WO2018037714A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2018037714A1
WO2018037714A1 PCT/JP2017/023909 JP2017023909W WO2018037714A1 WO 2018037714 A1 WO2018037714 A1 WO 2018037714A1 JP 2017023909 W JP2017023909 W JP 2017023909W WO 2018037714 A1 WO2018037714 A1 WO 2018037714A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
control chamber
pressure control
pressure
Prior art date
Application number
PCT/JP2017/023909
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 直樹
利明 稗島
友基 藤野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018037714A1 publication Critical patent/WO2018037714A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle

Definitions

  • the present disclosure relates to a fuel injection device that injects fuel from an injection hole.
  • the needle opening speed for injecting fuel is made variable.
  • two solenoids are installed, and the solenoids are operated independently to control the discharge speed of the fuel flowing out from the control chamber in two stages.
  • an object of the present disclosure is to provide a fuel injection device capable of variably controlling the fuel discharge speed while suppressing an increase in size.
  • the fuel injection device injects fuel from the injection hole.
  • the fuel injection device includes an injection hole, a supply flow path for supplying fuel to the injection hole, a pressure control chamber into which a part of the fuel flowing through the supply flow path flows, and an outflow flow for discharging the fuel in the pressure control chamber to the low pressure side
  • a switching valve mechanism that has one valve body, a second valve body that is disposed in the pressure control chamber, and a third valve body that is at least partially disposed in the pressure control chamber, and switches the flow passage area of the outflow passage
  • the first valve body is lifted by applying a driving force to the first valve body to switch the flow path area by the switching valve mechanism, and the lift amount of the first valve body is set to the first lift amount or
  • a drive unit that performs switching control to a second lift amount larger than the first lift amount
  • the chamber communicates with the pressure control chamber, the second valve body and the third valve body are each formed with an insertion hole that is a part of the outflow channel, and the switching valve mechanism is the first valve body.
  • the first valve element When the first valve element is not lifted, the first valve element is seated on the valve body to close the outflow passage. When the first valve element is at the first lift amount, the first valve element is Since the second valve element and the third valve element are not separated from the body, the fuel passes through the insertion hole of the third valve element and restricts the outflow channel to the first throttle state. When the first valve body is in the second lift position, the first valve body is separated from the valve body, and the third valve body is moved by the first valve body against the third valve body. By being separated from the two valve bodies, the fuel passes through the insertion hole of the second valve body, and the outflow channel is limited to the second throttle state that is different from the first throttle state.
  • the 1st valve body when the 1st valve body is in the position of the 1st lift amount, the 1st valve body separated from the valve body does not separate the 2nd valve body and the 3rd valve body. In position. As a result, the fuel passes through the insertion hole of the third valve body, and the outflow channel can be brought into the first throttle state. Further, when the first valve body is in the second lift amount position, the first valve body that is separated from the valve body is in a position for separating the third valve body from the second valve body. As a result, the fuel passes through the insertion hole of the second valve body, and the outflow channel can be brought into the second throttle state.
  • the switching valve mechanism can switch the channel area of the outflow channel by adjusting the lift amount of the first valve body.
  • the lift amount of a 1st valve body can be controlled by one drive part. Therefore, since the drive part should just be the structure which controls the lift amount of one 1st valve body, a drive part can suppress an enlargement.
  • FIG. 1 is a diagram showing an overall configuration of a fuel supply system
  • FIG. 2 is a longitudinal sectional view showing the fuel injection device
  • FIG. 3 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism
  • FIG. 4 is a diagram illustrating the operation of the switching valve mechanism
  • FIG. 5 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism of the second embodiment.
  • FIG. 6 is a diagram showing the operation of the switching valve mechanism
  • FIG. 7 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism of the third embodiment
  • FIG. 8 is a diagram illustrating the operation of the switching valve mechanism.
  • the fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment.
  • the fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100.
  • the fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
  • the feed pump 12 is, for example, a trochoid pump built in the supply pump 13.
  • the feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13.
  • the feed pump 12 may be a separate body from the supply pump 13.
  • the supply pump 13 is, for example, a plunger type pump that is driven by the output shaft of the diesel engine 20.
  • the supply pump 13 is connected to the common rail 14 by a fuel pipe 13a.
  • the supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
  • the common rail 14 is connected to each fuel injection device 100 via a high-pressure fuel pipe 14a.
  • the common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure.
  • the common rail 14 is provided with a pressure reducing valve 14b.
  • the pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
  • the engine control device 17 includes an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a processor, a RAM, and a rewritable nonvolatile storage medium, and a drive circuit that drives each fuel injection device 100. It is.
  • the engine control device 17 is electrically connected to each fuel injection device 100 as indicated by a broken line in FIG.
  • the engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
  • the fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22.
  • the fuel injection device 100 directly injects fuel supplied through the high-pressure fuel pipe 14 a from the plurality of injection holes 30 toward the combustion chamber 22.
  • the fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 30.
  • the fuel injection device 100 uses part of the fuel supplied through the high-pressure fuel pipe 14 a to open and close the injection hole 30.
  • the fuel injection device 100 includes a valve body 31, a nozzle needle 32, a drive unit 33, and a switching valve mechanism 36.
  • the switching valve mechanism 36 includes a first valve 35, a second valve 37, and a third valve 38.
  • the valve body 31 is configured by combining a plurality of members such as a cylinder formed of a metal material.
  • the valve body 31 is formed with an injection hole 30, a seat part 39, a high-pressure channel 40, an inflow channel 41, a low-pressure channel 42, a pressure control chamber 43, a first valve chamber 45, and a drive unit accommodation chamber 46. .
  • the injection hole 30 is formed at the distal end in the insertion direction in the valve body 31 inserted into the combustion chamber 22.
  • the tip is formed in a conical or hemispherical shape.
  • a plurality of nozzle holes 30 are provided radially from the inside to the outside of the valve body 31.
  • High-pressure fuel is injected from each injection hole 30 toward the combustion chamber 22.
  • the high-pressure fuel is atomized by passing through the nozzle holes 30 and is easily mixed with air.
  • the seat part 39 is formed in a conical shape inside the tip part of the valve body 31.
  • the seat portion 39 faces the high-pressure channel 40 on the upstream side of the nozzle hole 30.
  • the high-pressure channel 40 supplies high-pressure fuel supplied from the common rail 14 to the nozzle hole 30 through the high-pressure fuel pipe 14a shown in FIG.
  • the inflow channel 41 allows the high-pressure channel 40 and the pressure control chamber 43 to communicate with each other.
  • the inflow channel 41 causes a part of the fuel flowing through the high-pressure channel 40 to flow into the pressure control chamber 43.
  • the inflow channel 41 is provided with an in-orifice 48 as an inflow orifice.
  • the in-orifice 48 restricts the flow rate of fuel flowing from the high-pressure channel 40 to the pressure control chamber 43.
  • the low pressure channel 42 extends in the valve body 31 along the high pressure channel 40.
  • the low-pressure channel 42 is a part of the outflow channel that allows the fuel (leak fuel) in the pressure control chamber 43 to flow out to the surplus fuel pipe on the low-pressure side outside the fuel injection device 100.
  • the outflow channel is constituted by a low-pressure channel 42, a first valve chamber, and the like. The pressure of the fuel flowing through the low pressure channel 42 is lower than the pressure of the fuel in the pressure control chamber 43.
  • the pressure control chamber 43 is provided inside the valve body 31 on the opposite side of the nozzle hole 30 with the nozzle needle 32 interposed therebetween.
  • the pressure control chamber 43 is a cylindrical space defined by the cylinder 49 and the nozzle needle 32.
  • High pressure fuel flows into the pressure control chamber 43 through the inflow passage 41.
  • the fuel pressure in the pressure control chamber 43 varies depending on the inflow of high-pressure fuel from the inflow passage 41 and the outflow of fuel to the first valve chamber 45.
  • the nozzle needle 32 is reciprocated by the fluctuation of the fuel pressure in the pressure control chamber 43.
  • the first valve chamber 45 is a cylindrical space that houses the first valve 35.
  • the first valve chamber 45 communicates with the pressure control chamber 43.
  • the first valve chamber 45 is located between the pressure control chamber 43 and the drive unit accommodation chamber 46.
  • the axial direction of the first valve chamber 45 is along the axial direction of the pressure control chamber 43.
  • the first valve chamber 45 and the pressure control chamber 43 are formed so as to be coaxial with each other.
  • the volume of the first valve chamber 45 is smaller than the volume of the pressure control chamber 43.
  • a downstream communication path 53 is formed between the first valve chamber 45 and the drive unit accommodation chamber 46.
  • the downstream side communication passage 53 mainly causes the fuel discharged from the first valve chamber 45 to flow through the low pressure passage 42.
  • a first seat portion 54 is formed on the partition wall that partitions the first valve chamber 45.
  • the first seat portion 54 is an annular region surrounding the periphery of the opening of the downstream communication passage 53 in the partition wall of the first valve chamber 45.
  • the first seat portion 54 is a region where the first valve 35 is seated.
  • the drive unit accommodation chamber 46 is a columnar space that houses the drive unit 33.
  • the drive unit accommodation chamber 46 is filled with a part of the fuel discharged from the first valve chamber 45.
  • the axial direction of the drive unit accommodating chamber 46 is along the axial direction of the pressure control chamber 43 and the first valve chamber 45.
  • the drive unit accommodation chamber 46, the first valve chamber 45, and the pressure control chamber 43 are provided so as to be coaxial with each other.
  • the nozzle needle 32 is formed in a cylindrical shape as a whole by a metal material.
  • the nozzle needle 32 is accommodated in the valve body 31.
  • the nozzle needle 32 is urged toward the nozzle hole 30 by a coiled nozzle spring 60 in which a metal wire is spirally wound.
  • the nozzle needle 32 has a valve pressure receiving surface 61 and a face portion 62.
  • the nozzle needle 32 is reciprocally displaced in the axial direction along the inner peripheral wall surface of the cylinder 49 formed in a cylindrical shape by receiving the fuel pressure in the pressure control chamber 43 on the valve pressure receiving surface 61.
  • the nozzle needle 32 is displaced relative to the valve body 31, thereby causing the face portion 62 to be separated from and seated on the seat portion 39.
  • the face portion 62 forms a main valve portion that opens and closes the nozzle hole 30 together with the seat portion 39.
  • the drive unit 33 is accommodated in the drive unit accommodation chamber 46.
  • the drive unit 33 generates a driving force for driving the first valve 35 and the third valve 38 of the switching valve mechanism 36, so that the pressure control chamber 43 and the low-pressure flow path 42 are communicated from the cut-off state to the communication state.
  • the driving unit 33 can change the magnitude of the driving force to be generated based on the driving signal output from the engine control device 17, and can generate the first driving force or the second driving force.
  • the second driving force is a force larger than the first driving force.
  • the driving unit 33 includes a piezoelectric element laminate 63, a transmission mechanism 64, and the like.
  • the piezoelectric element laminate 63 is a laminate in which, for example, layers called PZT (PbZrTiO3) and thin electrode layers are alternately stacked.
  • the piezoelectric element laminate 63 receives an input drive signal output from the engine control device 17.
  • the piezoelectric element stacked body 63 expands and contracts along the axial direction of the drive unit accommodation chamber 46 by the inverse piezoelectric effect that is a characteristic of the piezoelectric element, according to the drive voltage that is a voltage corresponding to the drive signal.
  • the transmission mechanism 64 is a mechanism that transmits expansion and contraction of the piezoelectric element laminate 63.
  • the transmission mechanism 64 includes a piston 65, a buffer cylinder 66, a piston spring 67, a first transmission piston 68, a second transmission piston 69, a first drive transmission pin 70, and a second drive transmission pin 71.
  • the piston 65 is formed in a cylindrical shape.
  • the piston 65 is in contact with the piezoelectric element laminate 63.
  • the movement of the piezoelectric element laminate 63 that expands and contracts is input to the piston 65.
  • the buffer cylinder 66 is formed in a cylindrical shape and is fitted on the piston 65.
  • the piston spring 67 is a metal spring that generates an elastic force in the axial direction. The piston spring 67 urges the piston 65 toward the first valve 35 with respect to the buffer cylinder 66.
  • a cylindrical first drive transmission pin 70 extending toward the first valve chamber 45 is disposed at the tip of the piston 65.
  • the first drive transmission pin 70 is inserted through the downstream communication path 53.
  • a columnar first transmission piston 68 extending toward the first valve chamber 45 is disposed at the tip of the first drive transmission pin 70.
  • the first transmission piston 68 is inserted through the downstream communication path 53.
  • the first drive transmission pin 70 and the first transmission piston 68 are arranged coaxially.
  • the downstream communication passage 53 defines a buffer oil tight chamber 72 between the first transmission piston 68 and the second transmission piston 69.
  • the displacement of the first transmission piston 68 is transmitted to the second transmission piston 69 by the fuel filled in the buffer oil tight chamber 72.
  • the second transmission piston 69 has a columnar shape and is inserted through the downstream communication path 53.
  • a columnar second drive transmission pin 71 extending toward the first valve chamber 45 is disposed at the tip of the second transmission piston 69.
  • the second drive transmission pin 71 is inserted through the downstream communication path 53.
  • the distal end surface of the second drive transmission pin 71 is in contact with the first valve 35.
  • the drive unit 33 reciprocates the second drive transmission pin 71 in the axial direction by transmitting the expansion and contraction of the piezoelectric element laminate 63 along the axial direction by the transmission mechanism 64.
  • the drive voltage input to the drive unit 33 increases, the drive force input from the second drive transmission pin 71 to the first valve 35, and hence the lift amount of the first drive transmission pin 70 and the first valve 35, increases.
  • the switching valve mechanism 36 is a mechanism that switches the flow passage area of the outflow passage by opening and closing the first valve 35 and the third valve 38.
  • the switching valve mechanism 36 closes the outflow channel.
  • the switching valve mechanism 36 restricts the outflow channel to the first throttle state. Further, when the drive unit 33 generates the second driving force, the switching valve mechanism 36 restricts the outflow channel to the second throttle state.
  • the second valve 37 is formed in a disk shape from a metal material or the like.
  • the second valve 37 is disposed in the pressure control chamber 43 and can be displaced in the pressure control chamber 43 along the axial direction.
  • the third valve 38 is also disposed in the pressure control chamber 43.
  • the second valve 37 and the third valve 38 are arranged in series in the pressure control chamber 43.
  • a through hole 37 a that penetrates the second valve 37 in the axial direction is formed in the center of the second valve 37 in the radial direction.
  • the cylindrical portion 38a of the third valve 38 is inserted through the through hole 37a of the second valve 37, and guides the cylindrical portion 38a of the third valve 38 in the axial direction along the inner wall of the through hole 37a.
  • the second valve 37 is provided with an upper end side contact portion 37b, a lower end side contact portion 37c, and a second out orifice 37d.
  • the upper end side contact portion 37 b is formed on the upper end surface of the second valve 37 facing the first valve chamber 45.
  • the upper end side contact portion 37b is formed in a flat annular shape.
  • the upper end side contact portion 37 b comes into contact with the second seat portion 50 by the elastic force of the third valve spring 55.
  • the second valve 37 is closed by the seating of the upper end side contact portion 37b on the second seat portion 50.
  • the second valve 37 is seated, thereby closing the in-orifice 48 of the inflow channel 41 and blocking the communication with the pressure control chamber 43. Further, the second valve 37 is separated to open the in-orifice 48 of the inflow channel 41 and to communicate with the pressure control chamber 43.
  • the lower end side contact portion 37 c is formed on the end surface facing the third valve 38 among the axial end surfaces of the second valve 37. In the lower end side contact portion 37 c, the disk portion 38 b of the third valve 38 comes into contact with the elastic force of the third valve spring 55.
  • the second out orifice 37d constitutes a part of the insertion hole 37e of the second valve 37.
  • the insertion hole 37e of the second valve 37 passes through the upper end side contact portion 37b and the lower end side contact portion 37c.
  • the second out orifice 37d is configured to restrict the flow area from the pressure control chamber 43 to the first valve chamber 45.
  • the second out orifice 37d restricts the flow rate of the fuel flowing out from the pressure control chamber 43 to the first valve chamber 45 when the second valve 37 is in the closed state, so that the outflow passage in the second throttle state.
  • the flow area is defined.
  • the throttle area which is the flow path area throttled by the second out orifice 37d, is defined wider than the first out orifice 38c formed in the third valve 38. That is, the second out orifice 37d is an orifice having a larger diameter than the first out orifice 38c.
  • the third valve 38 is formed of a metal material or the like into a two-stage columnar shape.
  • the second valve 37 and the third valve 38 are arranged in series in the pressure control chamber 43.
  • the third valve 38 has a disc portion 38b and a cylindrical portion 38a.
  • the disk portion 38 b is formed with a larger diameter than the through hole 37 a of the second valve 37.
  • the cylindrical portion 38 a is formed with a smaller diameter than the through hole 37 a of the second valve 37.
  • the column part 38a protrudes from the disk part 38b in the column shape along the axial direction.
  • the length of the cylindrical portion 38 a in the axial direction is longer than the length of the through hole 37 a of the second valve 37.
  • the cylindrical portion 38a is guided in the axial direction by the inner wall of the through hole 37a of the second valve 37, and can be displaced in the axial direction.
  • the disk part 38 b is a part that comes into contact with the lower end side contact part 37 c of the second valve 37.
  • the third valve 38 is disposed on the inner peripheral side of the cylinder 49 so as to be capable of reciprocating displacement along the axial direction of the valve body 31.
  • a space between the third valve 38 and the valve pressure receiving surface 61 is substantially the pressure control chamber 43.
  • the third valve 38 is urged toward the first valve chamber 45 with respect to the cylinder 49 by a third valve spring 55.
  • a first out orifice 38 c is formed in the third valve 38.
  • the first out orifice 38c penetrates the disk portion 38b of the third valve 38 in the plate thickness direction, extends part of the cylindrical portion 38a in the axial direction, and part of the insertion hole 38e extending to the side surface portion of the cylindrical portion 38a. Is formed.
  • the insertion hole 38 e of the third valve 38 is a passage that communicates the pressure control chamber 43 and the first valve chamber 45.
  • the first out orifice 38 c restricts the flow rate of fuel flowing from the pressure control chamber 43 to the first valve chamber 45 in a state where the second valve 37 blocks the in orifice 48 of the inflow channel 41.
  • the first valve 35 is formed in a bowl shape with a metal material or the like.
  • the first valve 35 is disposed in the first valve chamber 45.
  • the first valve 35 can be displaced in the first valve chamber 45 along the axial direction.
  • the first valve 35 is urged toward the drive portion accommodation chamber 46 with respect to the upper end side contact portion 37b of the second valve 37 by a first valve spring 56 formed in a coil spring shape.
  • a pilot face portion 73 is formed on the first valve 35.
  • the pilot face portion 73 is formed on the upper end surface of the first valve 35 that faces the downstream communication passage 53.
  • the pilot face portion 73 is formed in a flat annular shape.
  • the pilot face portion 73 comes into contact with the first seat portion 54 by the elastic force of the first valve spring 56.
  • the pilot face portion 73 is pressed against the first seat portion 54 by the biasing force of the first valve spring 56 and the fuel pressure difference between the first valve chamber 45 and the low pressure passage 42.
  • the seating of the pilot face portion 73 on the first seat portion 54 causes the first valve 35 to be closed.
  • the first valve 35 uses the distance displaced in the axial direction when the driving unit 33 generates the first driving force as the first lift amount, and in the axial direction when the driving unit 33 generates the second driving force.
  • the displacement distance is defined as the second lift amount.
  • the first lift amount is longer than the second lift amount.
  • the direction from the pressure control chamber 43 toward the first valve chamber 45 and the drive unit storage chamber 46 along the axial direction is the valve closing direction, and along the axial direction.
  • the direction from the drive unit housing chamber 46 to the pressure control chamber 43 is the valve opening direction.
  • the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted before the start of injection. Therefore, the drive unit 33 does not substantially generate forces such as the first drive force and the second drive force. Therefore, the first valve 35 is pressed against the first seat portion 54 by the elastic force of the first valve spring 56. The second valve 37 is pressed against the wall surface around the opening of the inflow channel 41 by the elastic force of the third valve spring 55. For this reason, the pilot face portion 73 of the first valve 35 is brought into contact with the first seat portion 54, and the upper end side contact portion 37b of the second valve 37 is brought into contact with the second seat portion 50 to be stationary. is doing.
  • a valve opening gap 74 is formed between the first valve 35 and the third valve 38. Since both the first valve 35 and the second valve 37 are in the closed state, the fuel pressure in the first valve chamber 45 has risen to substantially the same level as the fuel pressure in the pressure control chamber 43. In the above state, the nozzle needle 32 is stationary at the valve closing position where the face portion 62 is in contact with the seat portion 39.
  • the low-speed valve opening operation will be described.
  • application of the drive voltage from the engine control device 17 to the drive unit 33 is started.
  • the drive unit 33 generates the first drive force.
  • the engine control device 17 applies driving to the drive unit 33 so that a first driving force that is greater than the opening force of the first valve 35 and does not displace the third valve 38 acts on the first valve 35. Control the voltage.
  • the second drive transmission pin 71 When the drive unit 33 generates the first driving force, the second drive transmission pin 71 is displaced over the first lift amount.
  • the first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount.
  • the first valve 35 contacts the tip of the cylindrical portion 38 a of the third valve 38 so that the third valve 38 is not separated from the second valve 37. Due to the displacement of the first valve 35 in the valve opening direction, the valve opening gap 74 disappears.
  • the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position in FIG.
  • the high pressure fuel in the pressure control chamber 43 flows in the order of the first out orifice 38 c of the third valve 38 and the first valve chamber 45, and is discharged to the low pressure passage 42.
  • the flow area of the outflow flow path is defined by the throttle area of the first out orifice 38c which is smaller than the pilot opening area of the first valve 35. Therefore, the outflow passage is in the first throttle state in which the outflow flow rate of the fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
  • the pilot opening area is a channel area between the first seat portion 54 and the pilot face portion 73.
  • the valve opening gap 74 is defined in advance so that the pilot opening area is larger than the throttle area of the first out orifice 38c.
  • the third valve spring 55 urges the second valve 37 and the third valve 38 toward the first valve 35 in the valve closing direction, thereby opening the second valve 37 to the valve. Do not leave the body 31.
  • the first valve 35 is pressed against the tip of the cylindrical portion 38 a of the third valve 38 and can be stationary while being sandwiched between the second drive transmission pin 71 and the first valve 35.
  • the driving force generated by the driving unit 33 is maintained at the first driving force, the closed state of the second valve 37 in the first throttle state is maintained.
  • the second valve 37 remains in the pressure control chamber 43 until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure.
  • the seated state is maintained by the pressure of. In other words, even if the first valve 35 opens and the pressure in the pressure control chamber 43 decreases, there is a time lag until the second valve 37 opens.
  • the fuel pressure in the first valve chamber 45 and the pressure control chamber 43 gradually decreases due to the outflow of fuel through the outflow passage in the first throttle state.
  • the nozzle needle 32 is displaced in the valve opening direction while being gradually accelerated toward the pressure control chamber 43 by the pressure of the high-pressure fuel acting on the face portion 62.
  • the fuel injection from the nozzle hole 30 is started by opening the main valve portion as described above.
  • the operation of the first lift position is such that the first valve 35 is opened by the first driving force, and only the first valve 35 is opened by stopping the first valve 35 when it contacts the third valve 38. It becomes a state.
  • the fuel in the first valve chamber 45 flows out into the low pressure passage 42, and the fuel in the pressure control chamber 43 passes through the first out orifice 38c as the pressure in the first valve chamber 45 decreases. It flows out into one valve chamber 45.
  • the second valve 37 and the third valve 38 receive pressure on the side closing the in-orifice 48 and the second out-orifice 37d, respectively, and close them.
  • the fuel enters and exits the pressure control chamber 43 only from the first out orifice 38c, whereby the pressure in the pressure control chamber 43 decreases, and the nozzle needle 32 opens when a certain pressure is reached.
  • the valve opening speed is defined by the flow rate of the first orifice.
  • the high speed valve opening operation will be described.
  • the drive voltage applied from the engine control device 17 to the drive unit 33 is increased.
  • the drive unit 33 generates a second driving force that exceeds the opening force of the third valve 38.
  • the engine control device 17 controls the drive voltage applied to the drive unit 33 so that the generation of the second drive force larger than the valve opening force of the third valve 38 is maintained.
  • the second drive transmission pin 71 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount.
  • the first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount.
  • the first valve 35 comes into contact with the cylindrical portion 38 a of the third valve 38, and the cylindrical portion 38 a of the third valve 38 is pushed by the first valve 35 and displaced in the valve opening direction.
  • the disk portion 38 b of the third valve 38 is separated from the lower end side contact portion 37 c of the second valve 37.
  • the fuel in the pressure control chamber 43 flows from the lower end side contact portion 37c of the second valve 37 and the disc portion 38b of the third valve 38 as in the second lift position of FIG. To the bypass passage 75, the second out orifice 37d, and the first valve chamber 45 in this order.
  • the high-pressure fuel in the pressure control chamber 43 also flows through the first out orifice 38 c of the third valve 38 and the first valve chamber 45 in this order, and is discharged to the low-pressure channel 42.
  • the configuration that regulates the flow passage area of the outflow passage and restricts the outflow flow rate of the fuel is switched from the first out orifice 38c to the first out orifice 38c and the second out orifice 37d.
  • the flow area of the outflow channel in the second throttle state is larger than that in the first throttle state.
  • the flow rate of the fuel flowing out from the pressure control chamber 43 in the second throttle state increases more than in the first throttle state.
  • the second valve body is kept in pressure until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure.
  • the seated state is maintained by the pressure in the control chamber 43.
  • Both the opening area of the bypass passage 75 and the pilot opening area of the first valve 35 are larger than the sum of the throttle areas of the first out orifice 38c and the second out orifice 37d. In order to enable flow rate control in the second throttle state, it is defined in advance.
  • the fuel pressure in the first valve chamber 45 and the pressure control chamber 43 drops significantly due to the outflow of fuel whose flow rate is controlled by the second out orifice 37d.
  • the nozzle needle 32 accelerates in the valve opening direction, and rapidly expands the gap between the seat portion 39 and the face portion 62.
  • the flow area of the high-pressure flow path 40 connected to the injection hole 30 is increased, so that the fuel injection amount injected from the injection hole 30 is increased.
  • a clear change occurs in the characteristics of the injection amount (injection rate) of the fuel injected from the injection hole 30 per unit time.
  • the operation of the second lift position is such that the first valve 35 is opened by the second driving force, the third valve 38 is further opened, and the first valve 35 is opened via the second out orifice 37d of the second valve 37.
  • the valve chamber 45 and the pressure control chamber 43 communicate with each other. Since the second valve 37 receives a pressure difference between the pressure control chamber 43 and the first valve chamber 45, the in-orifice 48 is closed. Accordingly, the fuel enters and exits the pressure control chamber 43 and flows out from the first out orifice 38c and the second out orifice 37d, and the valve opening speed at this time is the total flow rate of the first out orifice 38c and the second out orifice 37d. It is prescribed by. Thus, the valve opening speed can be switched by switching control between the first driving force and the second driving force.
  • valve closing operation During the valve closing operation, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted. Then, the driving force of the drive unit 33 is less than the opening force of each of the first valve 35 and the third valve 38 and eventually disappears. As described above, the first valve 35 and the third valve 38 are displaced toward the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure. Then, the pilot face portion 73 and the disc portion 38b of the third valve 38 return to the closed state in which the first seat portion 54 and the lower end side abutting portion 37c of the second valve 37 are abutted. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
  • the second valve 37 is separated due to the pressure difference between the pressure control chamber 43 and the inflow channel 41.
  • the second valve 37 is pushed down by the fuel pressure of the high-pressure fuel flowing from the inflow passage 41.
  • the high-pressure fuel that has passed through the in-orifice 48 flows into the pressure control chamber 43 and the first valve chamber 45.
  • each fuel pressure in the first valve chamber 45 and the pressure control chamber 43 is recovered integrally.
  • the nozzle needle 32 is pushed down by the fuel pressure in the pressure control chamber 43 and returns to the state where the face portion 62 is brought into contact with the seat portion 39 at the valve closing position.
  • the fuel injection from the nozzle hole 30 is interrupted by closing the main valve portion.
  • the first valve 35 closes the low pressure flow path 42 by the first valve spring 56, and the third valve 38 is for the third valve.
  • the second out orifice 37d is closed by the spring 55.
  • the second valve 37 and the third valve 38 close the in-orifice 48 and the second out-orifice 37d, respectively, due to the pressure difference between the first valve chamber 45 and the pressure control chamber 43.
  • fuel flows from the pressure control chamber 43 into the first valve chamber 45 through the first out orifice 38c.
  • the pressure in the first valve chamber 45 increases, and the pressure difference between the first valve chamber 45 and the pressure control chamber 43 decreases.
  • the second valve 37 Since the pressure in the pressure control chamber 43 is lower than that of the inflow channel 41 in the valve open state, the second valve 37 is opened due to the high pressure from the in-orifice 48 when the pressure difference between the first valve chamber 45 and the pressure control chamber 43 decreases. The fuel flows into the pressure control chamber 43. As a result, the nozzle needle 32 is closed.
  • the flow area of the outflow flow path is switched by the switching valve mechanism 36 due to an increase in the generated drive force of the drive unit 33 from the first drive force to the second drive force.
  • the displacement speed of the nozzle needle 32 is clearly changed by changing the pressure drop mode of the pressure control chamber 43. Therefore, the passage area rapidly increases in the orifice portion between the face portion 62 and the seat portion 39 through which the high-pressure fuel supplied to the injection hole 30 passes.
  • the injection amount injected from the nozzle hole 30 per unit time also clearly changes before and after the driving force is switched by the driving unit 33. Therefore, the fuel injection device 100 can change the injection rate characteristic of the fuel injection by controlling the driving force generated by the single drive unit 33.
  • the first valve 35 when the first valve 35 is in the first lift amount position and the outflow channel is in the first throttle state, the first valve 35 that is separated from the valve body 31 is the third valve.
  • the third valve 38 is brought into contact with the third valve 38 so as not to separate the seat 38. Since the position of the first valve 35 is held by contact with the third valve 38, the flow area of the outflow passage in the first throttled state, and hence the amount of fuel outflow from the pressure control chamber 43, is stable. Become.
  • the position of the first lift amount is also referred to as a first lift position.
  • the third valve 38 is displaced by the pressing by the first valve 35 and the third valve 38 is The two valves 37 are separated from each other. In this way, the position of the third valve 38 is held by the pressing of the first valve 35, so that the flow area of the outflow flow path in the second throttled state, and hence the amount of fuel discharged from the pressure control chamber 43 is also stable. It becomes.
  • the position of the second lift amount is also referred to as a second lift position.
  • the switching valve mechanism 36 can switch the channel area of the outflow channel by adjusting the lift amount of the first valve 35.
  • the lift amount of the first valve 35 can be controlled by one drive unit 33. Therefore, since the drive part 33 should just be the structure which controls the lift amount of one 1st valve
  • the drive unit 33 of the first embodiment switches between the first throttle state and the second throttle state of the outflow channel not by the lift amount of the second drive transmission pin 71 but by the generated driving force of the drive unit 33. Yes.
  • the positions of the first valve 35 and the third valve 38 can be maintained even if the driving force varies to some extent in the first throttle state and the second throttle state. Therefore, since the highly accurate control of the lift amount of the second drive transmission pin 71 is not necessarily required, the control of the drive unit 33 can be simplified. Further, the dimensional accuracy required for each member can be relaxed.
  • the first out orifice 38c and the second out orifice 37d which are throttle holes provided in a specific member
  • the road area is specified. As described above, if the flow path area is not defined by the gap between the plurality of members, the variation in the flow rate of the fuel flowing through the outflow flow path in each throttled state is further reduced.
  • a valve opening gap 74 is formed as a space that allows a stroke in the valve opening direction of the first valve 35. Therefore, the fuel injection device 100 can displace the first valve 35 and the third valve 38 in the valve opening direction at different timings by a simple linear operation of the single drive unit 33.
  • the second valve is maintained until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure. 37 maintains the seated state by the pressure of the pressure control chamber 43. As a result, the high pressure fuel can be prevented from flowing into the pressure control chamber 43 as soon as the first valve 35 is lifted. Therefore, the time for injecting fuel from the nozzle hole 30 can be secured.
  • the second valve 37 when the first valve 35 is seated on the valve body 31 from the lifted state, the second valve 37 is separated due to the pressure difference between the pressure control chamber 43 and the high-pressure flow path 40.
  • the pressure control chamber 43 and the first valve chamber 45 can be filled with high-pressure fuel. Therefore, preparation for the next injection can be performed quickly.
  • the second valve 37 and the third valve 38 are arranged in the pressure control chamber 43. Since the second valve 37 is configured to partition a part of the first valve chamber 45, the volume of the pressure control chamber 43 contributing to the valve opening response and the insertion hole 38e of the third valve 38 contributing to the valve closing response. And the total volume of the first valve chamber 45 can be reduced. As a result, high responsiveness can be realized.
  • the high-pressure channel 40 corresponds to a supply channel
  • the nozzle needle 32 corresponds to a valve member
  • the first valve 35 corresponds to the first valve body
  • the second valve 37 corresponds to the second valve body
  • the third valve 38 corresponds to the third valve body.
  • the first valve chamber 45 corresponds to a switching chamber
  • the first out orifice 38c corresponds to a part of the insertion hole 35e of the first valve 35
  • the second out orifice 37d corresponds to the insertion hole 37e of the second valve 37.
  • the first valve 352 is formed of a metal material or the like into a two-stage columnar shape.
  • the first valve 352 has a disk part 35b and a cylindrical part 35a.
  • the disc part 35 b is formed with a larger diameter than the through hole 37 a of the second valve 37.
  • the cylindrical portion 35 a is formed with a smaller diameter than the through hole 37 a of the second valve 37.
  • the column part 35a protrudes from the disk part 35b in the column shape along the axial direction.
  • the length of the cylindrical portion 35 a in the axial direction is longer than the length of the through hole 37 a of the second valve 37.
  • the cylindrical portion 35a is guided in the axial direction by the inner wall of the through hole 37a of the second valve 37, and can be displaced in the axial direction.
  • a first valve spring 56 is disposed between the disk portion 35 b and the upper end side contact portion 37 b of the second valve 37.
  • the first valve 352 is formed with an insertion hole 35e for communicating the first valve chamber 45 and the pressure control chamber 43.
  • a first out orifice 38 c is formed in a part of the insertion hole 35 e of the first valve 352.
  • the insertion hole 35e of the first valve 352 has a portion extending in the axial direction of the cylindrical portion 35a of the first valve 352 and a portion extending in the radial direction of the cylindrical portion 35a.
  • the first out orifice 38c is formed in a portion extending in the axial direction of the insertion hole 35e.
  • the third valve 382 is formed in a disk shape from a metal material or the like.
  • the outer diameter of the third valve 382 is formed larger than the through hole 37 a of the second valve 37.
  • an insertion hole 38e that penetrates the third valve 382 in the axial direction is formed in the center of the third valve 382 in the radial direction.
  • the inner diameter of the insertion hole 38e of the third valve 382 is smaller than the outer diameter of the cylindrical portion 35a of the first valve 352.
  • the insertion hole 38 e of the third valve 382 has a smaller inner diameter than the through hole 37 a of the second valve 37. Therefore, the upper end side contact portion 38f of the third valve 382 becomes a portion where the tip of the cylindrical portion 35a of the first valve 352 contacts.
  • the pilot face portion 73 of the first valve 352 is brought into contact with the first seat portion 54 and the upper end side contact portion of the second valve 37 before the start of injection, as in the first embodiment.
  • 37b is stationary at the valve closing position where the second seat portion 50 is brought into contact with the second seat portion 50.
  • a valve opening gap 74 is formed between the cylindrical portion 35 a of the first valve 352 and the upper end side contact portion 38 f of the third valve 382.
  • the low-speed valve opening operation will be described.
  • the application of the drive voltage from the engine control device 17 to the drive unit 33 is started as in the first embodiment.
  • the second drive transmission pin 71 is displaced over the first lift amount.
  • the first valve 352 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount.
  • the tip of the cylindrical portion 35a of the first valve 352 contacts the upper end side contact portion 38f of the third valve 382 so that the third valve 382 is not separated from the second valve 37. Due to such displacement of the first valve 352 in the valve opening direction, the valve opening gap 74 disappears.
  • the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position in FIG.
  • the high pressure fuel in the pressure control chamber 43 flows through the insertion hole 38e of the third valve 382, the first out orifice 38c of the first valve 352, and the first valve chamber 45 in this order, and is discharged to the low pressure passage 42.
  • the outflow passage is in a first throttle state in which the outflow flow rate of fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
  • the drive unit 33 In the high-speed valve opening operation, the drive unit 33 generates a second driving force that exceeds the valve opening force of the third valve 382 as in the first embodiment.
  • the second drive transmission pin 71 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount.
  • the first valve 352 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount. Further, due to the displacement of the first valve 352, the cylindrical portion 35a of the first valve 352 contacts the upper end side contact portion 38f of the third valve 382, and the first valve 352 pushes the third valve 382 in the valve opening direction. Displace.
  • the third valve 382 is separated from the lower end side contact portion 37c of the second valve 37.
  • the fuel in the pressure control chamber 43 is in contact with the lower end side contact portion 37 c of the second valve 37 and the upper end side of the third valve 382.
  • the bypass passage 75 between the contact portion 38f, the second out orifice 37d of the second valve 37, and the first valve chamber 45 are sequentially circulated.
  • the high pressure fuel in the pressure control chamber 43 also flows through the insertion hole 38e of the third valve 382, the first out orifice 38c of the first valve 352, and the first valve chamber 45 in this order, and is discharged to the low pressure flow path 42.
  • the flow path area of the outflow flow path becomes the second throttled state that is larger than the first throttled state.
  • valve closing operation During the valve closing operation, the driving force of the driving unit 33 disappears as in the first embodiment.
  • the first valve 352 and the third valve 382 are displaced in the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure.
  • the valve face is returned to the closed state in which the pilot face portion 73 and the upper end side contact portion 38f of the third valve 382 are brought into contact with the first seat portion 54 and the lower end side contact portion 37c of the second valve 37.
  • the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
  • the switching control between the first throttle state and the second throttle state can be performed as in the first embodiment described above. it can. As a result, the same operations and effects as in the first embodiment can be achieved.
  • the configuration of the first valve chamber 453 is different from that of the first embodiment.
  • the first valve chamber 453 is partitioned by the valve body 31.
  • a first placement portion 76 is formed on the partition wall that partitions the first valve chamber 453 together with the first seat portion 54.
  • the lower end of the first valve spring 56 is placed on the first placement portion 76.
  • valve body 31 is formed with a communication channel 77 that allows the pressure control chamber 43 and the first valve chamber 453 to communicate with each other.
  • the end of the communication channel 77 on the first valve chamber 453 side is formed outside the first valve spring 56.
  • the end of the communication channel 77 on the pressure control chamber 43 side is formed at a position facing the end of the cylindrical portion 38 a of the third valve 38, that is, a position facing the through hole 37 a of the second valve 37.
  • the switching valve mechanism 36 further includes a third drive transmission pin 78.
  • the third drive transmission pin 78 is provided between the first valve 35 and the third valve 38.
  • the third drive transmission pin 78 is cylindrical, and transmits the downward displacement of the first valve 35 to the third valve 38.
  • the valve body 31 is formed with a guide hole 79 through which the third drive transmission pin 78 is inserted to guide the third drive transmission pin 78.
  • the guide hole 79 communicates with the pressure control chamber 43 and the first valve chamber 453 and is formed to be coaxial with the first valve 35.
  • the outer diameter of the third drive transmission pin 78 is smaller than the outer diameter of the cylindrical portion 38 a of the third valve 38 and can be displaced in the through hole 37 a of the second valve 37.
  • the insertion hole 37e of the second valve 37 communicates the lower end side contact portion 37c and the inside of the through hole 37a of the second valve 37.
  • the pilot face portion 73 of the first valve 35 is brought into contact with the first seat portion 54 and the upper end side contact portion of the second valve 37 before the start of injection, as in the first embodiment.
  • 37b is stationary at the valve closing position where the second seat portion 50 is brought into contact with the second seat portion 50.
  • a valve opening gap 74 is formed between the first valve 35 and the third drive transmission pin 78.
  • the low-speed valve opening operation will be described.
  • application of the drive voltage from the engine control device 17 to the drive unit 33 is started as in the first embodiment.
  • the second drive transmission pin 71 is displaced over the first lift amount.
  • the first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount.
  • the first valve 35 contacts the third drive transmission pin 78 so that the third valve 38 is not separated from the second valve 37. Due to the displacement of the first valve 35 in the valve opening direction, the valve opening gap 74 disappears.
  • the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position of FIG.
  • the high-pressure fuel in the pressure control chamber 43 flows in the order of the first out-orifice 38c of the third valve 38, the through hole 37a of the second valve 37, the communication channel 77, and the first valve chamber 453. 42 is discharged.
  • the outflow passage is in a first throttle state in which the outflow flow rate of fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
  • the drive unit 33 In the high-speed valve opening operation, the drive unit 33 generates a second driving force that exceeds the valve opening force of the third valve 38 as in the first embodiment.
  • the second drive transmission pin 71 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount.
  • the first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount.
  • the first valve 35 contacts the third drive transmission pin 78, and the third valve 38 is pushed together with the third drive transmission pin 78 by the first valve 35 to displace in the valve opening direction. .
  • the third valve 38 is separated from the lower end side contact portion 37 c of the second valve 37.
  • the fuel in the pressure control chamber 43 flows into the lower end side contact portion 37 c of the second valve 37 and the disc portion 38 b of the third valve 38. , The second out-orifice 37d of the second valve 37, the through-hole 37a of the second valve 37, the communication channel 77 and the first valve chamber 453 in this order.
  • the high pressure fuel in the pressure control chamber 43 also flows in the order of the first out orifice 38 c of the third valve 38, the through hole 37 a of the second valve 37, the communication channel 77 and the first valve chamber 453, and the low pressure channel 42. Is discharged. As a result, the flow path area of the outflow flow path becomes the second throttled state that is larger than the first throttled state.
  • valve closing operation During the valve closing operation, the driving force of the driving unit 33 disappears as in the first embodiment.
  • the first valve 35 and the third valve 38 are displaced toward the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure.
  • the pilot face portion 73 and the disk portion 38b of the third valve 38 return to the closed state in which they are brought into contact with the first seat portion 54 and the lower end side contact portion 37c of the second valve 37.
  • the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
  • the first throttle state and the second throttle state can be switched and controlled as in the first embodiment described above. As a result, the same operations and effects as in the first embodiment can be achieved.
  • the elastic force of the first valve spring 56 and the third valve spring 55 can be set independently. This facilitates selection of the first valve spring 56 and the third valve spring 55.
  • the channel area of the outflow channel in each throttled state is defined by each orifice formed in a hole shape.
  • the channel area of the outflow channel in each throttled state may be defined by a gap provided between the two members.
  • the fuel injection device 100 that injects light oil as fuel is realized, but the present invention is also applicable to a fuel injection device that injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether.

Abstract

A fuel injection device including: a valve body (31) having formed therein an injection hole (30), a supply flow path (40), a pressure control chamber (43), and an outflow flow path (42); a valve member (32) that opens and closes the injection hole; a switching valve mechanism (36) that has a first valve body (35, 352), a second valve body (37), and a third valve body (38, 382) and switches the flow path area of the outflow flow path; and a drive unit (33) that switch controls the lift amount of the first valve body to a first lift amount or a second lift amount. A switching chamber communicates with the pressure control chamber. Insertion holes (37e, 38e) being part of the outflow flow path are formed in the second valve body and the third valve body, respectively. The switching valve mechanism restricts the outflow flow path to a first throttle state if the first valve body is at a first lift amount position and restricts the outflow flow path to a second throttle state having a flow path area different from the first throttle state if the first valve body is at the second lift amount position.

Description

燃料噴射装置Fuel injection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年8月24日に出願された日本特許出願番号2016-164005号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-164005 filed on August 24, 2016, the contents of which are incorporated herein by reference.
 本開示は、噴孔から燃料を噴射する燃料噴射装置に関する。 The present disclosure relates to a fuel injection device that injects fuel from an injection hole.
 従来、例えば特許文献1に開示されているように、燃料を噴射させるためのニードル開弁速度を可変にしている。ニードル開弁速度を可変にする具体的な機構として、ソレノイドを2個設置し、ソレノイドをそれぞれ独立して作動させることで、制御室から流出する燃料の排出速度を2段階に制御にしている。 Conventionally, as disclosed in Patent Document 1, for example, the needle opening speed for injecting fuel is made variable. As a specific mechanism for making the needle valve opening speed variable, two solenoids are installed, and the solenoids are operated independently to control the discharge speed of the fuel flowing out from the control chamber in two stages.
米国特許出願公開第2013/0233941号明細書US Patent Application Publication No. 2013/0233941
 前述の従来技術では、ソレノイドを2個搭載して排出速度を可変しているので、ソレノイドが1個の構成に比べて燃料噴射装置が大形化するおそれがある。 In the above-described prior art, since the discharge speed is varied by mounting two solenoids, there is a possibility that the fuel injection device may be increased in size as compared with the configuration having one solenoid.
 そこで、本開示は、大形化を抑制しつつ、燃料の排出速度を可変に制御することができる燃料噴射装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a fuel injection device capable of variably controlling the fuel discharge speed while suppressing an increase in size.
 本開示の一態様による燃料噴射装置は、噴孔から燃料を噴射する。燃料噴射装置は、噴孔、噴孔に燃料を供給する供給流路、供給流路を流通する燃料の一部が流入する圧力制御室、および圧力制御室の燃料を低圧側に流出させる流出流路が形成された弁ボデーと、圧力制御室の燃料圧力の変動により弁ボデーに対して相対変位することで、噴孔を開閉させる弁部材と、流出流路内の切替室に配置された第1弁体と、圧力制御室内に配置された第2弁体と、少なくとも一部が圧力制御室内に配置された第3弁体とを有し、流出流路の流路面積を切り替える切替弁機構と、弁ボデーに収容され、切替弁機構によって流路面積を切り替えるために第1弁体に駆動力を与えて第1弁体をリフトし、第1弁体のリフト量を第1リフト量または第1リフト量よりも大きい第2リフト量に切替制御する駆動部と、を含み、切替室は、圧力制御室と連通しており、第2弁体および第3弁体には、流出流路の一部である挿通孔がそれぞれ形成されており、切替弁機構は、第1弁体がリフトしていない場合には、第1弁体が弁ボデーに着座して流出流路を閉鎖し、第1弁体が第1リフト量の位置にある場合には、第1弁体が弁ボデーから離座し、第2弁体および第3弁体が離座していない位置にあることで、第3弁体の挿通孔を燃料が通過して流出流路を第1絞り状態に制限し、第1弁体が第2リフト量の位置にある場合には、第1弁体が弁ボデーから離座し、第1弁体による第3弁体への押圧で第3弁体が第2弁体から離座していることで、第2弁体の挿通孔を燃料が通過して、流出流路を第1絞り状態とは流路面積が異なる第2絞り状態に制限する。 The fuel injection device according to one aspect of the present disclosure injects fuel from the injection hole. The fuel injection device includes an injection hole, a supply flow path for supplying fuel to the injection hole, a pressure control chamber into which a part of the fuel flowing through the supply flow path flows, and an outflow flow for discharging the fuel in the pressure control chamber to the low pressure side The valve body in which the passage is formed, the valve member that opens and closes the nozzle hole by relative displacement with respect to the valve body due to the fluctuation of the fuel pressure in the pressure control chamber, and the switching chamber in the outflow passage. A switching valve mechanism that has one valve body, a second valve body that is disposed in the pressure control chamber, and a third valve body that is at least partially disposed in the pressure control chamber, and switches the flow passage area of the outflow passage And the first valve body is lifted by applying a driving force to the first valve body to switch the flow path area by the switching valve mechanism, and the lift amount of the first valve body is set to the first lift amount or A drive unit that performs switching control to a second lift amount larger than the first lift amount, The chamber communicates with the pressure control chamber, the second valve body and the third valve body are each formed with an insertion hole that is a part of the outflow channel, and the switching valve mechanism is the first valve body. When the first valve element is not lifted, the first valve element is seated on the valve body to close the outflow passage. When the first valve element is at the first lift amount, the first valve element is Since the second valve element and the third valve element are not separated from the body, the fuel passes through the insertion hole of the third valve element and restricts the outflow channel to the first throttle state. When the first valve body is in the second lift position, the first valve body is separated from the valve body, and the third valve body is moved by the first valve body against the third valve body. By being separated from the two valve bodies, the fuel passes through the insertion hole of the second valve body, and the outflow channel is limited to the second throttle state that is different from the first throttle state.
 このような本開示に従えば、第1弁体が第1リフト量の位置にある場合では、弁ボデーから離座した第1弁体は、第2弁体および第3弁体を離座させない位置にある。これによって第3弁体の挿通孔を燃料が通過して、流出流路が第1絞り状態にすることができる。また第1弁体が第2リフト量の位置にある場合では、弁ボデーから離座した第1弁体は、第3弁体を第2弁体から離座させる位置にある。これによって第2弁体の挿通孔を燃料が通過して、流出流路が第2絞り状態にすることができる。 According to such this indication, when the 1st valve body is in the position of the 1st lift amount, the 1st valve body separated from the valve body does not separate the 2nd valve body and the 3rd valve body. In position. As a result, the fuel passes through the insertion hole of the third valve body, and the outflow channel can be brought into the first throttle state. Further, when the first valve body is in the second lift amount position, the first valve body that is separated from the valve body is in a position for separating the third valve body from the second valve body. As a result, the fuel passes through the insertion hole of the second valve body, and the outflow channel can be brought into the second throttle state.
 このように切替弁機構は、第1弁体のリフト量を調整することによって、流出流路の流路面積を切り替えることができる。そして第1弁体のリフト量は、1つの駆動部によって制御することができる。したがって駆動部は、1つの第1弁体のリフト量を制御する構成であればよいので、駆動部が大形化を抑制することができる。 Thus, the switching valve mechanism can switch the channel area of the outflow channel by adjusting the lift amount of the first valve body. And the lift amount of a 1st valve body can be controlled by one drive part. Therefore, since the drive part should just be the structure which controls the lift amount of one 1st valve body, a drive part can suppress an enlargement.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、燃料供給システムの全体構成を示す図であり、 図2は、燃料噴射装置を示す縦断面図であり、 図3は、切替弁機構の近傍を拡大して示す縦断面図であり、 図4は、切替弁機構の作動を示す図であり、 図5は、第2実施形態の切替弁機構の近傍を拡大して示す縦断面図であり、 図6は、切替弁機構の作動を示す図であり、 図7は、第3実施形態の切替弁機構の近傍を拡大して示す縦断面図であり、 図8は、切替弁機構の作動を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing an overall configuration of a fuel supply system, FIG. 2 is a longitudinal sectional view showing the fuel injection device, FIG. 3 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism, FIG. 4 is a diagram illustrating the operation of the switching valve mechanism, FIG. 5 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism of the second embodiment. FIG. 6 is a diagram showing the operation of the switching valve mechanism, FIG. 7 is an enlarged longitudinal sectional view showing the vicinity of the switching valve mechanism of the third embodiment, FIG. 8 is a diagram illustrating the operation of the switching valve mechanism.
 以下、図面を参照しながら本開示を実施するための形態を、複数の形態を用いて説明する。各実施形態で先行する実施形態で説明している事項に対応している部分には同一の参照符を付すか、または先行の参照符号に一文字追加し、重複する説明を略する場合がある。また各実施形態にて構成の一部を説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。 Hereinafter, modes for carrying out the present disclosure will be described using a plurality of modes with reference to the drawings. In some embodiments, portions corresponding to the matters described in the preceding embodiments may be given the same reference numerals, or one letter may be added to the preceding reference numerals, and overlapping descriptions may be omitted. In addition, when a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described in advance. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder the combination.
 (第1実施形態)
 本開示の第1実施形態に関して、図1~図4を用いて説明する。図1に示す燃料供給システム10には、第1実施形態による燃料噴射装置100が用いられている。燃料供給システム10は、内燃機関であるディーゼル機関20の各燃焼室22に、燃料噴射装置100によって燃料を供給する。燃料供給システム10は、フィードポンプ(F/P)12、サプライポンプ13、コモンレール14、機関制御装置17、および複数の燃料噴射装置100等から構成されている。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. The fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment. The fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100. The fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
 フィードポンプ12は、サプライポンプ13に内蔵された例えばトロコイド式のポンプである。フィードポンプ12は、燃料タンク内に貯留された燃料としての軽油をサプライポンプ13に圧送する。フィードポンプ12は、サプライポンプ13と別体であってもよい。 The feed pump 12 is, for example, a trochoid pump built in the supply pump 13. The feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13. The feed pump 12 may be a separate body from the supply pump 13.
 サプライポンプ13は、ディーゼル機関20の出力軸によって駆動される例えばプランジャ式のポンプである。サプライポンプ13は、燃料配管13aによってコモンレール14と接続されている。サプライポンプ13は、フィードポンプ12から供給された燃料をさらに昇圧し、コモンレール14に供給する。 The supply pump 13 is, for example, a plunger type pump that is driven by the output shaft of the diesel engine 20. The supply pump 13 is connected to the common rail 14 by a fuel pipe 13a. The supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
 コモンレール14は、高圧燃料配管14aを介して各燃料噴射装置100と接続されている。コモンレール14は、サプライポンプ13から供給される高圧の燃料を一時的に蓄え、圧力を保持したまま各燃料噴射装置100に分配する。コモンレール14には、減圧弁14bが設けられている。減圧弁14bは、コモンレール14において余剰となった燃料を、燃料タンクに繋がっている余剰燃料配管へ排出する。 The common rail 14 is connected to each fuel injection device 100 via a high-pressure fuel pipe 14a. The common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure. The common rail 14 is provided with a pressure reducing valve 14b. The pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
 機関制御装置17は、プロセッサ、RAM、および書き換え可能な不揮発性の記憶媒体を含むマイクロコンピュータまたはマイクロコントローラを主体に構成された演算回路と、各燃料噴射装置100を駆動する駆動回路とを含む構成である。機関制御装置17は、図1にて破線で示すように、各燃料噴射装置100と電気的に接続されている。機関制御装置17は、ディーゼル機関20の稼動状態に応じて各燃料噴射装置100の作動を制御する。 The engine control device 17 includes an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a processor, a RAM, and a rewritable nonvolatile storage medium, and a drive circuit that drives each fuel injection device 100. It is. The engine control device 17 is electrically connected to each fuel injection device 100 as indicated by a broken line in FIG. The engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
 燃料噴射装置100には、燃焼室22を形成するヘッド部材21の挿入孔に挿入された状態で、ヘッド部材21に取り付けられている。燃料噴射装置100は、高圧燃料配管14aを通じて供給される燃料を、複数の噴孔30から燃焼室22へ向けて直接的に噴射する。燃料噴射装置100は、噴孔30からの燃料の噴射を制御する弁機構を備えている。燃料噴射装置100は、高圧燃料配管14aを通じて供給される燃料の一部を、噴孔30の開閉に使用する。 The fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22. The fuel injection device 100 directly injects fuel supplied through the high-pressure fuel pipe 14 a from the plurality of injection holes 30 toward the combustion chamber 22. The fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 30. The fuel injection device 100 uses part of the fuel supplied through the high-pressure fuel pipe 14 a to open and close the injection hole 30.
 次に、燃料噴射装置100に関して、図2および図3を用いて説明する。燃料噴射装置100は、図2に示すように、弁ボデー31、ノズルニードル32、駆動部33および切替弁機構36を含んで構成される。切替弁機構36は、第1バルブ35、第2バルブ37および第3バルブ38を有する。 Next, the fuel injection device 100 will be described with reference to FIGS. As shown in FIG. 2, the fuel injection device 100 includes a valve body 31, a nozzle needle 32, a drive unit 33, and a switching valve mechanism 36. The switching valve mechanism 36 includes a first valve 35, a second valve 37, and a third valve 38.
 弁ボデー31は、金属材料よって形成されたシリンダ等の複数の部材を組み合わせることによって構成されている。弁ボデー31には、噴孔30、シート部39、高圧流路40、流入流路41、低圧流路42、圧力制御室43、第1バルブ室45および駆動部収容室46が形成されている。 The valve body 31 is configured by combining a plurality of members such as a cylinder formed of a metal material. The valve body 31 is formed with an injection hole 30, a seat part 39, a high-pressure channel 40, an inflow channel 41, a low-pressure channel 42, a pressure control chamber 43, a first valve chamber 45, and a drive unit accommodation chamber 46. .
 噴孔30は、燃焼室22へ挿入される弁ボデー31において、挿入方向の先端部に形成されている。先端部は、円錐状または半球状に形成されている。噴孔30は、弁ボデー31の内側から外側に向けて放射状に複数設けられている。高圧の燃料は、各噴孔30から燃焼室22へ向けて噴射される。高圧の燃料は、噴孔30を通過することによって霧化され、空気と混合し易い状態となる。シート部39は、弁ボデー31の先端部の内側に、円錐状に形成されている。シート部39は、噴孔30の上流側において高圧流路40に臨んでいる。 The injection hole 30 is formed at the distal end in the insertion direction in the valve body 31 inserted into the combustion chamber 22. The tip is formed in a conical or hemispherical shape. A plurality of nozzle holes 30 are provided radially from the inside to the outside of the valve body 31. High-pressure fuel is injected from each injection hole 30 toward the combustion chamber 22. The high-pressure fuel is atomized by passing through the nozzle holes 30 and is easily mixed with air. The seat part 39 is formed in a conical shape inside the tip part of the valve body 31. The seat portion 39 faces the high-pressure channel 40 on the upstream side of the nozzle hole 30.
 高圧流路40は、図1に示す高圧燃料配管14aを通じてコモンレール14から供給される高圧の燃料を、噴孔30に供給する。流入流路41は、高圧流路40と圧力制御室43とを連通させている。流入流路41は、高圧流路40を流通する燃料の一部を圧力制御室43に流入させる。流入流路41には、流入オリフィスとしてインオリフィス48が設けられている。インオリフィス48は、高圧流路40から圧力制御室43に流れる燃料の流量を制限する。 The high-pressure channel 40 supplies high-pressure fuel supplied from the common rail 14 to the nozzle hole 30 through the high-pressure fuel pipe 14a shown in FIG. The inflow channel 41 allows the high-pressure channel 40 and the pressure control chamber 43 to communicate with each other. The inflow channel 41 causes a part of the fuel flowing through the high-pressure channel 40 to flow into the pressure control chamber 43. The inflow channel 41 is provided with an in-orifice 48 as an inflow orifice. The in-orifice 48 restricts the flow rate of fuel flowing from the high-pressure channel 40 to the pressure control chamber 43.
 低圧流路42は、弁ボデー31内を高圧流路40に沿って延伸している。低圧流路42は、圧力制御室43の燃料(リーク燃料)を、燃料噴射装置100の外部の低圧側である余剰燃料配管に流出させる流出流路の一部である。流出流路は、低圧流路42および第1バルブ室等によって構成されている。低圧流路42を流通する燃料の圧力は、圧力制御室43の燃料の圧力よりも低くなっている。 The low pressure channel 42 extends in the valve body 31 along the high pressure channel 40. The low-pressure channel 42 is a part of the outflow channel that allows the fuel (leak fuel) in the pressure control chamber 43 to flow out to the surplus fuel pipe on the low-pressure side outside the fuel injection device 100. The outflow channel is constituted by a low-pressure channel 42, a first valve chamber, and the like. The pressure of the fuel flowing through the low pressure channel 42 is lower than the pressure of the fuel in the pressure control chamber 43.
 圧力制御室43は、弁ボデー31の内部において、ノズルニードル32を挟んで噴孔30の反対側に設けられている。圧力制御室43は、シリンダ49およびノズルニードル32によって区画された円柱状の空間である。圧力制御室43には、流入流路41を通じて高圧の燃料が流入する。圧力制御室43の燃料圧力は、流入流路41からの高圧の燃料の流入と第1バルブ室45への燃料の流出とにより変動する。圧力制御室43における燃料圧力の変動によってノズルニードル32が往復変位する。 The pressure control chamber 43 is provided inside the valve body 31 on the opposite side of the nozzle hole 30 with the nozzle needle 32 interposed therebetween. The pressure control chamber 43 is a cylindrical space defined by the cylinder 49 and the nozzle needle 32. High pressure fuel flows into the pressure control chamber 43 through the inflow passage 41. The fuel pressure in the pressure control chamber 43 varies depending on the inflow of high-pressure fuel from the inflow passage 41 and the outflow of fuel to the first valve chamber 45. The nozzle needle 32 is reciprocated by the fluctuation of the fuel pressure in the pressure control chamber 43.
 第1バルブ室45は、第1バルブ35を収容する円柱状の空間である。第1バルブ室45は、圧力制御室43と連通している。第1バルブ室45は、圧力制御室43と駆動部収容室46との間に位置している。第1バルブ室45の軸方向は、圧力制御室43の軸方向に沿っている。第1バルブ室45および圧力制御室43は、互いに同軸となるように形成されている。第1バルブ室45の容積は、圧力制御室43の容積よりも小さい。第1バルブ室45と駆動部収容室46との間には、下流側連通路53が形成されている。下流側連通路53は、第1バルブ室45から排出された燃料を主に低圧流路42に流通させる。 The first valve chamber 45 is a cylindrical space that houses the first valve 35. The first valve chamber 45 communicates with the pressure control chamber 43. The first valve chamber 45 is located between the pressure control chamber 43 and the drive unit accommodation chamber 46. The axial direction of the first valve chamber 45 is along the axial direction of the pressure control chamber 43. The first valve chamber 45 and the pressure control chamber 43 are formed so as to be coaxial with each other. The volume of the first valve chamber 45 is smaller than the volume of the pressure control chamber 43. A downstream communication path 53 is formed between the first valve chamber 45 and the drive unit accommodation chamber 46. The downstream side communication passage 53 mainly causes the fuel discharged from the first valve chamber 45 to flow through the low pressure passage 42.
 第1バルブ室45を区画する区画壁には、第1シート部54が形成されている。第1シート部54は、第1バルブ室45の区画壁のうちで、下流側連通路53の開口周囲を囲む円環状の領域である。第1シート部54は、第1バルブ35を着座させる領域となる。 A first seat portion 54 is formed on the partition wall that partitions the first valve chamber 45. The first seat portion 54 is an annular region surrounding the periphery of the opening of the downstream communication passage 53 in the partition wall of the first valve chamber 45. The first seat portion 54 is a region where the first valve 35 is seated.
 駆動部収容室46は、駆動部33を収容する円柱状の空間である。駆動部収容室46は、第1バルブ室45から排出された燃料の一部によって満たされている。駆動部収容室46の軸方向は、圧力制御室43および第1バルブ室45の各軸方向に沿っている。駆動部収容室46、第1バルブ室45、および圧力制御室43は、互いに同軸となるように設けられている。 The drive unit accommodation chamber 46 is a columnar space that houses the drive unit 33. The drive unit accommodation chamber 46 is filled with a part of the fuel discharged from the first valve chamber 45. The axial direction of the drive unit accommodating chamber 46 is along the axial direction of the pressure control chamber 43 and the first valve chamber 45. The drive unit accommodation chamber 46, the first valve chamber 45, and the pressure control chamber 43 are provided so as to be coaxial with each other.
 ノズルニードル32は、金属材料によって全体として円柱状に形成されている。ノズルニードル32は、弁ボデー31に収容されている。ノズルニードル32は、金属製の線材を螺旋状に巻設したコイル状のノズルスプリング60により、噴孔30側へ向けて付勢されている。ノズルニードル32は、弁受圧面61およびフェース部62を有している。ノズルニードル32は、圧力制御室43の燃料圧力を弁受圧面61に受けることで、円筒状に形成されたシリンダ49の内周壁面に沿って、軸方向に往復変位する。ノズルニードル32は、弁ボデー31に対して相対変位することにより、フェース部62をシート部39に離着座させる。フェース部62は、噴孔30を開閉する主弁部を、シート部39と共に形成している。 The nozzle needle 32 is formed in a cylindrical shape as a whole by a metal material. The nozzle needle 32 is accommodated in the valve body 31. The nozzle needle 32 is urged toward the nozzle hole 30 by a coiled nozzle spring 60 in which a metal wire is spirally wound. The nozzle needle 32 has a valve pressure receiving surface 61 and a face portion 62. The nozzle needle 32 is reciprocally displaced in the axial direction along the inner peripheral wall surface of the cylinder 49 formed in a cylindrical shape by receiving the fuel pressure in the pressure control chamber 43 on the valve pressure receiving surface 61. The nozzle needle 32 is displaced relative to the valve body 31, thereby causing the face portion 62 to be separated from and seated on the seat portion 39. The face portion 62 forms a main valve portion that opens and closes the nozzle hole 30 together with the seat portion 39.
 駆動部33は、駆動部収容室46に収容されている。駆動部33は、切替弁機構36の第1バルブ35および第3バルブ38を駆動するための駆動力を発生させることで、圧力制御室43と低圧流路42との間を遮断状態から連通状態へと切り替える。駆動部33は、機関制御装置17から出力された駆動信号に基づき、発生させる駆動力の大きさを変更可能であり、第1駆動力または第2駆動力を発生させることができる。第2駆動力は、第1駆動力よりも大きい力である。 The drive unit 33 is accommodated in the drive unit accommodation chamber 46. The drive unit 33 generates a driving force for driving the first valve 35 and the third valve 38 of the switching valve mechanism 36, so that the pressure control chamber 43 and the low-pressure flow path 42 are communicated from the cut-off state to the communication state. Switch to. The driving unit 33 can change the magnitude of the driving force to be generated based on the driving signal output from the engine control device 17, and can generate the first driving force or the second driving force. The second driving force is a force larger than the first driving force.
 駆動部33は、圧電素子積層体63および伝達機構64等によって構成されている。圧電素子積層体63は、例えばPZT(PbZrTiO3)と呼ばれる層と薄い電極層が交互に積まれた積層体である。圧電素子積層体63には、機関制御装置17から出力された入力駆動信号が入力される。圧電素子積層体63は、駆動信号に応じた電圧である駆動電圧に従って、ピエゾ素子の特性である逆圧電効果により、駆動部収容室46の軸方向に沿って伸縮する。 The driving unit 33 includes a piezoelectric element laminate 63, a transmission mechanism 64, and the like. The piezoelectric element laminate 63 is a laminate in which, for example, layers called PZT (PbZrTiO3) and thin electrode layers are alternately stacked. The piezoelectric element laminate 63 receives an input drive signal output from the engine control device 17. The piezoelectric element stacked body 63 expands and contracts along the axial direction of the drive unit accommodation chamber 46 by the inverse piezoelectric effect that is a characteristic of the piezoelectric element, according to the drive voltage that is a voltage corresponding to the drive signal.
 伝達機構64は、圧電素子積層体63の伸縮を伝達する機構である。伝達機構64は、ピストン65、緩衝シリンダ66、ピストンスプリング67、第1伝達ピストン68、第2伝達ピストン69、第1駆動伝達ピン70および第2駆動伝達ピン71を有している。ピストン65は、円柱状に形成されている。ピストン65は、圧電素子積層体63と接している。ピストン65には、伸縮する圧電素子積層体63の動きが入力される。 The transmission mechanism 64 is a mechanism that transmits expansion and contraction of the piezoelectric element laminate 63. The transmission mechanism 64 includes a piston 65, a buffer cylinder 66, a piston spring 67, a first transmission piston 68, a second transmission piston 69, a first drive transmission pin 70, and a second drive transmission pin 71. The piston 65 is formed in a cylindrical shape. The piston 65 is in contact with the piezoelectric element laminate 63. The movement of the piezoelectric element laminate 63 that expands and contracts is input to the piston 65.
 緩衝シリンダ66は、円筒状に形成されており、ピストン65に外嵌されている。ピストンスプリング67は、軸方向に弾性力を発生させる金属ばねである。ピストンスプリング67は、緩衝シリンダ66に対してピストン65を第1バルブ35へ向けて付勢している。 The buffer cylinder 66 is formed in a cylindrical shape and is fitted on the piston 65. The piston spring 67 is a metal spring that generates an elastic force in the axial direction. The piston spring 67 urges the piston 65 toward the first valve 35 with respect to the buffer cylinder 66.
 ピストン65の先端には、第1バルブ室45側へ向かって延びる円柱状の第1駆動伝達ピン70が配置されている。第1駆動伝達ピン70は、下流側連通路53に挿通されている。第1駆動伝達ピン70の先端には、第1バルブ室45側へ向かって延びる円柱状の第1伝達ピストン68が配置されている。第1伝達ピストン68は、下流側連通路53に挿通されている。第1駆動伝達ピン70と第1伝達ピストン68とは、同軸に配置されている。 A cylindrical first drive transmission pin 70 extending toward the first valve chamber 45 is disposed at the tip of the piston 65. The first drive transmission pin 70 is inserted through the downstream communication path 53. A columnar first transmission piston 68 extending toward the first valve chamber 45 is disposed at the tip of the first drive transmission pin 70. The first transmission piston 68 is inserted through the downstream communication path 53. The first drive transmission pin 70 and the first transmission piston 68 are arranged coaxially.
 下流側連通路53は、第1伝達ピストン68と第2伝達ピストン69との間に緩衝油密室72を区画している。緩衝油密室72に充填された燃料により、第1伝達ピストン68の変位は、第2伝達ピストン69に伝達される。第2伝達ピストン69は、円柱状であって、下流側連通路53に挿通されている。第2伝達ピストン69の先端には、第1バルブ室45側へ向かって延びる円柱状の第2駆動伝達ピン71が配置されている。第2駆動伝達ピン71は、下流側連通路53に挿通されている。そして第2駆動伝達ピン71の先端面は、第1バルブ35に接触している。 The downstream communication passage 53 defines a buffer oil tight chamber 72 between the first transmission piston 68 and the second transmission piston 69. The displacement of the first transmission piston 68 is transmitted to the second transmission piston 69 by the fuel filled in the buffer oil tight chamber 72. The second transmission piston 69 has a columnar shape and is inserted through the downstream communication path 53. A columnar second drive transmission pin 71 extending toward the first valve chamber 45 is disposed at the tip of the second transmission piston 69. The second drive transmission pin 71 is inserted through the downstream communication path 53. The distal end surface of the second drive transmission pin 71 is in contact with the first valve 35.
 このように駆動部33は、圧電素子積層体63の伸縮を伝達機構64によって軸方向に沿って伝達することで、第2駆動伝達ピン71を軸方向に往復変位させる。駆動部33に入力される駆動電圧が高くなるほど、第2駆動伝達ピン71から第1バルブ35に入力される駆動力、ひいては第1駆動伝達ピン70および第1バルブ35のリフト量が大きくなる。 Thus, the drive unit 33 reciprocates the second drive transmission pin 71 in the axial direction by transmitting the expansion and contraction of the piezoelectric element laminate 63 along the axial direction by the transmission mechanism 64. As the drive voltage input to the drive unit 33 increases, the drive force input from the second drive transmission pin 71 to the first valve 35, and hence the lift amount of the first drive transmission pin 70 and the first valve 35, increases.
 切替弁機構36は、第1バルブ35および第3バルブ38の開閉によって流出流路の流路面積を切り替える機構である。駆動部33が第1駆動力および第2駆動力のいずれも発生させていない場合には、切替弁機構36は、流出流路を閉鎖させる。一方、駆動部33が第1駆動力を発生させている場合には、切替弁機構36は、流出流路を第1絞り状態に制限する。さらに、駆動部33が第2駆動力を発生させている場合には、切替弁機構36は、流出流路を第2絞り状態に制限する。 The switching valve mechanism 36 is a mechanism that switches the flow passage area of the outflow passage by opening and closing the first valve 35 and the third valve 38. When the drive unit 33 generates neither the first drive force nor the second drive force, the switching valve mechanism 36 closes the outflow channel. On the other hand, when the drive unit 33 generates the first driving force, the switching valve mechanism 36 restricts the outflow channel to the first throttle state. Further, when the drive unit 33 generates the second driving force, the switching valve mechanism 36 restricts the outflow channel to the second throttle state.
 第2バルブ37は、金属材料等によって円盤状に形成されている。第2バルブ37は、圧力制御室43に配置されており、圧力制御室43内を軸方向に沿って変位可能である。また第3バルブ38も圧力制御室43内に配置されている。そして第2バルブ37および第3バルブ38は、圧力制御室43内に直列に配置されている。第2バルブ37の径方向の中央には、第2バルブ37を軸方向に貫通する貫通孔37aが形成されている。第2バルブ37の貫通孔37aには、第3バルブ38の円柱部38aが挿通されており、貫通孔37aの内壁に沿って第3バルブ38の円柱部38aを軸方向に案内する。 The second valve 37 is formed in a disk shape from a metal material or the like. The second valve 37 is disposed in the pressure control chamber 43 and can be displaced in the pressure control chamber 43 along the axial direction. The third valve 38 is also disposed in the pressure control chamber 43. The second valve 37 and the third valve 38 are arranged in series in the pressure control chamber 43. A through hole 37 a that penetrates the second valve 37 in the axial direction is formed in the center of the second valve 37 in the radial direction. The cylindrical portion 38a of the third valve 38 is inserted through the through hole 37a of the second valve 37, and guides the cylindrical portion 38a of the third valve 38 in the axial direction along the inner wall of the through hole 37a.
 第2バルブ37には、上端側当接部37b、下端側当接部37cおよび第2アウトオリフィス37dが設けられている。上端側当接部37bは、第1バルブ室45と対向する第2バルブ37の上端面に形成されている。上端側当接部37bは、平坦な円環状に形成されている。上端側当接部37bは、第3バルブ用スプリング55の弾性力により、第2シート部50に接触する。上端側当接部37bの第2シート部50への着座により、第2バルブ37は閉弁状態となる。第2バルブ37は着座することで、流入流路41のインオリフィス48を閉塞して、圧力制御室43との連通を遮断する。また第2バルブ37は離座することで、流入流路41のインオリフィス48を開放して、圧力制御室43とを連通する。 The second valve 37 is provided with an upper end side contact portion 37b, a lower end side contact portion 37c, and a second out orifice 37d. The upper end side contact portion 37 b is formed on the upper end surface of the second valve 37 facing the first valve chamber 45. The upper end side contact portion 37b is formed in a flat annular shape. The upper end side contact portion 37 b comes into contact with the second seat portion 50 by the elastic force of the third valve spring 55. The second valve 37 is closed by the seating of the upper end side contact portion 37b on the second seat portion 50. The second valve 37 is seated, thereby closing the in-orifice 48 of the inflow channel 41 and blocking the communication with the pressure control chamber 43. Further, the second valve 37 is separated to open the in-orifice 48 of the inflow channel 41 and to communicate with the pressure control chamber 43.
 下端側当接部37cは、第2バルブ37の軸方向の両端面のうちで、第3バルブ38と対向する端面に形成されている。下端側当接部37cは、第3バルブ38の円盤部38bが第3バルブ用スプリング55の弾性力により接触する。 The lower end side contact portion 37 c is formed on the end surface facing the third valve 38 among the axial end surfaces of the second valve 37. In the lower end side contact portion 37 c, the disk portion 38 b of the third valve 38 comes into contact with the elastic force of the third valve spring 55.
 第2アウトオリフィス37dは、第2バルブ37の挿通孔37eの一部を構成する。第2バルブ37の挿通孔37eは、上端側当接部37bと下端側当接部37cとを挿通する。第2アウトオリフィス37dは、圧力制御室43から第1バルブ室45に至る流路面積を絞る構成である。第2アウトオリフィス37dは、第2バルブ37が閉弁状態である場合に、圧力制御室43から第1バルブ室45へ流出する燃料の流量を制限することで、第2絞り状態において流出流路の流路面積を規定する。第2アウトオリフィス37dによって絞られた流路面積である絞り面積は、第3バルブ38に形成される第1アウトオリフィス38cよりも広く規定されている。即ち、第2アウトオリフィス37dは、第1アウトオリフィス38cよりも大径のオリフィスである。 The second out orifice 37d constitutes a part of the insertion hole 37e of the second valve 37. The insertion hole 37e of the second valve 37 passes through the upper end side contact portion 37b and the lower end side contact portion 37c. The second out orifice 37d is configured to restrict the flow area from the pressure control chamber 43 to the first valve chamber 45. The second out orifice 37d restricts the flow rate of the fuel flowing out from the pressure control chamber 43 to the first valve chamber 45 when the second valve 37 is in the closed state, so that the outflow passage in the second throttle state. The flow area is defined. The throttle area, which is the flow path area throttled by the second out orifice 37d, is defined wider than the first out orifice 38c formed in the third valve 38. That is, the second out orifice 37d is an orifice having a larger diameter than the first out orifice 38c.
 第3バルブ38は、金属材料等により、2段円柱状に形成されている。第2バルブ37および第3バルブ38は、圧力制御室43内に直列に配置されている。第3バルブ38は、円盤部38bおよび円柱部38aを有している。円盤部38bは、第2バルブ37の貫通孔37aよりも大径に形成されている。一方、円柱部38aは、第2バルブ37の貫通孔37aよりも小径に形成されている。円柱部38aは、円盤部38bから軸方向に沿って円柱状に突出している。円柱部38aの軸方向の長さは、第2バルブ37の貫通孔37aの長さよりも長い。円柱部38aは、第2バルブ37の貫通孔37aの内壁によって軸方向に案内され、軸方向に変位可能である。円盤部38bは、第2バルブ37の下端側当接部37cと接触する部分となる。 The third valve 38 is formed of a metal material or the like into a two-stage columnar shape. The second valve 37 and the third valve 38 are arranged in series in the pressure control chamber 43. The third valve 38 has a disc portion 38b and a cylindrical portion 38a. The disk portion 38 b is formed with a larger diameter than the through hole 37 a of the second valve 37. On the other hand, the cylindrical portion 38 a is formed with a smaller diameter than the through hole 37 a of the second valve 37. The column part 38a protrudes from the disk part 38b in the column shape along the axial direction. The length of the cylindrical portion 38 a in the axial direction is longer than the length of the through hole 37 a of the second valve 37. The cylindrical portion 38a is guided in the axial direction by the inner wall of the through hole 37a of the second valve 37, and can be displaced in the axial direction. The disk part 38 b is a part that comes into contact with the lower end side contact part 37 c of the second valve 37.
 第3バルブ38は、弁ボデー31の軸方向に沿って往復変位可能な状態で、シリンダ49の内周側に配置されている。第3バルブ38と弁受圧面61との間の空間が、実質的に圧力制御室43となる。第3バルブ38は、第3バルブ用スプリング55により、シリンダ49に対して第1バルブ室45へ向けて付勢されている。第3バルブ38には、第1アウトオリフィス38cが形成されている。第1アウトオリフィス38cは、第3バルブ38の円盤部38bを板厚方向に貫通し、円柱部38aの一部を軸方向に延び、円柱部38aの側面部に延びる挿通孔38eの一部に形成されている。第3バルブ38の挿通孔38eは、圧力制御室43と第1バルブ室45とを連通する通路である。第1アウトオリフィス38cは、第2バルブ37が流入流路41のインオリフィス48を塞いでいる状態において、圧力制御室43から第1バルブ室45へと流通する燃料の流量を制限する。 The third valve 38 is disposed on the inner peripheral side of the cylinder 49 so as to be capable of reciprocating displacement along the axial direction of the valve body 31. A space between the third valve 38 and the valve pressure receiving surface 61 is substantially the pressure control chamber 43. The third valve 38 is urged toward the first valve chamber 45 with respect to the cylinder 49 by a third valve spring 55. A first out orifice 38 c is formed in the third valve 38. The first out orifice 38c penetrates the disk portion 38b of the third valve 38 in the plate thickness direction, extends part of the cylindrical portion 38a in the axial direction, and part of the insertion hole 38e extending to the side surface portion of the cylindrical portion 38a. Is formed. The insertion hole 38 e of the third valve 38 is a passage that communicates the pressure control chamber 43 and the first valve chamber 45. The first out orifice 38 c restricts the flow rate of fuel flowing from the pressure control chamber 43 to the first valve chamber 45 in a state where the second valve 37 blocks the in orifice 48 of the inflow channel 41.
 第1バルブ35は、金属材料等によってお椀状に形成されている。第1バルブ35は、第1バルブ室45に配置されている。第1バルブ35は、第1バルブ室45内を軸方向に沿って変位可能である。第1バルブ35は、コイルばね状に形成された第1バルブ用スプリング56により、第2バルブ37の上端側当接部37bに対して、駆動部収容室46へ向けて付勢されている。 The first valve 35 is formed in a bowl shape with a metal material or the like. The first valve 35 is disposed in the first valve chamber 45. The first valve 35 can be displaced in the first valve chamber 45 along the axial direction. The first valve 35 is urged toward the drive portion accommodation chamber 46 with respect to the upper end side contact portion 37b of the second valve 37 by a first valve spring 56 formed in a coil spring shape.
 第1バルブ35には、パイロットフェース部73が形成されている。パイロットフェース部73は、下流側連通路53と対向する第1バルブ35の上端面に形成されている。パイロットフェース部73は、平坦な円環状に形成されている。パイロットフェース部73は、第1バルブ用スプリング56の弾性力により、第1シート部54と接触する。第1バルブ用スプリング56の付勢力と、第1バルブ室45および低圧流路42間における燃料圧力差とにより、パイロットフェース部73は、第1シート部54に押し付けられる。パイロットフェース部73の第1シート部54への着座により、第1バルブ35は、閉弁状態となる。 A pilot face portion 73 is formed on the first valve 35. The pilot face portion 73 is formed on the upper end surface of the first valve 35 that faces the downstream communication passage 53. The pilot face portion 73 is formed in a flat annular shape. The pilot face portion 73 comes into contact with the first seat portion 54 by the elastic force of the first valve spring 56. The pilot face portion 73 is pressed against the first seat portion 54 by the biasing force of the first valve spring 56 and the fuel pressure difference between the first valve chamber 45 and the low pressure passage 42. The seating of the pilot face portion 73 on the first seat portion 54 causes the first valve 35 to be closed.
 第1バルブ35は、駆動部33が第1駆動力を発生させた場合に軸方向に変位する距離を第1リフト量とし、駆動部33が第2駆動力を発生させた場合に軸方向に変位する距離を第2リフト量とする。第1リフト量は、第2リフト量よりも長い。 The first valve 35 uses the distance displaced in the axial direction when the driving unit 33 generates the first driving force as the first lift amount, and in the axial direction when the driving unit 33 generates the second driving force. The displacement distance is defined as the second lift amount. The first lift amount is longer than the second lift amount.
 第1バルブ35、第2バルブ37および第3バルブ38では、軸方向に沿って圧力制御室43から第1バルブ室45および駆動部収容室46へ向かう方向が閉弁方向となり、軸方向に沿って駆動部収容室46から圧力制御室43へ向かう方向が開弁方向となる。駆動部33が駆動力を発生させていない場合には、第1バルブ35の弁ボデー31への着座により、低圧流路42は閉鎖された状態となる。また、閉弁位置にある第1バルブ35と閉弁位置にある第3バルブ38との間には、開弁ギャップ74が形成されている。開弁ギャップ74は、第1バルブ35のみでの開弁方向への変位を許容する空間として機能する。 In the first valve 35, the second valve 37, and the third valve 38, the direction from the pressure control chamber 43 toward the first valve chamber 45 and the drive unit storage chamber 46 along the axial direction is the valve closing direction, and along the axial direction. Thus, the direction from the drive unit housing chamber 46 to the pressure control chamber 43 is the valve opening direction. When the drive unit 33 does not generate a driving force, the low pressure flow path 42 is closed by the seating of the first valve 35 on the valve body 31. A valve opening gap 74 is formed between the first valve 35 in the valve closing position and the third valve 38 in the valve closing position. The valve opening gap 74 functions as a space that allows displacement in the valve opening direction only by the first valve 35.
 次に、燃料噴射装置100の噴射作動の詳細を、図3および図4を用いて説明する。図3に示すように、噴射開始前では、機関制御装置17から駆動部33への駆動電圧の印加は中断されている。故に、駆動部33は、第1駆動力および第2駆動力といった力を実質的に発生させていない。したがって第1バルブ35は、第1バルブ用スプリング56の弾性力により、第1シート部54に押し当てられている。また第2バルブ37は、第3バルブ用スプリング55の弾性力により、流入流路41の開口周囲の壁面に押し当てられている。そのため、第1バルブ35のパイロットフェース部73を第1シート部54に当接させ、第2バルブ37の上端側当接部37bを第2シート部50に当接させた閉弁位置にて静止している。また第1バルブ35と第3バルブ38との間には、開弁ギャップ74が形成されている。第1バルブ35および第2バルブ37が共に閉弁状態にあることで、第1バルブ室45の燃料圧力は、実質的に圧力制御室43の燃料圧力と同程度まで上昇している。以上の状態では、ノズルニードル32は、フェース部62をシート部39に当接させた閉弁位置にて静止している。 Next, details of the injection operation of the fuel injection device 100 will be described with reference to FIGS. As shown in FIG. 3, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted before the start of injection. Therefore, the drive unit 33 does not substantially generate forces such as the first drive force and the second drive force. Therefore, the first valve 35 is pressed against the first seat portion 54 by the elastic force of the first valve spring 56. The second valve 37 is pressed against the wall surface around the opening of the inflow channel 41 by the elastic force of the third valve spring 55. For this reason, the pilot face portion 73 of the first valve 35 is brought into contact with the first seat portion 54, and the upper end side contact portion 37b of the second valve 37 is brought into contact with the second seat portion 50 to be stationary. is doing. A valve opening gap 74 is formed between the first valve 35 and the third valve 38. Since both the first valve 35 and the second valve 37 are in the closed state, the fuel pressure in the first valve chamber 45 has risen to substantially the same level as the fuel pressure in the pressure control chamber 43. In the above state, the nozzle needle 32 is stationary at the valve closing position where the face portion 62 is in contact with the seat portion 39.
 まず低速開弁動作に関して説明する。図4に示すように、低速開弁動作では、機関制御装置17から駆動部33への駆動電圧の印加が開始される。これにより駆動部33は、第1駆動力を発生させる。機関制御装置17は、第1バルブ35の開弁力よりも大きく、かつ、第3バルブ38を変位させないような第1駆動力が第1バルブ35に作用するよう、駆動部33に印加する駆動電圧を制御する。 First, the low-speed valve opening operation will be described. As shown in FIG. 4, in the low speed valve opening operation, application of the drive voltage from the engine control device 17 to the drive unit 33 is started. As a result, the drive unit 33 generates the first drive force. The engine control device 17 applies driving to the drive unit 33 so that a first driving force that is greater than the opening force of the first valve 35 and does not displace the third valve 38 acts on the first valve 35. Control the voltage.
 駆動部33が第1駆動力を発生させている場合、第2駆動伝達ピン71が第1リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ35は、第1リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。そうしたうえで、第1バルブ35は、第3バルブ38を第2バルブ37から離座させないように、第3バルブ38の円柱部38aの先端に当接する。こうした第1バルブ35の開弁方向への変位により、開弁ギャップ74は消失する。 When the drive unit 33 generates the first driving force, the second drive transmission pin 71 is displaced over the first lift amount. The first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount. In addition, the first valve 35 contacts the tip of the cylindrical portion 38 a of the third valve 38 so that the third valve 38 is not separated from the second valve 37. Due to the displacement of the first valve 35 in the valve opening direction, the valve opening gap 74 disappears.
 以上の第1バルブ35の開弁により、図4の第1リフト位置に示すように、圧力制御室43と低圧流路42との間は、遮断状態から連通状態へと切り替わる。その結果、圧力制御室43の高圧燃料は、第3バルブ38の第1アウトオリフィス38c、第1バルブ室45の順に流通し、低圧流路42へ排出される。 By opening the first valve 35 as described above, the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position in FIG. As a result, the high pressure fuel in the pressure control chamber 43 flows in the order of the first out orifice 38 c of the third valve 38 and the first valve chamber 45, and is discharged to the low pressure passage 42.
 このとき、第1バルブ35のパイロット開口面積よりも狭い第1アウトオリフィス38cの絞り面積により、流出流路の流路面積が規定される。故に、流出流路は、圧力制御室43から低圧流路42への燃料の流出流量が第1アウトオリフィス38cによって制限された第1絞り状態となる。 At this time, the flow area of the outflow flow path is defined by the throttle area of the first out orifice 38c which is smaller than the pilot opening area of the first valve 35. Therefore, the outflow passage is in the first throttle state in which the outflow flow rate of the fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
 パイロット開口面積は、第1シート部54およびパイロットフェース部73の間の流路面積である。第1アウトオリフィス38cによる流量制御を可能にするため、開弁ギャップ74は、パイロット開口面積が第1アウトオリフィス38cの絞り面積よりも大きくなるように予め規定されている。 The pilot opening area is a channel area between the first seat portion 54 and the pilot face portion 73. In order to enable flow control by the first out orifice 38c, the valve opening gap 74 is defined in advance so that the pilot opening area is larger than the throttle area of the first out orifice 38c.
 以上の第1絞り状態において、第3バルブ用スプリング55は、第1バルブ35へ向けて第2バルブ37および第3バルブ38を閉弁方向に付勢することにより、この第2バルブ37を弁ボデー31から離座させない。その結果、第1バルブ35は、第3バルブ38の円柱部38aの先端に押し当てられて、第2駆動伝達ピン71と第1バルブ35とに間に挟持された状態で静止可能となる。加えて、駆動部33の発生させている駆動力が概ね第1駆動力に保たれることにより、第1絞り状態における第2バルブ37の閉弁状態は維持される。 In the first throttle state described above, the third valve spring 55 urges the second valve 37 and the third valve 38 toward the first valve 35 in the valve closing direction, thereby opening the second valve 37 to the valve. Do not leave the body 31. As a result, the first valve 35 is pressed against the tip of the cylindrical portion 38 a of the third valve 38 and can be stationary while being sandwiched between the second drive transmission pin 71 and the first valve 35. In addition, since the driving force generated by the driving unit 33 is maintained at the first driving force, the closed state of the second valve 37 in the first throttle state is maintained.
 また第1バルブ35がリフトしてから、圧力制御室43から第1バルブ室45に燃料が流出して圧力制御室43の圧力が所定圧力に低下するまで、第2バルブ37は圧力制御室43の圧力によって着座している状態を維持する。換言すると、第1バルブ35が開弁して圧力制御室43の圧力が低下しても、第2バルブ37が開弁するまではタイムラグがある。 Further, after the first valve 35 is lifted, the second valve 37 remains in the pressure control chamber 43 until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure. The seated state is maintained by the pressure of. In other words, even if the first valve 35 opens and the pressure in the pressure control chamber 43 decreases, there is a time lag until the second valve 37 opens.
 第1絞り状態の流出流路を通じた燃料の流出により、第1バルブ室45および圧力制御室43の燃料圧力は、徐々に低下する。その結果、ノズルニードル32は、フェース部62に作用する高圧燃料の圧力により、圧力制御室43へ向けて徐々に加速しつつ開弁方向に変位する。以上による主弁部の開弁により、噴孔30からの燃料噴射が開始される。 The fuel pressure in the first valve chamber 45 and the pressure control chamber 43 gradually decreases due to the outflow of fuel through the outflow passage in the first throttle state. As a result, the nozzle needle 32 is displaced in the valve opening direction while being gradually accelerated toward the pressure control chamber 43 by the pressure of the high-pressure fuel acting on the face portion 62. The fuel injection from the nozzle hole 30 is started by opening the main valve portion as described above.
 第1リフト位置の動作を換言すると、第1駆動力によって第1バルブ35が開弁し、第3バルブ38に当接したところで第1バルブ35が停止することで第1バルブ35のみ開弁した状態になる。これにより、第1バルブ室45の燃料は低圧流路42に流出し、第1バルブ室45の圧力の低下に伴なって、圧力制御室43の燃料は第1アウトオリフィス38cを経由して第1バルブ室45に流出する。また、第1バルブ室45の圧力低下により、第2バルブ37および第3バルブ38はそれぞれインオリフィス48および第2アウトオリフィス37dを閉止する側に圧力を受け、それらを閉止する。したがって圧力制御室43への燃料の出入りは、第1アウトオリフィス38cからの流出のみとなり、これにより圧力制御室43の圧力は低下し、ある圧力に達したところでノズルニードル32が開弁する。このとき、開弁速度は第1オリフィスの流量により規定される。 In other words, the operation of the first lift position is such that the first valve 35 is opened by the first driving force, and only the first valve 35 is opened by stopping the first valve 35 when it contacts the third valve 38. It becomes a state. As a result, the fuel in the first valve chamber 45 flows out into the low pressure passage 42, and the fuel in the pressure control chamber 43 passes through the first out orifice 38c as the pressure in the first valve chamber 45 decreases. It flows out into one valve chamber 45. Further, due to the pressure drop in the first valve chamber 45, the second valve 37 and the third valve 38 receive pressure on the side closing the in-orifice 48 and the second out-orifice 37d, respectively, and close them. Accordingly, the fuel enters and exits the pressure control chamber 43 only from the first out orifice 38c, whereby the pressure in the pressure control chamber 43 decreases, and the nozzle needle 32 opens when a certain pressure is reached. At this time, the valve opening speed is defined by the flow rate of the first orifice.
 次に、高速開弁動作に関して説明する。高速開弁動作では、機関制御装置17から駆動部33に印加される駆動電圧が引き上げられる。これにより駆動部33は、第3バルブ38の開弁力を上回る第2駆動力を発生させる。機関制御装置17は、第3バルブ38の開弁力よりも大きい第2駆動力の発生が維持されるように、駆動部33に印加する駆動電圧を制御する。 Next, the high speed valve opening operation will be described. In the high-speed valve opening operation, the drive voltage applied from the engine control device 17 to the drive unit 33 is increased. As a result, the drive unit 33 generates a second driving force that exceeds the opening force of the third valve 38. The engine control device 17 controls the drive voltage applied to the drive unit 33 so that the generation of the second drive force larger than the valve opening force of the third valve 38 is maintained.
 駆動部33が第2駆動力を発生させている場合、第2駆動伝達ピン71が第2リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ35は、第2リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。さらに第1バルブ35の変位により、第1バルブ35が第3バルブ38の円柱部38aに当接し、第1バルブ35によって第3バルブ38の円柱部38aが押されて開弁方向に変位する。これによって第2バルブ37の下端側当接部37cから第3バルブ38の円盤部38bを離座させる。 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount. The first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount. Further, due to the displacement of the first valve 35, the first valve 35 comes into contact with the cylindrical portion 38 a of the third valve 38, and the cylindrical portion 38 a of the third valve 38 is pushed by the first valve 35 and displaced in the valve opening direction. As a result, the disk portion 38 b of the third valve 38 is separated from the lower end side contact portion 37 c of the second valve 37.
 以上の第3バルブ38の開弁で、図4の第2リフト位置のように、圧力制御室43の燃料は、第2バルブ37の下端側当接部37cと第3バルブ38の円盤部38bとの間のバイパス通路75、第2アウトオリフィス37dおよび第1バルブ室45を順に流通する。また圧力制御室43の高圧燃料は、第3バルブ38の第1アウトオリフィス38c、第1バルブ室45の順にも流通し、低圧流路42へ排出される。その結果、流出流路の流路面積を規定し、かつ、燃料の流出流量を制限する構成は、第1アウトオリフィス38cから第1アウトオリフィス38cおよび第2アウトオリフィス37dへと切り替えられる。第1アウトオリフィス38cよりも第2アウトオリフィス37dの分だけ絞り面積が大きいため、第2絞り状態における流出流路の流路面積は、第1絞り状態よりも大きくなる。その結果、第2絞り状態にて圧力制御室43から流出する燃料の流出流量は、第1絞り状態よりも増加する。 When the third valve 38 is opened as described above, the fuel in the pressure control chamber 43 flows from the lower end side contact portion 37c of the second valve 37 and the disc portion 38b of the third valve 38 as in the second lift position of FIG. To the bypass passage 75, the second out orifice 37d, and the first valve chamber 45 in this order. The high-pressure fuel in the pressure control chamber 43 also flows through the first out orifice 38 c of the third valve 38 and the first valve chamber 45 in this order, and is discharged to the low-pressure channel 42. As a result, the configuration that regulates the flow passage area of the outflow passage and restricts the outflow flow rate of the fuel is switched from the first out orifice 38c to the first out orifice 38c and the second out orifice 37d. Since the throttle area is larger by the second out orifice 37d than the first out orifice 38c, the flow area of the outflow channel in the second throttle state is larger than that in the first throttle state. As a result, the flow rate of the fuel flowing out from the pressure control chamber 43 in the second throttle state increases more than in the first throttle state.
 また第1弁体がリフトしてから、同様に、圧力制御室43から第1バルブ室45に燃料が流出して圧力制御室43の圧力が所定圧力に低下するまで、第2弁体は圧力制御室43の圧力によって着座している状態を維持する。 Similarly, after the first valve body is lifted, the second valve body is kept in pressure until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure. The seated state is maintained by the pressure in the control chamber 43.
 バイパス通路75の開口面積および第1バルブ35のパイロット開口面積は共に、第1アウトオリフィス38cおよび第2アウトオリフィス37dの絞り面積の合計よりも大きくされている。第2絞り状態による流量制御を可能にするため、予め規定されている。 Both the opening area of the bypass passage 75 and the pilot opening area of the first valve 35 are larger than the sum of the throttle areas of the first out orifice 38c and the second out orifice 37d. In order to enable flow rate control in the second throttle state, it is defined in advance.
 第2アウトオリフィス37dによって流量を制御された燃料の流出により、第1バルブ室45および圧力制御室43の各燃料圧力は、顕著に降下する。その結果、ノズルニードル32は、開弁方向へと加速し、シート部39とフェース部62との間隙を急速に拡大させる。このようにして、噴孔30へ繋がる高圧流路40の流路面積が拡大することで、噴孔30から噴射される燃料噴射量が増加する。その結果、単位時間当たりに噴孔30から噴射される燃料の噴射量(噴射率)の特性に明確な変化が生じる。 The fuel pressure in the first valve chamber 45 and the pressure control chamber 43 drops significantly due to the outflow of fuel whose flow rate is controlled by the second out orifice 37d. As a result, the nozzle needle 32 accelerates in the valve opening direction, and rapidly expands the gap between the seat portion 39 and the face portion 62. As described above, the flow area of the high-pressure flow path 40 connected to the injection hole 30 is increased, so that the fuel injection amount injected from the injection hole 30 is increased. As a result, a clear change occurs in the characteristics of the injection amount (injection rate) of the fuel injected from the injection hole 30 per unit time.
 第2リフト位置の動作を換言すると、第2駆動力によって第1バルブ35が開弁して、さらに第3バルブ38を開弁させ、第2バルブ37の第2アウトオリフィス37dを介して第1バルブ室45と圧力制御室43とが連通する。第2バルブ37は圧力制御室43と第1バルブ室45の圧力差を受けるため、インオリフィス48を閉止している。したがって圧力制御室43からの燃料の出入りは第1アウトオリフィス38cおよび第2アウトオリフィス37dからの流出となり、このときの開弁速度は第1アウトオリフィス38cと第2アウトオリフィス37dとの合計の流量により規定される。これにより、第1駆動力と第2駆動力とを切替制御することにより、開弁速度を切り替えることが可能である。 In other words, the operation of the second lift position is such that the first valve 35 is opened by the second driving force, the third valve 38 is further opened, and the first valve 35 is opened via the second out orifice 37d of the second valve 37. The valve chamber 45 and the pressure control chamber 43 communicate with each other. Since the second valve 37 receives a pressure difference between the pressure control chamber 43 and the first valve chamber 45, the in-orifice 48 is closed. Accordingly, the fuel enters and exits the pressure control chamber 43 and flows out from the first out orifice 38c and the second out orifice 37d, and the valve opening speed at this time is the total flow rate of the first out orifice 38c and the second out orifice 37d. It is prescribed by. Thus, the valve opening speed can be switched by switching control between the first driving force and the second driving force.
 次に、閉弁動作時に関して説明する。閉弁動作時では、機関制御装置17から駆動部33への駆動電圧の印加が中断される。すると、駆動部33の駆動力は、第1バルブ35および第3バルブ38の各開弁力を下回り、やがて消失する。以上により、第1バルブ35および第3バルブ38は、第1バルブ用スプリング56または第3バルブ用スプリング55の各弾性力と燃料圧力とによって閉弁方向へ向けて変位する。そしてパイロットフェース部73および第3バルブ38の円盤部38bを第1シート部54および第2バルブ37の下端側当接部37cに当接させた閉弁状態に戻る。その結果、圧力制御室43と低圧流路42との間が連通状態から遮断状態へと切り替えられ、流出流路は、閉鎖された状態に戻る。 Next, the valve closing operation will be described. During the valve closing operation, the application of the drive voltage from the engine control device 17 to the drive unit 33 is interrupted. Then, the driving force of the drive unit 33 is less than the opening force of each of the first valve 35 and the third valve 38 and eventually disappears. As described above, the first valve 35 and the third valve 38 are displaced toward the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure. Then, the pilot face portion 73 and the disc portion 38b of the third valve 38 return to the closed state in which the first seat portion 54 and the lower end side abutting portion 37c of the second valve 37 are abutted. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
 一方、第1バルブ35がリフトしている状態から弁ボデー31に着座すると、圧力制御室43と流入流路41との圧力差によって第2バルブ37が離座する。換言すると、第2バルブ37は、流入流路41から流入する高圧燃料の燃料圧力によって押し下げられる。これによって圧力制御室43および第1バルブ室45にインオリフィス48を通過した高圧燃料が流入する。これにより、第1バルブ室45および圧力制御室43の各燃料圧力は、一体的に回復する。その結果、ノズルニードル32は、圧力制御室43の燃料圧力によって押し下げられて、閉弁位置にてフェース部62をシート部39に当接させた状態に戻る。以上の主弁部の閉弁により、噴孔30からの燃料噴射は中断される。 On the other hand, when the first valve 35 is seated on the valve body 31 from the lifted state, the second valve 37 is separated due to the pressure difference between the pressure control chamber 43 and the inflow channel 41. In other words, the second valve 37 is pushed down by the fuel pressure of the high-pressure fuel flowing from the inflow passage 41. As a result, the high-pressure fuel that has passed through the in-orifice 48 flows into the pressure control chamber 43 and the first valve chamber 45. Thereby, each fuel pressure in the first valve chamber 45 and the pressure control chamber 43 is recovered integrally. As a result, the nozzle needle 32 is pushed down by the fuel pressure in the pressure control chamber 43 and returns to the state where the face portion 62 is brought into contact with the seat portion 39 at the valve closing position. The fuel injection from the nozzle hole 30 is interrupted by closing the main valve portion.
 閉弁動作を換言すると、第1バルブ35を開弁後、印加電圧を下げると第1バルブ35は第1バルブ用スプリング56により低圧流路42を閉止し、第3バルブ38は第3バルブ用スプリング55により第2アウトオリフィス37dを閉止した状態になる。第1バルブ35および第3バルブ38の閉止直後は第1バルブ室45と圧力制御室43の圧力差により、第2バルブ37および第3バルブ38はそれぞれインオリフィス48および第2アウトオリフィス37dを閉止する。これによって第1アウトオリフィス38cを介して第1バルブ室45に圧力制御室43から燃料が流入する。これにより、第1バルブ室45の圧力が上昇し、第1バルブ室45と圧力制御室43の圧力差が小さくなる。開弁状態において、圧力制御室43の圧力は流入流路41よりも低いため、第1バルブ室45と圧力制御室43の圧力差が小さくなるとインオリフィス48からの高圧により第2バルブ37が開弁し、圧力制御室43に燃料が流入する。これによりノズルニードル32が閉弁する。 In other words, when the applied voltage is lowered after opening the first valve 35, the first valve 35 closes the low pressure flow path 42 by the first valve spring 56, and the third valve 38 is for the third valve. The second out orifice 37d is closed by the spring 55. Immediately after the first valve 35 and the third valve 38 are closed, the second valve 37 and the third valve 38 close the in-orifice 48 and the second out-orifice 37d, respectively, due to the pressure difference between the first valve chamber 45 and the pressure control chamber 43. To do. As a result, fuel flows from the pressure control chamber 43 into the first valve chamber 45 through the first out orifice 38c. As a result, the pressure in the first valve chamber 45 increases, and the pressure difference between the first valve chamber 45 and the pressure control chamber 43 decreases. Since the pressure in the pressure control chamber 43 is lower than that of the inflow channel 41 in the valve open state, the second valve 37 is opened due to the high pressure from the in-orifice 48 when the pressure difference between the first valve chamber 45 and the pressure control chamber 43 decreases. The fuel flows into the pressure control chamber 43. As a result, the nozzle needle 32 is closed.
 ここまで説明した第1実施形態では、第1駆動力から第2駆動力への駆動部33の発生駆動力の増加により、切替弁機構36によって流出流路の流路面積が切り替えられる。以上により、圧力制御室43の圧力降下の態様を変化させることで、ノズルニードル32の変位速度は、明確に変化する。故に、噴孔30に供給される高圧燃料を通過させるフェース部62およびシート部39の間のオリフィス部分について、流路面積の拡大が急速に生じる。その結果、単位時間あたりに噴孔30から噴射される噴射量も、駆動部33による駆動力の切り替えの前後で、明確に変化する。したがって、燃料噴射装置100は、一つの駆動部33によって発生させる駆動力の制御により、燃料噴射の噴射率特性を変化させることが可能になる。 In the first embodiment described so far, the flow area of the outflow flow path is switched by the switching valve mechanism 36 due to an increase in the generated drive force of the drive unit 33 from the first drive force to the second drive force. As described above, the displacement speed of the nozzle needle 32 is clearly changed by changing the pressure drop mode of the pressure control chamber 43. Therefore, the passage area rapidly increases in the orifice portion between the face portion 62 and the seat portion 39 through which the high-pressure fuel supplied to the injection hole 30 passes. As a result, the injection amount injected from the nozzle hole 30 per unit time also clearly changes before and after the driving force is switched by the driving unit 33. Therefore, the fuel injection device 100 can change the injection rate characteristic of the fuel injection by controlling the driving force generated by the single drive unit 33.
 また第1実施形態では、第1バルブ35が第1リフト量の位置にあり、流出流路が第1絞り状態にある場合では、弁ボデー31から離座した第1バルブ35は、第3バルブ38を離座させないように、第3バルブ38に当接した状態とされる。第3バルブ38との当接によって第1バルブ35の位置が保持されるので、第1絞り状態における流出流路の流路面積、ひいては圧力制御室43からの燃料の流出量は、安定的となる。本実施形態では、第1リフト量の位置は、第1リフト位置とも言う。 In the first embodiment, when the first valve 35 is in the first lift amount position and the outflow channel is in the first throttle state, the first valve 35 that is separated from the valve body 31 is the third valve. The third valve 38 is brought into contact with the third valve 38 so as not to separate the seat 38. Since the position of the first valve 35 is held by contact with the third valve 38, the flow area of the outflow passage in the first throttled state, and hence the amount of fuel outflow from the pressure control chamber 43, is stable. Become. In the present embodiment, the position of the first lift amount is also referred to as a first lift position.
 また第1バルブ35が第2リフト量の位置にあり、流出流路が第2絞り状態にある場合では、第1バルブ35による押圧で第3バルブ38を変位させて、第3バルブ38を第2バルブ37から離座させた状態とされる。このように、第1バルブ35の押圧によって第3バルブ38の位置が保持されるので、第2絞り状態における流出流路の流路面積、ひいては圧力制御室43からの燃料の排出量も安定的となる。本実施形態では、第2リフト量の位置は、第2リフト位置とも言う。 Further, when the first valve 35 is at the second lift amount position and the outflow channel is in the second throttle state, the third valve 38 is displaced by the pressing by the first valve 35 and the third valve 38 is The two valves 37 are separated from each other. In this way, the position of the third valve 38 is held by the pressing of the first valve 35, so that the flow area of the outflow flow path in the second throttled state, and hence the amount of fuel discharged from the pressure control chamber 43 is also stable. It becomes. In the present embodiment, the position of the second lift amount is also referred to as a second lift position.
 このように切替弁機構36は、第1バルブ35のリフト量を調整することによって、流出流路の流路面積を切り替えることができる。そして第1バルブ35のリフト量は、1つの駆動部33によって制御することができる。したがって駆動部33は、1つの第1バルブ35のリフト量を制御する構成であればよいので、駆動部33が大形化を抑制することができる。 Thus, the switching valve mechanism 36 can switch the channel area of the outflow channel by adjusting the lift amount of the first valve 35. The lift amount of the first valve 35 can be controlled by one drive unit 33. Therefore, since the drive part 33 should just be the structure which controls the lift amount of one 1st valve | bulb 35, the drive part 33 can suppress enlargement.
 さらに第1実施形態の駆動部33は、第2駆動伝達ピン71のリフト量によってではなく、駆動部33の発生駆動力によって、流出流路の第1絞り状態と第2絞り状態とを切り替えている。以上の形態であれば、第1絞り状態および第2絞り状態にて駆動力がある程度変動しても、第1バルブ35および第3バルブ38の位置は維持され得る。故に、第2駆動伝達ピン71のリフト量の高精度な制御は、必ずしも必要とされないため、駆動部33の制御が簡素化され得る。また、各部材に要求される寸法精度の緩和も可能となる。 Furthermore, the drive unit 33 of the first embodiment switches between the first throttle state and the second throttle state of the outflow channel not by the lift amount of the second drive transmission pin 71 but by the generated driving force of the drive unit 33. Yes. With the above configuration, the positions of the first valve 35 and the third valve 38 can be maintained even if the driving force varies to some extent in the first throttle state and the second throttle state. Therefore, since the highly accurate control of the lift amount of the second drive transmission pin 71 is not necessarily required, the control of the drive unit 33 can be simplified. Further, the dimensional accuracy required for each member can be relaxed.
 加えて第1実施形態では、第1絞り状態および第2絞り状態のそれぞれにおいて、特定の部材に設けられた絞り孔である第1アウトオリフィス38cおよび第2アウトオリフィス37dが、流出流路の流路面積を規定している。このように、複数部材の隙間によって流路面積を規定しない構成であれば、各絞り状態にて流出流路を流通する燃料流量のばらつきは、さらに低減される。 In addition, in the first embodiment, in each of the first throttle state and the second throttle state, the first out orifice 38c and the second out orifice 37d, which are throttle holes provided in a specific member, The road area is specified. As described above, if the flow path area is not defined by the gap between the plurality of members, the variation in the flow rate of the fuel flowing through the outflow flow path in each throttled state is further reduced.
 さらに第1実施形態の切替弁機構36には、第1バルブ35の開弁方向へストロークを許容する空間として、開弁ギャップ74が形成されている。故に、燃料噴射装置100は、一つの駆動部33の単純な直線状の作動により、第1バルブ35および第3バルブ38を、異なるタイミングで開弁方向へ変位させることが可能になる。 Furthermore, in the switching valve mechanism 36 of the first embodiment, a valve opening gap 74 is formed as a space that allows a stroke in the valve opening direction of the first valve 35. Therefore, the fuel injection device 100 can displace the first valve 35 and the third valve 38 in the valve opening direction at different timings by a simple linear operation of the single drive unit 33.
 さらに第1実施形態では、第1バルブ35がリフトしてから、圧力制御室43から第1バルブ室45に燃料が流出して圧力制御室43の圧力が所定圧力に低下するまで、第2バルブ37は圧力制御室43の圧力によって着座している状態を維持する。これによって第1バルブ35がリフトするとただちに、圧力制御室43に高圧の燃料が流入することを防ぐことができる。したがって噴孔30から燃料を噴射する時間を確保することができる。 Furthermore, in the first embodiment, after the first valve 35 is lifted, the second valve is maintained until the fuel flows out from the pressure control chamber 43 to the first valve chamber 45 and the pressure in the pressure control chamber 43 decreases to a predetermined pressure. 37 maintains the seated state by the pressure of the pressure control chamber 43. As a result, the high pressure fuel can be prevented from flowing into the pressure control chamber 43 as soon as the first valve 35 is lifted. Therefore, the time for injecting fuel from the nozzle hole 30 can be secured.
 さらに第1実施形態では、第1バルブ35がリフトしている状態から弁ボデー31に着座すると、圧力制御室43と高圧流路40との圧力差によって第2バルブ37が離座する。これによって噴孔30からの燃料噴射が終了すると、圧力制御室43および第1バルブ室45を高圧の燃料で満たすことができる。したがって次の噴射の準備を迅速に行うことができる。 Further, in the first embodiment, when the first valve 35 is seated on the valve body 31 from the lifted state, the second valve 37 is separated due to the pressure difference between the pressure control chamber 43 and the high-pressure flow path 40. Thus, when the fuel injection from the nozzle hole 30 is completed, the pressure control chamber 43 and the first valve chamber 45 can be filled with high-pressure fuel. Therefore, preparation for the next injection can be performed quickly.
 さらに第1実施形態では、第1バルブ35がリフトを開始して第1リフト量の位置に配置された場合、第1バルブ35がリフトしてから圧力制御室43の圧力が所定圧力に低下するまで、第3バルブ38は圧力制御室43の圧力で第2バルブ37に着座している。これによって第2バルブ37の第2アウトオリフィス37dを閉塞している状態を維持している。第2アウトオリフィス37dを閉塞しているので、第1リフト量の場合に第1絞り状態にすることができる。したがって複雑な駆動をすることなく、第1絞り状態を維持することができる。 Furthermore, in 1st Embodiment, when the 1st valve | bulb 35 starts a lift and is arrange | positioned in the position of 1st lift amount, after the 1st valve | bulb 35 lifts, the pressure of the pressure control chamber 43 falls to predetermined pressure. Until then, the third valve 38 is seated on the second valve 37 with the pressure of the pressure control chamber 43. This maintains the state where the second out orifice 37d of the second valve 37 is closed. Since the 2nd out orifice 37d is obstruct | occluded, in the case of 1st lift amount, it can be set as the 1st throttling state. Therefore, the first aperture state can be maintained without complicated driving.
 さらに第1実施形態では、第2バルブ37および第3バルブ38が圧力制御室43内に配置されている。そして第2バルブ37が第1バルブ室45の一部を区画する構成にしているので、開弁応答に寄与する圧力制御室43の容積および閉弁応答に寄与する第3バルブ38の挿通孔38eと第1バルブ室45を合わせた容積が小さくすることができる。これによって高い応答性を実現することができる。 Furthermore, in the first embodiment, the second valve 37 and the third valve 38 are arranged in the pressure control chamber 43. Since the second valve 37 is configured to partition a part of the first valve chamber 45, the volume of the pressure control chamber 43 contributing to the valve opening response and the insertion hole 38e of the third valve 38 contributing to the valve closing response. And the total volume of the first valve chamber 45 can be reduced. As a result, high responsiveness can be realized.
 第1実施形態において、高圧流路40が供給流路に相当し、ノズルニードル32が弁部材に相当する。また、第1バルブ35が第1弁体に相当し、第2バルブ37が第2弁体に相当し、第3バルブ38が第3弁体に相当する。さらに第1バルブ室45が切替室に相当し、第1アウトオリフィス38cは、第1バルブ35の挿通孔35eの一部に相当し、第2アウトオリフィス37dは、第2バルブ37の挿通孔37eの一部に相当する。 In the first embodiment, the high-pressure channel 40 corresponds to a supply channel, and the nozzle needle 32 corresponds to a valve member. The first valve 35 corresponds to the first valve body, the second valve 37 corresponds to the second valve body, and the third valve 38 corresponds to the third valve body. Further, the first valve chamber 45 corresponds to a switching chamber, the first out orifice 38c corresponds to a part of the insertion hole 35e of the first valve 35, and the second out orifice 37d corresponds to the insertion hole 37e of the second valve 37. Corresponds to a part of
 (第2実施形態)
 次に、本開示の第2実施形態に関して、図5および図6を用いて説明する。本実施形態では、第1バルブ352および第3バルブ382の構成が第1実施形態とは異なる。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described with reference to FIGS. 5 and 6. In the present embodiment, the configurations of the first valve 352 and the third valve 382 are different from those of the first embodiment.
 第1バルブ352は、金属材料等により、2段円柱状に形成されている。第1バルブ352は、円盤部35bおよび円柱部35aを有している。円盤部35bは、第2バルブ37の貫通孔37aよりも大径に形成されている。一方、円柱部35aは、第2バルブ37の貫通孔37aよりも小径に形成されている。円柱部35aは、円盤部35bから軸方向に沿って円柱状に突出している。円柱部35aの軸方向の長さは、第2バルブ37の貫通孔37aの長さよりも長い。円柱部35aは、第2バルブ37の貫通孔37aの内壁によって軸方向に案内され、軸方向に変位可能である。円盤部35bと第2バルブ37の上端側当接部37bとの間に、第1バルブ用スプリング56が配置される。 The first valve 352 is formed of a metal material or the like into a two-stage columnar shape. The first valve 352 has a disk part 35b and a cylindrical part 35a. The disc part 35 b is formed with a larger diameter than the through hole 37 a of the second valve 37. On the other hand, the cylindrical portion 35 a is formed with a smaller diameter than the through hole 37 a of the second valve 37. The column part 35a protrudes from the disk part 35b in the column shape along the axial direction. The length of the cylindrical portion 35 a in the axial direction is longer than the length of the through hole 37 a of the second valve 37. The cylindrical portion 35a is guided in the axial direction by the inner wall of the through hole 37a of the second valve 37, and can be displaced in the axial direction. A first valve spring 56 is disposed between the disk portion 35 b and the upper end side contact portion 37 b of the second valve 37.
 また第1バルブ352には、第1バルブ室45と圧力制御室43とを連通するための挿通孔35eが形成されている。そして第1バルブ352の挿通孔35eの一部に、第1アウトオリフィス38cが形成されている。第1バルブ352の挿通孔35eは、第1バルブ352の円柱部35aを軸方向に延びる部分と、円柱部35aの径方向に延びる部分とを有する。第1アウトオリフィス38cは、挿通孔35eの軸方向に延びる部分に形成されている。 Further, the first valve 352 is formed with an insertion hole 35e for communicating the first valve chamber 45 and the pressure control chamber 43. A first out orifice 38 c is formed in a part of the insertion hole 35 e of the first valve 352. The insertion hole 35e of the first valve 352 has a portion extending in the axial direction of the cylindrical portion 35a of the first valve 352 and a portion extending in the radial direction of the cylindrical portion 35a. The first out orifice 38c is formed in a portion extending in the axial direction of the insertion hole 35e.
 第3バルブ382は、金属材料等により、円盤状に形成されている。第3バルブ382の外径は、第2バルブ37の貫通孔37aよりも大径に形成されている。また第3バルブ382の径方向の中央には、第3バルブ382を軸方向に貫通する挿通孔38eが形成されている。第3バルブ382の挿通孔38eの内径は、第1バルブ352の円柱部35aの外径よりも小さい。また第3バルブ382の挿通孔38eは、第2バルブ37の貫通孔37aよりも内径が小さい。したがって第3バルブ382の上端側当接部38fが、第1バルブ352の円柱部35aの先端が当接する部分となる。 The third valve 382 is formed in a disk shape from a metal material or the like. The outer diameter of the third valve 382 is formed larger than the through hole 37 a of the second valve 37. In addition, an insertion hole 38e that penetrates the third valve 382 in the axial direction is formed in the center of the third valve 382 in the radial direction. The inner diameter of the insertion hole 38e of the third valve 382 is smaller than the outer diameter of the cylindrical portion 35a of the first valve 352. Further, the insertion hole 38 e of the third valve 382 has a smaller inner diameter than the through hole 37 a of the second valve 37. Therefore, the upper end side contact portion 38f of the third valve 382 becomes a portion where the tip of the cylindrical portion 35a of the first valve 352 contacts.
 次に、燃料噴射装置100の噴射作動に関して説明する。図5に示すように、噴射開始前では、第1実施形態と同様に、第1バルブ352のパイロットフェース部73を第1シート部54に当接させ、第2バルブ37の上端側当接部37bを第2シート部50に当接させた閉弁位置にて静止している。また第1バルブ352の円柱部35aと第3バルブ382の上端側当接部38fとの間には、開弁ギャップ74が形成されている。 Next, the injection operation of the fuel injection device 100 will be described. As shown in FIG. 5, the pilot face portion 73 of the first valve 352 is brought into contact with the first seat portion 54 and the upper end side contact portion of the second valve 37 before the start of injection, as in the first embodiment. 37b is stationary at the valve closing position where the second seat portion 50 is brought into contact with the second seat portion 50. A valve opening gap 74 is formed between the cylindrical portion 35 a of the first valve 352 and the upper end side contact portion 38 f of the third valve 382.
 まず低速開弁動作に関して説明する。図6に示すように、低速開弁動作では、第1実施形態と同様に、機関制御装置17から駆動部33への駆動電圧の印加が開始される。駆動部33が第1駆動力を発生させている場合、第2駆動伝達ピン71が第1リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ352は、第1リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。そうしたうえで、第1バルブ352の円柱部35aの先端は、第3バルブ382を第2バルブ37から離座させないように、第3バルブ382の上端側当接部38fに当接する。こうした第1バルブ352の開弁方向への変位により、開弁ギャップ74は消失する。 First, the low-speed valve opening operation will be described. As shown in FIG. 6, in the low-speed valve opening operation, the application of the drive voltage from the engine control device 17 to the drive unit 33 is started as in the first embodiment. When the drive unit 33 generates the first driving force, the second drive transmission pin 71 is displaced over the first lift amount. The first valve 352 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount. In addition, the tip of the cylindrical portion 35a of the first valve 352 contacts the upper end side contact portion 38f of the third valve 382 so that the third valve 382 is not separated from the second valve 37. Due to such displacement of the first valve 352 in the valve opening direction, the valve opening gap 74 disappears.
 以上の第1バルブ352の開弁により、図6の第1リフト位置に示すように、圧力制御室43と低圧流路42との間は、遮断状態から連通状態へと切り替わる。その結果、圧力制御室43の高圧燃料は、第3バルブ382の挿通孔38e、第1バルブ352の第1アウトオリフィス38c、第1バルブ室45の順に流通し、低圧流路42へ排出される。これによって流出流路は、圧力制御室43から低圧流路42への燃料の流出流量が第1アウトオリフィス38cによって制限された第1絞り状態となる。 By opening the first valve 352 as described above, the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position in FIG. As a result, the high pressure fuel in the pressure control chamber 43 flows through the insertion hole 38e of the third valve 382, the first out orifice 38c of the first valve 352, and the first valve chamber 45 in this order, and is discharged to the low pressure passage 42. . As a result, the outflow passage is in a first throttle state in which the outflow flow rate of fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
 次に、高速開弁動作に関して説明する。高速開弁動作では、第1実施形態と同様に駆動部33は、第3バルブ382の開弁力を上回る第2駆動力を発生させる。 Next, the high speed valve opening operation will be described. In the high-speed valve opening operation, the drive unit 33 generates a second driving force that exceeds the valve opening force of the third valve 382 as in the first embodiment.
 駆動部33が第2駆動力を発生させている場合、第2駆動伝達ピン71が第2リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ352は、第2リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。さらに第1バルブ352の変位により、第1バルブ352の円柱部35aが第3バルブ382の上端側当接部38fに当接し、第1バルブ352によって第3バルブ382が押されて開弁方向に変位する。これによって第2バルブ37の下端側当接部37cから第3バルブ382を離座させる。 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount. The first valve 352 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount. Further, due to the displacement of the first valve 352, the cylindrical portion 35a of the first valve 352 contacts the upper end side contact portion 38f of the third valve 382, and the first valve 352 pushes the third valve 382 in the valve opening direction. Displace. Thus, the third valve 382 is separated from the lower end side contact portion 37c of the second valve 37.
 以上の第3バルブ382の開弁により、図6の第2リフト位置のように、圧力制御室43の燃料は、第2バルブ37の下端側当接部37cと第3バルブ382の上端側当接部38fとの間のバイパス通路75、第2バルブ37の第2アウトオリフィス37d、および第1バルブ室45を順に流通する。また圧力制御室43の高圧燃料は、第3バルブ382の挿通孔38e、第1バルブ352の第1アウトオリフィス38c、第1バルブ室45の順にも流通し、低圧流路42へ排出される。その結果、流出流路の流路面積が第1絞り状態よりも拡大された第2絞り状態となる。 By opening the third valve 382 as described above, as shown in the second lift position of FIG. 6, the fuel in the pressure control chamber 43 is in contact with the lower end side contact portion 37 c of the second valve 37 and the upper end side of the third valve 382. The bypass passage 75 between the contact portion 38f, the second out orifice 37d of the second valve 37, and the first valve chamber 45 are sequentially circulated. The high pressure fuel in the pressure control chamber 43 also flows through the insertion hole 38e of the third valve 382, the first out orifice 38c of the first valve 352, and the first valve chamber 45 in this order, and is discharged to the low pressure flow path 42. As a result, the flow path area of the outflow flow path becomes the second throttled state that is larger than the first throttled state.
 次に、閉弁動作時に関して説明する。閉弁動作時では、第1実施形態と同様に、駆動部33の駆動力が消失する。以上により、第1バルブ352および第3バルブ382は、第1バルブ用スプリング56または第3バルブ用スプリング55の各弾性力と燃料圧力とによって閉弁方向へ向けて変位する。これによってパイロットフェース部73および第3バルブ382の上端側当接部38fを第1シート部54および第2バルブ37の下端側当接部37cに当接させた閉弁状態に戻る。その結果、圧力制御室43と低圧流路42との間が連通状態から遮断状態へと切り替えられ、流出流路は、閉鎖された状態に戻る。 Next, the valve closing operation will be described. During the valve closing operation, the driving force of the driving unit 33 disappears as in the first embodiment. As described above, the first valve 352 and the third valve 382 are displaced in the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure. As a result, the valve face is returned to the closed state in which the pilot face portion 73 and the upper end side contact portion 38f of the third valve 382 are brought into contact with the first seat portion 54 and the lower end side contact portion 37c of the second valve 37. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
 このように第1バルブ352に第1アウトオリフィス38cを配置している構成であっても、前述の第1実施形態と同様に、第1絞り状態と第2絞り状態とを切替制御することができる。これによって第1実施形態と同様の作用および効果を奏することができる。 Thus, even in the configuration in which the first out orifice 38c is arranged in the first valve 352, the switching control between the first throttle state and the second throttle state can be performed as in the first embodiment described above. it can. As a result, the same operations and effects as in the first embodiment can be achieved.
 (第3実施形態)
 次に、本開示の第3実施形態に関して、図7および図8を用いて説明する。本実施形態では、第1バルブ室453の構成が1実施形態とは異なる。第1バルブ室453は、弁ボデー31によって区画されている。そして第1バルブ室453を区画する区画壁には、第1シート部54とともに、第1載置部76が形成されている。第1載置部76には、第1バルブ用スプリング56の下端が載置されている。
(Third embodiment)
Next, a third embodiment of the present disclosure will be described with reference to FIGS. 7 and 8. In the present embodiment, the configuration of the first valve chamber 453 is different from that of the first embodiment. The first valve chamber 453 is partitioned by the valve body 31. A first placement portion 76 is formed on the partition wall that partitions the first valve chamber 453 together with the first seat portion 54. The lower end of the first valve spring 56 is placed on the first placement portion 76.
 また弁ボデー31には、圧力制御室43と第1バルブ室453とを連通する連通流路77が形成されている。連通流路77の第1バルブ室453側の端部は、第1バルブ用スプリング56の外側に形成されている。また連通流路77の圧力制御室43側の端部は、第3バルブ38の円柱部38aの端部に対向する位置、すなわち第2バルブ37の貫通孔37aに臨む位置に形成されている。 Further, the valve body 31 is formed with a communication channel 77 that allows the pressure control chamber 43 and the first valve chamber 453 to communicate with each other. The end of the communication channel 77 on the first valve chamber 453 side is formed outside the first valve spring 56. The end of the communication channel 77 on the pressure control chamber 43 side is formed at a position facing the end of the cylindrical portion 38 a of the third valve 38, that is, a position facing the through hole 37 a of the second valve 37.
 切替弁機構36は、第3駆動伝達ピン78をさらに備える。第3駆動伝達ピン78は、第1バルブ35と第3バルブ38との間に設けられる。第3駆動伝達ピン78は、円柱状であって、第1バルブ35の下方への変位を、第3バルブ38に伝達する。弁ボデー31には、第3駆動伝達ピン78が挿通して、第3駆動伝達ピン78を案内する案内孔79が形成されている。案内孔79は、圧力制御室43と第1バルブ室453とを連通し、第1バルブ35と同軸になるように形成されている。第3駆動伝達ピン78の外径は、第3バルブ38の円柱部38aの外径よりも小さく、第2バルブ37の貫通孔37a内を変位可能である。 The switching valve mechanism 36 further includes a third drive transmission pin 78. The third drive transmission pin 78 is provided between the first valve 35 and the third valve 38. The third drive transmission pin 78 is cylindrical, and transmits the downward displacement of the first valve 35 to the third valve 38. The valve body 31 is formed with a guide hole 79 through which the third drive transmission pin 78 is inserted to guide the third drive transmission pin 78. The guide hole 79 communicates with the pressure control chamber 43 and the first valve chamber 453 and is formed to be coaxial with the first valve 35. The outer diameter of the third drive transmission pin 78 is smaller than the outer diameter of the cylindrical portion 38 a of the third valve 38 and can be displaced in the through hole 37 a of the second valve 37.
 第2バルブ37の挿通孔37eは、下端側当接部37cと第2バルブ37の貫通孔37a内とを連通する。これによって第2バルブ37が第2シート部50に着座している場合であっても、下端側当接部37c側から挿通孔37e内に流入した燃料は、第2バルブ37の貫通孔37a内に流出する。 The insertion hole 37e of the second valve 37 communicates the lower end side contact portion 37c and the inside of the through hole 37a of the second valve 37. Thus, even when the second valve 37 is seated on the second seat portion 50, the fuel that has flowed into the insertion hole 37 e from the lower end side contact portion 37 c side is in the through hole 37 a of the second valve 37. To leak.
 次に、燃料噴射装置100の噴射作動に関して説明する。図7に示すように、噴射開始前では、第1実施形態と同様に、第1バルブ35のパイロットフェース部73を第1シート部54に当接させ、第2バルブ37の上端側当接部37bを第2シート部50に当接させた閉弁位置にて静止している。また第1バルブ35と第3駆動伝達ピン78との間には、開弁ギャップ74が形成されている。 Next, the injection operation of the fuel injection device 100 will be described. As shown in FIG. 7, the pilot face portion 73 of the first valve 35 is brought into contact with the first seat portion 54 and the upper end side contact portion of the second valve 37 before the start of injection, as in the first embodiment. 37b is stationary at the valve closing position where the second seat portion 50 is brought into contact with the second seat portion 50. A valve opening gap 74 is formed between the first valve 35 and the third drive transmission pin 78.
 まず低速開弁動作に関して説明する。図8に示すように、低速開弁動作では、第1実施形態と同様に、機関制御装置17から駆動部33への駆動電圧の印加が開始される。駆動部33が第1駆動力を発生させている場合、第2駆動伝達ピン71が第1リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ35は、第1リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。そうしたうえで、第1バルブ35は、第3バルブ38を第2バルブ37から離座させないように、第3駆動伝達ピン78に当接する。こうした第1バルブ35の開弁方向への変位により、開弁ギャップ74は消失する。 First, the low-speed valve opening operation will be described. As shown in FIG. 8, in the low-speed valve opening operation, application of the drive voltage from the engine control device 17 to the drive unit 33 is started as in the first embodiment. When the drive unit 33 generates the first driving force, the second drive transmission pin 71 is displaced over the first lift amount. The first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the first lift amount. In addition, the first valve 35 contacts the third drive transmission pin 78 so that the third valve 38 is not separated from the second valve 37. Due to the displacement of the first valve 35 in the valve opening direction, the valve opening gap 74 disappears.
 以上の第1バルブ35の開弁により、図8の第1リフト位置に示すように、圧力制御室43と低圧流路42との間は、遮断状態から連通状態へと切り替わる。その結果、圧力制御室43の高圧燃料は、第3バルブ38の第1アウトオリフィス38c、第2バルブ37の貫通孔37a、連通流路77および第1バルブ室453の順に流通し、低圧流路42へ排出される。これによって流出流路は、圧力制御室43から低圧流路42への燃料の流出流量が第1アウトオリフィス38cによって制限された第1絞り状態となる。 By opening the first valve 35 as described above, the pressure control chamber 43 and the low-pressure flow path 42 are switched from the shut-off state to the communication state as shown in the first lift position of FIG. As a result, the high-pressure fuel in the pressure control chamber 43 flows in the order of the first out-orifice 38c of the third valve 38, the through hole 37a of the second valve 37, the communication channel 77, and the first valve chamber 453. 42 is discharged. As a result, the outflow passage is in a first throttle state in which the outflow flow rate of fuel from the pressure control chamber 43 to the low pressure passage 42 is limited by the first out orifice 38c.
 次に、高速開弁動作に関して説明する。高速開弁動作では、第1実施形態と同様に駆動部33は、第3バルブ38の開弁力を上回る第2駆動力を発生させる。 Next, the high speed valve opening operation will be described. In the high-speed valve opening operation, the drive unit 33 generates a second driving force that exceeds the valve opening force of the third valve 38 as in the first embodiment.
 駆動部33が第2駆動力を発生させている場合、第2駆動伝達ピン71が第2リフト量にわたって変位する。第2駆動伝達ピン71によって押し下げられた第1バルブ35は、第2リフト量にわたる開弁方向への変位により、パイロットフェース部73を第1シート部54から離座させる。さらに第1バルブ35の変位により、第1バルブ35が第3駆動伝達ピン78に当接し、第1バルブ35によって第3駆動伝達ピン78とともに第3バルブ38が押されて開弁方向に変位する。これによって第2バルブ37の下端側当接部37cから第3バルブ38を離座させる。 When the drive unit 33 generates the second driving force, the second drive transmission pin 71 is displaced over the second lift amount. The first valve 35 pushed down by the second drive transmission pin 71 separates the pilot face portion 73 from the first seat portion 54 by displacement in the valve opening direction over the second lift amount. Further, due to the displacement of the first valve 35, the first valve 35 contacts the third drive transmission pin 78, and the third valve 38 is pushed together with the third drive transmission pin 78 by the first valve 35 to displace in the valve opening direction. . As a result, the third valve 38 is separated from the lower end side contact portion 37 c of the second valve 37.
 以上の第3バルブ38の開弁により、図8の第2リフト位置のように、圧力制御室43の燃料は、第2バルブ37の下端側当接部37cと第3バルブ38の円盤部38bとの間のバイパス通路75、第2バルブ37の第2アウトオリフィス37d、第2バルブ37の貫通孔37a、連通流路77および第1バルブ室453を順に流通する。また圧力制御室43の高圧燃料は、第3バルブ38の第1アウトオリフィス38c、第2バルブ37の貫通孔37a、連通流路77および第1バルブ室453の順にも流通し、低圧流路42へ排出される。その結果、流出流路の流路面積が第1絞り状態よりも拡大された第2絞り状態となる。 By opening the third valve 38 as described above, as shown in the second lift position of FIG. 8, the fuel in the pressure control chamber 43 flows into the lower end side contact portion 37 c of the second valve 37 and the disc portion 38 b of the third valve 38. , The second out-orifice 37d of the second valve 37, the through-hole 37a of the second valve 37, the communication channel 77 and the first valve chamber 453 in this order. The high pressure fuel in the pressure control chamber 43 also flows in the order of the first out orifice 38 c of the third valve 38, the through hole 37 a of the second valve 37, the communication channel 77 and the first valve chamber 453, and the low pressure channel 42. Is discharged. As a result, the flow path area of the outflow flow path becomes the second throttled state that is larger than the first throttled state.
 次に、閉弁動作時に関して説明する。閉弁動作時では、第1実施形態と同様に、駆動部33の駆動力が消失する。以上により、第1バルブ35および第3バルブ38は、第1バルブ用スプリング56または第3バルブ用スプリング55の各弾性力と燃料圧力とによって閉弁方向へ向けて変位する。これによってパイロットフェース部73および第3バルブ38の円盤部38bを第1シート部54および第2バルブ37の下端側当接部37cに当接させた閉弁状態に戻る。その結果、圧力制御室43と低圧流路42との間が連通状態から遮断状態へと切り替えられ、流出流路は、閉鎖された状態に戻る。 Next, the valve closing operation will be described. During the valve closing operation, the driving force of the driving unit 33 disappears as in the first embodiment. As described above, the first valve 35 and the third valve 38 are displaced toward the valve closing direction by the elastic force of the first valve spring 56 or the third valve spring 55 and the fuel pressure. As a result, the pilot face portion 73 and the disk portion 38b of the third valve 38 return to the closed state in which they are brought into contact with the first seat portion 54 and the lower end side contact portion 37c of the second valve 37. As a result, the pressure control chamber 43 and the low-pressure channel 42 are switched from the communication state to the cutoff state, and the outflow channel returns to the closed state.
 このように第1バルブ室453を弁ボデー31によって区画する構成であっても、前述の第1実施形態と同様に、第1絞り状態と第2絞り状態とを切替制御することができる。これによって第1実施形態と同様の作用および効果を奏することができる。 As described above, even when the first valve chamber 453 is partitioned by the valve body 31, the first throttle state and the second throttle state can be switched and controlled as in the first embodiment described above. As a result, the same operations and effects as in the first embodiment can be achieved.
 また第1バルブ用スプリング56が第1載置部76に載置されるので、第1バルブ用スプリング56と第3バルブ用スプリング55との弾性力を独立して設定することができる。これによって第1バルブ用スプリング56および第3バルブ用スプリング55の選択が容易となる。 Also, since the first valve spring 56 is placed on the first placement portion 76, the elastic force of the first valve spring 56 and the third valve spring 55 can be set independently. This facilitates selection of the first valve spring 56 and the third valve spring 55.
 (その他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。
(Other embodiments)
The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
 前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。 The structure of the above-described embodiment is merely an example, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
 前述の第1実施形態では、各絞り状態での流出流路の流路面積は、孔状に形成された各オリフィスによって規定されていた。しかし、各絞り状態での流出流路の流路面積は、二つの部材の間に設けられた隙間によって規定されてもよい。 In the first embodiment described above, the channel area of the outflow channel in each throttled state is defined by each orifice formed in a hole shape. However, the channel area of the outflow channel in each throttled state may be defined by a gap provided between the two members.
 前述の第1実施形態では、燃料として軽油を噴射する燃料噴射装置100によって実現されているが、軽油以外の燃料、例えばジメチルエーテル等の液化ガス燃料を噴射する燃料噴射装置にも適用可能である。 In the first embodiment described above, the fuel injection device 100 that injects light oil as fuel is realized, but the present invention is also applicable to a fuel injection device that injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  噴孔(30)から燃料を噴射する燃料噴射装置(100)であって、
     前記噴孔、前記噴孔に燃料を供給する供給流路(40)、前記供給流路を流通する燃料の一部が流入する圧力制御室(43)、および前記圧力制御室の燃料を低圧側に流出させる流出流路(42)が形成された弁ボデー(31)と、
     前記圧力制御室の燃料圧力の変動により前記弁ボデーに対して相対変位することで、前記噴孔を開閉させる弁部材(32)と、
     前記流出流路内の切替室(45,453)に配置された第1弁体(35,352)と、前記圧力制御室内に配置された第2弁体(37)と、少なくとも一部が前記圧力制御室内に配置された第3弁体(38,382)とを有し、前記流出流路の流路面積を切り替える切替弁機構(36)と、
     前記弁ボデーに収容され、前記切替弁機構によって流路面積を切り替えるために前記第1弁体に駆動力を与えて前記第1弁体をリフトし、前記第1弁体のリフト量を第1リフト量または前記第1リフト量よりも大きい第2リフト量に切替制御する駆動部(33)と、を含み、
     前記切替室は、前記圧力制御室と連通しており、
     前記第2弁体および前記第3弁体には、前記流出流路の一部である挿通孔(37e,38e)がそれぞれ形成されており、
     前記切替弁機構は、
      前記第1弁体がリフトしていない場合には、前記第1弁体が前記弁ボデーに着座して前記流出流路を閉鎖し、
      前記第1弁体が前記第1リフト量の位置にある場合には、前記第1弁体が前記弁ボデーから離座し、前記第2弁体および前記第3弁体が離座していない位置にあることで、前記第3弁体の前記挿通孔(38e)を燃料が通過して前記流出流路を第1絞り状態に制限し、
      前記第1弁体が前記第2リフト量の位置にある場合には、前記第1弁体が前記弁ボデーから離座し、前記第1弁体による前記第3弁体への押圧で前記第3弁体が前記第2弁体から離座していることで、前記第2弁体の前記挿通孔(37e)を燃料が通過して、前記流出流路を前記第1絞り状態とは流路面積が異なる第2絞り状態に制限する燃料噴射装置。
    A fuel injection device (100) for injecting fuel from an injection hole (30),
    The injection hole, a supply flow path (40) for supplying fuel to the injection hole, a pressure control chamber (43) into which a part of the fuel flowing through the supply flow path flows, and the fuel in the pressure control chamber at low pressure side A valve body (31) in which an outflow channel (42) is formed to flow into
    A valve member (32) for opening and closing the nozzle hole by relative displacement with respect to the valve body due to a change in fuel pressure in the pressure control chamber;
    At least a part of the first valve body (35, 352) disposed in the switching chamber (45, 453) in the outflow passage, the second valve body (37) disposed in the pressure control chamber, and A switching valve mechanism (36) having a third valve body (38, 382) disposed in the pressure control chamber and switching the flow passage area of the outflow passage;
    The first valve body is lifted by applying a driving force to the first valve body in order to switch the flow passage area by the switching valve mechanism, and the lift amount of the first valve body is set to a first amount. A drive unit (33) that performs switching control to a lift amount or a second lift amount larger than the first lift amount,
    The switching chamber communicates with the pressure control chamber;
    The second valve body and the third valve body are formed with insertion holes (37e, 38e) that are part of the outflow channel,
    The switching valve mechanism is
    When the first valve body is not lifted, the first valve body is seated on the valve body to close the outflow channel,
    When the first valve body is in the position of the first lift amount, the first valve body is separated from the valve body, and the second valve body and the third valve body are not separated. By being in position, the fuel passes through the insertion hole (38e) of the third valve body and restricts the outflow channel to the first throttle state,
    When the first valve body is in the position of the second lift amount, the first valve body is separated from the valve body, and the first valve body is pressed against the third valve body by the first valve body. Since the three-valve element is separated from the second valve element, fuel passes through the insertion hole (37e) of the second valve element, and the outflow passage is different from the first throttle state. A fuel injection device that restricts to a second throttle state with different road areas.
  2.  前記第2弁体は、着座することで、前記供給流路と前記圧力制御室との連通を遮断し、離座することで、前記供給流路と前記圧力制御室とを連通し、
     前記第1弁体がリフトしてから、前記圧力制御室から前記切替室に燃料が流出して前記圧力制御室の圧力が所定圧力に低下するまで、前記第2弁体は前記圧力制御室の圧力によって着座している状態を維持する請求項1に記載の燃料噴射装置。
    The second valve body is seated to block communication between the supply flow path and the pressure control chamber, and is separated from the supply flow path and pressure control chamber to communicate with each other.
    After the first valve body is lifted, the second valve body is in the pressure control chamber until the fuel flows out from the pressure control chamber to the switching chamber and the pressure in the pressure control chamber decreases to a predetermined pressure. The fuel injection device according to claim 1, wherein the seated state is maintained by pressure.
  3.  前記第2弁体は、着座することで、前記供給流路と前記圧力制御室との連通を遮断し、離座することで、前記供給流路と前記圧力制御室とを連通し、
     前記第1弁体がリフトしている状態から前記弁ボデーに着座すると、前記圧力制御室と前記供給流路との圧力差によって前記第2弁体が離座する請求項1または2に記載の燃料噴射装置。
    The second valve body is seated to block communication between the supply flow path and the pressure control chamber, and is separated from the supply flow path and pressure control chamber to communicate with each other.
    3. The second valve body according to claim 1, wherein when the first valve body is seated on the valve body from a lifted state, the second valve body is separated by a pressure difference between the pressure control chamber and the supply flow path. Fuel injection device.
  4.  前記第2弁体は、着座することで、前記供給流路と前記圧力制御室との連通を遮断し、離座することで、前記供給流路と前記圧力制御室とを連通し、
     前記第1弁体がリフトを開始して前記第1リフト量の位置に配置された場合、前記第1弁体がリフトしてから、前記圧力制御室から前記切替室に燃料が流出して前記圧力制御室の圧力が所定圧力に低下するまで、前記第3弁体は前記圧力制御室の圧力によって前記第2弁体に着座して、前記第2弁体の前記挿通孔を閉塞している状態を維持する請求項1~3のいずれか1つに記載の燃料噴射装置。
    The second valve body is seated to block communication between the supply flow path and the pressure control chamber, and is separated from the supply flow path and pressure control chamber to communicate with each other.
    When the first valve body starts to be lifted and is disposed at the position of the first lift amount, the fuel flows out from the pressure control chamber to the switching chamber after the first valve body has been lifted. Until the pressure in the pressure control chamber drops to a predetermined pressure, the third valve body is seated on the second valve body by the pressure in the pressure control chamber and closes the insertion hole of the second valve body. The fuel injection device according to any one of claims 1 to 3, wherein the state is maintained.
  5.  前記第2絞り状態は、前記第1絞り状態よりも流路面積の大きい絞り状態である請求項1~4のいずれか1つに記載の燃料噴射装置。 The fuel injection device according to any one of claims 1 to 4, wherein the second throttle state is a throttle state having a larger flow path area than the first throttle state.
  6.  前記第2弁体の前記挿通孔の流路面積は、前記第3弁体の前記挿通孔の流路面積よりも大きい請求項1~5のいずれか1つに記載の燃料噴射装置。

     
    6. The fuel injection device according to claim 1, wherein a flow passage area of the insertion hole of the second valve body is larger than a flow passage area of the insertion hole of the third valve body.

PCT/JP2017/023909 2016-08-24 2017-06-29 Fuel injection device WO2018037714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-164005 2016-08-24
JP2016164005A JP6508147B2 (en) 2016-08-24 2016-08-24 Fuel injection device

Publications (1)

Publication Number Publication Date
WO2018037714A1 true WO2018037714A1 (en) 2018-03-01

Family

ID=61246689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023909 WO2018037714A1 (en) 2016-08-24 2017-06-29 Fuel injection device

Country Status (2)

Country Link
JP (1) JP6508147B2 (en)
WO (1) WO2018037714A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471142B1 (en) * 1999-04-01 2002-10-29 Delphi Technologies, Inc. Fuel injector
JP2004204813A (en) * 2002-12-26 2004-07-22 Denso Corp Control valve and fuel injection valve
JP2006274841A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2008309015A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471142B1 (en) * 1999-04-01 2002-10-29 Delphi Technologies, Inc. Fuel injector
JP2004204813A (en) * 2002-12-26 2004-07-22 Denso Corp Control valve and fuel injection valve
JP2006274841A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2008309015A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018031299A (en) 2018-03-01
JP6508147B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP4286770B2 (en) Control valve and fuel injection valve having the same
JP2008309015A (en) Fuel injection control device for internal combustion engine
JP2017075532A (en) Fuel injection valve
JP6296948B2 (en) Fuel injection valve
JP6015398B2 (en) Fuel injection valve
WO2006033469A1 (en) Fuel injection device
JP6387985B2 (en) Fuel injection device
JP6376988B2 (en) Fuel injection valve
US10808661B2 (en) Fuel injection device
WO2018037714A1 (en) Fuel injection device
JP4023804B2 (en) Injector for internal combustion engine
WO2018037713A1 (en) Fuel injection device
JP6172113B2 (en) Fuel injection valve
JP6281296B2 (en) Fuel injection valve
JP5146837B2 (en) Fuel injection device
JP6828443B2 (en) Fuel injection device
JP6766711B2 (en) Fuel injection device
JP2018135821A (en) Fuel injection device
JP6926718B2 (en) Fuel injection device
JP6547660B2 (en) Fuel injection valve
JP5293226B2 (en) Solenoid valve and fuel injection device using solenoid valve
JP6458747B2 (en) Fuel injection device
JP2016050562A (en) Fuel injection valve
JP2005076571A (en) Injector
JP2019132180A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843202

Country of ref document: EP

Kind code of ref document: A1