on the outer surface of the support portion 638b constituting the jig 638 (the shaded portion denoted by reference numeral 686 in FIG. 26). Therefore, the outer surface of the support portion 638b is not a smooth surface but is typically a rough surface as shown in FIG. Also in the present embodiment, the entire jig 638 is transparent. In addition, as shown in FIG. 27, the roughening process may be performed with respect to the outer surface of only the part corresponding to the fixed leg part 682 in the support part 638b.
<4.2 効果>
 本実施形態によれば、治具638を構成する支持部638bの外側の面には荒らし処理が施されている。このため、青色LED631から発せられた光に関して、治具638の側面から漏れることなく量子ドットシート637へと入射する成分(図28で符号77を付した矢印を参照)が多くなる。これにより、青色LED631から発せられた光は効率良く量子ドットシート637に入射される。このように、青色LED631から発せられた光の利用効率が高められる。また、上記第3の実施形態と同様、青色LED631の上方かつ当該青色LED631から比較的近い位置に量子ドットシート637が配置されている。以上より、青色LED631から発せられた光は効率良くすぐに白色光に変換される。これにより、この光源装置63から発せられてバックライト装置600内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、部分点灯が行われた際に点灯エリアの周囲に黄色味を帯びた光が照射されることはない。従って、ローカルディミング処理が行われても、光の反射が繰り返されることに起因する色むらが生じることはない。また、上記第1の実施形態と同様、各LEDパッケージ631P(各青色LED631)の上方付近のみに量子ドット632が設けられるため、必要とされる量子ドット632の量が比較的少なくなる。従って、製造コストを安くすることができる。以上より、本実施形態においても、青色LED631と量子ドット632とを組み合わせた構成の光源装置63を有するバックライト装置600を色むらを生ずることなく低コストで実現することができる。
<4.2 Effects>
According to the present embodiment, a roughening process is performed on the outer surface of the support portion 638b constituting the jig 638. For this reason, with respect to the light emitted from the blue LED 631, there are many components that enter the quantum dot sheet 637 without leaking from the side surface of the jig 638 (see the arrow denoted by reference numeral 77 in FIG. 28). Thereby, the light emitted from the blue LED 631 is efficiently incident on the quantum dot sheet 637. Thus, the utilization efficiency of the light emitted from the blue LED 631 is increased. Further, similarly to the third embodiment, the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631. As described above, the light emitted from the blue LED 631 is immediately and efficiently converted into white light. As a result, the light emitted from the light source device 63 and propagating through the backlight device 600 becomes white light, and even if the light is repeatedly reflected inside the device, when the partial lighting is performed, There is no yellowish light. Therefore, even when the local dimming process is performed, color unevenness due to repeated reflection of light does not occur. Further, similarly to the first embodiment, since the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631), the amount of the required quantum dots 632 is relatively small. Therefore, the manufacturing cost can be reduced. As described above, also in the present embodiment, the backlight device 600 having the light source device 63 configured by combining the blue LEDs 631 and the quantum dots 632 can be realized at low cost without causing color unevenness.
<4.3 変形例>
 以下、上記第4の実施形態の変形例について説明する。
<4.3 Modification>
Hereinafter, modified examples of the fourth embodiment will be described.
<4.3.1 第1の変形例>
 上記第4の実施形態では、青色LED631から発せられた光を治具638の支持部638bにおいて反射または散乱させるための構成として、支持部638bの外側の面(図26で符号686を付した網掛け部分)に対して荒らし処理を施すという構成が採用されていた。これに対して、本変形例においては、治具638を構成する支持部638bの外側の面に反射塗料が塗布される。このような構成によれば、青色LED631から出射されてリフレクタ634を透過した光(青色光)に関して、治具638を構成する支持部638bの外側の面で反射塗料によって反射して量子ドットシート637へと入射する成分(図28で符号77を付した矢印を参照)が多くなる。このように、治具638の支持部638bの外側の面に反射塗料を塗布することによっても、青色LED631から発せられた光の利用効率を高めることができる。
<4.3.1 First Modification>
In the fourth embodiment, as a configuration for reflecting or scattering the light emitted from the blue LED 631 at the support portion 638b of the jig 638, the outer surface of the support portion 638b (a mesh denoted by reference numeral 686 in FIG. 26). A configuration in which a roughening process is performed on the hanging portion) is employed. On the other hand, in the present modification, the reflective paint is applied to the outer surface of the support portion 638b constituting the jig 638. According to such a configuration, the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the reflective paint on the outer surface of the support portion 638b constituting the jig 638, and the quantum dot sheet 637. The number of components incident on (see the arrow with reference numeral 77 in FIG. 28) increases. Thus, the utilization efficiency of the light emitted from the blue LED 631 can also be improved by applying the reflective paint to the outer surface of the support portion 638b of the jig 638.
<4.3.2 第2の変形例>
 本変形例においては、青色LED631から発せられた光の利用効率を高めるために、治具638を構成する支持部638bの一部の表面が、青色LED631から発せられた光を反射または散乱させる形状に加工されている。具体的には、図29に示すように、治具638を構成する支持部638bのうちの固定脚部682の外側の表面がギザギザな形状に加工されている(符号687を付した部分を参照)。このような構成によれば、青色LED631から出射されてリフレクタ634を透過した光(青色光)に関して、上述のようにギザギザ状に加工された表面で反射して量子ドットシート637へと入射する成分(図30で符号78を付した矢印を参照)が多くなる。このように、治具638の固定脚部682の外側の表面をギザギザ状に加工することによっても、青色LED631から発せられた光の利用効率を高めることができる。なお、ここではギザギザな形状を例に挙げて説明したが、青色LED631から発せられた光を反射または散乱させることのできる形状であればギザギザな形状には限定されない。
<4.3.2 Second Modification>
In this modification, in order to improve the utilization efficiency of light emitted from the blue LED 631, a shape in which a part of the surface of the support portion 638b constituting the jig 638 reflects or scatters the light emitted from the blue LED 631. Has been processed. Specifically, as shown in FIG. 29, the outer surface of the fixed leg portion 682 of the support portion 638b constituting the jig 638 is processed into a jagged shape (see the portion denoted by reference numeral 687). ). According to such a configuration, the light (blue light) emitted from the blue LED 631 and transmitted through the reflector 634 is reflected by the jagged surface as described above and incident on the quantum dot sheet 637. (Refer to the arrow with reference numeral 78 in FIG. 30). Thus, the utilization efficiency of the light emitted from the blue LED 631 can also be improved by processing the outer surface of the fixed leg portion 682 of the jig 638 in a jagged shape. In addition, although the jagged shape was described as an example here, the shape is not limited to the jagged shape as long as the light emitted from the blue LED 631 can be reflected or scattered.
<4.3.3 第3の変形例>
 上記第4の実施形態では、治具638の全体が透明であった。これに対して、本変形例においては、上記第3の実施形態の第3の変形例と同様、内部に薄い散乱剤を含有した治具638を採用することによって、治具638の全体が乳白色となっている。これにより、上記第3の実施形態の第3の変形例と同様、青色LED631から発せられた光の利用効率を更に高めることが可能となる。
<4.3.3 Third Modification>
In the fourth embodiment, the entire jig 638 is transparent. On the other hand, in this modified example, as in the third modified example of the third embodiment, the jig 638 containing a thin scattering agent inside is employed, so that the entire jig 638 is milky white. It has become. As a result, as in the third modification of the third embodiment, it is possible to further increase the utilization efficiency of the light emitted from the blue LED 631.
<5.第5の実施形態>
 第5の実施形態について説明する。全体構成,バックライト装置600の概略,ローカルディミング処理の手順,およびバックライト装置600の駆動については、上記第1の実施形態と同様であるので、説明を省略する(図1~図7を参照)。
<5. Fifth Embodiment>
A fifth embodiment will be described. Since the overall configuration, the outline of the backlight device 600, the procedure of the local dimming process, and the driving of the backlight device 600 are the same as those in the first embodiment, description thereof will be omitted (see FIGS. 1 to 7). ).
<5.1 光源装置の詳細な構成>
 図31は、本実施形態における光源装置63の詳細な構成を示す図である。本実施形態における光源装置63は、上記第1の実施形態における光源装置63と同様、青色LED631と、パッケージ基板633と、リフレクタ634と、ボンディングワイヤー635a,635bと、電極636a,636bと、量子ドット632を含む量子ドットシート637と、治具638とによって構成されている。青色LED631とパッケージ基板633とリフレクタ634とボンディングワイヤー635a,635bと電極636a,636bとによって1つのLEDパッケージ631Pが構成されている。治具638の形状は、上記第3の実施形態と同様である。
<5.1 Detailed Configuration of Light Source Device>
FIG. 31 is a diagram showing a detailed configuration of the light source device 63 in the present embodiment. Similar to the light source device 63 in the first embodiment, the light source device 63 in the present embodiment is a blue LED 631, a package substrate 633, a reflector 634, bonding wires 635a and 635b, electrodes 636a and 636b, and quantum dots. A quantum dot sheet 637 including 632 and a jig 638 are included. The blue LED 631, the package substrate 633, the reflector 634, the bonding wires 635a and 635b, and the electrodes 636a and 636b constitute one LED package 631P. The shape of the jig 638 is the same as that of the third embodiment.
 本実施形態においては、上記第3の実施形態や上記第4の実施形態とは異なり、治具638を構成する支持部638bには、青色LED631から発せられた光を反射または散乱させるための構成要素が設けられていない。それ以外の点については、上記第3の実施形態および上記第4の実施形態と同様である。 In the present embodiment, unlike the third embodiment and the fourth embodiment, the support 638b constituting the jig 638 is configured to reflect or scatter the light emitted from the blue LED 631. The element is not provided. About other points, it is the same as that of the said 3rd Embodiment and the said 4th Embodiment.
<5.2 効果>
 本実施形態によれば、上記第3の実施形態や上記第4の実施形態と比較して、青色LED631から発せられた光の利用効率は低下する。しかしながら、本実施形態においても、上記第3の実施形態や上記第4の実施形態と同様、青色LED631の上方かつ当該青色LED631から比較的近い位置に量子ドットシート637が配置される。このため、青色LED631から発せられた光はすぐに白色光に変換される。これにより、この光源装置63から発せられてバックライト装置600内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、部分点灯が行われた際に点灯エリアの周囲に黄色味を帯びた光が照射されることはない。従って、ローカルディミング処理が行われても、光の反射が繰り返されることに起因する色むらが生じることはない。また、上記第3の実施形態と同様、各LEDパッケージ631P(各青色LED631)の上方付近のみに量子ドット632が設けられるため、必要とされる量子ドット632の量が比較的少なくなる。従って、製造コストを安くすることができる。以上より、本実施形態においても、青色LED631と量子ドット632とを組み合わせた構成の直下型のバックライト装置600を色むらを生ずることなく低コストで実現することができる。
<5.2 Effects>
According to the present embodiment, the use efficiency of light emitted from the blue LED 631 is reduced as compared with the third embodiment and the fourth embodiment. However, also in the present embodiment, the quantum dot sheet 637 is disposed above the blue LED 631 and at a position relatively close to the blue LED 631 as in the third embodiment and the fourth embodiment. For this reason, the light emitted from the blue LED 631 is immediately converted into white light. As a result, the light emitted from the light source device 63 and propagating through the backlight device 600 becomes white light, and even if the light is repeatedly reflected inside the device, when the partial lighting is performed, There is no yellowish light. Therefore, even when the local dimming process is performed, color unevenness due to repeated reflection of light does not occur. Further, as in the third embodiment, since the quantum dots 632 are provided only near the upper part of each LED package 631P (each blue LED 631), the amount of the required quantum dots 632 is relatively small. Therefore, the manufacturing cost can be reduced. As described above, also in this embodiment, the direct type backlight device 600 having a configuration in which the blue LED 631 and the quantum dot 632 are combined can be realized at low cost without causing color unevenness.
 また、治具638を構成する載置部638aは、図18に示すような空間部901を有することなく、1つのLEDパッケージ631Pの上部全体を覆うように面状に形成されている。従って、光源装置63を作製する際に、液体状の量子ドットを治具638(詳しくは図16の凹部684)に注入してそれらを焼き固めるという手法を採用することが可能となる。 Further, the mounting portion 638a constituting the jig 638 is formed in a planar shape so as to cover the entire upper portion of one LED package 631P without having the space portion 901 as shown in FIG. Therefore, when the light source device 63 is manufactured, it is possible to adopt a method of injecting liquid quantum dots into the jig 638 (specifically, the recess 684 in FIG. 16) and baking them.
<6.その他>
 上記各実施形態(変形例を含む)においては、ローカルディミング処理が行われていたが、本発明はこれに限定されない。ローカルディミング処理が行われていない液晶表示装置においても本発明を適用することができる。
<6. Other>
In each of the above embodiments (including modifications), the local dimming process is performed, but the present invention is not limited to this. The present invention can also be applied to a liquid crystal display device that is not subjected to local dimming processing.
 また、上記各実施形態(変形例を含む)においては、直下型のバックライト装置を例に挙げて説明したが、本発明はこれに限定されない。直下型のバックライト装置以外のバックライト装置においても本発明を適用することができる。。 In each of the above-described embodiments (including modifications), a direct type backlight device has been described as an example, but the present invention is not limited to this. The present invention can also be applied to a backlight device other than the direct type backlight device. .
 また、上記各実施形態(変形例を含む)においては、液晶表示装置を例に挙げて説明したが、本発明はこれに限定されない。バックライト装置を用いた構成の表示装置であれば、液晶表示装置以外の表示装置においても本発明を適用することができる。 In each of the above-described embodiments (including modifications), the liquid crystal display device has been described as an example, but the present invention is not limited to this. The present invention can be applied to a display device other than a liquid crystal display device as long as the display device includes a backlight device.
 さらに、上記第3および第4の実施形態(変形例を含む)においては、治具638を構成する載置部638aはLEDパッケージ631Pの上部全体を覆うように面状に形成されていた。これに関し、治具638の形状に上記第1の実施形態における形状(図8参照)が採用されている場合(すなわち、治具638を構成する載置部aが図18に示すような空間部901を有する場合)にも、治具638を構成する支持部638bを青色LED631から発せられた光を反射または散乱させる構成とすることにより、青色LED631から発せられた光の利用効率を高めることが可能となる。 Furthermore, in the third and fourth embodiments (including modifications), the mounting portion 638a constituting the jig 638 is formed in a planar shape so as to cover the entire upper portion of the LED package 631P. In this regard, when the shape in the first embodiment (see FIG. 8) is adopted as the shape of the jig 638 (that is, the mounting portion a constituting the jig 638 is a space portion as shown in FIG. 901), the support portion 638b constituting the jig 638 is configured to reflect or scatter light emitted from the blue LED 631, thereby increasing the utilization efficiency of the light emitted from the blue LED 631. It becomes possible.
 本願は、2016年8月24日に出願された「バックライト装置およびそれを備えた表示装置」という名称の日本出願2016-163209号に基づく優先権および2017年4月21日に出願された「バックライト装置およびそれを備えた表示装置」という名称の日本出願2017-84249号に基づく優先権を主張する出願であり、これらの日本出願の内容は、引用することによって本願の中に含まれる。 The present application is based on Japanese Patent Application No. 2016-163209 entitled “Backlight Device and Display Device Having the Same” filed on August 24, 2016, and filed on April 21, 2017. This is an application claiming priority based on Japanese Patent Application No. 2017-84249 entitled “Backlight Device and Display Device Equipped with It,” and the contents of these Japanese applications are incorporated herein by reference.
<7.付記>
 青色LED(青色発光素子)と量子ドットとの組み合わせによって白色光を得ている光源装置およびそれを備えたバックライト装置、表示装置として、以下に示すような様々な構成が考えられる。
<7. Addendum>
As a light source device that obtains white light by a combination of a blue LED (blue light emitting element) and quantum dots, a backlight device including the light source device, and a display device, various configurations as shown below are conceivable.
(付記1)
 青色の光を発する青色発光素子を含む発光素子パッケージと、
 前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と
を有し、
 前記量子ドットは、前記発光素子パッケージの直上に配置されていることを特徴とする、光源装置。
(Appendix 1)
A light emitting device package including a blue light emitting device emitting blue light;
A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
The quantum dot is disposed immediately above the light emitting device package.
 このような構成によれば、青色発光素子と量子ドットとを用いた構成の光源装置において、発光素子パッケージの直上に量子ドットが配置される。このため、青色発光素子から発せられた光はすぐに白色光に変換される。これにより、光源装置からは、一般的な白色LEDパッケージが設けられている場合と同様に、白色光が発せられる。また、量子ドットは、表示装置の表示部全体に対応する領域に設けられるのではなく、各発光素子パッケージの直上のみに設けられる。このため、必要とされる量子ドットの量が少なくなり、製造コストを安くすることができる。以上より、青色LEDと量子ドットとを組み合わせた構成の光源装置を低コストで実現することができる。 According to such a configuration, in a light source device having a configuration using blue light emitting elements and quantum dots, quantum dots are arranged immediately above the light emitting element package. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided. Further, the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only directly above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced. As described above, a light source device having a configuration in which a blue LED and a quantum dot are combined can be realized at low cost.
(付記2)
 前記青色発光素子と前記量子ドットとの間に空気層が形成されていることを特徴とする、付記1に記載の光源装置。
(Appendix 2)
The light source device according to appendix 1, wherein an air layer is formed between the blue light emitting element and the quantum dots.
 このような構成によれば、青色発光素子と量子ドットとの間に空気層が存在するので、熱の影響による量子ドットの劣化が防止される。 According to such a configuration, since the air layer exists between the blue light emitting element and the quantum dots, the deterioration of the quantum dots due to the influence of heat is prevented.
(付記3)
 前記量子ドット含有体を前記発光素子パッケージの直上に配置するために前記発光素子パッケージの周囲に設けられた治具を更に有することを特徴とする、付記1に記載の光源装置。
(Appendix 3)
The light source device according to appendix 1, further comprising a jig provided around the light emitting device package in order to dispose the quantum dot-containing body immediately above the light emitting device package.
 このような構成によれば、治具は発光素子パッケージの近傍領域に設けられるにすぎず、(ローカルディミング処理が行われる際の)エリアの境界部分に壁となる物理的な部材が設けられるわけではない。このため、青色発光素子や量子ドットに関して個体差(ばらつき)があっても、隣接するエリア間で光が混ざり合うことにより、そのような個体差に起因する色むら・輝度むらの発生が抑制される。 According to such a configuration, the jig is only provided in the vicinity of the light emitting device package, and a physical member serving as a wall is provided at the boundary of the area (when the local dimming process is performed). is not. For this reason, even if there are individual differences (variations) in blue light emitting elements and quantum dots, light is mixed between adjacent areas, thereby suppressing the occurrence of color unevenness and luminance unevenness due to such individual differences. The
(付記4)
 前記治具は、白色であることを特徴とする、付記3に記載の光源装置。
(Appendix 4)
4. The light source device according to appendix 3, wherein the jig is white.
 このような構成によれば、光源装置内で散乱した光によって治具は白く光る。これにより、バックライト装置内を伝播する光を効果的に白くすることができる。 According to such a configuration, the jig shines white by the light scattered in the light source device. Thereby, the light propagating through the backlight device can be effectively whitened.
(付記5)
 前記治具は、光反射性樹脂で形成されていることを特徴とする、付記3に記載の光源装置。
(Appendix 5)
The light source device according to appendix 3, wherein the jig is made of a light reflecting resin.
 このような構成によれば、青色発光素子から発せられた青色光が量子ドット含有体を通過することなく治具から漏れることを抑制することができる。 According to such a configuration, the blue light emitted from the blue light emitting element can be prevented from leaking from the jig without passing through the quantum dot-containing body.
(付記6)
 前記治具は、光反射性金属で形成されていることを特徴とする、付記3に記載の光源装置。
(Appendix 6)
The light source device according to appendix 3, wherein the jig is made of a light reflective metal.
 このような構成によれば、付記5に記載の構成と同様の効果が得られる。 According to such a configuration, the same effect as the configuration described in Appendix 5 can be obtained.
(付記7)
 前記量子ドット含有体は、
  内部に前記量子ドットを保持する量子ドット保持部と、
  前記量子ドット保持部を前記発光素子パッケージの直上に固定するための脚部と
からなることを特徴とする、付記1に記載の光源装置。
(Appendix 7)
The quantum dot-containing body is
A quantum dot holding unit for holding the quantum dots therein;
2. The light source device according to appendix 1, wherein the light source device includes a leg portion for fixing the quantum dot holding portion directly above the light emitting element package.
 このような構成によれば、量子ドット含有体の脚部は発光素子パッケージの近傍領域に設けられるにすぎず、(ローカルディミング処理が行われる際の)エリアの境界部分に壁となる物理的な部材が設けられるわけではない。従って、付記3に記載の構成と同様の効果が得られる。 According to such a configuration, the legs of the quantum dot-containing body are only provided in the vicinity of the light-emitting element package, and a physical wall that forms a wall at the boundary of the area (when the local dimming process is performed) The member is not provided. Therefore, the same effect as the configuration described in Appendix 3 can be obtained.
(付記8)
 前記量子ドット保持部は、レンズによって形成されていることを特徴とする、付記1に記載の光源装置。
(Appendix 8)
The light source device according to appendix 1, wherein the quantum dot holding unit is formed by a lens.
 このような構成によれば、量子ドットによって白色に変換された光はレンズによって効果的に拡散される。これにより、バックライト装置内を伝播する光を効果的に白くすることができる。 According to such a configuration, the light converted into white by the quantum dots is effectively diffused by the lens. Thereby, the light propagating through the backlight device can be effectively whitened.
(付記9)
 前記量子ドット保持部は、光散乱剤を含有することを特徴とする、付記1に記載の光源装置。
(Appendix 9)
The light source device according to appendix 1, wherein the quantum dot holding unit contains a light scattering agent.
 このような構成によれば、付記8に記載の構成と同様の効果が得られる。 According to such a configuration, the same effect as the configuration described in Appendix 8 can be obtained.
(付記10)
 青色の光を発する青色発光素子を含む発光素子パッケージと、
 前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、
 前記発光素子パッケージの上方で前記量子ドット含有体を固定するための治具と
を有し、
 前記治具は、
  前記発光素子パッケージの直上に位置し、前記量子ドット含有体が載置される載置部と、
  前記発光素子パッケージの周囲に位置し、前記載置部を支持する支持部と
からなり、
 前記支持部は、前記青色発光素子から発せられた光を反射または散乱させることを特徴とする、光源装置。
(Appendix 10)
A light emitting device package including a blue light emitting device emitting blue light;
A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
A jig for fixing the quantum dot-containing body above the light emitting device package;
The jig is
Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and
It is located around the light emitting device package, and includes a support part that supports the mounting part.
The light source device, wherein the support part reflects or scatters light emitted from the blue light emitting element.
 このような構成によれば、青色発光素子と量子ドットとを含む光源装置において、量子ドットを含有する量子ドット含有体を固定するための治具が設けられる。治具は青色発光素子を含む発光素子パッケージの直上に位置する載置部と当該載置部を支持する支持部とによって構成されているところ、当該載置部上に量子ドット含有体が配置される。このようにして、青色発光素子の上方かつ当該青色発光素子から比較的近い位置に量子ドットが配置される。このため、青色発光素子から発せられた光はすぐに白色光に変換される。これにより、光源装置からは、一般的な白色LEDパッケージが設けられている場合と同様に、白色光が発せられる。また、量子ドットは、表示装置の表示部全体に対応する領域に設けられるのではなく、各発光素子パッケージの上方のみに設けられる。このため、必要とされる量子ドットの量が少なくなり、製造コストを安くすることができる。以上より、青色発光素子と量子ドットとを組み合わせた構成の光源装置を低コストで実現することができる。ここで、治具を構成する支持部は、青色発光素子から発せられた光を反射または散乱させるように構成されている。このため、青色発光素子から発せられた光に関して、治具の側面から漏れることなく量子ドット含有体へと入射する成分が多くなる。これにより、青色発光素子から発せられた光は効率良く量子ドット含有体に入射される。 According to such a configuration, a jig for fixing a quantum dot-containing body containing quantum dots is provided in a light source device including a blue light emitting element and quantum dots. The jig is composed of a mounting part located directly above the light emitting element package including the blue light emitting element and a support part that supports the mounting part, and the quantum dot containing body is disposed on the mounting part. The In this manner, the quantum dots are arranged above the blue light emitting element and at a position relatively close to the blue light emitting element. For this reason, the light emitted from the blue light emitting element is immediately converted into white light. As a result, white light is emitted from the light source device as in the case where a general white LED package is provided. Further, the quantum dots are not provided in a region corresponding to the entire display unit of the display device, but are provided only above each light emitting element package. For this reason, the amount of quantum dots required is reduced, and the manufacturing cost can be reduced. As described above, a light source device having a configuration in which a blue light emitting element and a quantum dot are combined can be realized at low cost. Here, the support part which comprises a jig | tool is comprised so that the light emitted from the blue light emitting element may be reflected or scattered. For this reason, the component which injects into a quantum dot containing body, without leaking from the side surface of a jig | tool regarding the light emitted from the blue light emitting element increases. Thereby, the light emitted from the blue light emitting element is efficiently incident on the quantum dot-containing body.
(付記11)
 前記支持部は、前記載置部との結合部分よりも下方に位置する固定脚部と、前記載置部との結合部分よりも上方に位置する保持枠部とを含み、
 前記固定脚部の内側の面が、前記青色発光素子から発せられた光を反射または散乱させるように形成されていることを特徴とする、付記10に記載の光源装置。
(Appendix 11)
The support portion includes a fixed leg portion positioned below a coupling portion with the mounting portion, and a holding frame portion positioned above a coupling portion with the mounting portion,
The light source device according to appendix 10, wherein an inner surface of the fixed leg portion is formed so as to reflect or scatter light emitted from the blue light emitting element.
 このような構成によれば、付記10に記載の効果と同様の効果が得られる。 According to such a configuration, the same effects as those described in Appendix 10 can be obtained.
(付記12)
 前記固定脚部の内側の面に、表面を荒らす荒らし処理が施されていることを特徴とする、付記11に記載の光源装置。
(Appendix 12)
12. The light source device according to appendix 11, wherein the inner surface of the fixed leg portion is subjected to a roughening process for roughening the surface.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具の固定脚部のうち荒らし処理が施されている面で反射する。これにより、青色発光素子から発せられた光の利用効率が高められる。 According to such a configuration, the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of the fixing leg portion of the jig on which the roughening treatment is performed. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
(付記13)
 前記固定脚部の内側の面に反射塗料が塗布されていることを特徴とする、付記11に記載の光源装置。
(Appendix 13)
The light source device according to appendix 11, wherein a reflective paint is applied to an inner surface of the fixed leg portion.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具の固定脚部の内側の面に塗布された反射塗料によって反射する。これにより、青色発光素子から発せられた光の利用効率が高められる。 According to such a configuration, the light emitted from the blue light emitting element toward the side surface of the jig is reflected by the reflective paint applied to the inner surface of the fixed leg portion of the jig. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
(付記14)
 前記支持部の外側の面が、前記青色発光素子から発せられた光を反射または散乱させるように形成されていることを特徴とする、付記10に記載の光源装置。
(Appendix 14)
11. The light source device according to appendix 10, wherein an outer surface of the support portion is formed to reflect or scatter light emitted from the blue light emitting element.
 このような構成によれば、付記10に記載の効果と同様の効果が得られる。 According to such a configuration, the same effects as those described in Appendix 10 can be obtained.
(付記15)
 前記支持部の外側の面に、表面を荒らす荒らし処理が施されていることを特徴とする、付記14に記載の光源装置。
(Appendix 15)
The light source device according to appendix 14, wherein a roughening process for roughening a surface is performed on an outer surface of the support portion.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具の固定脚部のうち荒らし処理が施されている面で反射する。これにより、青色発光素子から発せられた光の利用効率が高められる。 According to such a configuration, the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of the fixing leg portion of the jig on which the roughening treatment is performed. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
(付記16)
 前記支持部の外側の面に反射塗料が塗布されていることを特徴とする、付記14に記載の光源装置。
(Appendix 16)
15. The light source device according to appendix 14, wherein a reflective paint is applied to an outer surface of the support portion.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具を構成する支持部の外側の面に塗布された反射塗料によって反射する。これにより、青色発光素子から発せられた光の利用効率が高められる。 According to such a configuration, the light emitted from the blue light emitting element toward the side surface of the jig is reflected by the reflective paint applied to the outer surface of the support portion constituting the jig. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
(付記17)
 前記治具の内部には、散乱剤が含有されていることを特徴とする、付記10に記載の光源装置。
(Appendix 17)
11. The light source device according to appendix 10, wherein a scattering agent is contained inside the jig.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具の内部で散乱する。このため、青色発光素子から治具の側面に向けて発せられた光に関して、治具の内部に散乱剤が含有されていない構成と比較して、治具の側面から漏れることなく量子ドット含有体へと入射する成分が多くなる。これにより、青色発光素子から発せられた光の利用効率が更に高められる。 According to such a configuration, light emitted from the blue light emitting element toward the side surface of the jig is scattered inside the jig. Therefore, with respect to light emitted from the blue light emitting element toward the side surface of the jig, the quantum dot-containing body does not leak from the side surface of the jig as compared with the configuration in which no scattering agent is contained in the jig. More components are incident on the screen. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is further enhanced.
(付記18)
 前記支持部の一部の表面が、前記青色発光素子から発せられた光を反射または散乱させる形状に加工されていることを特徴とする、付記10に記載の光源装置。
(Appendix 18)
The light source device according to appendix 10, wherein a part of the surface of the support part is processed into a shape that reflects or scatters light emitted from the blue light emitting element.
 このような構成によれば、青色発光素子から治具の側面に向けて発せられた光は、治具を構成する支持部の一部の表面で反射する。これにより、青色発光素子から発せられた光の利用効率が高められる。 According to such a configuration, the light emitted from the blue light emitting element toward the side surface of the jig is reflected on the surface of a part of the support portion constituting the jig. Thereby, the utilization efficiency of the light emitted from the blue light emitting element is enhanced.
(付記19)
 前記載置部は、前記発光素子パッケージの上部全体を覆うように面状に形成されていることを特徴とする、付記10に記載の光源装置。
(Appendix 19)
11. The light source device according to appendix 10, wherein the mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting device package.
 このような構成によれば、光源装置を作製する際に、液体状の量子ドットを治具に注入してそれらを焼き固めるという手法を採用することが可能となる。 According to such a configuration, it is possible to employ a technique of injecting liquid quantum dots into a jig and baking them when producing a light source device.
(付記20)
 前記載置部は、透明樹脂からなることを特徴とする、付記10に記載の光源装置。
(Appendix 20)
The light source device according to appendix 10, wherein the mounting portion is made of a transparent resin.
 このような構成によれば、青色発光素子から量子ドット含有体に向けて発せられた光の大半の成分は、治具を構成する載置部で反射することなく量子ドット含有体へと入射する。このため、青色発光素子と量子ドット含有体との間に治具を構成する載置部が設けられていることに起因する、青色発光素子から発せられた光の利用効率の低下が抑制される。 According to such a configuration, most components of the light emitted from the blue light emitting element toward the quantum dot-containing body enter the quantum dot-containing body without being reflected by the mounting portion constituting the jig. . For this reason, the fall of the utilization efficiency of the light emitted from the blue light emitting element resulting from providing the mounting part which comprises a jig | tool between a blue light emitting element and a quantum dot containing body is suppressed. .
(付記21)
 青色の光を発する青色発光素子を含む発光素子パッケージと、
 前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、
 前記発光素子パッケージの上方で前記量子ドット含有体を固定するための治具と
を有し、
 前記治具は、
  前記発光素子パッケージの直上に位置し、前記量子ドット含有体が載置される載置部と、
  前記発光素子パッケージの周囲に位置し、前記載置部を支持する支持部と
からなり、
 前記載置部は、前記発光素子パッケージの上部全体を覆うように面状に形成されていることを特徴とする、光源装置。
(Appendix 21)
A light emitting device package including a blue light emitting device emitting blue light;
A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
A jig for fixing the quantum dot-containing body above the light emitting device package;
The jig is
Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and
It is located around the light emitting device package, and includes a support part that supports the mounting part.
The light source device according to claim 1, wherein the mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting device package.
 このような構成によれば、付記1に記載の構成と同様、青色発光素子と量子ドットとを組み合わせた構成の光源装置を低コストで実現することができる。また、治具を構成する載置部が発光素子パッケージの上部全体を覆うように面状に形成されているので、光源装置を作製する際に、液体状の量子ドットを治具に注入してそれらを焼き固めるという手法を採用することが可能となる。 According to such a configuration, similarly to the configuration described in Appendix 1, a light source device having a configuration in which a blue light emitting element and a quantum dot are combined can be realized at low cost. In addition, since the mounting portion constituting the jig is formed in a planar shape so as to cover the entire upper part of the light emitting device package, liquid quantum dots are injected into the jig when the light source device is manufactured. It is possible to adopt a technique of baking them.
(付記22)
 前記量子ドット含有体は、前記量子ドットを含有するフィルムの両面に耐湿性の保護フィルムが貼り付けられた量子ドットシートであることを特徴とする、付記1,10,および21のうちのいずれかに記載の光源装置。
(Appendix 22)
Any one of Supplementary Notes 1, 10, and 21, wherein the quantum dot-containing body is a quantum dot sheet in which a moisture-resistant protective film is attached to both surfaces of the film containing the quantum dots. The light source device according to 1.
 このような構成によれば、量子ドットは耐湿性の保護フィルムによって保護されるので、湿度の影響による量子ドットの劣化が防止される。 According to such a configuration, since the quantum dots are protected by the moisture-resistant protective film, deterioration of the quantum dots due to the influence of humidity is prevented.
(付記23)
 前記量子ドット含有体は、前記量子ドットを封入したガラスであることを特徴とする、付記1,10,および21のうちのいずれかに記載の光源装置。
(Appendix 23)
The light source device according to any one of appendices 1, 10, and 21, wherein the quantum dot-containing body is a glass in which the quantum dots are enclosed.
 このような構成によれば、付記1に記載の構成と同様の効果が得られる。 According to such a configuration, the same effect as the configuration described in Appendix 1 can be obtained.
(付記24)
 前記治具は、放熱用充填剤を含有することを特徴とする、付記3または10に記載の光源装置。
(Appendix 24)
11. The light source device according to appendix 3 or 10, wherein the jig contains a heat radiation filler.
 このような構成によれば、青色発光素子の発光によって生じた熱が治具を介して放熱される。その結果、熱による量子ドットの劣化が効果的に抑制される。 According to such a configuration, heat generated by light emission of the blue light emitting element is dissipated through the jig. As a result, deterioration of the quantum dots due to heat is effectively suppressed.
(付記25)
 前記治具は、伝熱性金属で形成されていることを特徴とする、付記3または10に記載の光源装置。
(Appendix 25)
11. The light source device according to appendix 3 or 10, wherein the jig is made of a heat conductive metal.
 このような構成によれば、付記24に記載の構成と同様の効果が得られる。 According to such a configuration, the same effect as the configuration described in Appendix 24 can be obtained.
(付記26)
 付記1から25までのいずれかに記載の光源装置を備えることを特徴とする、バックライト装置。
(Appendix 26)
A backlight device comprising the light source device according to any one of appendices 1 to 25.
 このような構成によれば、バックライト装置内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、黄色味を帯びた光が出射されることはない。従って、光の反射が繰り返されることに起因する色むらの発生が防止される。 According to such a configuration, the light propagating in the backlight device becomes white light, and even if the light is repeatedly reflected inside the device, yellowish light is not emitted. Therefore, the occurrence of uneven color due to repeated light reflection is prevented.
(付記27)
 付記1から25までのいずれかに記載の光源装置を複数備えたことを特徴とする、バックライト装置。
(Appendix 27)
A backlight device comprising a plurality of light source devices according to any one of appendices 1 to 25.
 このような構成によれば、バックライト装置内を伝播する光は白色光となり、たとえ装置内部で光の反射が繰り返されても、黄色味を帯びた光が出射されることはない。従って、光の反射が繰り返されることに起因する色むらの発生が防止される。 According to such a configuration, the light propagating in the backlight device becomes white light, and even if the light is repeatedly reflected inside the device, yellowish light is not emitted. Therefore, the occurrence of uneven color due to repeated light reflection is prevented.
(付記28)
 直下型であることを特徴とする、付記26または27に記載のバックライト装置。
(Appendix 28)
28. The backlight device according to appendix 26 or 27, which is a direct type.
 このような構成によれば、付記26または27に記載の構成と同様の効果を奏する直下型のバックライト装置が実現される。 According to such a configuration, a direct type backlight device having the same effect as the configuration described in Appendix 26 or 27 is realized.
(付記29)
 画像を表示する表示部を含む表示パネルと、
 前記表示パネルの背面に光を照射するように配置された付記26から28までのいずれかに記載のバックライト装置と、
 前記青色発光素子の発光強度を制御する光源制御部と
を備えることを特徴とする、表示装置。
(Appendix 29)
A display panel including a display unit for displaying an image;
The backlight device according to any one of supplementary notes 26 to 28, which is disposed so as to irradiate light on a back surface of the display panel;
A display device comprising: a light source control unit that controls light emission intensity of the blue light emitting element.
 このような構成によれば、青色発光素子と量子ドットとを組み合わせた構成の光源装置を採用した表示装置において、色むらの発生が抑制される。 According to such a configuration, in a display device that employs a light source device having a configuration in which a blue light emitting element and a quantum dot are combined, occurrence of color unevenness is suppressed.
(付記30)
 画像を表示する表示部を含む表示パネルと、
 前記表示パネルの背面に光を照射するように配置された付記27に記載のバックライト装置と、
 前記青色発光素子の発光強度を制御する光源制御部と
を備え、
 前記表示部は、論理的に複数のエリアに分割されており、
 各光源装置は、前記複数のエリアのいずれかに対応するように設けられ、
 前記光源制御部は、各光源装置に含まれている青色発光素子の発光強度をエリア毎に制御することを特徴とする、表示装置。
(Appendix 30)
A display panel including a display unit for displaying an image;
The backlight device according to appendix 27, which is disposed so as to irradiate light on a back surface of the display panel;
A light source control unit for controlling the light emission intensity of the blue light emitting element,
The display unit is logically divided into a plurality of areas,
Each light source device is provided to correspond to any of the plurality of areas,
The display device according to claim 1, wherein the light source control unit controls the light emission intensity of the blue light emitting element included in each light source device for each area.
 このような構成によれば、光源装置(青色発光素子)の発光強度をそれぞれ独立に制御することができるので、低消費電力化が可能となる。また、高階調部分において集中的に強い発光強度で光源装置を発光させることにより、ダイナミックレンジを拡大することが可能となる。 According to such a configuration, the light emission intensity of the light source device (blue light emitting element) can be controlled independently, so that power consumption can be reduced. In addition, it is possible to expand the dynamic range by causing the light source device to emit light with intense emission intensity intensively in the high gradation portion.
(付記31)
 前記バックライト装置は、直下型であることを特徴とする、付記30に記載の表示装置。
(Appendix 31)
The display device according to attachment 30, wherein the backlight device is a direct type.
 このような構成によれば、直下型のバックライト装置を備え、付記30に記載の構成と同様の効果を奏する表示装置が実現される。 According to such a configuration, a display device that includes the direct-type backlight device and has the same effects as the configuration described in Appendix 30 is realized.
 61…シャーシ
 62…LED基板
 63…光源装置
 64…拡散板
 65…光学シート
 400…液晶パネル
 410…表示部
 500…光源制御部
 600…バックライト装置
 631…青色LED
 631P…LEDパッケージ
 632…量子ドット
 637…量子ドットシート
 638…治具
 638a…支持部
 638b…載置部
 682…固定脚部
DESCRIPTION OF SYMBOLS 61 ... Chassis 62 ... LED board 63 ... Light source device 64 ... Diffusion plate 65 ... Optical sheet 400 ... Liquid crystal panel 410 ... Display part 500 ... Light source control part 600 ... Backlight apparatus 631 ... Blue LED
631P ... LED package 632 ... Quantum dot 637 ... Quantum dot sheet 638 ... Jig 638a ... Supporting part 638b ... Placement part 682 ... Fixing leg part

Claims (31)

  1.  青色の光を発する青色発光素子を含む発光素子パッケージと、
     前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と
    を有し、
     前記量子ドットは、前記発光素子パッケージの直上に配置されていることを特徴とする、光源装置。
    A light emitting device package including a blue light emitting device emitting blue light;
    A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
    The quantum dot is disposed immediately above the light emitting device package.
  2.  前記青色発光素子と前記量子ドットとの間に空気層が形成されていることを特徴とする、請求項1に記載の光源装置。 The light source device according to claim 1, wherein an air layer is formed between the blue light emitting element and the quantum dots.
  3.  前記量子ドット含有体を前記発光素子パッケージの直上に配置するために前記発光素子パッケージの周囲に設けられた治具を更に有することを特徴とする、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a jig provided around the light emitting device package in order to dispose the quantum dot-containing body directly on the light emitting device package.
  4.  前記治具は、白色であることを特徴とする、請求項3に記載の光源装置。 The light source device according to claim 3, wherein the jig is white.
  5.  前記治具は、光反射性樹脂で形成されていることを特徴とする、請求項3に記載の光源装置。 The light source device according to claim 3, wherein the jig is made of a light reflecting resin.
  6.  前記治具は、光反射性金属で形成されていることを特徴とする、請求項3に記載の光源装置。 The light source device according to claim 3, wherein the jig is made of a light reflective metal.
  7.  前記量子ドット含有体は、
      内部に前記量子ドットを保持する量子ドット保持部と、
      前記量子ドット保持部を前記発光素子パッケージの直上に固定するための脚部と
    からなることを特徴とする、請求項1に記載の光源装置。
    The quantum dot-containing body is
    A quantum dot holding unit for holding the quantum dots therein;
    2. The light source device according to claim 1, comprising a leg portion for fixing the quantum dot holding portion directly above the light emitting device package.
  8.  前記量子ドット保持部は、レンズによって形成されていることを特徴とする、請求項7に記載の光源装置。 The light source device according to claim 7, wherein the quantum dot holding part is formed by a lens.
  9.  前記量子ドット保持部は、光散乱剤を含有することを特徴とする、請求項7に記載の光源装置。 The light source device according to claim 7, wherein the quantum dot holding unit contains a light scattering agent.
  10.  青色の光を発する青色発光素子を含む発光素子パッケージと、
     前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、
     前記発光素子パッケージの上方で前記量子ドット含有体を固定するための治具と
    を有し、
     前記治具は、
      前記発光素子パッケージの直上に位置し、前記量子ドット含有体が載置される載置部と、
      前記発光素子パッケージの周囲に位置し、前記載置部を支持する支持部と
    からなり、
     前記支持部は、前記青色発光素子から発せられた光を反射または散乱させることを特徴とする、光源装置。
    A light emitting device package including a blue light emitting device emitting blue light;
    A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
    A jig for fixing the quantum dot-containing body above the light emitting device package;
    The jig is
    Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and
    It is located around the light emitting device package, and includes a support part that supports the mounting part.
    The light source device, wherein the support part reflects or scatters light emitted from the blue light emitting element.
  11.  前記支持部は、前記載置部との結合部分よりも下方に位置する固定脚部と、前記載置部との結合部分よりも上方に位置する保持枠部とを含み、
     前記固定脚部の内側の面が、前記青色発光素子から発せられた光を反射または散乱させるように形成されていることを特徴とする、請求項10に記載の光源装置。
    The support portion includes a fixed leg portion positioned below a coupling portion with the mounting portion, and a holding frame portion positioned above a coupling portion with the mounting portion,
    11. The light source device according to claim 10, wherein an inner surface of the fixed leg portion is formed so as to reflect or scatter light emitted from the blue light emitting element.
  12.  前記固定脚部の内側の面に、表面を荒らす荒らし処理が施されていることを特徴とする、請求項11に記載の光源装置。 12. The light source device according to claim 11, wherein a roughening process for roughening a surface is performed on an inner surface of the fixed leg portion.
  13.  前記固定脚部の内側の面に反射塗料が塗布されていることを特徴とする、請求項11に記載の光源装置。 The light source device according to claim 11, wherein a reflective paint is applied to an inner surface of the fixed leg portion.
  14.  前記支持部の外側の面が、前記青色発光素子から発せられた光を反射または散乱させるように形成されていることを特徴とする、請求項10に記載の光源装置。 The light source device according to claim 10, wherein an outer surface of the support portion is formed so as to reflect or scatter light emitted from the blue light emitting element.
  15.  前記支持部の外側の面に、表面を荒らす荒らし処理が施されていることを特徴とする、請求項14に記載の光源装置。 The light source device according to claim 14, wherein a roughening process for roughening a surface is performed on an outer surface of the support portion.
  16.  前記支持部の外側の面に反射塗料が塗布されていることを特徴とする、請求項14に記載の光源装置。 The light source device according to claim 14, wherein a reflective paint is applied to an outer surface of the support portion.
  17.  前記治具の内部には、散乱剤が含有されていることを特徴とする、請求項10に記載の光源装置。 The light source device according to claim 10, wherein a scattering agent is contained in the jig.
  18.  前記支持部の一部の表面が、前記青色発光素子から発せられた光を反射または散乱させる形状に加工されていることを特徴とする、請求項10に記載の光源装置。 The light source device according to claim 10, wherein a part of the surface of the support portion is processed into a shape that reflects or scatters light emitted from the blue light emitting element.
  19.  前記載置部は、前記発光素子パッケージの上部全体を覆うように面状に形成されていることを特徴とする、請求項10に記載の光源装置。 The light source device according to claim 10, wherein the mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting device package.
  20.  前記載置部は、透明樹脂からなることを特徴とする、請求項10に記載の光源装置。 The light source device according to claim 10, wherein the placement unit is made of a transparent resin.
  21.  青色の光を発する青色発光素子を含む発光素子パッケージと、
     前記青色発光素子から発せられた光の波長を外部への出射光の色が白色となるように変換する量子ドットを含有する量子ドット含有体と、
     前記発光素子パッケージの上方で前記量子ドット含有体を固定するための治具と
    を有し、
     前記治具は、
      前記発光素子パッケージの直上に位置し、前記量子ドット含有体が載置される載置部と、
      前記発光素子パッケージの周囲に位置し、前記載置部を支持する支持部と
    からなり、
     前記載置部は、前記発光素子パッケージの上部全体を覆うように面状に形成されていることを特徴とする、光源装置。
    A light emitting device package including a blue light emitting device emitting blue light;
    A quantum dot-containing body containing a quantum dot that converts the wavelength of light emitted from the blue light-emitting element so that the color of light emitted to the outside is white;
    A jig for fixing the quantum dot-containing body above the light emitting device package;
    The jig is
    Located on the light emitting device package, a placement part on which the quantum dot-containing body is placed, and
    It is located around the light emitting device package, and includes a support part that supports the mounting part.
    The light source device according to claim 1, wherein the mounting portion is formed in a planar shape so as to cover the entire upper portion of the light emitting device package.
  22.  前記量子ドット含有体は、前記量子ドットを含有するフィルムの両面に耐湿性の保護フィルムが貼り付けられた量子ドットシートであることを特徴とする、請求項1,10,および21のうちのいずれか1項に記載の光源装置。 The quantum dot-containing body is a quantum dot sheet in which a moisture-resistant protective film is attached to both surfaces of a film containing the quantum dots, wherein any one of claims 1, 10, and 21 is provided. The light source device according to claim 1.
  23.  前記量子ドット含有体は、前記量子ドットを封入したガラスであることを特徴とする、請求項1,10,および21のうちのいずれか1項に記載の光源装置。 The light source device according to any one of claims 1, 10, and 21, wherein the quantum dot-containing body is glass encapsulating the quantum dots.
  24.  前記治具は、放熱用充填剤を含有することを特徴とする、請求項3または10に記載の光源装置。 The light source device according to claim 3 or 10, wherein the jig contains a heat radiation filler.
  25.  前記治具は、伝熱性金属で形成されていることを特徴とする、請求項3または10に記載の光源装置。 The light source device according to claim 3 or 10, wherein the jig is made of a heat conductive metal.
  26.  請求項1から25までのいずれか1項に記載の光源装置を備えることを特徴とする、バックライト装置。 A backlight device comprising the light source device according to any one of claims 1 to 25.
  27.  請求項1から25までのいずれか1項に記載の光源装置を複数備えたことを特徴とする、バックライト装置。 A backlight device comprising a plurality of the light source devices according to any one of claims 1 to 25.
  28.  直下型であることを特徴とする、請求項26または27に記載のバックライト装置。 The backlight device according to claim 26 or 27, wherein the backlight device is a direct type.
  29.  画像を表示する表示部を含む表示パネルと、
     前記表示パネルの背面に光を照射するように配置された請求項26から28までのいずれか1項に記載のバックライト装置と、
     前記青色発光素子の発光強度を制御する光源制御部と
    を備えることを特徴とする、表示装置。
    A display panel including a display unit for displaying an image;
    The backlight device according to any one of claims 26 to 28, which is disposed so as to irradiate light on a back surface of the display panel.
    A display device comprising: a light source control unit that controls light emission intensity of the blue light emitting element.
  30.  画像を表示する表示部を含む表示パネルと、
     前記表示パネルの背面に光を照射するように配置された請求項27に記載のバックライト装置と、
     前記青色発光素子の発光強度を制御する光源制御部と
    を備え、
     前記表示部は、論理的に複数のエリアに分割されており、
     各光源装置は、前記複数のエリアのいずれかに対応するように設けられ、
     前記光源制御部は、各光源装置に含まれている青色発光素子の発光強度をエリア毎に制御することを特徴とする、表示装置。
    A display panel including a display unit for displaying an image;
    The backlight device according to claim 27, wherein the backlight device is arranged to irradiate light on a back surface of the display panel;
    A light source control unit for controlling the light emission intensity of the blue light emitting element,
    The display unit is logically divided into a plurality of areas,
    Each light source device is provided to correspond to any of the plurality of areas,
    The display device according to claim 1, wherein the light source control unit controls the light emission intensity of the blue light emitting element included in each light source device for each area.
  31.  前記バックライト装置は、直下型であることを特徴とする、請求項30に記載の表示装置。 The display device according to claim 30, wherein the backlight device is a direct type.
PCT/JP2017/026039 2016-08-24 2017-07-19 Light source device and backlight device provided with same, and display device WO2018037775A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016163209 2016-08-24
JP2016-163209 2016-08-24
JP2017084249 2017-04-21
JP2017-084249 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018037775A1 true WO2018037775A1 (en) 2018-03-01

Family

ID=61246313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026039 WO2018037775A1 (en) 2016-08-24 2017-07-19 Light source device and backlight device provided with same, and display device

Country Status (1)

Country Link
WO (1) WO2018037775A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837191A (en) * 2018-08-16 2020-02-25 深圳Tcl新技术有限公司 Liquid crystal display backlight module
CN111722434A (en) * 2019-03-22 2020-09-29 中强光电股份有限公司 Light source module and display device
CN114573857A (en) * 2022-03-11 2022-06-03 纳晶科技股份有限公司 Quantum dot laminate and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231218A (en) * 2007-03-20 2008-10-02 Nippon Electric Glass Co Ltd Phosphor material and white light-emitting diode
JP2010129359A (en) * 2008-11-27 2010-06-10 Sharp Corp Backlight unit and liquid crystal display device
JP2013232426A (en) * 2007-06-18 2013-11-14 Xicato Inc Solid state illumination device
JP2015005633A (en) * 2013-06-21 2015-01-08 シチズンホールディングス株式会社 Light emitting device
JP2015516691A (en) * 2012-05-14 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Light emitting device having nanostructured phosphor
WO2015156227A1 (en) * 2014-04-08 2015-10-15 Nsマテリアルズ株式会社 Wavelength conversion member, molded body, wavelength conversion device, sheet member, light-emitting device, light-guide device, and display device
WO2016103720A1 (en) * 2014-12-24 2016-06-30 株式会社クラレ Electronic device and method for manufacturing the same
JP2016122213A (en) * 2014-10-16 2016-07-07 凸版印刷株式会社 Quantum dot protective film, quantum dot film using the same and backlight unit
JP2016143670A (en) * 2015-02-05 2016-08-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Curved surface type backlight unit and display device including the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231218A (en) * 2007-03-20 2008-10-02 Nippon Electric Glass Co Ltd Phosphor material and white light-emitting diode
JP2013232426A (en) * 2007-06-18 2013-11-14 Xicato Inc Solid state illumination device
JP2010129359A (en) * 2008-11-27 2010-06-10 Sharp Corp Backlight unit and liquid crystal display device
JP2015516691A (en) * 2012-05-14 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Light emitting device having nanostructured phosphor
JP2015005633A (en) * 2013-06-21 2015-01-08 シチズンホールディングス株式会社 Light emitting device
WO2015156227A1 (en) * 2014-04-08 2015-10-15 Nsマテリアルズ株式会社 Wavelength conversion member, molded body, wavelength conversion device, sheet member, light-emitting device, light-guide device, and display device
JP2016122213A (en) * 2014-10-16 2016-07-07 凸版印刷株式会社 Quantum dot protective film, quantum dot film using the same and backlight unit
WO2016103720A1 (en) * 2014-12-24 2016-06-30 株式会社クラレ Electronic device and method for manufacturing the same
JP2016143670A (en) * 2015-02-05 2016-08-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Curved surface type backlight unit and display device including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837191A (en) * 2018-08-16 2020-02-25 深圳Tcl新技术有限公司 Liquid crystal display backlight module
CN111722434A (en) * 2019-03-22 2020-09-29 中强光电股份有限公司 Light source module and display device
CN114573857A (en) * 2022-03-11 2022-06-03 纳晶科技股份有限公司 Quantum dot laminate and method for producing the same

Similar Documents

Publication Publication Date Title
US10466534B2 (en) Backlight device, and display apparatus including same
JP5150689B2 (en) Liquid crystal display
WO2017199642A1 (en) Backlight device and display device using same
TWI414856B (en) Light-emitting device and display device using the light-emitting device
JP2009098310A (en) Liquid crystal display device
JP4495540B2 (en) Backlight assembly and liquid crystal display device having the same
JP2007003805A (en) Illumination device and display apparatus with same
JP2008304630A (en) Liquid crystal display device
JP2007240858A (en) Lighting device, video display device, and video signal control method
JP4160481B2 (en) Planar light source device and display device
WO2018037775A1 (en) Light source device and backlight device provided with same, and display device
JP2006012819A (en) Backlight unit of liquid crystal display device utilizing light-emitting diode, and its drive method
TW201617701A (en) Display device
WO2009098797A1 (en) Surface light, source and illuminated signboard
US20220269130A1 (en) Backlight module and display apparatus
JP2019091625A (en) Light source, and backlight device and display device including the same
JP2013211184A (en) Backlight device, display device, and television receiving apparatus
US10454004B2 (en) Light source module, backlight unit and liquid crystal display device including the same
JP2010129359A (en) Backlight unit and liquid crystal display device
JP2008250174A (en) Backlight device, method for controlling backlight and liquid crystal display
KR101264700B1 (en) backlight unit
KR102633934B1 (en) Back light unit and display device using the same
JP2022152904A (en) Luminaire and display device
WO2012026162A1 (en) Lighting apparatus, display apparatus, and television receiver apparatus
TWI258554B (en) Backlight module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17843262

Country of ref document: EP

Kind code of ref document: A1